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neutrinoless double beta decay of 136Xe
by Andrey Solovov

Detection of neutrinoless double beta decay (0νββ) is a scientific goal with significant impli-
cations for neutrino physics and cosmology, and a new generation of large-scale detectors is
underway for probing 0νββ half-lives in the 1025 − 1027 yr range. The LUX-ZEPLIN (LZ)
dark matter experiment will use a liquid xenon time projection chamber (TPC) with compet-
itive specifications for the search of 0νββ events of 136Xe. With the current background re-
jection analysis, the projected LZ 0νββ background rate is 6.8 × 10-3 counts/keV/kg/year in
the relevant energy region for this decay, with almost all of the background occurring due to
events with a single primary electron. The two primary electrons of 0νββ events produce a
different energy deposition topology than these backgrounds, motivating the investigation of
topology-based discrimination techniques.

In this work, the viability of a discrimination cut based on machine learning algorithms was
examined. A modular and expandable framework was developed for feature extraction and dy-
namic dimensionality reduction on simulated time-series data, for the purpose of binary clas-
sification. This framework was applied to discrimination of the two classes of event, with four
different binary classifiers (k-nearest neighbors, support vector machines, Gaussian process,
and random forests), using data simulated (with equal balancing of the two classes) for this pur-
pose. To identify the best configuration, a fast performance comparison and assessmentmethod
was developed, capable of extrapolating to balancings other than the one employed. In effect, a
versatile procedure for systematic viability assessment of binary classification approaches was
conceived.

With the aid of the Instituto Nacional de Computação Distribuída, and using a custom version
of the ANTS2 package with Geant4 integration, two datasets with∼ 104 datapoints each were
simulated: one where all the primary electrons of the two classes had the most favorable ini-
tial emission direction for this particular analysis (vertical); and one where the initial emission
direction was isotropic. A miniaturized LZ TPC was modeled, recreating topology transport
physics: drift diffusion; electroluminescence; and pulse generation in the upper PMT array.
The Gaussian process classifier was seen to perform best out of the four selected. For a target
0νββ sensitivity of 80%, it reduced the single electron background to∼ 22% of its initial rate
for vertical emission, and to ∼ 37% of the original rate for isotropic emission. However, for
ISO there was no predicted improvement to LZ sensitivity. The main cause of the difficulty in
discrimination was determined to be drift diffusion, with a promising avenue of investigation
being Gaussian deconvolution methods.
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Exploração de técnicas de
aprendizado de máquina para discriminação do
decaimento beta duplo, sem neutrinos, do 136Xe

por Andrey Solovov

A detecção do decaimento beta duplo sem neutrinos (0νββ) é um objectivo científico com im-
plicações significativas nas áreas da física de neutrinos e cosmologia, e uma nova geração de de-
tectores de grande escala está em desenvolvimento para sondar meias-vidas de 0νββ na gama
dos 1025−1027 anos. A experiência de matéria escura LUX-ZEPLIN (LZ) usará uma câmara de
projecção temporal (TPC) de xénon líquido com especificações competitivas para a procura de
eventos de 0νββ do 136Xe. Com os cortes correntemente aplicados, a taxa de eventos de fundo
projectada para o LZ é de 6.8 × 10-3 contagens/keV/kg/ano na região de energia de interesse
para este decaimento, quase toda devido a eventos com a emissão de um só electrão primário.
Os dois electrões primários dos eventos 0νββ produzem uma topologia de deposição de ener-
gia diferente da dos fundos, motivando o desenvolvimento de um corte baseado em algoritmos
de auto-aprendizagem que explore essa diferença topológica.

Neste trabalho foi examinada a viabilidade e o potencial de diferentes algoritmos de auto-
aprendizagem aplicados a este problema. Foi desenvolvida uma infraestrutura expansível e
modular para a extracção de propriedades e redução dinâmica de dimensionalidade em sinais
temporais simulados deste tipo de detectores. Esta infraestrutura foi aplicada à discriminação
das duas classes de evento, com quatro classificadores binários diferentes (k-nearest neighbors,
support vector machines, Gaussian process e random forests), usando dados simulados (com bal-
anço igual entre as duas classes) para este propósito. Para identificar a melhor configuração,
foi desenvolvido um método rápido de comparação e avaliação de desempenho, capaz de ex-
trapolar para balanços diferentes dos utilizados. Em suma, foi concebido um procedimento de
avaliação de viabilidade sistemático para abordagens de classificação binária.

Com o auxílio do Instituto Nacional de Computação Distribuída, e usando uma versão cus-
tomizada do pacote ANTS2 com integração do Geant4, foram simulados dois conjuntos de da-
dos com ∼ 104 pontos cada: um em que todos os electrões primários de cada classe tinham a
direcção inicial de emissão mais favorável (vertical); e um em que a direcção de emissão inicial
era isotrópica. Foi modelada uma TPC de LZ miniaturizada, simulando a física relevante para
a topologia: deriva e difusão dos electrões de ionização; electroluminescência; e geração dos
pulsos na matriz de PMTs superior. Verficou-se que o classificador por Gaussian process tinha
o melhor desempeho dos quatro seleccionados. Dada uma sensibilidade-alvo a 0νββ de 80%,
o classificador reduziu o fundo devido a electrões singulares a ∼ 22% da sua taxa inicial para
emissões verticais, e a ∼ 37% da sua taxa inicial para emissões isotrópicas. No entanto, para
emissões isotrópicas não foi prevista uma melhoria na sensibilidade do LZ. A principal causa
de dificuldade na discriminação determinou-se ser a difusão durante a deriva, com os métodos
de desconvolução Gaussiana a serem uma via promissora para investigação futura.
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Chapter 1

Introduction

The current surplus of matter over antimatter, commonly referred to as the baryon asymme-
try in the universe (BAU), remains a pressing issue in cosmology. It is only known that BAU
was generated in the early universe, and that the generating mechanism would require exten-
sions to the StandardModel (SM), several candidates having been suggested [1]. One attractive
option, because it requires only minor SM extensions, is the generation of baryon asymmetry
via the decay of ultraheavy sterile neutrinos in the early universe: these particles are predicted
to decay more often into leptons than antileptons (leptogenesis), and the resulting asymmetry
can be transferred into baryons (baryogenesis) in such a way that it becomes permanent. The
see-saw mechanism in Majorana neutrino masses allows for the existence of sufficiently heavy
sterile neutrinos, but is only applicable for the case that neutrinos and antineutrinos be the same
particle [2] [3].

If neutrinos are in fact Majorana, then one interaction that becomes possible is neutrinoless
double beta decay (0νββ). Observation of 0νββ would therefore be strong evidence for the
sterile neutrino decaymodel of BAU generation. The search for 0νββ spans over three decades,
with modern approaches emphasizing technologies allowing for large masses of sensitive vol-
ume and low background rates. Current half-life constraints exceed 1019 years for all allowed
isotopes. Despite its main goal being weakly interacting massive particle (WIMP) search, the
LUX-ZEPLIN (LZ) detector displays very promising characteristics for 0νββ search as well.
With 623 kg of 136Xe it has the second-largest 0νββ-activemass of all current-generation 0νββ
experiments, and its background rate is projected to be competitive.

The majority of the projected 0νββ background in the LZ detector is caused by the same type
of event: a photo-electric effect interaction of a gamma-ray photon (originating either from the
surrounding rock or from the detector materials) with the active volume of the detector. The
sensitivity of the LZ detector for 0νββ search may thus be improved significantly if this type
of event were successfully discriminated. One possible approach is to discriminate between the
topological signatures of the 0νββ decays and the single electron recoil interactions. In this
work, a machine learning signal processing procedure was developed to test the viability of
this approach, with the possibility of implementation into the LZ background analysis.

The principal contribution in this work is a parameterization, feature extraction and data opti-
mization procedure that prepares pulse-like time-series (waveform) data for use on binary classi-
fication algorithms. It is modular and expandable, allowing for the easy inclusion and deletion
of extracted parameters and features without side-effects, and includes an automatic feature
selection and dimensionality reduction procedure to ensure that feature correlation does not
negatively affect classifier training. In effect, multiple configurations of viable training data can
be generated quickly, without the need for extensive fine-tuning of the extracted feature set.

Binary classification was performed using four algorithms: k-nearest neighbors; support vector
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machines with radial basis function kernel; Gaussian process; and random forests. Waveform
data generated by 0νββ and gamma-ray background event topologies in an LZ-like TPC was
simulated using the ANTS2 simulation and data processing package [4], with Geant4 physics
lists and NEST v2 data [5] used for topology generation. With the aid of distributed computing
due to the Lisbon andMinho nodes of the Infraestrutura Nacional de Computação Distribuída
[6], two binary classification waveform datasets were produced, roughly equally balanced be-
tween the two classes, with∼ 104 datapoints per dataset.

For each waveform dataset and classification algorithm, a set of different parameterization, fea-
ture extraction and data optimization approaches was tested. In total, 24 different configura-
tions were produced for each of the datasets, with the goal of obtaining the optimal perfor-
mance. A two-step performance comparison approach was developed for this optimization.
It uses performance convergence and cost curves to quickly compare the performance of all
configurations, with the added ability to extrapolate to different class balancings than the one
used. In effect, the developedmachine learning signal processing procedure allows for the quick
preparation and comparison of a large set of binary classification algorithms and data process-
ingmethods, thus serving as a tool with applications not only in testing the viability of topology
discrimination in LZ, but also with potential applicability for other viability assessment prob-
lems of a similar nature.

1.1 Outline of the dissertation
Chapter 2 describes the parameters of the baryon asymmetry problem. It first begins by presenting the
available evidence for BAU, narrowing down the timeframe allowable for baryogenesis, and presenting
the conditions necessary for it to take place. Then it shows that baryogenesis is not achievable within
the SM, and then focuses on the sterile neutrino decay model.

Chapter 3 consists of a description of the physics of 0νββ decay with an emphasis on observables, fol-
lowed by a review of the state of experimental 0νββ decay search. This chapter also describes the func-
tioning principle of a time projection chamber (TPC), their performance when applied to 0νββ search
and their background environment.

Chapter 4 details the characteristics of the LZ detector applied to 0νββ search, namely its construc-
tion parameters, background and how the obtained data is considered, highlighting aspects to consider
during simulation and the possibility of using binary classification for a background cut.

Chapter 5 motivates the use of binary classification for background rejection and describes the selection
method for the four chosen binary classifiers. It also describes the functioning principle and of each
chosen classifiers, as well as detailing some of their applications, advantages and disadvantages. Special
focus is given to the Gaussian process classifier, which proved to perform best during the tests. Classifier
performance assessment tools are also introduced here.

Chapter 6 begins by describing and motivating the simulation approach taken in this work. It follows
with a technical description of the performed simulations, the developed data processing framework,
and the developed approach to configuration selection and performance assessment.

Chapter 7 presents the obtained performance results, as well as a discussion on the viability of binary
classification for the given problem, on the adopted methodology and the applicability of the developed
tools for other purposes.

Chapter 8 presents conclusions and discusses future work.
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Chapter 2

Baryon Asymmetry in the Universe
and Neutrinoless Double Beta Decay

The goal of this chapter is to describe how detecting neutrinoless double beta decay (0νββ)
would be strong evidence for the most attractive model of baryogenesis {fn2a}: lepton number
violation, termed leptogenesis (Chapter 16 of [8]). To do this, some background information
must be provided first. The chapter is structured so as to frame the argument in the following
way:

1. Show evidence against baryon symmetry, making BAU an attractive alternative;
2. Discuss the time-frame when baryon asymmetry must have originated;
3. Explain the necessary conditions for producing the asymmetry;
4. Show that it is not explained by the Standard Model;
5. Show how it is explained by leptogenesis, and its connection to 0νββ decay.

2.1 Evidence against baryon-symmetric matter-antimatter spa-
tial distribution models

Antibaryon content can be measured using different observables, their reliability depending on
the observed scale. Within the Solar System or its vicinity, antibaryon content can be gauged by
the flux of heavy antibaryon particles (e.g. antihelium), or from interactions of matter with anti-
matter. Outside of the Solar System, indirect methods of measuring antibaryon content have to
be employed, which rely on identifying the spectral signature ofmatter-antimatter annihilation:
Doppler-broadened γ-ray and X-ray peaks around specific energies [9].

Evidence against baryon symmetry in the universe is extensive: the box in the next page presents
different possible matter-antimatter spatial distribution models for a baryon-symmetric uni-
verse, as well as evidence against them, spanning scales from the neighborhood of the Solar
System to the observable universe.

{fn2a}—The name used to refer to the dynamical generation of a baryon asymmetry in quantum field theory
(Chapter 1 of [7]).
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Antimatter bodies within the Solar System
Evidently presolar nebulae cannot have a homogenous mix of matter and antimatter:
for a presolar nebula of number density n, the collapse time is ∼ n−1/2, whereas
its annihilation time in case it were also homogeneously baryon-symmetric would be
only∼ n−1 [10]. A presolar nebula would have annihilated away upon collapse, leaving
insufficient material with which to construct a planetary system.

However it can be supposed that different presolar nebulae could be predominantly
matter or antimatter, while baryon symnmetry in the universe is maintained. It would
then be possible for the Solar System to capture an ejected antimatter body formed
by a predominantly antimatter presolar nebula. The spectra of antimatter bodies in the
Solar Systemwould display an annihilation signature when interacting with baryon gas,
namely with solar wind [10]. There are no currently known bodies of this type in the
Solar System.

Predominantly baryonic or antibaryonic patches in the Milky Way
The antibaryon content in the Milky Way can be measured with cosmic rays. The de-
tection of a significant flux of antinucleids heavier than antiprotons would be a good
indicator of the presence of antimatter in the galaxy. The AlphaMagnetic Spectrometer
experiment determined that the flux ratio of antihelium to helium cosmic rays is only
FHe/FHe < 1.1× 10−6 [11].

Furthermore, the theoretical limit of the fraction of antimatter in the interstellar
medium (ISM) is below 10−15, due to the annihilation time in the ISMbeing only∼ 300
years [10]. In fact, the presence of large collections of antimatter in the form of stars
and gas clouds would imply the existence of sources of annihilation signature within
the ISM, which are seen to be absent [12].

Predominantly baryonic or antibaryonic patches in galactic clusters
The ratio of baryons to antibaryons in the intergalactic medium (IGM) of galactic clus-
ters can bemeasured by comparing the fluxes of bremsstrahlungX-rays and annihilation
γ-rays. These two fluxes depend on the same observables except for one: the fraction
of antimatter to matter (which the bremsstrahlung flux does not depend on) [10]. The
X-ray and γ-ray fluxes were measured for 55 galaxy clusters by Edge et al. [13] and by
the EGRET experiment [14], respectively. The upper limits of the fraction of antimatter
for each cluster in the survey ranges between a minimum of< 5× 10−9 for the Virgo
cluster and a maximum of just< 1× 10−6 for the Bullet cluster.

Predominantly baryonic or antibaryonic patches in the universe
The previous points imply that the matter and antimatter should be organized in large
discrete regions. By comparing the observed cosmic diffuse γ-ray background (CDG)
spectrum with that of model spectra for discrete regions of different sizes, Cohen, De
Rújula andGlashow demonstrate in [15] that the size of these discretematter-antimatter
regions would be� 1 Gpc {fn2.1a} . Due to the temperature uniformity of the cosmic
background radiation (CBR), it can be shown that any existent baryonic and antibary-
onic patches in the universe will have been adjacent to each other since before the re-
combination epoch, with no voids separating them. The borders between the two types
of regions would then have produced a significant amount of annihilation γ-rays, which
would contribute to the cosmic CDG, so that the CDG amplitude is inversely correlated
with the size of the regions. Figure 2.1 shows that the observed amplitude is consistently
at least 1 standard deviation below a conservative estimate of the amplitude for regions
of size 1 Gpc, for all γ-ray energies above∼ 4 MeV.

{fn2.1a}—For comparison, the observable universe is∼ 29Gpc [16]
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Figure 2.1: CDG spectrum data from COMPTEL, Fichtel et al. (1975), Mazets
et al. (1975), Schönfelder et al. (1980), Trombka et al. (1977) and White et al.
(1977), versus the expected spectra for the case of discrete matter-antimatter
regions of sizes 0.02 Gpc (continuous curve above) and 1000 Mpc (continuous
curve below). It can be seen that the observed flux is consistently at least one
error bar below a conservative estimate of the amplitude for regions of size 1

Gpc, for all energies above about 4 MeV.
Source: [15]

The data listed in the preceding box presents comprehensive evidence against baryon symmetry
in the universe. The antibaryon content in the universe was shown to be almost negligible by
measures across all observable scales, making BAU an attractive alternative.

Figure 2.2: Stages of universe evolution starting from inflation, with relation
between temperature T (left) and age of the universe (right).

Source: [7]
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2.2 Baryon asymmetry in the early universe
Beyond effectively proving that BAUexists, the argument in [15] also implies that the asymmetry
already existed prior to the recombination epoch (Figure 2.2). This section will now examine
the baryon content prior to the recombination epoch, spanning until the quark-hadron phase
transition, or quantum chromodynamic (QCD) phase transition , when the quarks and gluons
clustered to form color-singlet hadrons, namely the first protons and neutrons.

The following discussion will have three reasonable assumptions:

Assumption 1. For practical purposes, during the QCD transition, baryons
can already be considererd nonrelativistic particles.

Relativistic effects are conventionally negligible for speeds v . 0.1c, corre-
sponding to energy. 1 GeV, while the QCD transition occurs when the tem-
perature of the universe, T , is around T ∼ 0.2 GeV (see Figure 2.2).

Assumption 2. At sufficiently large length scales O(0.1 Gpc) [17], the
observable universe is spatially homogeneous and isotropic.

Evidenced by the uniformity of the temperature of the cosmic microwave back-
ground (CMB) to the ∼ 10−5 level ( [18] and Section 1.3 of [19]).

Assumption 3. At some point post-inflation and before the QCD transition,
the universe had symmetric baryon-antibaryon content.

Even supposing that at the Big Bang the universe had already been baryon-
asymmetric, this asymmetry would have not survived inflation (Section 1.2 of
[7]), so the BAU today is not due to initial conditions of the universe. Some
process has to have caused baryogenesis in a baryon-symmetric universe.

The evolution of the abundance of some arbitrary particle species ψ, Yψ ≡ nψ/s (where nψ
is its number density and s is the entropy density {fn2.2a}), is strongly linked to its mass mψ

and to the temperature of the universe. T is related to the size of the universe, which expands
at a rate given by the Hubble parameterH ≡ Ṙ/R, where R is the cosmic scale factor {fn2.2b}.
These factors in turn affect the interaction rates Γψ ≡ n 〈σ|v|〉 of the species (where n is the
number density of target particles for the case of a stable particle species, like the proton; σ is
some cross section; and |v| is the relative velocity).

For the early universe, its small size and high temperature meant that Γψ & H : interactions
occured faster than the particles moved away from each other, and hence particle species were
in thermal equilibrium. For the case of fermions, their abundances therefore followed Fermi-
Dirac statistics. However, as the temperature decreased and the universe expanded, for certain
species the expression above flipped, Γψ . H , and the species fell out of thermal equilibrium: a
process termed decoupling or freeze out. The interactions freeze out and the abundance is said to
freeze in to a certain value. Figure 2.3 shows the effect of decoupling on the relative abundance

{fn2.2a}—The entropy density is defined as s ≡ S/V , with entropy per comoving volumeS = R3(ρ+p)/T
(where ρ and p are the thermal equilibrium energy density and pressure) being conserved in thermal equilibrium.
For the early universe, the entropy density can be approximated as s ≈ (2π2/45)× g∗T 3 = 1.80× g∗nγ , where
g∗ is the total number of effectively massless degrees of freedom, nγ is the photon density, and the second equality
is due to the fact that relativistic particles in thermal equilibrium have n ∼ T 3. The current entropy density is
s = 7.04× nγ (for more information, see Section 3.5 of [19]).

{fn2.2b} — A dimensionless factor representing the size of the universe relative to its present size:
R(t) ∈ [0, 1], such thatR(t = current age of universe) = 1.
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of a massive particle, for decreasing temperature. The current baryon abundance is in the order
of 10−10 {fn2.2c}.

Figure 2.3: The effect of decoupling on the relative abundance of a massive,
stable particle, for decreasing temperature, and hence increasing time elapsed
since the Big Bang. YEQ is the abundance of the species had it always remained
in thermal equilibrium. σA is the annihilation cross-section. We can see that
the abundance appears to “freeze in” to a certain value once the species decou-

ples. Without decoupling, it would continue to decrease.
Source: Section 5.2, pg. 126 of [19]

Once the species decouples, its abundance no longer behaves according to Fermi-Dirac statis-
tics, and instead begins conforming to the Boltzmann transport equation (BTE): an equation
that describes the phase space occupation of a thermodynamic system out of equilibrium. Sup-
posing that ψ is a stable massive nonrelativistic particle (Assumption 1.) in an isotropic and
homogeneous universe (Assumption 2.), and supposing that at some point in the very early
universe there existed no asymmetry between particles ψ and antiparticles ψ̄ of the species (so
Yψ = Yψ̄) (Assumption 3.), then the BTE can be expressed in an intuitive manner (see Section
5.1 of [19] for a more detailed explanation):

dnψ
dt

= −3Hnψ − 〈σ|v|〉 [n2
ψ − (n

Eq.
ψ )2], (2.1)

where nEq.ψ ∝T
2/3e−mψ/T is the number density of the species if it remained in thermal equi-

librium, and thus preserved Fermi-Dirac statistics. Here we can see that −3Hnψ accounts for
the dilution caused by the expansion of the universe. The positive term−〈σ|v|〉 [n2

ψ− (n
Eq.
ψ )2]

accounts for interactions that change the number of existing particles of the species: its sim-
ple shape arises from the assumption that there exists no asymmetry between the particles and
antiparticles of the species. Refactoring (Eq. 2.1) in terms of the abundance gives:

xψ

Y
Eq.
ψ

dYψ
dxψ

= −ΓEq.

H

( Yψ

Y
Eq.
ψ

)2

− 1

 , (2.2)

{fn2.2c} — The baryon number abundance is given as B ≡ (nb − nb̄)/s = 3.81 × 10−9(ΩBh
2), where

ΩBh
2 ≈ 0.0223+0.0007

−0.0009 is the physical baryon density, resulting inB = (0.48− 0.98)× 10−10( [20] and Section
3.5, pg. 81 of [19])
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where xψ ≡ mψ/T exceeds 3 for the nonrelativistic case; ΓEq. = nEq. 〈σA|v|〉 is what the
interaction rate would have been had the species remained in thermal equilibrium; σA is the
annihilation cross-section; and Y Eq.

ψ ≡ nEq./s. Solving (Eq. 2.2) gives the abundance of the
species today, Y Now

ψ . which {fn2.2d} is seen to behave roughly as:

Y Now
ψ ∝ 1

TF 〈σA|v|〉
,

where TF is the freeze-out temperature. In this model, still maintaining the assumption that
Yψ = Yψ̄ , TF is seen to only depend on 〈σA|v|〉, being almost directly proportional to it (Section
5.2, pg.125 of [19]). This way, by specifying 〈σA|v|〉, both the freeze-out temperature and the
current abundance can be obtained.

This can be applied to baryons by inputting the appropriate interactions. By factoring into
〈σA|v|〉 only the most common nucleon-antinucleon annihilation modes (those being the anni-
hilation of the nucleon-antinucleon pair into a group of mesons containing a number of pions
of order unity [21]), Section 5.2, pg. 127 of [19] gives a Y Now

ψ value in the order of 10−20, for
a TF of 22 MeV. This optimistic Y Now

ψ value is ∼ 9 - 10 orders of magnitude smaller than the
observed current baryon abundance in the universe. Additionally, in Section 6.2, pg. 159 of
[19] it is determined that forcing Y Now

ψ to be the current baryon abundance returns a TF value
of∼ 40 MeV.

If the baryon content of the universe had been symmetric after T ∼ 40 MeV, then the matter
and antimatter would have annihilated to the point that the baryon abundance today would
have been much smaller than it actually is, as evidenced by the argument above.

2.3 Sakharov Conditions for Baryogenesis
Some process had to transition the universe from baryon symmetry post-inflation to baryon
asymmetry at T & 40 MeV, less than a tenth of a second after the Big Bang. This section
describes the three conditions that this process would have to meet to produce baryogenesis,
as originally proposed by Andrei Sakharov [22].

Intuitively, there cannot be the same number of baryons and antibaryons at the start and at the
end of the process: the baryon number has to be violated. It also has to favor the production of
particles over antiparticles. Baryogenesiswill therefore requireC violation: a violation of charge
conjugation symmetry. However, this condition is not sufficient, as it does not account for
quantumfield theory (QFT) effects {fn2.3a}, which further impose that a simultaneous violation
of symmetry toward charge conjugation and parity transformation, CP violation, must occur in
tandem with the C violation.

{fn2.2d} Aside from some constants, and a factor distinguishing s-wave from p-wave annihilations (Section 5.2,
pg.124 of [19]).

{fn2.3a} — Massive fermions, like quarks or neutrinos, do not exhibit chiral symmetry (see [2]), so it could
occur, for example, that the production rate of left-handed quarkswill be different from the production rate of right-
handed quarks. Under CP conservation, the production rate of left-handed quarks will be equal to the production of
rate of right-handed antiquarks, and that of right-handed quarks will equal that of left-handed antiquarks. Under CP
conservation, therefore, the rates of production of quarks and antiquarks of both chiralities would still remain the
same, even though C-symmetry had been violated (the antiparticle of a left-handed quark is a left-handed antiquark,
and their rates of production were different in the above example [23]).



2.4. Baryogenesis within the Standard Model 9

Finally, if a stable species (namely protons {fn2.3b} and neutrons) is in thermal equilibrium,
then the annihilation rate for the particles will be equal to the rate at which they are produced.
Therefore, as long as thermal equilibrium is maintained, no BAU can be generated.

With this, the three Sakharov conditions can now be listed:

Condition 1. Baryon number violation;

Condition 2. C and CP violation;

Condition 3. Departure from thermal equilibrium.

These conditions are sufficient, as ensured by the CPT theorem {fn2.3c}.

2.4 Baryogenesis within the Standard Model
To achieve baryogenesis in the StandardModel (SM), it is necessary to find some process within
it that would violate the three Sakharov conditions. In perturbative processes— processes that
can be represented by perturbative methods, these being the kind of processes observed be-
low temperatures of the quark epoch (T & 150MeV) — the baryon number is always con-
served. However, the temperatures beyond T & 100GeV of the electroweak epoch — when
the electromagnetic and weak interactions were still unified — allowed for non-perturbative
processes—processes that cannot be represented by perturbativemethods—whose conserved
quantity was B − L (where B and L are the baryon and lepton number) instead of B and L
individually [1].

This is due to the structure of the vacuum in the electroweak gauge theory. In this theory, the
vacuum gauge field configurations are degenerate, with different configurations resulting in
the same zero field strength and energy, but with varying values of the so-called Chern-Simons
number,NCS , a topological quantum number involving the winding of the weak isospin [25].
The vacuum degeneracy is pictured in Figure 2.4, where we can see that between each vac-
uum — with zero energy and integer NCS — there exists an energy barrier, whose value has
been minimized to Esph — also called the sphaleron barrier — corresponding to non-vacuum
field configurations. A transition from one vacuum configuration to another would have a
nonzero probability via a tunneling process, called an instanton process, and an integer difference
between the initial state and the final state inNCS would violateB and L by 3 [23].

In the electroweak gauge theory itself, the tunnelling rate between different vacuum configura-
tions is high enough to serve as a thermal equilibrium: the resulting baryon number violation
from some change in configuration is quickly cancelled out by another change in configuration,
and cannot be preserved. Meanwhile, once the electroweak symmetry breaks, the tunnelling
rate in the resulting gauge group is greatly suppressed, and so the baryon number is “frozen” in
place: the first Sakharov condition is not met in that broken symmetry vacuum.

{fn2.3b} — [22] proposes the possibility that protons decay with a large half-life (& 1050 yrs.). The current
most sensitive results (Super-Kamiokande) place a lower bound on the proton half-life at> 1.67× 1034 yrs. [24].
This work, however, supposes that protons are stable.

{fn2.3c}—Any self-consistent Lorentz invariant quantumfield theory is symmetric under simultaneous charge
conjugation, parity transformation and time reversal [2].
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Figure 2.4: Gauge field configurations of the electroweak theory, as they re-
late to the Chern-Simons number, NCS . Vacuum gauge field configurations

correspond to integerNCS .
Source: [23]

However, if the electroweak phase transition occurs discontinuously (i.e. it is a 1st order phase
transition), then there will exist bubbles of gauge field where the symmetry has already been
broken, submerged in an electroweak gauge field, with discrete domain walls separating the
bubbles from their surroundings (see Figure 2.5). This environment would serve to escape
from thermal equilibrium, as the rate of the B-violating process would slow down faster than
it would be able to compensate for excess baryons. We thus see that the electroweak phase
transition obeys the 1st and 3rd Sakharov conditions. Finally, the 2nd condition — C and CP
violation — can be met by having CP-violating interactions occuring at or near the domain
walls [25]. CP violating processes are known to occur: they have first been experimentally
observed in 1964, by way ofK0 − K̄0 mixing, in the Fitch-Cronin experiment [26].

Unfortunately, in order for the electroweak phase transition to be discontinuous, the Higgs
mass must be below about 70 GeV [27]It is seen instead to be 125.38± 0.14 GeV [28]. Under
these conditions, the phase transition is smooth, and hence the Sakharov conditions can no
longer be met, thus ruling out the electroweak phase transition as an avenue for explaining the
BAU. Explanations for the baryon asymmetry thus have to be found beyond the SM.

Figure 2.5: Representation of the case of a discontinuous electroweak phase
transition. Bubbles of broken symmetry (with the EM and weak interactions
already separated, and the Higgs particle massm nonzero) are surrounded by
the electroweak gauge field, separated by discrete domain walls. The rate of
baryogenesis is zero in the bubbles, and nonzero outside of them. The oc-
curence of CP-violating processes at the domain walls would meet all three
Sakharov conditions, thus making this process a candidate for baryogenesis.

Source: Section 5, pg. 83 of [29]
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2.5 Baryogenesis through Majorana neutrinos
There are several proposed mechanisms for baryogenesis arising from extensions to the SM
{fn2.5a}, a very attractive one being baryogenesis through leptogenesis caused by the decay of
extremely heavy neutrino species before electroweak symmetry breaking [30]. The only two
extensions to the SM required by this mechanism (aside from nonzero neutrino masses) are for
neutrinos to be Majorana particles (i.e that neutrinos be their own antiparticles) and for sterile
neutrinos (i.e. those that do not couple to the weak force) resulting from this extension to have
a mass in the 109− 1014 GeV range, as motivated by Grand Unified Theories (GUTs) [30]. The
details of this mechanism for baryogenesis are described below.

Neutrinos emerge in QFT as quanta of a Dirac field: a solution to the Dirac equation [2]. In this
field, a massive particle is represented as a quantum of a 4-component spinor. If this particle
is charged, then its spinor has to be complex so as to not violate charge conservation: it has to
be a so-called Dirac spinor [2]. The particle is then termed a Dirac particle. For a Dirac particle,
there exists a corresponding antiparticle with opposite charge. However if the massive particle
is neutral, then charge conservation cannot constrain the spinor, so that it can either be complex
or real. A real spinor of the Dirac equation is called a Majorana spinor and then its quanta are
named accordingly [2]. Neutrinos are neutral particles, so if we suppose that they are massive
they can be of either type.

Any Dirac field spinor can be separated into left- and right-chiral projections, Ψ = ΨL + ΨR,
and hence will be composed out of some combination of two irreducible field spinors, called
Weyl spinors, one for each chirality. The right-chiral Weyl spinor will be a doublet under the
SU(2)R group and a singlet under SU(2)L, and vice-versa. Weak interactions in the SM are
SU(2)L, and hence only left-chiral neutrinos νL and their CP-conjugates, the right-chiral an-
tineutrinos (νL)c ≡ ν̄R appear in nature today. A Dirac spinor will include both Weyl spinors,
while a Majorana spinor only includes either the left-chiral Weyl spinor, or the right-chiral
one. This means that there are three distinct ways to append a neutrino mass term to the SM
Lagrangian: one for the Dirac spinor; and two for both opposite chirality Majorana spinors.
While Dirac neutrinos cannot obtain contributions from the two Majorana mass terms, noth-
ing prevents Majorana neutrinos from obtaining contributions from both the Majorana mass
terms as well as the Dirac mass term [3].

For a single neutrino generation, the Majorana mass can therefore appear as shown below:

− Lνmass =
(
ν
Maj.
L

)c
MMaj.ν

Maj.
L , MMaj. =

[
mL mD
mD mR

]
, (2.3)

where (ν
Maj.
L )T =

[
νL (νR)c

]
, with its elements being the two possible left-chiral neutrino

states; mD comes from the Dirac mass term; and mL and mR come from the two opposite
chirality Majorana mass terms. One can now predict that mL � mD � mR [31], with
mD of magnitude comparable to other fermion masses. The mass contributions can then be
diagonalized to give two eigenvalues: a very low mass mν ≈ m2

D/mR, corresponding to a
left-chiral active neutrino ν; and a very high massMN ≈ mR, corresponding to a right-chiral,
sterile neutrino N . This is known as the see-saw mechanism [3]. This argument can be easily
extended to include three neutrino generations, thus returning three small mass eigenvalues,

{fn2.5a} — Most of them are beyond the scope of this thesis. For more information on baryogenesis mecha-
nisms other than neutrino leptogenesis, see [1].
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corresponding to the active neutrino mass eigenstates ν1, ν2, ν3 {fn2.5b}; and three very large
mass eigenvalues, corresponding to three sterile neutrinosN1, N2, N3 [3].

The sterile neutrinos have several different decay modes [32]. Among them, there are decays
into a lepton and aHiggs boson,N → LH,N → L̄H̄ {fn2.5c}, where the interference between
tree-level and loop-level processes (Figure 2.6) will result in CP violation (the 2nd Sakharov
condition) and a nonzero L. The high sterile neutrino masses imposed by GUTs guarantee
that the decay already happens out of thermal equilibrium (the 3rd Sakharov condition) when
T ∼M1, meaning that the lepton asymmetry is preserved to a sufficient degree. Finally, like in
Section 2.4, this temperature is high enough for non-perturbative processes to take place, which
by B − L conservation will then transfer the asymmetry from leptons into quarks (the 1st
Sakharov condition) [32]. Thus leptogenesis meets the conditions for baryogenesis. The
baryon asymmetry will then freeze to its current value at T ∼ 40 MeV, and will later be
transferred into nuclides during the Big Bang nucleosynthesis epoch (see Figure 2.2), resulting
in the BAU seen today.

Figure 2.6: Diagrams of the N1 → LH,N1 → L̄H̄ processes, N1 being the
lightest sterile neutrino, andN2,3 being one of the other two sterile neutrinos.
The top diagram is tree-level, couplingN1 to theL andH fieldswith a strength
λ1; and the rest are loop-level, the N2,3 coupling as λ2,3. The decay width of
theN1 → LH process will have the form Γ(N1 → LH) ∝ |λ1 +Aλ∗1λ

2
23|2,

with A a complex CP-conserving loop factor, while Γ(N1 → L̄H̄) ∝ |λ∗1 +
Aλ1λ

2∗
23|2, so Γ(N1 → LH) 6= Γ(N1 → L̄H̄).

Source: [32]

Again, however, this mechanism requires that neutrinos be Majorana particles. It is not yet
known if they are. The next Chapter discusses the physics and detection of neutrinoless double
beta decay (0νββ) , a process that, if seen to occur, would prove it.

{fn2.5b}—Not to be confused with the neutrino flavor eigenstates, νe, νµ, ντ . The mixing of the mass eigen-
states results in the neutrino flavor oscillations.

{fn2.5c} — The second decay in reality is N̄ → L̄H̄ , but the case of a Majorana neutrino allows for this
simplification.
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Chapter 3

0νββ Decay Morphology and
Detection Technology

This chapter summarizes the characteristics of 0νββ decay relevant to this work and the state
of 0νββ search. Section 3.1 discusses the physics of the decay, with focus on geometry and
time characteristics, whereas Section 3.2 gives an overview of the basic detection approach,
technologies, challenges and current state of the discipline.

3.1 Physics and morphology of double beta decay
Double beta decay is a rare process during which a nuclide with atomic number Z and mass
numberA decays into a nuclide with atomic number Z + 2 and equal mass number by way of
two simultaneous β− decays. It only occurs if simple beta decay is not energetically possible,
when the nuclear binding energiesB have the following configuration:

B(Z + 2, A) < B(Z,A) < B(Z + 1, A), (3.1)

as exemplified in Figure 3.1 forA = 136, 136Xe being the nuclide of interest there.

Figure 3.1: Nuclear binding energies for nuclei with A = 136.
Source: [33]

Each of the β− decays releases an electron and an electron antineutrino, so that ordinary double
beta decay (2νββ) can be described as:

(Z,A)→ (Z + 2, A) + 2e− + 2ν̄.

This type of decay is allowed in the SM and has already been directly observed in nature for
different nuclides by several experiments since 1987 (see [34]).
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If neutrinos are Majorana particles, ν = ν̄ , then there will also be a nonzero probability for
neutrinoless double beta decay (0νββ) :

(Z,A)→ (Z + 2, A) + 2e−.

This process has not been observed yet. Note that unlike ordinary double beta decay, the neutri-
noless variant requires extensions to the SM, as the lepton number is not conserved: ∆L = 2.

The standard mechanism for 0νββ decay involves the exchange of a light Majorana neutrino
between two virtualW bosons emitted by parent nucleons [3] (Figure. 3.2). The same mecha-
nism allows for three other L-violating processes: the double positron emission process
((Z,A)→ (Z − 2, A) + 2e+); as well as single positron emission plus single electron capture
(e− + (Z,A)→ (Z − 2, A) + e+); and double electron capture (2e−+(Z,A)→ (Z−2, A)).
Additionally, there are possible non-standard mechanisms, via exchange of particles other than
light neutrinos (namely a sterile neutrino or a heavy supersymmetric particle, like a neutralino
or gluino) or with the emission of one or two [35] Majorons {fn3.1a}. The mechanisms and
processes referred in this paragraph are outside the scope of this work, however. For more
information, see [3] and [36].

Figure 3.2: 0νββ decay mechanism via a Majorana neutrino exchange.
Source: [3]

The two identifying measurable features of a double beta decay are the energies and paths taken
by the two released electrons. For a given nuclide, both 2νββ and 0νββ release the same
amount of energy: the Q-value Qββ , which is the difference between the binding energies of
the initial and the final nuclide.

Qββ ≡ B(Z,A)−B(Z + 2, A)

For the case of 2νββ, this energy is distributed over two electrons and two neutrinos, while
for 0νββ it is distributed over only the two electrons, as the recoil energy of the nucleus is
negligible [3]. In the rest frame, the sum of the energy of the two 0νββ electrons will beQββ .

