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Abstract

The swift expansion of urban areas and the rapid advances of technology, led to the tech-
nological entanglement of cities, making them dependent in a variety of sectors on the
systems that control them. With the dilerknt sectors in a city becoming controlled by
machines, the need to monitor them has increased giving rise to an opportunity to have
the information centralized so that city leaders can take more coherent and logical deci-
sions. These so-called Smart Cities have been in constant evolution bringing about new
Internet of Things devices and new data sources generating more and more information as
the years go by. The main issue with this exponential evolution is that legacy ingestion
systems cannot cope with the rise in the amount of data that is generated.

This work had in view Ubiwhere”s Urban Platform ingestion issue and aimed to propose
a system that allows the gathering of data from the diLerknt sources that Ubiwhere has
and may have in the future whilst providing near real-time processing and delivery.

The following document proposes an architecture to solve Ubiwhere”s problem in collecting
and processing data from di Lerknt Smart City sources with emphasis on the analysis of the
di Lerknt options to solve the problem of data ingestion. Additionally, this thesis describes
the Rule mechanism developed for allowing users to provide their own custom rules so that
real-time data comparisons can be made given di [erent data sets for more preemptive and
e Lcieht decision making based on the result of the user-defined thresholds. Last but not
least, we demonstrate our solution using a real-world Smart Cities use case namely in the
sectors of Tra [c1
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Chapter 1

Introduction

The following report documents the work done in 2020/2021 during the internship in order
to conclude the Mastef s degree in Informatics Engineering speci cally in the branch of
Software Engineering. The internship was supervised by André Duarte, Head of Tech,
at Ubiwhere in conjunction with PhD, Fernando Barros, professor at the University of
Coimbra and MSc. The internship took place remotely at Ubiwhere which is a Portuguese
research and development software company created in 2007, headquartered in the city
of Aveiro with o ces in Coimbra, that specializes primarily in Sectors like Smart Cities,
Telecommunications and Future Internet.

The internship is focused on the development of a Proof of Concept System to solve a
current problem at Ubiwhere. This Proof of Concept consists of a base system that aims
to collect information from several data sources, in sectors like tra ¢ and environment, to
cleanse that data and to process it in real-time making the data available for use on other
Ubiwhere projects, and also consists of an additional Rule Mechanism built externally so
as to not only allowing users to make real-time comparisons, given the existing data sets
but also allowing them to de ne certain custom thresholds that if surpassed will trigger an
alarm to notify them.

The following chapter introduces the scope of the thesis, the motivation behind it and the
context of the problem. Afterwards, the main objectives and a brief description of the
structure of the document will be presented.

1.1 Context

Today 78% of European citizens live in cities, and 85% of the EU's GDP is generated in
cities [1]

With an ever-increasing world population, large expansions of the urban areas have be-
come more common creating numerous bigger cities. In addition to this, technology has
exponentially increased in the last years crawling deeper and deeper into our lives lead-
ing us to become ever more dependent on every little gadget we own and every piece of
technology that comes with it. With this approach of a once thought far fetched future
where every step we give we stumble upon man-made machines, the liveability within these
fast-growing cities has become dependent on technology to solve issues in numerous sectors
such as tra ¢ congestion, pollution, health, infrastructure and waste management [2]. As

a consequence, Smart Cities have emerged whilst being in constant development and evo-
lution with sources of information becoming more productive and available bringing about
the exponential increase in data generation which requires analysis and special attention
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from the city council so they can make better and more coherent decisions.

The main issues behind this major augmentation in data are the non-existence of an in-
tegration system that allows di erent data sources to be collected, cleansed, stored and
analysed and the inability of the already existing legacy integration systems to cope with
the collecting and processing of all the information from the many sources like the IoT
devices in time which ultimately promotes an incomplete analysis of the available data
and therefore prompting fraudulent analytic conclusions with misleading reports based on
clouded judgement. As we can see from [3], if data is incomplete or is inadequately pre-
pared, the chances of this generating additional problems and sequentially increasing the
costs are remarkably high.

To further demonstrate how this is in fact a constant problem in Smart Cities, we can take
a look at Santander, where in [4] we can see that the developed system which involves over
20 000 installed devices still does not have an Integration system to monitor the various
sectors in the city. Despite mentioning the clear bene ts that this system would provide,

it is stated throughout the document that this Smart City platform is not only the next
step for Santander but also one of their major challenges.

Alternatively If we look at Barcelona”s Smart City planning, they implemented a lot of
IoT devices and were inspired to create a cross-platform, later called Sentilo, for sharing
information between systems and to easily integrate legacy systems [5]. In the development
of Sentilo, the amount of data and its heterogeneous nature was taken into account to be
able to expand as the Smart City evolved.

1.2 Motivation and Problem

On top of the previously mentioned examples, Ubiwhere that is working in several di erent
sectors of Smart Cities decided to create a Smart City Platform called Urban platform that
aggregates data from di erent sources and domains and that allows cities responsible per-
sonnel to view the systems in a smart city in a holistic manner and also provides them with
a way to manage more easily di erent areas such as environment, energy, tra c, parking,
waste and others. This platform is essential for cities since it allows their departments
to have access to near real-time information which allows them to take more precise and
objective measures. For example, in emergencies, real-time analysis allows the police, re-
ghters or ambulances to arrive earlier where a few minutes may make the di erence in a
person's life. This ever-increasing volume of data, it's highly irregular nature and the need
to have information available as the sources continually generate it, constitutes a challenge
to Ubiwhere.

