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Abstract

In the Information Age data has become more important for all types of organizations.
The information carried by large datasets habilitates the creation of intelligent systems
that overcome inefficiencies and create a safer and better quality of life. Because of this,
organizations have come to see data as a competitive advantage.

Fraud Detection solutions are one example of intelligent systems that are highly dependent
on having access to large amounts of data. These solutions receive information about
monetary transactions and classify them as legitimate or fraudulent in real time. This
field has benefitted from higher availability of data, allowing the application of Machine
Learning (ML) algorithms that leverage the information in datasets to finding fraudulent
activity in real-time.

In a context of systematic gathering of information, privacy dictates how data can be used
and shared, in order to protect the information of users and organizations. In order to
retain the utility of data, a growing amount of effort has been dedicated to creating and
exploring avenues for privacy conscious data sharing.

Generating synthetic datasets that carry the same information as real data allows for the
creation of ML solutions while respecting the limitations placed on data usage. In this work,
we introduce Duo-GAN and DW-GAN as frameworks for synthetic data generation that
learn the specificities of financial transactions data and generate fictitious data that keeps
the utility of the original collections of data. Both these frameworks use two generators, one
for generating fraudulent instances and one for generating legitimate instances. This allows
each generator to learn the distribution for each class, avoiding the problems created by
highly unbalanced data. Duo-GAN achieves positive results, in some instances achieving
a disparity of only 4% in F1 score between classifiers trained with synthetic data and
classifiers trained with real data and both tested on the same real data. DW-GAN presents
positive results too with disparity of 3% in F1 score in the same conditions.

Keywords

Machine Learning, Generative Adversarial Networks, Synthetic Data, Tabular Data, Fraud
Detection
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Resumo

Na Idade da Informação os dados tornaram-se mais importantes para todos os tipos de
organizações. A informação contida pelos grandes datasets permite a criação de sistemas
inteligentes que ultrapassam ineficiências e criam qualidade de vida melhor e mais segura.
Devido a isto, as organizações começaram a ver os dados com uma vantagem competitiva.

As soluções de Deteção de Fraude são exemplos de sistemas inteligentes que dependem
do acesso a grandes quantidades de dados. Estas soluções recebem informação relativas
a transações monetárias e atribuem classificações de legítimas ou fraudulentas em tempo
real. Este é um dos campos que beneficiou da maior disponibilidade de dados, sendo capaz
de aplicar algoritmos de Machine Learning que utilizam a informação contida nos datasets
para detetar atividade fraudulenta em tempo real.

Num contexto de agregação sistemática de informação, a privacidade dita como os dados
podem ser utilizados e partilhados, com o objetivo de proteger a informação dos utilizadores
de sistemas e de organizações. De forma a reter a utilidade dos dados, uma quantidade
crescente de esforço tem sido dispendido em criar e explorar avenidas para a partilha de
dados respeitando a privacidade.

A geração de dados sintéticos que contém a mesma informação que os dados reais permite
a criação de soluções de Machine Learning (ML) mantendo o respeito pelas limitações
colocadas sobre a utilização de dados.

Neste trabalho introduzimos Duo-GAN e DW-GAN como frameworks para geração de
dados sintéticos que aprendem as especificidades dos dados de transações financeiras e
geram dados fictícios que retém a utilidade das coleções de dados originais. Ambos os
frameworks utilizam dois geradores, um para gerar instâncias fraudulentas e outro para
gerar instâncias legítimas. Isto permite que cada gerador aprenda a distribuição de cada
uma das classes, evitando assim os problemas criados por datasets desiquilibrados. O Duo-
GAN atinge resultados positivos, em certos casos atingindo uma disparidade de apenas 4%
no F1 score entre classificadores treinados com dados sintéticos e classificadores treinados
com dados reais, e ambos testados nos mesmos dados reais. O DW-GAN também apresenta
resultados positivos, com disparidade de 3% no F1 score para as mesmas condições.

Palavras-Chave

Machine Learning, Generative Adversarial Networks,Dados Sintéticos, Dados Tabulares,
Deteção de Fraude
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Chapter 1

Introduction

In recent years, the increase in online commerce and the growing number of monetary
transactions fostered extensive data collection. The gathered datasets contain information
about individuals’ and organisations’ spending patterns, which upheld the development
of Machine Learning based solutions to analyse transactions and detect financial fraud in
real-time [2]. Fraudsters’ techniques are usually transversally applicable through industries
and services, making a specific fraud detection solution of one organisation adequate for
other organisations with similar characteristics.

Companies are subject to tight regulations concerning data privacy, either enforced through
existing laws or service contracts. Consequently, sensitive information such as social se-
curity numbers and credit card numbers make sharing and using these financial datasets
challenging, even between departments of the same company. To address this issue, com-
panies usually have to go through a laborious anonymization process, select non-private
information, validate it with legal teams, and convince their clients that the data is not
used for any undisclosed purposes.

Research communities and other organizations have allocated a growing amount of effort
on making privacy-respecting data release possible so that the utility of the data is not
lost [10, 40, 46].

1.1 Motivation

The interdisciplinary project CAMELOT is led by the Feedzai company and involves the
Carnegie Mellon University, Universidade de Coimbra, Faculdade de Ciências da Univer-
sidade de Lisboa and Instituto Superior Técnico. In the CAMELOT context, we are
developing a framework for the transfer of information while respecting individuals’ and
organizations’ privacy. The Feedzai company works on fraud detection, and it has clients
operating in several industries, with some clients that are even direct competitors. The
transversality of fraud techniques could give Feedzai a competitive advantage by employ-
ing their data between different clients. However, due to tight contractual obligations
regarding the data, Feedzai is prohibited from using client data on different projects. Two
problems arise from this: the cold start problem where the classification models do not
have sufficient information to make accurate predictions; the gathering of data that allows
the solutions to perform at an acceptable threshold is a lengthy and costly process that
leads to the delay of deployment of the solutions. In this context, we are researching how
we can transfer knowledge from one client to another in the same industry while adhering

1
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to strong privacy standards, more concretely how to release data and retain utility.

One approach for achieving responsible data publication is embedding privacy into datasets.
By manipulating the information in the records of each dataset, it is possible to guarantee
higher degrees of confidentiality. The state-of-the-art approach to privacy is Differential
Privacy (DP), originally introduced by Dwork et al. [17], where controlled amounts of noise
are added to the records in ways that minimize privacy loss. Phan et al. [34] have observed
that it is possible to maintain training efficiency and model quality while applying DP. The
authors in [47] observed that DP is used with the assumption that data is not correlated,
however correlation in datasets is expected which weakens privacy and leads to unexpected
data leakage.

Another option is the creation of artificial data. Synthetic datasets are composed of sam-
ples with information that is not natural, i.e., they are artificially generated instead of
being collected, but exhibit properties similar to those found on the original data. If the
resemblance is high, one can use the synthetic data to learn the real dataset’s underlying
statistical properties employing Machine Learning and statistical tools without ever hav-
ing to look at the actual data. Synthetic data generation would help handle the privacy
concerns that Machine Learning (ML) practitioners and Data Scientists must face.

One way to generate synthetic data is to use generative models, which can capture the
distribution of training data and generate new artificial instances that maintain the utility
of the original data [32, 43, 46]. One generative model that gained relevance in recent
years in creating synthetic samples is the Generative Adversarial Networks (GAN). GANs
usually combine two neural networks called a Generator and a Discriminator. Both undergo
adversarial training where these networks are confronted in a zero-sum game between them.
The Generator creates fake samples based on an input distribution, aiming at deceiving
the Discriminator. On the other hand, the Discriminator’s goal is to learn to distinguish
between the synthetic samples and the actual input data. This adversarial training process
allows for the generation of quality samples after the training process.

The main objective of this work is the creation of a framework for the creation of synthetic
data. This synthetic data would then be used for the development of fraud detection
solutions without compromising the legal obligations that data is subject to. Creating
these solutions requires high quality data, and because of this the data generation employed
must ensure that the data resembles the original data. For this we propose Duo-GAN, an
architecture that allows the generation of quality synthetic data by employing a generator
for each class, learning the class conditional distribution and countering the effects of the
lack of balance that is usually found in datasets for fraud detection.

We demonstrate how Duo-GAN is capable of capturing the distributions and the cor-
relations present in the original data, and that Duo-GAN is capable of producing good
synthetic data, that when used for training classifiers and tested on real data shows per-
formance gaps ranging from 15% to 4% in F1 score to the results of classifiers trained
with the original data. DW-GAN is also shown to be able to capture the distributions
and correlations present in the real data, and DW-GAN data when used to train classifiers
obtains gaps of F1 score performance in the range of 5% to 3%, however for datasets with
categorical features the performance gap goes up to ∼ 35%. Beyond that, we show that
our proposed approaches’ data is more effective for training classifiers than data generated
by a Single GAN.

2
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1.2 Contributions

This work has resulted in several contributions, which are listed below.

• A compreensive literature review on the field of synthetic data generation focusing
particularly on Generative Adversarial Networks and tabular data. In this review, we
analyze several works on this field using different architectures ranging from Bayesian
Networks to Variational AutoEncoderss and Generative Adversarial Networks, while
discussing their results and shortcomings.

• A framework for the evaluation of synthetic data that includes theoretical evaluation
and utility validation. We propose a metric for measuring the distance between sam-
ples in the synthetic dataset and the real one as well as analysing intrinsic qualities
of the data such as the statistical distribution of values and correlations.

• Duo-GAN, a GAN based framework for generating quality synthetic data designed
to deal with the specifications of fraud detection data, mainly the unbalanced nature
of these datasets. This approach is based on using a generator for each class which
allows the generators to only learn the distribution of their given class.

1.3 Document Structure

This document is organized as follows: Chapter 2 introduces the relevant concepts for
this work; Chapter 3 presents a literature review on the field of synthetic data generation;
In Chapter 4 we present Duo-GAN, our approach for generating quality synthetic data;
Chapter 5 details our experimental setup such as datasets, how we evaluate the quality of
the generated data and the experimental design; in Chapter 6 the results of the experiments
are exposed and discussed; Chapter 7 concludes this work with a reflection on the main
points from this study and lays down the future work.

3
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Chapter 2

Background

This chapter introduces the relevant concepts for this work. This includes the concepts on
Machine Learning, and Privacy. After this introduction, the current literature on synthetic
data generation as a method for private data release will be presented and analyzed.

Machine Learning

Machine Learning (ML) algorithms give computers the ability to make decisions by relying
on observed data as learning experience. These algorithms are based on mathematical
models that are capable of improving their decisions based on their exposure to more
data. Their recent success relies on the unprecedented availability of data and computing
resources [38].

There is also diversity in ML algorithms usefulness, as different models target different
problems, such as:

• classification problems, where data instances are to be assigned to previously
established class labels.

• regression problems that have the goal of finding a mapping function between
input and output.

• generation of data where new pieces of data that resemble the original data are
created.

In this section ML concepts relevant to this work will be presented.

2.0.1 Types of Learning

According to the problem and the available data, the learning methodology changes. The
relevant paradigms for this work are:

Supervised Learning

In this type of learning, the datasets’ target labels are known and necessary for training [37].
The standard training algorithm for supervised learning is based on iteratively delivering
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data samples to a model and the corresponding desired label, called ground truth. Then
the model will calculate its output for the given sample, and based on the error, calculated
using a loss function between the output and the ground truth, the model will readjust
itself. After training, it is expected that the model will be capable of correctly assigning
class labels to the input samples.

Unsupervised Learning

Unlike supervised learning, unsupervised learning does not need knowledge of a target label
[37]. Many times this paradigm is used for finding groups with distinct characteristics in
the dataset instead of assigning rigid classifications.

2.0.2 Types of models

Discriminative Models

Discriminative Models learn the posterior p(y|x), with x as the input vector and y the
class labels or learn a direct map from input x to the class labels [30]. In simpler terms,
this means that these models attempt to learn the decision boundary between different
classes in a dataset. Decision Trees and Logistic Regression are examples of discriminative
models.

Generative Models

Generative Models learn the distribution of data, such as p(x), and p(x, y), with x being
the input vector and y as the class label when applicable. This means they learn the data
distribution of classes. In classification problems, these models use the learned distribution
with the Bayes rule,P (A|B) = P (B|A)P (B)

P (B) , to calculate p(y|x) and picking the most likely
label y [30]. Generative models’ knowledge of data distribution also habilitates them to
create new instances of data that follow the same distribution. The family of generative
models include Variational AutoEncoders and Generative Adversarial Networks.

2.0.3 Architectures and Algorithms

In ML there are several well known architectures and algorithms to create intelligent mod-
els. In this section different ML models are presented.

Bayesian Networks

Bayesian Networks represent a set of variables and their conditional dependencies through
directed acyclical graphs. Friedman et al. [19] define a Bayesian Network for U , a ran-
dom set of variables, as a pair B = (G, θ) where G is a directed acyclical graph whose
vertices correspond to the random variables X1, . . . , Xn, and whose edges represent di-
rect dependencies between the variables. G assumes each variable Xi is independent of
its nondescendants given its parent in G. The second parameter θ represents the set of
parameters that quantifies the network. For each possible value of xi of Xi and Πxi of ΠXi ,
where ΠXi represents the set of parents of Xi in G, the network contains the parameter

6
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Figure 2.1: Decision Tree to decide on playing Tennis based on the weather. The records for
the construction of this tree had 4 features, Outlook, Temperature, Humidity and Wind.
If we look at the branch on the left we see that the second node is Humidity but on the
right it is Wind, being that for different values in the same feature, the most informative
feature may be different. Temperature is not a node on the tree, meaning that not all
features are used for building a decision tree

θxi,Πxi
= PB(xi|Πxi). A Bayesian Network defines the joint probability distribution over

U given by Equation 2.1.

PB(X1, . . . , Xn) = Πn
i=1PB(X1|ΠXi) (2.1)

In order to classify, the network computes the Bayes rule for the possible classes and
chooses the most likely. Zhang et al. [46] propose a methodology for using these Networks
for generative purposes.

Logistic Regression

A logistic regression uses the Logistic Equation to solve binary problems by modeling
the probabilities of possible outcomes. The output of the model is calculated by p(y =
1|x,w) = 1

1+e−wT x
with x as the input vector and parameters w. These parameters are

trained in order to minimize the difference between the output of the model and the desired
output.