{fn3.1a} — Majorons are spinless, light or massless bosons that, depending on the model, may or may not be
Goldstone bosons associated with spontaneous lepton number symmetry breaking, and may or may not carry a
lepton charge. For more information, see [35].
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Figure 3.3 displays the distributions for the energies of one of the electrons and of both elec-
trons together for 2νββ and 0νββ, according to the model used by the DECAY0 event generator
[37] [38], employed for simulating initial electron kinematics by the LZ collaboration for sen-
sitivity projection [39]. The top panel shows that the two 0νββ electrons will most likely have
the same energy,Qββ/2. In that case, to preserve linear momentum of the system, they will es-
cape the nucleus in opposite directions, back-to-back (b2b). If the energies of the two electrons
are different, then the angle formed by the two escape directions for either type of decay will
follow a distribution that is approximated in DECAY0 as [37]:

F (cos θ) = 1− β1β2cos θ,

where θ is the angle between initial electron directions and βi is the velocity of electron i. In
2012, Kotila and Iachello provided a theoretical model using exact Dirac wave functions with
finite nuclear size and electron screening [40], with which the semiempirical DECAY0 model is
in good agreement [41].

Figure 3.3: Theoretical energy distributions for a single electron (blue) and for
both electrons together (magenta) in the case of 0νββ (top) and 2νββ (bottom),
for the double beta decay from a ground-state 100Mo nucleus to a ground-
state 100Ru nucleus (Qββ = 3.034 MeV). The graphs chosen are for the most
common mechanism of the two distinct decay modes. The amplitude on the

two graphs is in arbitrary units.
Source: [37]

After escape, the 0νββ (primary) electrons interactwith the surroundingmedium, losing energy
to ionization and excitation of its atoms. As the primary electron energy decreases, the rate of
energy loss dE/dx rapidly increases, resulting in a topology where a track ends at two blobs
on either side (Figure 3.4). The trajectory of the electrons is altered by multiple scattering on
the nuclei of the medium. Additionally, the track can suffer branching due to δ-electrons, or
become disjoint due to bremsstrahlung, although these occurences are relatively rare.
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Figure 3.4: 0νββ track simulation in 10 bar xenon gas, distinctly showing the
two blobs on either end.

Source: Section 6.2.1 of [42].

The half-lives of ordinary double beta decay, T 2νββ
1/2 , and of its light neutrino-exchanging neu-

trinoless variant, T 0νββ
1/2 , can be factorized as [40] [43] [3]:

T 2νββ
1/2 =

(
G2ν

∣∣M2ν
∣∣2)−1

, T 0νββ
1/2 =

(
G0ν

∣∣M0ν
∣∣2 〈mββ〉2

)−1
, (3.2)

where G2ν ∝ (Qββ)11 and G0ν ∝ (Qββ)5 [44] [3] are phase-space factors; M2ν ∼ 0.06 [34]
and M0ν ∼ 4 [3] are nuclear matrix elements; and 〈mββ〉 is the effective Majorana neutrino
mass. The T 2νββ

1/2 values and measured T 0νββ
1/2 lower bounds for 11 isotopes of experimental

interest are listed in Table 3.1. The shortest one is for 100Mo, with T 2νββ
1/2 = (7.11 ± 0.56) ×

1018 years [45].

The effective Majorana neutrino mass is given by:

〈mββ〉 =

∣∣∣∣∣
3∑
i=1

U2
eimi

∣∣∣∣∣ ,
where m1,m2 and m3 are the eigenvalues of the three light neutrino mass eigenstates, and
Ue1, Ue2 and Ue3 are components of the neutrino mixing matrix:νeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

 .
The neutrinomixing matrix can be parameterized in terms of three angles θ12, θ23, θ13, a Dirac
phase δCP and two Majorana phases α1, α2. The angles and Dirac phase have been estimated
using solar, atmospheric, reactor and accelerator neutrino experiments [46], but the Majorana
phases are uncoupled from these phenomena. With the detection of 0νββ, one of the two
Majorana phases can be constrained [47].
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The neutrino mass eigenvaluesm1,m2 andm3 are not known completely. Two mass-squared
differences ∆m2

ij = m2
i −m2

j have been estimated using solar and atmospheric experiments:
∆m2

sol ≡ ∆m2
21, and ∆m2

atm � ∆m2
sol is approximately the mass splitting betweenm3 and

whichever eigenvalue is closest. From the study of the propagation of neutrinos through solar
matter, it is also known thatm1 < m2 [48]. Two pieces of information are missing. First, it is
not known whether the ordering of the masses ism1 < m2 < m3 (normal ordering) orm3 <
m1 < m2 (inverted ordering). Second, the lightest neutrino mass is still unknown. Together
with neutrino oscillation experiments and cosmological probes, the calculation of 〈mββ〉2 via
the measurement of T 0νββ

1/2 would help to constrain the mass ordering and the value of the
lightest neutrino mass [46]. Figure 3.5 shows the 3σ allowed bands for the effective Majorana
neutrino mass against the lightest neutrino mass eigenvalue (m1 in the normal ordering,m3 in
the inverted ordering).

Figure 3.5: 3σ allowed bands for the effectiveMajorana neutrinomass against
the lightest neutrino mass eigenvalue, for the inverted ordering (yellow) and
the normal ordering (blue). The bands aremapped out according to constraints
given by neutrino oscillation parameters and cosmological oscillations. Upper

limits on the effective mass are given by 0νββ experiments until 2014.
Source: [49].

3.2 0νββ search
This Section describes 0νββ detection methods, background sources and the current state of
the discipline. Section 3.2.1 describes the challenges of 0νββ search, Section 3.2.2 discusses
detection methods and technologies, Section 3.2.3 covers background sources and reduction
methods, and Section 3.2.4 describes the current generation of 0νββ detectors.

3.2.1 Challenges for 0νββ search

The challenges of 0νββ search are its rarity in nature and its similarity to the more common
2νββ. The binding energy configuration referred in Equation 3.1 is only known to occur in 35
isotopes [43], and due to the (Qββ)5 dependency of the neutrinoless phase space factor G0ν ,
only the 11 isotopes with Qββ > 2MeV are typically considered viable for 0νββ detection
[3]. The very long half-life means that even other rare events, like neutrino interactions with
matter, can constitute significant backgrounds in a 0νββ experiment {fn3.2a}. As referred in
Section 3.1, 2νββ events display very similar features to those of 0νββ, the only distinctions
being the presence of emitted neutrinos and the constant sum energy of the two emitted elec-
trons. The measured T 0νββ

1/2 lower limits listed in Table 3.1 show that the half-lives of 0νββ are
larger than those of 2νββ, typically by at least a factor of 103.

{fn3.2a} — As an example, in the SNO+ experiment, 8B solar neutrinos constitute ∼ 34% of the expected
background counts [50].
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Isotope N.A. (%) Qββ (MeV) T 2νββ
1/2 (yr) T 0νββ

1/2 (yr)
48Ca 0.187 4.263 5.3× 1019 > 5.8× 1022

76Ge 7.8 2.039 1.88× 1021 > 8.0× 1025

82Se 8.7 2.998 0.87× 1020 > 3.6× 1023

96Zr 2.8 3.348 2.3× 1019 > 9.2× 1021

100Mo 9.8 3.035 7.06× 1018 > 1.1× 1024

110Pd 11.7 2.018 4.40× 1019 > 6.8× 1023

116Cd 7.5 2.813 2.69× 1019 > 2.2× 1023

124Sn 5.8 2.293 0.78× 1020 > 2.0× 1019

130Te 34.08 2.527 7.91× 1020 > 1.5× 1025

136Xe 8.9 2.459 2.18× 1021 > 1.07× 1026

150Nd 5.6 3.371 9.34× 1018 > 2.0× 1022

Table 3.1: Percentage natural isotopic abundances,Qββ and T
2νββ
1/2 values for

11 isotopes of experimental interest. All natural abundances,Qββ and T 0νββ
1/2

values except for 110Pd and 124Sn are from [43]. The T 2νββ
1/2 except for 110Pd

and 124Sn are from a systematical review of experimental results [51]. 110Pd
natural abundance and Qββ are from [52], the T 2νββ

1/2 is from a systematical

review [53] and the T 0νββ
1/2 is was calculated in [54]. 124Sn natural abundance

and Qββ are from [55] and the T 2νββ
1/2 was calculated using a Woods-Saxon

single-particle basis [56] and the T 0νββ
1/2 is from a 5285 h 1.1` liquid scintillator
run [57].

3.2.2 Detection methods and technologies

The clearest signature of a 0νββ event is its electron sum energy of Qββ : all 0νββ detectors
built up to date are some form of calorimeter with a target sensitive volume where the energy
deposited is screened for a Qββ value [43]. Many current-generation experiments have also
used event topology reconstruction to improve background discrimination.

0νββ detectors are designed to optimize sensitivity, defined as the 90% or 95% confidence level
(CL) upper limit of the number of counts expected to be obtained from a detector’s experi-
mental run when no actual 0νββ events occurred, with an expected background rate B [58].
Sensitivity is usually expressed in terms of the achieved corresponding lower limit of T 0νββ

1/2 or
upper limit of 〈mββ〉 (Eq. 3.2), calculated as:

T 0νββ
1/2 = kTββ × ε

√
Mββ t

B ∆Eββ
, 〈mββ〉2 = kmββ ×

(
T 0νββ

1/2 /kTββ

)−1
, (3.3)

where ε is the 0νββ event detection efficiency, t is the experimental run-time,Mββ is the mass
of 0νββ-active material, ∆Eββ is the detector’s energy resolution at energy ∼Qββ , and kTββ
and kmββ are two constants that depend on the chosen isotope and confidence level [43] [58].
A background count occurs whenever a non-0νββ event interacts with the detector in a way
that is indistinguishable from 0νββ, and the rateB is commonly expressed in units
of counts/(keV kg yr). The factorMββ t is referred to as the exposure of the experiment.
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Summarily, the design of a 0νββ detector optimizes sensitivity by accomplishing the following:

Improve detection efficiency
Depends on the detection technology and on the signal features captured by the detector
construction.

Increase exposure
Depends on the choice of isotope and detector construction. Decisive factors include the
costs of procurement / enrichment, and the scalability of the chosen detection technology
(currently preferred isotopes described in Section 3.2.4).

Improve energy resolution nearQββ
Allows to define a narrower energy region-of-interest (ROI), reducing the counted 0νββ
candidates due to background events. Depends on technology and construction.

Reduce background count rate
Depends on the choice of isotope, detection technology, detector construction and loca-
tion. A higher Qββ reduces T 0νββ

1/2 while also having the ROI in an energy region with
less background activity as fewer background events are capable of depositing such high
energies. Beyond the isotope choice, background reduction is achieved via background
shielding, vetoing and rejection (Section 3.2.3).

Next follows a description of the operating principle and performance characteristics of the
five base detection technologies in 0νββ search, as well as their variants. Given the focus of
this work, the description of time projection chambers is more detailed, while that of the other
technologies is short. Detector sensitivities will be addressed in Section 3.2.4.

Cryogenic bolometer

Bolometers are detectors that can perform calorimetric measurements via the heating of a su-
perconducting solid absorber, typically a crystal when applied to 0νββ search [43]. A schematic
of the operating principle for the case of 0νββ search is shown in Figure 3.6. The target (ab-
sorber) is coupled to a heat sink with temperature T0 (typically∼10− 20mK [59]) via a weak
thermal link of thermal conductivity K . After an atom in the absorber suffers a 0νββ event,
the primary electrons interact with the crystal lattice and a large fraction of their energy is
converted into phonons [60], causing a peak in the temperature of the absorber (typical values
for 0νββ search are in the order of ∼ 0.1mK/MeV [59]) which is then measured by a highly
sensitive thermometer.

The energy resolution of absorbers can reach as low as∼1 eV due to the low thermal capacity of
the superconducting crystal. The resolution of bolometers is instead limited by the noise due to
the cryogenics and read-out electronics [60], however modern 0νββ bolometer experiments
still manage to attain resolutions of ∼ 4 − 10 keV near Qββ [61] [62]. The heat capacity is
proportional to the mass of the absorber [60], and so 0νββ-detecting bolometers generally
use sets of absorber elements, each with mass . 1 kg and volume . 5 cm3, typically cubic
in shape and arranged in an array of towers. Although the fact that the sensitive volume is
itself the active source ensures high detection efficiency, the small size of the absorber elements
means that some 0νββ events near the absorber surface only partially deposit their energy, and
otherwise escape detection by the entire absorber array, reducing the detection efficiency to
∼80− 90% [60] [63]. Currently the largest 0νββ bolometer detector is CUORE, using 741 kg
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Figure 3.6: Schematic of the operating principle of a bolometer element in the
0νββ case.
Source: [60]

of unenriched TeO2 [62]. The scalability of bolometer detectors is limited by the difficulty of
working at extremely low temperatures [43].

The most suitable ββ-decaying isotopes for absorber crystal growth are 100Mo, 116Cd, 82Se
and 130Te [59]. For certain crystals, a scintillating bolometer design is also possible, where crystal
scintillation is also read-out, in order to reduce the background rate due to α particles by way
of differences in their photon/phonon yield ratios [59].

Semiconductor

Semiconductor detectors in 0νββ search typically use fully depleted 76Ge-enriched high-purity
germanium (HPGe) crystals as the sensitive volume, operated at cryogenic temperature. The
crystal is placed in a reverse-biased high-voltage circuit with a read-out, maintained at a tem-
perature of typically& 80K by a cryostat, and after an atom in the crystal suffers a 0νββ event,
the primary electrons interact with the sensitive volume to release a number of electron-hole
pairs proportional to the deposited energy, which then drift to the contacts and produce an
electric pulse [64].

Figure 3.7 shows the two crystal configurations typically used in 0νββ search. The closed-
ended coaxial configuration maximizes the attainable volume of fully depleted crystal (volumes
of & 700 cm3 have been achieved [65]), whereas the more recently adopted p-type point con-
tact (PPC) or broad-energy (BEGe) configurations (0νββ searches typically use PPCs andBEGes
with volumes of &150 cm3 [66] [64]) allow for improved pulse shape discrimination [67]. In
order to increase exposure, semiconductor experiments typically use arrays of several crystals:
unlike in the case of bolometers, the cryostat temperatures are sufficiently high to not signif-
icantly hinder scalability. Currently the largest 0νββ detectors are GERDA-II (35.6 kg of Ge
with 86% enrichment [68]) and the MAJORANA Demonstrator (29.7 kg of Ge with 88% en-
richment + 14.4 kg natural Ge [69]), and the LEGEND collaboration is projected to begin data
collection in 2021 with 200 kg of Ge with 88% enrichment, as the first phase of a future tonne-
scale experiment [70].

The high yield of charge carriers due to the narrow band gap in germanium (0.67 eV [64])
allows for excellent energy resolution in the crystal. Semiconductor 0νββ experiments com-
monly attain energy resolutions of ∼ 2 - 3 keV at Qββ [72] [73] [74]. Detection efficiency after
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Figure 3.7: Cross section of the two crystal configurations typically used in
semiconductor 0νββ search, closed-ended coaxial on the left schematic and p-
type point contact on the right schematic. Both configuratios have a cylindrical
design. The bulk of the crystals (light blue) is HPGe lightly dopedwith acceptor
impurities. The p+ contacts are HPGe heavily doped with acceptor impurities
and the n+ contacts are HPGe heavily doped with donor impurities. Typically
a high positive voltage is applied to the n+ contact, while the p+ is grounded.
Broad-energy crystals are similar to PPCs, except the p+ contact is wider.

Source: [71]

pulse shape discrimination is usually∼70% for coaxial crystals and∼85% for PPC and BEGe
crystals [75] [72]. Beyond the use of 76Ge, 116Cd has also been studied using CdZnTe 0νββ
semiconductors, namely in the COBRA collaboration (∼ 0.38 kg of unenriched CdZnTe), al-
though currently the technology is not yet competitive [76].

Scintillator

Scintillation detectors can perform calorimetric measurements by using de-excitation photons
as information carriers. After an atom in the sensitive volume of a scintillator suffers a 0νββ
event, the primary electrons excite themedium, which then releases fluorescence and phospho-
rescence photons that travel freely through thematerial until being captured by photodetectors,
with which the scintillation— and therefore the incident energy— can be measured (Chapter
8 of [65]). Despite providing inferior energy resolutions, this family of detectors provides cer-
tain advantages, namely excellent background rates and good scalability. It is typically divided
into two subfamilies: organic scintillators; and inorganic scintillators. In 0νββ search, organic
scintillators are generally a solution of liquid scintillator with some 0νββ-decaying material,
while inorganic scintillation detectors usually use solid crystal sensitive volumes grown with a
0νββ-decaying component {fn3.2c}.

Figure 3.8 shows the typical configurations used for organic and inorganic scintillators in 0νββ
search. Most detectors of both subfamilies converge on the same three basic parts: an inner de-
tectorwhere the 0νββ-decayingmaterial is located, usually adjacent to a liquid scintillator layer
for background vetoing {fn3.2d}; an outer detector surrounding the inner detector, serving as a
background shield; and a photomultiplier (PMT) array around the outer detector. Organic in-
ner detectors typically use a large, (mostly) spherical liquid sensitive volume, whereas inorganic
scintillators use arrays of small crystals, separated by gaps to aidwith background rejection [80].

{fn3.2c}—An exception to this is the XMASS experiment, which uses ultrapure liquid xenon (LXe) as a liquid
scintillator [77]. The first generation of the experiment (XMASS-I) has completed data taking in 2019 [78], and now
a >20 tonne upgrade (XMASS-II) is being planned, with a 5 tonne intermediate upgrade (XMASS-1.5) currently in
the design stage [79].

{fn3.2d} — The terms “background vetoing”, “background shielding” and “background rejection” are defined
in Section 3.2.3.
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Figure 3.8: Cross sections of a typical organic scintillator (KamLAND-Zen
800, left) and typical inorganic scintillator (CANDLES-III, right). The 0νββ-
decaying scintillators / solution are highlighted in magenta. In both cases they
are surrounded by liquid scintillator, highlighted in green. Photodectors (pho-
tomultipliers in this case) are highlighted in yellow, arranged into arrays. The
material highlighted in blue serves to shield the detector from cosmic and

earth-originating radiation.
Sources: [81] and [82]

Neutrino detectors can often be easily repurposed for 0νββ search as organic scintillators.
This approach provides some advantages, namely the possibility of improved background self-
shielding (see Section 3.2.3) with the large detector bulk, ease of purification due to the liq-
uid medium, and excellent scalability due to the large detector size requirements for neutrino
search. Two of the three most prominent organic scintillator 0νββ experiments used this ap-
proach: KamLAND-Zen [83], currently using 750 kg of 90% 136Xe-enriched xenon in a gas-
liquid solution with liquid scintillator [43]; and SNO+ [50], with∼1330 kg of natural tellurium
[84].

The largest prominent inorganic scintillator 0νββ experiment is CANDLES-III, with 305 kg
of natural CaF2 crystals [43] {fn3.2e}. Calcium crystal scintillators are the most common, be-
cause the high 48Ca decay Q-value allows for a significantly more background-clean measure-
ment than other isotopes: the ELEGANTVI experiment, for example, recorded no background
events in either of its two runs, with exposures of ∼4.3 and ∼9.3 kg × yr, respectively [86].
Large 48Ca exposures prove challenging, however, due to the low natural isotopic abundance
and high cost of enrichment. Beyond the use of 48Ca, 116Cd has also been studied using CdWO4

scintillator crystals, namely in the Aurora experiment (1.162 kg 82% 116Cd-enriched CdWO4),
although currently the technology is not yet competitive [87].

Tracking Calorimeter

Tracking calorimeters search for 0νββ events by identifying the energy, momentum and trajec-
tory of the two primary electrons and the opening angle between them. It is the only currently
pursued detection technology where the sensitive volume is not itself the 0νββ event source.
Instead, very thin source foils (∼40 mg/cm2 [88]) are placed in a medium that the primaries
can traverse freely, providing 3D position information via sparse ionizations of the medium

{fn3.2e}—The XMASS experiment used 800 kg of pure liquid xenon [79], however it is primarily adapted for
dark matter search, and correspondingly has comparatively low 0νββ sensitivity (T 0νββ

1/2 ∼ 1021yr [85] compared
to T 0νββ

1/2 ∼ 1026yr obtained in KamLAND-Zen [83]).
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or via interaction with drift cells within it. The primaries are then captured by scintillators,
yielding calorimetry data. The two currently active tracking calorimeter 0νββ search experi-
ments, DCBA-T3 [89] and SuperNEMO [90], also apply a magnetic field to curve the electron
trajectories, for improved background rejection (Section 3.2.3). Figures 3.9 and 3.10 show the
operating principle of the two detectors.

These detectors provide unique advantages compared to other detection technologies. Most
important is that the design with disparate source and sensitive volume allows for the use of
almost any of the available isotopes as a 0νββ source, only necessitating that the production of
a source foil be possible. Another advantage is that the excellent topology reconstruction, to-
gether with charged particle identification, allows for very efficient background rejection (Sec-
tion 3.2.3), as well as making this technology capable of probing physics that the other tech-
nologies are unable to, namely the theoretically proposed neutrinoless quadruple beta decay
(0ν4β) [89]. There are also considerable limitations, however. In order to ensure that the pri-
mary electrons escape the source foil, the foils have to be very thin, so a sufficient exposure
would require a very large experiment, meaning that scalability is poor. The disparate source
and sensitive volume design also severely reduces detection efficiency, and the interactionswith
the trackingmedium cause the energy resolution to be poor compared to that of the other tech-
nologies.

Figure 3.9: Operating principle of the DCBA-T3 detector. As an atom in
the source plate suffers a 0νββ event, the primary electrons are released into
90%He + 10%CO2 gas chambers at atmospheric pressure on either side of
the plate, where they are subjected to a 2.4 kG magnetic field [89]. The pri-
mary electrons ionize the gas along their trajectories, and the ionization elec-
trons drift to anode wires along a uniform electric field. The pickup and anode
wires are then used for calorimetry and yz track position reconstruction. The

x track positions are reconstructed via the electron drift time.
Image source: [91]
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Figure 3.10: Operating principle of the SuperNEMO detector. As an atom in
the source foil suffers a 0νββ event, the primary electrons are released into
95%He+4% ethanol+1%Ar gas chambers at 7 mbar above atmospheric pres-
sure on either side of the foil [92] [88], where they are subjected to a 25 G
magnetic field [93]. The tracking volumes contain ∼2000 Geiger-mode wire
drift cells with which the electron trajectories are reconstructed. Surround-
ing the tracking volume are scintillators coupled to PMTs, which are used for

calorimetry and timing.
Image source: [93]

Time Projection Chamber

Originally proposed byDavid R.Nygren in 1974 [94] for particle identification using spatial and
calorimetric data retrieved from gas ionization electrons, the time projection chamber (TPC)
design has since been refined and adopted for applications in, among other disciplines, particle
accelerators [95], gamma-ray astronomy [96], and dark matter search [97]. In 0νββ search,
it is implemented as a detector where the sensitive volume is itself the active source, with a
xenon medium, either in the form of high pressure gas (HPXe, density .0.1g/cm3), of liquid
(LXe, density ∼2.95 g/cm3), or of a combination of both (2-phase TPC). These three variants
are described further on, following a primer on xenon as a detection medium.

Xenon as a detection medium— particles released upon deposition

After an atom in the sensitive volume of a TPC suffers a 0νββ event, the primary electrons
interact with the medium, depositing an energy E0 into three channels: heat, excitation and
ionization. This can be expressed as [98]:

E0 = Niε+NexEex +NiEi, (3.4)

whereNi andNex are the average number of ionized and of excited atoms; Ei and Eex are the
average primary electron energy loss per ionization and per excitation; and theNiε component
represents the energy transferred to the medium as heat, ε being the average kinetic energy of
the electrons with energy below the excitation potential immediately after the last collision that
yielded an excitation or ionization [99]. It is observed that Ni is virtually proportional to E0

[100]. The values of ε, Ei and Eex do not have a significant dependence on the energy of the
incident particle [101], and they are all roughly in the same order ofmagnitude as the ionization
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potential, I , which is 12.13 eV in xenon gas and 11.67 eV in liquid xenon [101]. The value of
ε is ∼ 0.3 I [101]. Ei is slightly larger than I , accounting for the small probability of multiple
ionization and ion excitation [99]. Eex is slightly smaller than I , because the atomic levels
in xenon are close to the ionization limit [101]. The ratio Nex/Ni has also been determined
empirically [99]. It depends on the incident particle, and for electrons it is about 0.4 - 0.6 for
xenon gas and 0.1 - 0.2 for liquid xenon [101].

The three deposition channels yield corresponding particles, mainly by the sequence of pro-
cesses pictured in Figure 3.11, namely phonons (heat), 178 nm photons {fn3.2f}(scintillation),
and electron-ion pairs. The comparatively high temperatures of gas and liquid Xe (triple point
at 0.81600 bar and 161.38K [102] [103], far above cryogenic temperatures)make bolometry un-
feasible, so the phonons are lost, but the photons and electrons are typically retrieved in 0νββ
search. In Xe, the average energy required to produce an electron-ion pair, Wi, is virtually
independent from the type and energy of the incident particle, and displays a virtually linear
dependence on the density {fn3.2g}. It can be obtained from 3.4 as [101]:

Wi ≡
E0

Ni
= ε+

Nex

Ni
Eex + Ei =

{
22.0± 0.2 eV, ∼1 atm Xe gas [105] [106]
15.6± 0.3 eV, liquid Xe [107]

. (3.5)

The average energy required to produce a scintillation photon,Wsc, is defined in a similar man-
ner, as Wsc ≡ E0/Nsc, where Nsc is the total number of scintillation photons produced. As
shown in Figure 3.11, both the excitation and ionization channels yield scintillation photons,
with the ionization channel yielding them via recombination at the 0νββ event site [101]:

Nsc = rNi +Nex, (3.6)

where r is the fraction of electrons that recombine. By applying a strong electric field, r can
be reduced to r ∼ 0. If no electric field is applied, most released electrons recombine: r ∼ 1.
SubstitutingWsc ≡ E0/Nsc andWi ≡ E0/Ni into Eq. 3.6,Wsc can be expressed as [101]:

Wsc = Wi ×
1

r +Nex/Ni
≈

{
(13.6 - 55.5) eV, ∼1 atm Xe gas
(12.8 - 159) eV , liquid Xe

, (3.7)

where the energy ranges were calculated using the upper and lower bounds of the empirical
values ofWi listed in Eq. 3.5, and of the ranges for r andNex/Ni.

It is expected that a 136Xe 0νββ event would therefore yield as electrons and photons a min-
imum of Ni ∼ 1.1 × 105 and Nsc ∼ 0.4 × 105 in low pressure Xe gas, or Ni ∼ 1.5 × 105

and Nsc ∼ 0.2 × 105 in liquid Xe. A large proportion of the electrons and photons can be
made to remain free in the medium provided that the concentration of impurities is small: Xe
is transparent to the scintillation photons from the de-excitation of Xe∗2, so their absorption
length is >100 cm in pure Xe [108]; and forcing the electrons to drift away from the energy
deposition site by a sufficiently strong electric field suppresses most recombination, preserv-
ing a large proportion of the free electrons {fn3.2h}, which then remain free unless they suffer

{fn3.2f}— The scintillation spectrum of xenon is a near-Gaussian rough continuum with a peak scintillation
wavelength of 178 nm, and a spectral width (FWHM) of∼14 nm (see Fig. 5 of [104]).

{fn3.2g}— Low pressure gaseous XeWi values for incident 35S β electrons and 210Po α particles ware mea-
sured and compared in [105]: the twoWi values differed by<1%. The dependence ofWi for Xe to the density and
the incident particle energy was studied in [106], and it was determined thatWi is virtually inversely proportional
to the density, ranging from low pressure Xe to LXe, and that for two different densities there was no perceptible
variation inWi at varying incident particle energies.
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attachment to electronegative impurities (such as oxygen and water), though current Xe purifi-
cation technologies allow the electron mean lifetime to significantly exceed the average time
taken by a free electron to traverse the entire length of a TPC (Section 1.5 of [109]).

Figure 3.11: Main processes producing the released phonons, photons and
electron-ion pairs. The symbol “X” represents ionizing radiation. “UV (178
nm)” corresponds to scintllation photons. As depicted, besides the excitation
channel, the ionization channel also yields scintillation photons via prompt

recombination.
Image source: [101]

Xenon as a detection medium— calorimetry

The preceding discussion shows that the Xe ionization energy deposition channel displays at-
tractive properties for calorimetry via free electron counting: Wi has virtually no dependence
either on the type or on the energy of the incident particle, and Ni for ∼MeV range particles
is fairly large sinceWi is in the ∼ eV range. Excluding all subsequent effects, the energy reso-
lution of the medium cannot be better than the limit imposed by the statistical fluctuations in
the number of ionizations. GivenWi ≡ E0/Ni, the best possible, intrinsic Xe ionization energy
resolution, δEi, is defined as [101]:

δEi = 2.355×Wi δNi (FWHM), (3.8)

where δNi is the standard deviation in the number of ionizations.

The distribution of the number of ionizations is typically modeled as sub-Poissonian, with a
dependency factor (the Fano factor) F , giving a standard deviation [101]:

δNi =
√
FNi. (3.9)

{fn3.2h}—A usable parameterization of the dependence of the number of deposited free electrons ,N , on the
applied electric field, E , isN(E) = Ni × (1 + k/E)−1, where k characterizes the recombination strength and has
the value k ≈ 2.4 kV/cm for LXe with∼ 0.1 MeV incident electrons [99].
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The F value for low-pressure gaseous xenon was measured to be 0.13 - 0.17 [101], with theo-
retical values in close agreement [110], and corresponds to δEi ≈ 0.27 %Qββ . For LXe, F is
theoretically estimated to be∼ 0.059 [111], however the experimental value is unclear. Conti et
al. gives a commonly cited F figure of& 20 in [112], based on LXe resolution measurements.
The ionization energy resolution in LXe is inferior to the resolution in low pressure xenon gas
by a factor of ∼ 11, due to fluctuations in the partitioning of the energy between free elec-
trons and scintillation that become prominent as the density is increased [113]. Martín-Albo
suggests that the fluctuations are due to the increased effect of recombination on the obtained
number of free electrons [101]. The intrinsic ionization resolution depends on the density of
the medium and also on the strength of the applied electric field (Figure 3.12). The ionization
energy resolution obtained in practice for either gas or liquid xenon should be expected to be
worse than the intrinsic resolution, as beyond the statistical fluctuations it is also affected by
recombination and attachment to impurities.

Figure 3.12: FWHM intrinsic ionization energy resolution measured for
662 keV γ-rays at varying xenon densities (left panel) and electric field
strengths (right panel). The numbers on the right of the right panel indicate

the densities of the xenon used.
Image source: [114] version, originally from [106]

There is less material characterizing the intrinsic scintillation resolution: it requires a more
complex model and is inferior to the ionization resolution in typical applications. It is advanta-
geous, however, to use both photon and electron counting together for calorimetry, particularly
for LXe. In that case, a significant fraction of scintillation photons are expected to be from re-
combination of free electrons, and so there is a visible anti-correlation between the number of
counted photons and electrons [115]. By using a linear combination of the two measurements,
improved energy resolutions can be achieved (Figure 3.13).
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Figure 3.13: Electron, scintillation and joint response for EXO-200 during a
228Th calibration run. δEQ is the FWHM energy resolution from electron
counting, δES is the FWHM energy resolution from photon counting and
δER is the FWHM joint energy resolution. The joint energy is calculated as
ER = EQ cos θ + ES sin θ, where θ is calculated according to the measured

anti-correlation of EQ with ES .
Image source: [115]

Xenon as a detection medium— topology discrimination

The path taken by the 0νββ event primary electrons results in a track of free electrons and scin-
tillations: an event topology. The interaction cross-sections of the primary electrons with the
Xe are largely independent of the density of the medium, so the size of the topology, namely the
distance between blobs (see Section 3.1), can be expected to be roughly inversely-proportional
to the density of the medium. There is little available literature characterizing the dimensions
of the topologies. The NEXT-100 conceptual design report refers a track length in the order of
30 cm in 10 bar HPXe [42]. Monte Carlo simulations performed for this work (see Chapter 6
for implementation details) suggest an average blob-to-blob distance in LXe of ∼ 4 mm.

The scintillation photons immediately escape the 0νββ event site, but the electrons initially
remain near the site. Therefore by applying an electric field and causing the free electrons to
collectively drift at a constant average drift velocity toward some readout plane, the arrival time
of individual electrons at the readout and their 2D position along the plane can be used to
retrieve 3D topological information of the event.

Unfortunately, as the group of electrons traverses the medium, it becomes increasingly difficult
to discern the original event topology from it. The electrons experience Brownian motion in-
side the medium: they suffer many collisions with its atoms, which besides ensuring that the
group of free electrons maintains an average drift speed instead of accelerating as the electric
field is applied, also prevents the electrons from traveling in a straight line. Instead the elec-
trons perform a "random walk" in the x, y and z coordinates [101] (typically defined so that
the electric field is applied along the z direction). Along the direction of the electric field, the
drifting electrons experience longitudinal diffusion, while along the other two coordinates they
experience transverse diffusion. Supposing that an electron originates at position (0, 0, 0), the
probability of finding it in a certain position (x, y, z) at time t, n(x, y, z, t), can be described
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by the following distribution [116]:

n(x, y, z, t) =
1

4πDT t×
√

4πDLt
× exp

[
− 1

4t

(
x2 + y2

DT
+

(z − vdt)2

DL

)]
, (3.10)

where vd is the drift velocity,DL is the longitudinal diffusion coefficient andDT is the trans-
verse diffusion coefficient. These quantities in turn can be expressed as [116]:

vd = µE , DL =
kBT

e

(
µ+ E ∂µ

∂E

)
, DT =

kBT

e
µ, (3.11)

where µ is the electron mobility, E is the electric field strength, e is the electron charge, kB is
the Boltzmann constant and T is the temperature. The expression forDT is just the Einstein-
Smoluchowski relation, and the expression forDL an extension of it [116]. Figure 3.15 shows
the measured dependence of vd with E , and Figure 3.16 shows the measured dependence of µ
on E and on the density of the medium. With typical drift field strengths, ∂µ/∂E . 0, and
so DL . DT . The reviewed LXe diffusion coefficient measurement data in Figure 3.14 is in
agreement with this for E & 100 V/cm. Given thatDL andDT are (partly) proportional to µ,
the right panel in Figure 3.16 suggests that the diffusion coefficients are significantly larger in
LXe than in gaseous xenon.

In effect, the original topology becomes increasingly “smeared” as it drifts through the medium,
but it experiences less “smearing” along the direction of the electric field than perpendicular
to it. This effect is more detrimental in liquid xenon than in gaseous xenon, as the topologies
in liquid have a smaller size, and they experience stronger diffusion than in gas. Topological
reconstruction in gaseous xenon has been shown to be viable in HPXe TPC experiments, while
the viability of topological reconstruction in LXe is the subject of this work.

Figure 3.14: Review of measurements ofDL andDT for varying E , for LXe.
Image source: [117]
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Figure 3.15: Top panel: Measurement of vd for varying E in 236 K,
2.95× 1010 molecule/cm3 xenon gas; Bottom panels: Reviewofmeasurements
of vd for varying E , for gaseous xenon (left panel) and for different tempera-
tures of LXe (right panel). The reduced field referred in the left panel is E scaled
by the number density of the gaseous xenon. E/n in the top panel is also the

reduced field.
Image source: [118] (top) [117] (bottom)

Figure 3.16: Left panel: Normalized measurements of electron mobility for
varying electric field strength, for different temperatures and densities of the
medium. Right panel: Low field strength electron mobility (4) and peak elec-

tron mobility (◦) for varying density of the medium.
Image source: [118]
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Xenon as a detection medium— additional benefits

The preceding paragraphs show that xenon is a medium with favorable characteristics for par-
ticle detection. The ionization channel provides a competitive energy resolution near Qββ ,
which can be further aided by the scintillation signal. The presence of two detectable signal
channels is useful for background rejection (namely for distinguishing heavy incident particles
like α radiation or neutrons from light particles like electrons or γ radiation, see Section 3.2.3),
as are the topology reconstruction capabilities provided by the free electrons. There are some
other benefits to using a xenon detection medium for 0νββ search, aside from the energy de-
position.

Xenon in itself is very radiopure. Aside from 136Xe, the only radioactive isotopes in natural
xenon are 124Xe (N.A. 0.095%, T1/2 = (1.8 ± 0.6) × 1022 yr [119]) and 126Xe (N.A 0.089%,
T1/2 > 1.9× 1021 yr 90%CL [120]) which can decay by double electron capture, both de-
positing∼ 64 keV of de-excitation energy [120], of little concern for 0νββ search. It should be
noted, however, that several radioactive isotopes of xenon can be produced from natural xenon
via neutron capture. Of these, 137Xe is concerning: it decays via a β− event with T1/2 ≈ 230 s,
and has a Q-value of 4.173 MeV, meaning that it is capable of emitting electrons with energies
overlapping the 136Xe Qββ [39]. The generation of 137Xe is typically suppressed by shielding
the medium from external neutron sources and by preventing its contamination with neutro-
genic nuclides. This point is discussed further in Section 3.2.3.

Although xenon is a rare gas, procurement is not prohibitively expensive (In 2019, the projected
Xe market price was ∼3.70 $/g [121] [122]), allowing for tonne-scale experiments. It also al-
lows for efficient enrichment: the world Xe enrichment capacity is of a few tonnes per year
[123], with 90% 136Xe-enrichment commonly attained. The use of a liquid / gaseous detection
medium also allows for efficient purification from both electronegative impurities (which re-
duce the energy resolution) and radioactive impurities (which increase the background rate, dis-
cussed further in Section 3.2.3). In effect, the radioactive background rate from sources within
the detection medium can be made almost negligible (for an example, see Section 4.2).

In addition to excellent natural radiopurity, LXe provides good self-shielding from external
backgrounds, γ radiation in particular. Figure 3.17 shows the mass attenuation coefficient for
xenon at varying energies of incident γ radiation. The minimum mass attenuation coefficient
is for an incident energy of∼Qββ , with a value of∼3.5× 10−2 cm2/g. A beam of γ particles
with energy ∼ Qββ would be reduced in intensity by half after traversing . 10 cm of LXe.
With a large volume of pure LXe medium, this allows for a very quiet inner volume (termed the
fiducial volume), protected by a surrounding xenon vetoing region (see Section 3.2.3).

TPCs are designed to take advantage of the favorable properties of xenon.
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Figure 3.17: Mass attenuation coefficient for xenon at varying energies of in-
cident γ radiation.
Image source: [124]

Xenon TPCs — basic design

The TPC is a detector technology designed to obtain both a calorimetric measurement and
a position or topology reconstruction of an event occurring in the medium. A cylindrical tank
with a 2D readout plane on at least one of the faces is filled with the detection medium (Xe in
the case of 0νββ search), and a uniform electric field is applied to the medium using electrodes.
Figure 3.18 shows the basic design and working principle.

