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Abstract

The swift expansion of urban areas and the rapid advances of technology, led to the tech-
nological entanglement of cities, making them dependent in a variety of sectors on the
systems that control them. With the different sectors in a city becoming controlled by
machines, the need to monitor them has increased giving rise to an opportunity to have
the information centralized so that city leaders can take more coherent and logical deci-
sions. These so-called Smart Cities have been in constant evolution bringing about new
Internet of Things devices and new data sources generating more and more information as
the years go by. The main issue with this exponential evolution is that legacy ingestion
systems cannot cope with the rise in the amount of data that is generated.
This work had in view Ubiwhere´s Urban Platform ingestion issue and aimed to propose
a system that allows the gathering of data from the different sources that Ubiwhere has
and may have in the future whilst providing near real-time processing and delivery.
The following document proposes an architecture to solve Ubiwhere´s problem in collecting
and processing data from different Smart City sources with emphasis on the analysis of the
different options to solve the problem of data ingestion. Additionally, this thesis describes
the Rule mechanism developed for allowing users to provide their own custom rules so that
real-time data comparisons can be made given different data sets for more preemptive and
efficient decision making based on the result of the user-defined thresholds. Last but not
least, we demonstrate our solution using a real-world Smart Cities use case namely in the
sectors of Traffic.
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Chapter 1

Introduction

The following report documents the work done in 2020/2021 during the internship in order
to conclude the Master´s degree in Informatics Engineering specifically in the branch of
Software Engineering. The internship was supervised by André Duarte, Head of Tech,
at Ubiwhere in conjunction with PhD, Fernando Barros, professor at the University of
Coimbra and MSc. The internship took place remotely at Ubiwhere which is a Portuguese
research and development software company created in 2007, headquartered in the city
of Aveiro with offices in Coimbra, that specializes primarily in Sectors like Smart Cities,
Telecommunications and Future Internet.
The internship is focused on the development of a Proof of Concept System to solve a
current problem at Ubiwhere. This Proof of Concept consists of a base system that aims
to collect information from several data sources, in sectors like traffic and environment, to
cleanse that data and to process it in real-time making the data available for use on other
Ubiwhere projects, and also consists of an additional Rule Mechanism built externally so
as to not only allowing users to make real-time comparisons, given the existing data sets
but also allowing them to define certain custom thresholds that if surpassed will trigger an
alarm to notify them.
The following chapter introduces the scope of the thesis, the motivation behind it and the
context of the problem. Afterwards, the main objectives and a brief description of the
structure of the document will be presented.

1.1 Context

“Today 78% of European citizens live in cities, and 85% of the EU’s GDP is generated in
cities” [1]
With an ever-increasing world population, large expansions of the urban areas have be-
come more common creating numerous bigger cities. In addition to this, technology has
exponentially increased in the last years crawling deeper and deeper into our lives lead-
ing us to become ever more dependent on every little gadget we own and every piece of
technology that comes with it. With this approach of a once thought far fetched future
where every step we give we stumble upon man-made machines, the liveability within these
fast-growing cities has become dependent on technology to solve issues in numerous sectors
such as traffic congestion, pollution, health, infrastructure and waste management [2]. As
a consequence, Smart Cities have emerged whilst being in constant development and evo-
lution with sources of information becoming more productive and available bringing about
the exponential increase in data generation which requires analysis and special attention
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from the city council so they can make better and more coherent decisions.
The main issues behind this major augmentation in data are the non-existence of an in-
tegration system that allows different data sources to be collected, cleansed, stored and
analysed and the inability of the already existing legacy integration systems to cope with
the collecting and processing of all the information from the many sources like the IoT
devices in time which ultimately promotes an incomplete analysis of the available data
and therefore prompting fraudulent analytic conclusions with misleading reports based on
clouded judgement. As we can see from [3], if data is incomplete or is inadequately pre-
pared, the chances of this generating additional problems and sequentially increasing the
costs are remarkably high.
To further demonstrate how this is in fact a constant problem in Smart Cities, we can take
a look at Santander, where in [4] we can see that the developed system which involves over
20 000 installed devices still does not have an Integration system to monitor the various
sectors in the city. Despite mentioning the clear benefits that this system would provide,
it is stated throughout the document that this Smart City platform is not only the next
step for Santander but also one of their major challenges.
Alternatively If we look at Barcelona´s Smart City planning, they implemented a lot of
IoT devices and were inspired to create a cross-platform, later called Sentilo, for sharing
information between systems and to easily integrate legacy systems [5]. In the development
of Sentilo, the amount of data and its heterogeneous nature was taken into account to be
able to expand as the Smart City evolved.

1.2 Motivation and Problem

On top of the previously mentioned examples, Ubiwhere that is working in several different
sectors of Smart Cities decided to create a Smart City Platform called Urban platform that
aggregates data from different sources and domains and that allows cities responsible per-
sonnel to view the systems in a smart city in a holistic manner and also provides them with
a way to manage more easily different areas such as environment, energy, traffic, parking,
waste and others. This platform is essential for cities since it allows their departments
to have access to near real-time information which allows them to take more precise and
objective measures. For example, in emergencies, real-time analysis allows the police, fire-
fighters or ambulances to arrive earlier where a few minutes may make the difference in a
person’s life. This ever-increasing volume of data, it’s highly irregular nature and the need
to have information available as the sources continually generate it, constitutes a challenge
to Ubiwhere.
There are two problems with the Urban Platform at this moment, where the first is the
ingestion of the data from the sources to the platform itself. The lack of a proper data
processing infrastructure is creating a bottleneck that is limiting the platform by either
not allowing the system to collect from all the different sources they could or by not deliv-
ering results to the Urban Platform in near real-time results. In addition, this hindrance
is mostly a restriction due to the fact that smart cities are in constant evolution with new
IoT devices always appearing which in the long run means that the amount of data will
just keep rising.
The second problem is related to the need to have real-time cross-analysis between the
available data sources due to the non-discardable latency that comes from the transport-
ing, analysing and decision-making stages which are required for the Urban Platform to
reach any conclusions. This is an issue since the platform integrates multiple data sources
and domains which cross-analysed can create the most diversified scenarios which in some
cases may be urgent to reach a certain conclusion.

2
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The main purpose of this internship is, therefore, to provide a Proof of Concept system
that will enable the ingestion, processing and integration of third party’s data into Ubi-
where’s platform in a Smart City environment while focusing on the ability of this system
to scale given the increasing difficulties provided from the challenges of Big Data that are in
conformity with the ones in our system. Additionally, given that the system heavily relies
on the idea of integrating data from multiple sources and domains with the need to allow
users to make real-time comparisons between those data sets, this thesis will, therefore,
make the most out of the system in order to develop a rule-based mechanism in which
users will be able to provide their own rules so that the data can be assessed in real-time
allowing for quicker and more efficient preemptive decision making. This mechanism will
allow the system to assess and evaluate, user-defined rules with their specified thresholds
while not only enabling the cross-analysis of the different data sets but also generating
alarms when the previously mentioned thresholds are surpassed.

1.3 Main Contributions

The value proposition of this thesis is based on the objectives and main contributions it
brings to not only the market but also the academic community. The main contributions
are:

• Propose a Data Ingestion architecture that allows multiple data sources to be con-
nected to the existing platform.

• Scalable Event-based system that allows not only data gathering, cleansing and pro-
cessing with near-real-time results as output but also cross-analysis through user-
defined rules.

• Development of a Rule Mechanism that allows system users to include or remove
rules, thresholds and alarms for analysing the information from the already integrated
data sets.

• Development of an Alarm API that is used for warning the users that the alarms
were triggered in the main system.

• Documentation in the best possible way to make the system as easy as possible to
integrate and to make the integration of more data sets possible.

1.4 Document Structure

In the following subsection, the content of each chapter will be explained:

• Chapter 2 - The results of the research done are displayed, contextualized and
explained. The topics present in this chapter are Smart Cities, the IoT, Big Data,
Data Ingestion and Data Processing and lastly there is a subsection about the existing
tools for the ingestion, processing and rule mechanism layer.

• Chapter 3 - The requirements specification are presented and explained, namely the
scope, stakeholders, constraints and the functional and non-functional requirements.

• Chapter 4 - The thought process behind the technologies chosen and the proposed
architecture is presented after analysing the requirements.

3
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• Chapter 5 - An analysis of the choices that had to be taken during the Imple-
mentation phase is presented, together with the problems that arose as well as the
respective solutions.

• Chapter 6 - The tests performed on the system are presented together with the
results and analysis.

• Chapter 7 - The methodology and planning of the internship is described. The main
tasks, the success criteria, the risk management and the tools used are introduced.

• Chapter 8 - The process behind the internship and an analysis of what happened
during the two semesters is explained.

4
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Chapter 2

State of the Art

The area of study regarding this thesis is not new and the information available is bound-
less. In the following section, the outcome of the substantial study and analysis on the
concepts, technologies and studies of this ecosystem will be presented. This section begins
by contextualizing Smart Cities, IoT and Big data down to the challenges they arise. Con-
secutively, we will review the concepts of Data Ingestion and Data Processing. Last but
not least we will go over the existing tools focusing on the more modern ones that were
taken into consideration in the scope of this thesis.
It stands to reason that the presented analysis will be high-level whilst trying to convey as
much information possible.

2.1 Smart Cities

As can be seen in [1], nowadays most people live in cities which have become large set-
tlements that together with the technological advances, tend to work towards increasing
the quality of life of its citizens. As expressed in [2] the opportunity to live in these ever-
increasing cities depends on the ability of City authorities to deal with the issues of our
everyday lives like traffic congestion, pollution, health, infrastructure, and waste manage-
ment.
This rapid growth in technology and in the urbanisation of cities has led to the appearance
of the concept of Smart City [6]. Despite the fact that the Future we once thought to be
a far fetched idea, has been exponentially becoming the reality in which we live in, there
is still no clear theoretical definition for what a Smart City really is [7].
This concept has been an issue that has been tackled in many different ways from several
perspectives and therefore, many have been the people who have tried to define it giving
rise to many variants that are often inconsistent and unclear which according to [8], ulti-
mately leads to the lack of a unified template of a smart city and the lack of a definition
that appropriately manages all the variants.
While some believe that to be Smart, a city must be able to connect the Physical, IT, So-
cial and Business infrastructures to grasp all the information of a city [8], others support
that a city must be focused on the use of high-tech devices with the latest technologies in
order to connect people and information with the final objective being the creation of a
more economically focused and innovative city with special attention to the quality of life
of its inhabitants and to the pollution that the city produces [8]. We can see from [8] the
sheer amount of different definitions that there are.
More modern approaches have classified a Smart City as a System of Systems (City of Sys-
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tems) that consists of different sectors containing systems that collaborate with one another
promoting communication and interoperability to provide relevantly, well-fundamented in-
formation in real-time [9].
This attitude towards the concept in question not only allows people to move away from
the misleading idea that in order for a city to be smart it needs to have the most advanced
technology but also grants them the opportunity to focus on the ability of systems inte-
grating with each other creating a web that, as stated in [8], will allow machines to be more
productive minimizing the need to have people working with them which in end removes
the most faulty part of the equation.
Smart cities are considered to be extremely dynamic environments that are in constant de-
velopment and therefore, it is important to outline the challenges that these kinds of cities
bring. Due to the ever-growing cities and the constant evolution of technology [10], Smart
Cities have a tendency to become even more intelligent as new advances are made in the
field. This means that not only more city sectors will come into contact with technology
but also the ones already existing will be upgraded which in the long run this leads to the
exponential growth in data. This increase in data not only consists of the sheer volume
of information but also the speed in which it is generated and the diversity provided from
new sources that will arise [11].

2.1.1 Smart Cities Examples

As previously mentioned, the concept of Smart City is not new and therefore, more and
more cities have taken steps in order to become more efficient, more intelligent and above
all, more comfortable for those who live in them. When looking for Smart Cities, quite a
few names appeared [8], however, there are a few that are arguably often considered pio-
neers in the area not only because they are in constant expansion with innovative projects
but also because they helped to set the ground on good practices and to this day serve the
purpose of being testing grounds for new technologies and devices [12].
Cities like Amsterdam [13], which was not only one of the first European cities to start
a Smart City program in 2009 but also one of the cities that introduced the benefits of
open-sourcing data. Amsterdam started by creating a database that was not only open
but also contained 12 000 data sets from all 32 districts primarily in the sectors of health-
care, traffic and education. Nowadays, Amsterdam has created an integration platform
for managing the different Smart City projects, currently more than 70 projects, and to
share data which contains projects in seven different areas, namely, Infrastructure and
Technology, sustainable energy sources, transportation, governance and education, Smart
City academy, Citizen participation and Circular City [14].
While Singapore [15] is not one of the first Smart Cities or Smart Nation as they call them-
selves, having started in 2014, it is a name that stands out when it comes to innovative
Cities with its citizens in the core and not technology. Singapore has become one of the
most advanced cities when it comes to three sectors. First and foremost, security with
the deployment of over 52 000 surveillance cameras that are constantly obtaining infor-
mation from public spaces. Secondly, there is transportation, where government policies
in conjunction with technological alternatives to cars have encouraged the use of public
transports ultimately turning the city into a testing ground for newer and more environ-
mentalist approaches. Last but not least, administrative services with an application called
Mobile Government, allows citizens to have access to government services and information
anywhere, anytime [16].
One other name that constantly emerges when talking about Smart Cities is Barcelona
[17]. Having started in 2011, the city heavily invested in infrastructure which includes a
vast IoT sensor network in the sectors of transportation, energy and air quality. In order
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to improve the use of this network, a cross-platform named Sentilo [18] was developed in
order to integrate the applications and to better monitor the data. As we can see from
[19], a study with the aim of estimating the amount of data generated in the many sensors
throughout Barcelona that are concentrated in Sentilo, the sheer quantity of information
that is generated in a smart city is currently immense and with the advances in technol-
ogy, it will only increase in the near future. If Sentilo is not prepared for this exponential
growth, it will soon start decaying and become yet another legacy system that will not be
able to cope with information in real-time.
Taking a look at Santander [4], the Smart project was funded in 2010 and was highly
based on the idea of machine-to-machine communication focusing on the interactions be-
tween sensors and devices. It is often referenced as a living urban laboratory due to the
20 000 devices that have been installed on the most various sectors. As stated in [19], an
integration platform to analyse the different data sets as a whole still doesn’t exist as it
stands as one of their biggest challenges due to the vast amount of data provided by all
those devices.