Decision Trees

Decision Trees are classification models that create a clear path for classification or re-
gression. Decision trees are composed of nodes, representing data features, with branches,
representing the possible values, or intervals of values, for said features. The nodes in
the tree are sorted by their discriminative power, however nodes at the same height are
not necessarily the same feature, two nodes at the same depth may represent a different
feature as seen in Figure 2.1. In order to obtain a classification for input vector x, the tree
must be transversed from top to bottom until finding a node with no branches. In order to
choose the right feature for each node several metrics can be used, such as the Gini Index
or cross-entropy.
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Random Forests

Random Forests are an ensemble classifier consisting of a large number of Decision Trees.
Individual trees are built with recourse to bootstrapping a dataset, and using a smaller ar-
bitrary set of features than the original data. Each tree is then built to fit the bootstrapped
dataset. This process is repeated n times to generate the forest. For classification, the Ran-
dom Forrest is given the feature vector x as input and each tree makes their classification
as a vote. Classification is decided by the class label that has received more votes.

Adaptative Boosting

Adaptative Boosting(AdaBoost) introduced by Freund and Schapire [18] is an ensemble
method for classification. It relies on shallow Decision Trees, called weak learners, to create
a strong learner that aggregates the output of the weak learners to make classifications. In
AdaBoost each weak learner has a different weight on the final aggregation, based on how
it performs on training data. If each weak learner is slightly better than guessing then the
strong learner will converge to the desired solution.

XGBoost

Similarly to AdaBoost, XGBoost is an ensemble method using Decision Trees as weak
learners, it is also an extension over Gradient Boosting, where instead of an aggregate
vote, each weak learner contributes a small part for classification. On top of Gradient
Boosting, XGBoost applies regularization, which is intended to curb the tendency decision
trees show to overfit their training data.

Feed Forward Neural Networks

Feed Forward Neural Networks (FFNN) are one of the simplest Artificial Neural Networks
(ANN) architectures, and a supervised learning model. These are composed of at least
three layers, an input layer, an hidden layer and an output layer, the structure of a FFNN
can be seen in Figure 2.2. The neurons between layers are usually fully connected. The
output of a neuron is the sum of all previous neurons multiplied by the weights that each
neuron has assigned to each previous neuron summed to a bias values, and then followed
by an activation function ϕ, that can be either linear or non-linear. The output y of a
neuron is calculated by the Equation 2.2, where n is the number of inputs into the neuron,
w is the weights assigned to previous neurons, x is the value of the inputs into the neuron,
and b is the neuron’s bias.

y = ϕ(

n∑
i=1

wkixi + b) (2.2)

The output y of the neurons in the output layer is the predicted value of the input vector
x. The model’s loss can be calculated as l(t, y) with t as the desired output. The objective
of the model is to minimize the loss function by tuning w and b.

Adjusting the weights is a two step process, the model first calculates the gradients of the
loss function with respect to the FFNN weights, and then updates the weights according
to the gradients. The most common tuning algorithm for ANNs is backpropagation.
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Figure 2.2: Feed Forward Neural Network with an input layer, one hidden layer and one
output layer, including a bias

Figure 2.3: Representation of an AutoEncoder

AutoEncoders

AutoEncoders are a type of ANN composed of two elements, an Encoder and a Decoder.
The Encoder will embed the input data into a lower dimensionality feature vector in the
latent space, while the Decoder takes lower dimensionality feature vector and reconstructs
it to the size of the original input data, the point where Encoder and Decoder meet is called
the bottleneck. AutoEncoders are trained so that the Decoder is able to reconstruct the
Encoded form of the input data. The goal of this model is to learn a data representation
with lower dimensionality and simultaneously learn how to decode the lower dimensionality
representation of data. With AutoEncoders being a type of ANN they are trained similarly
to FFNNs, but minimizing the reconstruction loss, using the input data as the desired
output.

Variational AutoEncoders (VAE) are an alternative type of AutoEncoder. VAE leverage
the possibility that from one random variable z with one distribution we can create another
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Figure 2.4: LSTM Unit structure. C is the Cell state,x is the input vector and h is the
output of the cell. Source: [45]

random variable with a different distribution [15]. In this architecture the bottleneck does
not represent a point in the latent space, but a probabilistic distribution over the latent
space. Input data is encoded into as a distribution over the latent space, after this a
point is sampled from the given distribution. The Decoder will decode the input into
the original dimensionality. Similarly to the AutoEncoders, VAE are trained to minimize
reconstruction error.

Long Short Term Memory Networks

Recurrent Neural Networks (RNN) are a class of ANN with a sense of temporal shift and
memory. The output of a neuron in a RNN is not only influenced by its inputs and their
assigned weights but also their previous outputs.

Long Short Term Memory (LSTM) Networks are a class of RNN that are designed for
memorizing information for arbitrarily sized input sequences. These Networks are based
on the LSTM unit. Figure 2.4 shows the structure of a LSTM unit.

These networks can be trained using optimization algorithms such as GradientDescent
combined with backpropagation through time.

Generative Adversarial Networks

Generative Adversarial Networks (GAN)’s are a Machine Learning architecture for training
generative models proposed in 2014 by Goodfellow et al. [20]. This architecture is composed
of two models, a generator G and a discriminator D. Figure 2.5 presents the structure of
the training process of a GAN.

The Generator G input is an arbitrary fixed-length vector z composed of randomly sampled
values from a given distribution, usually Gaussian or uniform, and the output is a sample
with the same structure of the ones in the real data. After training it is expected that G
produces samples that contain close to the same information of the ones in the real data.

The Discriminator model, D, receives samples of data and outputs a single scalar, corre-
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sponding to a classification of real or synthetic. It is trained with samples from the original
data and also samples that have been output by G.

Both models are trained simultaneously. G generates a batch of samples, and along with a
batch of real samples, they are provided to D. The Discriminator then classifies each of the
samples into real or synthetic and the results are backpropagated in D while the parameters
of G are frozen. After this, the Generator generates samples once again and uses them to
update itself based on the output of the newly updated Discriminator for the samples while
D ’s parameters are frozen. The training algorithm of the GAN is presented in Algorithm
1. G is trained to minimize log(1 −D(G(z))), which means minimizing the classification
error of samples as real or synthetic. D is trained so that D(x), the probability of the
sample x belonging to the original data and not to synthetic data, is correctly predicted.

Algorithm 1: Generative Adversarial Network training algorithm
G is the generator model with parameters θg, D is the discriminator model with
parameters θd, O is the original dataset, n is the number of training epochs, b
is the batch size for training, k is the number of training iterations in an epoch
resulting from number of samples in O divided by b
for 1..n do

for 1..k do
Sample b samples from O
Generate b samples by generating noise z and obtaining G(z)
Update D by ascending it stochastic gradient:

∇θd
1

b

∑b
i=1[log(D(xi)) + log(1−D(G(zi)))]

end
Generate b samples by generating noise z and obtaining G(z)
Update G by descending its stochastic gradient:

∇θg
1

b

∑b
i=1 log(1−D(G(zi)))

end
Result: We can discard D and keep G as a trained generator

The two models are adversarial since the success of one model depends on the failure of
the other. In the case that G creates a sample that is not recognized as synthetic by D, its
parameters will not change much, or not at all. However, D ’s parameters will be modified
a substantial amount. In the opposite case, the change of parameters will also be opposite.
Both models play a minimax game with value function V (D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−G(D(x))] (2.3)

Figure 2.5: Structure of a Generative Adversarial Network.
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GAN can be extended to a conditional model if both G and D are conditioned on some
extra information e [29]. This information can be class labels. The extra information e is
now also used as input for both G and D. The models still play a minimax game but now
the values function V (D,G) is as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|e)] + Ez∼pz(z)[log(1−G(D(x|e))] (2.4)

2.0.4 Evaluating models

Machine Learning algorithms need to be evaluated in order to guarantee they achieve their
goals. In classification problems evaluation is based on comparing the ground truth labels
included in the dataset to the labels attributed by the algorithm. In our context, we will
work with binary classification problems, so the metrics used are specific for this binary
context. These metrics are based on the concept of positive and negative variable, which in
the context of this work, a positive value means a transaction is fraudulent, and negative
means a transaction is legitimate.

When a classification model identifies a record as positive and the ground truth is also
a positive value, then it is considered a True Positive TP . If the classification falsely
identifies a record as positive it is considered a False Positive FP . When the classification
model correctly labels a record as negative, it is considered a True Negative TN . If the
classification falsely classifies a record it is a False Negative FN .

The traditional method for calculating performance is accuracy, defined as

accuracy =
TP + TN

TP + FP + TN + FN
. (2.5)

Accuracy is however a poor metric for unbalanced datasets, looking at a scenario where
records are 95% positive, a model that classifies every instance as positive has 95% accuracy
however it is not useful.

The metrics used to evaluate the classifiers, both rely on Precision and Recall. Recall
calculates the proportion of correctly identified positive instances, calculated as follows:

recall =
TP

TP + FN
(2.6)

Precision identifies how many positive records identified are actually positive, it is calcu-
lated as follows:

precision =
TP

TP + FP
(2.7)

F1 score

The F1 score is the harmonic mean between precision and recall calculated by

F1 = 2
precision · recall
precision+ recall

(2.8)

Precision and recall are inherently more informative metrics, especially in unbalanced con-
texts, which leads to the F1 score being a more valid indicator of classifier behavior for
unbalanced datasets [21].
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Figure 2.6: Precision Recall Curve. Calculating the area under the blue curve gives us the
Precision Recall Area Under the Curve. Source: [21]

Precision Recall Curve

The Precision Recall Curve (PRC) shows the tradeoff between precision and recall for
different classification thresholds. By plotting the precision and recall at different threshold
values and calculating the area under the curve, we can obtain a single value for quantifying,
classifiers performance. In Figure 2.6 we can see an example of a Precision Recall Curve.
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Chapter 3

Related Work

This work intends to create a framework for the creation of quality synthetic data. With
this goal in mind, this Chapter presents a review of the relevant literature into synthetic
data generation.

Zhang et al. [46] propose PrivBayes as a method for private data release. PrivBayes is
an algorithm for creating differentially private Bayesian Networks capable of synthesizing
private high dimensional data. This algorithm calculates a set of low-dimensional marginals
P of a dataset D to be injected with noise, subsequently a low-degree Bayesian Network,
using the noisy marginals, approximates the distribution of D. The use of noise in the
marginals P ensures Differential Privacy (DP)[17]. By adding noise to the low-dimensional
marginals instead of the high-dimensional datasets, PrivBayes attempts to avoid the curse
of dimensionality. For the lowest privacy budgets tested, classifiers trained on PrivBayes
generated data obtained poor results when compared to classifiers trained on real data,
however for larger privacy budgets, the results got significantly better.

Variational AutoEncoders have also been researched as a solution to the problem at hand.
These architectures have mostly been researched with image generation in mind [22, 41],
however some studies on tabular data have also been developed [24, 26] with satisfying
results. These architectures offer the advantage of being able to generate conditional
samples, that is, generating samples with a fixed value for a variable or groups of variables,
this would allow for balancing datasets. There has been some work with successful results
into incorporating DP into VAE [9].

Generative Adversarial Networks rose to prominence for their successful results on synthetic
image generation. Radford et al. [35] have demonstrated how a GAN based framework can
generate visual data that replicates the original dataset distribution, introducing Deep
Convolutional GAN, DCGAN. This work also explores vector arithmetic on the input
vectors. By averaging the outputs of samples of similar visual concepts such as "woman"
or "smiling" we can obtain the input vector that generates such features, allowing for
manipulation of the output to obtain different visual concepts, as can be seen in Figure
3.1. This shows that a GAN is able to learn complex concepts such as "glasses" and
reproduce them or remove them.

There are however some common issues with using GANs as generator models. Mode
collapse is the most widely reported problem in the literature. It happens when a GAN
only outputs samples belonging to a small number of modes in the original distribution.
This happens because the GAN Generator discovers some points in the data distribution
which the Discriminator has trouble identifying as real or synthetic, leading the Generator
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Figure 3.1: Vector arithmetic for visual concepts. The input vectors of each image in the
column are averaged. Arithmetic was then performed, producing the vector Y, which is
fed into the Generator and produces the shown image. Source: [35]

to only produce samples belonging to that small distribution in order to minimize its loss.
There have been several works that propose solutions for mode collapse [8, 36, 39].

Research has also explored the utility of GANs for tabular data. There are several dif-
ferences between image data, where GAN have most been employed, and tabular data.
Tabular data regularly contains features with continuous, binary and discrete values in the
same tables, also with mixed data types. These factors make the generation of tabular
data a non-trivial task [44].

One approach proposed for generating synthetic tabular data is table-GAN [32]. This
method is based on the aforementioned DCGAN, and uses a Convolutional Neural Network
for the Discriminator and a Neural Network with de-convolutional layers. The Generator
creates synthetic records that contain all the features of the data, but the label is assigned
by a Classifier, a network that is trained with the ground truth label of the real data. Before
training the GAN, the data is processed to be compatible with the model, the numerical
features are scaled to [-1,1], and the categorical features are attributed a value in the
[-1,1] range. These transformations to the data are reverted after the generation of the
samples. The results in the work show that classifiers trained on synthetic data generated
by table-GAN obtain comparable performance to classifiers trained on real data.

Other approach proposed to synthesize tabular data was introduced by Xu and Veera-
machaneni [42] called Tabular GAN (TGAN). TGAN uses an LSTM as the Generator and
a fully connected FFNN as the Discriminator. In order to deal with the specificities of
tabular data the authors use pre-processing techniques. For binary features noise is added
to the values, categorical features are converted to one-hot encoding and numerical fea-
tures undergo mode-specific normalization. In order to apply this method for a feature, a
Varitional Gaussian Mixture (VGM) [4] is trained to learn the distribution and each value
in the feature vector is encoded according to the distribution. More details on the specifici-
ties of mode-specific normalization can be found in Figure 3.2. These transformations are
all reversed after the generation process in order to return samples that are structurally
identical to the real data samples.