There are two problems with the Urban Platform at this moment, where the rst is the
ingestion of the data from the sources to the platform itself. The lack of a proper data
processing infrastructure is creating a bottleneck that is limiting the platform by either
not allowing the system to collect from all the di erent sources they could or by not deliv-
ering results to the Urban Platform in near real-time results. In addition, this hindrance

is mostly a restriction due to the fact that smart cities are in constant evolution with new
IoT devices always appearing which in the long run means that the amount of data will
just keep rising.

The second problem is related to the need to have real-time cross-analysis between the
available data sources due to the non-discardable latency that comes from the transport-
ing, analysing and decision-making stages which are required for the Urban Platform to
reach any conclusions. This is an issue since the platform integrates multiple data sources
and domains which cross-analysed can create the most diversi ed scenarios which in some
cases may be urgent to reach a certain conclusion.

2
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The main purpose of this internship is, therefore, to provide a Proof of Concept system
that will enable the ingestion, processing and integration of third party's data into Ubi-
where's platform in a Smart City environment while focusing on the ability of this system

to scale given the increasing di culties provided from the challenges of Big Data that are in
conformity with the ones in our system. Additionally, given that the system heavily relies
on the idea of integrating data from multiple sources and domains with the need to allow
users to make real-time comparisons between those data sets, this thesis will, therefore,
make the most out of the system in order to develop a rule-based mechanism in which
users will be able to provide their own rules so that the data can be assessed in real-time
allowing for quicker and more e cient preemptive decision making. This mechanism will
allow the system to assess and evaluate, user-de ned rules with their speci ed thresholds
while not only enabling the cross-analysis of the di erent data sets but also generating
alarms when the previously mentioned thresholds are surpassed.

1.3 Main Contributions

The value proposition of this thesis is based on the objectives and main contributions it
brings to not only the market but also the academic community. The main contributions
are:

Propose a Data Ingestion architecture that allows multiple data sources to be con-
nected to the existing platform.

Scalable Event-based system that allows not only data gathering, cleansing and pro-
cessing with near-real-time results as output but also cross-analysis through user-
de ned rules.

Development of a Rule Mechanism that allows system users to include or remove
rules, thresholds and alarms for analysing the information from the already integrated
data sets.

Development of an Alarm API that is used for warning the users that the alarms
were triggered in the main system.

Documentation in the best possible way to make the system as easy as possible to
integrate and to make the integration of more data sets possible.

1.4 Document Structure

In the following subsection, the content of each chapter will be explained:

" Chapter 2 - The results of the research done are displayed, contextualized and
explained. The topics present in this chapter are Smart Cities, the 10T, Big Data,
Data Ingestion and Data Processing and lastly there is a subsection about the existing
tools for the ingestion, processing and rule mechanism layer.

Chapter 3 - The requirements speci cation are presented and explained, namely the
scope, stakeholders, constraints and the functional and non-functional requirements.

" Chapter 4 - The thought process behind the technologies chosen and the proposed
architecture is presented after analysing the requirements.

3
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~

Chapter 5 - An analysis of the choices that had to be taken during the Imple-
mentation phase is presented, together with the problems that arose as well as the
respective solutions.

Chapter 6 - The tests performed on the system are presented together with the
results and analysis.

Chapter 7 - The methodology and planning of the internship is described. The main
tasks, the success criteria, the risk management and the tools used are introduced.

Chapter 8 - The process behind the internship and an analysis of what happened
during the two semesters is explained.
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Chapter 2

State of the Art

The area of study regarding this thesis is not new and the information available is bound-
less. In the following section, the outcome of the substantial study and analysis on the
concepts, technologies and studies of this ecosystem will be presented. This section begins
by contextualizing Smart Cities, 10T and Big data down to the challenges they arise. Con-
secutively, we will review the concepts of Data Ingestion and Data Processing. Last but
not least we will go over the existing tools focusing on the more modern ones that were
taken into consideration in the scope of this thesis.

It stands to reason that the presented analysis will be high-level whilst trying to convey as
much information possible.

2.1 Smart Cities

As can be seen in [1], nowadays most people live in cities which have become large set-
tlements that together with the technological advances, tend to work towards increasing
the quality of life of its citizens. As expressed in [2] the opportunity to live in these ever-
increasing cities depends on the ability of City authorities to deal with the issues of our
everyday lives like tra c congestion, pollution, health, infrastructure, and waste manage-
ment.

This rapid growth in technology and in the urbanisation of cities has led to the appearance
of the concept of Smart City [6]. Despite the fact that the Future we once thought to be
a far fetched idea, has been exponentially becoming the reality in which we live in, there
is still no clear theoretical de nition for what a Smart City really is [7].

This concept has been an issue that has been tackled in many di erent ways from several
perspectives and therefore, many have been the people who have tried to de ne it giving
rise to many variants that are often inconsistent and unclear which according to [8], ulti-
mately leads to the lack of a uni ed template of a smart city and the lack of a de nition
that appropriately manages all the variants.

While some believe that to be Smart, a city must be able to connect the Physical, IT, So-
cial and Business infrastructures to grasp all the information of a city [8], others support
that a city must be focused on the use of high-tech devices with the latest technologies in
order to connect people and information with the nal objective being the creation of a
more economically focused and innovative city with special attention to the quality of life
of its inhabitants and to the pollution that the city produces [8]. We can see from [8] the
sheer amount of di erent de nitions that there are.