2.2 Internet of Things (IoT)

According to [20] the Internet of Things is the connection between the physical world and
the Internet by connecting real-world devices like sensors that provide data and machines
that interact in conformity with the results provided from the sensors. As Kevin Ashton,
who came up with the term IoT, specifies “In the twentieth century, computers were brains
without senses - they only knew what we told them. In the twenty-first century, because
of the IoT, computers can sense things for themselves” [21]
As claimed by [22], one way to look at the IoT concept is to divide it into three perspectives
which as a whole define it. The three perspectives are:

• Things-Oriented - Focuses on the physical components that allow the connection
between the physical world and the digital world. Some examples of this are the
wireless sensors and actuators, RFID, NFC;

• Internet-Oriented - Plays an important role in how the Internet Protocol is used
to connect the Things mentioned above. This is imperative so that the physical
components can communicate with each other and so that they can be integrated
into a platform;

• Semantic-Oriented - Is mainly related to the prediction that in the future, the
number of devices will grow exponentially. This perspective is related to the issues
that come with this growth of devices, namely how we will connect all the devices, how
we will store them and how we will search, organize and analyse all this information.

The Internet of Things is considered to be one of the most noticeable technological trends
that have emerged lately which can highly impact the whole business spectrum. These
impacts are often beneficial as they allow the connection between these devices, their sys-
tems and services which go beyond machine-to-machine scenarios [23] allowing the use of
these interconnections to analyse data in a way never thought possible which has opened
up new doors especially in Smart Cities sectors like traffic congestion, waste management,
healthcare, security, emergency services, logistics, retails, industrial control, and health
care.
Taking [24] into account, the IoT market in Smart Cities is already one of the core fun-
damentals on how data is produced and is expected to increase at an alarming rate with
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expectations to more than double in 2025 moving from 113.1 billion to 250 billion USD. If
we look into the challenges previously mentioned that Smart Cities have due to the amount
of information produced, the variety of its nature and the speed with which it is produced,
this is prone to become a much more challenging problem as the IoT evolves.

2.3 Big Data

In spite of not existing a clear universal definition, within the literature there are many
who have tried to define the concept of Big Data. According to [25], the term was initially
introduced to describe the great amounts of data generated from newer technologies like
smartphones and IoT Sensors. In [26] Big Data is referred to as huge amounts of unstruc-
tured data that is produced by applications considered to be high-performance.
Alternatively, IBM in [27] defines Big Data as information that comes from everywhere
like for example, sensors used to gather climate information, social media, digital pictures
and videos, transaction records, cell phone GPS and many other examples.
As stated by [28], Big Data is considered to be an indicator that the data has gotten too
big, too fast or too hard for the existing tools to process. By “Too Big” the writer conveys
that companies must deal with great amounts of data provided from the most diverse of
sources like streams, transaction histories or sensors. As to “Too Fast” the writer denotes
that not only do companies have to deal with huge amounts of data, they also have to do
it quickly. An example of this is analytic platforms in Smart Cities that must have near
real-time information in order to make the most precise and correct decisions. Last but
not least, the writer with “Too Hard” means that information may not be appropriate for
how the existing processing or analysis tool is configured.
Another common definition of Big data, is defining it through the challenges it presents
to data. Gartner in [29] defines Big Data as information provided from high-volume,
high-velocity and high-variety sources that need innovative ways of processing data in a
cost-effective way that allows data to be used for better decision making and to prevent
wrong conclusions and misleading reports. Alternatively, Bernard Marr in [30] connects
the concept of Big Data to two phenomena, namely the speed with which we generate
data and the ability we have to store, process and analyse that information. In sequence,
he defines Big Data similarly to how Gartner does but proceeds to add 2 more V’s to the
definition, namely Veracity and Value.
While previously, Gartner and Marr stated that Big data consists of 3 and 5 V’s respec-
tively, over the years others started to consider Big data to have more V’s reaching numbers
such as 19 V’s which can be seen in [31].
Despite this and in order to simplify and better connect Big Data to the problem in this
Thesis, we will focus on the main Big Data’s challenges that consists of 4 of the V’s
mentioned in [32] and that are seen in Figure 1, namely:

• Volume - Symbolizes the large amounts of data that in Smart Cities are constantly
provided from the many sources;

• Velocity - Focuses on the speed in which data is generated, updated and made ready
for collection or delivered;

• Variety - Consists of the data diversity provided from the ever-increasing number
of IoT sources;

• Veracity - Stands for not only the accuracy and quality of the data but also how
trustworthy the information and the source really is.
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Figure 1: Big Data 4V’s [33]

2.4 Data Ingestion | Data processing

According to [34], Data Processing Cycle is the term given to the sequence of events behind
getting data from somewhere, transforming it into information with meaning and making
it available for later use. This cycle can be granularly divided into the following stages:

• Collection - First step in the cycle that involves getting the data from sources and
getting them into our system. In a high-level clarification, this can either be done
synchronously by polling requests from a source every previously set measure of time
or by having them asynchronously being pushed into our system whenever they are
available;

• Preparation - Considered to be the most abstract and adaptable stage due to the
number of operations that can be done to the data and due to the fact that they
can take place on different layers. These operations often consist of formatting the
data into the correct format, sorting, filtering, removing unused data and other Data
Cleansing [35] Methods;

• Input - Delivers the data to the Processing unit and therefore needs to make sure
that it is without errors because as said in [34], the quality of the Output data is
defined by the quality of the Input. This step is commonly done in conjunction with
the Preparation stage;

• Processing - Procedure where data is computed in order to turn raw data into
useful and structured information. This is the most lengthy and heavy-duty based
step that depends on the processing power of the machine, on the data complexity
and on the volume of the data. It is worth mentioning that all the previous help
fastening this process;

• Output - Step that after having the data ready, is in charge of transferring that
data into other systems that use this data. Alternatively, instead of transferring the
data directly, it is also possible to update the information in a queue or other storage
system so that it can be requested at a later date;

• Storage - Last and mostly optional stage as it depends on the system resolves around
safely storing the metadata previously created for later use.

In a more abstract point of view, Ingestion is considered to be the act of taking something in
or absorbing, commonly related to the human body [36]. When related to Data, Ingestion
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is often described as the process of collecting information from one or more sources to a
destination storage system as efficiently and correctly as possible [37]. When comparing
with the data processing cycle, Data Ingestion is the term given that englobes the first 3
steps joining Collecting, Preparing and Inputting data allowing it to become available for
further modifications in the Processing stage.
According to the European Commission on Article 4 of the GDPR [38], Processing is a
term that covers many data operations that can either be manual or automated. The
mentioned Data processing Cycle steps are just some of the operations mentioned in [39].
Additionally, [40] defines Data processing as the collection and manipulation of information
to produce new data or alternatively, just any changes to data. However, in the scope of
this thesis, we will focus on Data Processing purely as the Processing stage in the data
cycle.
The problem of Ingesting and processing data became significantly more relevant when
Smart Cities emerged due to the Big Data challenges they present especially with the rise
of IoT. The challenges of ingesting and processing data go mostly hand in hand with the
challenges of Big Data, namely, the need to have future proof scalability since new IoT
sources are in constant appearance and evolution, the need to handle the vast diversity
and voluminous nature of data and last but not least, the demanding need of speed which
becomes difficult to maintain due to the fact that the process of pipeline developing and
keeping up with the more complex data becomes harder and more time consuming as Smart
Cities and its sources evolve [41]. One other challenge that has arisen in these concepts is
the obligation of pipelines having to comply with the Legal and Compliance requirements
that have emerged throughout the world. Some examples of this are the GDPR [42] and
the US Health Insurance Portability and Accountability Act (HIPAA) [43], that affects
healthcare data.
Another topic worth mentioning is the types of data ingestion and processing. These types
are also the most commonly used in this kind of system. In the literature there are many
different nomenclatures for the data types, however, in order to simplify the process, the
main types will be presented and explained:

• Batch type - Considered to be the most widely used and consists in grouping large
sets of information in a block unit called Batch before sending them [44]. From Figure
2, we can see an example of how batch works. The several data sources send infor-
mation to the system which creates Batches, that are pieces of information grouped
together that when reaching a certain amount of data, is transferred somewhere so
that it can be analysed. This transfer process can take minutes to days which creates
a delay in having the available information updated. A perfect example of this would
be when a company registers the whole log information only at the end of the day
during the night because the system is under less stress and there aren’t as many
users;

• Micro-Batch - Subset of Batch processing and according to [45] is an adaptation of
the traditional processing type to a more digital world that constantly generates great
amounts of data and purely consists of generating smaller batches of information and
processing them more frequently;
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Figure 2: Batch Processing [46]

• Stream - As stated in [47], it is a type that focuses on dealing with information as
soon as it is created by making it available in a publisher/subscriber channel [48].
From Figure 3, we can see an example of how the Stream type works. The several
data sources send the information to the system which by using specialized pipelines,
is continuously sending and constantly processing information which is allowing data
to become available for analysis in near real-time results. The transfer process is
near real-time and happens as soon as the information arrives and is processed;

• Event Stream - Type that focuses on the Event Sourcing pattern described by
Martin Fowler in [49]. This type of Stream processing focuses on the idea that all
the changes in a system are stored as a sequence of events, which are objects stored
in the sequence they were applied to instead of single raw information [50].

Figure 3: Stream Processing [46]
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2.4.1 ETL vs ELT

In this subsection, we will present two paradigms of gathering data from multiple sources
and integrating them into one storage system [51].
The first one is the ETL process, represented in Figure 4 below, which is translated to
the three different stages in data integration [52]. The phases are as follows:

• Extract - Process of collecting data from one or more sources and then preparing it
for the next phase;

• Transform - Most critical phase as it is where you change raw data into meaningful
data ready to be injected and analysed;

• Load - Revolves around getting the data provided from the transformation phase
and saving it into some kind of storage system like a database or a data warehouse.

Figure 4: ETL Paradigm [53]

In [54], Alooma states that while ETL is a powerful tool, it is not without challenges. These
are in conformity with the previously mentioned challenges of data processing, namely
Scaling where for example if your system requires to reload data if you add new sources,
with time, it is bound to decay and eventually become infeasible to add more sources. The
second challenge is Transforming data which according to Alooma requires careful planning
and testing due to the number of issues that can arise from data manipulation. Last but
not least, the third challenge is dealing with the diversity of data sources coming from the
many IoT devices, streaming sources, databases, CSV files and many others. Common
use cases for ETL include scenarios where you want to perform complex computations as
it’s more efficient than on a data warehouse, where you need to perform extensive data
cleansing or enrichment or whenever you are working exclusively with structured data.

Secondly is the ELT process which stands for Extraction, Load, Transform which in-
volves the same stages as ETL with some important differences [55]. Whereas in ETL you
transform the data before loading the information into the data storage, in ELT you load
the unstructured data immediately into the data storage system to be later transformed
when it is needed as can be seen in Figure 5. This is mostly a question of efficiency coming
from the ability of data storages using pure computer power to perform transformations on
big volumes of data. The benefits of ELT are efficiency and flexibility on the data sets since
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you are saving the data as you collect it, not restricting the data schema. Common use
cases for ELT include scenarios where data is massive but at the same time considerably
simple and when data is unstructured whilst not requiring many initial transformations.

Figure 5: ELT Paradigm [53]

2.4.2 Traditional vs Modern

In order to understand what was used and how it evolved, we must first understand the
notion of Data at Rest and Data in Motion. According to [56] data at rest means that the
information is only analysed separately after it has been collected from several sources and
stored in a storage system. For this, batch processing is the most common method as the
focus is not having real-time data but instead is having the flexibility to support vast and
often unstructured data sets. In contrast, data in motion while having the same procedure
for collecting information differs from data at rest in where it analyses the data. In this
method, the analysis occurs in real-time as soon as the information is collected and the
event is triggered. This method which usually revolves around Stream Processing, allows
for less stored information as data is cleansed and treated before storage and last but not
least allows for more analysis with better and faster decision making.
From [57] we can see that in the 1990s traditional bare-metal ETL approaches emerged
and companies would adapt to this convention. However as time went by and the amount
of data grew, many were the problems with this approach. First of all, in order to scale
vertically to increase computing power, companies had to make expensive investments
in order to acquire better and more powerful hardware. In addition to this, given that
databases were relational and not prepared for unstructured data, every time data sources
appeared they had to readjust the system which indicated that the systems were highly
inflexible and unscalable. Lastly, Traditional ETL was mostly based on Batch Processing
which is not ideal for delivering information as quickly as possible removing this approach
from the picture if we need real-time results.
With the increasing attention towards big data and in order to overcome the problems in
more traditional approaches, more powerful and reliant alternatives were developed. This
is where the ELT paradigm comes in, with its main focus being the use of data storages
to provide better performance and faster data analysis. In [58], [59] and [60] we can see
examples of data ingestion and analysis using Hadoop [61] which is open-source software
that provides a framework for processing big data using the MapReduce programming
model [62] and [63]. This ELT approach using Hadoop like frameworks whilst amazing for
some use cases, still presented issues when used in a context of integrating a Smart City
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where having access to information in real-time is imperative. An example of this is that
when the data becomes voluminous enough with increasingly different sources, the use of
Batch ingestion with analysis post storage starts decaying the performance and increasing
the delay between the occurrence of an event and the analysis of the same. This use of data
at rest concept to allow powerful data storages process the information as a bulk allows
for extremely fast processing over stale information that is not time-critical, for example
in [64] we can see five examples of Hadoop use cases such as financial companies using it
for risk assessment or the energy industry using it for predictive maintenance.
Given the latest advances in IoT and the ever-increasing demand for scalable and fast-
performance analytic tools, from [65] we can see that researchers started looking at Batch
processing and realizing that it could not keep up with the demands of Big Data due to
latency problems provided from the need to collect and organize data into batches before
being processed. With this in mind and looking at data at rest, they started working on
how they could accelerate the process and this led them to analyse the information while
it was being transferred through some kind of smart pipeline. This would later change the
paradigm of waiting for information to fill the batch and just process it immediately as it
was being streamed and thus Stream Processing was born [66].
Ververica in [67] defines Stream Processing as being the act of processing information
as soon as it is produced or received (Data in Motion). It is stated in [68] that the
main objective of Stream Processing is to solve the problem of performance in processing
continuous, infinite streams of data from live or historical sources. Also according to
[67] and [69], Stream Processing addresses some of the issues and challenges that real-
time analysts have, namely, the almost complete reduction of latency between an event
happening, it being collected and our system reacting to it while the information is still new
and meaningful. In addition to this, given that Stream Processing filters and transforms
the data before it is stored and on the go, it ends up decoupling the infrastructure while
reducing the amount of useless and meaningless information on the database resulting
in more precise and precious data in a smaller and less expensive storage system. Also,
due to the fact that it decouples the architectural components, stream processing is also
more adaptable and advantageous in a microservices architecture. In [70] we can see
some examples of scenarios that benefit from the use of Stream Processing includes real-
time analytics like fraud detection systems for secure transactions and IoT edge analytics
in Smart Cities. Last but not least, [65] describes Stream Processing as being a new
technology that has become the go-to choice when it comes to IoT data processing due to
how well thought it is and how well it works.