The work compared the utility retained in the data by different synthesizing methods
by comparing different classifiers performance when trained with synthetic data. TGAN
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Figure 3.2: Mode-specific normalization. ci,j is the jth value of the i feature vector, and
with a VGM modelling the distribution of the feature values, modes ηn and standard
deviations φn. For ci,j we compute the mode that is most likely to have produced it.
Based on this we compute αi,j and βi,j and then encode them as shown above. Source:
[44]

outperformed all methods using accuracy and the F1 metric, in all instances, having a
performance gap of 5.7% to classifiers trained on real data. Building upon the positive
results of TGAN, Xu et al. [44] introduced Conditional TGAN (CTGAN). This model is
a conditional GAN that uses a fully connected FFNN as Generator while using another
fully connected FFNN as Discriminator and applies the same pre-processing techniques as
TGAN. The results of this work are equally positive to the ones presented in the work that
introduced TGAN.

Similar to fraud detection, the medical field is also extremely limited when sharing health
records. Choi et al. [10] propose medGAN to circumvent these limitations. This method
achieves positive results, with human doctors being unable to distinguish synthetic sam-
ples from real samples, except for several outliers. medGAN however is susceptible to
membership inference attacks, when the attacker can deduce if a specific patient was used
for training the model if it has significant amounts of knowledge about him. This method
is also limited in the types of variables it can reproduce, those being binary and count
variables.

The Post Processing Theorem, as defined in Theorem 1, is at the base of several approaches
for ensuring that GANs are DP-compliant. This theorem allows to move the burden of
privacy exclusively to the Discriminator of the GAN, since the Generator has no contact
with the training data.

Theorem 1 (Post Processing). Let M be an (ε, δ)-differentially private algorithm and let
f : O → O

′ where O′ is any arbitrary space. Then f ◦M is (ε, δ)-differentially private

Jordon et al. [23] introduces Private Aggregation of Teacher Ensembles (PATE)-GAN,
which builds on the PATE framework introduced in [31] and applies it to the GAN archi-
tecture. In PATE-GAN the dataset is partitioned into k disjoint sets and the Discriminator
D is replaced by k teacher-discriminators. In each training iteration the teachers receive
samples from the generator G and instances of real data from their partition, and are
trained to classify them correctly as real or synthetic. The Student S then receives sam-
ples generated by G and is trained to minimize its error compared to the teacher vote
Aggregation with added noise. While G is trained to minimize the error in relation to the
output of S. The Precision Recall Area Under the Curve (PRAUC) obtained by synthetic
datasets is significantly lower than the same metric for real datasets. For example for the
Credit Card dataset, classifier models trained on real data obtained an average PRAUC of
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∼ 0.70 while the models trained on synthetic data obtained an average of ∼ 0.33 PRAUC.
In low-dimensional datasets PATE-GAN has similar performance to a non-private GAN
however when dealing with higher dimensionality datasets its performance decreases sig-
nificantly. The authors believe this to be due to the fact that S is trained exclusively on
synthetic samples, which makes it so that in the early iterations of training the generated
samples are less likely to be close to the original dataset distribution. S is limited to being
trained by generated samples because otherwise it would compromise DP.

Other works have built upon the Post Processing Theorem and proposed using a privacy
accountant to guarantee DP in synthetic data. Liu et al. [27] introduce PPGAN which is
composed of a standard GAN architecture coupled with Moments Accountant for the pri-
vacy budget applied to the Discriminator. The results show that for smaller privacy(20 or
under) budgets PPGAN has problems generating quality data. In [40] the authors propose
DPCGAN which employs the Renyi Differential Privacy Accountant. In this framework
once again the privacy accountant is only applied to the Discriminator. The authors ob-
tained satisfying results for a single-digit privacy budget, although it was for image data,
tabular data remains to be tested.

Arjovsky et al. [1] have proposed Wasserstein GAN (WGAN) as a way to improve the
training process and provide better data generation capabilities. In this model, the GAN
Discriminator is turned into a Critic that quantifies the difference between the real distri-
bution and the synthetic one. This is achieved by training a neural network that calculates
the Wasserstein Distance, the Critic, between the two distributions, real and generated,
which will provide the Generator with a meaningful metric of how it behaves, how far
the distribution of the generated data is from the real distribution, and then attempting
to minimize the distance between the distributions, intsead of minimizing the probabil-
ity of the generated data being classified as fake which is a more arbitrary metric. The
authors claim that using a Critic avoids mode collapse, and lends more versatility to the
architectures and models that can be used as Generator. In [3] WTGAN is introduced,
as an adaptation of the aforementioned TGAN to a Wasserstein Generative Adversarial
Networks (WGAN) model. The work does not show specific scores in classification taks,
but shows that the synthetic data generated by WTGAN used for classification tasks has
similar scores to classifiers trained on real data.

Discussion

Several works that aim at creating Differentially Private datasets ,such as [28, 34], were
omitted from the above section since using synthetic datasets satisfies the privacy require-
ments for this work. The loss of information resulting from enforcing DP makes the GAN
models that enforce it, such as PPGAN and PATEGAN, not be considered further in this
work.

After this review we can take some conclusions about the synthetic data generation field.
The most promising results are either VAE-based [9] or GAN-based [42? ]. These works
have shown good synthetic data utility. The most adequate approach seems to be a GAN-
based framework for data synthesis, because of the promising results presented in this
section, and the large breadth of work that has been done with the goal of generating data
that retains utility.

The processing of data before using it for training generative models is an important step
for assuring that the data that will result from generator models is of high quality. Looking
at the works that target the generation of synthetic data we can see that TGAN and all
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the methods that are extensions of it use much more sofisticated data processing than the
one used by table-GAN, mainly for categorical features.

This work’s main contribution is applying the research that has been done and described
above in the synthetic data generation field and apply it to the fraud detection field.
Despite a large amount of work using GANs for synthetic data generation and some for
specific industries, such as the aforementioned medGAN, there is no work focusing on fraud
detection data. This industry requires solutions tailored to it, given the specificities of the
data, such as the different types of features and the small number of fraudulent instances
compared to the number of legitimate instances.
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Chapter 4

Duo-GAN

In this section we present Duo-GAN, our approach for sharing and using data for monetary
fraud detection whilst preserving privacy and assuring a comparable success rate of fraud
detection. Our goal is to generate synthetic data that exhibits the same characteristics,
patterns and distributions of the original data without exposing private information.

When working in the domain of fraud detection, two main challenges arise: i) we have
to work with tabular data that contains features of different data types, such as binary,
discrete and continuous, and depicts diverse kinds of distributions; ii) the data points for
legitimate transactions strongly outweigh fraudulent ones, creating a highly unbalanced
dataset.

Concerning the first challenge, the characteristics of the data alone are known to impose
a significant amount of difficulties regarding the generation of non-tabular data [44]. It is
common for tabular datasets to have columns that have non-gaussian distributions, which
may lead to vanishing gradients in normalization processes or multi-modal distributions
that are difficult to model accurately.

Regarding the second challenge, problems emerge when we have highly unbalanced datasets,
as the computational models will struggle to generate samples that maintain the distribu-
tions and relationships between features. This emerges from an over-exposure to one class
while under-exposing the model to the other class. This will lead the model to capture
the distributions present in the dominant class because it is largely exposed to it, while
training instances from the less represented class are so few that they fail to have an impact
on the parameters of the model. This leads to poor representation of the data mainly in
the less present class, which becomes too similar to the dominant class. This poor rep-
resentation has consequences on classifying tasks, given that the positive instances are of
poor quality and too similar to the negative ones, it becomes a difficult task for classifiers
to differentiate between the two different classes.

4.1 Duo-GAN

To generate more faithful synthetic datasets, we introduce Duo-GAN, a Generative Model
using two GANs: one for positive, i.e., fraudulent instances, and another for negative
instances. This setup allows each generator to learn the class conditional distributions, as
well as the relationships in each class, in place of learning the distribution and relationships
of the whole data. This allows for the creation of more faithful samples for each respective
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class, mainly improving the quality of under-represented classes, i.e. case the fraudulent
instances. With more faithful data for the positive class, classifier models should be able
to differentiate better between fraudulent and legitimate instances of data.

The architecture of Duo-GAN is depicted in Figure 4.1. The process for generating syn-
thetic datasets starts, in Phase 1, with dividing the original dataset into a positive dataset
and a negative dataset and removing the target column from each one. In Phase 2, we
feed the datasets of positive samples and negative samples to two GANs, which will learn
the characteristics of the samples that compose each dataset. In Phase 3, we generate a
positive synthetic dataset using the GAN trained on the original positive dataset and a
negative dataset from the GAN trained on the original negative dataset. After this, we
add the target column for each of the synthetic datasets and merge them to create a full
synthetic dataset.

Figure 4.1: Duo-GAN - Proposed Generative Model for accurate synthetic data generation
of heavily unbalanced datasets.

4.2 DW-GAN

Keeping in mind the problems that are inherent to the GAN architectures, such as mode
collapse and unstable training, we propose a solution that swaps out the GAN and instead
uses WGAN as the Generator Model. We have named it DW-GAN, Duo Wasserstein
GAN. Since WGAN are a slight modification over the common GAN architecture, this
change does not present any need for adaptation of the approach we have described, which
means the description in the above section still apply for DW-GAN.
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Experimental Study

In this chapter we detail the methodology used for our work, as well as the experimental
design used to gauge the capabilities of the proposed approach.

5.1 Methodology

The experimental pipeline is detailed in Figure 5.1, and consists of three main steps: 1)
data generation; 2) validation of the synthetic data; 3) synthetic data utility validation.

Figure 5.1: Methodology pipeline.

In Step 1, we use real-world, highly unbalanced, public datasets to train models to create
synthetic data, following the strategy we propose, Duo-GAN, and then generate a synthetic
dataset using the trained models. We detail this stage in section 5.1.1.

In Step 2, our generated dataset goes through an evaluation process to estimate the syn-
thetic data’s utility. This evaluation includes analysis of underlying information of data,
measured using the distributions of feature values and correlations. In Section 5.1.2 the
specifics of this step are explained.

Finally, in Step 3, two groups of classifiers are trained, one with a real dataset, and the
other with a synthetic dataset created by a generator model trained with the real data.
Both groups are then tested on a test set extracted from the real dataset. Comparing the
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behaviour of the group trained on real data with the group trained on synthetic records
allows us to quantify the loss of performance resulting from using synthetic data. Section
5.1.3 contains a more detailed explanation of this step.

As well as using groups of classifiers trained with real data, a standard method of generating
synthetic data composed of a single GAN will also create a synthetic dataset to train a
group of classifiers. Comparing the performance of classifiers trained on synthetic datasets
with different origins allows us to see which approach produces data with higher quality.

5.1.1 Synthetic Data Generation

As sketched in Step 1 of Figure 5.1 we train the GAN model and generate the synthetic
samples. In this step we divide the dataset into two sets, Ttrain and Ttest, with the training
set being made up of 70% the records, while the test set contains the other 30%. Ttrain
is used for training both generator models, Duo-GAN and Single GAN, Ttest is set aside
until Step 3, described in Section 5.1.3. Records that include unknown values are removed
from the data. There is no need for additional processing of the data at this stage, given
that both models are capable of handling datasets with both numerical and categorical
features. The training process runs until we reach a specific value of the loss function or
a maximum number of epochs. The loss function considers the performance of both the
Generator and the Discriminator. When the training finishes, we take the Generator from
the GAN and use it to create synthetic samples. To guarantee that the real and synthetic
datasets are somewhat comparable, we ensure that the synthetic dataset contains the same
number of positive and negative instances as the actual dataset.

5.1.2 Synthetic Data Validation

The main goal when validating the synthetic data is to analyse and anticipate its utility.
As depicted in Step 2 from Figure 5.1, we aim to understand and verify if the generative
model can create synthetic samples that keep the characteristics of the real data. We start
by randomly sampling 5000 instances from both the original dataset and the synthetic
dataset. Afterwards, we calculate a singledivergence score between each data instance as
defined in:

singledivergence =
n∑
i=1

neq(d[i], s[i])) (5.1)

where n is the number of features, d[i] is the value of feature i for sample d of the original
dataset, s[i] is the value of feature i for sample s from the synthetic dataset, and neq is a
function that returns 1 if the values are different and 0 if they are equal.

After computing all the pairwise distances using (5.1), we obtain the smallest value for each
of the synthetic instances and calculate the average minimum distance to actual instances
in the dataset, as described in Equation 5.2

Divergence =

j∑
i=1

1

j
min(divergences[i])) (5.2)

where j is the number of samples, and divergences[i] is a vector of singledivergence
between instance i and the instances in the real dataset.
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We call this the Divergence score. The lower the Divergence value, the closer the resem-
blance between the two datasets.

This metric gives us two insights into the data: a lower Divergence value indicates samples
that more closely resemble the ones present in the real dataset meaning we can expect
higher utility; and an insight into the privacy of the synthetic dataset, since it allows us
to see if any record is a copy of an original record if they have a singledivergence value of
0 in relation to real records.

Additionally, we rely on statistical tools to compare the distribution of each feature’s values
in the synthetic data. First, for each feature in the datasets we compare the distributions
by creating an histogram of values. Then we perform a correlation analysis by creating
correlation matrixes for both the original and the synthetic datasets. The method selection
is dependent on the type of the features. For datasets that include categorical features
Spearman Rank Correlation will be used, and Pearson Correlation for datasets that do
not.

5.1.3 Utility Validation

Synthetic data must keep as much utility as possible to produce classifiers that can be as
good as the classifiers created using real data. To evaluate data utility, we will analyse
how effective are the ML models when trained with the synthetic data and tested on real
data. Afterwards, we will compare the performance of the same models using real-world
data. Step 3 of Figure 5.1 illustrates this process. Datasets used for training:

• Ttrain - Dataset composed of real-world samples;

• S - Dataset composed of synthetic samples.

After training, we use the Ttest dataset to evaluate each model. We use the F1 score to
assess the classifiers’ performance since it is better tailored to deal with unbalanced data.

Measuring the gap in performance between the models trained in the real data and those
trained with synthetic data allows us to quantify how capable the generated data is of re-
placing actual data for training models. This evaluation procedure will assess how mutually
compatible the real-world and the synthetic datasets are.