More modern approaches have classi ed a Smart City as a System of Systems (City of Sys-

6
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tems) that consists of di erent sectors containing systems that collaborate with one another
promoting communication and interoperability to provide relevantly, well-fundamented in-
formation in real-time [9].

This attitude towards the concept in question not only allows people to move away from
the misleading idea that in order for a city to be smart it needs to have the most advanced
technology but also grants them the opportunity to focus on the ability of systems inte-
grating with each other creating a web that, as stated in [8], will allow machines to be more
productive minimizing the need to have people working with them which in end removes
the most faulty part of the equation.

Smart cities are considered to be extremely dynamic environments that are in constant de-
velopment and therefore, it is important to outline the challenges that these kinds of cities
bring. Due to the ever-growing cities and the constant evolution of technology [10], Smart
Cities have a tendency to become even more intelligent as new advances are made in the
eld. This means that not only more city sectors will come into contact with technology
but also the ones already existing will be upgraded which in the long run this leads to the
exponential growth in data. This increase in data not only consists of the sheer volume
of information but also the speed in which it is generated and the diversity provided from
new sources that will arise [11].

2.1.1 Smart Cities Examples

As previously mentioned, the concept of Smart City is not new and therefore, more and
more cities have taken steps in order to become more e cient, more intelligent and above
all, more comfortable for those who live in them. When looking for Smart Cities, quite a
few names appeared [8], however, there are a few that are arguably often considered pio-
neers in the area not only because they are in constant expansion with innovative projects
but also because they helped to set the ground on good practices and to this day serve the
purpose of being testing grounds for new technologies and devices [12].

Cities like Amsterdam [13], which was not only one of the rst European cities to start

a Smart City program in 2009 but also one of the cities that introduced the bene ts of
open-sourcing data. Amsterdam started by creating a database that was not only open
but also contained 12 000 data sets from all 32 districts primarily in the sectors of health-
care, trac and education. Nowadays, Amsterdam has created an integration platform
for managing the di erent Smart City projects, currently more than 70 projects, and to
share data which contains projects in seven di erent areas, namely, Infrastructure and
Technology, sustainable energy sources, transportation, governance and education, Smart
City academy, Citizen patrticipation and Circular City [14].

While Singapore [15] is not one of the rst Smart Cities or Smart Nation as they call them-
selves, having started in 2014, it is a name that stands out when it comes to innovative
Cities with its citizens in the core and not technology. Singapore has become one of the
most advanced cities when it comes to three sectors. First and foremost, security with
the deployment of over 52 000 surveillance cameras that are constantly obtaining infor-
mation from public spaces. Secondly, there is transportation, where government policies
in conjunction with technological alternatives to cars have encouraged the use of public
transports ultimately turning the city into a testing ground for newer and more environ-
mentalist approaches. Last but not least, administrative services with an application called
Mobile Government, allows citizens to have access to government services and information
anywhere, anytime [16].

One other name that constantly emerges when talking about Smart Cities is Barcelona
[17]. Having started in 2011, the city heavily invested in infrastructure which includes a
vast 0T sensor network in the sectors of transportation, energy and air quality. In order

7
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to improve the use of this network, a cross-platform named Sentilo [18] was developed in
order to integrate the applications and to better monitor the data. As we can see from
[19], a study with the aim of estimating the amount of data generated in the many sensors
throughout Barcelona that are concentrated in Sentilo, the sheer quantity of information
that is generated in a smart city is currently immense and with the advances in technol-
ogy, it will only increase in the near future. If Sentilo is not prepared for this exponential
growth, it will soon start decaying and become yet another legacy system that will not be
able to cope with information in real-time.

Taking a look at Santander [4], the Smart project was funded in 2010 and was highly
based on the idea of machine-to-machine communication focusing on the interactions be-
tween sensors and devices. It is often referenced as a living urban laboratory due to the
20 000 devices that have been installed on the most various sectors. As stated in [19], an
integration platform to analyse the di erent data sets as a whole still doesn't exist as it
stands as one of their biggest challenges due to the vast amount of data provided by all
those devices.

2.2 Internet of Things (loT)

According to [20] the Internet of Things is the connection between the physical world and
the Internet by connecting real-world devices like sensors that provide data and machines
that interact in conformity with the results provided from the sensors. As Kevin Ashton,
who came up with the term 10T, speci es In the twentieth century, computers were brains
without senses - they only knew what we told them. In the twenty- rst century, because
of the 10T, computers can sense things for themselves [21]

As claimed by [22], one way to look at the 10T concept is to divide it into three perspectives
which as a whole de ne it. The three perspectives are:

" Things-Oriented - Focuses on the physical components that allow the connection
between the physical world and the digital world. Some examples of this are the
wireless sensors and actuators, RFID, NFC;

Internet-Oriented -  Plays an important role in how the Internet Protocol is used
to connect the Things mentioned above. This is imperative so that the physical
components can communicate with each other and so that they can be integrated
into a platform;

Semantic-Oriented - Is mainly related to the prediction that in the future, the

number of devices will grow exponentially. This perspective is related to the issues
that come with this growth of devices, namely how we will connect all the devices, how
we will store them and how we will search, organize and analyse all this information.

The Internet of Things is considered to be one of the most noticeable technological trends
that have emerged lately which can highly impact the whole business spectrum. These
impacts are often bene cial as they allow the connection between these devices, their sys-
tems and services which go beyond machine-to-machine scenarios [23] allowing the use of
these interconnections to analyse data in a way never thought possible which has opened
up new doors especially in Smart Cities sectors like tra ¢ congestion, waste management,
healthcare, security, emergency services, logistics, retails, industrial control, and health
care.