2.4.3 Serverless

In [71], serverless is described as an innovative platform for application execution similar to
IaaS, which stands for Infrastructure as a Service [72], with the only main difference being
that while IaaS, you are responsible for the application configurations, in Serverless, the
provider handles it as an abstraction from the infrastructure to which we have no control
over.
Moreover, Microsoft in [73] presents Serverless as one of 4 types of Cloud computing,
which stands for the delivery of computing services in which the user pays for the services
he uses which according to the source allows for lower costs, easy scalability and efficient
infrastructure management. The other 3 types of cloud computing are IaaS, Platform as
a Service (PaaS) and Software as a Service (SaaS).
According to [74], this term is a reference to the computing model that allows us to use a
provider, that is in charge of making the resources transparently available and in charge
of scaling up or down depending on the resources demanded, in order to execute certain
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functions or methods without us not needing to have any care for the infrastructure.
Also in this source, Serverless Architectures are presented as a software design pattern
that incorporates Backend as a Service (BaaS) third-party services and/or Functions as a
Service (FaaS) platforms. They are described below, based on [75], as:

• Backend as a Service - Cloud computing model which focuses on automation and
management of the backend side of a web or mobile application development;

• Functions as a Service - Cloud computing service is a platform that allows you
to run functions in the cloud.

As stated in [76] and [77], the main identified benefits from a Serverless approach are the
reduced operating cost, the lowering of complexity and time of development and DevOps
and lastly the improved capability of scaling a system.
The operating costs in more traditional solutions where implementing redundant servers,
in order to increase availability or fault-tolerance, and buying hardware for scalability
needs, increases exponentially as in comparison with Serverless approaches where the costs
directly relate to demands on scaling.
As to lowering the complexity of development and DevOps, Serverless approaches enable
a development pipeline purely focused on the individual functions of the code instead of
having to worry about Virtual Machines, Containers, web server management and other
time-consuming annoyances.
Last but not least, the problem of scaling becomes transparent and insignificant, except
on costs, to the developers as it is all managed by the cloud computing provider.
As most things in the Academic world, nothing is perfect and therefore serverless presents
some drawbacks. In [78] and [79] we can see the limitations that Serverless Computing
has, which are presented below:

• Not suitable for all types of applications since if the system is composed of long-
running processes instead of event-based functions then it would be more expensive
to go for a Serverless Approach;

• In some cases, latency can happen, for example as referenced in [78] if there are two
functions on different nodes and the second one runs first, the notification will not
be immediately resulting in lost waiting time;

• Vendor-lock is a risk due to the fact that we become dependent on services provided
which also removes any possible open-source support from the equation. While this
risk can be mitigated by working around it, it still requires previous planning and
certain abstractions in the architectural design;

• Cold start issues on certain services which refers to resuming a previous state of
a function when serving an invocation request. This kind of issue, affects newly
instantiated runtimes that with frequent occurrences may greatly increase latency;

• Last but not least, based on [80], [81] and [82], Kinesis which is a cloud data streaming
service has less performance than Kafka which indicates that when it comes to real-
time processing, local solutions might take the lead.

2.4.4 Architectures

Among the vast literature on processing information while more architectures exist, as we
can see from [83], two common names often come up. One of those is the Lambda Ar-
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chitecture coined by Nathan Marz [84], [85], and is an architectural approach to describe
fault-tolerance, scalability and general data processing. This hybrid deployment model
combines the traditional batch processing with a high performance streaming pipeline in
order to create a robust system against not only hardware failures but also the common
human errors.

Figure 6: Lambda Architecture [86]

According to [87], the architecture, as shown in Figure 6, above, is divided into 5 compo-
nents which we will describe in detail:

• Data Sources - Components made of the different sources that deliver information
to the Batch and Speed layers. While it is not imperative, it is advised to implement
in this step an intermediary streaming store in order to facilitate source connections
since all data is sent to both the Batch and the Speed layers in order to enable parallel
indexing;

• Batch Layer - In charge of two functions namely, managing the master dataset and
pre-computing the batch views. The former consists of saving all raw data in an
immutable and append-only format in order to have a trustworthy historical record
of all data that enters the system. It is often used a CDC [88] design pattern which
mainly consists of saving the data changes made to the database instead of all data
in order to make the system more scalable and faster. The latter consists of turning
the newly arrived information into batch views in order to prepare them for indexing
in the Serving layer;

• Serving Layer - Layer used to index the latest batch views in order to make them
queryable for the end-users. It is imperative that this is done parallelly so as to
minimize the indexing times since while one batch is being indexed, new batches will
be generated and queued for indexing;

• Speed Layer - Layer that uses Stream Processing in order to complement the serving
layer by making the most freshly added data available for querying since there is a
time lag interval between the data arriving, being converted to a batch and being
indexed in the serving layer. This layer is used to allow all newly added information
to be available and therefore diminish the time interval of which data is not available
for querying;

• Query - Component in charge of receiving end-users queries and delivering them to
both the serving and the speed layer to receive the results and present a complete
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overview of all the near real-time data requested.

As to the main advantages of this architectural approach, one of the main assets is the
resilience and fault-tolerance capabilities based on the fact that the batch layer, if correctly
implemented, does not allow information to be updated or deleted and therefore reduces
the risk of human or hardware errors corrupting the data. In addition to this, despite
being susceptible to errors and there being a chance for data corruption in the Speed layer,
even if the layer itself fails since information is being replicated to the Batch layer, which
cannot be corrupted, the results will eventually synchronise. This mechanism means that
the information will always at some point be consistent and therefore the Lambda architec-
ture enables to some extent, all the three characteristics in the CAP theorem [89], namely
Consistency, Availability and Partition Tolerance. It stands to notice that since the Speed
layer is prone to errors, we must choose between increasing the consistency or making this
layer more available [90].
Additionally, when it comes to latency, due to the Stream processing software used in the
Speed layer, recent data becomes immediately available while the Serving layer is indexing
the older batches of information which results in reduced latency and ultimately enables
all information to be available near real-time.
Alternatively, as mentioned in [91] by Jay Kreps, the main drawback of this architectural
approach consists of having to reproduce all the results in two complex distributed sys-
tems in the Batch and Speed layer which makes the process extremely complicated. Such
complexity comes from having two different pipelines which use completely different tech-
nologies leading to problems not only on the synchronization between the layers but also
on supporting and maintaining distinct distributed layers with completely different. Last
but not least, there is the fact that this architecture re-processes every information in the
batch and speed layer which in some scenarios may not be beneficial.

The other Architecture that often appeared during the research for this thesis was the
Kappa Architecture which according to [92] is a simpler alternative to the Lambda
architecture created by Jay Kreps in 2014. In [93], it is stated that Batch oriented sys-
tems cannot stand to the continuous and limitless nature of data and therefore, Kappa’s
architectural approach revolves around the idea of focusing entirely on the Stream Pro-
cessing system and dropping the Batch layer as seen in Figure 7. Hazelcast in [94] states
that this design model focuses on achieving near real-time results by reading the data and
transforming it immediately after it is on the pipeline which enables recent data to be
quickly accessible. This architecture also supports historical analytics but instead of using
a database, the data store is an append-only permanent.

Figure 7: Kappa Architecture [95]

The main difference between Kappa and Lambda architectures is that in Kappa all the
information is treated as a stream so there is only the stream processing engine which ex-
tremely simplifies the complexity of only having to deal with a Stream Processing engine.
As to the layers of Kappa, the Streaming Data component coincides with the data sources
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from the Lambda architecture, the real-time layer is often called Speed Layer as they serve
the same purpose and last but not least, the serving layer while similar to the one on the
Lambda architecture, has some differences since it usually consists of a database used to
index the transformed data from the real-time layer and making it available to query.
The main benefits of Kappa are that with a Stream Processing that is good enough when
it comes to performance, you may not need a specialized Batch Processing alternative
which means you can just focus all the resources to one technology which tremendously
simplifies not only the development process but also the maintenance and support on the
technologies and also removes the need to have synchronization which adds to the previ-
ously mentioned advantages. Additionally, assuming good performance on the processor,
you can use the parallelism capabilities in order to read streaming data while it is being
processed allowing to replicate the batch processing layer in a faster and more efficient
manner. Last but not least, since we drop the batch layer, there is no more re-processing
every information but instead only becomes a requirement when the code changes which
in the long run indicates that on normal behaviour we cut the processing weight in half.
As to the drawbacks of the Kappa Architecture, since we cut down heavily on the com-
plexity of the architecture, we also reduce on the fault tolerance mainly due to the absence
of the batch layer, we no longer have guaranteed consistency after a certain period of time
and therefore errors may occur during the data processing or while updating the database
which when all is said and done indicates we require an exception manager to reprocess or
reconcile the information when needed.

2.5 Existing Tools

In the following section, the most relevant and worth mentioning technologies for data
Ingestion, data Processing and data CEP will be presented. It stands to note that since this
subject is not new, and therefore there exist many technologies, especially on the Processing
layer as we can see in [69]. Given that there are too many technologies to include, only
the most adequate, most popular and open-source Stream Processing frameworks, will be
taken into account due to the scope of this thesis. Last but not least, the main purpose of
this chapter is to provide insight into the most appropriate and used technologies in the
market.

2.5.1 Ingestion Layer

Apache Nifi
According to [96] and [97], Nifi is open-source software that deals with automation and

management of distributed data flow among systems. Nifi’s origins trace back to the
National Security Agency (NSA) which developed the software called “Niagara Files” that
became the base for Nifi after a transfer program in 2014. Nifi, offers a web-based user
interface that allows users to design, control, manage and monitor the different flows of
directed graphs of data routing, transformation and system mediation logic.
In Nifi, once data arrives, it is represented as a Flowfile which is meta-data that allows
processing quite a number of different types like CSV, Database Records, Audio, Video and
others. Additionally, in [98] states that a Processor is a component that allows to perform
some kind of work in a Flowfile, be it as data as a whole, or just its attributes or contents.
It is defined as the basic building block that may perform the most various functions like
reading, writing, updating, ingesting, routing, extracting or modifying Flowfiles.
Processors are connected through Connectors which graphically can be described as just
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arrows, however, every arrow contains a queue with back pressure which can be configured.
These processors, instead of being individually configured, a Flow Controller is used in
order to provide the Processors with the information they need.
As to the advantages of Nifi, one of its main features is that to change a processor’s
settings you only need to stop the processors directly connected instead of having to stop
the whole data flow. Additionally, Nifi contains a well-thought implementation of flow-
based programming concept, explained in [99], allowing to manage data flows easily while
offering real-time control with a GUI to monitor the data movement.
Moreover, Nifi contains a mechanism called Data Provenance as seen in [100], which is a
service in charge of recording everything happening in the dataflows as a backlog which
can come as very handy since it includes how the dataflows perform, the saved contents
of the Flowfiles and other information. Last but not least, Nifi provides many tools and
extensions that allow it to take advantage of the many existing Java libraries which easily
helps integrate Nifi.
As to the disadvantages of Nifi, one of the main complaints, as can be seen in [101], is
the often claimed bad user interface. Additionally, in [97] we can see that Nifi has a big
learning curve which requires a user to understand well how the underlying system works.
Lastly, one feature that many claims are missing is the ability to live monitor and debug
features while being able to see each Flowfile statistics.

Apache Streamsets
According to [102] and [103], Streamsets is a collection of DataOps products designed to

help control data drift, which as stated in [104], is the sum of unexpected or undocumented
changes to data that result in corrupting it while possibly breaking processes. Streamsets
provides two main products, the Data Collector and the Transformer. The Data Collector
is the only open-source product of Streamsets and allows users to build optimized and
flexible pipelines for continuous ingestion with little latency. The transformer allows to
control and monitor the different dataflows using a user interface
In Streamsets every information that is ingested is automatically converted into the stan-
dard format, the Record, which all processors can handle as a stream of records. In
Streamsets there are four types of processors, namely Origin processor which is the pro-
cessor in charge of extracting data from the external sources, Processors which represent
a stage where there is some kind of data transformation, Destination which have the func-
tion of saving information to some external storage and Executors which process events,
generated by other Processors.
As to the advantages of Streamsets, it enables live monitoring and live debugging features
with the aid of the User interface, that is considered to be quite good, using visual per-
record statistics in each and every processor which allow to better manage and understand
what is going on in the dataflow.
Last but not least, the disadvantages of Streamsets include it not being completely open-
source as the only available component is the Data Collector. Additionally, in order to
re-configure a Processor, the whole data flow must be stopped.

Nussknacker
According to [105] and TouK in [106], Nussnaker appeared as a response to the need for

real-time processing and started as an Apache Flink process authoring tool. Nowadays,
Nussknacker is open-source and allows to design, deploy and monitor processes through
a GUI, as shown in Figure 8, in which you draw a diagram and the new processes are
running in a Flink Cluster.
Some of the features of Nussknacker include a sandbox environment to allow users to deploy,
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test and debug the processes they created using the GUI. Additionally, as stated by TouK,
other features include having subprocesses, versioning, generating PDF documentation and
lastly enabling the migration between environments.