Figure 3.18: Diagram of a basic TPC design. The cylinder is filled with detec-
tion medium. An energy deposition occurs along a track (highlighted in red).
The spacial arrangement of the free electrons (highlighted in green) produced
during the energy deposition matches the topology of the track. The electrons
are then drifted by the electric fieldE toward the 2D readout plane (highlighted
in magenta). The drift field is generated by two electrodes on either side of the

TPC: the cathode and the anode.
Image source: [101]
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The large number of free electrons produced in the case of 0νββ events makes viable the use of
readout planes that count the electrons directly (as is done in single-phase LXe TPCs, namely by
the EXO collaboration [123]), via charge collection wires (a Frisch grid) or tiles. This approach
should minimize the electron and photon yield variances of the TPC, but in most implemen-
tations it also significantly increases the signal-to-noise ratio in the readout electronics [101],
making it impractical. Even in 0νββ search it is more common to apply signal amplification
than to eschew it. Amplification is typically achieved by dividing the detector volume with a
gate electrode into two connected cylindrical regions: a large drift region between the cathode
and the gate, where the electric field Edrift ∼ 102 V/cm does not impart enough energy to the
electrons for them to excite the medium; and a thin amplification gap between the gate and the
anode, where the electric field Eamp & 103 V/cm imparts enough energy to the electrons for
them to excite the medium, also referred to as producing electroluminescence (EL). Electrolumi-
nescence allows for better energy resolution than a typical avalanche, and so electrolumines-
cence is preferred for 0νββ search [101].

Electroluminescence produces a shower of scintillation photons, which are then captured by
the readout plane. In effect, there are two scintillation signals per event: a primary scintillation
signal when the energy deposition initially occurs, referred to as S1; and a secondary scintil-
lation signal produced by the free electrons exciting the medium at the electroluminescence
gap, referred to as S2. The readout plane is typically an array of low-background PMTs. They
capture both the S2 and the S1 signal, and the time difference between the signals can serve to
reconstruct the position of the deposition site within the TPC.

Regarding the choice of phase of the drift region, selecting either LXe or HPXe has benefits
and drawbacks, as shown in the preceding paragraphs. Summarily, HPXe has superior energy
resolution and topology discrimination capabilities, while LXe is significantly denser and has
excellent self-shielding. Applying an amplification gap to LXe reduces the signal-to-noise ratio,
but if an amplification gap is used, it has to be inside a layer of gaseous xenon. Hence, in 0νββ
search, the TPC family of detectors can be divided into three subfamilies: (single-phase) HPXe
TPCs; (single-phase) LXe TPCs; and two-phase TPCs. Each has its own particularities in the
design and performance characteristics, as described next.

Xenon TPCs — LXe TPCs

Currently there is one prominent projected single-phase LXe TPC experiment in 0νββ search:
nEXO (Figure 3.19). It is designed to optimize the use of the good self-shielding, signal chan-
nel background discrimination, and energy resolution characteristics of pure LXe. Its design
is conservative compared to that of other TPCs (capture of both charge and scintillation chan-
nels, single charge capture plane, bottom-positioned cathode, no signal amplification), the focus
being on minimizing background sources and improving signal fidelity. The use of a large vol-
ume of LXe (∼5 tonnes, 90% enrichment) results in a near-ideal detection efficiency [123], as
well as a large fiducial volume (∼4 tonnes) at the center of the vessel, where the only remaining
background source is the LXemedium itself. Like in its predecessor, EXO-200, the calorimetric
measurement in nEXO uses both the free electron and the scintillation signals. The energy res-
olution is estimated as 2.36%Qββ (FWHM) [125]. Care in the design was taken to ensure that
the event topologywas not distorted by the instrumentation, however there is little information
on topology reconstruction development.

The nEXO design is also informed by the challenges revealed in EXO-200. Aside from a larger
bulk (110 kg of 80.6% 136Xe-enriched LXe in EXO-200 [43]) and the change from a horizontal
orientation of the vessel axis to a vertical orientation, there are two significant differences in the



34 Chapter 3. 0νββ Decay Morphology and Detection Technology

detector designs: the EXO-200 cathode was mounted at the center of the vessel, not at the bot-
tom like in nEXO; and the charge collection planes in EXO-200 used charge collection wires
(Frisch grids), whereas the charge collection plane in nEXO uses metalized fused silica tiles.
The cathode can be a significant origin of background (Section 3.2.3), and so a central cathode
mounting bisects the fiducial volume with a background source, so for nEXO the cathode was
placed at the bottom of the detector, where most of the fiducial volume is shielded from its ra-
diation. The change from charge collecting wires to tiles was due to the increased susceptibility
of the wires to reconstruction ambiguity and to microphonic pickup as the scale of the detector
increased.

TPC diagram

Vessel detail

Cryostats

Figure 3.19: Diagrams of the nEXO design concept. Left panel: Diagram of the
nEXO TPC. The detection medium is ∼5 tonnes of 90% 136Xe-enriched LXe
at 165 K (∼4 tonnes of fiducial volume), placed inside a vertically mounted
cylindrical copper vessel, and the projected electric field is 400 V/cm, gener-
ated by a cathode at the bottom of the detector, an anode at the top and 58
field shaping rings. The detector reads both an ionization and a scintillation
signal, using a metalized fused silica tiled anode at the top of the detector for
charge collection, and using side-mounted SiPMs for light collection. To im-
prove resolution near Qββ , no amplification was applied to the charge signal.
Top-right panel: detail of the top of the xenon vessel interior, showing sensor
placements and supports, as well as the field shaping rings. Bottom-right panel:
nEXO cryostat / shielding layers. Two cryostats surround the TPC, separated
by a vacuum insulation layer (located between the inner and outer vessels). The
inner cryostat is the interior of the inner vessel, and it is filled with HFE-7000
refrigerant fluid. The outer cryostat (not pictured) is the exterior of the outer
vessel, and it is composed of a large water tank (projected as having a 13 m
diameter and 13.3 m height). Both cryostats double as shielding from external

backgrounds.
Image source: [123]
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Xenon TPCs — HPXe TPCs

Figures 3.20 and 3.21 show conceptual schematics of the two most prominent current HPXe
TPC 0νββ experiments: NEXT-100 and PandaX-III. The two detectors share a similar basic
design: both mount the axis horizontally and focus primarily on background rejection meth-
ods. But the approach taken in the two experiments is different. While the NEXT collaboration
emphasizes the energy resolution and complements its background-rejecting capability with
topology reconstruction, using for that purpose an asymmetric layout of photon readout planes
(one energy readout plane and one tracking readout plane), PandaX-III emphasizes topology re-
construction at the cost of some energy resolution, using for that purpose a diffusion-reducing
additive in the medium (trimethylamine, which has the side-effect of worsening the primary
scintillation signal [126]) and using charge readout planes with superior xy resolution than the
tracking plane in NEXT-100. In effect, NEXT-100 has a projected energy resolution of 0.7%
(FWHM) atQββ [127] and an xy imaging resolution of∼10 mm [128], while PandaX-III has a
projected energy resolution of 3% (FWHM) and an xy imaging resolution of∼3 mm [129]. In
turn, the estimated background rates are<4× 10−4counts/(keV kg yr) for NEXT-100 [130]
and∼10−4counts/(keV kg yr) for PandaX-III [43]. Due to the low density of HPXe, however,
detection efficiency is projected to be quite low: 28% in the case of NEXT [130] and 54.2% for
PandaX-III [131].

Figure 3.20: Diagram of the NEXT base design concept: the Separate, Opti-
mized Functions TPC (SOFT). The sensitive medium is 100 kg of 91% 136Xe-
enriched 15 bar xenon [101] [43]. The charges are converted into an S2
signal once they drift into the electroluminescence gap (marked “EL”). Good
calorimetry and track reconstruction have conflicting instrumental require-
ments [101], and so an asymmetric design is used, where the opposite faces
have readout planes with different functions: the face nearest the cathode per-
forms calorimetry with low-background PMTs using the S1 and S2 signals,
while the face nearest the EL gap performs xy reconstruction with the more
compact SiPMs using the S2 signal. The z coordinate is reconstructed using

the time difference between the S1 and S2 signals.
Image source: [132]
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Figure 3.21: Diagram of the PandaX-III design concept. The sensitivemedium
is 200 kg of a 99% / 1% mixture of 90% 136Xe-enriched 10 bar xenon together
with trimethylamine (TMA) quencher. The event energy and xy position are
retrieved from the ionization channel using Microbulk Micromegas (which
also provide amplification, see [133]). The electric field is produced in two
opposite directions from the center of the detector by a single high voltage
(HV) electrode at∼100 kV, and the drift region on either side of the electrode is
∼1 m long. TMA is used to improve the quality of the ionization signal and to
suppress the diffusion of drift electrons. In the current design, the scintillation
signal is not measured, and so the z position of the events is not retrieved,

however timing is still used for 3D reconstruction.
Image source: [131]

Xenon TPCs — Two-phase TPCs

Two-phase TPCs are generally designed formultiple scientific goals at once. There are two cur-
rent prominent projected two-phase Xe TPC experiments in 0νββ search, LZ and XENONnT,
and both of them are also dark matter search experiments. The description of the LZ detec-
tor is the focus of Chapter 4, so this paragraph will focus on XENONnT, though the core de-
sign principles are similar. Figure 3.22 shows a conceptual schematic of its operating principle.
XENONnT is projected to use ∼8 tonnes of natural LXe, which, like in LXe TPCs, provide a
near-ideal detection efficiency and a large central fiducial volume (∼4 tonnes). The S1 and S2
readouts are performed with top and bottom arrays of 253 and 241 PMTs, respectively. Free
electron and scintillation signal anti-correlation is used to improve the energy resolution, which
is projected to be ∼ 2.4%Qββ [134]. There is little information on topology reconstruction
development for XENONnT.
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Figure 3.22: Diagram of the XENONdesign concept, used by XENONnT. The
diagram shows an incident particle, but otherwise applies for 0νββ search.
The sensitive medium is∼8 tonnes of natural LXe. The S1 signal is measured
by the top and bottom PMT arrays, and the free ionization electrons drift up
to the EL gap due to Edrift ≈ 80 V/cm, produced by a bottom-mounted cath-
ode grid and gate grid inside the LXe, near the surface. The S2 signal is then
produced by a stronger electric field, Eextraction, ofO(10 kV/cm). The z position

of the event is calculated by the time difference between S2 and S1.
Image source: [134]

Table 3.2 summarizes the performance characteristics of each detector technology, and Ta-
ble 3.3 lists the current and recent experiments using each of the referred technologies. As
can be seen, each detector technology is only compatible with a subset of the 11 isotopes. This
point is further discussed in Section 3.2.4.

Technology Efficiency ∆E BG Scalability Topology
Bolometer 80 - 90% ∼0.2% ∼10−2 Poor None
Scint. Bol. 80 - 90% ∼0.2% ∼10−4 Poor None
Semiconductor 70 - 85% .0.2% ∼10−3 Good Limited
Org. scint. >90% ∼4% ∼10−5 Excellent None
Inorg. scint. >90% ∼3% Near zero Good None
Track. Cal. 10 - 30% ∼5 - 10% Near zero Poor Excellent
HPXe TPC 25 - 55% ∼1 - 3% ∼10−4 Good Excellent
LXe TPC >90% ∼2.5% ∼10−3 Excellent Limited
2-Phase TPC >90% ∼2% ∼10−4 Excellent Possible

Table 3.2: Table comparing the typical performance characteristics of the dif-
ferent detector technologies. “Efficiency” refers to the detection efficiency. ∆E
is the energy resolution (FWHM), in units of percentage of Qββ . “BG” is the
background rate, in units of counts/(keV kg yr). “Topology” refers to the de-

tector’s capability at topology discrimination.
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48Ca 76Ge 82Se 96Zr 100Mo 110Pd 116Cd 124Sn 130Te 136Xe 150Nd
Bolometer AMoRE -Pilot TIN.TIN CUORE
Scintillating CUPID-Mo
Bolometer CUPID-0

LUMINEU
GERDA-II

LEGEND-200 COBRASemicond.
MJD

Organic KamLAND-Zen 800
Scintillator ZICOS

SNO+
Inorg. Scint. CANDLES-III AURORA XMASS-1.5

SuperNEMOTrack Cal.
DCBA-T3

NEXT-100HPXe TPC
PandaX -III

LXe TPC nEXO
LZ2-phase TPC

XENONnT

Table 3.3: Detection technologies and isotopes used by recently completed
(until 2017), on-going and planned 0νββ experiments. The SuperNEMO and
DCBA-T3 tracking calorimeters can be used with any isotope, so the entire
row was marked in orange. Prototype and proof-of-concept experiments in

italics.

3.2.3 Background sources and reduction methods

Background counts occur in a 0νββ detector because there are non-0νββ events that can oc-
casionally interact with its sensitive medium in a manner that is indistinguishable from 0νββ.
Background contributions can originate from outside the detector (external background sources),
or fromwithin the detector itself (internal background sources), either from the sensitivemedium
or from the detector components. Background sources typically undergo some event that can
release one or two particles that together deposit ∼Qββ of energy into the sensitive medium,
and so background reduction typically consists of either preventing the event from occurring;
keeping the particle from interacting with the sensitive medium; or using characteristics of
the produced signal to discard the interaction. This Section first describes the physics of how
particles can generate background counts, then which events can produce background count-
generating particles, followed by a descripiton of the background sources, and finally back-
ground reduction methods are addressed. Because of the scope of this work, the focus of this
Section is on the case of two-phase Xe TPCs, though a significant part of the presented infor-
mation is applicable to the other detector technologies as well. For a more general description,
see [43].

Background count-generating particles

The short time resolution of typical 0νββ detector electronics (Table 4.1) makes it unlikely for
an accumulation of low Q-value events to be read as a single ∼Qββ energy pulse, so typically
only the single events with Q-value &Qββ can directly cause background counts.

Interactions of light particles (e−, γ, ν) with the sensitive volume constitute a significantly larger
contribution to the background rate than interactions with heavy particles (n, α). This is be-
cause heavy particles depositing sufficient energy will almost always interact with the Xe nu-
cleus, causing a nuclear recoil (NR), whereas light particles interact with an electron of the Xe
atom, causing an electron recoil (ER), and these two types of recoil can be discriminated with
high efficiency due to their difference in Nex/Ni values (from Eq. 3.4; in LXe, Nex/Ni ∼ 1 for
NR [99], andNex/Ni ∼ 0.1 - 0.2 for ER [101]), which in two-phase Xe TPCs results in distinct
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S1/S2 ratios. Figure 3.23 shows the difference in S1 and S2 signal amplitudes for recoils due
to γ-rays and due to neutrons: it can be seen that the recoils due to the two types of particle
occupy distinct regions of S1/S2 ratios, with negligible overlap.

Figure 3.23: Discrimination of light and heavy particles in a LXe TPCwith 3.9
kV/cm drift field. Scatter plot of S1 and S2 signal amplitudes for Compton-
scattered 137Cs γ-rays (red dots) and for recoils due to elastic scattering with

Am-Be neutrons (blue dots).
Image source: [99]

Background count-generating particles are therefore typically singular, light and very energetic:
either single electrons with energy ∼ Qββ ; single γ particles with energy & Qββ {fn3.2i};
or single neutrinos with energy &Qββ . Exceptions include groups of promptly released light
particles with sum energy &Qββ , namely 2νββ events, which release two electrons similarly
to 0νββ; 60Co decay into 60Ni, where a 0.31 MeV electron and two γ particles, of energies
1.17 MeV and a 1.33 MeV, are released in immediate succession (branching ratio of the decay
chain is 99.88%, and the combined half-life of the two excited states is ∼4.4 ps [135], whereas
readout times are typically in the ns — µs scale); and neutrino capture on 136Xe (the charged-
current interaction ν + 136Xe→ e− + 136Cs∗), with the release of an electron and of usually
3 de-excitation γ particles [123].

Single electrons

The ∼Qββ energy single electrons interact with the medium similarly to the 0νββ electrons,
though the higher electron energy implies that the mean interaction length for ionization is
larger and the mean interaction length for bremsstrahlung is smaller, so that the topology pro-
duced by a ∼Qββ single electron deposition in the medium typically has a longer track than
the topology produced by a 0νββ event, with a higher likelihood of a bremsstrahlung event (for
more information, see Section 4.2 and Chapter 6).

{fn3.2i} — In LXe, for an electron to be released with Qββ by Compton scattering, the incident γ must have
an energy of at least 1.09×Qββ =2.692 MeV.
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γ particles

The dominant photon interaction in LXe, for energies O(Qββ), is Compton scattering, with
a mean interaction length of∼10 cm (see Figure 3.24). By the Klein-Nishina formula, photons
with energy&Qββ are& 20 times more likely to Compton-scatter with a negligible change in
direction (imparting a small energy on the target electron) than to reverse direction (imparting
an energy ∼Qββ on the target electron). This means that most usually γ particles can be re-
jected by the presence of several faraway deposition sites, each with deposited energy�Qββ .
However a small fraction of incident γ particles will instead interact with the sensitive medium
only a single time via photoelectric effect (interaction length&100 cm), releasing a∼Qββ en-
ergy single electron into the sensitive medium, which may then be mistaken for a 0νββ event.

Figure 3.24: Mean interaction lengths for photons of varying energies in LXe
due to photoelectric effect, Compton scattering and pair production.

Image source: [109]

8B solar neutrinos

Despite their low interaction cross-section, their large flux means that neutrinos can consti-
tute a significant background in large-scale 0νββ detectors, like TPCs and organic scintillators.
Considering the relevant energy range, it can be seen that 8B solar neutrinos constitute by far
the most significant neutrino background contribution (see Figure 3.25){fn3.2j}. Beyond ∼10
MeV the neutrino flux drops considerably, so that the critical neutrino energy range is∼1 - 10
MeV. Figure 3.26 shows the cross-sections for different interactionswith low-energy neutrinos,
showing that the most important are neutrino capture on xenon (AXe + ν → ACs∗ + e−) and
electron-neutrino elastic scattering (e− + ν → e− + ν) {fn3.2k}.

{fn3.2j} — Note that Figure 3.25 shows that the terrestrial antineutrino flux is comparable to the flux of 8B
solar neutrinos. Footnote {fn3.2k} shows that charged-current antineutrino interactions (namely IBD from Fig-
ure 3.26) produce a signal that will almost always be rejected. Experimental data also suggests that neutral-current
electron antineutrino interactions have a significantly smaller cross-section than do neutral-current electron neu-
trino interactions [136]. For these reasons, the contribution due to terrestrial antineutrinos was not considered.
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Figure 3.25: Left panel: Measured and expected fluxes from different
contributions. Right panel: Contributions to solar neutrino flux. Note
that only 8B β+-decay neutrinos and hep neutrinos (from the interaction
3He + p+ → 4He + e+ + ν) achieve &Qββ energy, and the 8B flux is ∼ 102

times higher than the hep flux.
Image sources: [137] and [138]

Figure 3.26: Cross-sections of low energy neutrino interactions.
“CEvNS” corresponds to coherent elastic neutrino-nucleus scatter-
ing (AZX + ν → A

ZX + ν). Its cross-section scales with (A − Z)2, so
the cross-section for Xe will be between those for 127I and for 133Cs.
“NIN” corresponds to neutrino-induced neutrons. NIN has two vari-
ants: a neutral-current variant, AZX + ν → A

ZX
∗ + ν , followed by either

A
ZX
∗ → A−1

Z X + n or A
ZX
∗ → A−2

Z X + 2n; and a charged-current variant,
A
ZX + ν → A

Z+1X
∗ + e− + ν , followed by either A

Z+1X
∗ → A−1

Z+1X + n or
A
Z+1X

∗ → A−2
Z+1X + 2n. NIN is due to an interaction that affects the nuclear

structure of the atom, so the N-dependence of the cross-section can be
expected to be smaller than in CEvNS, and so the Xe NIN cross-section can be
expected to be comparable to the Pb NIN cross-section. “ν 127I CC” refers to
neutrino capture on 127I (127I + ν → 127Xe∗ + e−). How this cross-section
compares to the cross-section of neutrino capture on 136Xe will be discussed
further. “IBD” refers to inverse beta decay (AZX + ν → A

ZS−1X
∗ + e+). “ν-e”

refers to neutrino-electron elastic scattering (ν + e− → ν + e−).
Image source: [139]
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Figure 3.27 shows a simplified energy level diagram for neutrino capture, showing the processes
with the largest background contribution in Xe: electron emission and prompt de-excitation
photon emission; and possible subsequentβ decay to theCs atom. The interaction cross-section
can vary in an irregular manner by 2-3 orders of magnitude between nuclides of similar A,
but little information is available on the cross-section for natural xenon. For pure 136Xe, the
neutrino capture interaction rate is estimated to be ∼ 3.4 × 10−5counts/(keV kg yr) [140]
The cross-section in neutrino-electron elastic scattering more consistent between isotopes: the
estimated interaction rate for natural xenon is 1.70+0.19

−0.21 × 10−7counts/(keV kg yr), and for
90% 136Xe-enriched xenon it is 1.65+0.19

−0.20 × 10−7 [141]. Figure 3.28 shows the estimated en-
ergy spectra for 136Cs de-excitation and β decay following neutrino capture, and for neutrino-
electron elastic scattering (from all solar neutrinos).

Figure 3.27: Energy level diagram for neutrino capture, showing the charged-
current electron release and the subsequent nuclear de-excitation, as well as

the β decay of the resulting atom.
Image source: [142]

{fn3.2k}—CEvNS (Figure 3.26) deposits only a few keV in the sensitive volume, and its interaction resembles
that of heavy particles [143] so the interaction can easily be rejected. As the incident neutrino’s energy increases, the
neutrino’s de Broglie wavelength becomes small enough for it to affect a target atom’s nuclear structure through an
interaction, exciting the nucleus in the process and causing particle emission upon nuclear de-excitation (n, p, γ or
α particles). NINs are a product of this type of interaction. As shown in Figure 3.26, NINs only become important
for energies>10 MeV, and since neutrino-induced nuclear excitation is primarily dependent on the neutrino’s de
Broglie wavelength, it can be expected that the release of other de-excitation particles will only become important
for energies>10 MeV as well. Figure 3.25 shows that the neutrino flux cuts off for energy&10 MeV, so neutrino-
induced nuclear de-excitation events (including NINs) will not constitute a very significant background source, and
therefore they can be discarded as well. The positron released in IBD will annihilate with the sensitive medium,
releasing two annihilation γ particles. By the Klein-Nishina formula, each annihilation γ particle will be&5 times
more likely to produce more than one scatter site than to produce a single one, and their mean interaction length
in LXe will be & 3 cm, making it extremely unlikely for an IBD event to be mistaken for 0νββ, meaning that this
interaction can also be discarded, leaving only neutrino capture on 136Xe and electron-neutrino elastic scattering
as significant background contributions.
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Figure 3.28: Energy spectra for charged-current neutrino capture on 136Xe
and neutrino-electron elastic scattering. Left panel: Approximate energy spec-
trum for 136Cs de-excitation and β decay following neutrino capture. Right
panel: Energy spectrum for elastically-scattered electrons due to solar neutri-

nos (all contributions, not just 8B).
Image source: [140] (left) and [141] (right)

Events producing background count-generating particles

In general, the types of events to consider are the ones that can cause a single-site deposition of
an energy &Qββ in the sensitive medium, either directly or indirectly, by way of daughter in-
teractions. In the case of LXe and two-phase TPCs, the direct depositionmust occur specifically
through incident light particles, namely electrons and γ particles (neutrinos will not be consid-
ered here due to their low cross-section). There are several types of events to account for, but
they can be organized into two large groups, based on whether they themselves emit light par-
ticles; or whether they produce particles that can cause direct deposition events (termed here as
indirect deposition events). This subsection lists the different types of event that can contribute
to the background, and the subsection on background sources will present concrete examples.

Direct deposition events — single electron emission

Given the very low electron interaction length, single electron-emitting direct deposition events
are typically only considered background sources if they occur inside the sensitive medium [43]
[39] [123]. The processes typically considered in backgroundmodels are listed in the box below:

Naked β decays (β decays with no de-excitation γ)
A
ZX

g.s. → A
Z+1X

g.s. + e− + ν

(where g.s. indicates that the nucleus is in the ground state)

Compton scattering
γ + e− → γ + e−

Neutrino-electron elastic scattering
ν + e− → ν + e−
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Direct deposition events — single γ emission

The large interaction length of γ particles of energies & Qββ (see Figure 3.24) allows single
γ-emitting nuclides to be a background source whether they are inside or outside the sensi-
tive medium [43] [39] [123]. The emission of single γ particles is typically caused by nuclear
de-excitation following particle capture (AZX

∗ → A
ZX

g.s. + γ). The capture processes typically
considered in background models are muon capture, α capture, neutron capture. The capture
processes will be discussed further in the indirect deposition event paragraphs.

Another single γ-emitting process that can constitute a significant background contribution
is radiative α capture (α capture with prompt γ emission: α+ A

ZX→
A+4
Z+2X + γ, commonly

referred to as the (α, γ) reaction). The γ particles yielded by this reaction in typical rock can
have a high energy (with a peak flux in the 4-10 MeV range, see Figure 3.29), and consequently
a high penetrative power.

Figure 3.29: Calculated cross-sections of the (α, γ) reaction for varying γ
energies and with 4 MeV incident α particles. The three targets are elements

present in large quantities in rock.
Image source: [144]

Direct deposition events — multiple e−/γ emission

Some interactions result in the emission of more than a single light particle. There are three
cases with different implications: multiple electron emission; multiple γ emission; and mixed
emission (some number of both electrons and γ particles). For the same reason as in the case
of single electron emission, multiple electron emission events are only a background contribu-
tion if they occur inside the sensitive medium. Multiple γ emission and mixed emission events
can contribute to the background provided that they either still produce only a single depo-
sition site, or that multiple deposition sites are all sufficiently close together to be impossible
to discriminate by the instrumentation. As such, a multiple γ emission event can contribute
to the background if it occurs inside the sensitive medium and yields a large number of low
energy γ particles, or if it occurs outside the sensitive medium and yields at least one γ particle
of energy & Qββ . Mixed emission events from outside the sensitive medium with γ particles
of energy & Qββ are an important background contribution as well, whereas the same type of
events occurring inside the sensitive medium can usually be rejected with high efficiency [39].
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The multiple emission processes typically considered in background models are listed below:

2νββ events
A
ZX

g.s. → A
Z+2X

∗ + 2e− + 2ν

Non-naked β decays
A
ZX

g.s. → A
Z+1X

∗ + e− + ν

followed by:
A
Z+1X

∗ → A
Z+1X

g.s. + x× γ , x = 0, 1, 2, . . .

Neutrino capture
ν + A

ZX→ A
Z+1X

∗ + e−

followed by:
A
Z+1X

∗ → A
Z+1X

g.s. + x× γ , x = 0, 1, 2, . . .

Indirect deposition events — activation by heavy particles

Although heavy particle energy depositions are rejected by the sensitive medium with high
efficiency (see Figure 3.23), heavy particles can still constitute a significant background contri-
bution indirectly, by activating materials and thus causing subsequent direct deposition events.
The particles of concern in this category are alphas and neutrons. Alphas were already em-
phasized in reference to the (α, γ) direct deposition event, however they are also a significant
indirect background contributor through the (α, n) reaction (α capture with prompt neutron
release: α+ A

ZX→
A+3
Z+2X

∗ + n). Neutrons have a high penetrating power, traveling an aver-
age distance in the O(1 m) range through concrete before nuclear capture {fn3.2l}, and result
in de-excitation γ emission and in the production of radioactive nuclides.

Indirect deposition events — activation by muons

Cosmogenic muons typically originate from the decay of charged mesons produced in inter-
actions of cosmic rays with the air. The average muon energy and flux at sea level is ∼4 GeV
and ≈ 70m−2s−1sr−1 respectively [149]. Although incident muons can be efficiently rejected
by the sensitive medium (Section 1.6 of [109]), they can significantly contribute to background
by way of muon capture (µ− + A

ZX → A
Z−xX

∗ + νµ + x× n, x = 0, 1, 2, . . .). This process
can activate stable nuclides, typically yields neutrons in the 10− 20 MeV range, and some rock
de-excitation γ particles have energies & Qββ [150].

Background sources for LXe and two-phase TPCs

It can be seen that, in an above-ground experiment, background counts caused by activation
of materials via cosmogenic muon capture would mask any actual 0νββ counts obtained in an
LXe TPC. To counteract this, TPCs are typically constructed deep underground. At the depths
used, the muon flux is low enough (calculated as 5.357m−2day−1 for LZ, at a water equivalent
depth of∼4.3×103m.w.e. [109]; and projected to be (0.326± 0.035)m−2day−1 for nEXO, at a

{fn3.2l}—There are two important sources of neutrons to consider: cosmogenic neutrons due to cosmogenic
muon capture (discussed in the next paragraph) and (α, n) reaction neutrons. It is predicted that neutrons from
both sources will typically have energies in the∼10 MeV range [145] [146]. Interacting with matter, fast neutrons
typically lose energy to collisions with nucleons until they thermalize, at which point they are quickly captured by
a nucleus. At this energy range, they are expected to have a mean free path of 5-10 cm [147] in concrete and to
undergo an∼15 collisions before absorption [148], hence theO(1 m) range value.
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water equivalent depth of∼6×103m.w.e. [123]) that muon products no longer constitute the
principal background contribution. Instead, most background counts occur due to radioactive
decays in the surrounding rock and in components of the detectors themselves. The majority
of these decays can be attributed either directly or indirectly to the natural decay chains of 238U
and 232Th: trace amounts of these isotopes are present in all materials [3]. Other contributions
include 2νββ decay, long-lived radionuclides from outside the uranium and thorium decay
chains, namely 60Co, and solar neutrinos. It should be noted that the majority of background
counts are due to single site, single γ Compton interaction events (from now on referred to
as 1e events, due to their production of a single electron with energy ∼Qββ in the sensitive
volume). Table 3.4 shows the principal contributions in order of typical fraction of the total
background counts (the rates of incidence may compare differently). The background rate for
these contributions in LZ is listed in Section 4.2, and projected background rates for nEXO are
provided in [123]. There is less information available on the projected 0νββ background rates
for XENONnT.

Background source Event type Process Energy Location Parent Event
Ext.→ D.C.Single γ De-excitation 99.5 %Qββ Ext.→ Rock β decay of 214Pb214Bi (238U chain)

Mixed e−/γ β decay 99.5 %Qββ Int.→ Cath. LXe contamination by 222Rn
Ext.→ D.C.208Tl(232Th chain) Single γ De-excitation 106.3 %Qββ Ext.→ Rock α decay of 212Bi

Muon capture by 136Xe137Xe Single e− Naked β decay 169.7 %Qββ Int.→ LXe Neutron capture by 136Xe
Mixed e−/γ Capture 103.6 %Qββ8B solar neutrinos Single e− Elastic scattering 566.2 %Qββ

Int.→ LXe N/A

2νββ Multiple e− Double β decay ∼100 %Qββ Int.→ LXe N/A
60Co Mixed e−/γ β decay 101.9 %Qββ Ext.→ D.C. Neutron capture by 59Co
Si and O Single γ (α, γ) reaction 357.7 %Qββ Ext.→ Rock α decay of rock

Table 3.4: LXe and 2-phase TPC background sources. The “Energy” column
indicates the maximum energy that can be deposited in the medium by the
given background source (namely, for the case of 60Co, the β decay electron
energy was ignored, as the event occurs outside the sensitive medium). In
the “Location” column, “Int.” and “Ext.” mean “Internal” and “External” re-
spectively, “D.C.” stands for “Detector Components”, referring to components
that are not in direct contact with the LXe, and “Cath.” stands for “Cathode”:
some decay products of 222Rn are positively charged, and so they accumulate
at the cathode. “Rock” refers to the underground rock surrounding the de-
tector. The sources highlighted in green provide a minor contribution due to
efficient background reduction. For a detailed description of the sources, see

[39], [43] and [123].

Background reduction methods

There are four principal approaches to background reduction, which are typically employed in
conjunction: detector material purification; detector shielding; signal vetoing; and signal rejec-
tion. Detector material purification methods reduce the concentration of radioactive nuclides
present in the detector components. Shielding methods consist of placing a barrier separat-
ing the detector from the exterior, preventing cosmogenic or rock background sources from
inciding on the sensitive medium. In the case of vetoing and rejection, the background event
successfully incides on the detector medium: vetoing consists of discarding events based on the
position and timing of deposition events; and rejection consists of discarding events based on
the pulse shapes captured by the PMT arrays. Table 3.5 lists the background reduction meth-
ods typically employed in LXe and 2-phase TPCs. For the implementation in LZ specifically,
see Chapter 4.
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Method Type Backgrounds Description / Comment

Radiopure From detector Fabrication of detector components
material usage Purification components materials as radiopure as possible.

Store materials Cosmogenic Store detector materials underground before
underground Purification capture daughters construction, allow capture radioactivity to end.

Xenon is purified on-line with a recirculation222Rn daughters system. Activated charcoal in this system canRadon trapping Purification inside LXe be used to remove radon from the xenon.

LXe self-shielding Shielding External γ’s Outer LXe layers shield inner LXe (Fig. 3.24).

Passive shielding Examples: steel plates; water; refrigerant, Pb.
layers Shielding External sources Inner layers more radiopure than outer ones.

Veto Muons (veto); Thick water + liquid scintillator layersOuter & Neutrons (shield); instrumented with PMTs. Muons yielddetector Shielding Rock γ’s (v. & s.). Cherenkov radiation. Neutrons are moderated.

Define an inner volume of LXe as the fiducialFiducialization External and volume (FV). Simultaneous energy depositions(and skin veto) Veto internal sources in and outside the FV are discarded.

Coincident event Internal Events in quick succession are discarded
discrimination Veto radiation chains (e.g. 214Bi γ followed by 214Po α).

Multisite event Single- and If two or more deposition sites are sufficiently
discrimination Veto multi-γ events far away from each other, signal is discarded.

Energy Region All sources, but Signal energy window. If sum pulse energy is
of Interest (ROI) Rejection mainly 2νββ above or below window, signal is discarded.

S1/S2 ratio Rejection Nuclear recoils Nuclear recoils have a higher S1/S2 ratio.

Daughter ion All sources 136Xe ββ decay yields stable 136Ba+ daughter
tagging (nEXO) Rejection except 2νββ ion, identifiable via atomic spectroscopy.

Topology This work concerns this
Discrimination Rejection Single γ events background rejection method.

Table 3.5: Table of background reduction methods in LXe and 2-phase TPCs
for 0νββ search. Information compiled from [3], [43], [109], [123] and [39].
The xenon recirculation system referred in the “Radon trapping” entry also
serves to remove electronegative impurities from the LXe, increasing the free

electron lifetime (see pgs. 24.
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3.2.4 Current state of the discipline

The currently ongoing generation of 0νββ experiments aims to probe the inverted-ordering
Majorana neutrino mass, namely the 〈mββ〉 ∼ 0.01 — 0.05 eV range, using low-background,
tonne-scale experiments. Table 3.6 lists the ββ-active masses, live-times and sensitivities of
recently completed (until 2017), on-going and planned 0νββ experiments, listed in order of
the lowest Majorana mass that they can probe. As shown in Tables 3.1, 3.2 and 3.3, different
isotopes imply the use of distinct detection technologies, and Table 3.6 indicates that although
no single technology or isotope is decisively superior, sufficiently sensitive detectors are more
successfully being achieved using 136Xe, 130Te or 76Ge (Figure 3.30), operating a technology
with very good scalability: TPCs, semiconductors and organic scintillators.

Figure 3.30: Currently attained sensitivity ranges for different isotopes (not
counting projected sensitivities). As can be seen, 136Xe, 130Te or 76Ge have

successfully attained superior sensitivities.
Image source: [151]
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Chapter 4

0νββ Detection in LZ
This chapter is a continuation on the discussion of TPCs presented in Chapter 3, now focusing
specifically on the LUX-ZEPLIN TPC. Section 4.1 summarizes the physics and specification
relevant for 0νββ detection, and Section 4.2 discusses the background environment and hy-
pothesis testing approach.

4.1 Detector physics and technical specifications
The LUX-ZEPLIN (LZ) experiment is a 2-phase, liquid-gas xenon time projection chamber
(TPC) in the final stages of commissioning (Figure 4.3) at Davis cavern (at a depth of ∼1.5 km
underground) of the Sanford Underground Research Facility in Lead, South Dakota, USA. De-
spite its primary focus being weakly interacting massive particle (WIMP) detection, it also has
competitive capabilities for 0νββ search compared to current generation 0νββ experiments
(see Table 3.6). It has a ∼7 tonne active detection mass of natural Xe (almost 623 kg of 136Xe),
nearly 1 tonne of which constitutes a fiducial volume (see pg. 31) with background index of
∼ 5.4×10−4 counts / (keV kg year) [39] (see Section 4.2 for more information). By combining
both the S1 and S2 signals, LZ achieves an energy resolution atQββ of ∼ 2.36% (FWHM) [39].
Counting across the entire active volume over a 2.74 year live-time, it is expected to be capable
of probing 〈mββ〉 to within 53-164 meV [39].

Figure 4.1 shows a schematic of the LZ TPC. The gate grid, TPC field cage and cathode grid
define the top, side and bottom of the cylindrical active region (or drift region), respectively.
It has an equal height dmax and diameter of 1456 mm and is filled with 7 tonnes of natural
liquid xenon (LXe), kept at a temperature of 175.8 K. The gate grid, cathode grid and field cage
produce and shape a vertically-oriented drift field of strengthEdrift = 310 V/cm. 13 mm above
the gate grid is the anode, placed inside the gaseous Xe at a distance above the LXe surface
of 8 mm. Electroluminescence occurs in this thin gas volume, and it is referred to as the S2
region, or gas gap. The anode and gate produce an extraction field of strength ES2 = 10 kV/cm.
Below the cathode is a 137.5 mm thick volume containing∼1 tonne of LXe, where the electric
field has the opposite direction and a field strength of∼ 3-6 kV/cm (Section 3.2.1 from [109]),
referred to as the reverse-field region. Above and below the three regions are readout planes:
photomultiplier (PMT) arrays using Hamamatsu R11410-22 3-inch diameter low-radioactivity
PMTs [39], with 253 units in the top array and 241 units in the bottom array. Outside the field
cage and PMT array enclosure is an additional∼ 2 tonnes of 2-phase xenon, forming a Xe skin
of width 4-8 cm. This outer region is instrumented with PMTs as well (93 Hamamatsu R8520
1-inch PMTs), and serves to veto against multisite events. In total, the TPC has ∼10 tonnes of
Xe. The field cage and PMT arrays are covered with polytetrafluoroethylene (PTFE) panels that
serve to maximize the light collection efficiency by reflecting the scintillation light: immersed
in LXe, they achieve a reflectivity of ≥ 97.3% [165]; while in gaseous Xe the reflectivity falls to
85% [165].
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Figure 4.1: Schematic of the LZ TPC, with nested details of the electrolumi-
nescence region (gas gap). The subdetail shows an electrostatic modeling of the
electric field strength near the S2 region, with low field strength in blue, and
ranging through to red for high field strength. Technical details in main text.

Image source: [165] and [109]

Figure 4.2 shows a schematic of the TPC placed within the detector systems. The TPC is
mounted inside a two-vessel vacuum-insulated cryostat, itself surrounded by an outer detector
(OD), containing 17.3 tonnes of gadolinium-loaded liquid scintillator and instrumented with
120 Hamamatsu R5912 8-inch PMTs. The OD enclosure is placed inside a water tank contain-
ing∼300 tonnes of ultra-pure water. For 0νββ, the OD together with the water tank serve as
an additional active veto against γ-ray scatters [39]. LXe is continuously circulated to a pu-
rification system outside the water tank: LXe flows out of the detector at the Weir trough (top
right panel of Figure 4.1), and into the LXe tower (Section 6.4 of [109]). Two of the tasks of the
LXe tower are to control the concentration of electronegative impurities and radon removal.