Taking [24] into account, the loT market in Smart Cities is already one of the core fun-
damentals on how data is produced and is expected to increase at an alarming rate with

8
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expectations to more than double in 2025 moving from 113.1 billion to 250 billion USD. If
we look into the challenges previously mentioned that Smart Cities have due to the amount
of information produced, the variety of its nature and the speed with which it is produced,
this is prone to become a much more challenging problem as the loT evolves.

2.3 Big Data

In spite of not existing a clear universal de nition, within the literature there are many
who have tried to de ne the concept of Big Data. According to [25], the term was initially
introduced to describe the great amounts of data generated from newer technologies like
smartphones and IoT Sensors. In [26] Big Data is referred to as huge amounts of unstruc-
tured data that is produced by applications considered to be high-performance.
Alternatively, IBM in [27] de nes Big Data as information that comes from everywhere
like for example, sensors used to gather climate information, social media, digital pictures
and videos, transaction records, cell phone GPS and many other examples.

As stated by [28], Big Data is considered to be an indicator that the data has gotten too
big, too fast or too hard for the existing tools to process. By Too Big the writer conveys
that companies must deal with great amounts of data provided from the most diverse of
sources like streams, transaction histories or sensors. As to Too Fast the writer denotes
that not only do companies have to deal with huge amounts of data, they also have to do
it quickly. An example of this is analytic platforms in Smart Cities that must have near
real-time information in order to make the most precise and correct decisions. Last but
not least, the writer with Too Hard means that information may not be appropriate for
how the existing processing or analysis tool is con gured.

Another common de nition of Big data, is de ning it through the challenges it presents
to data. Gartner in [29] de nes Big Data as information provided from high-volume,
high-velocity and high-variety sources that need innovative ways of processing data in a
cost-e ective way that allows data to be used for better decision making and to prevent
wrong conclusions and misleading reports. Alternatively, Bernard Marr in [30] connects
the concept of Big Data to two phenomena, namely the speed with which we generate
data and the ability we have to store, process and analyse that information. In sequence,
he de nes Big Data similarly to how Gartner does but proceeds to add 2 more V's to the
de nition, namely Veracity and Value.

While previously, Gartner and Marr stated that Big data consists of 3 and 5 V's respec-
tively, over the years others started to consider Big data to have more V's reaching numbers
such as 19 V's which can be seen in [31].

Despite this and in order to simplify and better connect Big Data to the problem in this
Thesis, we will focus on the main Big Data's challenges that consists of 4 of the V's
mentioned in [32] and that are seen in Figure 1, namely:

" Volume - Symbolizes the large amounts of data that in Smart Cities are constantly
provided from the many sources;

Velocity - Focuses on the speed in which data is generated, updated and made ready
for collection or delivered;

Variety - Consists of the data diversity provided from the ever-increasing number
of 10T sources;

Veracity - Stands for not only the accuracy and quality of the data but also how
trustworthy the information and the source really is.



Chapter 2

Figure 1: Big Data 4V's [33]
2.4 Data Ingestion | Data processing

According to [34], Data Processing Cycle is the term given to the sequence of events behind
getting data from somewhere, transforming it into information with meaning and making
it available for later use. This cycle can be granularly divided into the following stages:

Collection - First step in the cycle that involves getting the data from sources and
getting them into our system. In a high-level clari cation, this can either be done
synchronously by polling requests from a source every previously set measure of time
or by having them asynchronously being pushed into our system whenever they are
available;

Preparation - Considered to be the most abstract and adaptable stage due to the
number of operations that can be done to the data and due to the fact that they
can take place on di erent layers. These operations often consist of formatting the
data into the correct format, sorting, Itering, removing unused data and other Data
Cleansing [35] Methods;

Input - Delivers the data to the Processing unit and therefore needs to make sure
that it is without errors because as said in [34], the quality of the Output data is
de ned by the quality of the Input. This step is commonly done in conjunction with
the Preparation stage;

Processing - Procedure where data is computed in order to turn raw data into
useful and structured information. This is the most lengthy and heavy-duty based
step that depends on the processing power of the machine, on the data complexity
and on the volume of the data. It is worth mentioning that all the previous help
fastening this process;

Output - Step that after having the data ready, is in charge of transferring that

data into other systems that use this data. Alternatively, instead of transferring the

data directly, it is also possible to update the information in a queue or other storage
system so that it can be requested at a later date;

Storage - Last and mostly optional stage as it depends on the system resolves around
safely storing the metadata previously created for later use.

In a more abstract point of view, Ingestion is considered to be the act of taking something in
or absorbing, commonly related to the human body [36]. When related to Data, Ingestion
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is often described as the process of collecting information from one or more sources to a
destination storage system as e ciently and correctly as possible [37]. When comparing
with the data processing cycle, Data Ingestion is the term given that englobes the rst 3
steps joining Collecting, Preparing and Inputting data allowing it to become available for
further modi cations in the Processing stage.

According to the European Commission on Article 4 of the GDPR [38], Processing is a
term that covers many data operations that can either be manual or automated. The
mentioned Data processing Cycle steps are just some of the operations mentioned in [39].
Additionally, [40] de nes Data processing as the collection and manipulation of information

to produce new data or alternatively, just any changes to data. However, in the scope of
this thesis, we will focus on Data Processing purely as the Processing stage in the data
cycle.