Figure 8: NussKnacker User Interface [107]

2.5.2 Processing Layer

Apache Storm
In [108], Storm is described as a distributed real-time processing framework that became

open-source when it was acquired by Twitter.
According to [109] and [110], Storm is represented by a topology, similar to a MapReduce
but instead of eventually finishing, it just runs forever. This topology forms a DAG, further
described in [111], and consists of spouts, which are sources of streams, and bolts, that are
processing or sink operators in which some kind of operation occurs that may lead to the
emission of newly created tuples. Generally, a spout will read a tuple from one or many
external sources and release it into the topology, which means that the bolts subscribed to
the spout will receive the input. The example in Figure 9 below, taken from [69] which is
a simple word count topology, better exemplifies this. Storm actually uses micro-batching
which according to [112], makes the tool flexible for several different use cases.
Storm contains built-in support for sliding and tumbling windows in which any process
in the topology sends an acknowledgement to the executor for a processed tuple that if
results in failure, Storm re-sends the tuple.
In [113], which compares Spark Streaming and Structured Streaming to Kafka, Flink,
Hazelcast and Storm, states that with low data generation and simple stateless pipelines,
Storm is a considerably good option if stability, community support and resource consump-
tion are must-haves.

Figure 9: Storm word count topology [69]

As far as disadvantages are concerned, also on [109], since the acknowledgements can only
be accepted once a window operator completely removes all the tuples from the window,
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this can be an issue for lengthy windows with small slides. It is also stated that despite
having a backpressure thread, it is centralized and highly complex which in some cases can
block or interrupt the system.
Also on [112] states that Storm can have its reliability compromised due to the fact that
the ordering of messages is not guaranteed by the system.
Lastly in [114], it is stated that Twitter used Storm for many years but eventually developed
and changed to Apache Heron, due to the increasing amount of issues related to scalability,
ability to debug, manageability and efficiency in sharing cluster resources that ultimately
led to the loss of performance and decaying of the processor.

Apache Spark
Spark is considered in [115] a unified analytics engine for large-scale data processing

containing several high-level tools for different processing scenarios. At the moment of
this thesis, in [116] we can see that Spark provides two ways of dealing with streaming
data, namely Spark Streaming and Structured Streaming. While the former focuses more
on Batch processing while using old data structures, the latter is more inclined to real-
time processing and is considered to be the future of Spark Streaming. While they have
nearly the same architecture, Structured Streaming no longer depicts the batch concept
and instead, the data is appended to the continuously flowing data stream in which there
is a result table that is updated every time a row of the data stream is processed, as can
be seen in Figure 10 below. This means that, as stated in [117], Structured streaming,
provides two execution modes, a micro-batch and a continuous processing mode for event-
driven processing.

Figure 10: Structured Streaming’s unbounded table [118]

As to data structures, on the literature, there are many comparisons between the RDDs
and DataFrames, like [119], but as it is also stated in [116], those comparisons usually
have the same output which is that the latter structure is not only more optimized for
processing but also provides more data transformation options.
In the same source, it is also asserted that with the addition of event-time handling, Spark
can now handle late data to get more accurate results. Besides, with the inclusion of re-
stricted sinks, Spark always provides end-to-end, exactly-once semantics which means that
in spite of any possible errors, each event only affects the final result once which protects
the system against duplicate or unprocessed data.
In [120], Spark Streaming is compared to Storm and Flink and while it is concluded that
there is no clear winner, it is stated that for huge incoming volume in high-throughput en-
vironments, where the information is massively and quickly generated, and where latency
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is not of the priority, Spark works best. It stands to notice that for lower volumes, the
results are not the same.
The authors in [121], compare Spark, Storm and Flink in a number of different experiments
and conclude that if a stream contains skewed data [122] then Spark is considered the best
out of the three.
In line with [123], Structured Streaming is compared with Spark Streaming, Storm, Flink,
Kafka Stream, and Google Dataflow. They concluded that this processor makes integra-
tion with larger applications easier and that it is a good choice for Batch jobs due to the
prefix integrity guarantee and its incremental batch queries.
Last but not least, in the previously mentioned [113], the authors conclude that Spark
Streaming is a good choice if throughput is more important than latency and that Struc-
tured Streaming can be a favourable choice if usability is the focus since it provides SQL-like
interface to build the processing pipelines.

Apache Kafka
According to [124], Kafka is considered to be an open-source distributed streaming plat-

form that was originally developed by LinkedIn in 2011.
In [125], Kafka is described as a publisher-subscriber system composed of producers that
publish information to a topic, which is a queue, and consumers that read the informa-
tion from a topic. Each topic is split into one or more partitions which enables Kafka to
store, transport or replicate data easily. In Kafka Streams, the Java library specifically
for handling streams of information, a topology is a graph of stream processors (Nodes)
that are connected by streams (Edges). A stream processor represents some kind of pro-
cessing transformation applied to data and a stream represents a number of unlimited and
immutable data records.

Figure 11: Kafka Streams topology [69]

In [69] and in Figure 11, we can see that there is a source processor which extracts the data
records from one or more topics and forwards them to the connected stream processors
that will perform some data processing function. Consequently, there is a sink processor
which stores in another Kafka topic, the information that was delivered to it from the
previous nodes.
In [126], we can see that Kafka guarantees exactly-once semantics, provides high-availability,
SQL support and functionality and supports stateful operations. Additionally, Kafka
Streams can be easily integrated and deployed since it works with the existing Kafka
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application through an API.
Also according to [113], Kafka Streams is said to be the easiest system to deploy and trou-
bleshoot with the support of not only good documentation but also much support in the
internet community. In addition to this, it is also stated that if the low latency goal can
be somewhat sacrificed, then Kafka is still a good option.
Lastly, on [117] it is stated that for systems already residing on a Kafka cluster with
no requirement for very high-throughput and have reasonable latency requirements, that
Kafka Streams offer a possible alternative to Flink with the advantage of being more easily
integrated and installed.

Apache Flink
According to [127], Flink is a distributed processing engine for stateful computations

over data streams, that was released in 2011.
In [69], it is stated that Flink is made of streams and transformation operators that are
depicted in streaming dataflows. A stream is described as a continuous flow of data records,
which can be sourced from message queues, file sources or socket streams, and an operator
is a process that receives streams, carries out some kind of transformation function and
produces a processed stream.
As we can see from Figure 12, a dataflow that resembles a DAG [111], starts with a source
operator which connects to one or more sources to extract information and finishes with a
sink operator which writes data to some storage or other operators.

Figure 12: Flink’s programming model [69]

Also in [127], it is stated Flink can process unbounded and bounded data where the former
include streams which start but have no defined end which means that they are continuously
processed and the latter include streams which start and end which means they can be
fully ingested before being processed. Additionally, this source states that Flink due to
its parallelism in executing thousands of tasks concurrently in a cluster, it is designed to
run stateful streaming on any scale. Also on this, it is described that Flinks asynchronous
and incremental checkpointing algorithm guarantees exactly-once semantics with high-
performance and low latency.
In the previously mentioned [117], the authors consider Flink to be highly recommended
if latency is a critical requirement even if it’s only in certain periods of time. Additionally,
Flink is also recommended if the needed requirements include a balance between latency
and throughput. Also to support this, the authors in [113] report that when the primary
tiebreaker is latency, then Flink is the best choice. Furthermore, in [121], Flink is described
as the go-to stream processor in cases where latency and performance is the main factor,
and it is also described to work better than Spark and Storm in data fluctuations, on use
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cases containing large windows and is even described to have better overall throughput in
aggregations and join queries.

Hazelcast
According to [128], Hazelcast is open-source storage and computing at in-memory speeds.

Hazelcast is divided into two subproducts which include Hazelcast IMDG and Hazelcast
Jet. The former is described as a system that allows storing data in an IMDG which is
described in [129] as a network or cluster of computers that allow the sharing of their RAM
and the processing power parallelly to provide higher application performance. As to the
latter, Hazelcast Jet was introduced in 2018 as a distributed processing system built on
top of IMDG which makes it the most recent processor in this list. According to [113],
Jet, similarly to previously mentioned stream processors, makes use of DAG where the
nodes relate to some kind of processing operation and the edges represent the data flow
and act as a buffer for data produced by previous nodes that let more advanced nodes
pull the information in it. This means that queues are running at the same time between
processors making these more available and increasing the performance whilst reducing
their pressure. Additionally, Jet has an engine that makes the decisions on the number of
tasks or threads that are running in order to make the most out of the Jet tools so as to
achieve high performance.
As described in the same source, Jet has the lowest latency until a certain data rate
(110kTps) where it starts growing exponentially which indicates that for certain volumes
of data, Jet achieves great latency. Lastly, while Jet is said to be easy to deploy and
configure, it stands to notice that since it runs on its resource manager, it may become
hard to integrate into bigger processing environments.

2.5.3 CEP Layer

Esper
According to [130], Esper from EsperTech is a popular open-source language compiler

and runtime for CEP and streaming analytics that is available for Java and .NET that
offers a language similar to SQL called EPL for complex event detection. Also on that
source, the Esper compiler and runtime, instead of storing data and executing queries
against it like a database, allows applications to store queries, or as they are called in
Esper, EPL Statements and run data streams through those statements allowing real-time
response when the conditions from those statements are met, which results in a continuous
execution model instead of a querying one. As stated in [? ], Esper introduces two methods
of creating statements, namely event stream queries and event patterns. The former is
similar to SQL queries and are more related to the event stream analytics component since
they provide aggregation, filtering, joining and other functionalities. As to the latter, the
underlying system is a simple implementation of a state machine leading to statements
that trigger when one or more events occur in a way that matches the pattern’s definition.
These patterns consist of atoms, which are the most simple and atomic filter expressions
and operators which combine the atoms either logically or temporally. As to the Esper
Engine, according to the documentation in [130] the Esper compiler, compiles EPL code
into Java Virtual Machine (JVM) bytecode so that the resulting executable code can run
in the Esper runtime environment which runs on top of a JVM. The user interacts with the
engine by compiling and deploying modules that ultimately contain statements. As to how
to get data from the engine, Esper offers two methods, namely, listeners and subscribers
wherein both, the user has to first define them using Java language to implement what will
happen when the statement’s conditions are triggered and lastly, the user has to attach
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them to the queries. One last thing worth mentioning about Esper is that the user, to
create and add new statements, does not have to compile the whole application again which
means that rules can be injected dynamically during runtime.

Drools
According to [131], Drools is an open-source Business Rules Management System released

under Apache License 2.0. Drools currently encapsulate several projects like a Business
Rule Engine, Web authoring, Rules Management Application, and runtime support for
Decision Model and Notation models. As to the CEP component, Drools Engine is the
rules engine in the Drools project, in charge of storing, processing and evaluating data to
execute the rules previously defined. In Drools, incoming data is referenced as facts and
the engine’s objective is to match those facts to the rule’s conditions to determine when
they are executed.
As we can see from Figure 13, taken from the official documentation from the previous
source, the Drools Engine is composed of the following components:

• Rules - Business rules or Decision Model Notations containing at least one condition;

• Facts - Data entering or changing in the engine which is matched to the rule’s
conditions;

• Production Memory - Location where rules are stored;

• Working Memory - Location where facts are stored;

• Agenda - Location where activated rules are registered and sorted.

Figure 13: Drools engine composition [131]

As the author states in [? ], In the engine, the matching of data against rules, or facts, is
called pattern matching and it can result in firing rules when the agenda schedules them,
which, as a consequence, leads to the firing of rules that can match against other rules that
in a chain reaction that also fires those rules. This mechanism is referred to as forward
chaining. Also on the same source, the author references that the reason behind Drools
rule engine’s speed and scalability is the Rete-OO algorithm, which is an enhanced version
of the Rete Algorithm for object-oriented systems, in charge of matching the facts against
the rules controlling which rules activate.
Last but not least, Drools Fusion is the module that gives the rule engine the capability
to model events. In other words, it gives the engine the ability to define facts as events,
manage the event cycles and manage the temporal/sliding windows.
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Chapter 3

Requirements

The following chapter aims to tackle two important subjects. The first one is the description
and specification of all the Requirements that appeared throughout the process of this
internship and during the development of the proposed system. The second topic is the
presentation and explanation of the proposed architecture used to overcome the challenges
posed by the advances in data in a Smart Cities environment as previously mentioned in
the State of the Art.

3.1 Scope

The scope of this internship revolves around a data ingestion system that allows for the
integration and process of data streams into Ubiwhere’s analytics project, the Urban Plat-
form. In addition to this, the system will include a Rule Mechanism allowing end-users to
cross-analyse in real-time the streams that are constantly being transformed and outputted
from the processing tool. This application must allow the system users to create, add, re-
move and monitor the so-called rules, which are pre-established comparisons between the
available data set fields with certain user-defined thresholds. Lastly, users must be able to
add, remove or edit these thresholds as they are the triggers for the Alarms.

3.2 Stakeholders

Given the scope of the project, the main stakeholders that will interact with the system
can be divided into three groups. The first group are the source systems which consist of
third party operators like Here Technologies which generates data that is either pushed or
polled into our platform. The second group is composed of the Urban platform which is
the system that is given the output data after it is verified, validated and processed by our
platform. And last but not least, the third group includes all the system users that may
directly interact with the Rule Mechanism.

3.3 Constraints

There are two types of constraints that will have an impact on the requirements contem-
plated, namely Business constraints and Technical constraints. The former constraints are
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associated with the availability of resources in order to fulfil the later detailed requirements
and given the nature of this internship, the limiting resources are mainly connected to the
available time for the development of the system. As to the latter, it stands to notice that
the technologies used must be open-source and that the developed system must integrate
with the existing APIs in Ubiwhere, more specifically, the ones from Urban Platform. The
restrictions are described below using C#ID tag:

• C#1: Development Time - The proposed system must be developed until the
end of the internship, more precisely, for 5 months by one person;

• C#2: Integrate with Urban Platform - The developed system must integrate
at least two datasets with Ubiwhere’s system, the Urban Platform;

• C#3: Open Source - The technologies used must be Open Source.