Figure 4.2: Left panel: Schematic of the LZ detector subsystems. The liquid
Xe heat exchanger is part of the LXe tower (Section 6.4 of [109]). Right panel:

Detail showing the inner and outer cryostat vessels.
Image source: [39] and [165]
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Figure 4.3: Left panel: The LZ TPC before being mounted into the cryostat
(taken Apr. 2019). Right panel: Photo taken from inside the water tank, show-

ing the bottom half of the outer cryostat vessel (taken May. 2019).
Photo credit: Matthew Kapust, Sanford Underground Research Facility

The principle of operation of a TPC is described in Section 3.2.2 (pgs. 24 - 37). Summarily, the
two 0νββ primary electrons deposit energy into the medium, in the form of scintillation (the
S1 signal), ionizations and unretrievable phonons (pgs. 24 - 26). The ionization electrons create
a topology (left panel in Figure 4.4) with average blob-to-blob distance∼5-6 mm, which drifts
upwards due toEdrift at a constant average drift velocity vd (pgs. 28 - 30). For LZ, this velocity is
vd ∼ 2.0 mm/µs (Table 3.3.1 of [109]). As they reach the LXe surface, 95% of the electrons are
successfully extracted into the gas [39], where they are subjected to the much stronger extrac-
tion field ES2, resulting in electroluminescence, also referred to as secondary scintillation (S2,
pgs. 32 - 33). The S2 photons hit the top PMT array, resulting in a pulse output from each PMT.
The collection of top-array time series PMT outputs for some event is referred to as awaveform
(example pictured in the right panel of Figure 4.4). The PMT time series response for a single
electroluminescence photon is pictured in Figure 4.5. Position reconstruction is performed
along z using the timing data, and along xy based on statistical methods according to the dis-
tribution of PMT hits along the array [166]. The obtained spatial resolutions are σz = 0.2 mm
and σxy = 0.2 - 0.5 mm, respectively [39], however it should be noted that the xy resolution
was estimated for the case of reconstruction by statistical methods of a single event position.

The energy deposited by an event,Edep, is estimated in LZ using the total amplitudes of the S1
and S2 signal according to the following expression:

Edep = W (S1/g1 + S2/g2) , (4.1)

where, S1 and S2 are in units of “photons detected” (phd), W = 13.7 eV (c.f. Eq. 3.7), and
where g1 and g2 represent the average number of phd in each type of scintillation, with values
g1 = 0.12 phd/photon and g2 = 79.2 phd/e− [39] [165]. This approach makes use of the
anticorrelation of S1 and S2 signals (see pgs. 27 - 28) to improve energy resolution. The reso-
lution is defined in this case as the estimated standard deviation σ of the distribution of output
Edep for a fixed event energy E [39]. It is predicted that a resolution (σ/E) at Edep ∼ Qββ of
0.88% is achievable, although sensitivity projections were calculated supposing the resolution
is inferior, of 1%: an energy window, or region of interest (ROI), of (σ/E) = ±1%, meaning that
if 2433.3 keV < Edep < 2482.4 keV, then the event may be counted as a possible 0νββ, and
otherwise rejected [39].
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Figure 4.4: Left panel: Spatial electron density of a Geant4 energy-deposition-
only simulation of the topology of a 0νββ event in LXe (see Section 6.3, b2b
scenario for simulation details). The yellow regions have a larger electron den-
sity. Right panel: Simulated PMT array output (waveform) (Section 6.3) due to a
0νββ eventwith the same topology as the event in the left panel, occurring 145
mm below the LXe surface (10% of the height of the active region) and directly
above a PMT. The blue curve is the output from the PMT directly above the
0νββ event, the red curves (6 of them) are the outputs of the PMTs adjacent
to the PMT directly above the 0νββ event, and the rest of the curves are from

PMTs further away. The only distortion considered is due to diffusion.

Figure 4.5: Time series output for a single electroluminescence photon on the
top array PMTs in LZ.

Source: internal communications

There are three effects that will significantly distort a produced waveform. The most crucial
effect is diffusion, described on the next page. The remaining two effects are gate grid distortion
and PMT saturation. Gate grid distortion refers to the funnelling of the drift field lines toward
the spaces between the spokes of the gate grid, resulting in a “quantization” of the xy position of
the ionization electrons along one of the planes, limiting the position reconstruction precision.
It is pictured in the left panel of Figure 4.6. PMT saturation occurs because of the extremely
large number of S2 photons produced in events of this energy (estimated in this work to be
& 8 × 107 photons per event, see Section 6.3.2). Even accounting for the photon detection
efficiency being ∼ 10%, it is expected that between 7 and 22 PMTs of the top array would
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saturate [39], at which point the energy can only be reconstructed using the S2 hits in the non-
saturated PMTs and in the bottom array, drastically reducing the value of g2 in Equation 4.1
and thus reducing the energy resolution.

Diffusion (right panel of Figure 4.6), “smears out” the topology as the ionization electrons drift
up toward the LXe surface and is inherent to the use ofXe as a sensitivemedium (see pgs. 28 - 30).
Equation 3.10 models the spatial smearing that occurs due to diffusion. The longitudinal and
transverse diffusion coefficients,DL andDT , are given in the LZ Technical Design Report (TDR)
[109]. There, theywere calculated by simulating the FWHMspread of cathode events (Table 3.3.1
[109]), listing the longitudinal and transverse values FWHMcath.

L = 2.0 µs ≈ 4.4 mm and
FWHMcath.

T = 1.4 mm. To obtainDL andDT from these values, the following expressions
can be used [167] [168]:

DL =
1

2 tcath.
×
(
FWHMcath.

L

2.355

)2

, DT =
1

tcath.
×
(
FWHMcath.

T

2.355

)2

(4.2)

where tcath. = dmax/vd ≈ 0.728 ms is the drift time of cathode events. This results in the values
DL = 1.98mm2/ms and DT = 0.48mm2/ms. These were the coefficient values based on
which the diffusion simulation was performed (Section 6.3.2). It was not noticed until after
the simulations were completed that DL > DT , in conflict with measurements (Figure 3.15)
and with theoretical predictions (DL ≈ 0.1DT [167]). The value ofDL is comparable to mea-
sured data, but DT is significantly smaller than expected. Fortunately, this does not affect the
validity of the obtained results (Chapter 7), as due to the effect of gate grid distortion on the
waveform, it was chosen to perform the analysis on the sum of all the PMT channels, leaving
discrimination with xy data for future work. This means that only the valid DL value affects
the analyzed pulses.

Figure 4.6: Left panel: Gate grid funneling the electron drift lines (in black)
to specific bands. Right panel: Spatial electron density of the topology from
Figure 4.4 captured at the LXe surface, assuming the 0νββ event occurred
at depth d and experienced diffusion during the drift as specified in the LZ

Technical Design Report [109].
Right panel image source: [169]
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The parameters of LZ relevant for this work are listed in Table 4.1.

Parameter Value Unit Description / Comment Reference
dmax 1456 mm height of active region Table 1.2.1 of [109]

diameter 1456 mm diameter of active region Table 1.2.1 of [109]
PMT diameter 64 mm PMT cathode diameter Section 3.4 of [109]
PMT↔ PMT 93 mm top array PMT center-to-center spacing Section 3.5.3 of [109]
gate grid depth 5.0 mm depth of gate below LXe surface Section 3.6.1 of [109]
gate grid pitch 5.0 mm distance between spokes of the gate grid internal communications

gas gap thickness 8.0 mm height of anode above LXe surface Section 3.6.1 of [109]
M0νββ 623 kg mass of 136Xe in the active region [39]
Qββ 2.459 MeV total energy of 136Xe 0νββ primaries [43]
ROI ±1% Qββ defined region of interest around Qββ [39]

∆EROI 58.75 keV size of ROI energy window [39]
∆POSxy 0.2 - 0.5 cm xy position resolution in energy ROI [39]
∆POSz 0.1 µs PMT time resolution internal communications
Edrift 310 V/cm drift field [39]
ES2 10 kV/cm extraction field Section 3.2.3 of [109]
vd ∼2.0 mm/µs electron drift velocity Table 3.3.1 of [109]
DL 1.98 mm2/ms longitudinal diffusion coefficient Table 3.3.1 of [109]
DT 0.48 mm2/ms transverse diffusion coefficient (TDR) Table 3.3.1 of [109]

photon yield 820 - 910 eph/e− S2 photons per extracted electron Table 3.6.1 of [109]
εextracte− 95% – electron extraction efficiency [39]
S2 PDE 10% – S2 photon detection efficiency [165]
REFLLXe ≥ 97.3% – PTFE reflectivity in LXe [165]
REFLGXe 85% – PTFE reflectivity in GXe [165]

Table 4.1: Table of LZ specifications relevant to the scope of this thesis.

4.2 LZ background environment and hypothesis testing
The background sources for 2-phase TPCs have been examined in detail in Section 3.2.3: Ta-
ble 3.4 summarizes the information, with background contributors listed in order of impor-
tance. The low activity from the detector materials and LXe, together with the active vetos and
efficient self-shielding of the LXe, allow to define two fiducial regions: a very clean 967 kg center
region at 26 < z < 96 cm with 78 cm diameter, termed the fiducial volume (FV) [39]; included
inside a 5613 kg region with a higher average background at 2 < z < 132.6 cm with 137.6 cm
diameter [39], termed in this work the extended fiducial volume (XFV). The two regions are
pictured in Figure 4.7: the left panel shows the radial and height distributions of background
events after cuts due to the energy ROI, vetoing, S1/S2 ratio (see Table 3.5) and single scatter (SS,
maximum accepted vertical separation between distinct deposition sites from the same event
is set at 3 mm) [39]; and the right panel shows the integrated total background counts (events
remaining after cuts) for a 1000 live day run [165], giving a value of 35.57 counts in the FV, and
6116 counts in the XFV.

A projection of the background rate and contributions inside the FV was performed in [39]:
Figure 4.8 shows the background contributions after all cuts. Near the ROI, it can be seen that
the cavern walls and detector components contribute most of the backgrounds that survived
rejection, accounting together for 98.1% of the total 2.73 × 10−4 counts/keV/kg/year back-
ground rate in the FV [39]. These backgrounds originate from the natural 232Th and 238U
decay chains. Of particular importance in these chains are two γ-decays: the 2.615MeV line
of 208Tl, from the former chain; and the 2.448MeV line of 214Bi, from the latter (see pgs. 45
- 46). The gammas from these decays that survive the cuts will most commonly interact via
photoelectric effect, losing all their energy at once and releasing a single electron with energy
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Figure 4.7: Left panel: Background counts/kg/day following cuts, as a function
of the the vertical (z) and radial (ρ) directions. Right panel: Data from the left
panel, integrated along the radial direction, calculated at discs of height 1%dmax

and the same diameter as the XFV.
Left panel image source: [39]

within the ROI. The photoelectric effect mean interaction length for energy ∼Qββ is ∼ 1 m
(Figure 3.24). A significantly more rare way for the 208Tl gammas to survive the cuts is for them
to transfer most of their energy via a single Compton interaction in the XFV (at most they can
transfer 2.377 MeV this way) and then depositing the rest of their energy via photoelectric ef-
fect, at a z no further than 3 mm away from the original deposition site height, so as to survive
the SS cut. Of these two options, the former will consistute a significantly larger background
contribution, and for the rest of this work they will be referred to as single electron, or 1e events.

Figure 4.8: Background sources and rates inside the FV, after all of the avail-
able selection cuts. The yellow dashed line represents the expected 0νββ en-
ergy spectrum, with a rate estimated by considering T1/2 = 1.06×1026 years
and does not contribute to the total background. More information on each of
the individual background contributions is available in Section 3.2.3. Of note
are the two most prominent background sources nearQββ and the compara-

tively low contribution from 2νββ (orange line marked 136Xe).
Source: [39]
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The topology of 1e events differs from that of 0νββ events: instead of the two primary electrons
in 0νββ, there is just one, and hence the track features only one blob (Figure 4.9). The goal of
thisworkis to determinewhether it is possible to improve the background byway of a topology-
based cut.

Figure 4.9: 2D projection of a Geant4 LXe energy-deposition-only simulation
of a 1e event with a primary electron of energy Qββ and a 0νββ event, both
with no diffusion. The yellow regions indicate a larger number of ionization

electrons.

Hypothesis testing is performed as described in detail in [165]. The LZ detector is projected to
have a 1000 live day science run, and during that time, a number csci of 0νββ candidate counts
will be registered at positions (x, y, z) along the detector, forming the collection of counts
C = {(xi, yi, zi)}cscii=1. It is possible for all of these counts to be due to background events that
survived the applied cuts: this constitutes the null hypothesis,H0. It has an associated probability
Pr(C|H0), which can be calculated with the developed background model [39]. If the counts
along the detector exceed the background model prediction, then Pr(C|H0) decreases, and if
C exceeds 99.87% of count collections predicted by the model, then an alternative hypothesis,
HA, is taken to be true: that C is due to background counts and 0νββ counts together.

The likelihood function of C, L(H0), is constructed from two components:

L(H0) = f(C|H0)× g(nuis|H0) (4.3)

The first component, f(C|H0), is called the total probability model [165], and represents the
probability of C. It is given as:

f(C|H0) = Pois(csci|H0)×
csci∏
i=1

f(count i|H0), (4.4)

where Pois(csci|H0) is a Poisson distribution with average µc given by the background model,
and f(count i|H0) is the distribution for each count, and is referred to as the event probability
model [165]. The event probability model is a weighted sum of the distributions due to pa-
rameters of interest α and due to Nc nuisance parameters ν . The second component of Eq. 4.3,
g(nuis|H0), is a set of constraints on the nuisance parameters, consisting of a product of Nc

Gaussian distributions.

To eliminate the nuisance parameters, the profile likelihood ratio (PLR) is used. The PLR, λ(α),
is defined as:

λ(α) =
L(α, ν̂|α)

L(α̂, ν̂)
, (4.5)

where α̂ and ν̂ are themaximum likelihood estimators (MLE) ofα and ν respectively, and ν̂|α
is theMLE of ν givenα, andL(α,ν) ≡ L(H0). This function effectively “normalizes out” the
nuisance parameters. Additionally, for large data samples, the value of −2 log λ(α) approxi-
mates a chi-square distribution for the same number of degrees of freedom as the number of
parameters of interest [170]. From here, a p-value can be assigned to C.
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Chapter 5

Application of Machine Learning
Methods to 0νββ Search in LZ

The complexity and small size of the primary electron tracks, together with diffusion and the
gate grid funneling of the detector (see Figure 4.6), mean that not only is it difficult to analyti-
cally characterize the waveforms of each of the two classes of event (0νββ or 1e), but the mor-
phological differences between the two classes of waveforms will not be obvious (Figure 5.1).
With these difficulties in consideration, a statistical solution to the problem becomes attractive.
Namely, a machine learning (ML) algorithm can be capable of recognizing nontrivial patterns
in the morphology of the two classes, improving the LZ background discrimination with an
additional background rejection step. For example, a boosted decision tree classifier was used
to discriminate between 0νββ events and γ backgrounds in the EXO-200 experiment, yielding
a∼15% increase in sensitivity [171].

Figure 5.1: Two examples of GEANT4+ANTS2-simulated 1e (left) and 0νββ
(right) LZ waveforms, with initially vertical primary electrons at d =
145.6mm and no saturation or gate electric field distortion (see Chapter 6).
As is exemplified here for the case of the number of peaks (circles) in the wave-
form, there are no prominent features that are mutually exclusive for 0νββ or

for 1e waveforms.

The approach taken in this work was to parameterize the waveforms, converting a waveform
i from a signal representation si[t] {fn5a} to an equivalent W-dimensional parameter vector
representation (see Section 6.4.2)W i. Ideally, the two classes would form two disjoint clusters
of datapoints in theW parameter space. Then, supervised binary classification algorithms were
trained on the resulting processed dataset to construct a decision boundary: all test events would
be labeled 1e on one side of the boundary, and labeled 0νββ on the other.

{fn5a}— In this representation the signal amplitude is sampled at discrete times t.
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This chapter presents the theoretical background on the implementation of a binary classifier
to these two classes of events. Section 5.1 describes the algorithms selected for testing in this
work, and Section 5.2 describes the classifier performance assessment tools that were used.

5.1 Supervised binary classification algorithms
A supervised binary classifier can be mathematically represented in the following manner:

Suppose there is a training set consisting of an n pair sequence
(X1, Y1), ... , (Xn, Yn), where:

• Xi ∈ χ is the feature vector for the training object i, χ being the
space of all possible feature vectors: the feature space.

• Yi ∈ {N,P} is the label corresponding to Xi, N ≡ −1 and
P ≡ +1 standing for “negative” and “positive” respectively.

Then a binary classifier is a function b that takes as input a test set
consisting of anm pair sequence (Xn+1, Y

actual
n+1 ), ... , (Xn+m, Y

actual
n+m )

{fn5.1b} and performs on it the transformation b : χ → {N,P} using
the training set as reference, producing the new pairs (Xn+j , Y

guess
n+j ).

Four supervised binary classification algorithms were selected for this work based on their per-
formance in a comparison made in [172] for the scikit-learn package [173], shown in Fig-
ure 5.2. Table 5.1 has a basic description of each compared algorithm. Since the feature vector
embedding on the feature manifold (see Figure 5.3 for explanation) is not expected to be strictly
linear (see Section 6.4.3), the performance of the classifiers for nonlinear and concentric data
(the “a)” and “b)” sets in Figure 5.2) was given priority, with special importance attributed to the
accurate mapping of the nonlinear portion in input data “a)”. The selected classifiers were the
ones that best distinguished the more difficult characteristics of the assessment data:

• K-nearest neighbors (kNN, Section 5.1.1);

• Support vector machine with radial basis function
kernel (RBF SVM, Section 5.1.2);

• Gaussian process classifier (GP, Section 5.1.3);

• Random forest classifier (RF, Section 5.1.4).

Because the mathematical equivalencies in the RBF SVM algorithm are what provides the clas-
sifier with its advantages, and because the GP classifier was the best-performing one in this
work (Section 7.4), it was chosen to describe their algorithms in more detail than for the kNN
and RF classifiers.

{fn5.1b}—The actual class of each object in this set, Y actual
i , i ∈ n+1, . . . , n+m, may or may not be known

in advance. When testing the classifier’s performance, the labels are known, and the set is referred to as a test set. In
deployment, the labels are not known.
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Figure 5.2: Performance of different classifiers and their corresponding accu-
racy scores (the fractions of correctly labeled test datapoints). In the images,
the training set are displayed as opaque circles, while the test sets are shown
semi-transparent. The shapes of the input data serve to test the classifier per-
formance in the case of: a) a nonlinear boundary; b) concentric data; c) a quasi-

linear boundary.
Source: [172].
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Table 5.1: Basic description of the algorithms in the comparison in Figure 5.2.
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Figure 5.3: Depiction of a flat 2D object rolled up into a “swiss-roll” (high-
lighted in green), so that three spacial coordinates are necessary to describe
the position of each point. However, not every point in 3D space corresponds
to a point on the swiss-roll. The 3D space is referred as the manifold and the
space occupied by the swiss-roll on the manifold is called the embedding.

Image source: Everipedia.org

Figure 5.4: Number of papers published per year before 2021, related to each
of the selected classification algorithms {fn5.1c}, present in the SAO/NASA

Astrophysics Data System.
Top left: k-Nearest neighbors. Top right: Support vector machines.

Bottom left: Gaussian process. Bottom right: Random forests.
Image source: adsabs.harvard.edu (retrieved 12 Apr. 2021)

{fn5.1c}—The search terms used for each algorithm were the following:
kNN→ (keyword:"k-nearest neighbors" OR keyword:"kNN") AND (keyword:"classification" OR key-

word:"classify")
SVM→ (keyword:"support vector machine") AND (keyword:"classification" OR keyword:"classify")
GP→ (keyword:"gaussian processes" OR keyword:"gaussian process") AND (key-

word:"classification" OR keyword:"classify")
RF→ (keyword:"random forests" OR keyword:"random forest" OR keyword:"decision tree en-

semble" OR keyword:"decision tree ensembles") AND (keyword:"classification" OR key-
word:"classify")
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5.1.1 The k-nearest neighbors classifier

The kNN algorithm is based on the assumption that the likelihood of each label varies smoothly
along the feature space, and that the labels of nearby points are a good measure of that likeli-
hood. For a j-th test datapoint,Xn+j , and given an input parameter number k, it performs the
following operations:

1. Find the k training points that are nearest toXn+j in feature space;

2. Y guess
n+j is assigned the same value as most of the k nearest neighbors.

The algorithm is very simple and uses no explicit training or model [178]. The decision bound-
ary in this case is not explicitly defined, but instead arises from the possible label vote results.
The distance metric used for finding the k training points in step 1 and the vote weighting ap-
plied in step 2 for selecting the majority label depend on the chosen implementation. Figure 5.5
shows an example of kNN classification using a Euclidean distance metric and equal weighting
of nearest neighbors, with k = 3, applied on three test datapoints.

Figure 5.5: Example binary classification of three test datapoints (stars) us-
ing a kNN classifier with k = 3 and a 2-dimensional training dataset. In the
leftmost test datapoint, note that even though the closest training datapoint is
from the “blue” class (0), the test datapoint is still classified as belonging to the

“red” class (1) because of the next two closest training datapoints.
Source: [179]

Classification using kNN is typically applied to problems where similar objects need to be
identified, namely recommender systems and concept search. In astronomy and experimen-
tal physics, the use of kNN classifiers is comparatively uncommon (Figure 5.4), but they have
been applied namely to the automatic classification of celestial objects [180], to neutron / γ-ray
discrimination in plastic scintillators [181], solar wind categorization [182], spectral and lumi-
nosity classification of stellar spectra [183] and classification of different cosmic ray primaries
[184].
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The simplicity of the kNN classifier makes it an attractive baseline against which to compare
the performance of other classification algorithms. It was seen to be very good in the test cases
observed in Figure 5.2. Although it is sensitive to noise at low values of k (Figure 5.6), it becomes
robust against noisewith large k and denser data. Although the computational speed of the clas-
sifier decreases with the size of the dataset asO(n) due to the number of distance comparisons
for increasingly large datasets, the current goals do not require that the classifier be particularly
fast, so it is not a significant issue for this work. For these reasons, it was chosen to include the
kNN algorithm in this work. It should be noted, however, that the kNN algorithm also has dis-
advantages relevant to this work. Namely, it loses effectiveness with high-dimensional, sparse
data (curse of dimensionality, see Section 6.1.3), and is easily deceived by irrelevant attributes
of the embedding [174].

Figure 5.6: Simulation of twopopulations separated by kNNwithout the pres-
ence of noise (top panel) and when noise is present, for a small (bottom left
panel) and a large (bottom right panel) value of k. Note that the presence of

noise results in a very chaotic border for the case of small k.
Source: [185]
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5.1.2 The support vector machine classifier with radial basis function kernel

In binary classification problems, support vector machines (SVMs) construct a “flat” decision
boundary separating the two classes, the boundary is positioned in such a way as to maximize
the function margin: the distance between the boundary and the training datapoints that it is
closest to {fn5.1d} (the support vectors, see Figure 5.7). The decision boundary is positioned by
the following:

1. Define a vectorw ∈ Φ and intercept ρ describing a hyperplane;

• The spaceΦ can have the same number of dimensions (dimension-
ality) as the feature spaceχ, but it is common to define Φ as being
higher-dimensional than χ.

• The decision boundary is a hyperplane in the space Φ. In effect, it
may be flat in feature space, but it also may appear curved.

2. Each training datapointXi has a distance to the hyperplane (w, ρ):
the functional margin γ̂w,ρ(Xi, Yi). The function margin of the hy-
perplane, γ̂w,ρ, is defined as γ̂w,ρ ≡ mini {γ̂w,ρ(Xi, Yi)}.

• The functional margin is defined as the value
γ̂w,ρ(Xi, Yi) ≡ (w · φ(Xi) + ρ)× Yi, where φ(Xi) is
some function that performs the mapping φ : χ→ Φ.

3. The decision boundary (ŵ, ρ̂) maximizes γ̂w,ρ relative to ||w||.

Figure 5.7: Illustration of the concepts of function margin, support vectors
and of binary classification using an SVM.One class is depicted as blue squares,
and the other one is depicted as red circles. The resulting decision boundary
is highlighted in magenta, and the gray lines are test hyperplanes that produce
smaller function margins than the obtained decision boundary. The support
vectors are highlighted in magenta, and correspond to the datapoints equidis-

tantly closest to the decision boundary.
Image source: [186]

{fn5.1d}—Excluding (possibly) outliers. The treatment of outliers is discussed in pg. 68.
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SVMs are fast both in training with nontrivial embedding shapes and in testing with high-
dimensional feature spaces. This is due to reformulations that are performed on the maximiza-
tion in step 3. These are explained in detail in [187], but summarily they are achieved in four
stages:

1. The maximization is converted into a convex optimization problem, referred to
as the primal problem:

maximization primal problem

maximize
w, ρ

γ̂w,ρ
||w||

subject to γ̂w,ρ(Xi, Yi) ≥ γ̂w,ρ
i = 1, . . . , n.

⇒
minimize
w, ρ

1

2
||w||2

subject to γ̂w,ρ(Xi, Yi) ≥ 1

i = 1, . . . , n.

(5.1)

(Implying that γ̂w,ρ = 1, but the
parameters can be rescaled with no

losses after optimization)

2. The primal problem is expressed as finding a local minimum in a Lagrangian:

An equivalent Lagrangian L(w, ρ,α), whereα is a vector of Lagrange multipliers
αi ≥ 0, i = 1, . . . , n, is defined:

L(w, ρ,α) = 1
2 ||w||

2 −
n∑
i=1

αi × {Yi × (w · φ(Xi) + ρ)− 1}. (5.2)

The primal problem can then be retrieved as:
min
w,ρ

{ max
α : αi≥0 {L(w, ρ,α)}

}
. (5.3)

3. The Lagrangian primal problem is converted into an equivalent dual problem:

primal problem dual problem
min
w,ρ

{ max
α : αi≥0 {L(w, ρ,α)}

} ⇒ max
α : αi≥0

{
min
w,ρ {L(w, ρ,α)}

}
(5.4)

Solving the primal or the dual problem is equivalent: they yield the same set of
values (ŵ, ρ̂, α̂) as solutions.

4. The dual problem is expressed as an optimization problem in terms of the kernels:

maximize
α

n∑
i=1

αi −
1

2

n∑
ı,ι=1

YıYι × αıαιKı ι

subject to αi ≥ 0

i = 1, . . . , n,

and
∑n
i=0 Yi × αi = 0,

(5.5)

where Kı ι ≡ K(Xı,Xι) ≡ φ(Xı) · φ(Xι) is the kernel, a function with the
mappingK : Φ,Φ→ R.

Solving the dual problem is faster than solving the primal problem for two reasons. First
is the "kernel trick": the use of the inner products of φ(Xi), instead of φ(Xi) directly,
allows calculations on a space Φ of any dimensionality to incur roughly the same compu-
tational cost as calculations on the spaceχ. Second is that, because the solution (ŵ, ρ̂, α̂)
to the optimization problem satisfies the Karush-Kuhn-Tucker conditions [188], the deci-
sion boundary is defined solely in terms of the support vectors.
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If the dimensionality of the spaceΦ is the same as that of the feature spaceχ, then the decision
boundary constructed by the SVM is necessarily hyperplanar. However, if the dimensionality
of Φ is larger than that of χ, then it is possible for the SVM to construct a curved decision
boundary. That is desirable, as it is not expected for the feature embeddings obtained in this
work to be separable by a single hyperplane in feature space (see Section 6.4.3). The dimension-
ality of Φ in the dual optimization problem is set by the kernelKı ι (see Eq. 5.5). One example
of a higher-dimensionality kernel is the radial basis function (RBF):

Kı ι = e−γ||Xı−Xι||2 , (5.6)

where γ > 0 is a shape parameter used for scaling. The RBF returns a value nearer to 1 the
closer together in feature space the points ı and ι are. In practice, RBF is a common choice
of kernel for when there is no prior knowledge of the shape of the embedding of the data,
and as such it is an appropriate initial choice for the given problem. If the shape parameter is
defined as γ = 1/(2σ2), thenKı ι is a Gaussian kernel. The kernel used in this work is similar
to the Gaussian kernel, except the 1/2 factor is replaced for a factor that scales according to
the dimensionality of χ. Figure 5.8 shows an example of a decision boundary generated by a
Gaussian kernel.

Figure 5.8: Curved decision boundary (continuous curve) generated by a
Gaussian kernel SVM. The support vectors are along the dashed curves and
filled in. Note that some points are closer to the decision boundary than the

support vectors themselves.
Source: [189]

Note that the dual optimization problem in Eq. 5.5 is not tolerant to outliers. As seen by the dat-
apoints nearer to the decision boundary than the support vectors themselves in Figure 5.8, this
leaves the classifier susceptible to overfitting. To produce the final form of the SVM algorithm,
a tolerance to outliers, C , is introduced into the dual optimization problem:

maximize
α

n∑
i=1

αi −
1

2

n∑
ı,ι=1

YıYι × αıαιKı ι

subject to 0 ≤ αi ≤ C
i = 1, . . . , n,

and
∑n

i=0 Yi × αi = 0.

(5.7)
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In practice, classification using SVMs is commonly applied to pattern recognition problems,
namely face and speech detection / recognition, or text categorization [175]. In astronomy
and experimental physics, SVM classification has had increased adoption since 2013, to where
it is currently one of the most popular methods (Figure 5.4). It has been used namely for
neutron/γ-ray discrimination in organic liquid scintillator [190], vetoing in gravitational wave
analysis [191], and SVMvariants have been applied to classification of stellar spectra [192] [193].

Favorable characteristics of SVMclassifiers include their good performancewith small or sparse
datasets and in high-dimensional spaces, as well as when generalizing to new samples [175].
Unlike in certain algorithms, namely neural networks, there is no possibility of the training
converging on local minima, because the SVM optimization problem is convex, so the training
is guaranteed to arrive at the optimal solution given the dataset and for the particular chosen
kernel and parameter settings. However the construction of the algorithm also makes it dif-
ficult to train SVMs well. Crucially, SVMs are sensitive to small parameter adjustments, and
the likelihood of the datapoints belonging to either class have to be extracted indirectly via
cross-validation, as they are not provided directly by the classifier [173].

5.1.3 The Gaussian process classifier

The Gaussian process classifier is a Bayesian algorithm that fits to the training data a distribu-
tion of functions representing the possible decision boundaries, one of which is then selected
with a user-defined threshold parameter τ . Like in the SVM algorithm (Section 5.1.2), where
hyperplanes in a space Φ of a higher dimensionality than the feature spaceχwere used to cre-
ate curved decision boundaries with the help of kernels, the Gaussian process classifier applies
Bayesian linear regression to the training data in Φ, which then produces a curved decision
boundary distribution in χ with the help of a mathematical tool called a Gaussian process.

A Gaussian process (GP) is defined as a set of random variables where any finite subset fol-
lows a multivariate Gaussian distribution {fn5.1f}. Similar to how a multivariate Gaussian
distribution is specified for any vector x ∈ Rq by a mean vectorm ∈ Rq and a covariance
matrix Σ ∈ Rq×q:
multivariate
Gaussian → x∼N (m,Σ) → p(x)=

|Σ|−1/2

√
2qπq

exp [−(x−m)TΣ−1(x−m)/2] ,

a GP is specified for any random variable c

c ∈ X (where X is an index set {fn5.1g}) by
a mean function w

( cc) and a covariance function K( cc,

c

c′), typically the Gaussian kernel
K( cc,

c

c′) = exp [−|| cc− c

c′||2/2σ2] (where σ is a length parameter) [194]:
Gaussian
process → GP(

w

( cc),K( cc,

c

c′)). (5.8)

A GP can be used to assign a set of probability distributions to a family of functions
qfp : c

c→ R with function outputs f cc ≡ qfp( cc), where any vector f = [f cc1
. . . f ccV

]T

(with c

c1, . . . ,

c

cV being any V points from the index set X) has a multivariate Gaussian
distribution [195]:f

c

c1

...

f ccV

 ∼ N



w

( cc1)

...

w

( ccV)

,
K11 . . . K1V

...

. . .

...

KV1 . . . KVV


 , Kı ı′ ≡ K( ccı,

c

cı′) (5.9)

To denote this, the following notation is used:

qfp( · ) ∼ GP(

w

( · ),K( · , · )). (5.10)
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The ability of GPs to assign probability distributions over function families makes them a ver-
satile tool for fitting functions to data (an example fit is shown in Fig. 5.9). Unlike the kNN and
SVM algorithms, the trained GP classifier does not perform theχ→ {N,P}mapping directly.
Instead, assigning to the test datapointXn+j a label Y

guess
n+j is divided into three stages:

χ→ R: A trained latent function ϕ̂, obtained with
the n training datapoints, is used to map
Xn+j to a Gaussian-distributed random variable f∗n+j ;

R→ [0, 1]: A sigmoidal squashing function π converts f∗n+j into a
likelihood Ln+j that the datapointXn+j would cor-
respond to an object of the class P, according to ϕ̂;

[0, 1]→ {N,P}: A threshold τ is used for labeling: if Ln+j > τ , then
Y

guess
n+j = P, else Y guess

n+j = N.

Figure 5.9: Function fit to datapoints (blue crosses) using GPs. The 95% confi-
dence band of the GP is highlighted in gray. Note that for each value of input,
x, the GP defines a Gaussian distribution with average w

(x), and so any set
of fit values will follow a multivariate Gaussian distribution. The blue curve

corrseponds to the mean function w

( · ).
Source: [177]

The trained latent function ϕ̂ is the function in the GP that is most likely to have been obtained
by the training dataset DT ≡ (Xi, Yi), i = 1, . . . , n. The most likely function is determined
by a Bayesian regression method:

Given a datapointXi as input, the latent function ϕ outputs a Gaussian-distributed
number fi ≡ ϕ(Xi). The GP is initially assumed to have zero mean, with a Gaus-
sian kernel, so the numbers outputted by the entire training dataset define a vec-
tor f ≡ [f1 . . . fn]T ∼ N (0,K), where K is an n × n covariance matrix, with
Kı ι = exp[−||X ı −Xι||2/2σ2] (with unknown σ) for all values ı, ι = 1, . . . , n. The
vector f can then be used to represent the latent function itself: namely, the es-
timated test latent function output f̂∗n+j is implied by the conditional distribution
f∗n+j |f̂ , where f̂ ≡ [ϕ̂(X1) . . . ϕ̂(Xn)] is the latent function output vector most
likely to have been obtained byDT . Bayesian linear regression is a method that can

{fn5.1f} — For example, the outcomes y of n measurements, y = [y1, . . . , yn], at parameter values
xi , i = 1, . . . , n with added statistical noise εi ∼ N (0, σ2), so yi = f(xi) + εi, will constitute a GP.

{fn5.1g}—An index set is one that indexes another set. For example it can be used to represent the indices of
the training datapoints.
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calculate the estimators for the length parameter, σ̂, and for the latent function vec-
tor, f̂ , without requiring prior information. It is based on Bayes’ theorem:

Consider two arbitrary sets of outcomes a and b, with probabilities of occurring
Pr(a) and Pr(b) (termed marginal probabilities). The conditional probabilities
Pr(a|b) and Pr(b|a) represent the likelihood of a (of b) occurring if b (if a) is
known to have occurred. Then Bayes’ theorem states:

Pr(a|b) =
Pr(b|a)× Pr(a)

Pr(b)
or posterior =

likelihood× prior
marginal likelihood

. (5.11)

Applying Bayes’ theorem to the training dataDT and latent function f yields:

Pr(f |DT ) =
Pr(DT |f)× Pr(f)

Pr(DT )
, (5.12)

where:
Pr(f) is the prior model of f , not accounting for the training dataset DT .

Intuitively, Pr(f) = (2π)−n/2 |K|−1/2 exp[− 1
2f

TK−1f ];
Pr(DT ) is a normalizing constant: Pr(DT ) =

∫
df [Pr(DT |f)×Pr(f)];

Pr(DT |f) is the likelihood: the probability of the datasetDT to have been pro-
duced by the function f . It canwork as ameasure of goodness-of-fit
between the data and the latent function;

Pr(f |DT ) Is the posterior model of f , after accounting forDT .

The estimator f̂ is whichever vector f that maximizes the posterior probability, and
σ̂ is whichever σ value that maximizes the marginal likelihood Pr(DT ), so:

f̂ = arg max
f

{Pr(f |DT )} , σ̂ = arg max
σ

{Pr(DT )} (5.13)

The two estimators are interdependent, so they must be determined in tandem. The
calculation of f̂ is discussed first. The box below details how the left-hand equation
above reduces to:

f̂ = K∇f log
(
Pr(DT |f̂)

)
. (5.14)

The maximum of Pr(f |DT ) is the value of f for which∇fPr(f |DT ) = 0. How-
ever, in these problems the logarithm of the probability is used instead of the prob-
ability itself, because a distribution and its logarithm share the same argmaxes. So:

log(Pr(f |DT )) = log(Pr(DT |f)) + log(Pr(f))− log(Pr(DT )) . (5.15)
Since log(Pr(DT )) is a constant:

∇f log(Pr(f |DT )) = ∇f [log(Pr(DT |f)) + log(Pr(f))] , (5.16)
and so finding the argmax in Eq. 5.13 consists of solving:

∇f log(Pr(DT |f)) = −∇f log(Pr(f)) . (5.17)
The prior distribution of f is multivariate Gaussian, f ∼ N (0,K), so:

log(Pr(f)) = −
[

1
2f

TK−1f + 1
2 log(|K|) + 1

2 log(2π)
]
, (5.18)

meaning that:
∇f log(Pr(f)) = −K−1f . (5.19)

Substituting Eq. 5.19 into Eq. 5.17 results in:
∇f log(Pr(DT |f)) = K−1f , (5.20)

which is then refactored into Eq. 5.14.
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The value of the latent function estimator f̂ is found by solving Eq. 5.14. It can be
solved iteratively by providing an initial guess: for example,f = 0workswell for this
purpose [194]. To solve the equation iteratively, the value of Pr(DT |f) is calculated
on each iteration as:

Pr(DT |f) =
n∏
i=0

π(Yi×fi), (5.21)

as explained in the box below.

Given that each datapoint is independent, Pr(DT |f) is obtained from the individ-
ual datapoints as:

Pr(DT |f) =
n∏
i=0

Pr((Xi, Yi)|fi), (5.22)

where Pr((Xi, Yi)|fi) is the probability that the datapoint/label pair (Xi, Yi)

could have been produced by the latent function fi ≡ ϕ(Xi). Since f relates
to the labels assigned to the datapoints, and not the datapoints themselves:

Pr((Xi, Yi)|fi) ≡ Pr(Yi|Xi, ϕ(Xi)), (5.23)
which is the probability that the latent function would have assigned the correct
label to the i-th training datapoint. If Yi = P = 1, then Pr(Yi|Xi, ϕ(Xi)) is
the probability thatXi would correspond to an object of the class P according to
the current iteration ϕ, which is the same calculation that the squashing function π
performs on the test data during the R→ [0, 1] stage. So:

Pr(P ≡ +1|Xi, ϕ(Xi)) = π(fi) , P r(N ≡ −1|Xi, ϕ(Xi)) = 1− π(fi). (5.24)
As π is a sigmoid function, π(−ξ) = 1− π(ξ), so Eq. 5.21 is obtained.