The models used for the classification task were the scikit-learn library implementations
of the XGBoost, AdaBoost, Decision Trees and Multi-Layer Perceptron using the default
parameters defined in the library [33].

5.2 Experimental Design

In this section we detail the datasets used in our experiments, and after, we explain the
structure of each experiment, including generator models and datasets used, along with
their objectives.

5.2.1 Datasets

To test the ability of the proposed approach to generate synthetic data, we use two datasets
that reflect the characteristics of data present on financial transactions and whose details
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we will describe next Both datasets are suited for binary classification, the same way
fraud detection is a binary classification problem since a transaction is either fraudulent
or legitimate.

1. The Adult dataset [16] contains data extracted from a census database. It com-
prises eight discrete features (e.g., gender, relationship status, work class) and six
continuous features (e.g., age, capital gain, capital loss number of years of education)
describing a person. The goal is to predict whether the income of a person will exceed
$50K dollars a year. The dataset has around 45 thousand instances, with only 24%
of them belonging to the positive class, indicating income over $50K dollars a year.
The features in this dataset have complex distributions, per example the age feature
as can be seen in Figure 5.2.

Figure 5.2: Distribution of values for the age feature in the Adult dataset.

2. Understanding if a transaction is fraudulent is important for credit card companies
to protect clients from unsolicited purchases. The Credit Card Fraud Detection
dataset [5, 6, 7, 11, 12, 13, 14, 25] contains 284807 transactions made by European
citizen cardholders in a period of two days in September of 2013. It contains 30
features that describe a certain transaction, where 28 of them result from a Principal
Components Analysis (PCA) transformation, one is Time which corresponds to the
amount of time elapsed since the first transaction on the dataset. The last one
is Amount, which corresponds to the monetary value of the transaction. The goal
is to use predict whether a transaction is fraudulent or genuine. Some changes
to the dataset were made in order to reduce the lack of balance and aiding with
reducing the run time of experiments. For that purpose we sample all 492 positive
instances of fraud and then randomly sample 49508 instances from the remaining
negative instances, still leaving the dataset highly unbalanced at just under 1% of
the transactions recorded as fraudulent instances.

5.2.2 Single and Double Generator Architectures

This experiments aims at assessing if a double GAN architecture is capable of creating
synthetic data that retains the utility present in real data, while also comparing the per-
formance of a double GAN architecture to a single GAN architecture.

In this experiments we follow the steps layed down in 5.1 to generate and evaluate the
quality of the data.

The following experiments will be executed:
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1. Single GAN and Duo-GAN For this experiment we will use TGAN [42] as the
single generator, and Duo-GAN as described in Chapter 4 with TGAN as the gener-
ators. We will test this approach on both the Adult and the Credit Card Fraud
Detection datasets. The configuration for TGAN used can be seen in Table 5.1.

Table 5.1: Configuration used for TGAN.

Learning rate 0.001
L2 Norm 0.00001

Random noise vector 200
Noise upper bound 0.2

Batch size 200
Optimizer Adam

LSTM Hidden State size 50
Generator fully connected layer size 64

Discriminator number of layers 2
Discriminator hidden layer size 100

Discriminator steps 2

2. Single WGAN and DW-GAN For this experiment we will use WTGAN [3] as
the single generator, while using DW-GAN as described in Section 4.2 with WTGAN
as the generators. We will test this approach on both the Adult and the Credit
Card Fraud Detection datasets. The configuration for WTGAN is the same as
the one used for TGAN, shown in Table 5.1.

5.2.3 Feature Engineering

The engineering of features that add information to datasets, and augment the performance
of intelligent systems that detect transaction fraud has become an essential part of the
development of these solutions. We need to take this into account when applying Duo-
GAN to datasets.

The main question in regards to Duo-GAN and feature engineering is whether data gener-
ation is better applied before or after the feature engineering process. Figure 5.3 displays
the creation of an augmented dataset.

Figure 5.3: Creation of an augmented dataset using feature engineering.

In Figure 5.4 we can see the pipeline of generating synthetic data and then applying a
feature engineering routine. For this approach to be successful it requires that Duo-GAN
has the capability of faithfully reproducing the underlying characteristics in the data to
allow feature engineering to create information rich features.

In Figure 5.5 we can see the timeline of generating a synthetic dataset based on an already
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Figure 5.4: Creation of an extended synthetic dataset with feature engineering after syn-
thetic data generation.

extended real dataset. Using Duo-GAN to create a synthetic dataset that already includes
engineered features poses its own set of challenges as well. Not only will it have to generate
data with more features, these extra features may have complex distribution that are harder
to replicate.

Figure 5.5: Creation of an augmented dataset using feature engineering and then creating
an extended synthetic dataset.

In this experiment we aim to perform a preliminary analysis of the relationship between
the artificial data generated by Duo-GAN and feature engineering. For this we create a
feature engineering routine that will be applied to the real and synthetic datasets. It will
allow us to analyze how much utility is added by the inclusion of feature engineering in
the process and look into where it better impacts the quality of generated data.

We will take the Adult dataset and extend it with the 3 first components resulting from a
Main Components Analysis (MCA) applied to the dataset, named p1,p2 and p3. We will
use Duo-GAN and DW-GAN as the generator models, and the baseline for this experiment
will be the classification results on the extended real dataset.
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Chapter 6

Results

This chapter details the results derived from the experimental design we detailed in the
last chapter. For each experiment we start by performing the synthetic data validation
where we show that Duo-GAN is not memorising the real-world dataset, but rather it is
capturing its underlying patterns. Then we analyze the synthetic data utility by creating
classifiers and testing them on real data.

The experiments were conducted for 10, 20, 50, 100 and 200 epochs of training for the shown
approaches, however for some training epochs the single generator models did not generate
positive samples so for some experiments only the results where the single generator created
positive samples are shown. The Appendix contains complimentary information regarding
the results of the experiments.

6.1 Single GAN and Duo-GAN

Synthetic Data validation

In Figure 6.1 we show the results of the Divergence score over the number of epochs
that the model was trained for the Adult (Figure 6.1a) and the Credit Card Fraud Detec-
tion (Figure 6.1b) datasets. The lower the Divergence value, the higher the resemblance
between the original and synthetic data.

The results seen for the Adult dataset show that with both approaches, the Divergence
score decreases as the number of epochs increases. This result indicates that both ap-
proaches are capturing the patterns that exist in the dataset. However, when we compare
the relative behaviour of the approaches, we can see differences. In particular, looking
at the Divergence curve of Duo-GAN, it is possible to see that it attains lower values,
which means that it can better capture the original dataset’s properties. Concerning the
Credit Card Fraud Detection dataset, we can see that that there are noticeable differ-
ences between both approaches. The first difference is the smaller range of variation in
the Divergence values. While Duo-GAN seems to present higher values, the difference
between the scores is very small (∼ 0.2) so we cannot make any assumption over which one
presents a more desirable behaviour. The second one is that for the Single GAN model,
we can only generate positive, i.e., fraudulent, instances after 50 epochs. Given that the
number of positive instances in the dataset is small (less than 1%), the model will rarely
take acquaintance of them. Concerning Duo-GAN (dashed line), we can generate positive
and negative instances much earlier. Another interesting aspect is that the Divergence
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x
(a) Adult Dataset (b) Credit card Dataset

Figure 6.1: Evolution of the Divergence score for the Adult and Credit Card Fraud De-
tection datasets. Lower values indicate an high resemblance between the original dataset
and the synthetic data.

(a) Distribution of values for education cat-
egorical feature.

(b) Distribution of values for hours-per-week
continuous feature.

Figure 6.2: Comparison of the distribution of features between the different approaches
and the Adult dataset

score is higher for both approaches, with values of around 29 when the maximum possible
is 31. This result is understandable because all features in this dataset are continuous,
making it harder to have an exact match for these features.

For both datasets we can conclude that both generator models are not simply memorising
the original data, but instead replicating patterns learned from the real-word datasets.

In order to continue assessing the theoretical quality of the data, we look to the distribution
of values for the real datasets compared to the generator models. Figure 6.2 presents the
results for two features for the Adult dataset, one categorical and the other continuous.
The results show that the approaches can capture the general distribution of the features.
Figure 6.3 shows the distribution of the feature V1 of the Credit Card Fraud Detection. In
this case, it is possible to see that we can capture the real-world data distribution without
having an exact match between the samples in the datasets.

Finally, it is important to see if the generator models can generate synthetic datasets that
keep the correlations that exist with the feature in the real-world data. Figures 6.4 and
6.5 present the correlations matrix results for Adult and the Credit Card Fraud Detection,
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Figure 6.3: Distribution of values for the V1 continuous feature for the Credit Card Fraud
Detection

Table 6.1: F1-score for machine learning models trained on real data and synthetic data
for the Adult dataset. The best results attained with models trained with synthetic data
are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
GAN

0.0461 0.0187 0.0771 0.2396 0.3098 0.6858

Duo-GAN 0.5961 0.6424 0.6481 0.6400 0.6460

DecisionTree Single
GAN

0.2353 0.2386 0.0771 0.2396 0.3098 0.6238

Duo-GAN 0.5732 0.5884 0.6292 0.6009 0.5361

MLP Single
GAN

0.1866 0.1863 0.0771 0.2396 0.3098 0.0895

Duo-GAN 0.5783 0.6065 0.0254 0.5806 0.5558

XGBoost Single
GAN

0.0596 0.0599 0.0771 0.2396 0.3098 0.7143

Duo-GAN 0.6152 0.6529 0.6739 0.6429 0.6051

respectively. Looking at the results Figures 6.4 for the adult dataset, Duo-GAN can better
capture the existing correlations between the variables than the Single GAN approach.
For example, let us consider the relationship between age and income. Looking at the cell
that shows the correlation between these two variables in Figure 6.4a we can see a medium
to high correlation (∼ 0.6). Looking at the same cell in Figure 6.4c we can see that the
correlation still exists but to a small degree (∼ 0.4). However, looking at the correlation
value between age and income in Figure 6.4b we can see that the value is 0.0, indicating no
correlation between these two variables. The same pattern is visible for other pairs such as
educational-num and income, marital-status and income, relationship and marital-status.

When looking at the correlation results for the Credit Card Fraud Detection (Figure 6.5)
the differences between Duo-GAN and the Single GAN are even more significant. A perusal
of Figure 6.5c reveals that our proposal can capture most of the existing correlations in
the Original dataset (Figure 6.5a). On the contrary, the Single GAN (Figure 6.5b) cannot
capture any of the existing correlations. When using the Single GAN approach, we lose
all the existing correlations between the features.

Synthetic Data Utility Evaluation

In Tables 6.1 and 6.4 we present the F1 scores obtained during classification, and in Tables
6.2 and 6.5 we present the Precision-Recall Area Under the Curve. In general, it is possible
to see that Duo-GAN obtains the best results for both problems in all of the classifiers. One
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(a) Original

(b) Single GAN (c) Duo-GAN

Figure 6.4: Correlation matrices between the features for the Adult dataset. The synthetic
datasets used are the ones obtained from training the generator models for 50 epochs.

(a) Original

(b) Single GAN (c) Duo-GAN

Figure 6.5: Correlation matrices between the features for the Credit Card Fraud Detection
dataset.The synthetic datasets used are the ones obtained from training the generator
models for 50 epochs.
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Table 6.2: Precision Recal Area Under the Curve for machine learning models trained on
real data and synthetic data for the Adult dataset. The best results attained with models
trained with synthetic data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
GAN

0.2803 0.3671 0.1770 0.2700 0.4615 0.8107

Duo-GAN 0.6468 0.6998 0.6976 0.6874 0.6711

DecisionTree Single
GAN

0.3427 0.3615 0.1770 0.2700 0.4615 0.6685

Duo-GAN 0.6442 0.6480 0.6749 0.6515 0.5920

MLP Single
GAN

0.2549 0.3093 0.1770 0.2700 0.4615 0.6168

Duo-GAN 0.5941 0.6217 0.6316 0.5348 0.5586

XGBoost Single
GAN

0.2499 0.3898 0.1770 0.2700 0.4615 0.8346

Duo-GAN 0.6373 0.7193 0.7300 0.6851 0.6084

Table 6.3: Precision and Recal breakdown by class for data generated by model trained
for 50 epochs for the Adult dataset.

Classifier Generator Class Precision Recall

Adaboost
Single GAN Negative 0.7245 0.8504

Positive 0.0777 0.0375

Duo-GAN Negative 0.9078 0.8504
Positive 0.5623 0.7576

DecisionTree
Single GAN Negative 0.7179 0.7133

Positive 0.1628 0.1659

Duo-GAN Negative 0.8967 0.7133
Positive 0.5415 0.7283

MLP
Single GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7530 1.0000
Positive 0.9878 0.0237

XGBoost
Single GAN Negative 0.7222 0.8199

Positive 0.1030 0.0615

Duo-GAN Negative 0.9106 0.8199
Positive 0.6055 0.7562

Table 6.4: F1-score for machine learning models trained on real data and synthetic data
for the Credit Card dataset. The best results attained with models trained with synthetic
data are highlighted in bold.

Classifier Approach 50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
GAN

0.0000 0.0000 0.0045 0.8571

Duo-GAN 0.8528 0.8346 0.7740

DecisionTree Single
GAN

0.0000 0.0000 0.0045 0.7817

Duo-GAN 0.5808 0.7904 0.7024

MLP Single
GAN

0.0000 0.0000 0.0045 0.8638

Duo-GAN 0.8720 0.8765 0.8765

XGBoost Single
GAN

0.0000 0.0000 0.0045 0.9062

Duo-GAN 0.8636 0.8496 0.7687
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Table 6.5: Precision Recal Area Under the Curve for machine learning models trained on
real data and synthetic data for the Credit Card dataset. The best results attained with
models trained with synthetic data are highlighted in bold.