3.4 Functional Requirements

Given that our system can be roughly divided into two subsystems with all the user in-
teractions being focused on the Rule Mechanism, we decided to divide the functional re-
quirements into two subsets. On the one hand, the chosen method for specifying the Rule
Mechanism interactions with the user was using User Stories, mostly due to the fact that
the adopted methodology was based on Scrum which is an agile framework and, therefore,
puts users at the centre of the conversation. User Stories can be described as informal,
generic descriptions of a software functionality from an end-user perspective with the pur-
pose of clarifying how the feature will have an impact. Additionally, to set the boundaries
of the story and to make the user stories more measurable and easy to understand, the
acceptance criteria will be presented for each User Story following the Gherkin language
due to its human-readable nature for describing the system conduct [132]. On the other
hand, as to the requirements for the System which includes the ingestion, processing and
decision making using data, these will be specified using Use Cases mostly due to the fact
that since there are no user interactions, most use cases relate to the actions that the
system will take, and therefore require a higher degree of formality and granularity which
ultimately offer a finer description of how the system acts.
In addition to this, the requirements will be prioritized according to the MoSCoW method
[133], which, as stated in the source, can be described in the following scale:

• Must have - Mandatory requirements that have to be present in the proposed
system;

• Should have - Important requirements that while not obligatory, would add relevant
value to the system;

• Could have - Nice to have requirements that while they could improve the system,
they are considered to be unimportant and can be overlooked;

• Will not have - Requirements that are not considered to be important for the time
being.
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As to the User Stories, the requirements are presented in the following format:

US#ID
Story:

As a <role>,
I want <feature>
so that <reason>.

Acceptance Criteria:
Scenario: Some determinable business situation

Given some precondition
When some action by the actor
Then some testable outcome is achieved

Dependencies: US#ID
Priority: Must Have, Should have, Nice to Have

Last but not least, as far as the User Cases are concerned, the requirements are presented
in the following format:

UC#ID
Title: <Title>
Actor: <Actor>
Scope: <Scope>
Priority: <Priority>
Frequency: <Frequency>
Trigger: <Trigger>
Preconditions:

Preconditions
Main Success Scenario:

1. Step 1.

2. Step 2.

Alternative Paths:

1. Step 1.
(a) Step 2.

Postconditions:
Postconditions

3.4.1 User Stories

In the following Subsection, all the user stories are presented:

US#1
Story:

As a system user,
I want I want to be able to create new Rules
so that so that the system may compare the data sets according to the rules in

real-time.
Acceptance Criteria:

30



Requirements

Scenario: User creates a valid rule
Given that I am in the application

And I am in the Create Rule menu
When I correctly choose the data sets, the fields to compare and the thresh-

old of comparison
And I choose the “Create Rule” option

Then I should see a confirmation that the Rule has been created

Scenario: User attempts to create an invalid rule
Given that I am in the application

And I am in the Create Rule menu
When I incorrectly choose either the data sets, the fields to compare, the

threshold of comparison or the Alarms
And I choose the “Create Rule” option

Then I should be presented an error message stating that the Rule has not
been created and explaining what is wrong with it
Dependencies: None
Priority: Must Have
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US#2
Story:

As a system user,
I want I want to be able to view all the existing Rules
so that I know what Rules are being used.

Acceptance Criteria:
Scenario: User views all Rules

Given that I am in the application
When I choose the “View Rules” option
Then I should be able to see all the existing rules

Dependencies: None
Priority: Must Have

US#3
Story:

As a system user,
I want to be able to filter what Rules I see
so that I can find the rules I want more easily.

Acceptance Criteria:
Scenario: User filters the Rules

Given that I am seeing all the Rules
When I fill the Search by Name, Data Set, Threshold or Alarms filter

And choose the “Filter Views” option
Then I should be able to see all existing rules with the restrictions I chose.

Dependencies: US#2
Priority: Could Have

US#4
Story:

As a system user,
I want to be able to see the details about a specific Rule
so that I can check what the Rule is applied to and what it is doing.

Acceptance Criteria:
Scenario: User views the details about a specific Rule

Given that I am seeing all the Rules
When I click on a Rule
Then I should be able to see all the details about the Rule.

Dependencies: US#2
Priority: Must Have
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US#5
Story:

As a system user,
I want to be able to edit existing Rules
so that the existing Rules can be updated in accordance to my needs.

Acceptance Criteria:
Scenario: User correctly edits a rule

Given that I am viewing a specific Rule’s details
When I click on "Edit Rule"

And I correctly fill the fields I want to change
Then I should see a confirmation that the Rule has been updated

Scenario: User incorrectly edits a rule
Given that I am viewing a specific Rule’s details
When I click on "Edit Rule"

And I incorrectly fill the fields I want to change
Then I should view an error message stating that the Rule change wasn’t

applied and explaining what fields were incorrect.
Dependencies: US#4
Priority: Should Have

US#6
Story:

As a system user,
I want to be notified when a certain Rule threshold has been surpassed
so that I can know when and why it happened.

Acceptance Criteria:
Scenario: A threshold has been surpassed and a user is notified

Given that the Rule defined included a threshold of having a maximum of
10 cars in a certain road.

When the number of vehicles in that road surpasses the threshold defined
Then I should receive a notification of the event.

Dependencies: US#1
Priority: Should Have
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US#7
Story:

As a system user,
I want to be able to define different levels of Alarms
so that I can differentiate when a threshold being surpassed is critical or not.

Acceptance Criteria:
Scenario: An informational threshold has been surpassed and a user is notified

Given that the Rule defined included an informational threshold of having a
maximum of 10 cars in a certain road

When the number of vehicles in that road surpasses the threshold defined
Then I should receive a system notification about the event.

Scenario: A warning threshold has been surpassed and a user is notified
Given that the Rule defined included a warning threshold of having a maxi-

mum of 10 cars in a certain road.
When the number of vehicles in that road surpasses the threshold defined
Then I should receive a system notification and an email notification about

the event.
Scenario: A critical threshold has been surpassed and a user is notified

Given that the Rule defined included a critical threshold of having a maxi-
mum of 10 cars in a certain road

When the number of vehicles in that road surpasses the threshold defined
Then I should receive a system notification while all the contacts defined

should receive an email notification about the event.
Dependencies: US#6
Priority: Could Have

US#8
Story:

As a system user,
I want to be able to add emails to a rule
so that those emails can be notified if a rule is triggered.

Acceptance Criteria:
Scenario: Add emails to a rule

Given That a rule with an alarm level above informational is previously cre-
ated.

When I input a number of emails and submit the request
Then I should receive a message with the added emails.

Scenario: Try to Add emails to a rule that can’t have emails
Given That a rule with an alarm level informational is previously created.
When I try to find where to input the emails
Then I should not be able to find the option.

Dependencies: US#1
Priority: Should Have

US#9
Story:

As a system user,
I want to be able to remove emails from a rule
so that I can change which emails are notified if a rule is triggered.

Acceptance Criteria:
Scenario: Remove email from a rule
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Given That a rule with an alarm level above informational is previously cre-
ated and at least an email has been added.

When I choose the rule and input the existing email I want to delete
Then I should receive a message notifying that the email has been removed

from the rule.
Scenario: Try to remove an email from a rule

Given That a rule with an alarm level above informational is previously cre-
ated and at least an email has been added.

When I choose the rule and input an email that has not been added.
Then I should receive a message notifying that the email has not been found

and therefore, was not deleted.
Dependencies: US#1
Priority: Should Have

3.4.2 Use Cases

In the following Subsection, all the use cases are presented:

UC#1
Title: Data Ingestion
Actor: Nifi
Scope: Nifi polls data from Here technologies
Priority: Must
Frequency: Every 60 seconds
Trigger: Time
Preconditions:

A Component must be previously configured with a certificate and the URL with
the location, API key and other optional metrics.
Main Success Scenario:

1. Nifi performs a Get Request to Here technologies using the predefined URL;

2. Nifi saves some data before splitting;

3. Nifi splits the data into events;

4. Nifi merges the events with the data previously stored;

5. Nifi remodels the events into a better format;

6. Nifi sends the events to a Kafka topic.

Alternative Paths:

2. Nifi does not store data because it is empty;
(a) Nifi adds empty fields to the event.

3. Nifi fails to split events due to malformed data.
(a) Nifi redirects the events to a failure queue where they can be later analysed.

(b) The use case ends with those events not being sent to a Kafka Topic.

Postconditions:
The data has been split into events and sent to a Kafka Topic.
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UC#2
Title: Data Processing
Actor: Flink
Scope: Flink consumes and processes an event and sends it to a Kafka Topic
Priority: Must
Frequency: Every time a new event is sunk in the input Kafka Topic
Trigger: Arrival of data in an input Kafka Topic
Preconditions:

Flink Job has been executed in the server cluster
Main Success Scenario:

1. Flink consumes the data into a stream;

2. Flink converts the data in the stream into an input event;

3. Flink transforms the event into the correct output data standard event;

4. Flink converts the stream event into a JSON message;

5. Flink sinks the event into another Kafka Topic.

Alternative Paths:

2. Flink fails to convert the data because the input event is malformed;
(a) Flink logs the occurrence and discards the event.

3. Flink fails to transform the event because some fields are incorrect or missing
(a) Flink logs the occurrence and discards the event.

Postconditions:
The data has been converted into the correct standard and sent to a Kafka Topic.

UC#3
Title: Rule Engine data consumption
Actor: Rule Engine
Scope: Rule Engine consumes and sends an event to the engine
Priority: Must
Frequency: Every time a new event is sunk in the input Kafka Topic
Trigger: Arrival of an event in an input Kafka Topic
Preconditions:

The Rule Engine and Kafka must be running and the necessary configurations for
these events must have been made.
Main Success Scenario:

1. Rule Engine consumes the data from the Kafka Topic;

2. Rule Engine converts the Json message into the correct data model;

3. Rule Engine sends the event to the Esper engine;

4. Rule Engine logs the occurrence.

Alternative Paths:

2. Rule Engine fails to convert the message due to a malformed event.
(a) Rule Engine logs the occurrence and discards the event
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Postconditions:
The Esper engine received the event.

UC#4
Title: Rule Trigger Check
Actor: Rule Engine
Scope: Rule Engine checks for triggered rules.
Priority: Must
Frequency: Every time a new event is sent to the Esper engine
Trigger: Arrival of event in Esper Engine
Preconditions:

The Rule Engine must be running and UC#3 must have been triggered
Main Success Scenario:

1. Rule Engine analyses the event against a rule;

2. Rule Engine matches the rule’s pattern;

3. Rule Engine triggers the callback method;

4. Rule Engine logs the occurrence;

5. Rule Engine repeats the previous processes for each rule.

Alternative Paths:

2. The event doesn’t match the rule’s pattern;
(a) Rule Engine doesn’t trigger the callback method.

5. Rule Engine has verified each rule.
(a) Use case ends.

Postconditions:
An event matches a rule’s pattern.

UC#5
Title: Rule Trigger
Actor: Rule Engine
Scope: A rule is triggered.
Priority: Must
Frequency: Every time an event matches a rule’s pattern.
Trigger: An event matched a rule’s pattern in the Esper Engine.
Preconditions:

The UC#4 must have been triggered
Main Success Scenario:

1. Rule Engine retrieves the events that matched the pattern;

2. Rule Engine retrieves the necessary emails;

3. Rule Engine prepares the alarm and converts it to JSON;

4. Rule Engine logs the occurrence;

5. Rule Engine sinks the event into another Kafka Topic.

Alternative Paths:
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2. The rule didn’t have attached emails or had an Alarm level which didn’t include
them;
(a) Rule Engine doesn’t include the emails in the alarm message.

Postconditions:
An alarm is sunk into a Kafka Topic.

UC#6
Title: Alarm Received
Actor: Rule Alarm
Scope: Rule Alarm consumes an alarm and triggers notifications.
Priority: Should
Frequency: Every time an alarm is put in a Kafka Topic.
Trigger: An alarm was sent to a Kafka Topic
Preconditions:

The Rule Alarm microservice must be running and the UC#5 must have been
triggered.
Main Success Scenario:

1. Rule Alarm consumes the data from the Kafka Topic;

2. Rule Alarm sends a notification to the Rule API;

3. Rule Alarm sends an email to each of the attached emails.

Alternative Paths:

3. The alarm didn’t have attached emails or had an Alarm level which didn’t include
them;
(a) Rule Alarm doesn’t send emails.

Postconditions:
A notification and emails are sent.

3.5 Non-Functional Requirements

Non-functional requirements specify the quality attributes that restrict and impact the
system design due to their architectural significance. Due to the fact that the developed
platform must meet a variety of quality standards, it is crucial that we describe and survey
how the system should behave and, therefore, a number of attributes will be presented:

• Performance - The system should quickly ingest and process the information ar-
riving from the different data sources due to its low-latency needs. This attribute is
partially validated in Chapter 6. Testing where we measured latency during Load
Testing;

• Scalability - The system should be able to add more, different, data sources and
support the already existing ones to increase the amount or rate at which they
produce data without the decaying of the system performance. This attribute is met
in the Proposed Architecture and was also validated in Chapter 6. Testing where we
measured throughput during Load Testing;
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• Interoperability - The system should be able to collect information from several
data sources and process them while enabling the processed data to be available to be
requested by the Urban Platform. This requirement is met in Chapter 4. Proposed
Architecture by choosing to sink all resulting events in Kafka Topics so that the
Urban Platform can access them;

• Availability - The system should be operational and have normal behaviour and
performance when required. Additionally, the system should be able to recover from
malfunctioning circumstances and in case of a fault turning into a system crash, the
system administrators should be notified with the detailed cause. This requirement
is met through the choices made in the architecture due to a microservice oriented
pattern where the tools are not only isolated from one another by always communi-
cating through the use of Kafka topics, but also have high availability. Additionally,
all tools are running as Docker containers which can be horizontally scaled;

• Modifiability - The system should be easily replicable and expandable to cope with
eventual changes in the existing data sets and with the addition of more data sources.
This requirement is met by dividing the architecture into several microservices and it
is also validated in chapter 5. Implementation where we present the necessary steps
to add new data sets to the system.

Last but not least, for each quality attribute, a scenario depicting it’s most relevant aspects
will be presented in the following format:

Source of stimulus - An entity (E.g a human, a computer system, or other actuators)
that produced the stimulus;
Stimulus - A condition that needs to be taken into consideration by the Artefact;
Environment - The conditions in which the stimulus occurs;
Artefact - A stimulated entity which can be the whole system or some parts of it;
Response - An action tackled by the artefact in reaction to the arrival of the stimulus;
Response measure - The criteria used to measure the quality of the action.
Result - A description of whether the attribute was tested and if the requirement was met.