To obtain the latent function output due to a test datapoint f∗n+j , the distribution
of the posterior model Pr(f |DT ) ∝ Pr(DT |f)Pr(f) must be known. For this
purpose, typically a Laplace approximation is performed: the distribution is assumed
to be Gaussian, with mean and variance given by:

f |DT ∼ N
(
f̂ ,

[
−∇2

f { log (Pr(f |DT ))|
f=f̂

]−1
)
, (5.25)

where the variance can be retrieved by (Section 3.4.1 of [177]):

−∇2
f { log (Pr(f |DT ))|

f=f̂
= K−1−∇2

f { log (Pr(DT |f))|
f=f̂
≡ K−1. (5.26)

It should be noted that, although this is the typical approach {fn5.1h}, it is not ideal.
It is not guaranteed that the true posterior distribution would be actually Gaussian:
it can be significantly broader or narrower than indicated by the variance given by
Laplace approximation, or even be asymmetrical [177]. There is the risk of this ap-
proach yielding poorly-performing latent function estimators, in which case other
methods must be considered, namely expectation propagation (detailed in Section
3.6 of [177]).

The covariance matrix K in Eq. 5.14 is dependant on the length parameter σ, which
is not set prior to regression. Its optimal value, σ̂, should be used. The optimal value
is obtained by solving the right-hand equation in Eq. 5.13:

σ̂ = arg max
σ

{Pr(DT )} = arg max
σ

{∫
df Pr(DT |f)Pr(f)

}
. (5.27)

{fn5.1h} — Namely, it is the approach used in the Gaussian process classifier implementation used in the
scikit-learn package [196], the package employed for binary classification in this work (Section 6.6.2).
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To solve this equation, two manipulations are performed. First, similar to what was
done in Eq. 5.25, a Laplace approximation ofPr(D|f)Pr(f) is used. Second, similar
to what was done in Eq. 5.15, the quantity searched for is the argmax of log(Pr(DT )),
instead of Pr(DT ) directly. The resulting equation is (Section 3.4.4 of [177]):

σ̂ = arg max
σ

{
log
(
Pr(DT |f̂)

)
− 1

2

[
f̂
T
K−1f̂ + log (|K| · |K|)

]}
, (5.28)

where the sameK was used as in the definition in Eq. 5.26. To solve this equation, a
multivariate optimization algorithm is used [194].

Note that finding f̂ requires that σ̂ be known, and σ̂ requires that f̂ be known. The
Gaussian process classifier implementation used in this work (Section 6.6.2) is based
on iterative algorithms from [177], where Eqns. 5.14 and 5.28 are both solved in each
iteration, this procedure repeating until convergence of results.

Once the Bayesian regression method produces the trained latent function ϕ̂, represented by
the posterior function output vector f |DT ∼ N (f̂ ,K) (Figure 5.10, K defined in Eq. 5.26),
the trained latent function can be used to estimate the latent function output f̂∗n+j due to some
test datapoint Xn+j . This is not achieved explicitly by an operation of the form ϕ̂(Xn+j),
however, as the function’s representation in terms of a Gaussian-distributed vector does not
allow for an operation of this kind. Instead, the distribution of f∗n+j |f̂ is calculated, where
f̂ ∼ N (0,K), which can then be used together with the distribution of the squashing function
to yield the likelihood Ln+j ≡ Pr(P|f∗n+j , f̂) thatXn+j would be an object of the class P
given ϕ̂.

Figure 5.10: Illustrations of the prior and posterior GP with a one-
dimensional feature space χ. Left panel: illustration of the GP corresponding
to the prior latent function ϕ, with f ∼ N (0,K). The 95% confidence band
of the GP is highlighted in gray. Three random example functions drawn from
the GP are also shown. Right panel: illustration of the GP corresponding to the
posterior latent function ϕ̂, with f |DT ∼ N (f̂ ,K), obtained from a noiseless
dataset (indicated as black “+” points). The 95% confidence band of the GP is
highlighted in gray. Three random example functions drawn from the GP are

also shown.
Source: [177]
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The distribution f∗n+j |f̂ is typically approximated as a Gaussian withmean and vari-
ance given by:

f∗n+j |f̂ ∼ N
(
KT
∗K−1f̂ , K∗n+j−KT

∗K−1K∗
)
, (5.29)

whereK∗ ≡ [K(Xn+j ,X1) . . . K(Xn+j ,Xn)]T andK∗n+j ≡ K(Xn+j ,Xn+j).
The explanation of this expression is given in the box below:

It is assumed that both the training and the test latent function outputs belong to a
GP. Namely, the prior distribution for both is multivariate Gaussian [194]:[

f
f∗n+j

]
∼ N

([
0
0

]
,

[
K K∗
KT
∗ K∗n+j

])
, (5.30)

which corresponds to the definition of amultivariate Gaussian from aGP in Eq. 5.9.
Section 9.3 of [197] indicates the following identity:

Given
[
u

d

]
∼ N

([
µu

µd

]
,

[
A C
CT B

])
, then:

d|u ∼ N ( µd+CTA−1(u−µu) , B−CTA−1C ) .
(5.31)

Applying this identity to Eq. 5.30 gives the distribution of f∗n+j |f :

f∗n+j |f ∼ N
(
KT
∗K−1f , K∗n+j−KT

∗K
−1K∗

)
. (5.32)

The typical approach for obtaining f∗n+j |f̂ is then to substitute f for f̂ in themean,
and substitute K for K in the variance [177] [194]. This produces Eq. 5.29, but it
should be noted that the mean in Eq. 5.29 no longer conforms to the identity given
above. Nonetheless, the values ofK andK are similar enough for this inconsistency
to not be very significant [194].

In the second stage of the GP classification algorithm, the R → [0, 1] mapping, the likelihood
Ln+j is obtained via a weighted average of the distribution of f∗n+j |f̂ with the outputs of the
squashing function given f∗n+j , π(f∗n+j). The squashing function can be any sigmoidal function
[177], a common choice being the Gaussian cumulative distribution function (cdf ) [194]. So
Ln+j is given as:

Ln+j =

∫
df∗n+j π(f∗n+j)×Pr(f∗n+j |f̂). (5.33)

In practice, GP classification is not a very prevalent method. In astronomy and experimen-
tal physics, GP regression has become increasingly adopted since 2015, however the use of GP
classification has remained rare (Figure 5.11). The fact that its parameters are adjusted algorith-
mically during theχ→ R training stage makes GP classification an attractive "out-of-the-box"
solution, as it can be expected to perform comparatively well even without prior calibration
[176]. The main difficulty in applying GPs to machine learning purposes is that the training
stage becomes very slow for large datasets: the computation time increases with the cube of the
number of datapoints [198].
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Figure 5.11: Number of papers published per year before 2021, related
GP regression (left panel) and GP classification (right panel), present in the

SAO/NASA Astrophysics Data System.
Source: adsabs.harvard.edu (retrieved 12 Apr. 2021)

5.1.4 The random forests classifier

The random forests (RF) classifier is an ensemble method of decision trees. Ensemble methods
assign the same task to several models and combine their results together in order to obtain
a better classification performance (Chapter 50 of [199]). Trained decision trees (DTs) assign a
label Y guess

n+j to a test datapointXn+j according to a sequence of branching decisions based on
feature values. DTs are constructed using training data by algorithmically identifying regions in
feature space that are strongly balanced in favor of one of the classes. An example of a decision
tree is shown in Figure 5.12 {fn5.1i}. DTs on their own suffer from instability: small variations
in the training data can lead to significantly different classifications of the test data [200]. The
RF classifier is an improvement on DTs, with improved stability.

Given an original training dataset D0
T ≡ (Xi, Yi) , i = 1, . . . , n, the RF classifier typically

constructs the decision boundary in the following manner:

1. Construct a set of r bootstrap samplesDboot
T ≡

{
D1
T , . . . ,D r

T

}
;

• Each individual bootstrap sample D k
T , k = 1, . . . , r is con-

structed fromD0
T by sampling n (Xi, Yi) pairs with replacement.

2. Construct r decision trees, Tk, k = 1, . . . , r, by training each one
on a different bootstrap sample (this approach is termed bagging);

3. The class Y guess
n+j assigned to a test datapoint Xn+j is given by an

average of the classes assigned by the r DTs.

{fn5.1i} — The example presented is for discrete feature values, but DTs are also applicable to continuous
features, by assigning decisions to ranges instead of discrete values. For example, the “High” and “Normal” val-
ues of humidity can be defined according to some percentage: “High” for humidity > 85% and “Normal” for
humidity ≤ 85%.
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Figure 5.12: Left panel: Example dataset where the feature space represents
the weather and the labels indicate whether someone played tennis on that day
or not (the “PlayTennis” column). Right panel: A DT constructed on the above
dataset. Note that the subset for the “Overcast” “ Outlook ” was not subdivided
further, as all the “Overcast” entries had the same “PlayTennis” value. Note also
that the “Temperature” does not significantly affect the outcome, and sowas not

included in the DT.
Example source: [201]

Training a DT is typically achieved with a recursive algorithm that splits the training dataset
into subsets based on the feature values, until each dataset is balanced strongly in favor of one
class. Typically the ID3 algorithm is used for this purpose [202]. This algorithm selects the
best decision attribute based on some criterion comparing the randomness in the labels of the
original set against the randomness in the labels of the new subset. To avoid overfitting, some
splits are later removed: a procedure called pruning. For more information, see [203]. Fig-
ure 5.13 shows a comparison between the decision boundary constructed by a single DT and
the decision boundary constructed by a vote of 25 DTs in the case of a problem difficult for DTs:
decision boundaries along the diagonal of two features.

Figure 5.13: Left panel: 2D classification training dataset where the correct
decision boundary (the magenta diagonal line) is not strictly defined on either
of the feature values individually. This type of problem is difficult for DTs due
to the pruning procedure. Right upper panel: Decision boundary constructed
by a single DT. Right lower panel: Decision boundary contructed by a RF with

25 bootstrap samples.
Source: [204]
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In practice, the RF algorithm is considered among the most versatile for classification of tab-
ular data (i.e. where each datapoint is a feature vector, and not raw data, like images, audio or
text), due to its robustness to minor changes in the training set and ease of handling missing
information. RF classification is commonly applied in banking and medicine, namely for fraud
detection and disease identification, respectively. In astronomy and experimental physics, RF
classification has had increased adoption since 2014, and is currently a comparatively popular
method (Figure 5.4). It has been used namely for classifying stellar spectra [205], galaxy and
supernova classification [206] and quasar discrimination [207], background discrimination on
the TACTIC TeV γ-ray telescope [208], and particle identification in the ALICE experiment
[209]. The main drawback of RF classification is the difficulty in interpreting the obtained re-
sults.

5.2 Performance assessment of a binary classifier
This section serves as a brief introduction to the tools and approach for performance assessment
of a binary classifier used in this work. For a more in-depth explanation of the implementation,
see Sections 6.6.3 and 6.6.4.

When a classifier is given a binary test set pair (Yk ∈ {N,P} , k ∈ 1, . . . , n + m), for an
object j from the test set with true label Y actual

n+j , the classifier guesses a label Y guess
n+j . There are

four possible outcomes for the classification of the object:

• Y guess
n+j = N = Y actual

n+j , a true negative, TN;

• Y guess
n+j = P = Y actual

n+j , a true positive, TP;

• Y guess
n+j = N 6= Y actual

n+j , a false negative, FN;

• Y guess
n+j = P 6= Y actual

n+j , a false positive, FP.

For the entire test set, the total number of instances of each outcome are referred to as TN ,
TP , FN and FP , respectively. From these numbers of instances, four performance parameters
can be calculated:

• True negative rate, tn, defined as tn ≡ TN
TN+FP ;

• True positive rate, tp, defined as tp ≡ TP
TP+FN ;

• False negative rate, fn, defined as fn ≡ FN
TP+FN ;

• False positive rate, fp, defined as fp ≡ FP
TN+FP .

These performance parameters can be arranged in a confusion matrix as per Table 5.2. Note that
tn = 1 − fp and fn = 1− tp, so only two performance parameters will be used in this work.
Sets of fp and tp values from different classifier samples will be organized in variousmanners to
produce a more general picture of the classifier performance than is possible with just a single
confusion matrix.
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guess label
actual tn fp 1e
label fn tp 0νββ

1e 0νββ

Table 5.2: The performance parameters organized into a confusion matrix.
When the guess label coincides with the actual label, the output is a “true” out-

come, else it is a false outcome.

Summarily, the performance assessment tests must clearly display two aspects: howwell a clas-
sifier is expected to work, namely in deployment; and the evolution of the performance with
sample size. Section 5.2.1 describes these aspects in detail. Unfortunately there is no single test
that expresses them both in an easily readable manner, and different tests will be better suited
for different applications. So to draw a complete picture of the classifier performance, this work
primarily uses three methods:

• Convergence tests;
– This test serves to compare the behavior of the performance param-

eters of different classifier configurations for increasing sample size;

• Receiver operating characteristic (ROC) curves;
– Serve to assess a classifier’s performance in absolute terms;

• Cost curves.
– Effective for comparing the performance of different classifiers dur-

ing deployment.

The fundamentals of each test are described in Sections 5.2.2-5.2.4. For more practical infor-
mation, see Section 6.6.

5.2.1 Aspects to consider during assessment

A classifier that performs well for one usage is not guaranteed to perform well for others. For
example, a classifier trained with a dataset balanced in favor of one class may then underper-
form when given a test dataset with the opposite balancing. Or even a trained classifier that
performs well on the test data may then underperform with deployment data. These are two
examples of the performance being affected by the balancing of the dataset. Considering that
this work focuses on seeing a previously undetected rare event, the balancing is not known
exactly, making it especially important to predict the classifier’s performance for a balancing
other than that of the train / test data. The balancing will be quantified with Pr(P) ∈ [0, 1],
representing the proportion of the deployment data that is P [210].

But even if the balancing remains the same between different applications, a classifier can still
be appropriate in one context but unacceptable in another. The two different types of misclas-
sification, FP and FN, can incur different penalties depending on the context. For example in
a cancer study an overzealous diagnosis (FP) is inconvenient but a failure to detect (FN) is fa-
tal, while in this work a false discovery (FP) would be worse than failing to detect 0νββ (FN).
The study of imbalanced binary classification includes methods for cost-sensitive learning (CSL)
[211], which introduce the concept of different misclassification costs for FP and FN: Co(FP)
and Co(FN). The misclassification cost is a relative unitless measure of the penalty incurred
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by the two types of misclassification, a higher cost given to the worse type. In CSL, the goal is
to construct a binary classifier that minimizes the total cost, Co, defined as:

Co ≡ Co(FN)× FN + Co(FP)× FP. (5.34)

The ideal values ofCo(FP) andCo(FN) for this work depend on the statistical model (Section
4.2) and their calculation is left for future work, but it is assumed that Co(FP) > Co(FN).
With cost imbalance, a higher priority will be put on minimizing FP than on maximizing TP .

Finally, given two identically distributed training / test pairs, their outputted performance pa-
rameters will likely differ due to statistical fluctuations: at some sample size, they will be on a
distributionwith somemean andwidth. As the sample size increases, the distributionwill likely
narrow as the mean converges on some asymptotically best performance (Figure 5.14). If this
does not happen (Figures 5.15 and 5.16), it can be because the dataset is too sparse to construct
an accurate decision boundary, or because some datapoints are very far away from all the others
in feature space, or it can be an indication of overfitting. If a classifier algorithm consistently
behaves in a more predictable manner than another one, it can be a reason to prefer it over the
unpredictable one. Given an ensemble of training / test sample pairs of a given sample size, the
statistics of its performance parameters serve as an estimate of the actual performance distri-
bution for that sample size. Depending on the method used for splitting the data into test and
training sets, the estimate will have a larger variance or bias relative to the actual distribution
(the bias-variance tradeoff), so the approach must be chosen according to the intended goal (see
Section 6.6).

Figure 5.14: An example of a classifier whose performance parameters dis-
play good behavior (for the meaning of b2b_GP_sans_MDS , see Sections 6.4.3
and 6.6.1). The “error bars” here are in fact standard deviation estimates: the
real error bars are

√
10 times narrower. Both performance parameters con-

verge for increasing sample size, with fp lowering as tp does the opposite, the
performance distribution consistently narrowing as this happens.
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Figure 5.15: An example of a classifier whose performance parameters display
bad behavior (for the meaning of ISO_RF_N_1_0_MDS , see Sections 6.4.3 and
6.6.3). The “error bars” here are in fact standard deviation estimates: the real
error bars are

√
10 times narrower. The variance of both parameters decreases

with sample size, but fp is increasing, clearly indicating that the classifier is
failing to identify the shape of the class embeddings.

Figure 5.16: An example of a classifier whose performance parameters display
erratic behavior (for the meaning of ISO_RF_N_1_0_MDS , see Sections 6.4.3 and
6.6.3). The “error bars” here are in fact standard deviation estimates: the real
error bars are

√
10 times narrower. The parameters do not converge and in-

stead just vary chaotically.
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5.2.2 Convergence test

In a convergence test, the performance parameters are gauged over varying sample sizes for a
given training / test pair {fn5.2j}: for each sample size, an ensemble of some number of sam-
ples is obtained, and as the sample size increases, the parameter variance estimate is expected
to diminish as the parameter averages converge on two asymptotes. This test assesses both the
classifier’s performance and its reliability: the performance of some classifier can be very con-
sistent (see Figure 5.14) or vary erratically (see Figure 5.16) depending on the training and test
sets, and it is preferable that it be consistent. Considering the number of different configurations
that had to be compared in this work {fn5.2k}, when some classifier misbehaved ultimately lit-
tle attention was paid to understanding why that happened, opting instead for merely selecting
the best-behaving ones out of the large available pool.

5.2.3 Receiver Operating Characteristic curves

The ROC curve is a popular performance test that plots the tp values obtained by a classifier at
varying likelihood thresholds for positive classification, τ ∈ [0, 1], against the corresponding
fp values (see Figure 5.17). A classifier’s decision boundary can be shifted by changing τ : a low
value yields a high rate of positive classifications, so both high fp and tp. As τ increases, fp and
tp both decrease. But one of the two performance parameters will decrease faster than the other
one, and the lower the ratio fp/tp is as τ increases, the better the performance of the classifier.
As such, the ROC curve expresses explicitly the range of perfomance that is expected to be
achievable so the options are to either adjust τ for some more appropriate pair of performance
parameters given the dataset, or to just opt for another classifier entirely.

Figure 5.17: a) Two ROC curves for different classifiers. The convex hull of
the orange classifier contains the entirety of the blue classifier, so the orange
classifier is better than the blue one [212] b) Description of different regions in
ROC space. The worst is for tp = fp, where the classification is random. On

either side of this diagonal, the quality of the classifier improves.
Source: [212]

Using the convex hull of the ROC curve allows to quantify the performance in absolute terms
with a single measure: the area under the curve (AUC) [213]. The ratio fp/tp for some clas-
sifiers will naturally be smaller than for others, resulting in convex hulls that are consistently
further away from the tp = fp diagonal line (as is the case when comparing the orange and blue

{fn5.2j}—In this work, a samplingmethod was chosen that would prevent nuisance parameters from affecting
the performance as the sample size changed. More information in Section 6.6.3.

{fn5.2k} — 24 configurations, half of which imply 5 convergence tests instead of just one, all for 2 different
situations. In total 144 different convergence tests were performed. See Section 6.6.1 for more details.
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classifiers in Figure 5.17 panel a) ). So the larger the value of the AUC, the better the classifier
will be in absolute terms, provided that the curves do not intersect. A lower AUC for some
classifier compared to another one is generally indication that in no case does it ever perform
better {fn5.2l}.

However if the curves do intersect, then this simple analysis with the AUC is no longer accurate:
for some τ range one of the classifiers is preferable, else it’s the other one. In this case the choice
of classifier has to be based on the balancing and costs in deployment. For this purpose the ROC
curve is somewhat capable— it is possible, but unintuitive, to make a cost-sensitive assessment
by manipulating the data in the ROC curve according to techniques shown in [210] — but a
better tool exists: cost curves.

5.2.4 Cost curves

The cost curve plots the likelymisclassification cost incurred by a classifier against the balancing
of the data, so it can be used tomake a cost-sensitive comparison of the performance of different
classifiers in deployment [210]. It is easy to construct using the ROC datapoints and is good for
selecting the best classifier out of an assortment, but not so good for representing the classifier
performance in absolute terms.

The vertical axis is the normalized expected total misclassification cost E[Co] ∈ [0, 1], given
as:

E[Co] =
ε[Co]

max fn,fp {ε[Co]}
, (5.35)

where the unnormalized expected total misclassification cost ε[Co] is built usingCo from Sec-
tion 5.2.1 as a basis:

ε[Co] = Co(FN)× fn× Pr(P) + Co(FP)× fp× (1− Pr(P)) (5.36)

The test was designed so that a single curve would show the performance for any
Co(FP)/Co(FN) ratio, so the horizontal axis is defined as:

PC(P) = Pr(P)× Co(FN)

max fn,fp {ε[Co]}
. (5.37)

PC(P) ∈ [0, 1] is termed the probability cost, and max fn,fp {ε[Co]} is calculated by plugging
fp = tp = 1 into ε[Co]. When PC(P) = 0 we get E[Co] = fp, and when PC(P) = 1 we get
E[Co] = fn = 1− tp so, considering that E[Co] is linear along PC(P) {fn5.2m}, each point
on the ROC curve will correspond to a straight line on the probability cost space . Assuming
that the best possible τ is selected at each PC(P), the cost curve of the classifier is the lower
envelope of all the straight lines (blue curve in Figure 5.18 panel b) ).

Given that the misclassification cost is an ”ad-hoc” unitless measure, the cost curve is not very
useful for performance assessment in absolute terms, but it is much better than the ROC curve
for comparisons. In Figure 5.18 panel b), the two red diagonal lines represent the expected cost
when not using any classifier at all: the E[Co] = PC(P) line corresponds to labelling all test
datapoints as N; and the other line is for the opposite. If the classifier gives a lower E[Co]
for some operating point (i.e. some PC(P) value), then at that operating point the classifier is
better than nothing by some undetermined amount. This can be extended to comparing two

{fn5.2l}— Section 6.6.4 has a more in-depth explanation of how to interpret the value of the AUC.
{fn5.2m}— 1 − PC(P) = Co(FP)(1 − Pr(P))/max fn,fp {ε[Co]}, so E[Co] can be expressed in terms of

PC(P) asE[Co] = PC(P)× fn + (1− PC(P))× fp.
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Figure 5.18: An example ROC curve ( a) ) being transferred into cost curve
space ( b) ). Each point in the ROC curve corresponds to a straight line in the
cost curve space, as exemplified by the purple point in a) being transferred to b).
The cost curve itself is highlighted in blue, constructed out of the cost minima
at each value of PC(P). Note that the bottom red triangle in b) represents
the cost curve of a classifier that accepts or rejects all events, meaning that the
classifier in this case is no better than no classifier at all when the datasets are

strongly imbalanced in favor of the N class.
Source: [210]

classifiers: if some classifier has a lower E[Co] than another one for some set of operating
points, then it is better than the other one for that range, also by an undetermined amount.
SincePC(P) relates explicitly tomisclassification costs and to the balancing of datasets, the cost
curve can be used to choose which classifier is better for some usage. With some rough guess of
Co(FP), Co(FP)/Co(FN) and PC(P), a region of interest on the cost curve can be chosen:
for example, for analyzing the data in this work (Section 7.2), it is taken to be PC(P) < 0.5.
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Chapter 6

Description of the Simulation and
Classification Procedure

The work summarized in this chapter consists of testing how well varying configurations of
the kNN, SVM, GP and RF binary classifiers (see Section 5.1) perform at discriminating the
waveforms produced in LZ by neutrinoless double beta decay, 0νββ, events (see Sections 3.1
and 4.1) from the waveforms produced by the undesired single electron (1e) LZ background
events with similar energy (see Section 4.2). Since there is no reference experimental 0νββ data
for LZ, all the training data had to be simulated first. Developing an accurate but sufficiently
fast simulator of 0νββ and 1e data and subsequently implementing it was by far the most time-
consuming part of this work. Different processing approaches were then attempted on the
resulting datasets, the best approach selected through comparative methods and then the best
possible performance was assessed quantitatively.

The chapter is structured in the following way:
1. Section 6.1 serves to explain the challenges that led to the adoption of the decided-upon

simulation and classification procedure;
2. Section 6.2 gives an overview of the structure of the procedure, explaining the design

philosophy and describing the purpose of each step;
3. Sections 6.3 - 6.6 detail the implementation of each step of the procedure in sequence.

6.1 Preliminary considerations
Designing the simulation and classification procedure requires at least a rough prior sense of
the capability of the LZ detector to discriminate event topology in the produced waveforms:
the base simulation approach (Section 6.1.1) must be compatible with the quality of information
that the waveform can provide. The most critical concerns in this regard are the following:

Topology discrimination
• Topology is blurred due to longitudinal and transverse diffusion (Figure 4.6). In preliminary
testing, it was determined that longitudinal diffusion blurred out all recognizable detail in
the topology of the electron depositions beyond a relatively shallow depth of∼400-500 mm.
(Figures 6.1 and 6.2 show the progression of the blurring at different depths);

• The gate grid funnels the drift electrons into horizontal bands 5 mm apart (Figure 4.6). This
drastically reduces the efficiency of transverse topology discrimination.

Dataset optimization
• The optimal representation of the dataset for the classifier must be used (Section 6.1.2);

• The dataset must be kept from becoming sparse due to high dimensionality (Section 6.1.3).
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Figure 6.1: Example waveforms outputted by the PMT arrays for the pictured
0νββ secondary electron deposition (left) when emitted at increasing depths d
below the gas gap. The thicker line is the pulse outputted by the PMT directly
above the event, and the thin lines are due to other PMTs in the array. The z

axis in the left image is along the horizontal direction.

Figure 6.2: Example waveforms outputted by the PMT array for the 1e sec-
ondary electron deposition (left) when emitted at increasing depths d below
the gas gap. The thicker line is the pulse outputted by the PMT directly above
the event, and the thin lines are due to other PMTs in the array. The z axis in

the left image is along the horizontal direction.
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6.1.1 Base simulation and classification approach

The base approach was to begin with simpler, more optimistic scenarios and progress to more
complex and realistic ones. Given this approach, the current form of the classification pro-
cedure does not compare the pulse outputs from different PMT channels, opting instead for
summing all the PMT outputs together resulting in a 1-dimensional waveform rather than a
2-dimensional one.

The simulation was performed with more favorable datasets first, and adverse contributions
would then be added iteratively until the simulation either completely recreated the real-life
scenario, or the classifier performed too poorly to continue. This approach would then give
insight into the most crucial factors hindering performance. The full scenario plan is listed in
Table 6.1, but it was determined that simulations beyond the ISO scenario were not necessary
for the current form of the classification procedure, as the performance assessment concluded
that in deployment the addition of the classifier as a background rejection cut would neither
improve nor worsen hypothesis testing counting statistics (see Section 7.3), so only the b2b and
ISO scenarios were simulated.

Scenario number 1 2 3 4 5 6
Scenario name b2b ISO DEC0 GRID MAT SAT

ASPECTS OF SIMULATION Settings
1. Realistic primary energy distribution No No Yes Yes Yes Yes
2. Isotropic primaries No Yes Yes Yes Yes Yes
3. Realistic energy deposition into LXe No Yes Yes Yes Yes Yes
4. Electron drift Yes Yes Yes Yes Yes Yes
5. Diffusion Yes Yes Yes Yes Yes Yes
6. Grid field distortion No No No Yes Yes Yes
7. Realistic gas gap No No No No Yes Yes
8. Electrophoton trajectories Yes Yes Yes Yes Yes Yes
9. Realistic detector size No No No No Yes Yes
10. Realistic detector materials No No No No Yes Yes
11. PMT array saturation No No No No No Yes

SUMMARY
b2b best case scenario, initial primary direction always vertical
ISO isotropic initial primaries, equal energy 0νββ primaries

DEC0 0νββ primaries have realistic energy
GRID gate grid distorts electric field
MAT PTFE walls, detector dimensions correspond to LZ ones
SAT PMTs saturate for high luminescence

Table 6.1: Full scenario plan. In this work, the scenarios are employed in se-
quence, beginning from the smallest scenario numbers.

Furthermore, time constraints, together with the very slow simulation time (Section 6.3.3),
meant that at most the events would have to be simulated only in a small number of xy, z
positions. It was decided that the best use of the available resources was to generate all the
events at radius ρ2 = 0 and depth d = 0.1× dmax = 145.6 mm below the gas gap (see Section
4.1). At this depth the diffusion already blurs near-horizontal events enough for discrimination
to be difficult, but not enough to render it impossible for near-vertical events. This choice has
benefits and drawbacks, listed on the next page. It was decided that the benefits of this choice
outweigh the drawbacks, as those can be compensated for to a certain degree, while the draw-
backs of the alternative would mean that little information could be confidently gleaned from
this work.
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Benefits
Allows for a detailed analysis of the classifier behavior at that depth

Improved statistics give a better sense of the region in feature space corresponding to
each class (see Section 5.1), and so it becomes easier to understand which subspaces
are more critical for the classifier performance.

A larger dataset results in a better training of the classifier
The average classifier performance improves as the dataset becomes larger. This
means that using small datasets for several depths would result in an underestima-
tion of the classifier’s performance. A large dataset at one position makes it clearer
how to interpret the performance results.

Drawbacks
Cannot model the dependence of the performance on the event position

Due to the diffusion and gate grid funnelling, it can be assumed that the waveform
will not vary significantlywith thexy position of the event relative to the PMT array,
it is still detrimental that this effect is not quantified. Regarding the variation of the
classifier performance with depth, intuitively an event closer to the gas gap will be
easier to discriminate than one further away, but again it cannot be quantified.

Does not allow to calculate the depth beyond which the classifier is detri-
mental to the background rejection cuts

Beyond a certain depth the classifier performance will degrade to where it becomes
an additional counting error source, however the lack of amodel of the performance
variation with position means that the depth at which this happens is unknown.

6.1.2 Mapping from parameter space to feature space

As described in Chapter 5, each waveform is converted into a point in parameter space, and a
deployed classifier will instead take as input a point in feature space. These spaces are different.
The aim of parameterization is to be as descriptive as possible about the shape of the waveform
using a numerical representation of its characteristics, but many of the extracted parameters
will either not be decisive for the classification, or will not be in the ideal representation for
the classifier {fn6.1e}. The distinction between parameter space and feature space serves to
remove the non-decisive characteristics of the waveform and to optimize the representation of
the decisive ones.

6.1.3 Curse of dimensionality

Another concern relates to the number of dimensions (the dimensionality) of the feature space.
To construct an accurate decision boundary, the classifier must be given a space where the class
datasets produce dense clusters of datapoints. Without this, it becomes difficult to discernwhich
datapoints belong to a trend and which ones are outliers. A consequence of increasing the di-
mensionality of a dataset is that it becomes sparser— the so-called curse of dimensionality (Fig-
ure 6.3) — which would imply that great care must be taken to choose only uncorrelated fea-
tures, so as to not compromise the discriminability of the class distributions. This would make
feature choice a very laborious process. However there is an alternative — employed in this
work — which is to liberally add dimensions to feature space when analysing the waveforms,
and then apply a dimensionality reduction step to the dataset after the fact, thus recovering

{fn6.1e}— A simple example of this can be seen in Figure 5.13. Decision trees notoriously underperform for
diagonal decision boundaries (Figure 5.13 Panel b) ), however by subtracting the two axes one can obtain a decision
boundary with which the algorithm works much better.
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the density of datapoints. This option seemed ideal, as it allowed for greater versatility when
adding new features without the risk of compromising the classifier performance.

Figure 6.3: 1000 datapoints on a bivariate Gaussian distribution, along with
the observed distributions of the datapoints when projected along x and y.
Selecting a region with only 6% of the datapoints in the dataset, its projections

along a single variable both include over 30% of the datapoints.
Image source: [214]

6.2 Structure of simulation and classification procedure
Taking in consideration the comments in Section 6.1, Figure 6.4 shows a schematic of the cho-
sen simulation and classification procedure, consisting of several steps divided into four stages.
Since many of the components were expected to be subject to frequent changes, the procedure
was designed to be modular and easily expandable, with placeholders set for functionality to
be included in future work. Every depicted step directly uses the data obtained on the previous
one. A summary of each stage follows. The next Sections describe each stage in detail.

The first stage (simulation, Section 6.3) takes as input the settings corresponding to a chosen
scenario (Table 6.1), and produces a set of 0νββ and 1e waveforms generated by a simulation
of the TPC. For each 0νββ or 1e event, the trajectory and energy deposition of the primary
electrons in liquid xenon (LXe) is simulated, and the energy deposition is converted into the
release of secondary electrons (Section 6.3.1). The x,y,z positions of the secondary electrons
are then taken as input when simulating their drift up the TPC and diffusion, and then elec-
troluminescence and S2 photon transport are simulated. As the S2 photons incide on the PMT
array, the waveform is simulated, each PMT having its own channel (Section 6.3.2). Because the
simulation is very resource-intensive (Section 6.3.3), it was run both locally and on remote ma-
chines (Section 6.3.4). The output of this stage is a set of 0νββ and 1e waveforms conforming
to a certain scenario.

The second stage (data extraction, Section 6.4) takes as input the set of 0νββ and 1e wave-
forms, and converts them into points in feature space. The PMT channels are joined together
(as discussed in Section 6.1) and the resulting 1-dimensional signal is subjected to some basic
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Figure 6.4: Schematic of the implemented procedure. The four stages corre-
spond to the four colored rectangles. The first stage required the use of dis-
tributed computing, as indicated by the turquoise rectangle. The small off-
white rectangles represent the steps in each stage, and the stage subtitles indi-
cate the main software used. The arrows indicate the transfer of data between
parts or stages, and the arrow subtitles indicate the form the data takes at the

given point in the procedure.

preprocessing to aid in parameterization (Section 6.4.1). A parameterization step is then per-
formed (Section 6.4.2), and before converting the signals from parameter space into feature
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space (feature extraction, Section 6.4.4), there was an optional step where the dataset was broken
up into categories subsets based on the signal morphology (categorization, Section 6.4.3). The
output of this stage is two sets of 0νββ and 1e positions in feature space, one with categorized
data, and one with uncategorized data.

The third stage (data optimization, Section 6.5) takes as input the sets of 0νββ and 1e posi-
tions in feature space and finds the most optimal representation for the manifold embeddings
(see Figure 5.3) corresponding to the datasets. It consists of a dimensionality reduction step
(Section 6.5.3) preceded by two preparation steps: a preprocessing step where the dataset is
adjusted to best work with the dimensionality reduction method (Section 6.5.1); and a feature
selection step, in which irrelevant features are removed (Section 6.5.2). For each input posi-
tion set, this stage outputs three datasets, representing the embedding following preprocessing,
feature selection and dimensionality reduction.

The final stage (classification / performance assessment, Section 6.6) takes as input the
datasets produced by all the preceding stages and outputs the best obtained performance mea-
sure. It gives each dataset as input to the four selected classification algorithms (procedure de-
scribed in detail in Section 5.1, practical implementation in Section 6.6.2). The result is that the
waveform sets obtained in the first stage can be processed by the defined procedure in 24 differ-
ent ways, referred to in this work as configurations (Section 6.6.1). The best-performing config-
uration is then selected using a comparative performance assessment (Section 6.6.3), and then
the result of the quantitative performance assessment (Section 6.6.4) of the best-performing
configuration is given as output of the final stage.

6.3 Simulation
The simulation stage of the procedure for the two tested scenarios consists of the steps listed
in the box below:

Step 1. Geant4 simulation of energy deposition in LXe for 0νββ and 1e events with
Q = 2.458 MeV. Different for each scenario (Section 6.3.1):
b2b: Only vertical events, with Q/2 energy 0νββ primary electrons (pgs. 92 - 94);

ISO: Isotropic events, same energy on both 0νββ primary electrons (pg. 95).

Step 2. Conversion of energy deposition into drift electrons. Different for each sce-
nario (Section 6.3.1):
b2b: Coarse parameterization using experimental data (pgs. 94 - 95);

ISO: Drift electron production model as in the LZ experiment (pgs. 95 - 97).

Step 3. Setting event position: depth (d = 145.6 mm) and radius (r = 0 mm);

Step 4. Electron drift diffusion up to LXe surface (Section 6.3.2, pgs. 101 - 103);

Step 5. Electroluminescence and PMT array signal (Section 6.3.2, pgs. 103 - 104).

Section 6.3.3 describes the computational performance and baked-in limitations of the simula-
tions. Section 6.3.4 describes the implementation of the simulation procedure for distributed
computing and shows the final tally of simulations.
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6.3.1 0νββ and 1e deposition in LXe

This subsection corresponds to Steps 1 and 2 from the previous box.

This part of the procedure was the only one that was approached very differently for the two
studied scenarios. The procedures are described below in the sequence in which they were
implemented. For each event, the final output of these two implementations was a text file
containing a list of positions, and the number of drift electrons corresponding to that position.
Two example excerpts (start and end) of a deposition file are presented in [215]. This output
represents a track of point origins of large clusters of drift electrons (sometimes reaching into
the thousands), not accounting for the spatial distribution of released electrons around each
recoil site. However, diffusion very quickly washes out the initial positions, meaning that the
expected effect on the produced waveforms is negligible. Additionally, these two implementa-
tions do not account for statistical fluctuation in the electron yields per energy loss: it is slated
for future work.

Step 1: b2b scenario implementation

Simulation physics list: selection and validation

The 0νββ and 1e event primary electron tracks and energy depositions were simulated with
Geant4 version 10.4, using the FTFP_BERT_PEN physics list (the default high-energy hadronic in-
teraction physics list for this version [216]), together with the Penelope e± and photon electro-
magnetic models {fn6.3a}. Penelope is implemented according to the PENELOPE-2008 code sys-
tem [217] [218]. The Geant4 implementation of Penelope includesmodels for ionization, photo-
electric effect and bremsstrahlung, Compton scattering, Rayleigh scattering, inelastic scattering,
pair production, and positron annihilation.

The PENELOPE-2008 code system yields a description of electron transport for energies from
100 eV to 6GeV that is in strong agreement with experimental data [219]. The elastic and
multiple scattering model used in Geant4 for electrons of energy >10 eV is based on [220],
an improvement on the Penelope code. Although Geant4 multiple scattering simulations are
shown to not agree with experimental data in backscattering experiments [221] [222], for cases
of electron transport inside a single medium they are seen to output fairly accurate spatial
distributions and depth dose profiles when given a sufficiently small maximum Geant4 step
size [223] [220], and hence are expected to be sufficiently faithful to experimental data for the
purposes of this work.