Classifier Approach 50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
GAN

0.0168 0.0540 0.0056 0.8879

Duo-GAN 0.8346 0.8236 0.8318

DecisionTree Single
GAN

0.0168 0.0540 0.0056 0.7832

Duo-GAN 0.6403 0.7933 0.7262

MLP Single
GAN

0.0168 0.0540 0.0056 0.8723

Duo-GAN 0.7951 0.7972 0.7937

XGBoost Single
GAN

0.0168 0.0540 0.0056 0.8993

Duo-GAN 0.8526 0.8446 0.8487

Table 6.6: Precision and Recal breakdown by class for data generated by model trained
for 50 epochs for the Credit Card dataset.

Classifier Generator Class Precision Recall

Adaboost
Single GAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.9983 1.0000
Positive 0.8485 0.8116

DecisionTree
Single GAN Negative 0.9918 0.9872

Positive 0.0777 0.1159

Duo-GAN Negative 0.9985 0.9872
Positive 0.7582 0.8406

MLP
Single GAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.9908 1.0000
Positive 0.0000 0.0000

XGBoost
Single GAN Negative 0.9911 0.9997

Positive 0.5556 0.0362

Duo-GAN Negative 0.9983 0.9997
Positive 0.9113 0.8188
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other interesting aspect is the observable degeneration in the quality of data for generator
models trained during longer periods. This can be seen in the results for the models trained
for 100 or 200 epochs obtain worse performance than models trained for shorter periods of
time. This result might indicate that the generative models are learning properties that
do not exist in the original data. Our approach’s results are positive, particularly in the
Credit Card dataset, given its unbalanced nature.

It is essential to compare the results obtained with those of the classifiers trained and
tested in the actual data because it allows us to quantify how much utility is lost when
using synthetic data. Looking at the results presented in Table 6.1, and considering the best
performing classifier, i.e. the XGBoost, we can see that the most considerable difference
in F1-score is 0.12, and the lowest difference is about 0.05. In what concerns the best
performing classifier for the Credit Card dataset (Table 6.4), the most significant difference
is about 0.14, and the smallest is about 0.05.

Tables 1 and 6.6 we can see the Precision and Recall scores by class for data generated by
models trained for 50 epochs for both datasets. In these tables we can see how Duo-GAN
has better performance especially for the Positive class. For the Adult dataset we can see
that XGBoost achieves precsion of 0.0615 for the Positive class when trained with data
from a Single GAN generator, with Duo-GAN as the generator model, the precision for
the Positive class is 0.7562. The gap in performance is bigger for the Credit Card dataset.
For XGBoost the recall for the Positive class and a Single GAN generator model is 0.0362,
for Duo-GAN as the generator model the recall for the same class is 0.8188.

6.2 Single WGAN and DW-GAN

Synthetic Data validation

The results for the Divergence score are displayed in Figure 6.6.

The Generator Models scores for the Adult Dataset present an interesting behaviour. While
models trained with smaller numbers of epochs present similar behaviour, DW-GAN out-
performs a Single WGAN after longer training periods. We can also notice that both
models in this experiment still attain worse performances than both models in the pre-
vious experiment (Section 6.1), with the best Divergence score in this experiment being
∼ 7, while the worst scores in the previous experiment are already lower, starting at ∼ 6.5.
For the Credit Card dataset the relation between the scores is clearer, DW-GAN is con-
sistent in getting lower Divergence than the Single WGAN model, however, similarly to
the previous experiment (Figure 6.1b), the difference between scores is small enough that
does not allow us to make an inference of which model captures the data better.

These scores for the Divergence allow us to conclude that both these models are not
memorising the original data but that they are producing their own set of samples.

The next step for assessing the quality of the data is comparing the distribution of values
for the real dataset with the synthetic datasets distributions. For the Adult dataset, in
Figure 6.7, we can see the comparison for categorical (Figure 6.7a) and numerical (Figure
6.7b) features. The figures show that the generated features’ distributions are not similar,
with the peaks of the original distribution rarely aligning with the peaks in the generated
data. This shows us that the generator models are not capable of accurately capturing the
distribution of the real data. For the Credit Card dataset, which the results can be seen in
Figure 6.8, we observe the opposite to what happened with the Adult dataset, since both
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(a) Adult Dataset (b) Credit card Dataset

Figure 6.6: Evolution of the Divergence score for the Adult and Credit Card Fraud De-
tection datasets. Lower values indicate an high resemblance between the original dataset
and the synthetic data.

(a) Distribution of values for education cat-
egorical feature.

(b) Distribution of values for hours-per-week
continuous feature.

Figure 6.7: Comparison of the distribution of features between the different approaches
and the Adult dataset

approaches are capable of closely replicating the distribution of the original dataset.

It is important to assess that the generator models are maintaining the correlations present
in the original data, due to the importance these relations between features have on the
creation of ML models. In Figure 6.9 we can see the correlation matrixes for the original
Adult dataset as well as the synthetic datasets produced by both generator models. In this
experiment both synthetic datasets do not have similar correlation matrixes to the original.
One example is the relation between age and marital-status. In the original dataset, the
correlation value is ∼ −0.3 while in both synthetic datasets the correlation value is ∼ 0.
However DW-GAN seems to be able to capture more faithfully the correlations existent in
the original data. One such example is the relation between income and education-num,
that has a value of ∼ 0.3 in the original data. While in the Single WGAN dataset the
same relation has a value of ∼ −0.1, the DW-GAN dataset shows a value of ∼ 0.2, a much
closer value to the real data.

For the Credit Card dataset the behaviour is different. As can be seen in Figure 6.10b
the Single WGAN dataset is incapable of producing any correlation between features. In
opposition, the DW-GAN dataset correlation matrix, depicted in Figure 6.10c, while not
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(a) Distribution of values for V1 continuous
feature.

(b) Distribution of values for V26 continuous
feature.

Figure 6.8: Comparison of the distribution of features between the different approaches
and the Credit Card dataset

completely matching the original, depicted in Figure 6.10a, it still resembles it. Looking
at the Class feature, per example, we can see that the relations with other features are
similar in the original and the DW-GAN datasets.

(a) Original

(b) Single WGAN (c) DW-GAN

Figure 6.9: Correlation matrices between the features for the Adult dataset.

Synthetic Data Utility Evaluation

In Tables 6.7, 6.8, 6.10 and 6.11 the results for this experiment are shown.

One pattern that is clear is DW-GAN generally outperforming the Single WGAN model
on both problems. However the utility retained is different for both datasets. In the Adult
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Table 6.7: F1-score for machine learning models trained on real data and synthetic data
for the Adult dataset. The best results attained with models trained with synthetic data
are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
WGAN

0.0329 0.3557 0.0110 0.0211 0.0851 0.6858

DW-GAN 0.3409 0.3257 0.3874 0.3881 0.4614

DecisionTree Single
WGAN

0.2739 0.3816 0.2424 0.1451 0.1634 0.6238

DW-GAN 0.3335 0.3331 0.3808 0.3324 0.4032

MLP Single
WGAN

0.0000 0.3851 0.0000 0.0000 0.3799 0.0895

DW-GAN 0.0000 0.3308 0.0445 0.0631 0.0073

XGBoost Single
WGAN

0.1120 0.2280 0.0197 0.0446 0.0198 0.7143

DW-GAN 0.3964 0.3157 0.3870 0.3892 0.4500

Table 6.8: Precision Recal Area Under the Curve for machine learning models trained on
real data and synthetic data for the Adult dataset. The best results attained with models
trained with synthetic data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
WGAN

0.1806 0.1691 0.1719 0.1704 0.3346 0.8107

DW-GAN 0.3928 0.2065 0.1936 0.1723 0.5283

DecisionTree Single
WGAN

0.3609 0.5508 0.3344 0.2490 0.2656 0.6685

DW-GAN 0.5117 0.4896 0.6018 0.5321 0.4768

MLP Single
WGAN

0.6214 0.6129 0.6214 0.6214 0.6051 0.6168

DW-GAN 0.6214 0.5419 0.6248 0.6219 0.6230

XGBoost Single
WGAN

0.1861 0.1638 0.1824 0.1666 0.3575 0.8346

DW-GAN 0.2626 0.2383 0.2013 0.4255 0.4961

Table 6.9: Precision and Recal breakdown by class for data generated by model trained
for 200 epochs for the Adult dataset.

Classifier Generator Class Precision Recall

Adaboost
Single WGAN Negative 0.7521 0.9694

Positive 0.3494 0.0489

DW-GAN Negative 0.8195 0.9694
Positive 0.4189 0.4959

DecisionTree
Single WGAN Negative 0.7312 0.8324

Positive 0.1520 0.0894

DW-GAN Negative 0.7979 0.8324
Positive 0.4051 0.3921

MLP
Single WGAN Negative 0.0000 0.0000

Positive 0.2478 0.9807

DW-GAN Negative 0.7489 0.0000
Positive 1.0000 0.0021

XGBoost
Single WGAN Negative 0.7496 0.9961

Positive 0.4521 0.0097

DW-GAN Negative 0.8163 0.9961
Positive 0.4326 0.4683
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Table 6.10: F1-score for machine learning models trained on real data and synthetic data
for the Credit Card Fraud Detection dataset. The best results attained with models trained
with synthetic data are highlighted in bold.

Classifier Approach 50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
WGAN

0.0000 0.0144 0.0000 0.8571

DW-GAN 0.8716 0.8819 0.8854

DecisionTree Single
WGAN

0.2633 0.1825 0.1684 0.7817

DW-GAN 0.8075 0.8425 0.8413

MLP Single
WGAN

0.0000 0.0000 0.0181 0.8638

DW-GAN 0.0000 0.0000 0.0000

XGBoost Single
WGAN

0.0000 0.0000 0.1074 0.9062

DW-GAN 0.8516 0.8730 0.8606

Table 6.11: Precision-Recall Area Under the Curve for machine learning models trained
on real data and synthetic data for the Credit Card Fraud Detection dataset. The best
results attained with models trained with synthetic data are highlighted in bold.

Classifier Approach 50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Single
WGAN

0.0047 0.0291 0.0047 0.8879

DW-GAN 0.8370 0.8318 0.8352

DecisionTree Single
WGAN

0.3203 0.2419 0.2105 0.7832

DW-GAN 0.8100 0.8499 0.8500

MLP Single
WGAN

0.0047 0.0047 0.0150 0.8723

DW-GAN 0.7851 0.7846 0.7828

XGBoost Single
WGAN

0.0075 0.0786 0.2312 0.8993

DW-GAN 0.8583 0.8455 0.8440

Table 6.12: Precision and Recal breakdown by class for data generated by model trained
for 50 epochs for the Credit Card dataset.

Classifier Generator Class Precision Recall

Adaboost
Single WGAN Negative 0.9908 0.9999

Positive 0.0000 0.0000

DW-GAN Negative 0.9982 0.9999
Positive 0.9737 0.8043

DecisionTree
Single WGAN Negative 0.9951 0.9811

Positive 0.1902 0.4783

DW-GAN Negative 0.9979 0.9811
Positive 0.9469 0.7754

MLP
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9908 1.0000
Positive 0.0000 0.0000

XGBoost
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9981 1.0000
Positive 0.9646 0.7899
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(a) Original

(b) Single WGAN (c) DW-GAN

Figure 6.10: Correlation matrices between the features for the Credit Card Fraud Detection
dataset.

dataset F1 scores, displayed in Table 6.7, show a difference in utility, when compared to
classifiers trained on real data, for XGBoost ranging from 0.4 to 0.26, which is a significant
loss of performance. However for the Credit Card dataset, we observe a very positive
retention of utility. Table 6.10 shows the F1 scores for classifiers trained on synthetic data
and real data. For some of the classifiers the synthetic data ends up outperforming slightly
the real data even, but for XGBoost the loss in performance is significantly low, ranging
from 0.06 to 0.03. The difference in performance for both datasets might be explained by
WGAN being worse at generating categorical data.

We can compare the classifier behaviour for the specific classes. In Table 6.9 we see the
behavior of classifiers according to class and the generator model for the Adult dataset.
Using XGBoost as an example we can see that for negative instances, there is a slight
improvement between a single WGAN and DW-GAN in the precision scores. A much
bigger difference is between the positive classes, while precision remains the same between
generator models, the recall improves by ∼ 0.45. For the Credit Card dataset, shown on
Table 6.12 there is no improvement in the results of negative instances, however for the
positive instances experience a significant improvement, as can be seen for the XGBoost
results.

6.3 Feature Engineering

In this section we present and discuss the results obtained following the experimental setup
detailed in Section 5.2.3
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6.3.1 Pre Feature Engineering

In this experiment we create a synthetic dataset and then apply a feature engineering
routine to it, and compare it to real data that has been subjected to the same routine.

Synthetic Data validation

Figure 6.11 shows the evolution of the Divergence score for the number of training epochs.
As we can see there is a tendency for the Divergence score to go down as the training
time gets longer for both approaches. Furthermore, the overperformance of Duo-GAN over
DW-GAN is clear, while DW-GAN’s scores range from ∼ 13 to ∼ 10, Duo-GAN’s range
from ∼ 9 to ∼ 6. This serves as an indication that data generated by Duo-GAN resembles
the original data more than DW-GAN.

Figure 6.11: Evolution of the Divergence score for the Extended Adult dataset with
synthetic data generated before feature engineering.

After looking at the Divergence score, we compare the distributions of the original data to
the ones present in the synthetic datasets created by our generator models. In Figure 6.12,
we can see that Duo-GAN is better able to capture the patterns present in the original
data, than DW-GAN. These results are consistent with the previous experiments done on
the Adult Dataset (Section 6.1 and Section 6.2).

Looking at the correlation matrixes of the original and synthetic datasets, pictured in
Figure 6.13, and especifically looking at the engineered features (p1,p2 and p3) we can
see how and if executing a feature engineering routine on synthetic datasets maintains
the utility of feature engineering on real data. Looking at the relationship between the
engineered features and the continuous feature fnlwgt is a good display of the differences
in the matrixes accross the different datasets. In the real data the value of the relation
between fnlwgt and p1,p2 and p3 is ∼ 0.7,∼ 0.7,∼ 1 respectively, Duo-GAN has values
of ∼ 0.3,∼ 0.3,∼ 0.8, while DW-GAN’s values are ∼ 0.4,∼ 0.6,∼ 0. While DW-GAN’s
values are closer to the ones present in real data for two of the features the relation with
the strongest value in real data is not captured in the DW-GAN dataset, Duo-GAN on
the other hand has correlation values further away in the p1 and p2 features however the
larger pattern of relation between the engineered features and fnlwgt is similar to the one
in the original dataset.
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(a) Distribution of values for education cat-
egorical feature.