Scenario 1

Quality Attribute Scalability
Source of Stimulus Data Source

Stimulus Increase in the amount of information that
consumes the system’s processing resources.

Environment Conditions Permanent or temporary increase in demand of
system resources.

Artefacts System

Response The system should perform the necessary tasks
without degradation of other quality attributes.

Response Measurement Proof of Concept system should be able to
process 100 events per second.

Result Proof of Concept system should be able to
process 100 events per second.

Table 1: Scenario 1 - Scalability
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Scenario 2

Quality Attribute Performance
Source of Stimulus Data Sources
Stimulus New information arrives at the system
Environment Conditions Normal conditions
Artefacts System
Response The system processes the information.

Response Measurement The system should be able to process an event in
under 1 second 99.9% of the time.

Table 2: Scenario 2 - Performance

Scenario 3

Quality Attribute Availability
Source of Stimulus System
Stimulus One or more faults occurs in the system
Environment Conditions Faults have occured
Artefacts System

Response The system should continue to process data, should
log the occurrence and notify the people responsible.

Response Measurement The system should be available 99.9% of the time.

Table 3: Scenario 3 - Availability

Scenario 4

Quality Attribute Modifiability
Source of Stimulus Developers
Stimulus Want to modify or add a data set.
Environment Conditions Development
Artefacts System

Response Modification or addition of a data set has no impact
on other data sets and has no side effects on the system.

Response Measurement The data set should be modified or added to the
system within a week of labor

Table 4: Scenario 4 - Modifiability
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Scenario 5

Quality Attribute Interoperability

Source of Stimulus Urban Platform tries to get data that has been
processed by our system.

Stimulus The request to exchange information between our
system and the Urban Platform

Environment Conditions Systems wishing to exchange data are known prior
to run time

Artefacts System

Response The request is accepted and the available data is
exchanged.

Response Measurement Our processed data is correctly made available for
the Urban Platform 99.9% of the time.

Table 5: Scenario 5 - Interoperability
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Chapter 4

Proposed Architecture

The following chapter introduces our proposition for an Architecture for a Smart Cities
Data Ingestion platform. The tool analysis on the subject given the previously mentioned
requirements, is provided, followed by the description of the Architecture and last but
not least, a practical use case is delivered so that the proposed solution can be better
understood.

4.1 Tool Analysis

Data ingestion platforms in Smart Cities environments require different technologies to fully
cope with the challenges that arise from integrating Big Data like velocity, variety, volume
and veracity, and therefore, the following subsection aims to go over the choices made about
the presented technologies in the State of the Art, in order to fulfil the previously stated
requirements. Given the architecture presented in section 4.2, the remaining major choices
are related to the technologies used in the Ingestion, Processing and Rule Mechanism layer
and therefore those will be previously discussed in this chapter. First of all, we will decide
on the processing tool since it is the core of our Data Ingestion system which dictates the
architectural needs and limitations and after that, we will establish the best Ingestion tool
to support the processor and last but not least, we will go over our options regarding the
Rule Mechanism tools in order to choose the best one.

4.1.1 Processing

To better understand the choice made, a table was presented, namely, Table 6, in which
the possible tools are displayed as well as the major factors behind the decision. Those
major factors will now be introduced and discussed.
First and foremost is Latency, which according to [117] is the time that the processing
engine requires to generate an output given one or more inputs, that was displayed in
the table through ratings from low to very high through the analysis and interpretation
of [113], which reports and analyses the latency of the proposed technologies through a
benchmark.
Additionally, Guarantees refers to the Fault Tolerance mechanism that indicates whether
the messages being handled in a distributed system can be lost or duplicated in certain
scenarios. As to the differences between at-least-once and exactly-once guarantees, the
former indicates that each message may be multiply delivered and therefore while it can’t
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be lost, it may be duplicated. Alternatively, the later specifies that the message is only
delivered once and therefore can’t be lost or duplicated at the expense of added latency
due to the increase in the message overhead.
As to State-fullness [134], this field represents the ability of the processor to handle data
in a stateful manner. Whereas in Stateless stream, each event is independently handled
from the others which means that the processor will treat every event in the exact same
way, in Stateful Stream, there is a shared state between events which means that the
anterior can influence how the posterior will be treated changing how the processor deals
with it. While stateless is more easily scaled due to its simplicity, it cannot do real-time
comparisons like aggregated counts for example to know how many errors that are in a
certain time window.
Lastly, when it comes to Community Support, two fields were taken into account,
namely Git Pull Requests and Stack Overflow Questions. Since both metrics are
always changing according to how big the community is, the results displayed in the table
that will be the target of analysis are about the values obtained on the 5th of May. The
former is a Git mechanism for a developer to notify its team that certain changes have been
pushed to a separate branch providing others with the ability to review and discuss the
added features. This field, which is divided into open and closed requests, helps understand
not only how often changes are made, but also how big the community is. One thing worth
mentioning is that the pull requests can be divided into open which means that they are
still being reviewed and discussed, and closed which means that the request was either
accepted or refused. As to the latter, Stack Overflow is a question and answer site that is
broadly used by all the programming community. By analysing the number of questions,
we can have a better understanding of the size and the support behind each tool’s user
pool.

Processors
Comparisons Flink Kafka Storm Spark Structure

Streaming Hazelcast

Latency Very High High Low Low Medium Very High
Guarantees Exactly-Once Exactly-Once At-Least-Once Exactly-Once Exactly-Once Exactly-Once
State-fullness Yes Yes Yes Yes Yes Yes
Processing Model Real-Time Real-Time Real-Time Micro-Batch Real-Time Real-Time
Git Pull Requests 553 / 15273 866 / 9764 46 / 3350 227 / 32190 227 / 32190 832 / 5805
Stack Overflow Questions 5308 3047 2549 5225 1740 2449

Table 6: Processors Comparison

When it comes to Latency, in the benchmark mentioned above, Flink and Hazelcast
showed the best results with Kafka being right behind them. Supporting Flink’s results
were other benchmarks, mentioned in Section 2.5.2, which didn’t include Hazelcast, that
often ranked Flink as the go-to processor when it comes down to low latency. Additionally,
Flink is the only stream processing engine that was able to maintain results of under 2.5
seconds even when the throughput was increased to 150K Tps (Transactions per second).
When it comes to Hazelcast, the most recent of the presented processors it was showing
promising, competitive results until it started decaying exponentially after surpassing a
certain number of Tps, more specifically 120k. While not alarming, this could pose a
threat in busier, more high-throughput scenarios. As to Kafka, this processor showed the
best results after the other two only decaying after 140kTps.
Moving on to fault-toleranceGuarantees, most stream processing engines provide Exactly-
Once semantics except for Storm which only provides at-least-once. It stands to notice
that some of the Stream Processing engines like Hazelcast offer the ability to choose what
kind of guarantee each job adapts to offer more dynamic approaches.
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Continuing to State-fullness, all stream processing engines provide the ability to have
stateful computations, however, despite having this in common according to [134] there
are conflicting views on the best implementation. An example of this is that while Spark
Streaming only enables stateful computations through DStream (Discretized Streams)
which is the basic abstraction of continuous streams of data in Spark, Flink includes
stateful operators that makes stateful application development much easier.
When it comes to Community Support, as far as Git Pull Requests are concerned,
there was no Git directly for Spark Streaming or Structured Streaming as the only Git
belonged to Apache Spark. As these two tools are extensions of the core Spark API, there
was no way of correctly knowing the number of git pull requests specifically related to
them and therefore are considered outliers in this analysis. Apart from this, Flink showed
the best results as it showed approximately 16k pull requests, followed by Kafka with
10.5k, Hazelcast with 6.6k and lastly Storm with 3.3k. As to the field of Stack Overflow
questions, Flink takes the lead with 5.3k, immediately followed by Spark that holds 5.2k
questions, with the remaining tools having below 3k questions each. This goes to show
that Flink is the tool that appears to have the biggest community with the most support.
Alternatively, one other factor that was taken into account that wasn’t put in the table was
Throughput, which according to [117] is the number of messages that a streaming engine
can process per second. The reason behind it not being on the table is that not only did
different sources have different conclusions which made it difficult to generalise the rank-
ing of different frameworks but also Hazelcast wasn’t in any of the sources that compared
this parameter. In [121], a series of different experiments were conducted analysing Flink,
Spark and Storm. It stands to notice that Storm drops some of the connections when
tested with high throughput with backpressure disabled. Additionally, it is concluded that
Flink has better overall throughput for aggregation and join queries as well as for scenarios
with large windows. Lastly, it is also concluded that Flink’s throughput is not only higher
but still maintains fewer fluctuations, followed by Spark and lastly Storm. Moving on to
[117], the author compares Flink, Kafka, Spark Streaming and Structured Streaming in
different performance-wise scenarios. On a sustainable throughput environment, which is
the highest load of traffic that a system can handle with no signs of prolonged backpressure,
Structured streaming reached the highest values in unconstrained latency conditions fol-
lowed by Spark Streaming. Alternatively, on constrained latency conditions, Flink showed
the best results followed by Kafka. On a single burst on startup workload, the author notes
that micro-batch frameworks take longer to catch up in comparison to event-driven ones,
and therefore, Structured streaming is the fastest streaming engine to process the burst
of information followed by Flink, Spark Streaming and Kafka. Lastly, on a workload with
periodic bursts, when the pipeline gets more complex, Flink is the framework who suffers
the least from periodic bursts.
As a consequence of all the previous factors, we filtered the options down to Flink and
Kafka. Ultimately, given that Flink showed the best latency results, was a name that
stood out on the sources analysed, as a good option for high-throughput on an environ-
ment where latency is not discardable and also appeared to have the biggest community,
the chosen stream processing engine for the proposed system was Flink.

4.1.2 Ingestion

Having reached a decision on the Processor, the next step is to take into account the pos-
sible ingestion technologies to deal with the collection, preparation and routing of data.
Having the possible tools and the major deciding factors, Table 7 is presented. First of all,
the technology used must be Open-source due to the constraint C#3 and when it comes
to that, StreamSets is the only technology pondered that is only partially open-source.
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This is because StreamSets contains several products but only the Data Collector and the
Data Collector Edge are available for free and whilst there are no limitations on these
products, the fact that it has other limitations excludes it from the competition. Moving
on to Graphic Use Interface, all available technologies considered in the State of the
Art have a GUI, however, there was always the option of disregarding the GUI in order to
develop a coded SDK that would need to be developed from scratch. Despite the advantage
of this approach in having more control over the pipelines by casting off the limitations
imposed by the GUI, this procedure would unnecessarily consume the most important
resource in the internship, time. Also on this topic, while Nifi presents some obvious
advantages over Nussknacker when it comes to community support, available tools and ex-
tensions that make use of Java libraries, and overall quality due to time it has been around
and the upgrades it has received, it is often claimed to have a bad and not user-friendly UI.

Ingestion Tools
Comparisons Nussknacker Streamsets Nifi Coded SDK

Learning Curve High High High High
GUI Yes Yes Yes No
Open-Source Yes Partially Yes Yes
Language Scala Java Java Any

Table 7: Ingestion Tools Comparison

As far as Nussknacker’s advantages are concerned, the fact that it was developed exclu-
sively for Flink, allows it to make use of its overwhelming performance and reliability to
make streams faster and easier to develop. On top of that, the fact that Nussknacker uses
Flink means that the learning curve of the proposed system as a whole reduces, making the
system simpler, easier to develop and most importantly, less painful to maintain and trou-
bleshoot. Lastly, the simplicity of Nussknacker compared to Nifi means that the learning
curve that in Nifi is considered to be high due to problems in the GUI, is lower resulting
in more time to focus on the proposed system.
As to other disadvantages, upon further analysis, Nussknacker’s lack of documentation
and examples, turn what would appear to be a reasonable learning curve into an exten-
sive period of comprehensive code analysis to understand how to do simple things. In
addition to this, Nussnacker only provides Kafka connectors as out-of-the-box sources and
sinks quickly increasing the complexity by having to code any other connectors that may
be necessary. To make things worse, whereas Nifi has data generator components that
easily create simulated environments for testing purposes, in Nussknacker you have to
manually implement those which roughly translates to additional work. Lastly, most of
Nussknacker’s documentation and examples are only available in Scala which, despite its
similarities to Java, still adds unnecessary complexity in learning a new language since all
the chosen technologies were in Java.
Due to all the reasons mentioned above, even if Nussknacker has some performance advan-
tages with its simplicity over Nifi, because of Flink, it still loses in almost every aspect and
therefore the chosen technology for the Ingestion layer in the Proposed System was Nifi.

4.1.3 Rule Mechanism

The next step is to take into account the possible technologies to create the Rule Mecha-
nism. One type of data processing that is worth mentioning in the spectrum of the IoT is
CEP. According to the author in [135], CEP can be defined as a mechanism that analyses

46



Proposed Architecture

not only the data but also its context in order to trigger events. An example of how CEP
can be used while analysing streams of traffic and environment, is to understand how the
amount of traffic in a certain zone can relate to the different types of events in the Envi-
ronment, for example, CO2 emissions. These event comparisons can be described as the
Rule Mechanism that is to be developed in our system. Given that some stream processors
offer the ability to develop CEP natively, we are given two options:

1. Choose a Stream Processor that has a CEP library to create the rule mechanism;

2. Use another technology to provide CEP functionality.

When it comes to the first option, of the processing tools analysed, Storm has an Esper in-
tegration library which roughly translates to using two of the aforementioned technologies
where one must be Storm, Flink has a native library, namely FlinkCEP that has an API
that allows the developer to define complex pattern sequences that may be extracted from
the streams without having to create them from nothing [136], and other external libraries
like Flink-Siddhi [137] and Flink-Esper [138] and lastly, Kafka which has an external li-
brary called Kafka-Streams-CEP [139]. When it comes to performance, FlinkCEP showed
several advantages as it was natively present in Flink ultimately reducing the number of
technologies to learn, develop and maintain and also making use of Flink’s low latency and
high throughput to easily scale and achieve better real-time results. Additionally, the fact
that we could have a single technology for processing and evaluating rules, would mean
that data wouldn’t have to be carried between so many systems, ultimately reducing the
latency generated from transporting data. Nevertheless, during the learning period, it
came to the conclusion that both FlinkCEP and FlinkSQL don’t allow dynamic runtime
injection of patterns(or queries) [140] which ultimately implies that the rules would have
to be present during compilation and therefore, the system would have to be stopped in
order to add newer rules. In addition, Flink-Siddhi only runs in older versions of Flink 1.7
(currently at 1.12) which would create future version problems and Flink-Esper not only is
undocumented but also hasn’t been supported for over three years. Similarly to FlinkCEP,
Kafka-Streams-CEP also doesn’t support dynamic runtime injection of rules. Ultimately,
these factors led to discarding the previously mentioned processor libraries to create the
rule mechanism.
As to the other option, there are two tools that often come up as far as CEP is con-
cerned, namely Esper and Drools. As far as dynamic runtime injection is concerned, both
technologies allow to compile, deploy and undeploy rules or, as they are called in Esper,
Statements while running in a multithread-safe environment. When it comes to perfor-
mance, according to [141] Drools was concluded to have a better performance compared
to Esper achieving overall better results though not by a lot. Despite its superior perfor-
mance results, Drools also showed memory management issues leading to some unfinished
experiments. Alternatively and on the same source, Esper was concluded to be a robust
and acceptable compromise between performance, configuration flexibility and easiness of
setup. As to syntax, Drools makes use of its own syntax called Drools Rule Language
(DRL) which according to [142], is verbose and overall less attractive compared to Esper’s
EPL which is a SQL-like syntax that supposedly makes it easier to learn and develop.
In conclusion, both Drools and Esper can be integrated with Java Spring and both are
viable options, however, given that Esper appears to have a less steep learning curve with
a more simple, yet powerful syntax while also being flexible and easy to set up, it will be
the chosen technology for the CEP layer.