Table 6.2 displays the relative frequency of the different processes accounted by the Geant4 sim-
ulations, showing that for about three quarters of the event, Penelope is controlling the electron
transport. Figure 6.5 displays the energy loss spectra for the different processes for 500 1e and
500 0νββ events together {fn6.3b}, showing that ionization processes transfer about 2 orders
of magnitude more energy into electron recoil (ER) than does multiple scattering, meaning that
the expected effect on the produced waveforms is negligible. The chosenmaximum Geant4 step
size was 0.01 mm {fn6.3c}

{fn6.3a}—These 0νββ simulations were performed prior to this work, by Cedric Pereira.
{fn6.3b}—This was done because the spectra are seen to not be significantly different. The spectra for 500 1e

events and 500 0νββ events individually are displayed in [224]
{fn6.3c} — Prior to this work, Geant4 tests were performed by Cedric Pereira using Option 3 (default), Liv-

ermore and Penelope EM models for maximum step sizes 0.05 mm, 0.03 mm, and 0.01 mm. 105 b2b 0νββ events
were simulated for all different configurations of model and step size, determining their energy deposition profile
along z. This showed that any of the maximum Geant4 step sizes outputted consistent results when using either the
Penelope the Livermore EMmodel, but not Option 3.
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Average StandardProcess Proportion Deviation Model

Ionization 74.30% 74.10% 0.89% 0.79% Penelope
Multiple Scattering 24.67% 24.75% 0.66% 0.48% Geant4
Photoelectric Effect 0.68% 0.75% 0.37% 0.40% Penelope

Bremsstrahlung 0.30% 0.32% 0.25% 0.28% Penelope
Compton Scattering 0.02% 0.05% 0.05% 0.11% Penelope
Rayleigh Scattering 0.03% 0.03% 0.06% 0.06% Penelope

0νββ 1e 0νββ 1e

Table 6.2: Average relative frequencies {fn6.3d} of the different EM processes,
as well as their corresponding standard deviations, calculated for a sample of
1300 1e depositions and 1000 0νββ depositions. Of note are the small values
of the standard deviation, indicating that these relative frequencies are quite

consistent.

Figure 6.5: Spectrum of the energy loss from the primary electron that goes
into ER.Of note is that not all of the energy lost by the primary necessarily goes
into recoil. For example an ionization process will often lead to a child primary
electron track. In these cases, part of the energy goes into ER, and part of the
energy becomes the kinetic energy of the child electron. Rayleigh scattering is

not displayed in this Figure because it doesn’t transfer recoil energy.

Event simulation: sensitive volume definition, primary electron emission

The simulations were performed by emitting the primary electrons from the center of a cube of
width 100 cm,made of thematerial G4_lXe, defined as liquid xenonwith density 2.953 g/cm3 [225],
and natural isotope composition [226] defined according to theNIST atomicweight and isotope
composition database [227]. Since the applied drift field Edrift of 31.0 V/mm (see Table 4.1) re-
sults in a mere 0.12 keV ≈ 5×10−5Qββ energy increase across a 4mm vertical track {fn6.3e},
it was seen as an insignificant contribution to the topology, and hence the electric field was not
considered in the simulation.

{fn6.3d} — Relative frequencies by number of processes, not by energy loss. If it were by energy loss, the
multiple scattering relative frequency would have been vanishingly small.

{fn6.3e}—The expected length of a 0νββ track.
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For each 0νββ event, two primary electrons with energy 1.224 MeV were emitted simultane-
ously, one directly upward (along the z direction) and one directly downward. For 1e events,
one primary electron with energy 2.448 MeV was emitted directly downward. Later during
data extraction approximately half of the 1e dataset, selected at random, was mirrored verti-
cally (Section 6.4.1).

Each event returned the x,y,z position of the primary (and bremsstrahlung child primaries) at the end of
each Geant4 step, and the incident energy 3and energy loss to ER, d 3, during that Geant4 step.

Step 2: b2b scenario implementation

The energy loss to ER was converted into integer numbers of drift electrons per position using
the ionization yield data from [228] as reference. Figure 6.6 shows the result of the parameteri-
zation used to recreate the results from the article. The parameterization is shown in [229]. The
left panel of Figure 6.7 shows example topologies for 1e and 0νββ due to this implementation,
and the right panel of Figure 6.7 shows statistics for the total number of S2 electrons produced
per event of each class.

Figure 6.6: Comparison of experimental data for the ionization yield of LXe
for electron recoils (left panel) with the electron yield model used in the b2b

scenario, following a parameterization of [228] (right panel).
Left panel source: [228]

Figure 6.7: Left panel: Example 0νββ and 1e topologies generated using the
b2b scenario implementation. Right panel: Statistics for the total number of

drift electrons produced per event of each class for the b2b scenario.
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Goals of the ISO scenario implementation

• Emit primary electrons isotropically;

• Implement drift electron production model used in the LZ experiment;

• Migrate the deposition step of the procedure into the same software as the
rest of the simulation for improved portability.

Step 1: ISO scenario implementation

The simulation of the physics after deposition, namely drift diffusion, electroluminescence and
waveform production, was performed on the ANTS2 simulation and data processing package [4]
(see Section 6.3.2). While in the b2b scenario the energy deposition information from Geant4
was stored in files and loaded into ANTS2, for the ISO scenario ANTS2 was interfaced directly
with Geant4 using the G4Ants package [230]. This way the depositions were generated using
Geant4member functions, but they acted upon ANTS2-defined materials and geometry, and the
deposition information was immediately available in ANTS2 in each event.

Chosen physics list

The Geant4 version was 10.5, and the used physics list was the one available to ANTS2 function-
ally equivalent to the one used for the b2b implementation: QGSP_BERT_PEN, which also uses the
Penelope model for electromagnetic interactions The FTFP, QGSP and BERT components of the
physics lists relate to different hadronic physics models [231], pertinent to energies in the GeV
range, and hence the choice of QGSP_BERT over FTFP_BERT does not affect the results of this work
in a significant manner, asQββ is too low to be affected.

Event simulation: sensitive volume definition, primary electron emission

The target was a LXe cylinder of height 450 mm and a diameter of 500 mm, with the LXe ma-
terial defined as in Section 6.3.2. The 1e and 0νββ primaries were emitted isotropically (with
the two 0νββ primaries emitted in opposite directions) according to the procedures described
in [232] in batches of 100 events, and afterwards each deposition was separated into its own file
{fn6.3h}. [234] shows two example excerpts of a deposition file as they were obtained for this
scenario.

Step 2: ISO scenario implementation

TheLZ collaborationmodels drift electron production using a purpose-built set of semi-empirical
models based on detector calibration and science data, collectively referred to as the Noble El-
ement Simulation Technique (NEST) [41] [5]. Given an incident electron of energy 3[235], this
software package calculates the corresponding charge yield, Qy( 3

), by parameterizing it as a
sum of sigmoidal functions [39] using as parameters the drift field and the density of the mate-
rial, with additional free parameters calculated by fitting to experimental data [41].

{fn6.3h} — The use of batches of 100 was done to compensate for an issue that occurred on some machines
with the chosen build of ANTS2, where even though a Geant4 script could be run any number of consecutive times
fromwithin ANTS2, only up to 14 of the runs would be saved to disk. Alongwith the conversion from primary energy
loss to number of drift electrons produced, [233] shows the procedure used for breaking up the output files with
100 deposition batches into single deposition files.
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The NEST v2member function NESTcalc::GetYields() (from file NEST.cpp) was used as refer-
ence for implementing the charge yield function (see left panel of Figure 6.8), using 310 V/cm
for the drift field and 2.869 g/cm3 for the density {fn6.3i}. The number of electrons released,
Ne, is obtained for a given incident energy as Ne(

3

) =

3× Qy(

3

). In order to account for the
trajectory of the primary electron, a dependency on the energy lost during the interaction, d 3,
is introduced:

Nloss(

3

, d 3

) = d 3× dNe(

3

)

d 3 . (6.1)

The shape of dNe(

3

)/d 3is shown in the right panel of Figure 6.8.

Figure 6.8: Left panel: Obtained drift electron yield function. [233] shows the
used code. Right panel: Obtained dNe(

3

)/d 3. [233] shows the used code.

Each 1e and 0νββ event returned track information, namely the position of the primary elec-
tron (and bremsstrahlung child primary electrons) at the end of each Geant4 step, the kinetic
energy of the (child) primary electron 3and the energy loss to ER during that Geant4 step d 3.
The energy information was converted to a number of produced diffusion electrons using the
Nloss function, as shown in [233]. Figure 6.9 shows example topologies for1e and 0νββ events
due to this implementation, and the statistics for the total number of diffusion electrons per
event of each class.

{fn6.3i} — This value was calculated using the NEST v2 member function NESTcalc::SetDensity() (from file
NEST.cpp) as reference. It calculates the LXe density using the temperature of the sensitive volume as a parameter,
and the value of 2.869 g/cm3 results from setting the temperature to 175.8 K, as per the LZ Technical Design Report
(TDR, [109], page 57). [236] shows the procedure used for the density calculation. The obtained value of the density
is more accurate than the one used in the b2b scenario, as that one did not account for the temperature, and the
decreased density is expected to result in an increase in the average size of the deposition topologies by about 3%
(i.e. an increase of about 0.1 mm in the average distance between the two blobs). Additionally, according to the NEST
v2model, the lower density is expected to increase the charge yield by about 3% as well. This means that the average
number of drift electrons in the ISO model is expected to be larger than in the b2b one. Unfortunately the density
of the LXe in ANTS2 mistakenly remained set to 3 g/cm3 for this scenario, so the tracks are expected to suffer a 3%
average decrease in size relative to those of the b2b scenario (i.e. a reduction of about 1 mm in the average distance
between two blobs). The effect of this on the classifier performance is expected to be minor.
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Figure 6.9: Left panel: Example 0νββ and 1e topologies generated using the
ISO scenario implementation. Right panel: Statistics for the total number of

drift electrons produced per event of each class for the ISO scenario.

6.3.2 ANTS2 script (diffusion, electroluminescence and waveform)

This subsection corresponds to Steps 4 and 5 from the box on page 91.

The right panels on Figures 6.7 and 6.9 show that the number of drift electrons per event is
consistently above 105. With an electroluminescence (EL) photon yield of 820 photons per
electron (Table 4.1), this means that each waveform will be the product of & 8 × 107 photons.
Simulating the photon transport in Geant4 is unfeasible: the simulation time can be estimated
to be & 10 hours/event. An alternative for simulating the photon transport had to be chosen,
and the one opted for was to use the ANTS2 package [4]. This software was built to produce fast
simulations of Anger-type camera {fn6.3k} readouts, and in particular it performs very fast
photon tracing [237], making it ideal for this problem. ANTS2 version 4.22was used to produce
the waveform sets, except for ∼ 103 simulated 0νββ waveforms, which were generated using
an older version of the program.

{fn6.3k}—Anger-type cameras are position-sensitive scintillation detectors that use 2-dimensional arrays of
photodetectors (e.g. PMTs, or silicon photomultipliers) to produce a 3-dimensional event reconstruction by way of
statistical methods. For example TPCs like the LZ detector are a type of Anger camera.
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For portability, diffusion, electroluminescence and the generation of the resulting waveform in
the PMT array were all simulated in a single ANTS2 script. The script is listed in [238], and its
algorithm is summarized in the box below:

Configuration
• Load detector model (pgs. 98 - 101);

• Set simulation parameters (pgs. 98 - 101).

Simulation
forforfor each track file:

1. Clean up data containers, import track file and initialize output file;

2. Simulate diffusion on drift e− positions from track file (pgs. 101 - 103);

3. Simulate electroluminescence (pg. 103);

4. Collect EL photon PMT hit times into corresponding data containers;

5. Set the earliest hit time as the start of the signal;

6. Convolve the data containers with the single EL photon pulse shape of the
PMTs (pg. 103);

7. Transfer data containers to JSON object, output to file (pg. 103).

Detector model / simulation parameters

Figure 6.10 shows the implemented detector model. The detector’s size was greatly reduced to
speed up the electroluminescence simulations, with the PMT array modeled after the central
region of the LZ top array (Figure 6.11). The material surrounding the detector is "gray matter":
a material designed to absorb the electroluminescence photons (i.e. it has a reflectivity of zero).
The specifications of all the used materials are given in Table 6.3, and Table 6.4 compares the
specifications of the detector model to those defined in the LZ TDR [109].

Figure 6.10: Persepective, top and side views of the detector model used, with
materials and dimensions used. The gas gap is highlighted in yellow in the side
view. The photocathodes are highlighted in green, with the numbers being
their IDs. Once a photon hits the interior of the photocathode, it is considered

as having been detected.
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Figure 6.11: Top PMT array of the of the LZ TPC. The part of the PMT array
that was recreated in the simulation is highlighted in green.

Source: [109]

Refractive Attenuation RayleighMaterial Density (g/cm3) Index Length (mm) Length (cm)
Gray matter 2 N/A 1.6 N/A 0.333 N/A ∞ N/A

GXe 0.005 0.017 1 ∼1 ∞ ∞ ∞ 5×103
LXe 3 2.869 1.7 1.67 3×104 3×104 30 30-50

Photocathode N/A N/A 1.6 1.57 ∗ 0 ∼15 ∗ ∞ no info
Model Actual Model Actual Model Actual Model Actual

∗ values indicated for PMT window material

Table 6.3: Material definitions for the detector model. The actual values are
taken from [109], except for the density of GXe, obtained from [239] for
1.8 bar(a) and 175.8K, and for the attenuation length of the PMTwindowma-

terial (borosilicate glass), obtained from [240].

Specification Model Actual Ref. in [109]
drift region height 450 mm 1456 mm Table 3.1.1

diameter 500 mm 1456 mm Table 3.1.1
Electroluminescence region (gas gap) 5 mm 8 mm Table 3.6.1

PMT cathode diameter 64 mm 64 mm Section 3.4
PMT center-to-center spacing 92 mm 93 mm Section 3.5.3

PMT quantum efficiency 100 % . 28 % Table 3.5.1
long. diffusion (LZ cathode events) 0.85 µs 0.849 µs Table 3.3.1
tran. diffusion (LZ cathode events) 0.59 mm 0.594 mm Table 3.3.1
Electroluminescence photon yield 860 eph/e− 820-910 eph/e− Table 3.6.1

PMT time resolution 5 ns 10 ns intern. comm.

Table 6.4: Comparison of the specifications of the detector model used in
the simulation to the specifications of the LZ detector, with indication of the
sections of the technical design report used. The chosen electroluminescence
yield is a midpoint between the two cited values in [109]. More information in

Section 4.1.
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The chosen values of most specifications are very similar to their true counterparts, however
there are some differences whose effects must be considered. They are listed below, from the
most major to the most minor:

Smaller gas gap
The electroluminescence photons froma single electron are emitted at a range of heights
above the LXe surface. Thismeans that a thicker gas gapwill smear the PMTpulsesmore
intensely than a thinner gas gap. Given that a two-phase TPC necessarily includes a gas
gap, it was not done away with entirely, but it was shortened in order to reduce the
longitudinal smearing. This should improve the performance of the classifier.

Absorbing detector walls
The walls of the LZ detector are coated with PTFE, which serves to reflect the elec-
troluminescence photons, increasing the sensitivity of the detector to the low energy
recoils of WIMP interactions with LXe. In the case of 0νββ , the recoils are much more
energetic, and so the reflecting PTFE walls would only add a floor to the waveforms.
Replacing the PTFE coating with an absorbing wall removes a source of distortion in
the waveform, improving the performance of the classifier.

No high-field region in the LXe
The gate grid (see Section 4.1) is submerged in LXe at a depth of 5 mm, resulting in a thin
LXe region above it where the electric field is much stronger than the drift field below.
This region will result in some additional longitudinal smearing. It was not included in
the current scenarios.

Much smaller detector
The main consequence of this is that it shortens the photon transport, speeding up the
simulation. This choice further justifies the use of absorbing detector walls, as the PTFE
coating is expected to cause more transverse smearing of the waveform in the case of a
small detector. The effect on the time series signal is expected to be imperceptible.

Different electroluminescence yield
The chosen electroluminescence yield is a midpoint between the two values referred to
in [109]. Considering that all three are very high numbers of photons per electron, and
considering the extremely large number of photons per event, the effect of this choice
should be minor.

Very low density of GXe
The reduced density of the GXe in the model detector is expected to result in a smaller
number of interactions of the electroluminescence photons with the space between the
PMT array and the gas gap, presumably reducing distortions in the waveform. However
this effect is expected to be so small that it is imperceptible, considering the very large
photon interaction lengths in the gas.

Model density of LXe higher than its actual value
The diffusion simulation is not sensitive to the density of the LXe, and neither are the
electroluminescence photons, as they are only sensitive to the attenuation length, which
is correct.
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As listed above, the differences in the detector model relative to the actual detector are either
expected to not affect the waveform in a significant manner, or at most remove distortions. In
conclusion, it is expected that in the worst case they slightly improve the classifier’s perfor-
mance, in agreement with the chosen base simulation approach (Section 6.1.1): if the classifier
fails to discriminate the two classes for the simulated waveforms, then it is guaranteed to fail
for real data.

Diffusion simulation

The used version of ANTS2 did not include tools for simulating diffusion, so they had to be added
into the source code. [241] shows the added functions, and below is a description of the used
procedure: first the stages are summarily listed; then certain details are explained. The stages
are as follows:

1. Receive as input parameters the depth d and the deposition text file f_d.

2. Calculate the longitudinal and transverse diffusion pdf widths S_L and S_T at the
selected depth {fn6.3l};

3. Read f_d and convert its data into a matrix P_eP_eP_e of the positions of all the drift
electrons;

4. Generate a matrix of displacements D_eD_eD_e with the distribution of the diffusion pdf
having S_L and S_T as parameters;

5. The output is the result of the operation P_eP_eP_e + D_eD_eD_e.

The widths of the diffusion pdf in LZ are seen to increase linearly with the depth of the event
(Figure 3.6.4 in [109]), and so the values of the diffusion at different depths, σL, σT {fn6.3m}
{fn6.3n}, were calculated using as basis the diffusion values at cathode depth, referenced in
Table 6.4:

σL = (0.85 µs)× vd ×
d

h
, σT = (0.59 mm)× d

h
,

where vd = 2.0 mm/µs is the drift speed and h = 1456 mm is the depth of the cathode. Replacing
tDL and tDT for σL and σT , Equation 3.10 can be rewritten and broken up into two separate
pdfs, one for longitudinal diffusion and one for transverse diffusion, which are now standard
Gaussian pdfs with zero average and standard deviations S_L =

√
2× σL and S_T =

√
2× σT

respectively. The effect of diffusion on the drift electron positions was simulated by displacing
their z position by a random distance d_z ∼ N (vd, S_L2) and their x,y positions by random
distances d_x, d_y ∼ N (0, S_T2). Figure 6.12 compares the diffusion pdf with the resulting
distribution due to 104 displacements, showing good agreement between both.

{fn6.3l}— Even though the scenarios studied in this work do not use the transverse diffusion, the simulation
already includes some adaptations to ease its inclusion in future work.

{fn6.3m}—The diffusion values relate to the diffusion coefficients as σL,T =
√
tDL,T .

{fn6.3n}—Note that in the current version of the implementation the diffusion value is the same for all drift
electrons in a deposition, i.e. the variation in z value between the different electrons was not considered. This
approximation was done because the depositions are quite small, and hence the diffusion value does not vary sig-
nificantly. The corresponding adaptation for improved accuracy can be done in future work.
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Figure 6.12: Comparison of diffusion-originating electron displacement
statistics for 104 electrons with the diffusion pdf along the z (top panel),
x and y (bottom panel) directions, showing that they are consistent.

The random number generator class in CERN ROOT [242], TRandom, was used to compute the
displacements, as its member Gaus() produces Gaussian-distributed random numbers very fast
[243] [244] {fn6.3o}. In order to perform the matrix addition P_eP_eP_e+D_eD_eD_e fast, the Eigen template
library [246] was used, however it has not yet been fully integrated with ANTS2, currently
requiring a slow final conversion from an Eigenmatrix back into a type of container recognized
by the ANTS2 script parser. Nevertheless the diffusion simulation is the fastest part of the
ANTS2 script, due to the comparatively small number of particles.

Of note also is that the diffusion simulation saves computation time by not tracing the electrons
as they drift along the detector, and instead just calculating their expected final configuration
upon reaching the gas gap. As long as the electric field along the LXe of the detector is assumed
to be uniform, this approximation is accurate, however in future work it will require modifica-
tions.

{fn6.3o}—The underlying uniform pdf random number generator is the rudimentary BSD linear congruential
generator, of period 231 ≈ 2.1× 109 [244] [245]. It boasts excellent speed, and its period is still large enough for the
given usage, as the number of computations per deposition should at most reach the order of 106, and each track
file sets a new seed.
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The output from this part of the ANTS2 script algorithm to the next one is a list of all the
electron positions following displacement due to diffusion. The deposition is assumed to reach
the gas gap starting at the electron with the lowest z value after diffusion, and then proceeding
to the higher ones {fn6.3p}.

Electroluminescence simulation

ANTS2 provides tools for simulating the emission of S2 electroluminescence photons from the
gas gap of a TPC. Each electron produces a column with the same vertical thickness as the gas
gap and consisting of 860 isotropically-emitted photons, all originating at the same horizontal
position and at random heights along the gas gap. ANTS2 calculates the emission time of a given
photon γ, tγ , as:

tγ =
ze−

vd
+
zγ
vg
,

where, ze− is the height of γ’s parent electron after diffusion; zγ is the height within the gas
gap at which the photon was emitted (with the surface of the LXe being at zγ = 0); and vg
is the velocity of the electron in the gas gap. vg was set to 10 mm/µs, an approximation of
(8/5) × vgLZ, where vgLZ ≈ 6.7 mm/µs is the average velocity of the electrons in the LZ gas
gap (Section 3.2.3 of [109]) and 8/5 is the ratio of the LZ gas gap thickness vs. the detector
model gas gap thickness.

When tracing the photon trajectories through the detector, ANTS2 accounts for material absorp-
tion andRayleigh scattering, as well optical processes atmaterial interfaces—diffuse reflection,
specular reflection and refraction — calculated according to the Fresnel equations and Snell’s
law [4]. If a photon is captured by the cathode of one of the PMTs, its detection time is stored
in a list of "PMT hits" for that given PMT. Once the electroluminescence simulation finishes,
the emission times in these lists are corrected, setting the earliest emission time to zero and
adjusting all others accordingly.

The output from this part of the ANTS2 script algorithm to the next one is a set of lists, one per
PMT, each indicating the emission times of the photons that hit the corresponding photocath-
ode, such that the earliest photon emission time is zero.

Convolution with the single photoelectron pulse shape

This part of the ANTS2 script builds thewaveform resulting from the 0νββ or 1e event out of the
list set obtained in the part above, taking into account the single photoelectron pulse shape of
the PMT array as well as the selected PMT time resolution. The pulse shape was imported from
a text file with signal values based on the data in Figure 4.5. The convolution was performed
after quantizing both signals to match the PMT time resolution, with 5 ns bins. For the pulse
shape, the matching was done through linear interpolation; and for the list set it was done by
binning, forming a histogram corresponding to the "signal" at that resolution, without the pulse
shape. The convolution was then performed on these equal-resolution signals. The procedures
for performing these steps were added into the ANTS2 source code, and are listed in [238].

Output file

The final output of the ANTS2 script is a text file where the PMT channels are listed in sequence,
with the amplitude atmultiples of the read time shown in arbitrary units. No units are necessary

{fn6.3p} — This means that the waveforms are produced up-side down, but given that the deposition pdfs
are vertically symmetric, and considering what was discussed in {fn6.3n}, this does not affect the accuracy of the
resulting dataset, while at the same time simplifying the implementation.
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as they do not influence the performance of the classifier as long as the single photoelectron
pulse amplitude is consistent. The zero time is the first instance of a nonzero amplitude, for
any of the PMTs in the array: namely if a PMT #0 has the earliest photon hit and PMT #4 only has
a photon hit a microsecond later, then first few entries (text file lines) of the PMT #4 channel will
be zero.

6.3.3 Computational performance and limitations of the ANTS2 script

The output files of the ANTS2 script are fairly small, only ∼ 300 kB in size, however the simu-
lation itself is very resource-intensive. Following optimizations to the source code {fn6.3q}, it
still requires∼ 3 GB RAMmemory to run, and takes∼ 5-7 minutes to produce one waveform.
The main bottleneck is tracing the & 8 × 107 electroluminescence photons per event, as the
rest of the procedure only takes a few seconds. The script runs on a single CPU thread.

Some further optimizations are possible, but would require significant modifications to the
ANTS2 script interface and tracer module. The huge memory footprint is due to the large num-
ber of lists containing stepwisemodifications to the PMTphoton hit data. They are each cleared
once the data becomes redundant, but the memory is not freed, because the scripting engine
used in this work {fn6.3r} lacks garbage collection. At the same time, reusing the same contain-
ers is impractical, as their structures vary throughout the script. In order to reduce the memory
footprint, it would therefore be necessary to either introduce garbage-collected containers into
the current script interface, or to build a different script interface, which is outside the scope of
this work.

On the other hand, the long computation time could be mitigated using parallel computing.
GPU acceleration seems like an attractive solution to the problem of tracing photons, as their
trajectories are independent from each other. However this would require adapting the tracing
algorithm to allow for GPU computation. Additionally, the way the photon trajectory is stored
would have to be significantly reworked. CPUmultithreading was attempted, but no time ben-
efit was noticed, while making the script more unstable, and so the choice was made to keep
the script single-threaded.

An alternative to tracing the photons is to use statistical reconstruction data (PMT light re-
sponse functions) [247] to produce statistically realistic waveforms, however it is not clear
whether this approach will maintain the same classifier performance relative to tracing. If the
performance were to worsen due to this approach, then it would not correspond to the chosen
base simulation approach. A change from photon tracing to statistical methods is attractive, but
would require sample tracing data to be simulated first, as well as validation.

{fn6.3q}—Most notably, the tracer algorithm in ANTS2 stores the interactions during photon transport into a
"historian" container, from where the emission times and PMT IDs were extracted. This led to a significantly larger
memory footprint, exceeding 10 GB in some events. The source code was therefore modified to only write the last
interaction into the historian, resulting in a more tolerable memory footprint.

{fn6.3r} — ANTS2 provides two script interfaces, a JavaScript one and a Python one, however the Python in-
terface was still under construction during the making of this work.
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6.3.4 Distributed computing and final tally of the simulations

Considering the largememory footprint and long computation time, it became clear while con-
structing the b2b scenario waveform dataset that it is impractical to run the simulation from
a single computer. At the same time it was known that installing the ISO scenario version
of ANTS2 (the one bundled with the G4Ants interface) on several computers would prove chal-
lenging. ANTS2 is a Qt application [248], and Qt packages tend to enter in conflict with those
of both Geant4 and CERN ROOT during installation. Furthermore it was uncertain whether the
simulation would remain stable over multiple platforms, resulting in a very long predicted con-
figuration time.

This motivated the use of a portable, preconfigured version of ANTS2, adapting it for distributed
computing. For this purpose, the ants2-docker image [249] was modified to install the ANTS2
branchwith the source code additions used in the simulation [250], instead of themaster branch.
The Dockerfile is listed in [251]. The ISO scenario simulations were run locally, as well as on
the Lisbon and Minho nodes of the Infraestrutura Nacional de Computação Distribuída [6].

The final numbers of simulated waveforms were the following:

b2b scenario

0νββ 5075 events

1e 4994 events

ISO scenario

0νββ 6451 events

1e 4721 events

6.4 Data extraction
This stage of the classification procedure consists of converting the waveforms produced in
the simulation stage into points in parameter space, and then mapping those points into fea-
ture space. A C++ application was written to perform this task, listed in [252]. Its algorithm is
summarized in the box below, and the details of interest for different parts of the algorithm are
described in the Subsections that follow:

Initialization
• Read input filenames;

• Make output files;

Data extraction
forforfor each input file:

Step 1. Read and store into container;

Step 2. Apply dataset preprocessing (pgs. 106);

Step 3. Run parameterization (pgs. 107 - 108);

Step 4. Optional→ Break up dataset by categories based on waveform pulse
shape (pgs. 109 - 114);

Step 5. Extract features from parameters (pgs. 114 - 116).
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6.4.1 Dataset preprocessing

Each waveform underwent three preprocessing operations:

1. Summation together of all the PMT channels into a single signal;

2. For b2b scenario only → 50% chance of time reversal of the summated signal;

3. Smoothing of the summated signal.

The choice of summating the PMT channels is explained in Section 6.1. The time reversal is
done because all the b2b scenario 1e event primary electrons are emitted directly downward.
Time reversal prevents the classifier from using the direction of emission as a decision criterion.
Both 0νββ and 1e events were time reversed so that the reversal of the PMT pulse shape would
not be used as a decision criterion by the classifier. The smoothing is performed in order to aid
in taking practically valuable derivatives of the amplitude (see Figure 6.13). The smoothing
procedure is shown in [252].

Figure 6.13: 1st and 2nd derivative of signal: a) without smoothing; b) with
smoothing applied. The vertical lines are the zeros of the 1st derivative. Note
that even though the signal (in blue) appears reasonably smooth even in the
top graph, its derivatives become distorted beyond usability. Note also that the
smoothing serves as a low-pass filter, removing the high-frequency component

without affecting the “overall” shape of the signal.
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6.4.2 Parameterization

The parameterization step in this work builds upon the waveform parameterizer of the LZ
Analysis Package (LZap) [41], preserving the same operating structure but adapting the extracted
parameter set to the given problem. The code is listed in [252]. The extracted parameters are
summarized below, and detailed further on for more nuanced parameters:

• Waveform unique ID (for ease of identification);

• Clear presence of bremsstrahlung;

• Area, and area fraction times {fn6.4a};

• Times and amplitudes of signal peaks and plateaus;

• Optional →Number of peaks and plateaus;

• Root mean square signal width and amplitude;

Clear presence of bremsstrahlung

It was seen that due to the higher energy of the 1e events, they underwent bremsstrahlungmore
frequently than 0νββ events, making its presence in the signal a potential discriminator. Many
of the times, bremsstrahlung would transfer a very significant fraction of the primary electron’s
energy into a single photon, which would then continue the energy deposition at a separate
location, often resulting in trails of zeros in the middle of the signal, (Figure 6.14), which were
then used as an identifier of the process. For these events, the presence of bremsstrahlung
was recorded, and the rest of the parameterization was performed on the side of the signal
(relative to the zero trail) with the largest area. However this method does not account for all
bremsstrahlung events. A significant proportion of waveforms show a bremsstrahlung pulse
that is conjoined with the rest of the signal, and in these the presence of bremsstrahlung was
not recorded. In future work it is worth addressing this problem.

Figure 6.14: Example of a 0νββ event with a trail of zeros (highlighted in
magenta). The part of the signal with the largest area was assumed to not result

from bremsstrahlung,

{fn6.4a}—The time value at which the cumulative signal area reached certain percentages of the total area.
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Area, and area fraction times

One significant difference in the topologies of 0νββ and 1e events is the slightly larger length
of the 1e ones (Figure 6.15). To characterize the length of the signal, along with some measures
of its shape (like amplitude averages for various time windows, or skewness) the times at which
the signal reaches different percentages of the total area (the area fraction times, or AFTs) were
extracted from the signal’s cumulative area function,A(t) =

∫ t
0 dt s(t), where s(t) is the signal

amplitude at time t. For more details, see [252].

Figure 6.15: Comparison of topologies of 0νββ and 1e, showing that 1e
topologies are often longer than 0νββ ones. The faded magenta circles show

the location from where the primary electrons were emitted.

Times and heights of signal peaks and plateaus

Looking at a number of 0νββ and 1e waveforms, it is noticeable that 0νββ ones show two
peaks (local maxima of the signal) more often than 1e ones, while 1e’s tend to produce a wave-
formwith a single peak next to a comparatively flat, mid-amplitude region, in this work termed
a plateau. For an example, see Figure 6.16. This motivated the use of the number of peaks and
plateaus, as well as the height and time of each, as parameters describing the signal. Peaks
were defined as points in the signal s(t) where the values of derivatives were s′(t) = 0 and
s′′(t) < 0, while plateaus were defined as points where s′′(t) = 0 and s′′′(t) > 0 {fn6.4b}. For
more details, see [252].

{fn6.4b} — Since the focus was on the sign of s′(t), s′′(t) and s′′′(t), the derivatives were taken in a very
simple manner, merely calculating the slopes at t for s(t), s′(t) and s′′(t), respectively, by taking the difference of
two adjacent points divided by the time step. This explains the need for smoothing, as each successive derivative
would highlight the coarsenesses in the original signal. Each successive derivative of the signal also underwent its
own smoothing step.
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Figure 6.16: Example of a plateau in a 1e signal.

6.4.3 Categorization

Categorization—Motivation

The chaotic path taken by the primary electrons through the LXe results in a large array of dif-
ferent possible morphologies. For example, even though 1e events have a single blob (definition
in pg. 15) in the topology while 0νββ events have two, it is not uncommon for the 1ewaveform
to show two peaks, or for a 0νββ waveform to have a single peak. Although rarer, there were
even waveforms with a larger number of peaks (see Figure 6.17 for an example).

Figure 6.17: Example of a 0νββ signal showing four peaks. The two peaks in
the middle are due to the primary electrons, while the peaks at the edges are

due to bremsstrahlung.

Considering the number of factors affecting signal shape, it is unlikely for there to exist some
linear axis change thatwould return aGaussian distribution of parameter values. As an example,
Figure 6.18 shows a scatter plot of a 25% area fraction time against the time of the first plateau,
displaying obvious discontinuities. This is problematic for the dimensionality reduction step
(see Section 6.5.3): it implies the need to use a nonlinear dimensionality reduction method that
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does not assume a Gaussian distribution on the latent variables, but those methods tend to be-
come unreliable beyond ∼ 5 dimensions (Section 7.7 of [253]). Since the dataset given to the
dimensionality reduction step is expected to be described by & 20 features (Section 6.5.2), this
is not acceptable. The most reliable dimensionality reduction methods for high dimensional-
ities are those with the most restrictive assumptions about the data, namely principle compo-
nent analysis (PCA) and classical metric multidimensional scaling (classical MDS) (Section 7.7
of [253]), both of which perform linear projections assuming Gaussian-distributed data. For
deployment it would also be necessary to retrieve the transformation operator applied to the
training data when mapping from feature space to latent variable space: an operation possible
for both PCA and classical MDS, but difficult or even impossible for many nonlinear methods.

Figure 6.18: Scatter plot of a 25% area fraction time against the time of the
first plateau. The scatter plot was obtained using a small dataset with 1029
1e waveforms and 1029 0νββ waveforms. Only the events with at least one

plateau are shown here.

Although PCA and classical MDS are both good at preserving the shape even of non-Gaussian
distributions on a linear manifold (see Figure 6.19 and Figure 6.21), they risk mapping distinct
regions of the manifold to the same values of the projection coordinates for the case of a non-
linear manifold (Figure 6.20 and Figure 6.22). Considering the stringent dimensionality limits
on nonlinear methods, it was decided that the most practical option was to divide the dataset
into subdatasets based on some feature of the signals, termed categories, supposing that the pa-
rameter value distribution within one category would be less complex than the distribution for
all categories combined, and so the embedding would be less likely to overlap with itself after
a linear projection {fn6.4c}.

{fn6.4c}—Another option is to apply linear dimensionality reduction first, and then apply additional nonlinear
dimensionality reduction on the resulting data, as suggested in [253], but this solution is deceptively complex and
time-consuming to implement. First, it requires testing for the number of dimensions that can be cut by linear
dimensionality reduction before manifold overlapping occurs. This can be achieved, for example, by comparing
relative Mahalanobis distances (see Section 6.5.2) between different points on the manifold. Then the nonlinear
dimensionality reduction method has to be tested for the same problem. Finally, there is the issue of retrieveing
the transformation performed by the nonlinear method. This procedure can be more effective than the currently
implemented solution, however, so it was left for future work.
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Figure 6.19: a) A non-Gaussian distribution of arbitrary datapoints. The em-
bedding is described in the latent variables (x1,x2); b) The 3D input dataset
onto which PCA is applied. The embedding is placed in a flat (linear) manifold,
described by three coordinates: (y1,y2,y3). Even though in this coordinate
system all three coordinates must be given to uniquely describe each datapoint
on the manifold, there exists some transformation that uniquely maps all dat-
apoints to only two coordinates. c) Projection of the input onto the first two
principal components found by PCA, (PCAx1,PCAx2). Note that although the
result is inverted, there is no overlapping, meaning that it should be preferable
to feed a classifier the data in c), rather than the data in b), as it would be less

prone to the curse of dimensionality.
Image source: [253]
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Figure 6.20: a) A bivariate Gaussian distribution of arbitrary datapoints. The
embedding is described in the latent variables (x1,x2); b) The 3D input dataset
onto which PCA is applied. The embedding is placed in a curved (nonlinear)
manifold, described by three coordinates: (y1,y2,y3). Even though in this
coordinate system all three coordinates must be given to uniquely describe
each datapoint on themanifold, there exists some transformation that uniquely
maps all datapoints to only two coordinates. c) Projection of the input onto the
first two principal components found by PCA, (PCAx1,PCAx2). Note that the
curved manifold caused a significant distortion to the shape of the projection.
Even though there still does not appear to be significant overlapping of the em-
bedding, it is alarming how even a small curvature of the manifold can greatly

affect the PCA projection.
Image source: [253]
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Figure 6.21: An “open box” 3Dmanifold of a 2D embedding, and the resulting
2D projection from applying classical MDS to the data. The manifold features
six flat (linear) faces separated by creases, and there is no linear 2D projection
where the embedding will not overlap with itself. Unsurpsrisingly, classical
MDS does exactly that, but it is worth noting that the flat “lid” (the brown

square) is undistorted.
Source: [253]

Figure 6.22: A “cinnamon bun” 3D manifold of a 2D embedding, and the re-
sulting 2D projection from applying classicalMDS to the data. Themanifold is
nonlinear, and a dimensionality reduction has to be able to “unfurl” the man-
ifold in order to not have the embedding overlap with itself when projected.
Classical MDS, being a linear method, is unable to do this. Furthermore, there
is no flat shape to preserve. In this case, it would be clearly preferable to give a
classifier the high-dimensional data, as the curse of dimensionality would not

affect it as severely as would the overlapping.
Image source: [253]

Categorization— Implementation

In practice, the dataset was subdivided by the number of peaks, the number of plateaus and the
clear presence of bremsstrahlung in the signals (according to what was described in page 107).
Accounting for the rarity of events with more than 2 peaks, or more than 1 plateau, there were
categories for 1, 2 and > 2 peaks, and categories for 0, 1 and > 1 plateaus. The categorization
has two issues, however. Firstly, the statistics is reduced, as the subdatasets corresponding to
each category will not have as many datapoints as the full dataset. Secondly, although the cat-
egorization makes it easier for the classifier to draw a decision boundary within the category,
it makes it impossible to use the number of peaks and plateaus as a decision criterion. Consid-
ering these issues, the categorization step was made optional. When not using categorization,
the number of peaks and plateaus was taken as a parameter.
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The used datasets are referred to in the following manner:

sans→ no categorization (the entire simulated dataset);

N10→ no clear presence of bremsstrahlung, one peak, no plateaus;

N11→ no clear presence of bremsstrahlung, one peak, one plateau;

N20→ no clear presence of bremsstrahlung, two peaks, no plateaus;

Y10→ clear presence of bremsstrahlung, one peak, no plateaus;

Z99→ datapoints from all other categories {fn6.4d}.

Table 6.5 shows the number of events that fell into each category, for the b2b and ISO scenarios
respectively. Only four of the categories had statistically viable datasets given the small dataset,
so the rest of the categories were not used for classification in this work. It is noteworthy that
the ISO scenario affected the morphology of 0νββ events much more severely than that of 1e
events. A possible explanation is that the shorter paths of the two primary electrons in 0νββ
events made their b2b scenario events concentrate along a narrower range of positions, while
the1e events could spread out, meaning that the positions of the blobs for 0νββ events were
more correlated to the initial orientation than the position of the blob for 1e events. The result
of that would be that the morphologies of 0νββ events would deteriorate stronger than those
of 1e events when switching from the b2b scenario to the ISO scenario, consistent with the data
in the tables above: many 0νββ events became virtually amorphous in the ISO scenario, while
roughly the same proportion of 1e events as before show some kind of structure.