The problem of Ingesting and processing data became signi cantly more relevant when
Smart Cities emerged due to the Big Data challenges they present especially with the rise
of 1oT. The challenges of ingesting and processing data go mostly hand in hand with the
challenges of Big Data, namely, the need to have future proof scalability since new loT
sources are in constant appearance and evolution, the need to handle the vast diversity
and voluminous nature of data and last but not least, the demanding need of speed which
becomes di cult to maintain due to the fact that the process of pipeline developing and
keeping up with the more complex data becomes harder and more time consuming as Smart
Cities and its sources evolve [41]. One other challenge that has arisen in these concepts is
the obligation of pipelines having to comply with the Legal and Compliance requirements
that have emerged throughout the world. Some examples of this are the GDPR [42] and
the US Health Insurance Portability and Accountability Act (HIPAA) [43], that a ects
healthcare data.

Another topic worth mentioning is the types of data ingestion and processing. These types
are also the most commonly used in this kind of system. In the literature there are many
di erent nomenclatures for the data types, however, in order to simplify the process, the
main types will be presented and explained:

" Batch type - Considered to be the most widely used and consists in grouping large
sets of information in a block unit called Batch before sending them [44]. From Figure
2, we can see an example of how batch works. The several data sources send infor-
mation to the system which creates Batches, that are pieces of information grouped
together that when reaching a certain amount of data, is transferred somewhere so
that it can be analysed. This transfer process can take minutes to days which creates
a delay in having the available information updated. A perfect example of this would
be when a company registers the whole log information only at the end of the day
during the night because the system is under less stress and there aren't as many
users;

Micro-Batch -  Subset of Batch processing and according to [45] is an adaptation of
the traditional processing type to a more digital world that constantly generates great
amounts of data and purely consists of generating smaller batches of information and
processing them more frequently;
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Figure 2: Batch Processing [46]

© Stream - As stated in [47], it is a type that focuses on dealing with information as
soon as it is created by making it available in a publisher/subscriber channel [48].
From Figure 3, we can see an example of how the Stream type works. The several
data sources send the information to the system which by using specialized pipelines,
is continuously sending and constantly processing information which is allowing data
to become available for analysis in near real-time results. The transfer process is
near real-time and happens as soon as the information arrives and is processed;

Event Stream - Type that focuses on the Event Sourcing pattern described by
Martin Fowler in [49]. This type of Stream processing focuses on the idea that all
the changes in a system are stored as a sequence of events, which are objects stored
in the sequence they were applied to instead of single raw information [50].

Figure 3: Stream Processing [46]
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241 ETL vs ELT

In this subsection, we will present two paradigms of gathering data from multiple sources
and integrating them into one storage system [51].

The rst one is the ETL process, represented in Figure 4 below, which is translated to
the three di erent stages in data integration [52]. The phases are as follows:

~

Extract - Process of collecting data from one or more sources and then preparing it
for the next phase;

" Transform - Most critical phase as it is where you change raw data into meaningful
data ready to be injected and analysed,;

Load - Revolves around getting the data provided from the transformation phase
and saving it into some kind of storage system like a database or a data warehouse.

Figure 4: ETL Paradigm [53]

In [54], Alooma states that while ETL is a powerful tool, it is not without challenges. These
are in conformity with the previously mentioned challenges of data processing, namely
Scaling where for example if your system requires to reload data if you add new sources,
with time, it is bound to decay and eventually become infeasible to add more sources. The
second challenge is Transforming data which according to Alooma requires careful planning
and testing due to the number of issues that can arise from data manipulation. Last but
not least, the third challenge is dealing with the diversity of data sources coming from the
many loT devices, streaming sources, databases, CSV les and many others. Common
use cases for ETL include scenarios where you want to perform complex computations as
it's more e cient than on a data warehouse, where you need to perform extensive data
cleansing or enrichment or whenever you are working exclusively with structured data.

Secondly is the ELT process which stands for Extraction, Load, Transform which in-
volves the same stages as ETL with some important di erences [55]. Whereas in ETL you
transform the data before loading the information into the data storage, in ELT you load
the unstructured data immediately into the data storage system to be later transformed
when it is needed as can be seen in Figure 5. This is mostly a question of e ciency coming
from the ability of data storages using pure computer power to perform transformations on
big volumes of data. The bene ts of ELT are e ciency and exibility on the data sets since
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you are saving the data as you collect it, not restricting the data schema. Common use
cases for ELT include scenarios where data is massive but at the same time considerably
simple and when data is unstructured whilst not requiring many initial transformations.

Figure 5: ELT Paradigm [53]

2.4.2 Traditional vs Modern

In order to understand what was used and how it evolved, we must rst understand the
notion of Data at Rest and Data in Motion. According to [56] data at rest means that the
information is only analysed separately after it has been collected from several sources and
stored in a storage system. For this, batch processing is the most common method as the
focus is not having real-time data but instead is having the exibility to support vast and
often unstructured data sets. In contrast, data in motion while having the same procedure
for collecting information di ers from data at rest in where it analyses the data. In this
method, the analysis occurs in real-time as soon as the information is collected and the
event is triggered. This method which usually revolves around Stream Processing, allows
for less stored information as data is cleansed and treated before storage and last but not
least allows for more analysis with better and faster decision making.