(b) Distribution of values for capital-loss
continuous feature.

(c) Distribution of values for engineered p1
continuous feature.

Figure 6.12: Comparison of the distribution of features between the different approaches
and the Extended Adult dataset

Synthetic Data Utility Evaluation

The first assessment that must be done in this context is asserting whether or not the
feature engineering routine is adding utility to the original dataset. If we compare the
values for real data present in this experiment, present in Table 6.13, with the ones from
experiments not including feature engineering, such as the ones present in Table 6.1, we
can see that the F1 Score for most classifiers improved slightly. For example the score for
XGBoost went from 0.7143 to 0.7799. The same pattern is visible for the Precision Recall
Area Under the Curve, as can be seen in Tables 6.14 and 6.2.

Comparing the results between the data subjected to feature engineering and raw data
allow us to see how the generator models are able to cope with these techniques. Comparing
Duo-GAN’s results in this scenario, in Table 6.13, with the ones in the scenario without
feature engineering, in Table 6.1, we can see that there is no clear improvement in the
scores. Comparing DW-GAN’s data performance in this scenario to the performance with
raw data, shown on Table 6.7, we can see that once again there is not improvement in
performance, except for the 100 epochs data which experienced a consistent improvement,
per example the XGBoost performance in the F1 score went from 0.3892 to 0.4642.

Table 6.15 shows a breakdown of the precision and recall for each class according to the
generator, as well as the value for the same metrics for data with no exposure to feature
engineering. Looking at the scores for XGBoost we can see there is no clear improvement.
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Table 6.13: F1-score for machine learning models trained on real data and synthetic data for
the Extended Adult dataset. The best results attained with models trained with synthetic
data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Duo-GAN 0.6133 0.6262 0.6494 0.6288 0.6025 0.6960DW-GAN 0.1171 0.1623 0.2219 0.4711 0.4058

DecisionTree Duo-GAN 0.5409 0.6123 0.6108 0.5777 0.5119 0.6228DW-GAN 0.3437 0.3734 0.3902 0.4688 0.3994

MLP Duo-GAN 0.0006 0.0035 0.0058 0.0041 0.3927 0.3302DW-GAN 0.0000 0.0000 0.3289 0.1451 0.3210

XGBoost Duo-GAN 0.6535 0.6438 0.6505 0.6548 0.5748 0.7799DW-GAN 0.2206 0.3073 0.3760 0.4642 0.4352

Table 6.14: Precision-Recall Area Under the Curve for machine learning models trained
on real data and synthetic data for the Extended Adult dataset. The best results attained
with models trained with synthetic data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Duo-GAN 0.7180 0.7180 0.7150 0.6862 0.6286 0.8167DW-GAN 0.2709 0.2014 0.4025 0.5254 0.2936

DecisionTree Duo-GAN 0.6306 0.6586 0.6573 0.6308 0.5729 0.6697DW-GAN 0.4308 0.5534 0.5980 0.6116 0.5959

MLP Duo-GAN 0.6259 0.6264 0.6270 0.6265 0.6123 0.5354DW-GAN 0.6257 0.6257 0.5657 0.6036 0.4619

XGBoost Duo-GAN 0.7287 0.7384 0.7337 0.7094 0.5713 0.8932DW-GAN 0.2623 0.3804 0.5164 0.4507 0.5466

Table 6.15: Precision and Recal breakdown by class for data generated by model trained
for 50 epochs for the Extended Adult dataset.

Classifier Generator Class Precision Recall Raw data Precision Raw data Recall

Adaboost
DW-GAN Negative 0.7735 0.9552 0.8195 0.9694

Positive 0.5565 0.1674 0.4189 0.4959

Duo-GAN Negative 0.9147 0.9552 0.9078 0.8504
Positive 0.5440 0.7837 0.5623 0.7576

DecisionTree
DW-GAN Negative 0.9260 0.1640 0.7979 0.8324

Positive 0.2786 0.9610 0.4051 0.3921

Duo-GAN Negative 0.8967 0.1640 0.8967 0.7133
Positive 0.5356 0.7301 0.5415 0.7283

MLP
DW-GAN Negative 0.0000 0.0000 0.7489 0.0000

Positive 0.2515 1.0000 1.0000 0.0021

Duo-GAN Negative 0.7518 0.0000 0.7530 1.0000
Positive 1.0000 0.0176 0.9878 0.0237

XGBoost
DW-GAN Negative 0.8006 0.9712 0.8163 0.9961

Positive 0.7658 0.2799 0.4326 0.4683

Duo-GAN Negative 0.9141 0.9712 0.9106 0.8199
Positive 0.5801 0.7729 0.6055 0.7562
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(a) Original

(b) Duo-GAN (c) DW-GAN

Figure 6.13: Correlation matrixes for different approaches and the Extended Adult dataset.

Despite the precision for positive instances generated by DW-GAN growing, the recall gets
smaller, for Negative instances both metrics scores go down. For Duo-GAN generated
data there is a noticeable growth on the recall for the negative class and a slight growth in
precision, for positive instances precision grows ∼ 0.2 while the recall goes down ∼ 0.2.

6.3.2 Post Feature Engineering

In this experiment we applied a feature engineering routine to the real dataset, and then
we took the extended dataset and used it as input for a generator model, that outputs a
synthetic dataset that includes engineered features.

In Figure 6.14 we can see the evolution of the Divergence score for the number of training
epochs. Similarly to previous experiments, the Divergence score trends down as the
training time get longer for both models. DW-GAN’s scores range from ∼ 13 to ∼ 10,
while Duo-GAN’s go from ∼ 9 to ∼ 6. This shows a clear overperformance of Duo-GAN,
indicating that data generated by it will resemble the original data than data produced by
DW-GAN.

The distribution of values in datasets can be seen in Figure 6.15. We can see that Duo-
GAN is able to capture the general pattern of the distribution of the original features in
the real data. DW-GAN once again, same as in Section 6.2, struggled to reproduce the
distribution of the original dataset. In regard to the engineered features, which has its
distribution depicted in Figure 6.15c, both approaches were capable of almost precisely
reproducing it.

The correlation matrixes of the synthetic datasets, when compared to the correlation matrix
of the original dataset, will give us insights into how our approaches are able to generate
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Figure 6.14: Evolution of the Divergence score for the Extended Adult dataset with
synthetic data generated after feature engineering.

Table 6.16: F1-score for machine learning models trained on real data and synthetic data for
the Extended Adult dataset. The best results attained with models trained with synthetic
data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Duo-GAN 0.6416 0.6481 0.6462 0.6401 0.6239 0.6960DW-GAN 0.3601 0.2452 0.1523 0.2931 0.5955

DecisionTree Duo-GAN 0.5360 0.6005 0.6049 0.6148 0.5503 0.6228DW-GAN 0.5752 0.5080 0.3522 0.3532 0.5955

MLP Duo-GAN 0.0994 0.0514 0.0591 0.0209 0.3628 0.3302DW-GAN 0.0000 0.0000 0.1005 0.0180 0.0000

XGBoost Duo-GAN 0.6475 0.6639 0.6599 0.6499 0.6210 0.7799DW-GAN 0.4508 0.3829 0.2598 0.2171 0.5955

data that includes engineered features. Looking at the correlation matrix of the dataset
generated by DW-GAN in Figure 6.16c, we can see that DW-GAN is capable of capturing
some of the relations present in the original data such as the relation between education-
number and income. However, the DW-GAN dataset has relations that do not exist in the
original data, such as capital-gains and occupation, or gender and education-num. The
relations observed in the real data relating to the engineered features are not present in
the DW-GAN dataset. The dataset resulting from Duo-GAN misses the relations relating
to the engineered features as well. Duo-GAN also creates relations in its data that are not
present in the original dataset, such as the negative relations between native-country and
capital-loss and between gender and capital-gain, both of which do not exist in the real
data. Some relations are kept, even if lower values, such as the relation between marital-
status and relationship which has a value of ∼ 0.4 in the original data and a value of ∼ 0.2
in the dataset synthesized by Duo-GAN.

Synthetic Data Utility Evaluation

The results of this experiment need to be evaluated on two parameters, how they com-
pare to the performance on real data, and how it compares to situations where feature
engineering was not part of the process in order to measure how effective Duo-GAN is at
generating data that includes engineered features.
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(a) Distribution of values for education cat-
egorical feature.

(b) Distribution of values for capital-loss
continuous feature.

(c) Distribution of values for engineered p1
continuous feature.

Figure 6.15: Comparison of the distribution of features between the different approaches
and the Extended Adult dataset

When comparing Duo-GAN with the real data scores, in Table 6.16, we can see that for the
XGBoost classifier the loss in utility ranges from ∼ 0.15 to ∼ 0.11. DW-GAN data shows
much larger drop utility, while for XGBoost the real data score is 0.7799, with DW-GAN
data the scores range from 0.2171 to 0.5955.

Looking at the relation with situations without feature engineering, Duo-GAN data did
not have better results. The results for XGBoost compared to the ones shown on Table 6.1,
show no clear improvement over the results. However DW-GAN does show improvement,
as we can see if we compare the results for XGBoost in Table 6.7. The best result with
no engineered features in the dataset is ∼ 0.45, while the best result in this context was
0.5955, which translates into a significant improvement.

When looking at the precision and recall results for each class, shown in Table 6.18, we
can see that there is no discernible pattern in the change of results. The precision for
positive instances generated by DW-GAN has shown significant growth, however the recall
went down. For the same generator the change of performance in the negative instances
is negligible. For data generated by Duo-GAN there is improvement for both recall and
precision in negative instances, however for the positive ones, while recall went up by
∼ 0.05, the precision went down by nearly the same amount.
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(a) Original

(b) Duo-GAN (c) DW-GAN

Figure 6.16: Correlation matrixes for different approaches and the Extended Adult dataset.

Table 6.17: Precision-Recall Area Under the Curve for machine learning models trained
on real data and synthetic data for the Extended Adult dataset. The best results attained
with models trained with synthetic data are highlighted in bold.

Classifier Approach 10
Epochs

20
Epochs

50
Epochs

100
Epochs

200
Epochs

Real
Data
Score

Adaboost Duo-GAN 0.7127 0.7414 0.7314 0.7147 0.7011 0.8167DW-GAN 0.5924 0.4233 0.3424 0.4254 0.6731

DecisionTree Duo-GAN 0.5919 0.6480 0.6633 0.6633 0.6069 0.6697DW-GAN 0.6665 0.6243 0.5321 0.5447 0.6731

MLP Duo-GAN 0.6193 0.6258 0.6279 0.6297 0.5679 0.5354DW-GAN 0.6257 0.6257 0.6176 0.6294 0.5012

XGBoost Duo-GAN 0.7055 0.7485 0.7398 0.7183 0.6560 0.8932DW-GAN 0.5749 0.5534 0.4030 0.3541 0.5244

6.4 Discussion

The results presented in this chapter allow us to make a number of assertions over the
proposed methodology, experiment design and the proposed approaches.

Our proposed data validation, in Section 5.1.2, needs to be tuned in order to be a better
predictor of the performance of data in the utility evaluation step. The divergence metric is
not a reliable predictor of performance. In Figure 6.1a we see the value of divergence getting
lower with more training epochs, however the classification performance deteriorates after
50 epochs of training. For the Credit Card dataset, we see that the divergence values
tend to be high, ∼ 29 out of a maximum of 31, however synthetic data generated by our
proposed approaches still obtained performance close to the utility on the real data. This
disparity between the performance and the divergence scores can be caused by the way
it deals with continuous features since for these features it is harder to obtain an exact
match.
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Table 6.18: Precision and Recal breakdown by class for data generated by model trained
for 50 epochs for the Extended Adult dataset.

Classifier Generator Class Precision Recall Raw data Precision Raw data Recall

Adaboost
DW-GAN Negative 0.7740 0.9931 0.8195 0.9694

Positive 0.8699 0.1372 0.4189 0.4959

Duo-GAN Negative 0.9107 0.9931 0.9078 0.8504
Positive 0.5498 0.7699 0.5623 0.7576

DecisionTree
DW-GAN Negative 0.7308 0.5396 0.7979 0.8324

Positive 0.2296 0.4083 0.4051 0.3921

Duo-GAN Negative 0.9019 0.5396 0.8967 0.7133
Positive 0.5088 0.7556 0.5415 0.7283

MLP
DW-GAN Negative 0.7549 0.9996 0.7489 0.0000

Positive 0.9667 0.0340 1.0000 0.0021

Duo-GAN Negative 0.7533 0.9996 0.7530 1.0000
Positive 0.9885 0.0252 0.9878 0.0237

XGBoost
DW-GAN Negative 0.7810 0.9953 0.8163 0.9961

Positive 0.9233 0.1694 0.4326 0.4683

Duo-GAN Negative 0.9256 0.9953 0.9106 0.8199
Positive 0.5593 0.8121 0.6055 0.7562

The experiments did not allow us to make any meaningful assertions about where in the
pipeline of synthetic data generation should feature engineering be included. The feature
engineering routine did not change the performance enough to draw conclusions. This may
be the cause for none of the approaches experiencing significant change in performance with
feature engineering, either for feature engineering before or after the generation of data.

Looking at the proposed approaches we can see that both of them outperformed Single-
GAN generator models. Having a model learn the class conditional distribution for both
positive and negative instances creates better quality data which is reflected mainly when
it comes to performance in classifying tasks compared to classifiers trained on real data.
The difference in performance for the positive instances highlights how a double generator
model creates better quality data by improving the quality of the positive records. We can
also see that a traditional GAN approach, Duo-GAN, is superior to a WGAN approach,
DW-GAN, especially for the Adult dataset which includes categorical features. This may
be due to the usage of Wasserstein distance as a loss function for the Generator because
calculating the distance between distributions that include categorical values is not as clear
as it is for exclusively numerical datasets.