6.4.4 Feature extraction

Following (optional) categorization, the points in parameter space were then mapped to points
in feature space, as explained in Section 6.2. Table 6.6 lists the used features both for the case
that categorizationwas used and for the case that it was not. When categorization was not used,
the data for non-applicable features (e.g. the time of the second peak on a signal with only one
peak) was appropriately zero-padded. The more nuanced features are explained below.

tSkew and aSkew

Skewness is a measure commonly used to test the asymmetry of a probability distribution. It
is intuitive to suppose that the simulated 0νββ events will generally produce more symmetric
signals than 1e, so it was used as a feature for the classifier. There are several ways to measure
skewness, and two simple ones are used in feature space: tSkew and aSkew. They are defined as
follows:

tSkew =
t50% − pk_Xns

RMSw
, aSkew =

M50_95

M5_50
− 1, (6.2)

where t50% is the 50% area fraction time (AFT), RMSw is the root mean square width, pk_Xns is
the time of the highest signal peak, M50_95 is the [50% - 95%] AFT range signal mean, and M5_50
is the [5% - 50%] AFT range signal mean. tSkew is based on Pearson’s first skewness coefficient.

{fn6.4d}—Z99 datasets were produced by removing all N10, N11, N20 and Y10 datapoints from a sans dataset
following data optimization.
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b2b scenario (%)
0νββ 1e

No Brem. 1 2 >2 # peaks No Brem. 1 2 >2 # peaks
0 44.77 25.95 1.52 0 36.20 14.72 0.98
1 9.89 1.10 0.14 1 17.84 2.50 0.16
>1 0.39 0.08 0.06 >1 1.44 0.18 0.00

# plateaus # plateaus5075 events 4994 events

W/ Brem. 1 2 >2 # peaks W/ Brem. 1 2 >2 # peaks
0 8.67 4.16 0.43 0 14.52 4.43 0.48
1 2.34 0.28 0.02 1 5.23 0.80 0.08
>1 0.16 0.02 0.00 >1 0.36 0.08 0.00

# plateaus # plateaus

ISO scenario (%)
0νββ 1e

No Brem. 1 2 >2 # peaks No Brem. 1 2 >2 # peaks
0 61.17 12.63 0.91 0 39.93 13.58 1.27
1 9.83 0.79 0.05 1 19.19 1.89 0.17
>1 0.28 0.05 0.00 >1 1.74 0.04 0.02

# plateaus # plateaus6451 events 4721 events

W/ Brem. 1 2 >2 # peaks W/ Brem. 1 2 >2 # peaks
0 10.31 1.88 0.14 0 12.43 3.81 0.38
1 1.74 0.14 0.00 1 4.58 0.47 0.06
>1 0.08 0.02 0.00 >1 0.40 0.04 0.00

# plateaus # plateaus

Table 6.5: Percentages of the dataset that fell into each category. The “No
Brem.” tables correspond to signals where no bremsstrahlung was detected,
while the “W/ Brem.” tables are for signals where bremsstrahlung was de-

tected according to the method described in Section 6.4.2.
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name type sans N10 N11 N20 Y10 Z99 description
ID string yes yes yes yes yes yes unique identifier for each signal

bremTF bool yes no no no no yes clear presence of bremsstrahlung
nPks int yes no no no no yes number of peaks
nPlat int yes no no no no yes number of plateaus
A5_95 ampNsec yes yes yes yes yes yes 90% of the total signal area
M5_95 amp_arb yes yes yes yes yes yes [5%-95%] AFT range signal mean
M10_90 amp_arb yes yes yes yes yes yes [10%-90%] AFT range signal mean
M25_75 amp_arb yes yes yes yes yes yes [25%-75%] AFT range signal mean
M5_50 amp_arb yes yes yes yes yes yes [5%-50%] AFT range signal mean
M5_75 amp_arb yes yes yes yes yes yes [5%-75%] AFT range signal mean
M5_90 amp_arb yes yes yes yes yes yes [5%-90%] AFT range signal meanl
M10_95 amp_arb yes yes yes yes yes yes [10%-95%] AFT range signal mean
M25_95 amp_arb yes yes yes yes yes yes [25%-95%] AFT range signal mean
M50_95 amp_arb yes yes yes yes yes yes [50%-95%] AFT range signal mean
L5_95 nanosec yes yes yes yes yes yes [5%-95%] AFT range signal length
L10_90 nanosec yes yes yes yes yes yes [10%-90%] AFT range signal length
L25_75 nanosec yes yes yes yes yes yes [25%-75%] AFT range signal length
L5_50 nanosec yes yes yes yes yes yes [5%-50%] AFT range signal length
L5_75 nanosec yes yes yes yes yes yes [5%-75%] AFT range signal length
L5_90 nanosec yes yes yes yes yes yes [5%-90%] AFT range signal length
L10_95 nanosec yes yes yes yes yes yes [10%-95%] AFT range signal length
L25_95 nanosec yes yes yes yes yes yes [25%-95%] AFT range signal length
L50_95 nanosec yes yes yes yes yes yes [50%-95%] AFT range signal length
pk_Xh amp_arb yes yes yes yes yes yes maximum height of signal
pk_Hi0 amp_arb y/n yes yes yes yes y/n height of the 1st earliest peak
pk_Hi1 amp_arb y/n no no yes no y/n height of the 2nd earliest peak
pk_Hi2 amp_arb y/n no no no no y/n height of the 3rd earliest peak
pk_Xns nanosec yes yes yes yes yes yes time of the highest signal peak
pk_ns0 nanosec y/n yes yes yes yes y/n time of the 1st earliest peak
pk_ns1 nanosec y/n no no yes no y/n time of the 2nd earliest peak
pk_ns2 nanosec y/n no no no no y/n time of the 3rd earliest peak
pltXh amp_arb y/n no yes no no y/n height of the highest plateau
pltHi0 amp_arb y/n no yes no no y/n height of the 1st earliest plateau
pltHi1 amp_arb y/n no no no no y/n height of the 2nd earliest plateau
pltHi2 amp_arb y/n no no no no y/n height of the 3rd earliest plateau
pltXns nanosec y/n no yes no no y/n time of the highest plateau
pltNs0 nanosec y/n no yes no no y/n time of the 1st earliest plateau
pltNs1 nanosec y/n no no no no y/n time of the 2nd earliest plateau
pltNs2 nanosec y/n no no no no y/n time of the 3rd earliest plateau
RMSw nanosec yes yes yes yes yes yes root mean square width
RMSa amp_arb yes yes yes yes yes yes root mean square amplitude
tSkew double yes yes yes yes yes yes similar to Pearson 1st skewness
aSkew double yes yes yes yes yes yes see Equation 6.2

DESCRIPTION OF CUSTOM TYPES

amp_arb custom typedef of double, represents signal amplitude, in arbitrary units
nanosec custom typedef of double, represents time, in nanoseconds
ampNsec custom typedef of double, represents area

Table 6.6: List of the features used in each of the datasets given to the classifier.
In the features marked y/n, the irrelevant data (e.g. the time of the second peak
in the case of a signal with a single peak) was replaced with zeros. All times (e.g.

pk_ns0) are measured after the 5% area fraction time.
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6.5 Data optimization and testing
This stage of the procedure serves to mitigate the curse of dimensionality by finding the projec-
tion of the feature space dataset that will maximize the classifier’s performance. This is achieved
using a dimensionality reduction method. These methods take as input a nvec × nfeat feature
matrix F where each datapoint in the dataset is represented by a feature vector F i , i =
1, . . . , nvec, each with nfeat features, and then themethods output a nvec×nred matrixR, where
the feature vectors are represented in only nred ≤ nfeat dimensions. This analysis was made in
MATLAB, a script was written that performs the data optimization stage: it is listed in [254].

6.5.1 Data Optimization— Preprocessing

Dimensionality reduction methods generally work best with centered datasets where the vari-
ance is the same for all coordinates (Section 2.4.1 of [253]). The preprocessing script is listed
in [254]. It takes as input the 1e and the 0νββ feature matrices, F1e and F0νββ , concatenates
them to form a (n1e

vec + n0νββ
vec ) × nfeat matrix Fall, centers and scales Fall and then breaks up

the resulting preprocessed matrix into F1e
prep and F0νββ

prep . The centering is done by subtract-
ing the mean row vector from each row, and the scaling is done by divinding each column by
its standard deviation. The preprocessing was done both for continuous features (for example
L5_95) and for discrete ones (for example bremTF, where the true / false data was converted
to 1 / 0).

6.5.2 Feature Selection

It is recommended that irrelevant variables be removed prior to dimensionality reduction (Sec-
tion 1.3.1 of [253]). The feature selection script is listed in [254]. The chosen algorithm was se-
quential forward floating selection (SFFS) due to its good performance at high dimensionalities
relative to its ease of implementation (see Figure 6.23). SFFS begins by choosing two features
out of the dataset, and then proceeds to add and remove features according to what maximizes
the value of some criterion function [255]. Although an ideal criterion function would refer to
the performance of the classifier given the dataset, it was chosen to leave performance-based
criteria for future work due to concerns about ease of implementation and computation speed.
Instead the Mahalanobis distance {fn6.5a} between the 0νββ and 1e datasets was used due to
its sensitivity to correlated features.

{fn6.5a} — The Mahalanobis distance J between two datasets is a measure of the distance of their centers
that gives more precedence to displacements in uncorrelated variables. For two class feature matrices F1 and F2

it is defined as J = (µ1 − µ2)TΣ−1
com(µ1 − µ2) [256] , where µ1 and µ2 are the mean vectors for F1 and F2

respectively, and Σcom is the common covariance matrix for F1 and F2. Specifically, in this work the common
covariance matrix was defined as Σcom ≡ (Σ1e + Σ0νββ), where Σ1e and Σ0νββ are the covariance matrices for
the 1e and 0νββ matrices, respectively.
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Figure 6.23: Performance comparison for different feature selection algo-
rithms given a dataset with two multivariate Gaussian-distributed classes.
SFFS is highlighted in magenta, and is shown to give the best performance
out of all the algorithms for cases of high dimensionality. The performance

criterion used in this analysis was the Mahalanobis distance {fn6.5a}.
Image source: [256]

SFFS was implemented according to the algorithm in the box below:

Inputs
• n1evec × nfeat preprocessed feature matrix F1e

prep;

• n0νββvec × nfeat preprocessed feature matrix F0νββ
prep .

Outputs
• n1evec × nSFFS , nSFFS ≤ nfeat preprocessed, feature-selected matrix F1e

SFFS;

• n0νββvec × nSFFS , nSFFS ≤ nfeat preprocessed, feature-selected matrix F0νββ
SFFS .

Initialization
F1e

SFFS and F0νββ
SFFS begin the procedure having only two columns each, corresponding to the

features least correlated between each other.

Selection procedure

whilewhilewhile
(
Steps 1 and 2 together alter the columns in F1e

SFFS and F0νββ
SFFS

)
:

Step 1. Inclusion
Of the features not in F1e

SFFS and F0νββ
SFFS , concatenate the one whose inclu-

sion maximizes the Mahalanobis distance between the two classes;

Step 2. Conditional exclusion
If there are features whose exclusion makes the Mahalanobis distance be-
tween the two classes even larger than the value obtained for Step 1, then
remove the one for which the Mahalanobis distance is the largest.

Note that even though nSFFS ≤ nfeat, nSFFS is still a very large number: datasets with more than 20 features
after SFFS were common.
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6.5.3 Dimensionality Reduction

The dimensionality reduction script is listed in [254]. Section 6.4.3 explains the choice to use
a linear dimensionality reduction method, but beyond this the chosen method must also be
appropriate for the size of the dataset. PCA is the recommended option for large datasets with
low dimensionality, while classical MDS is the preferred option for small datasets with large
dimensionality (Section 4.2.2. of [253]). As such, the classical MDS method was chosen in this
work.

Classical MDS supposes that a centered, scaled, high-dimensionality dataset can be losslessly
projected on a lower-dimensional space by finding the orthogonal axis change that best pre-
serves the scalar products of the datapoint vectors. In practice, the (n1e

vec + n0νββ
vec ) × nSFFS

preprocessed, feature-selected matrix Fall
SFFS was given as input, and two conditions were im-

posed: {
Fall

SFFS = WFall
MDS

(Fall
SFFS)

TFall
SFFS = (Fall

MDS)
TFall

MDS
, (6.3)

where W corresponds to the axis change itself. Fall
MDS is calculated by recognizing that the

square matrix (Fall
SFFS)

TFall
SFFS can be eigenvalue-decomposed:

(Fall
SFFS)

TFall
SFFS = UΛUT , (6.4)

and so:

(Fall
MDS)

TFall
MDS = (Λ1/2UT )T (Λ1/2UT ). (6.5)

Out of the resulting eigenvalues, the nred ones larger than or equal to 1% of the maximum
eigenvalue were used to form the output matrix R:

R = I
nred×(n1e

vec+n
0νββ
vec )

Λ1/2UT , (6.6)

where I
nred×(n1e

vec+n
0νββ
vec )

is a nred × (n1e
vec + n0νββ

vec ) matrix with ones along the diagonal and
zeros everywhere else. An approximation of W can be retrieved as:

W ≈ Fall
SFFSU(Λ−1/2)I

(n1e
vec+n

0νββ
vec )×nred

, (6.7)

where I
(n1e

vec+n
0νββ
vec )×nred

is a (n1e
vec + n0νββ

vec ) × nred matrix with ones along the diagonal and
zeros everywhere else.

6.6 Classifier implementation and performance assessment
Because of the decided-upon design of the classification procedure, beyond the choice of sce-
nario, there were three other branching points that could make the datasets differ from each
other. Each different set of decisions will be called a configuration in this work. The different
dataset configurations are described in Section 6.6.1.

Following data optimization, the datasets for each configuration were transferred to the classi-
fier, which:

1. Broke them up into training and test subsets;
2. Constructed a decision boundary using the training data;
3. Inferred for each test datapoint the likelihood that it had been produced by a 0νββ event;
4. Performed the classification according to if each likelihood exceeded a set threshold.

The implementation of the classification algorithms is described in Section 6.6.2.
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This procedure was done with the intention of assessing how well the classifier performs with
the data given for each scenario. It only makes sense to describe its performance according
to the best configuration for each case. So prior to making a quantitative performance assess-
ment, the performance of the different configurations had to be compared between each other
to find the best one for b2b and for ISO scenarios. This brought along time concerns: it was
determined that the GP classifier was very slow to calculate, and so the best use had to be made
of a preferably small amount of test runs. The chosen solution for this was to subdivide the
comparative performance assessment into two parts: first all the generated configurations were
pitted against each other in a convergence test (denoted P1A); and then a cost curve comparison
(denoted P1B) was done on the best-performing configurations from P1A. Again the configu-
rations were compared and only the single best for each scenario was then passed over to the
quantitative assessment (denoted P2). The comparative assessment procedure is described in
Section 6.6.3, and the quantitative assessment procedure is described in Section 6.6.4.

6.6.1 Nomenclature for the dataset configurations

Below are listed the possible branching points:

Branching point 1: Categorization
cat → Input dataset divided into categories;

sans → Input dataset left as is, without categorization {fn6.6a}.

Branching point 2: Optimization
prep → Data optimization stops after preprocessing;

SFFS → Data optimization stops after feature selection;

MDS → Data optimization stops after dimensionality reduction.

Branching point 3: Algorithm
kNN → Classification using k-nearest neighbors;

RBF SVM → Support vector machine classification with radial basis function kernel;

GP → Gaussian process classifier;

RF → Random forests classifier.

Additionally, as mentioned before, the datasets can be from the b2b or the ISO scenario.
Table 6.7 shows the nomenclature used for all the possible configurations.

{fn6.6a}—Each sans configuration corresponds to a single dataset, while each cat configuration corresponds
to 5 datasets: N10, N11, N20, Y10 and Z99.
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b2b scenario

Branching point 1: Categorization → cat
Branching point 2: Optimization

prep SFFS MDS
kNN b2b_kNN_cat_prep b2b_kNN_cat_SFFS b2b_kNN_cat_MDSBranching SVM b2b_SVM_cat_prep b2b_SVM_cat_SFFS b2b_SVM_cat_MDSpoint 3: GP b2b_GP_cat_prep b2b_GP_cat_SFFS b2b_GP_cat_MDSAlgorithm RF b2b_RF_cat_prep b2b_RF_cat_SFFS b2b_RF_cat_MDS

Branching point 1: Categorization → sans
Branching point 2: Optimization

prep SFFS MDS
kNN b2b_kNN_sans_prep b2b_kNN_sans_SFFS b2b_kNN_sans_MDSBranching SVM b2b_SVM_sans_prep b2b_SVM_sans_SFFS b2b_SVM_sans_MDSpoint 3: GP b2b_GP_sans_prep b2b_GP_sans_SFFS b2b_GP_sans_MDSAlgorithm RF b2b_RF_sans_prep b2b_RF_sans_SFFS b2b_RF_sans_MDS

ISO scenario

Branching point 1: Categorization → cat
Branching point 2: Optimization

prep SFFS MDS
kNN ISO_kNN_cat_prep ISO_kNN_cat_SFFS ISO_kNN_cat_MDSBranching SVM ISO_SVM_cat_prep ISO_SVM_cat_SFFS ISO_SVM_cat_MDSpoint 3: GP ISO_GP_cat_prep ISO_GP_cat_SFFS ISO_GP_cat_MDSAlgorithm RF ISO_RF_cat_prep ISO_RF_cat_SFFS ISO_RF_cat_MDS

Branching point 1: Categorization → sans
Branching point 2: Optimization

prep SFFS MDS
kNN ISO_kNN_sans_prep ISO_kNN_sans_SFFS ISO_kNN_sans_MDSBranching SVM ISO_SVM_sans_prep ISO_SVM_sans_SFFS ISO_SVM_sans_MDSpoint 3: GP ISO_GP_sans_prep ISO_GP_sans_SFFS ISO_GP_sans_MDSAlgorithm RF ISO_RF_sans_prep ISO_RF_sans_SFFS ISO_RF_sans_MDS

Table 6.7: The nomenclature used for all the possible configurations.
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6.6.2 Implementation of the classification algorithms

This subsection describes the aspects of the implementation that do not vary throughout the
performance assessment. For details on the chosen threshold values, τ , selection of test sets,
and numbers of test iterations, see Sections 6.6.3 and 6.6.4.

The classification was done using the classes in scikit-learn 0.21.3 [173] corresponding to
each of the classification algorithms {fn6.6b}. The default parameter values were used for each
class. In the output, the classifier mapped each datapoint in the test set onto a single dimension
L0νββ ∈ [0, 1], representing the likelihood given by the classifier that the datapoint had been
produced by a 0νββ event. Afterward, each test datapoint was given a label according to the
threshold τ : if L0νββ > τ , then the event was labeled as 0νββ, and otherwise it was labeled as
1e. The classifier labels were then compared to the actual labels to produce a final result: a pair
of performance parameter values, fp and tp (see Section 5.1).

P1B tested a further algorithm, where the data was classified according to a vote done by the
GP and RF algorithms. To implement this, the test data was first labeled by the two algorithms
separately, and then it was labeled as 0νββ only if both algorithms had labeled it as such.

For more details on the implementation of the classification algorithms, see [261].

6.6.3 Comparative performance assessment

The objective of the comparative assessment is to clearly show which of the configurations
yields the best performance. It is not so important to know exactly what the performance of a
configuration is, as long as it is visibly better or worse than that of the others. During the design
of this part, it was seen as preferable to favor low variance over low bias: if a performance mea-
surement is made, and the performance assessment method biases the results equally across all
configurations, then that is not a problem for a comparison because their performance rela-
tive to eachother is unaffected; but if the performance result of the configurations were to have
strong statistical variation across each instance of the same configuration, then a comparative
assessment becomes more difficult, as there is less confidence in the measurement outcome of
the configurations’ performance relative to eachother. Above all else, this preferencemanifested
in opting for splitting samples into test and training data using Monte Carlo cross-validation
in both tests, as it is a simple method with low variance [262].

P1A— Comparative performance assessment using convergence test

The theoretical fundamentals of thismethod are introduced in Section 5.2.2. Ideally the datasets
F would have been large enough for a trend to emerge in the performance parameters even
when the sample size, nin, contained a small fraction of all the available datapoints. This would
allow for ensembles with a statistically representative number of samples nsam to still have all
of them be disjoint from each other, minimizing the bias and variance of the convergence test
results. However in this work the datasets were too small for a trend to emerge when using
a small fraction of the data, so an alternative had to be chosen that would keep variance low,
potentially at the expense of a higher bias.

{fn6.6b} — Specifically, the classes used were KNeighborsClassifier() [257] from the sklearn.neighbors
module for kNN; SVC() [258] from the sklearn.svm module for RBF SVM; GaussianProcessClassi-
fier() [196] from the sklearn.gaussian_process module for GP; and RandomForestClassifier() [259] from the
sklearn.ensemblemodule for RF [260].
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It was decided that, given a desired nin corresponding to a fraction φ of all the available data-
points ndatapts {fn6.6c}, training and test data of all nsam samples in the ensemble would always
come from only the first nin/2 datapoints in the dataset from each of the two classes (yielding
nin datapoints with equal balancing). Although this approach increases the bias of the perfor-
mance parameters, namely making the classifier more susceptible to outliers, it ensures that the
variance will only change according to the successive differences in the distribution of the sam-
ple data along feature space, and not because of differences in the amount of overlap between
samples {fn6.6d} For more information on the implementation of the test, see [263].

From each dataset, subdatasets were extracted with nin’s given by φ = {1%, 2%, 5%, 10%, 20%,
50%, 100%}, with ensembles of size nsam = 10 each. Then the average and the standard de-
viation of fp and tp for each ensemble was calculated. When comparing the configurations,
the fp and tp averages for the φ = 100% ensemble were used as estimators f̂p and t̂p for the
performance parameters of the dataset, and the trend of the fp and tp values for each dataset,
t̂rfp and t̂rtp, was estimated with an integer rating from 1 to 4, using the following standard:

Rating 4: Good trend
Performance clearly improves with larger subdatasets, standard devia-
tion decreases as expected;

Rating 3: No trend
Performance fluctuates without converging, standard deviation can fail
to decrease;

Rating 2: Questionable trend
Performance appears to worsen slightly with larger subdatasets, but the
standard deviation is too large for an obvious trend to emerge;

Rating 1: Bad trend
Performance clearly worsens with larger datasets, standard deviation ei-
ther decreases as expected or increases.

See Figures 6.27, 6.28, 6.29 and 6.30 for examples of each trend.

The values of the four estimators— f̂p, t̂p, t̂rfp and t̂rtp—can vary significantly between config-
urations, so it is more informative to compare configurations differing in one branching point
at a time (e.g. just compare cat and sans {fn6.6e}, without interference from other branching points)
instead of comparing each configuration to all others simulatenously. The ranking of the con-
figurations was done according to the branching point test algorithm on the next page.

{fn6.6c} — A variation in balancing from one dataset to another risked increasing the variance in the results.
To ensure equal balancing, it was decided to define ndatapts ≡ 2×min(

{
n0νββ
vec , n1e

vec
}

).
{fn6.6d} — This is in opposition to the case of sampling from the entire dataset every time. By doing so, the

samples in an ensemble would initially be disjoint, but would become progressively more conjoint with the increase
in sample size. This would add unpredictable behaviors to the test results.

{fn6.6e}—The estimators in the categorization branching point cannot be compared directly: while each sans
configuration corresponds to a single dataset, each cat configuration has 5 datasets, summing up to the same number
of datapoints as in the corresponding sans dataset. The estimators for each cat configuration were obtained with a
weighted average of the estimator values of its corresponding datasets, with the weight being the dataset size.
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1. Having selected a branching point to compare, group up the configurations into
sample clusters so only the chosen branching point changes inside each cluster;

For example, to compare the performance of the three optimization options, the data
is grouped into clusters of three configurations, where only the optimization changes,
whereas the categorization and classification algorithm stay the same within the
given cluster.

2. Calculate the average value of f̂p , t̂p, t̂rfp and t̂rtp for each cluster and calculate
the displacement of each configuration’s estimator values away from the cluster
averages;

3. Sum the displacements in the estimator values of all the configurations with the
same branching point choice in a given scenario;

Following the example given above, this would result in 6 final values, 3 for each
scenario. The 3 final values in each scenario would correspond to the sum of devia-
tions of all prep configurations, the sum of deviations of all SFFS configurations and
the sum of deviations of all MDS configurations.

4. For each scenario, decide on a ranking of the different branching point choices,
according to the resulting displacement sums.

The final ranking according to the displacement sums wasmade usually giving prece-
dence to good performance over a good performance trend {fn6.6f}. Regarding the
performance parameters, precedence was generally given to a low f̂p value over a
high t̂p, due to the balancing in deployment.

P1B— Comparative performance assessment using cost curves

The configurations that performed best in P1A {fn6.6g} were then tested more thoroughly
via their cost curves. The theoretical fundamentals of cost curves are introduced in Section
5.2.4. Again ensembles with nsam = 10 were used, but this time the sample size was fixed at
φ = 100%. The ensemble averages for fp and tpwere calculated for τ = {0.1, 0.2, 0.3, . . . , 0.9},
and these were then used to draw the straight lines in the cost space, whose lower envelope then
forms the cost curve itself for the given configuration (see Figure 6.24 for a demonstration). For
information on the script implementation, see [264].

To select a best classifier for each scenario, a sligtly different representation was used for the
cost curve. The curves were normalized so that, at any value of PC(P), the amplitude of the
curve would be E[Co]norm = E[Co]/E[Co]noClassifer, where E[Co]noClassifier has the values of
the red curve in Figure 6.24. This makes it easier to compare the misclassification costs of the
different configurations for small PC(P), the region of interest for this work {fn6.6h}. The
classifier selected for quantitative performance assessment was the one with consistently the
lowest misclassification cost in the region of interest. Although the goal of the comparative test

{fn6.6f}—This is because usually the configurations with the worst trends were the ones with smaller datasets,
pointing to possibly a sparse dataset. Before deployment, a much larger training dataset would be necessary regard-
less.

{fn6.6g}—The number of configurations to send over to P1B was not decided upon in advance, instead opting
for sending the best-performing configurations where the P1A results were already too similar to be decisive.

{fn6.6h}—This normalization will obviously increase the uncertainty near PC(P) = 0 and PC(P) = 1. In
general the difficulty and time-expense in determining uncertainties for cost curves [210] was a contributing factor
for choosing ROC curves over cost curves for the absolute test. However evenwith a high uncertainty the consistent
underperformance of one classifier relative to another would still be a significant result, so for comparative tests the
cost curve remains the most attractive solution.
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may be to find the best configuration for each scenario, merely finding a very good configura-
tion is also a satisfactory outcome: if two configurations show a near-identical performance in
the cost curve, then it should be very similar in the receiver operator characteristic (ROC) curve
as well. With this in consideration, although there are procedures suggested for constructing
confidence bands in cost curves [210], they were not used here, instead relying on the assump-
tion that if a cost curve made from 10 sample performance averages consistently appears below
another one for a widerange of operating points, then that is a sufficiently significant result to
be decisive.

Figure 6.24: Cost curve (thick blue curve) obtained for the b2b_GP_sans_prep
configuration. The two diagonal red lines are the “no classifier” case. The thin
blue lines are constructed from the ensemble average fp and tp values for each
studied τ . The blue dots are the points where the lines intersect, forming the
lower envelope. The top half of the cost space (E[Co] > 0.5) was cut out

because there is never any relevant information there.

6.6.4 Quantitative performance assessment using ROC curves (P2)

With the best configurations for each scenario selected, the objective of the quantitative perfor-
mance assessment is now to express the performance of these configurations in absolute terms,
which will then be used as a surrogate for the performance of the classifier itself. The perfor-
mance has to be expressed in quantities that have some physical significance, and the focus in
this case is on ensuring that the estimators accurately portray the actual performance range.
In this sense, unlike for the comparative assessment, this time it is the bias that needs to be
minimized, even if at the expense of an increase in variance. These considerations dictated the
design of the test. Summarily the chosen algorithm is listed on the next page.
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forforfor each scenario:

Step 1. Split the entire configuration dataset into test / training data
in 10 different ways using 10-fold cross-validation;

Step 2. forforfor each split:

Step 2.a) Perform the classification for threshold values
τ = {0.01, 0.02, . . . , 0.99}, obtaining the fp and tp
values for each threshold;

Step 2.b) Construct the ROC curve (see Section 5.2.3 for the-
oretical fundamentals);

Step 2.c) For the obtained ROC curve, construct the confi-
dence band with 99% confidence level (CL) using si-
multaneous joint confidence regions (SJR);

Step 3. Take the intersection of all the confidence bands to produce
the 90% CL simultaneous confidence band for the classifier
performance. Take the AUC 90% CL confidence interval to
be the AUC of the upper and lower bounds of the ROC con-
fidence band. Take the AUC estimate to be the AUC of the
average ROC curve.

With this, there will be a confidence of 90% that the actual average ROC curve of the classi-
fier will be inside the resulting confidence band. Below, aspects of the chosen algorithm are
described in detail. For additional information, see [265].

Splitting data using 10-fold cross-validation

10-fold cross-validation is a splitting method where successive disjoint 10% chunks of the full
dataset are used as the test sets (see Figure 6.25) {fn6.6i}. This method was chosen for three
reasons:

Low bias and fairly low variance
[262] compares the performance of different splitting methods, concluding that of a number
of assessed methods, leave-one-out and 10-fold cross-validation yield the smallest bias for a
collection of tested classification algorithms.

All test sets are disjoint
This means that all test sets are independent samples of the same distribution: they are inde-
pendent and identically distributed (iid). This is useful for constructing the final confidence
band.

Ease of implementation
Another option could have been to use leave-one-out cross-validation. This algorithm is like
10-fold cross-validation, except that the test set is a single data point each time. Using it
would be very time-consuming, considering the slowness of the classification algorithm.

{fn6.6i}—To avoid having test sets with a single class, the 0νββ and 1e datasets were concatenated and then
shuffled. For more information see [261].
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Figure 6.25: Schematic depiction of 10-fold cross-validation.
Image source: [266]

Constructing ROC curve confidence bands using simultaneous joint confidence re-
gions

Simultaneous joint confidence regions (SJR) is a method where confidence rectangles sized ac-
cording to the Kolmogorov-Smirnov (KS) statistic are centered on each tested τ and then joined
together to form a simultaneous confidence band (Figure 6.26) [267]. It reverses the standard
usage of the KS statistic by supposing that if an ROC curve is constructed by sampling some
performance distribution, then the actual curve could not be further away from the sample
curve than some fixed amount {fn6.6j}. The dimensions of the confidence rectangles depend
on the desired CL and on the number of datapoints from each class in the test dataset. For a
99% CL rectangle, the height h99% and width w99% are given as:

h99% =
1.628√
n0νββ
test

, w99% =
1.628√
n1e
test
,

where n0νββ
test and n1e

test are the numbers of datapoints from each class in the current test set and
1.628 is obtained from the KS statistic [268].

{fn6.6j}—The reasoning here is based on interpreting the sample fp and tp values as complements to discrete
cumulative distribution functions (cdf): when a test set is run through a classifier, it outputs two pdf
samples — ps(L0νββ) for the 0νββ datapoints, and ns(L0νββ) for the 1e datapoints — and then when a τ value
is chosen, the true positive classifications happen for the datapoints that fall into ps(L0νββ > τ), while the false
positives happen for the ones that fall into ns(L0νββ > τ); because the corresponding discrete cdf’s are defined as
Ps[τ ] ≡

∑ τ
L0νββ = 0 ps(L0νββ) andNs[τ ] ≡

∑ τ
L0νββ = 0 ns(L0νββ), for some τ the performance parameters

can be expressed as fp = 1−Ns[τ ] and tp = 1−Ps[τ ]. This being the case, fp and tp are complements to discrete
cdfs for a sample of some distributions with continuous cdfs P (τ) and N(τ). The distributions themselves are
unknown, but by Kolmogorov’s theorem it is known with some %CL that |P (τ) − Ps[τ ]| and |N(τ) − Ns[τ ]|
cannot exceed some value given by the Kolmogorov distribution, which does not depend on the distribution in
question. For more information, see [268].
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Figure 6.26: Example of the use of SJR. The sample ROC curve is highlighted
in bluewith the test pointsmarkedwith large dots, and the simultaneous confi-
dence band is highlighted in green. Confidence rectangles are placed centered
on each test point.. Then to form the simultaneous confidence band the top
left and bottom right vertices of all the confidence rectangles are connected

together with straight lines.
Image source: [267].

SJR was chosen for its speed, ease of implementation and comparatively good performance.
[267] lists a collection of methods for constructing ROC confidence bands, and then tests them
empirically. SJR was one of only 2 methods whose purported CL was even remotely accurate,
all others significantly overestimating the confidence. SJR was seen to actually slightly underes-
timate its own CL for fp and tp based on normal cumulative distribution functions and 99% CL
confidence rectangles, while the othermethod (fixed-width bands) wasmore accurate in its con-
fidence, but it required many more samples to produce a result, so it was opted against in favor
of SJR.

Using the intersection of all 99% CL sample confidence bands as the 90% CL final con-
fidence band

Considering that all the sample curves are independent and identically distributed (iid), meta-
analysis procedures recommend pooling the data to produce a final confidence band [269].
Then the same procedure can be done as for SJR, forming confidence rectangles centered at
each τ performance parameter average with dimensions of roughly 1.22/

√
10× n1e

test. For the
sake of simplicity, however, a different procedure was used: the intersection of all 10 99%CL
confidence bands was used as a single 90%CL band, based on an argument about the joint
probability of independent sets {fn6.6k}.

{fn6.6k}—The likelihood of the actual ROC curve falling within the confidence band made by one sample is
Pr( in CB1 ) = 0.99. The likelihood of it falling within the confidence band of that sample and also that of another
one at the same time is Pr( in CB1 ∩ in CB2 ) = Pr( in CB1 )Pr( in CB2 ) = Pr( in CB1 )2 = 0.992, since the two
samples are iid. Extending this to all samples, the likelihood of the actual ROC curve falling within the intersection
of all confidence bands is is 0.9910 ≈ 0.9.
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Interpretation of the AUC value

This is an extension of the description of the ROC curve theoretical fundamentals in Section
5.2.3. Beyond the intuitive notion that larger AUC values are better, the interpretation of spe-
cific AUC values is more subtle: it is not a linear measure. Summarily the AUC is a sum com-
parative measure of how certain the classifier is that 0νββ test datapoints are in fact 0νββ, vs.
how certain it is that 1e datapoints are not 0νββ. Below is an attempt at a statistical definition,
along with a description of a few limitations of the measure.

Consider an infinitely large test dataset with the two classes 0νββ and 1e. When fed to the
classifier, the 0νββ datapoints will output one pdf of L0νββ values, p(L0νββ), and the 1e will
output another one, n(L0νββ). Their corresponding cdfs are P (τ) ≡

∫ τ
0 dL0νββ p(L0νββ)

and N(τ) ≡
∫ τ

0 dL0νββ n(L0νββ), and the performance parameters are defined as tp =
tp(τ) = 1 − P (τ) and fp = fp(τ) = 1 − N(τ). After forming a continuous ROC curve,
the AUC can be calculated as {fn6.6l}:

AUC =

∫ 1

0
dτ n(τ)tp(τ).

The two factors in the integral can be interpreted probabilistically. The pdf value n(τ) rep-
resents the probability that a 1e datapoint will output a 0νββ likelihood equal to τ : n(τ) ≡
Pr(L0νββ = τ |1e). Meanwhile datapoints are labeled as 0νββ when L0νββ exceeds a thersh-
old τ , so the value of tp(τ) is the probability that 0νββ datapoints will have a 0νββ likelihood
larger than τ : tp(τ) ≡ Pr(L0νββ > τ |0νββ). So the AUC expression can be rewritten as:

AUC =

∫ 1

0
dτ Pr(L0νββ = τ |1e)Pr(L0νββ > τ |0νββ),

so, because the distributions are independent:

AUC = E[Pr(L0νββ = τ |1e ∩ L0νββ > τ |0νββ ) ] , τ ∈ [0, 1].

The AUC is the expected probability that the classifier will give a higher L0νββ to a 0νββ dat-
apoint than a 1e datapoint [270]. Assuming that each of the two distributions either has one
peak or a tight cluster of peaks, then if the two distributions have no L0νββ values in common,
AUC = 1 if the classifier is correctly trained and AUC = 0 if it is inversely trained. The worst
possible case is AUC = 1/2, which happens when the two distributions are identical, and so
0νββ has a higher L0νββ exactly half the time. The more similar the two distributions are, the
more the AUC converges on 1/2.

The expression above clearly shows some limitations of the AUC as a selection criterion. Since
it is a nonlinear measure, it is hard to judge the relationship between the AUC value of different
classifiers, other than knowing that typically a larger AUC is preferable. Additionally a wide
range of distribution shapes can yield the same AUC value, so without knowing them in ad-
vance, the AUCwill give little indication of how far apart the distributions are, and so it is a bad
measure of how well the classifier is expected to perform in deployment, where the balancing
can potentially drown out one of the distributions if it is too wide. Still, since the AUC is a
popular measure of the performance of a classifier, it will be included.

{fn6.6l} — The ROC curve can be interpreted as the function tp = tp(fp), so the AUC becomes AUC ≡∫ 1

0
dfp tp(fp). Changing variables once with dfp = −d(N(τ)) gives AUC =

∫ 1

0
d(N(τ)) tp(N(τ)), and then

the variables can be changed again with d(N(τ)) = n(τ)dτ [213].
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Figure 6.27: Example of a convergence test with a good trend. Note that the
bars are not error bars, but instead show the 1σ width of the sample distribu-

tion.

Figure 6.28: Example of a convergence test with no trend. Note that the bars
are not error bars, but instead show the 1σ width of the sample distribution.
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Figure 6.29: Example of a convergence test with a questionable trend. Note
that the bars are not error bars, but instead show the 1σ width of the sample

distribution.

Figure 6.30: Example of a convergence testwith a bad trend. Note that the bars
are not error bars, but instead show the 1σ width of the sample distribution.
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Chapter 7

Results and Discussion

This chapter presents and discusses the results obtained from the binary classification tests for
each scenario (Section 6.1.1, pg. 87). Section 7.1 presents the results of the performance con-
vergence test, indicating which configurations passed onto the cost curve test, and the results
of that test are shown in Section 7.2. Finally the performance in absolute terms is presented
for best configurations of each scenario in Section 7.3. An analysis of the results, discussion
of methodology, the viability of binary classification in its current form for background dis-
crimination in LZ, and other potential applications of the developed classifier are presented in
Section 7.4.

7.1 Convergence comparative test (P1A)
The sampling procedure described in Section 6.6.3 (pgs. 122 - 124) was used on all the obtained
datasets (see Table 6.7) to produce convergence graphs like those in Figures 6.27, 6.28, 6.29
and 6.30, whichwere then evaluated to obtain f̂p, t̂p, t̂rfp and t̂rtp (pg. 123) for each configuration
(see Section 6.6.1). Then, by the decided-upon algorithm, the different branching points were
compared, and the configurations that qualify for the cost curve test (P1B, pgs. 124 - 125) were
selected. The obtained results for the b2b and ISO scenarios are shown in Section 7.1.1 and
7.1.2 respectively, and the selection of qualifying configurations is described in Section 7.1.3.