47



Chapter 4

4.2 Architecture

Taking into account all the previously mentioned information, we have come up with an
architectural proposition which will depict a way to collect data from the many different
data sources, process it and make the data available for the Urban Platform to consume
it.
It stands to notice that the architecture chosen is not serverless due to the fact that not
only is performance one of the main priorities, but also one of the technical constraints
states that the technologies used should be open source.
One of the crucial points is that our proposed system was inspired by the Kappa Architec-
ture since the research done showed that this approach was not only more appropriate for
real-time streaming environments but also discarded the increasing difficulty of learning,
developing and managing a Lambda Architecture. This approach solved some important
issues like for example managing out-of-order events which in Flink is transparently han-
dled and also allowed us to set our focus on the performance of the streaming platform
which is one of our most important requirements due to the Big Data challenges that Smart
Cities sources impose. In order to make things simpler, we can divide the proposed system
into two main phases.
First and foremost, as we can see in Figure 14, is the base of the platform, or the called
Data Ingestion Platform, which consists of a three-layered system that is divided into in-
gestion, processing and queueing. As the name suggests, the first layer of this subsystem
is in charge of collecting, preparing and routing the information to the correct processors
which will in turn perform any needed operations or transformations to the data. Lastly,
the queueing system is responsible for handling the pressure of holding the data for Flink
and for external systems, like the Urban Platform, to enable a Back Pressure mechanism
[143] so as not to create a bottleneck in the entrance of these two systems and therefore
create a more scalable system.
The division of this system into a layered architecture allows us to have a more flexible
and modifiable system where changes to a certain aspect of a layer don’t have direct reper-
cussions on the other layers. Additionally, this allows us to simplify the problem while
making it more manageable and ultimately more robust since the emergence of faults in
a layer is contained in that environment. One other advantage that is worth mentioning
is that by having an ingestion layer, we can always transform data before routing it to
the processors by always modifying it into the same formats which ultimately not only
simplifies the processes of changing and using the available information but also makes
data more efficient and less prone to human error.

Figure 14: Proposed Architecture
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Given this, the base of the proposed system consists of the following layers:

• Ingestion Layer - This layer is in charge of collecting data and ingesting it into
the processor and as previously mentioned in subsection 4.1.2, the chosen technology
was Nussknacker due to its use of Flink´s performance, its lower learning curve and
its GUI. It stands to notice that this layer allows us to unify the formats that enter
the processing layer, maximizing the fault tolerance of our system and its robustness
towards format problems;

• Processing Layer - This layer is responsible for filtering and validating the data,
checking the user-defined rules and applying any needed transformations on the data
to be later sent to the message queue. The technology chosen was Flink since com-
pared to the considered open-source solutions, it showed the best latency results and
was considered a good choice for high-throughput scenarios;

• Message System - This layer is accountable for removing the pressure from Flink
and the Urban Platform’s entrances, so as not to push more data than these systems
can process. Additionally, as to the message queues for the external systems, this
layer can be thought of as intermediary storage that allows the Urban Platform, the
Rule Mechanism and eventually other external systems to acquire the data that is
being processed by our proposed system. For this, Kafka Topics will be used to store
data so that it can be later fetched.

Lastly is the Rule Mechanism which will be developed using Spring Java. It stands to
notice that since FlinkCEP was not an option due to the lack of dynamic runtime injection
of rules, a new tool, Esper, had to be added and will be running parallelly to the Urban
Platform. To further explain this, when Flink is done processing data and it is ready
for the Urban Platform to consume, it will be stored in a Kafka Topic which will be
then polled parallelly from both services preventing the pipeline from being slowed down
because of the Rule Mechanism and also enabling the data to be immediately ready to the
Urban Platform while at the same time, allowing the rule mechanism to perform real-time
analytics resulting in faster results.

This mechanism will allow users to submit custom rules with custom thresholds so that the
information flowing through the pipelines can be in constant comparison with the ultimate
goal of setting off a user-defined alarm when those thresholds are surpassed. An example of
why this rule mechanism is important can be seen in merging traffic and environment data.
For example, we may want to be alerted as soon as a certain road is highly congested, so that
we can check if the CO2 emission levels are dangerous or not. In certain scenarios which
are more time-bound, the irreducible latency between collecting, processing, analyzing
and comparing the data in the Urban platform may make the difference between a useful
warning and a useless one.

4.3 Use Case - Traffic Flow

Taking into account all the different data sets that smart cities platforms ingest and analyse,
there are many possible scenarios for our proposed architecture. To better demonstrate
what these scenarios consist of, an example will be provided so that the process can be
better understood and explained. For the different data sources, we can either have push-
based systems that asynchronously send a message to a proxy which is in charge of not
only determining the data type but also choosing and redirecting the information to the
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right processor, or we can have a poll like systems that synchronously request information
every previously set period of time The chosen use case, for demonstration purposes, was
a poll data source and one of Ubiwhere’s sources, more specifically Traffic Flow from Here
Technologies [144]. As can be seen in Figure 15, a simplified illustration of the described
example scenario, the data source is constantly making streams of data available for our
system to collect, process and ultimately deliver to Ubiwhere’s analytic platform, Urban
Platform.

Figure 15: Use Case

The data acquisition process occurs as frequently as the source updates itself, more specif-
ically, every 60 seconds through a REST API request, via polling. Given the unknown
specification of the data format at the time of the request, the first step which also reduces
flow redundancy is to convert different data formats to one common format, for example,
JSON. In view of the micro batch nature of this source where a request can have one or
multiple flow items, the last step of the Ingestion layer is to separate the information in the
response into several different objects that are immediately sent to the Processing layer to
be validated and transformed into the data set that will become the output of our system.
Moving on to the Processing Layer, the first step is filtering and validating the information
that was redirected, more specifically, this is where we assure the quality of the data by
ensuring that each and every field that is imperative for the output data set is accounted
for. In addition to this, this is also where we perform any coherence evaluations on the data
in order to ensure that no data set consisting of inaccurate sources or wrong information
is allowed to pass freely through the system. An example of when this is extremely useful
is the common mistake of data sources resolved around locations, wrongfully switching the
latitude and longitude information which results in the production of incorrect locations.
Having the data validated, the next and last step in the Processing Layer is to create
the final data set and fill it with the available information. Taking into account that the
available data might not be in the correct format, it is necessary to extract each and every
possible useful piece of information and go over them in order to convert them to the
format that is accepted by the Urban Platform. Some examples of these transformations
are dates that may not be in the needed ISO 8601 format or location points that in Here
Technologies data sources come as shapefiles and need to be converted to geoJSON.
Additionally, after processing the data until it is ready, it is then sent to a Kafka Topic
which will store the data until it is polled by the Urban Platform and by the Rule Mech-
anism. Last but not least, the Rule Mechanism polls the processed and ready data from
the Kafka Topic and sequentially sends it to the Esper engine which in turn cross-checks
it against the user-defined rules for it to be evaluated and compared against other data
sets with a certain customized threshold that works as a limit previously imposed that
once surpassed, triggers an alarm which notifies the user. These rules can be added or
deleted at any time during runtime using an API and the user can define any number of
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rules. Lastly, since the alarm triggers are completely dependent on the result of the rule
threshold having been surpassed, it is therefore a circumstantial occurrence.
All things considered, this is just an example for one data set and all these steps are
repeated for each location which may include several flow items. If we take into consid-
eration data sets other than Traffic Flow, in order to replicate the same procedure, some
steps must be taken. First of all, in the Ingestion Layer, the proxy or the collector must be
adjusted to be able to cope with the new sources, the format needed must be established
and the conversions to that format must be taken into account and lastly, if needed, items
should be separated. As to the Processing Layer, in spite of the steps remaining the same,
the logic behind each particular validation or transformation is most likely different and
therefore needs to be rethought and prepared.
Last but not least, if we extend this for several locations and If we look at the many dif-
ferent sectors that the Urban Platform analyses, the amount of data, the speed in which it
is generated, the variety of the data and the need to have the data as accurate as possible
easily scales manifesting the challenges of our system which are in conformity with the
challenges of Big Data.
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Chapter 5

Implementation

The following chapter presents the more challenging topics, that arose during the develop-
ment period of this thesis and puts forward the solutions and the thought process behind
them. First of all, we will go over the Development Environment and then we will go
into detail about the Rule Mechanism. Sequentially, we will describe the Interface, the
Grammar and we will provide information about Nifi and Flink. Last but not least we will
provide an explanation of what needs to be done to add another data set to the system.

5.1 Environment

The following subchapter intends to describe the development environment while giving
insight into the decisions made and the overall tools used.

5.1.1 Overview

At the start of a new project, the selected tools and technologies need to be installed and
set up in an environment that In this internship, was the intern’s computer. Given the
complexity of the architecture and the number of microservices intended to be developed,
a challenge arose due to the need to integrate multiple services. In view of the fact that
installing all the architecture’s components directly on the computer would turn out to be
not only a time-consuming task but it would also lead to having to replicate the whole
lengthy process in other computers which would most likely result in a quite a few numbers
of dependencies, versions or packages errors. To mitigate this problem, the intern looked
into the virtualization tool, Docker due to its advantages over Virtual Machines when
it came to performance and disk space and also because it is a widely used tool in the
company. Docker is a tool that makes creating, deploying and running applications easier
through the use of containers which are units of software that package not only code but
also all of its dependencies to the goal of making applications quicker and easier to set up
in new environments. A container only becomes one when a container image, a standalone
executable package of software that has everything that the application needs to run built-
in, runs on the Docker Engine. Additionally, given the complexity of the architecture and
the number of services developed, another tool, Docker-Compose, was used to simplify the
process of defining and running multiple Docker containers. In Docker-Compose, you issue
a single command to start all the services through the use of a configuration YAML file.
Last but not least, it stands to reason that every component in our architecture is a Docker
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Container with the exception of the interface since it requires command-line input.

5.1.2 Setup

With regards to the Dockerfiles, given that the language used not only to develop the
Rule Mechanism components but also in the Flink Job’s, was Java and since the Java
and Maven images are quite spacious, we decided to use an optimized Dockerfile, depicted
on Figure 16, that makes use of a smaller java image, namely openjdk:8-jdk-alpine, which
ultimately only installs the required dependencies and packages allowing to create an image
that is only 344Mb. This docker image is used in every Java component in our architecture
and has allowed us to save not only disk space but improve the startup performance of the
architecture. As to the remaining containers, the default docker images of the technologies
were used.

Figure 16: Java and Maven Dockerfile

When it comes to storage, volumes are the preferred mechanism for data persistence
in containers and Docker allows the use of two kinds, namely Bind Mounts and Named
Volumes. According to Docker’s documentation in [145], binds are dependent on the host
machine’s operating system and directory file structure whilst volumes are completely
administered by Docker. Also on the same source, named volumes are said to offer several
advantages and are considered the better choice. Because of this, we decided to use named
volumes for almost all of the system container’s storage with two exceptions. First and
foremost is the certificates directory used in Nifi’s storage since they are unique to the host
and need therefore to be re-created in every new environment. Secondly and arguably the
biggest are the bind mounts used to store the Nifi-Registry data required to transfer Nifi’s
templates and settings between environments using Github.
As far as how the components contact each other, docker enables networking which allows
a user to link containers to as many networks as required. In this case, all system services
in the docker-compose file have the same network which means that all containers operate
in the same network being able to contact each other.
Last but not least, we will provide an example of a docker-compose file where the
Rule-Engine and the Database services are. As we can see in Figure 17, we instantiate
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two services, where in the first one, the Rule-Engine, we specify the image, previously
mentioned, and build on the directory where the YAML file is which allow us to create and
build the Spring Java component. Additionally, we enable the port where the service runs
in the network and create a dependency with the database so that they are connected.
Sequentially, we also provide some environment variables which in this case are all related
to the database and to the connection made using Hibernate and JPA. This service ends
with a command that runs the spring boot server. In the database service, we can see
it has a Named Volume by the name rule-engine-db-data which stores the data. Last
but not least, while we could create the volumes automatically which would save us some
trouble when changing environments, it also means that the volume’s names would be
prefixed by the directory of where they were created, which is why we can see that both
the volume and the networks are defined as external allowing us to keep a simpler and
more human-readable nomenclature to the expense of having them previously created.

Figure 17: Rule Engine and Database Docker-compose YAML file

5.1.3 How to change environments?

The following subsection intends to describe what needs to be done in order to change
environments. First and foremost, the host device must have Docker, Docker-compose and
to make things easier, Git installed. Following this, the user should clone the project using
Git and run the createVolumes script which will create every Named Volume as well as the
required network. Provided this, the user could already start the system, however, given
that Nifi’s files are not persisted in Github, the template would appear empty. To solve
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this, the user will have to go through a couple of steps:

1. Add Nifi-Registry - First and foremost, the user must add a Registry Client using
Nifi Registry URL in the Nifi Settings.