From [57] we can see that in the 1990s traditional bare-metal ETL approaches emerged
and companies would adapt to this convention. However as time went by and the amount
of data grew, many were the problems with this approach. First of all, in order to scale
vertically to increase computing power, companies had to make expensive investments
in order to acquire better and more powerful hardware. In addition to this, given that
databases were relational and not prepared for unstructured data, every time data sources
appeared they had to readjust the system which indicated that the systems were highly
in exible and unscalable. Lastly, Traditional ETL was mostly based on Batch Processing
which is not ideal for delivering information as quickly as possible removing this approach
from the picture if we need real-time results.

With the increasing attention towards big data and in order to overcome the problems in
more traditional approaches, more powerful and reliant alternatives were developed. This
is where the ELT paradigm comes in, with its main focus being the use of data storages
to provide better performance and faster data analysis. In [58], [59] and [60] we can see
examples of data ingestion and analysis using Hadoop [61] which is open-source software
that provides a framework for processing big data using the MapReduce programming
model [62] and [63]. This ELT approach using Hadoop like frameworks whilst amazing for
some use cases, still presented issues when used in a context of integrating a Smart City
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where having access to information in real-time is imperative. An example of this is that
when the data becomes voluminous enough with increasingly di erent sources, the use of
Batch ingestion with analysis post storage starts decaying the performance and increasing
the delay between the occurrence of an event and the analysis of the same. This use of data
at rest concept to allow powerful data storages process the information as a bulk allows
for extremely fast processing over stale information that is not time-critical, for example

in [64] we can see ve examples of Hadoop use cases such as nhancial companies using it
for risk assessment or the energy industry using it for predictive maintenance.

Given the latest advances in 10T and the ever-increasing demand for scalable and fast-
performance analytic tools, from [65] we can see that researchers started looking at Batch
processing and realizing that it could not keep up with the demands of Big Data due to
latency problems provided from the need to collect and organize data into batches before
being processed. With this in mind and looking at data at rest, they started working on
how they could accelerate the process and this led them to analyse the information while
it was being transferred through some kind of smart pipeline. This would later change the
paradigm of waiting for information to Il the batch and just process it immediately as it
was being streamed and thus Stream Processing was born [66].

Ververica in [67] de nes Stream Processing as being the act of processing information
as soon as it is produced or received (Data in Motion). It is stated in [68] that the
main objective of Stream Processing is to solve the problem of performance in processing
continuous, in nite streams of data from live or historical sources. Also according to
[67] and [69], Stream Processing addresses some of the issues and challenges that real-
time analysts have, namely, the almost complete reduction of latency between an event
happening, it being collected and our system reacting to it while the information is still new
and meaningful. In addition to this, given that Stream Processing lters and transforms
the data before it is stored and on the go, it ends up decoupling the infrastructure while
reducing the amount of useless and meaningless information on the database resulting
in more precise and precious data in a smaller and less expensive storage system. Also,
due to the fact that it decouples the architectural components, stream processing is also
more adaptable and advantageous in a microservices architecture. In [70] we can see
some examples of scenarios that bene t from the use of Stream Processing includes real-
time analytics like fraud detection systems for secure transactions and I0T edge analytics
in Smart Cities. Last but not least, [65] describes Stream Processing as being a new
technology that has become the go-to choice when it comes to IoT data processing due to
how well thought it is and how well it works.

2.4.3 Serverless

In [71], serverless is described as an innovative platform for application execution similar to
laaS, which stands for Infrastructure as a Service [72], with the only main di erence being
that while laaS, you are responsible for the application con gurations, in Serverless, the
provider handles it as an abstraction from the infrastructure to which we have no control
over.

Moreover, Microsoft in [73] presents Serverless as one of 4 types of Cloud computing,
which stands for the delivery of computing services in which the user pays for the services
he uses which according to the source allows for lower costs, easy scalability and e cient
infrastructure management. The other 3 types of cloud computing are laaS, Platform as
a Service (PaaS) and Software as a Service (SaaS).

According to [74], this term is a reference to the computing model that allows us to use a
provider, that is in charge of making the resources transparently available and in charge
of scaling up or down depending on the resources demanded, in order to execute certain
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functions or methods without us not needing to have any care for the infrastructure.

Also in this source, Serverless Architectures are presented as a software design pattern
that incorporates Backend as a Service (BaaS) third-party services and/or Functions as a
Service (FaaS) platforms. They are described below, based on [75], as:

" Backend as a Service - Cloud computing model which focuses on automation and
management of the backend side of a web or mobile application development;

" Functions as a Service - Cloud computing service is a platform that allows you
to run functions in the cloud.

As stated in [76] and [77], the main identi ed bene ts from a Serverless approach are the
reduced operating cost, the lowering of complexity and time of development and DevOps
and lastly the improved capability of scaling a system.

The operating costs in more traditional solutions where implementing redundant servers,
in order to increase availability or fault-tolerance, and buying hardware for scalability
needs, increases exponentially as in comparison with Serverless approaches where the costs
directly relate to demands on scaling.

As to lowering the complexity of development and DevOps, Serverless approaches enable
a development pipeline purely focused on the individual functions of the code instead of
having to worry about Virtual Machines, Containers, web server management and other
time-consuming annoyances.

Last but not least, the problem of scaling becomes transparent and insigni cant, except
on costs, to the developers as it is all managed by the cloud computing provider.