7.1.1 b2b scenario results

A 50 / 50 balancing of 0νββ and 1e datapoints was maintained for both the sans datasets (see
box on pg. 114) aswell as all the datasets corresponding to each cat configuration (Section 6.4.3).
The numbers of datapoints are listed in Table 7.1. The four estimator values for each cat config-
uration were obtained by a weighted average of the resulting estimator values for each of their
corresponding datasets. The results for all configurations are listed in Table 7.2.

b2b # datapoints W

N10 3618 0.36
N11 1004 0.10
N20 1478 0.15
Y10 878 0.09
Z99 3010 0.30
sans 9988 1.00

Table 7.1: Numbers of datapoints for each category (see box on pg. 114) and
for sans, together with the weightsW used when averaging the performance
parameters to obtain the performance parameters of the cat configurations.

The sum displacements obtained in the branching point test are listed in Table 7.3, together
with the decided-upon rankings of the branching point options. An example of a displacement
calculation is shown in Table 7.4. When ranking, in all cases except one the decisions weremade
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based on the f̂p sum displacements, as the t̂p sum displacements usually corroborated them, and
so the trend estimators t̂rfp and t̂rtp were not given much importance. The one exception to
this was the decision to place GP in the 1st rank and RF in the 2nd, even though RF has a lower
f̂p sum displacement. This was chosen because RF obtained the worst t̂p sum displacement out
of theAlgorithm branching point (see Section 6.6.1), whereas the sum displacements for GP are
more well-balanced. Of note too is that for the Optimization and Categorization branching
points, both the best branching options have the worst trends.

Configuration name f̂p t̂rfp t̂p t̂rtp
b2b_RF_sans_prep 0.20 4 0.75 4
b2b_GP_cat_MDS 0.22 4 0.81 4
b2b_RF_cat_prep 0.22 3 0.77 3
b2b_RF_cat_MDS 0.22 4 0.75 4
b2b_GP_cat_SFFS 0.22 4 0.81 3
b2b_GP_cat_prep 0.23 4 0.81 4
b2b_RF_cat_SFFS 0.23 4 0.77 3
b2b_SVM_cat_MDS 0.24 4 0.81 3
b2b_SVM_cat_prep 0.25 4 0.79 2
b2b_GP_sans_prep 0.25 4 0.80 4
b2b_GP_sans_SFFS 0.25 4 0.80 4
b2b_GP_sans_MDS 0.25 4 0.80 4
b2b_RF_sans_SFFS 0.25 4 0.75 4
b2b_RF_sans_MDS 0.25 4 0.75 4
b2b_SVM_cat_SFFS 0.26 4 0.80 3
b2b_kNN_cat_prep 0.27 3 0,78 3
b2b_kNN_cat_SFFS 0.29 3 0.77 4
b2b_kNN_cat_MDS 0.30 3 0.78 3
b2b_SVM_sans_SFFS 0.30 4 0.85 4
b2b_SVM_sans_prep 0.30 4 0.85 3
b2b_SVM_sans_MDS 0.30 4 0.80 3
b2b_kNN_sans_prep 0.30 4 0.75 4
b2b_kNN_sans_SFFS 0.30 4 0.75 4
b2b_kNN_sans_MDS 0.30 4 0.75 3

Table 7.2: Resulting estimator values from graph evaluation and weighted av-
eraging. The highlight colors are a simple visual indication of how “good” each

of the values is, with blue being “better” than green.

b2b scenario estimator sum displacement
rank Algorithm f̂p t̂rfp t̂p t̂rtp
1 GP -0.13 1.0 0.12 2.0
2 RF -0.18 0.0 -0.17 1.0
3 SVM 0.11 0.8 0.19 -3.0
4 kNN 0.21 -2.0 -0.14 0.0

estimator sum displacement
rank Optimization f̂p t̂rfp t̂p t̂rtp
1 prep -0.05 -0.7 0.02 -1.0
2 MDS 0.02 0.3 -0.04 1.0
3 SFFS 0.04 0.3 0.02 0.0

estimator sum displacement
rank Categorization f̂p t̂rfp t̂p t̂rtp
1 cat -0.16 -2.0 0.03 -3.0
2 sans 0.16 2.0 -0.03 3.0

Table 7.3: Rankings obtained from the branching point tests, together with
the obtained sum displacements. Note that for f̂p lower sum displacements
are better, while for the rest of the estimators a higher sum displacement is

preferable.
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Group Group avg. GP RF SVM kNN
sans_prepsans_prepsans_prep 0.263 -0.013 -0.063 0.038 0.038

cat_MDScat_MDScat_MDS 0.244 -0.028 -0.028 0.001 0.055
cat_prepcat_prepcat_prep 0.239 -0.014 -0.023 0.006 0.031
cat_SFFScat_SFFScat_SFFS 0.250 -0.029 -0.022 0.015 0.036

sans_SFFSsans_SFFSsans_SFFS 0.275 -0.025 -0.025 0.025 0.025
sans_MDSsans_MDSsans_MDS 0.275 -0.025 -0.025 0.025 0.025

f̂p sum displacement -0.13 -0.18 0.11 0.21

Table 7.4: Example sum displacement calculation, for the f̂p estimator, in the
Algorithm branching point. The configurations are joined into groups where
only the Algorithm differs between configurations and the group average is
calculated for each. Then, the group average is subtracted from the f̂p values
of each configuration. The sum of the obtained deviations is then taken for

each Algorithm.

Finally one more important detail is that MDS optimization fares slightly better for cat con-
figurations than prep does (see Table 7.5), even though overall prep still outperformsMDS.

Configuration name f̂p t̂rfp t̂p t̂rtp
b2b_GP_cat_MDS 0.22 4 0.81 4
b2b_RF_cat_prep 0.22 3 0.77 3
b2b_RF_cat_MDS 0.22 4 0.75 4
b2b_GP_cat_prep 0.23 4 0.81 4

Table 7.5: MDS optimization faring slightly better than prep for cat config-
urations. The kNN, SVM and SFFS configurations were removed for clarity.

Since they performed worse, they should contribute less to the decision.

7.1.2 ISO scenario results

The approach to balancing and the performance of the cat configurations was the same here as
the one described in Section 7.1.1. Table 7.6 lists the number of datapoints. The results for all
configurations are listed in Table 7.7. Sum displacements and rankings listed in Table 7.8.

b2b # datapoints W

N10 3774 0.40
N11 1266 0.13
N20 1282 0.14
Y10 1168 0.12
Z99 1952 0.21
ISO 9442 1.00

Table 7.6: Numbers of datapoints for each category and for sans, togetherwith
the weightsW used when averaging the performance parameters to obtain the

performance parameters of the cat configurations.
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Configuration name f̂p t̂rfp t̂p t̂rtp
ISO_RF_cat_MDS 0.34 2 0.72 3
ISO_RF_cat_SFFS 0.34 2 0.69 3
ISO_RF_cat_prep 0.34 2 0.70 3
ISO_GP_cat_prep 0.35 2 0.77 3
ISO_GP_sans_MDS 0.35 2 0.80 4
ISO_RF_sans_prep 0.35 3 0.75 4
ISO_RF_sans_SFFS 0.35 3 0.75 4
ISO_RF_sans_MDS 0.35 1 0.75 4
ISO_kNN_sans_SFFS 0.35 4 0.70 3
ISO_kNN_sans_MDS 0.35 4 0.70 3
ISO_GP_cat_SFFS 0.35 2 0.78 3
ISO_kNN_cat_SFFS 0.36 3 0.70 2
ISO_kNN_cat_MDS 0.36 3 0.69 2
ISO_GP_cat_MDS 0.38 2 0.78 3
ISO_kNN_cat_prep 0.39 2 0.69 2
ISO_GP_sans_prep 0.40 1 0.80 4
ISO_GP_sans_SFFS 0.40 1 0.80 4
ISO_kNN_sans_prep 0.40 4 0.70 3
ISO_SVM_cat_SFFS 0.41 2 0.81 3
ISO_SVM_cat_MDS 0.41 2 0.79 3
ISO_SVM_cat_prep 0.43 2 0.80 3
ISO_SVM_sans_prep 0.45 3 0.85 4
ISO_SVM_sans_SFFS 0.45 3 0.85 4
ISO_SVM_sans_MDS 0.45 3 0.85 4

Table 7.7: Resulting estimator values from graph evaluation and weighted av-
eraging. The highlight colors are a simple visual indication of how “good” each

of the values is, with cyan being “better” than green.

ISO scenario estimator sum displacement
rank Algorithm f̂p t̂rfp t̂p t̂rtp
1 RF -0.21 -1.5 -0.19 1.5
2 GP -0.04 -4.5 0.18 1.5
3 kNN -0.06 5.5 -0.37 -4.5
4 SVM 0.31 0.5 0.39 1.5

estimator sum displacement
rank Optimization f̂p t̂rfp t̂p t̂rtp
1 MDS -0.05 -0.3 0.00 0.0
2 SFFS -0.03 0.7 0.01 0.0
3 prep 0.08 -0.3 -0.01 0.0

estimator sum displacement
rank Categorization f̂p t̂rfp t̂p t̂rtp
1 sans 0.01 1.0 0.07 2.0
2 cat -0.01 -1.0 -0.07 -2.0

Table 7.8: Rankings obtained from the branching point tests, together with
the obtained sum displacements.

When ranking, the same priorities were chosen as in Section 7.1.1. Again the t̂p sum displace-
ment for RF is one of the worst, even though it outperforms the other algorithms in regard
to the f̂p sum displacement. GP was ranked higher than kNN because GP outperforms it in
regards to true positive rate by a very significant margin, whereas their difference in f̂p is very
minor. In theCategorization ranking, precedence was given to the fact that sans outperformed
cat in every respect other than f̂p.
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7.1.3 Transfer to cost curve comparative test (P1B)

Summarily, it can be seen that the biggest differences in performance appear when comparing
the classification algorithms: RF and GP consistently outperform kNN and SVM. The choice
between RF and GP is more nuanced: the GP performance is more consistent throughout the
four estimators, while RF has very good f̂p and comparatively poor t̂p. The optimization results
are less disparate, but MDS seems to generally be the best optimization option, although for
b2b scenario sans configurations the prep optimization is preferable. The trend performance
of prep configurations is slightly worse than that of more optimized ones, unsurprisingly. More
alarming is that MDS has the same trend performance for the ISO scenario as prep does: this
will be elaborated upon in the discussion (Section 7.4). Finally for theCategorization branching
point the results are not decisive: their performance is not consistent between the two scenarios.

With these points in consideration, the following configurations advanced to the cost curve test:

• b2b_GP_cat_MDS;

• b2b_GP_sans_prep;

• b2b_RF_cat_MDS;

• b2b_RF_sans_prep;

• ISO_GP_cat_MDS;

• ISO_GP_sans_MDS;

• ISO_RF_cat_MDS;

• ISO_RF_sans_MDS.

As mentioned in Section 6.6.2, an additional classification algorithm was passed over into P1B,
where GP and RF vote on whether to classify the datapoints as 0νββ. This algorithm will be
referred to as GvR, and its addition yields 4 extra configurations:

• b2b_GvR_cat_MDS;

• b2b_GvR_sans_prep;

• ISO_GvR_cat_MDS;

• ISO_GvR_sans_MDS;

7.2 Cost curve comparative test (P1B)
Cost curves were generated for the 12 configurations (8 selected + 4 extra) transferred from P1A,
according to the specifications referred to in Section 6.6.3. The obtained results for the b2b and
ISO scenarios are shown on pages 138 and 139 respectively, and the selection of qualifying
configurations is described on page 140.
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b2b scenario results

The resulting cost curves are displayed in Figure 7.1, together with the “no classifier” case. The
cost curves with the alternative normalization described in Section 6.6.3 are displayed in Fig-
ure 7.2. The best classifier for each operating point PC(P) is the one that matches the “lower
envelope” curve.

Figure 7.1: b2b scenario cost curves for the b2b configurations that qualified
for P1B, normalized to max fn,fp {ε[Co]}.

Figure 7.2: b2b scenario cost curves for the b2b configurations that qualified
for P1B, normalized to the “no classifier” case.
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ISO scenario results

The resulting cost curves are displayed in Figure 7.3, together with the “no classifier” case. The
cost curves with the alternative normalization described in Section 6.6.3 are displayed in Fig-
ure 7.4. The best classifier for each operating point is the one that matches the “lower envelope”
curve.

Figure 7.3: ISO scenario cost curves for the b2b configurations that qualified
for P1B, normalized to max fn,fp {ε[Co]}.

Figure 7.4: ISO scenario cost curves for the b2b configurations that qualified
for P1B, normalized to the “no classifier” case.
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Transfer to ROC curve quantitative test (P2)

As can be seen in the above figures, all the remaining configurations have roughly similar per-
formance, but unlike in P1A, some are clear winners. The most striking aspect of the above
figures is the very clear divide between the performance of the cat configurations and the sans
ones, especially in the ISO case: every sans configuration outperforms every cat configuration
for almost all PC(P) values. It is also clear that the GvR algorithm contributes little to the
comparison, as its performance mostly appears in between those of GP and RF. It is also inter-
esting that RF performs better than GP for cat configurations, but the best configuration for
both scenarios is the sans one with GP. Finally it can also be observed that for PC(P) . 0.2
(low probability in deployment conditions of a 0νββ event compared to 1e events, see Sec-
tion 5.2.4) all configurations display roughly the same performance as the “no classifier” case,
implying that for the ISO scenario the choice of using a classifier to aid in counting statistics
would not give any discernible increase in performance over not using any classifier at all.

With these points in consideration, the following configurations advanced to the ROC curve
absolute performance test:

• b2b_GP_sans_prep; • ISO_GP_sans_MDS;

7.3 ROC curve quantitative test (P2)
ROC curves were generated according to the procedure in Section 6.6.4 for non-categorized
dimensionality-reduced data labeled with the Gaussian process classifier. The resulting ROC
curve for the b2b scenario is shown in Figure 7.5, yielding AUCb2b = 0.87+0.10

−0.12 at 90% con-
fidence, and the ROC curve for the ISO scenario is shown in Figure 7.6, yielding AUCISO =
0.78+0.09

−0.11 at 90% confidence. Figure 7.7 shows the sample pdfs (ps(L0νββ) from {fn6.6j} on
pg. 127) and smoothed average pdfs for the b2b scenario, and Figure 7.8 shows the sample pdfs
and smoothed average pdfs for the ISO scenario. Note how in the ISO scenario a large part of
the 1e pdf falls into the same likelihoods as the 0νββ pdf, around 0.6 < L0νββ < 0.95.
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Figure 7.5: ROC curve for b2b_GP_sans_prep. The thin black curves are the
sample ROC curves, and the thin dashed curves are the sample confidence

bands. The bold lines are the estimates.

Figure 7.6: ROC curve for ISO_GP_sans_MDS. The thin black curves are the
sample ROC curves, and the thin dashed curves are the sample confidence

bands. The bold lines are the estimates.
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Figure 7.7: Sample pdfs and smoothed average pdfs for the b2b scenario.

Figure 7.8: Sample pdfs and smoothed average pdfs for the ISO scenario.
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7.4 Discussion

7.4.1 Analysis of the results

Several observations can be made from the obtained results. They are listed below, along with
justifications and implications for each.

Therewas a sharpdrop inperformancewhen changing from theb2b scenario
to the more realistic ISO scenario.

Justifications
• The average AUC fell by 0.09, from 0.87 to 0.78 (Figures 7.5 and 7.6), meaning
that in the ISO scenario it is less probable that 0νββ will have a higher L0νββ

than 1e.

• In the ISO scenario the L0νββ pdf given by the classifier for the 1e class has
two peaks, one of which overlaps with the peak for the 0νββ class (Figures 7.7
and 7.8).

Comments
A likely reason for this drop in performance is that the transition to isotropic ini-
tial emission of the primary electrons made the two blobs of the 0νββ events be
nearly horizontally oriented more often than when the primary electrons were
always emitted directly up or down.

While the 1e events have long tracks that allow the position of the blob to not
depend very strongly on the primary electron emission direction, the primary
electron tracks for 0νββ events aremuch shorter, meaning that the blob position
will be less random than in the 1e case. While the initial emission direction was
favorable, this led to a good distinction between thewaveforms of the two classes
of event, but when the emission direction became random, the characteristic
details of the 0νββ waveforms will have disappeared, while mostly preserving
the details of the 1e waveforms.

Evidence for this explanation can be seen in Table 6.5, where the category dataset
sizes remain roughly the same for 1e events but are severely affected for 0νββ.
It may seem strange then, that the 0νββ classifier pdf only experiences a minor
change in shape, whereas the 1e pdf becomes severely distorted, but this can
simply indicate that the 0νββ datapoints migrated in feature space onto a well-
defined territory that happens to be shared by many 1e datapoints. Then the
classifier would be usually correct in identifying 0νββ events, but would also be
forced to label 1e events as 0νββ ones.

GP was the best-performing classifier algorithm out of the four tested.

Justifications
• On the convergence test, GP and RF are seen to consistently outperform kNN
and SVM (Table 7.3 and 7.8).

• On the cost curve test, GP is seen to consistently outperform RF (Figure 7.2
and 7.4).

Comments
It is interesting that even though RF tended to have better fp, GP is still the best
option in deployment. A possible explanation for this is that GP has more ease
with decision boundaries that bisect more than one axis, e.g. diagonal or curved
decision boundaries, since RF is still constructed around decision trees.
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Categorized data underperformed relative to non-categorized data.

Justifications
The expected cost of using categorized data was consistently higher than that of
non-categorized data (Figure 7.2 and 7.4).

Comments
• In the convergence test this was not immediately apparent, although the poor
trend estimator displacement sums already suggested that categorization may
be a questionable approach.

• It should be noted that for theN11,N20 andZ99 categories the classifiers tended
to ouperform the non-categorized data, while the other categories generally un-
derperformed.

• It is not impossible that the categorized data underperformed merely due to
poor statistics, considering that N11, N20 and Z99 tended to be fairly large
classes. Before concluding that categorization is fundamentally unusable, tests
with more datapoints or fewer categories should be made.

Dimensionality reduction seemed to result in a minor improvement to the
performance of the classifier when the dataset formed a simple geometry in
feature space.

Justifications
In the convergence test, the classifier performed slightly better following dimen-
sionality reduction, except with non-categorized data in the b2b scenario (Ta-
bles 7.3, 7.5 and 7.8).

Comments
• The displacement sums of f̂p , t̂rfp, t̂p and t̂rtp for the Optimization branching
point were generally the closest to zero out of all the branching points, suggest-
ing that the use of data optimization had only a very minor effect on perfor-
mance.

• The fact that the ISO scenario showed a consistent preference for dimension-
ality reduction while in the b2b scenario that preference only appeared in cat-
egorized data may suggest that the chosen dimensionality reduction algorithm
was removing some decisive details in the feature space geometry of the dataset.
The reasoning is as follows. Given that the ISO scenario performed worse than
b2b, it is intuitive to suppose that its feature space geometry would be simpler
than that of the b2b scenario: as in, there would be fewer decisive details in the
ISO dataset geometry than in the b2b dataset geometry. Obviously the geometry
of categorized datasets is simpler, as that was the goal of categorization. By re-
ducing the dimensionality of the dataset, the feature space geometry is projected
onto just a subset of the original features, and so there is the risk that certain
small details are lost during optimization.

• Nonlinear dimensionality reductionmethods are capable of “exploding” geome-
try onto a small number of dimensions without having it overlap. If the problem
was that decisive details were projected onto the same region as other data, then
it could be useful to try using nonlinear dimensionality reduction methods in
future work.
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For deployment with the ISO scenario, it makes no difference whether to use
binary classification or not.

Justifications
In the ISO scenario cost curve, the expected cost for low PC(P) is the same
when using a classifier as when labeling all test data as 1e (Figure 7.4).

Comments
• There is little purpose in advancing to the DEC0 (see Table 6.1) scenario be-
fore either makingmajor modifications to the classifier design, or makingminor
modifications to the design of the detector.

• If the balancing between 1e and 0νββ in deployment were better, then the clas-
sifier would significantly improve the counting statistics of the detector.

7.4.2 Discussion about methodology

At many points in this work, choices were made that guided it down a specific path, and so it
is important to discuss why certain decisions were made, considering the possible outcomes of
the alternatives. Several stages in this work required the development of new tools or methods,
so this Subsection discusses the taken methodological choices. It is presented as a listed discus-
sion, separated into the categories of simulation, data extraction, classification algorithm, and
performance assessment.

SIMULATION

Does the simulation accurately represent the topologies and the LZ de-
tector?

It is accurate within the requirements of each studied scenario. There are some
aspects that were either omitted or simplified, and some slight inaccuracies, but
care was taken to ensure that they would not affect the classifier performance,
the idea being that as the performance would be tested with increasingly accu-
rate simulations, the classifier performancewouldworsen until the classifier was
ineffective. For a more in-depth description of the inaccuracies, see Section 6.3.

Would a larger dataset significantly improve the performance?
• For uncategorized data:

No. The convergence test showed that the performance in uncategorized data
was already varying very little for the larger sample sizes. Supposing that the
performance would continue behaving the same way, then a sample size sev-
eral orders of magnitude larger would be necessary before the performance
changed significantly.

• For categorized data:
Possibly: the sample size for some of the categories was very small and they
failed to converge.

Would performance in deployment improve by using the estimated
real-life balancing?

Although it is true that classifiers generally perform best in deployment when
the training data and deployment data have the same balancing [210], in this
case, with d = 145.6mm and assuming T 0νββ

1/2 ∼ 1026 years, the deployment
balancing would yield∼ 103 1e events for each 0νββ event, so making a dataset
with enough 0νββ events with the same time constraints and using the same
methods would be unrealistic.
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Could a larger dataset be generated more quickly using PMT light re-
sponse functions?

The light response function is dependent on the detector geometry and materi-
als, so before a dataset can be generated using light response functions, it must
be generated via photon tracing first. Additionally, the obtained light response
function must also be validated before being applied for testing of the classifiers
(Section 6.3.3).

Would the use of multichannel waveforms instead of channel sums im-
prove performance?

It was determined in a crude preliminary test that it was more common in the
case of 1e events than in the case of 0νββ events for PMT channels an equal
distance away from the event origin to display a small difference in pulse area
(different at most by a factor of ∼ 0.85). It should be noted that, like in the case
of the event simulation described in Section 6.3, this preliminary test was per-
formed using the diffusion coefficients calculated according to the diffusion data
listed in the LZ TDR [109], and it was later determined that the listed cathode
transverse diffusion value was much smaller than measurement and prediction
data (see Section 4.1, pg. 55). With a more accurate transverse diffusion value,
together with the funnelling effect of the gate grid, it is expected that the PMT
channel distinction will wash out significantly, though possibly not completely.
In future work, the option of using multichannel waveforms should be investi-
gated further.

Would it be viable to use the classifier closer to the surface of the LXe?
Although the smaller diffusion would increase the performance of the classifier,
above the fiducial volume the background increases exponentially, so deploy-
ment conditionswould become evenmore unfavorable. Although the performed
tests do not allow to answer this question confidently, most likely the counting
statistics for d < 145.6mmwould not be affected by the inclusion of the classi-
fier either.

DATA EXTRACTION

Is the used feature set the best possible?
The current parameterization is quite descriptive, the mapping onto feature
space is lossless, and in case some features are redundant, feature selection is
capable of removing them. So if the used feature set is not the best possible,
then it is still very good. However it could be that some additional, nontriv-
ial features would be useful, and once multiple channels are used instead of the
channel sums, new parameters will have to be extracted. This consideration was
recognized during the construction of the data extraction framework, and so it
was designed tomake the addition and removal of parameters and features quite
easy.
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CLASSIFICATION ALGORITHM

The algorithms were used with their default parameters. Would a dif-
ferent parameter set improve performance?

It is very likely that the algorithm parameters are not ideal: notably, SVM and
RF classifiers typically require extensive calibration procedures before achiev-
ing optimal performance. However it is also unlikely that a different choice of
parameters would improve the performance dramatically enough to make the
classifier affect the deployment counting statistics in the ISO scenario. Still, the
parameterswill have to be changed in futurework, and the sameperformance as-
sessment method from Section 6.6 can be used to select the best parameters. Ad-
justing parameters for theGaussian Process classificationmay prove difficult due
to it being a slow and resource-intensive algorithm, however it may be possible
to circumvent this problem by using sparse GP approximations [271], which re-
tain the favorable characteristics of GP, but with faster computation time. These
should be investigated in future work.

Is the selected algorithm the best possible?
Referring to the classifier comparison in Figure 5.2, the selected classifiers were
the ones that appeared to show the most promising behavior when constructing
the decision boundary. However it is possible that some other algorithm could
yield a better performance than the ones tested, and so in future work the usage
of alternative algorithms should be investigated.

PERFORMANCE ASSESSMENT

Is the convergence test in its current design a legitimate way of compar-
ing classifiers?

Although it is not very reliable for catching subtle performance differences be-
tween different configurations, it is a fast method of highlighting the obvious
differences, which is for what the test was used. It allowed to eliminate all kNN ,
SVM and SFFS configurations. The decision to also eliminate most of the prep
datasets is reasonably well justified for ISO data, given that it consistently under-
performed compared to both MDS and SFFS (Tables 7.7 and 7.8), but for cat
configurations in b2b data it may seem like a more questionable choice, since
the slightly better performance ofMDS data compared to prep data in that case
could have just been a statistical fluke.

Are the ROC confidence bands correctly estimated?
• 99% CL sample confidence bands:

May be slightly wider than necessary [267], but should otherwise be accurate.
The construction was originally designed for Gaussian likelihood pdfs [268],
and the obtained likelihood pdfs are not Gaussian (Figures 7.7 and 7.8), but
the construction is based on the Kolmogorov-Smirnov statistic, which does
not depend on the distribution in question, so the shape of the likelihood pdfs
should not significantly affect the effectiveness of the method.

• 90% CL final confidence band:
Obviously toowide {fn7.4a}. The 90%CL is better interpreted as theminimal
confidence level of the band. In future work, further research will be done on
how to combine the sample confidence bands.
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7.4.3 Implementation of the binary classifier in LZ

From the observations in Section 7.4.1 it can be concluded that if the detector construction re-
mains as it is right now, then there is no benefit to implementing the classifier in its current form
into the LZ data analysis pipeline: due to the high background, the counting statistics would
remain roughly the same, with or without the classifier. In order to make the classifier improve
the LZ counting statistics, either the performance has to become better, or the deployment data
has to become more balanced.

Improving the balancing of the deployment data corresponds to increasing the mass of 0νββ-
active material, Mββ , or to decreasing the background event rate. Background reduction is
not practicable: being LZ’s primary goal to search for WIMPs, with background reduction as
crucial there as it is for 0νββ discovery, it can be safely assumed that the background is already
as low as it can realistically get. As forMββ , although it could be increased significantly by using
enriched Xe instead of natural Xe {fn7.4b}, acquiring the necessary Xe would be prohibitively
expensive {fn7.4c}, as well as moving the schedule of the entire experiment back by at least a
few years {fn7.4d}. With these considerations, the best solution seems to be to improve the
performance of the classifier.

To improve the classifier performance, the overlap of the two classes in feature space must be
smaller. As can be seen in Figure 5.1, the difference in shape between the 0νββ waveforms
and the 1e waveforms is subtle, and often they look the same. Electron diffusion frequently
made the resulting waveforms for both classes appear as just a single Gaussian peak with little
distinguishing detail. Comparing the PMT channels in the array shows some potential, albeit
limited, and is expected to worsen considerably in more realistic scenarios, especially when
accounting for the gate grid. While these two crucial points— diffusion and xy discrimination
— are not addressed, any improvements to the classifier design will have a limited effect on its
performance.

Regarding diffusion, it can be seen from the data in Figure 3.14 that the longitudinal diffusion
coefficientDL decreases for increasing values of drift field Edrift. If the Edrift value in LZ were
increased above the design goal field of 650V/cm, then it would be possible to obtain a DL

below the 20 cm2/s used in this work. This could be achieved by feeding the cathode grid (Fig-
ure 4.1) a HV even lower than the design goal −100 kV, however not only would that require
a major redesign of the cathode HV delivery system, as the power supply is rated at −120 kV,
but it would also cause spurious electroluminescence, which could blind the detector toWIMPs
(Section 3.3 of [109]), making the LZ detector incapable of completing its primary science goal.
This consideration renders this approach impracticable.

{fn7.4a}—This can be shown by supposing that two 99%CL independent sample confidence bands come out
identical: according to the method used, the probability that the real ROC curve is inside some sample band A is
0.99, but the probability that the real ROC curve is inside bandA and also inside bandA is 0.99× 0.99 = 0.9801,
clearly an absurd result.

{fn7.4b} — An enrichment of 90% in 136Xe, like for nEXO [123], would result in a roughly 10-fold increase
in the 0νββ rate. Supposing T1/2 = 1.06 × 1026 years, this would place PC(P) closer to ∼ 0.5 in the fiducial
volume (see Section 4.2).

{fn7.4c} — In 2019, the projected Xe market price was ∼ 3.70 $/g [121][122]. Supposing that an additional
63 t of Xe would need to be procured to obtain a 90% enrichment, then just the procurement alone would cost
∼ 240M$.

{fn7.4d}—Aprocurement of this large a quantity of Xewould raise the same concerns of disrupting themarket
as were raised in the nEXO procurement, namely it forces the procurement to be done over a long period of time.
Additionally, the world Xe enrichment capacity is in the order of only a few tonnes per year [123].
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On the other hand, it makes attractive the use of LZ’s reverse-field region (RFR) for 0νββ de-
tection. It is a 137.5 mm thick gap between the cathode grid and the bottom PMT array (see
Figure 4.4), filled with LXe, with an upward-directed drift field of 3-6 kV/cm {fn7.4e} (Fig-
ure 7.9, also Section 3.2.1 from [109]). The RFR has almost 60 kg of 136Xe and a background
event rate slightly lower than that of the top of the detector. An option could be to install read-
out grids slightly above the bottom shield grid, thus forming a miniature liquid-phase TPC of
similar design to EXO-200 [272] below the regular two-phase TPC. It should be practicable
provided that the grids are sufficiently transparent to WIMP recoil photons. It should be noted
that EXO-200 achieved a resolution at Qββ of ∼ 2.90% (FWHM) [43], and it would be ex-
pected that the energy resolution in the RFR would be similar or better. Considering that the
value is already higher than the ∼ 2.36% (FWHM) resolution of LZ, the background rate can
be expected to increase considerably, but the improvement in discrimination thanks to a much
lowerDL could be very significant, and so it may an interesting option to investigate.

Figure 7.9: LZ reverse field region, together with its corresponding grids.
Source of images: [109]

Regarding xy discrimination, the design of the current PMT array and the presence of the gate
grid hinder its effectiveness. Although the Hamamatsu low-radioactivity PMTs are essential to
amplify the weak signals from WIMP recoils, the identification of the very strong 0νββ sig-
nals is instead worsened by the large PMT center-to-center spacing of 93mm (Section 6.3.2).
By using an array of smaller and more compact photosensors, the xy discrimination could be
significantly improved. The MEG experiment is one that has had some success in improv-
ing position resolution by transitioning from using an array of 2-inch PMTs for detecting LXe
photons to 6mm × 6mm Hamamatsu multi-pixel photon counters when moving to its 2nd
generation design, although the obtained dark count rate of 10 − 100Hz could cause compli-
cations for WIMP searches [273]. But the problem remains of funnelling due to the gate grid.
It could potentially be mitigated by using a different grid shape, but careful study of this matter
is necessary.

It should be noted that the current classifier design is not ideal: there are many aspects in which
it can still be improved. The design of its framework and underlying software was made to
be modular, so that any step could be easily exchanged or improved in future work. Obvious
avenues for improvement include the usage of different classification algorithms (for example

{fn7.4e}—This is competitive with the EXO-200 design maximum drift field of 3.7 kV/cm [272].
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boosted classifiers) or more refined data optimization methods. One aspect that was not very ex-
panded uponwas filtering of the raw signal: only smoothingwas applied. A promising approach
to explore in future work is to try removing some of the diffusion blur via deconvolution, possi-
bly even allowing for some limited topology reconstruction in the best case. As an example, by
using track reconstruction based on the Richardson-Levy deconvolution algorithm, the NEXT
collaboration was capable of improving their background rejection in the NEXT-White TPC
roughly threefold compared to previous benchmarks [274].

7.4.4 Other applications of the developed classifier

Most straightforward is the application of the classifier to other TPC 0νββ experiments. The
XENONnT experiment uses a very similar design to LZ [143], so the same classification frame-
work can be translated directly, only requiring a new training dataset to account for the different
PMT array and detector dimensions. The nEXO experiment does not have a gas gap and uses
charge collecting tiles instead of a PMT array [123], but otherwise the classifier can also largely
be reused for it as well. There is even an additional advantage here: since there are no electrolu-
minescence photons to simulate in nEXO, simulating each event should be almost∼ 103 times
faster, so making a large dataset would be much more straightforward. The sensitive elements
of the charge collecting tiles are square strips with a 3mm center-to-center distance, so xy dis-
crimination in nEXO should be very strong. NEXT-100 and PandaX-III both have a similar
design, with a GXe sensitive volume coupled with a low-resolution detector array: SiPMs on
NEXT-100 [132], and micromegas on PandaX-III [275]. Building a dataset for either would
pose the same challenges experienced in LZ, as both produce a large number of particles to
track. It should also be noted that nEXO, NEXT-100 and PandaX-III all already have projects
in progress for background discrimination using machine learning.

The developed binary classification framework allows for the fast preparation of time-series
training / test data and comparison of several different classification algorithms and data pro-
cessing methods. It allows for the simultaneous testing of a broad range of approaches to a
single classification problem, comparing advantages and assessing overall effectiveness. Addi-
tionally, it is capable of estimating classifier performance for balancings of the input data other
than the ones used. As such, it can serve as a versatile tool for viability studies, provided that
the input data is waveform-like.
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Chapter 8

Conclusion

The original goal of this work was to test how well the LZ TPC can discriminate background
events from 136Xe 0νββ events in the LXe sensitive volume using topology reconstruction:
most background events are rejected due to some combination of incorrect energy, wrong type
of recoil or coincident energy depositions (e.g. with the veto detectors), leaving almost only ∼
2.459MeV single primary electron events due to photoelectric effect interactions by 232Th and
238U γ particles as the remaining background, which has a different topological signature than
that of 0νββ. During this preliminary research it was found that the short 0νββ blob distance
in LXe, coupled with the drift diffusion, grid distortion and the poor imaging resolution of the
PMT array, would make LZ unable to reconstruct event topologies, requiring an alternative
approach for rejecting 1e events. The arrived-at solution was to parameterize the accepted
S2 waveforms and then use a binary classifier to attempt to reject events that are labeled as
background, with an increased focus on the time series component of the waveforms (along z).

Constructing the classifier meant preparing a training dataset and selecting the most appropri-
ate binary classification algorithm. To prepare the dataset, waveforms from a large number of
0νββ and 1e events were parameterized and then mapped onto feature space. To do this, the
waveforms themselves had to be produced first via Monte Carlo simulation. To diagnose the
0νββ discrimination potential in LZ, best-case scenarios were simulated first, with iterative
increases in statistical and detector accuracy added later, the starting point being events with
vertical primary electrons. During preliminary testing it was also found that the signals from
each PMT channel for the same event were usually roughly the same, so to simplify develop-
ment the parameterization was performed on the channel sum, leaving multichannel parame-
terization for future work. In total two scenarios were tested before the classifier performance
became too poor to continue.

The simulation first generated a deposition of drift electrons in LXe due to the 0νββ and 1e
primaries using Geant4, and then electron diffusion and drift, as well as electroluminescence
photon tracks and the resulting binned time series of photons detected by the PMTs were all
produced in ANTS2. The large number of photon tracks, & 8 × 107 per event, meant that
the simulation was slow to compute: ∼ 10min per event, using ∼ 3 GB of RAM. This meant
that a large enough dataset would take a very long time to produce on a single machine. To
address the problem, a Docker image of the simulation suite was made and distributed among
a number of computers, as well as the Infraestrutura Nacional de Computação Distribuída. In
total each tested scenario had a dataset of ∼ 104 waveforms, with roughly equal balancing of
the two classes, always using a single depth: d = 145.6mm.

Themorphology of the obtained waveforms was unpredictable and the differences between the
two classes are subtle. In order to reduce the overlap of the two classes in parameter space, a
large collection of relevant morphological parameters was extracted from each waveform, ex-
panding upon the parameterization performed by the LZ Analysis Package, leading to a large
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number of extracted features. The amount of features risked reducing classifier performance
due to the curse of dimensionality. To address this, dimensionality reduction was employed.
Datasets without dimensionality reduction were also preserved, so as to compare the perfor-
mance of the two options. It was supposed that dimensionality reduction would perform better
on small subsets of the data, so the datasets were subdivided according to themorphology of the
waveforms, again preserving the non-subdivided versions as well for performance comparison.

Binary classification algorithms were selected during preliminary research according to a clas-
sifier comparison done by the scikit-learn development team. The four chosen algorithms
were: k-nearest neighbors; support vector machines with RBF kernel; Gaussian process; and
random forests. They were used as defined in the performance comparison, with no changes to
their parameters. A large set of configurations had to be tested, so a fast two-step comparison
procedure was employed: first all configurations were compared with a performance conver-
gence test, eliminating the underperforming ones, and then the remaining configurations were
compared via their resulting cost curves, leaving just the best configuration for each scenario.
Its performance was then assessed in absolute terms using an ROC curve.

The comparison procedure for both tested scenarios singled out the Gaussian process classi-
fier as the best-performing one. It was also determined that the non-subdivided versions of
the data performed consistently better than the subdivided ones, and dimensionality reduction
was shown to produce a minor improvement in performance. The ROC curve of the verti-
cal primary electron scenario yielded an AUC of 0.87+0.10

−0.12 at 90% confidence, with a minor
improvement in background rejection predicted for the expected signal-to-background ratio
at the tested depth in LZ. However, the second scenario tested, with equal-energy primaries
emitted isotropically, yielded an AUC of just 0.78+0.09

−0.11 at 90% confidence, and clearly no pre-
dicted improvement in LZ background rejection. In effect, it can be concluded that the current
implementation is not viable for application into the LZ background cuts.

The main goal of future work should be to make the two classes of event appear more distinct
in feature space. For this purpose, the most promising approach is the addition of a waveform
deconvolution step prior to parameterization. Next, improvements to the parameterization,
feature extraction, data optimization and performance assessment framework should follow,
namely with the introduction ofmultichannel (xy) parameterization and nonlinear dimension-
ality reduction, and with the automatization of certain parts of the performance convergence
test. Finally, the classification algorithm parameters should be optimized for the task, and at-
tempting the use of other classification algorithms may prove promising. Of special interest is
the use of sparse Gaussian process approximations instead of the Gaussian process classifier, as
it is expected to significantly reduce computation time without a performance penalty. If these
improvements allow the classifier to be implemented into the LZ background cuts, then sim-
ulation representativity can be increased as planned: first by making the event statistics more
accurate; and then by increasing the accuracy of the detector simulation.
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