Our proposed approaches finished training with 200 epochs in around 30 minutes for the
Adult dataset, and 60 minutes for the Credit Card datasets. Since both datasets have
roughly the same number of rows this indicates that the number of features of the dataset
is what drives the training time up.
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Conclusion

With the increased volume of monetary transactions in online commerce, more and more
companies, regardless of the industry they belong to or the service they provide, rely on
ML techniques to automatically process large volumes of data. However, companies are
subject to tight regulations regarding data privacy and have to follow strict anonymisation
procedures. These procedures raise some issues, namely the delay in the deployment of
solutions and the fact that the anonymisation might remove important details hindering
accurate predictions. Synthetic datasets that contain the same statistical properties, such
as distributions and correlations between features, can help organizations speed up their
development process for effective solutions.

In this work we propose Duo-GAN as a framework for generating synthetic datasets. This
framework is designed taking into account the specific limitations of the fraud detection
datasets, namely the variety in the typology of features that is natural to tabular data and
the high imbalance of the datasets, where fraudulent instances tend to be rare. Duo-GAN
is composed of two GANs, one that generates positive records, and one that generates
negative ones. This allows each of the GAN to learn the class conditional distribution for
each of the classes which counters the over exposure to negative records that happens in
single GAN generator models, that leads to poor quality positive records which in turn
results in poor performance in classification tasks. The GAN used in our framework are
based on TGAN[42], since this model has mechanisms for dealing with the different types
of features. We also introduce DW-GAN, a framework similar to Duo-GAN that trades
the traditional GAN for WGAN.

To validate our approaches we created a testing scheme that includes a theorethical vali-
dation of data, as well as a measurement of its utility. We introduce a metric to measure
the divergence between the real and synthetic datasets as well as look at the distributions
of features and at the correlation matrixes and compare them with the ones in real data.
This process should allow us to predict the utility present in synthetic datasets, however
the divergence score we introduce is not a good indicator of utility due to being too strict
for continuous features. To measure the utility retained by synthetic data we use it to
train a group of classifiers and then test it on real data. We also compare the performance
to classifiers trained on real data and tested on the same data.

The results from the experimental setup described in this work show that our proposed
approach not only outperforms single GAN generator models, it also generates high qual-
ity synthetic datasets that show performance close to the performance of real datasets.
Specifically, the best model trained with synthetic data generated by Duo-GAN obtains
classification performance with a gap of 4% in F1 score, while a Single-GAN model gen-
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erates data that has close to 0 in F1 score in classification tasks, performing particularly
poorly in identifying positive samples. DW-GAN has similar performance to Duo-GAN
in the Credit Card dataset, however the performance decays for the Adult dataset, which
contains categorical features with the smallest gap in perfomance being ∼ 43%.

Future Work

As mentioned above, this work presented some shortfalls namely with theoretical validation
of data and considering feature engineering. Future work will aim to solve these issues.
The divergence metric should be modified to better accomodate continuous features. With
regards to feature engineering there is a need to create a feature engineering routine that
adds bigger utility to data before evaluating where feature engineering should take place
in the synthetic data generation pipeline.

The results for Duo-GAN are positive and indicate that synthetic data generation can
help speed up the development of fraud detection solutions. In the future, we will study
how datasets containing both real and synthetic data perform, essentially measuring the
compatibility between data, that will allow for the integration of real data in the develop-
ment of solutions continually while it is being aggregated. The compatibility of data also
opens the door for data augmentation, namely artificially balancing the datasets. Con-
ditional GAN are also promising for the purposes of data augmentation, because they
allow the sampling of data with specific charactheristics, helping to solve problems found
in the classifiers. Given this in the future we will test different GAN models inside the
Duo-GAN architecture as generators, including Conditional GAN and models that focus
on Differential Privacy.
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Appendix

Appendix

Single GAN and Duo-GAN

Figure 1: Distribution of values for the age continuous feature of the Adult dataset.

Figure 2: Distribution of values for the workclass categorical feature of the Adult dataset.

Figure 3: Distribution of values for the fnlwgt continuous feature of the Adult dataset.
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Figure 4: Distribution of values for the education categorical feature of the Adult dataset.

Figure 5: Distribution of values for the educational-num categorical feature of the Adult
dataset.

Figure 6: Distribution of values for the marital-status categorical feature of the Adult
dataset.
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Figure 7: Distribution of values for the occupation categorical feature of the Adult dataset.

Figure 8: Distribution of values for the relationship categorical feature of the Adult dataset.

Figure 9: Distribution of values for the race categorical feature of the Adult dataset.
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Figure 10: Distribution of values for the capital-gain continuous feature of the Adult
dataset.

Figure 11: Distribution of values for the capital-loss continuous feature of the Adult
dataset.

Figure 12: Distribution of values for the hours-per-week continuous feature of the Adult
dataset.
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Figure 13: Distribution of values for the native-country categorical feature of the Adult
dataset.

Table 1: Precision and Recal breakdown by class for data generated by model trained for
10 epochs for the Adult dataset.

Adaboost
Single GAN Negative 0.7475 0.9688

Positive 0.2173 0.0258

Duo-GAN Negative 0.8944 0.9688
Positive 0.5015 0.7348

DecisionTree
Single GAN Negative 0.7577 0.8383

Positive 0.2959 0.2022

Duo-GAN Negative 0.9068 0.8383
Positive 0.4649 0.7872

MLP
Single GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7534 1.0000
Positive 0.9570 0.0261

XGBoost
Single GAN Negative 0.7465 0.9547

Positive 0.2055 0.0349

Duo-GAN Negative 0.9286 0.9547
Positive 0.4854 0.8397
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Table 2: Precision and Recal breakdown by class for data generated by model trained for
20 epochs for the Adult dataset.

Adaboost
Single GAN Negative 0.7487 0.9913

Positive 0.2727 0.0097

Duo-GAN Negative 0.9112 0.9913
Positive 0.5504 0.7714

DecisionTree
Single GAN Negative 0.7614 0.8861

Positive 0.3385 0.1735

Duo-GAN Negative 0.8939 0.8861
Positive 0.4918 0.7371

MLP
Single GAN Negative 0.7487 1.0000

Positive 1.0000 0.0009

Duo-GAN Negative 0.7549 1.0000
Positive 0.9667 0.0340

XGBoost
Single GAN Negative 0.7529 0.9913

Positive 0.5510 0.0317

Duo-GAN Negative 0.9151 0.9913
Positive 0.5611 0.7805

Table 3: Precision and Recal breakdown by class for data generated by model trained for
100 epochs for the Adult dataset.

Adaboost
Single GAN Negative 0.7584 0.8442

Positive 0.3009 0.1996

Duo-GAN Negative 0.9071 0.8442
Positive 0.5540 0.7576

DecisionTree
Single GAN Negative 0.7431 0.6398

Positive 0.2417 0.3417

Duo-GAN Negative 0.8831 0.6398
Positive 0.5220 0.6896

MLP
Single GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7486 1.0000
Positive 1.0000 0.0003

XGBoost
Single GAN Negative 0.7541 0.8114

Positive 0.2746 0.2125

Duo-GAN Negative 0.9110 0.8114
Positive 0.5516 0.7705
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Table 4: Precision and Recal breakdown by class for data generated by model trained for
200 epochs for the Adult dataset.

Adaboost
Single GAN Negative 0.8026 0.9188

Positive 0.5752 0.3274

Duo-GAN Negative 0.8947 0.9188
Positive 0.5952 0.7063

DecisionTree
Single GAN Negative 0.8095 0.8030

Positive 0.4273 0.4376

Duo-GAN Negative 0.8517 0.8030
Positive 0.5098 0.5785

MLP
Single GAN Negative 0.0000 0.0000

Positive 0.2514 0.9997

Duo-GAN Negative 0.0194 0.0000
Positive 0.2459 0.9704

XGBoost
Single GAN Negative 0.7802 0.9260

Positive 0.5040 0.2236

Duo-GAN Negative 0.8773 0.9260
Positive 0.5623 0.6550

Figure 14: Distribution of values for the Time continuous feature of the Credit Card
dataset.

Figure 15: Distribution of values for the V1 continuous feature of the Credit Card dataset.
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Figure 16: Distribution of values for the V2 continuous feature of the Credit Card dataset.

Figure 17: Distribution of values for the V3 continuous feature of the Credit Card dataset.

Figure 18: Distribution of values for the V4 continuous feature of the Credit Card dataset.
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Figure 19: Distribution of values for the V5 continuous feature of the Credit Card dataset.

Figure 20: Distribution of values for the V6 continuous feature of the Credit Card dataset.

Figure 21: Distribution of values for the V7 continuous feature of the Credit Card dataset.
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Figure 22: Distribution of values for the V8 continuous feature of the Credit Card dataset.

Figure 23: Distribution of values for the V9 continuous feature of the Credit Card dataset.

Figure 24: Distribution of values for the V10 continuous feature of the Credit Card dataset.
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Figure 25: Distribution of values for the V11 continuous feature of the Credit Card dataset.

Figure 26: Distribution of values for the V12 continuous feature of the Credit Card dataset.

Figure 27: Distribution of values for the V13 continuous feature of the Credit Card dataset.
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Figure 28: Distribution of values for the V14 continuous feature of the Credit Card dataset.

Figure 29: Distribution of values for the V15 continuous feature of the Credit Card dataset.

Figure 30: Distribution of values for the V16 continuous feature of the Credit Card dataset.
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Figure 31: Distribution of values for the V17 continuous feature of the Credit Card dataset.

Figure 32: Distribution of values for the V18 continuous feature of the Credit Card dataset.

Figure 33: Distribution of values for the V19 continuous feature of the Credit Card dataset.
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Figure 34: Distribution of values for the V20 continuous feature of the Credit Card dataset.

Figure 35: Distribution of values for the V21 continuous feature of the Credit Card dataset.

Figure 36: Distribution of values for the V22 continuous feature of the Credit Card dataset.
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Figure 37: Distribution of values for the V23 continuous feature of the Credit Card dataset.

Figure 38: Distribution of values for the V24 continuous feature of the Credit Card dataset.

Figure 39: Distribution of values for the V25 continuous feature of the Credit Card dataset.
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Figure 40: Distribution of values for the V26 continuous feature of the Credit Card dataset.

Figure 41: Distribution of values for the V27 continuous feature of the Credit Card dataset.

Figure 42: Distribution of values for the V28 continuous feature of the Credit Card dataset.
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Figure 43: Distribution of values for the Amount continuous feature of the Credit Card
dataset.

Table 5: Precision and Recal breakdown by class for data generated by model trained for
100 epochs for the Credit Card dataset.

Adaboost
Single GAN Negative 0.9908 0.9993

Positive 0.0000 0.0000

Duo-GAN Negative 0.9982 0.9993
Positive 0.8538 0.8043

DecisionTree
Single GAN Negative 0.9912 0.9972

Positive 0.1458 0.0507

Duo-GAN Negative 0.9984 0.9972
Positive 0.7500 0.8261

MLP
Single GAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.9908 1.0000
Positive 0.0000 0.0000

XGBoost
Single GAN Negative 0.9908 0.9997

Positive 0.0000 0.0000

Duo-GAN Negative 0.9983 0.9997
Positive 0.8626 0.8188
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Table 6: Precision and Recal breakdown by class for data generated by model trained for
200 epochs for the Credit Card dataset.

Adaboost
Single GAN Negative 0.9762 0.1764

Positive 0.0060 0.5362

Duo-GAN Negative 0.9983 0.1764
Positive 0.8129 0.8188

DecisionTree
Single GAN Negative 0.9888 0.3432

Positive 0.0081 0.5797

Duo-GAN Negative 0.9986 0.3432
Positive 0.5021 0.8551

MLP
Single GAN Negative 0.9909 0.9983

Positive 0.0385 0.0072

Duo-GAN Negative 0.9908 0.9983
Positive 0.0000 0.0000

XGBoost
Single GAN Negative 0.9769 0.2985

Positive 0.0032 0.2391

Duo-GAN Negative 0.9986 0.2985
Positive 0.6964 0.8478

Single WGAN and DW-GAN

Figure 44: Distribution of values for the age continuous feature of the Adult dataset.

Figure 45: Distribution of values for the workclass categorical feature of the Adult dataset.
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Figure 46: Distribution of values for the fnlwgt continuous feature of the Adult dataset.

Figure 47: Distribution of values for the education categorical feature of the Adult dataset.

Figure 48: Distribution of values for the educational-num categorical feature of the Adult
dataset.

76



Figure 49: Distribution of values for the marital-status categorical feature of the Adult
dataset.

Figure 50: Distribution of values for the occupation categorical feature of the Adult dataset.

Figure 51: Distribution of values for the relationship categorical feature of the Adult
dataset.
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Figure 52: Distribution of values for the race categorical feature of the Adult dataset.

Figure 53: Distribution of values for the capital-gain continuous feature of the Adult
dataset.

Figure 54: Distribution of values for the capital-loss continuous feature of the Adult
dataset.
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Figure 55: Distribution of values for the hours-per-week continuous feature of the Adult
dataset.

Figure 56: Distribution of values for the native-country categorical feature of the Adult
dataset.

Table 7: Precision and Recal breakdown by class for data generated by model trained for
10 epochs for the Adult dataset.

Adaboost
Single WGAN Negative 0.7412 0.9444

Positive 0.1003 0.0185

DW-GAN Negative 0.7810 0.9444
Positive 0.3798 0.3051

DecisionTree
Single WGAN Negative 0.7850 0.6871

Positive 0.3209 0.4399

DW-GAN Negative 0.5375 0.6871
Positive 0.2173 0.7433

MLP
Single WGAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.7485 1.0000
Positive 0.0000 0.0000

XGBoost
Single WGAN Negative 0.7364 0.8530

Positive 0.1724 0.0911

DW-GAN Negative 0.8164 0.8530
Positive 0.2555 0.9593

79



Appendix

Table 8: Precision and Recal breakdown by class for data generated by model trained for
20 epochs for the Adult dataset.