As most things in the Academic world, nothing is perfect and therefore serverless presents
some drawbacks. In [78] and [79] we can see the limitations that Serverless Computing
has, which are presented below:

Not suitable for all types of applications since if the system is composed of long-
running processes instead of event-based functions then it would be more expensive
to go for a Serverless Approach;

In some cases, latency can happen, for example as referenced in [78] if there are two
functions on di erent nodes and the second one runs rst, the noti cation will not
be immediately resulting in lost waiting time;

Vendor-lock is a risk due to the fact that we become dependent on services provided
which also removes any possible open-source support from the equation. While this
risk can be mitigated by working around it, it still requires previous planning and
certain abstractions in the architectural design;

Cold start issues on certain services which refers to resuming a previous state of
a function when serving an invocation request. This kind of issue, a ects newly
instantiated runtimes that with frequent occurrences may greatly increase latency;

Last but not least, based on [80], [81] and [82], Kinesis which is a cloud data streaming
service has less performance than Kafka which indicates that when it comes to real-
time processing, local solutions might take the lead.

2.4.4 Architectures

Among the vast literature on processing information while more architectures exist, as we
can see from [83], two common names often come up. One of those is ttembda Ar-
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chitecture coined by Nathan Marz [84], [85], and is an architectural approach to describe
fault-tolerance, scalability and general data processing. This hybrid deployment model
combines the traditional batch processing with a high performance streaming pipeline in
order to create a robust system against not only hardware failures but also the common
human errors.

Figure 6: Lambda Architecture [86]

According to [87], the architecture, as shown in Figure 6, above, is divided into 5 compo-
nents which we will describe in detail:

" Data Sources - Components made of the di erent sources that deliver information
to the Batch and Speed layers. While it is not imperative, it is advised to implement
in this step an intermediary streaming store in order to facilitate source connections
since all data is sent to both the Batch and the Speed layers in order to enable parallel
indexing;

Batch Layer - In charge of two functions namely, managing the master dataset and
pre-computing the batch views. The former consists of saving all raw data in an
immutable and append-only format in order to have a trustworthy historical record

of all data that enters the system. It is often used a CDC [88] design pattern which
mainly consists of saving the data changes made to the database instead of all data
in order to make the system more scalable and faster. The latter consists of turning
the newly arrived information into batch views in order to prepare them for indexing

in the Serving layer;

Serving Layer - Layer used to index the latest batch views in order to make them

gueryable for the end-users. It is imperative that this is done parallelly so as to

minimize the indexing times since while one batch is being indexed, new batches will
be generated and queued for indexing;

Speed Layer - Layer that uses Stream Processing in order to complement the serving
layer by making the most freshly added data available for querying since there is a
time lag interval between the data arriving, being converted to a batch and being
indexed in the serving layer. This layer is used to allow all newly added information
to be available and therefore diminish the time interval of which data is not available
for querying;

Query - Component in charge of receiving end-users queries and delivering them to
both the serving and the speed layer to receive the results and present a complete
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overview of all the near real-time data requested.

As to the main advantages of this architectural approach, one of the main assets is the
resilience and fault-tolerance capabilities based on the fact that the batch layer, if correctly
implemented, does not allow information to be updated or deleted and therefore reduces
the risk of human or hardware errors corrupting the data. In addition to this, despite
being susceptible to errors and there being a chance for data corruption in the Speed layer,
even if the layer itself fails since information is being replicated to the Batch layer, which
cannot be corrupted, the results will eventually synchronise. This mechanism means that
the information will always at some point be consistent and therefore the Lambda architec-
ture enables to some extent, all the three characteristics in the CAP theorem [89], namely
Consistency, Availability and Partition Tolerance. It stands to notice that since the Speed
layer is prone to errors, we must choose between increasing the consistency or making this
layer more available [90].

Additionally, when it comes to latency, due to the Stream processing software used in the
Speed layer, recent data becomes immediately available while the Serving layer is indexing
the older batches of information which results in reduced latency and ultimately enables
all information to be available near real-time.

Alternatively, as mentioned in [91] by Jay Kreps, the main drawback of this architectural
approach consists of having to reproduce all the results in two complex distributed sys-
tems in the Batch and Speed layer which makes the process extremely complicated. Such
complexity comes from having two di erent pipelines which use completely di erent tech-
nologies leading to problems not only on the synchronization between the layers but also
on supporting and maintaining distinct distributed layers with completely di erent. Last

but not least, there is the fact that this architecture re-processes every information in the
batch and speed layer which in some scenarios may not be bene cial.

The other Architecture that often appeared during the research for this thesis was the
Kappa Architecture  which according to [92] is a simpler alternative to the Lambda
architecture created by Jay Kreps in 2014. In [93], it is stated that Batch oriented sys-
tems cannot stand to the continuous and limitless nature of data and therefore, Kappa's
architectural approach revolves around the idea of focusing entirely on the Stream Pro-
cessing system and dropping the Batch layer as seen in Figure 7. Hazelcast in [94] states
that this design model focuses on achieving near real-time results by reading the data and
transforming it immediately after it is on the pipeline which enables recent data to be
quickly accessible. This architecture also supports historical analytics but instead of using
a database, the data store is an append-only permanent.

Figure 7: Kappa Architecture [95]

The main di erence between Kappa and Lambda architectures is that in Kappa all the
information is treated as a stream so there is only the stream processing engine which ex-
tremely simpli es the complexity of only having to deal with a Stream Processing engine.
As to the layers of Kappa, the Streaming Data component coincides with the data sources
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from the Lambda architecture, the real-time layer is often called Speed Layer as they serve
the same purpose and last but not least, the serving layer while similar to the one on the
Lambda architecture, has some di erences since it usually consists of a database used to
index the transformed data from the real-time layer and making it available to query.