Adaboost
Single WGAN Negative 0.5639 0.0677

Positive 0.2333 0.8441

DW-GAN Negative 0.6900 0.0677
Positive 0.2337 0.7122

DecisionTree
Single WGAN Negative 0.7777 0.2853

Positive 0.2625 0.7573

DW-GAN Negative 0.6556 0.2853
Positive 0.1855 0.4314

MLP
Single WGAN Negative 0.7486 1.0000

Positive 1.0000 0.0003

DW-GAN Negative 0.7709 1.0000
Positive 0.9004 0.1193

XGBoost
Single WGAN Negative 0.6056 0.3041

Positive 0.1654 0.4106

DW-GAN Negative 0.6606 0.3041
Positive 0.2185 0.6316

Table 9: Precision and Recal breakdown by class for data generated by model trained for
50 epochs for the Adult dataset.

Adaboost
Single WGAN Negative 0.7388 0.9443

Positive 0.0374 0.0064

DW-GAN Negative 0.7500 0.9443
Positive 0.2515 0.9903

DecisionTree
Single WGAN Negative 0.7482 0.7792

Positive 0.2504 0.2195

DW-GAN Negative 0.5559 0.7792
Positive 0.2472 0.9616

MLP
Single WGAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.7551 1.0000
Positive 0.9675 0.0349

XGBoost
Single WGAN Negative 0.7440 0.9654

Positive 0.0977 0.0111

DW-GAN Negative 0.6935 0.9654
Positive 0.2507 0.9821
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Table 10: Precision and Recal breakdown by class for data generated by model trained for
100 epochs for the Adult dataset.

Adaboost
Single WGAN Negative 0.7442 0.9656

Positive 0.1051 0.0120

DW-GAN Negative 0.7203 0.9656
Positive 0.2503 0.9531

DecisionTree
Single WGAN Negative 0.7021 0.5143

Positive 0.1952 0.3505

DW-GAN Negative 0.2216 0.5143
Positive 0.2169 0.8095

MLP
Single WGAN Negative 0.7489 1.0000

Positive 1.0000 0.0021

DW-GAN Negative 0.7568 1.0000
Positive 0.9618 0.0443

XGBoost
Single WGAN Negative 0.7299 0.8789

Positive 0.0821 0.0322

DW-GAN Negative 0.7818 0.8789
Positive 0.2547 0.9232

Figure 57: Distribution of values for the Time continuous feature of the Credit Card
dataset.

Figure 58: Distribution of values for the V1 continuous feature of the Credit Card dataset.
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Figure 59: Distribution of values for the V2 continuous feature of the Credit Card dataset.

Figure 60: Distribution of values for the V3 continuous feature of the Credit Card dataset.

Figure 61: Distribution of values for the V4 continuous feature of the Credit Card dataset.
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Figure 62: Distribution of values for the V5 continuous feature of the Credit Card dataset.

Figure 63: Distribution of values for the V6 continuous feature of the Credit Card dataset.

Figure 64: Distribution of values for the V7 continuous feature of the Credit Card dataset.
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Figure 65: Distribution of values for the V8 continuous feature of the Credit Card dataset.

Figure 66: Distribution of values for the V9 continuous feature of the Credit Card dataset.

Figure 67: Distribution of values for the V10 continuous feature of the Credit Card dataset.
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Figure 68: Distribution of values for the V11 continuous feature of the Credit Card dataset.

Figure 69: Distribution of values for the V12 continuous feature of the Credit Card dataset.

Figure 70: Distribution of values for the V13 continuous feature of the Credit Card dataset.
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Figure 71: Distribution of values for the V14 continuous feature of the Credit Card dataset.

Figure 72: Distribution of values for the V15 continuous feature of the Credit Card dataset.

Figure 73: Distribution of values for the V16 continuous feature of the Credit Card dataset.
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Figure 74: Distribution of values for the V17 continuous feature of the Credit Card dataset.

Figure 75: Distribution of values for the V18 continuous feature of the Credit Card dataset.

Figure 76: Distribution of values for the V19 continuous feature of the Credit Card dataset.
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Figure 77: Distribution of values for the V20 continuous feature of the Credit Card dataset.

Figure 78: Distribution of values for the V21 continuous feature of the Credit Card dataset.

Figure 79: Distribution of values for the V22 continuous feature of the Credit Card dataset.
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Figure 80: Distribution of values for the V23 continuous feature of the Credit Card dataset.

Figure 81: Distribution of values for the V24 continuous feature of the Credit Card dataset.

Figure 82: Distribution of values for the V25 continuous feature of the Credit Card dataset.
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Figure 83: Distribution of values for the V26 continuous feature of the Credit Card dataset.

Figure 84: Distribution of values for the V27 continuous feature of the Credit Card dataset.

Figure 85: Distribution of values for the V28 continuous feature of the Credit Card dataset.
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Figure 86: Distribution of values for the Amount continuous feature of the Credit Card
dataset.

Table 11: Precision and Recal breakdown by class for data generated by model trained for
10 epochs for the Credit Card dataset.

Adaboost
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9983 1.0000
Positive 0.9113 0.8188

DecisionTree
Single WGAN Negative 0.9941 0.9784

Positive 0.1394 0.3768

DW-GAN Negative 0.9980 0.9784
Positive 0.8308 0.7826

MLP
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9908 1.0000
Positive 0.0000 0.0000

XGBoost
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9982 1.0000
Positive 0.9174 0.8043
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Table 12: Precision and Recal breakdown by class for data generated by model trained for
20 epochs for the Credit Card dataset.

Adaboost
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9981 1.0000
Positive 0.9649 0.7971

DecisionTree
Single WGAN Negative 0.9934 0.9856

Positive 0.1575 0.2899

DW-GAN Negative 0.9979 0.9856
Positive 0.9217 0.7681

MLP
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9908 1.0000
Positive 0.0000 0.0000

XGBoost
Single WGAN Negative 0.9908 1.0000

Positive 0.0000 0.0000

DW-GAN Negative 0.9981 1.0000
Positive 0.9565 0.7971

Pre Feature Engineering

Figure 87: Distribution of values for the age continuous feature of the Extended Adult
dataset.
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Figure 88: Distribution of values for the workclass categorical feature of the Extended
Adult dataset.

Figure 89: Distribution of values for the fnlwgt continuous feature of the Extended Adult
dataset.

Figure 90: Distribution of values for the education categorical feature of the Extended
Adult dataset.
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Figure 91: Distribution of values for the educational-num categorical feature of the Ex-
tended Adult dataset.

Figure 92: Distribution of values for the marital-status categorical feature of the Extended
Adult dataset.

Figure 93: Distribution of values for the occupation categorical feature of the Extended
Adult dataset.
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Figure 94: Distribution of values for the relationship categorical feature of the Extended
Adult dataset.

Figure 95: Distribution of values for the race categorical feature of the Extended Adult
dataset.

Figure 96: Distribution of values for the capital-gain continuous feature of the Extended
Adult dataset.
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Figure 97: Distribution of values for the capital-loss continuous feature of the Extended
Adult dataset.

Figure 98: Distribution of values for the hours-per-week continuous feature of the Extended
Adult dataset.

Figure 99: Distribution of values for the native-country categorical feature of the Extended
Adult dataset.
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Figure 100: Distribution of values for the p1 continuous feature of the Extended Adult
dataset.

Figure 101: Distribution of values for the p2 continuous feature of the Extended Adult
dataset.

Figure 102: Distribution of values for the p3 continuous feature of the Extended Adult
dataset.
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Table 13: Precision and Recal breakdown by class for data generated by model trained for
10 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.7524 0.9775

Positive 0.3887 0.0425

Duo-GAN Negative 0.8999 0.9775
Positive 0.5897 0.7251

DecisionTree
DW-GAN Negative 0.6815 0.5427

Positive 0.1526 0.2450

Duo-GAN Negative 0.7724 0.5427
Positive 0.4748 0.1823

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7489 1.0000
Positive 1.0000 0.0021

XGBoost
DW-GAN Negative 0.7619 0.8929

Positive 0.3469 0.1694

Duo-GAN Negative 0.9144 0.8929
Positive 0.5836 0.7732

Table 14: Precision and Recal breakdown by class for data generated by model trained for
20 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.7191 0.6891

Positive 0.1770 0.1990

Duo-GAN Negative 0.8819 0.6891
Positive 0.6432 0.6498

DecisionTree
DW-GAN Negative 0.7757 0.8892

Positive 0.4159 0.2348

Duo-GAN Negative 0.8856 0.8892
Positive 0.5682 0.6826

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7499 1.0000
Positive 1.0000 0.0073

XGBoost
DW-GAN Negative 0.7791 0.9043

Positive 0.4539 0.2368

Duo-GAN Negative 0.8820 0.9043
Positive 0.6694 0.6445
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Table 15: Precision and Recal breakdown by class for data generated by model trained for
100 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.8936 0.3714

Positive 0.3170 0.8684

Duo-GAN Negative 0.8859 0.3714
Positive 0.5841 0.6791

DecisionTree
DW-GAN Negative 0.5477 0.0130

Positive 0.2479 0.9681

Duo-GAN Negative 0.8573 0.0130
Positive 0.5829 0.5730

MLP
DW-GAN Negative 0.7549 0.9996

Positive 0.9669 0.0343

Duo-GAN Negative 0.7485 0.9996
Positive 0.0000 0.0000

XGBoost
DW-GAN Negative 0.8878 0.3833

Positive 0.3180 0.8558

Duo-GAN Negative 0.8861 0.3833
Positive 0.6316 0.6674

Table 16: Precision and Recal breakdown by class for data generated by model trained for
200 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.8912 0.0339

Positive 0.2557 0.9877

Duo-GAN Negative 0.8816 0.0339
Positive 0.5407 0.6776

DecisionTree
DW-GAN Negative 0.7915 0.1065

Positive 0.2563 0.9165

Duo-GAN Negative 0.8460 0.1065
Positive 0.4805 0.5703

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.0000 1.0000
Positive 0.2490 0.9868

XGBoost
DW-GAN Negative 0.8324 0.1516

Positive 0.2647 0.9091

Duo-GAN Negative 0.8696 0.1516
Positive 0.5333 0.6375
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Appendix

Post Feature Engineering

Figure 103: Distribution of values for the age continuous feature of the Extended Adult
dataset.

Figure 104: Distribution of values for the workclass categorical feature of the Extended
Adult dataset.

Figure 105: Distribution of values for the fnlwgt continuous feature of the Extended Adult
dataset.
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Figure 106: Distribution of values for the education categorical feature of the Extended
Adult dataset.

Figure 107: Distribution of values for the educational-num categorical feature of the Ex-
tended Adult dataset.

Figure 108: Distribution of values for the marital-status categorical feature of the Extended
Adult dataset.
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Appendix

Figure 109: Distribution of values for the occupation categorical feature of the Extended
Adult dataset.

Figure 110: Distribution of values for the relationship categorical feature of the Extended
Adult dataset.

Figure 111: Distribution of values for the race categorical feature of the Extended Adult
dataset.
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Figure 112: Distribution of values for the capital-gain continuous feature of the Extended
Adult dataset.

Figure 113: Distribution of values for the capital-loss continuous feature of the Extended
Adult dataset.

Figure 114: Distribution of values for the hours-per-week continuous feature of the Ex-
tended Adult dataset.
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Appendix

Figure 115: Distribution of values for the native-country categorical feature of the Extended
Adult dataset.

Figure 116: Distribution of values for the p1 continuous feature of the Extended Adult
dataset.

Figure 117: Distribution of values for the p2 continuous feature of the Extended Adult
dataset.
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Table 17: Precision and Recal breakdown by class for data generated by model trained for
10 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.7926 0.9828

Positive 0.8205 0.2345

Duo-GAN Negative 0.8908 0.9828
Positive 0.6049 0.6905

DecisionTree
DW-GAN Negative 0.9434 0.6091

Positive 0.4337 0.8913

Duo-GAN Negative 0.8740 0.6091
Positive 0.5247 0.6568

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7509 1.0000
Positive 1.0000 0.0129

XGBoost
DW-GAN Negative 0.8080 0.9855

Positive 0.8755 0.3030

Duo-GAN Negative 0.8964 0.9855
Positive 0.6035 0.7098

Table 18: Precision and Recal breakdown by class for data generated by model trained for
20 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.7754 0.9919

Positive 0.8579 0.1451

Duo-GAN Negative 0.9107 0.9919
Positive 0.5498 0.7699

DecisionTree
DW-GAN Negative 0.8798 0.6604

Positive 0.4198 0.7315

Duo-GAN Negative 0.9001 0.6604
Positive 0.5052 0.7515

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7564 1.0000
Positive 0.9664 0.0422

XGBoost
DW-GAN Negative 0.7896 0.9382

Positive 0.5819 0.2562

Duo-GAN Negative 0.9256 0.9382
Positive 0.5593 0.8121
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Chapter 7

Table 19: Precision and Recal breakdown by class for data generated by model trained for
100 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.7804 0.9656

Positive 0.6513 0.1911

Duo-GAN Negative 0.8994 0.9656
Positive 0.5654 0.7298

DecisionTree
DW-GAN Negative 0.7597 0.0657

Positive 0.2523 0.9382

Duo-GAN Negative 0.8943 0.0657
Positive 0.5295 0.7242

MLP
DW-GAN Negative 0.7512 1.0000

Positive 1.0000 0.0141

Duo-GAN Negative 0.7505 1.0000
Positive 1.0000 0.0106

XGBoost
DW-GAN Negative 0.7866 0.7663

Positive 0.3541 0.3813

Duo-GAN Negative 0.9155 0.7663
Positive 0.5563 0.7828

Table 20: Precision and Recal breakdown by class for data generated by model trained for
200 epochs for the Extended Adult dataset.

Adaboost
DW-GAN Negative 0.9295 0.6619

Positive 0.4581 0.8505

Duo-GAN Negative 0.8762 0.6619
Positive 0.6507 0.6272

DecisionTree
DW-GAN Negative 0.9295 0.6619

Positive 0.4581 0.8505

Duo-GAN Negative 0.8217 0.6619
Positive 0.5154 0.4449

MLP
DW-GAN Negative 0.7485 1.0000

Positive 0.0000 0.0000

Duo-GAN Negative 0.7485 1.0000
Positive 0.0000 0.0000

XGBoost
DW-GAN Negative 0.9295 0.6619

Positive 0.4581 0.8505

Duo-GAN Negative 0.8706 0.6619
Positive 0.6231 0.6128
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