The main bene ts of Kappa are that with a Stream Processing that is good enough when
it comes to performance, you may not need a specialized Batch Processing alternative
which means you can just focus all the resources to one technology which tremendously
simpli es not only the development process but also the maintenance and support on the
technologies and also removes the need to have synchronization which adds to the previ-
ously mentioned advantages. Additionally, assuming good performance on the processor,
you can use the parallelism capabilities in order to read streaming data while it is being
processed allowing to replicate the batch processing layer in a faster and more e cient
manner. Last but not least, since we drop the batch layer, there is no more re-processing
every information but instead only becomes a requirement when the code changes which
in the long run indicates that on normal behaviour we cut the processing weight in half.
As to the drawbacks of the Kappa Architecture, since we cut down heavily on the com-
plexity of the architecture, we also reduce on the fault tolerance mainly due to the absence
of the batch layer, we no longer have guaranteed consistency after a certain period of time
and therefore errors may occur during the data processing or while updating the database
which when all is said and done indicates we require an exception manager to reprocess or
reconcile the information when needed.

2.5 Existing Tools

In the following section, the most relevant and worth mentioning technologies for data
Ingestion, data Processing and data CEP will be presented. It stands to note that since this
subject is not new, and therefore there exist many technologies, especially on the Processing
layer as we can see in [69]. Given that there are too many technologies to include, only
the most adequate, most popular and open-source Stream Processing frameworks, will be
taken into account due to the scope of this thesis. Last but not least, the main purpose of
this chapter is to provide insight into the most appropriate and used technologies in the
market.

2.5.1 Ingestion Layer

Apache Ni

According to [96] and [97], Ni is open-source software that deals with automation and
management of distributed data ow among systems. Ni's origins trace back to the
National Security Agency (NSA) which developed the software called Niagara Files that
became the base for Ni after a transfer program in 2014. Ni, o ers a web-based user
interface that allows users to design, control, manage and monitor the di erent ows of
directed graphs of data routing, transformation and system mediation logic.
In Ni, once data arrives, it is represented as a Flow le which is meta-data that allows
processing quite a number of di erent types like CSV, Database Records, Audio, Video and
others. Additionally, in [98] states that a Processor is a component that allows to perform
some kind of work in a Flow le, be it as data as a whole, or just its attributes or contents.
It is de ned as the basic building block that may perform the most various functions like
reading, writing, updating, ingesting, routing, extracting or modifying Flow les.
Processors are connected through Connectors which graphically can be described as just
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arrows, however, every arrow contains a queue with back pressure which can be con gured.
These processors, instead of being individually con gured, a Flow Controller is used in
order to provide the Processors with the information they need.

As to the advantages of Ni, one of its main features is that to change a processor's
settings you only need to stop the processors directly connected instead of having to stop
the whole data ow. Additionally, Ni contains a well-thought implementation of ow-
based programming concept, explained in [99], allowing to manage data ows easily while
o0 ering real-time control with a GUI to monitor the data movement.

Moreover, Ni contains a mechanism called Data Provenance as seen in [100], which is a
service in charge of recording everything happening in the data ows as a backlog which
can come as very handy since it includes how the data ows perform, the saved contents
of the Flow les and other information. Last but not least, Ni provides many tools and
extensions that allow it to take advantage of the many existing Java libraries which easily
helps integrate Ni .

As to the disadvantages of Ni, one of the main complaints, as can be seen in [101], is
the often claimed bad user interface. Additionally, in [97] we can see that Ni has a big
learning curve which requires a user to understand well how the underlying system works.
Lastly, one feature that many claims are missing is the ability to live monitor and debug
features while being able to see each Flow le statistics.

Apache Streamsets

According to [102] and [103], Streamsets is a collection of DataOps products designed to
help control data drift, which as stated in [104], is the sum of unexpected or undocumented
changes to data that result in corrupting it while possibly breaking processes. Streamsets
provides two main products, the Data Collector and the Transformer. The Data Collector
is the only open-source product of Streamsets and allows users to build optimized and
exible pipelines for continuous ingestion with little latency. The transformer allows to
control and monitor the di erent data ows using a user interface
In Streamsets every information that is ingested is automatically converted into the stan-
dard format, the Record, which all processors can handle as a stream of records. In
Streamsets there are four types of processors, namely Origin processor which is the pro-
cessor in charge of extracting data from the external sources, Processors which represent
a stage where there is some kind of data transformation, Destination which have the func-
tion of saving information to some external storage and Executors which process events,
generated by other Processors.
As to the advantages of Streamsets, it enables live monitoring and live debugging features
with the aid of the User interface, that is considered to be quite good, using visual per-
record statistics in each and every processor which allow to better manage and understand
what is going on in the data ow.
Last but not least, the disadvantages of Streamsets include it not being completely open-
source as the only available component is the Data Collector. Additionally, in order to
re-con gure a Processor, the whole data ow must be stopped.

Nussknacker

According to [105] and TouK in [106], Nussnaker appeared as a response to the need for
real-time processing and started as an Apache Flink process authoring tool. Nowadays,
Nussknacker is open-source and allows to design, deploy and monitor processes through
a GUI, as shown in Figure 8, in which you draw a diagram and the new processes are
running in a Flink Cluster.
Some of the features of Nussknacker include a sandbox environment to allow users to deploy,
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