2. Import Nifi Template - The user should drag a Process Group into the home
template and import a template from Nifi Registry which was previously added.

3. Generating Certificates - The user should create all the required certificates which
in this case, relate to generating a PK12 SSL certificate so that one of Nifi’s compo-
nents can pull information from Here Technologies. To do this, a script is provided
in the directory Nifi/certificates, which generates all the required files. It stands to
reason that if the user wants to change the certificate’s information, he should change
the script accordingly;

4. Enable Context Services - The user must enable all the Context Services since
they are automatically turned off when pulled from the Registry.

Given that NIfi is up and running, the user should be able to just run the system by
executing the run.sh script provided in the main folder which not only runs the docker-
compose but also executes the Flink Job in the Flink Server. It stands to reason that the
Flink job is automatically compiled and the packaged Jar is shared with the Flink Server
through a Docker Volume, however, in order for this Jar to be applied, it needs to be
executed using a docker command.

5.2 Rule Mechanism

This subchapter goes over the Rule Mechanism while going over some of the important
decisions that had to be made. The overall architecture of the Rule will be presented,
followed by a description of the endpoints and lastly, a simple use case of the system flow
will be outlined. First of all, it was decided that the most suitable technology for the
rule mechanism was CEP, and for this, given that the Flink library couldn’t inject rules
dynamically during runtime, the chosen tool for this mechanism was the java-based Esper.

5.2.1 Architecture

For the Rule Mechanism, a microservice approach was adopted dividing the system into
the different components that we can see in Figure 18. It stands to reason that every
component except for the interface, are all Docker Containers. Before explaining each
component, we will tackle a few points. First of all, the division of the Rule Engine into
a Rule Engine and a Rule API is disputable since they could be merged and that would
eliminate the messaging overhead, however, the main argument in favour is to separate
the rule translation mechanism from the engine to create a more scalable and fool-proof
system. Taking into consideration the scenario where the engine could have many rules and
therefore need to scale by launching another engine, the rule translation mechanism might
not need to be replicated and vice-versa. Additionally, in a faulty environment where a
component crashes or the rules are just being incorrectly created, the Rule API can be
taken down and worked on without having to take down the Rule Engine disabling only
the ability to create more rules, allowing the existing rules to continue to evaluate the data
and to trigger in case a certain threshold is surpassed.
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As to the reasons behind separating the rule alarm API and storing the alarms in
a Kafka Topic, it is arguable that this component didn’t have to be separated from the
engine which would completely extinguish the messaging overhead between components,
however, on the one hand, it allows for a more scalable and fool-proof system that allows
not only to horizontally scale the alarm mechanism but also enables the developers to
effortlessly add more alarm services. Taking into account that the current alarm mechanism
only triggers a system notification and sends an email to the previously added emails.
Other notification services could be added like an automatic Slack or phone message and
by storing the alarms in a Kafka topic, we can add more microservices that read from those
topics completely separating the logic between different notification services and making
sure that if some component is malfunctioning, we can easily pinpoint the problem and
simultaneously be sure that t it does not impact the remaining notification services. On the
other hand, the Kafka topic also provides the alarm API with a backpressure mechanism
that allows it to better manage alarms when many rules are triggered and the queues fill
up.

Figure 18: Rule Mechanism Architecture

To provide a deeper and more technical view of the architecture, we will now go over each
component:

• Kafka Topics - These components are intended to queue the incoming data and
the resulting alarms generated at the Rule Engine, to provide scalability and fault
tolerance to the system. All information on a Kafka Topic is saved as a JSON
message;

• Rule Engine - This component is the most complex in this architecture and it is
where the Esper engine runs. It was developed in Java and mainly consists of three
modules. The first one is made up of all engine-related logic, like reading data from a
Kafka Topic and sending it to the engine, creating and adding a statement, adding a
generic listener to the statement that when triggered sends an alarm to another Kafka
topic whenever a certain condition threshold is surpassed and finding and deleting
a statement. The second module is mainly responsible for handling all of the API
calls and exposing the REST endpoints to receive, route and return data to the user.
The third and last module is in charge of storing, querying and removing information
from the database through the use of Hibernate, an object-relational mapping tool
and Java Persistence API (JPA);
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• Rule API - This component is responsible for bridging the requests that the user
has to the Rule Engine whilst transforming the new rule requests into a meaningful
and working EPL Statement. In other words, this is the API that a more beginner
user should interact with either directly through the local swagger user interface or
through the developed command-line interface, which in turn will make API Calls to
the Rule-Engine. While most of the REST endpoints end up being the same as the
Rule Engine, the main difference is the new rule endpoint which turns this API into
the rule translation mechanism that makes use of the developed grammar in order
to make the system simpler and more beginner-friendly;

• Rule Alarm - This component is responsible for retrieving alarm notifications from
a Kafka Topic and triggering the corresponding notification services. The triggered
rule has one out of three alarm levels, namely Informational, Warning and Critical
which depending on the level triggers more notification services. In case it is an
informational alarm, an API call is made to the Rule API to notify the user. If it’s a
higher level and the user has previously submitted emails, an email is sent to those
submitted. The emails are sent through the use of SendGrid, an email delivery service
that provides a Java library to effortlessly send up to 100 emails a day through their
web API. There are no completely free email delivery services and while SendGrid
isn’t the one that offers the most monthly emails, it seemed to provide the easiest
integration through a simple API. On a different subject, while the critical level is
currently the same as the warning level, the main objective of having these different
levels is that when more notification services are added, the alarm environments
would change and tweak accordingly. Lastly, this component could arguably be
divided into several microservices, one for each notification service, however, due to
the time restrictions and since there were only two planned notification services, it
was kept as a single one;

• Interface - This component is a command-line interface developed so that users
that are not completely familiar with the available data models or that have little to
no experience with Esper’s EPL language can more easily create rules that evaluate
the different data sets. The interface presents the user with multiple choices that
the user must choose from in order to ultimately interact with the Rule API through
its REST endpoints. This component will be more thoroughly analysed in the next
implementation subchapter;

• Database - This component is responsible for storing all of the Rules as well as all
the emails that should be notified if a certain rule is triggered. For this, We have
chosen to use PostgreSQL for its reliability, and ease of development since the intern
was already familiar with it.

Figures 19 and 20 below, show the lifecycle for an event that reaches the Rule Engine,
triggers a rule and sends an alarm. In the former, The flow starts by sending an event to
the Esper Engine after immediately consuming a JSON message from a Kafka Topic and
converting it to the event type, for example, in this case, we will assume that the event is
a traffic flow event. The flow ends with either sending one, two or no alarms to the Kafka
Topic. As to the latter, the flow starts when a JSON message arrives and is immediately
converted to an alarm. For this specific use case, we have decided to assume that two
existing rules intend to trigger an alarm if: (1) An average vehicle speed is above 50 km/h
which will result in an informational alarm; (2) There are two congested events in a five
minute period which will trigger a warning alarm. Note that these rules are assumed to be
already introduced in the system in an EPL format that is specific to the Esper Engine.
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Figure 19: Rule Engine event lifecycle with two rules flow diagram

Figure 20: Alarm lifecycle flow diagram

5.2.2 API Endpoints

An endpoint is one end of a communication channel or in other words, an entry point
usually available on REST APIs. This subchapter intends to demonstrate which endpoints
are available on the Rule-API. It stands to notice that since the Rule-API is a bridge
between the user and the Rule Engine, most endpoints are similar except for the add
rule endpoint which is why both will be included to explain their difference. The list of
endpoints is as follows:

• POST /rule - This endpoint is used to receive a new rule and transform the fields
received into an adequate EPL statement which in turn will be sent to the Rule
Engine. The endpoint receives a rather complex JSON that contains all fields of a
rule and either responds with the successfully added rule or an error message;

• GET /rule/ruleName - This endpoint is used to retrieve a certain rule given that
one exists with the provided name which is unique to each rule. Otherwise, an error
message is returned;

• DELETE /rule/ruleName - This endpoint receives a name, and if a rule exists,
it will be undeployed from the engine and deleted from the database. Despite the
result, a message explaining the outcome is returned;

• GET /rule/all - This endpoint allows the application to retrieve all the existing
rules. If there are no rules, an empty list will be returned;

• DELETE /rule/all - This endpoint ensures that all the existing rules are unde-
ployed from the engine and deleted from the database. Despite the result, a message
will be returned;
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• POST /rule/ruleName/email - This endpoint is used to add an email to an
existing rule. It receives a JSON with an email string as well as the rule name as an
HTTP Parameter and if that rule exists and that email is not already associated, it
is added;

• GET /rule/ruleName/email - This endpoint allows the application to retrieve
all the existing emails of a provided rule name given that it exists. The endpoint will
then respond with a list of all the existing emails;

• DELETE /rule/ruleName/email - This endpoint ensures that all the emails of
an existing rule are deleted;

• GET /rule/ruleName/email/batch - This endpoint is used to register a batch
of emails to an existing rule. It receives a JSON with a list of emails as well as the
rule name as an HTTP Parameter and if that rule exists, each email will be added if
not already assigned. The endpoint returns a list of the emails that were successfully
added;

• DELETE /rule/ruleName/email/emailId - This endpoint receives an email Id
in order to delete that email;

• POST /notification - This endpoint is used when a rule’s threshold is surpassed
and an alarm is triggered which in turn asynchronously triggers a notification to
the Rule-API. This endpoint receives a message which should contain what rule was
triggered;

• GET /event/eventType - This endpoint receives an event type as an HTTP
parameter and if it is registered, using JJSchema which is a JSON schema generator,
the endpoint returns a JSON with all the information about the event fields;

• GET /event/all - This endpoint has the purpose of returning all the event types
registered in the Rule Engine so that the user has a way of knowing which events are
available.

5.2.3 How to add a Rule?

This subchapter’s objective is to go over the flow of a user adding a rule to the Esper
Engine to give a better understanding of how the architecture works, how different types
of users can interact with the system and what problems had to be tackled. First of all,
we established two types of users that could want to interact with the system:

1. Users who have experience with Esper and know exactly what data sets exist and
what their fields are, on the Engine.

2. Users who have little experience with Esper and may not know what data sets or
fields exist on the Engine.

In order to provide a way for these two users to interact with the system, we decided to
present two different entry points that the user can connect to. On the one hand, for the
first type of users, we decided to use an OpenAPI specification tool, namely Swagger API
which provides an interactive user interface that lists all the available endpoints whilst
describing each one and allowing users to actively use the system in a less restrictive and
more efficient way. It stands to notice that both the Rule Engine and the Rule API have
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this tool, however, while the add rule endpoint in the Rule API receives a complex JSON
that will construct the rule using the developed grammar, the Rule Engine only receives a
string with the rule, and is, therefore, less restrictive and less protected. This ultimately
also leads to having two different user input methods with different levels of freedom for the
first type of users. On the other hand, for the less experienced users, since there was no time
to develop a proper graphical user interface we decided to instead develop a command-line
interface that intends to help users to create rules interactively. In other words, we prompt
different options that the user can choose from, similar to how the Swagger API does for
each endpoint, however, the big difference is on the add rule functionality in which, instead
of giving full control to the user, we provide the user with the available options that he
can choose from throughout the whole process. This interface and its developed grammar
will be further explained in the next section of the Implementation chapter.

Figure 21: Add Rule flow diagram

Having explained the two entry points of our system, we will now describe the flow behind
adding a new rule to the Engine, as depicted in Figure 21:

1. User input - As previously explained, can be directed to one out of three entry
points. This input can either be through the choices made in the interface, through
the restricted rule manually introduced into the Rule API endpoint or through the
rule engine where there are no restrictions. The remaining steps of the flow will
consider that the input choice was the interface to include all the steps;

2. Interface - After the user chooses the add rule option, he proceeds to incrementally
construct the rule through the many options presented. After having finished, a
JSON message will be constructed and an HTTP Post call will be made to the Rule
API;

3. Rule API - After converting the JSON body into a request object, that same request
will be transformed into a rule containing the name, the alarm level and a string,
that is the rule itself, which in turn will be converted into a JSON message that will
be sent through an HTTP Post call to the Rule Engine;

4. Rule Engine - First of all, the rule name existence will be checked to avoid repetition
since it’s a unique field. It stands to reason that if the interface was used, this
verification was already performed when the user chose a name. Afterwards, the
system is going to insert the rule in the engine and if there are no errors, the generic
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listener will be attached to the statement. This generic listener, which main purpose
was to remove the need to have one listener for each event type, started by being
developed specifically for rules that were similar to SQL, however, after testing and
moving towards the EPL statements for Patterns, this listener became unusable and
a new one had to be developed. It stands to reason that this was not an easy task as
Esper doesn’t have a generic method and the solution to this problem went through a
lot of trial and error debugging to understand how to get the events from the complex
event beans objects. One note worth mentioning about this listener is that for the
events not to appear empty, they must be anteceded by a tag name. Whilst in most
scenarios, this method works and the events which triggered the rule are correctly
returned, there may be some faults and it may not work one hundred per cent of
the time as it would need more testing and tweaking. After adding the rule to the
engine, if everything was successful, the rule will then be added to the database. In
the end, the user either receives the rule or an error message as a response.

5.3 Grammar

The following subchapter goes over the developed grammar while describing some of the
important decisions that had to be made. An overview of what a rule and a pattern are
will be presented followed by an explanation of the grammar structure. Last but not least,
a couple of example use cases will be provided along with their explanations to better
demonstrate what the grammar is capable of. One detail worth bringing up is that Esper’s
event processing language, or EPL, is quite complex in the sense that there is a lot of
freedom when it comes to developing a statement which means that little details can easily
distinguish two rules apart. Because of this, the only way found to provide an inexperienced
user with a helpful mechanism that allows them to more easily understand and create rules
is to restrict a fraction of the vast EPL language and create a translation grammar. The
developed grammar intends to include as many use cases as possible, however, it will always
restrict certain rule scenarios. Additionally, for all the examples and use cases below, to
make things easier, we will mention an Event that is strictly for demonstration purposes
and could be thought of as being composed by only an id and a name.

5.3.1 Overview

A rule is no more than a set of conditions that analyse cause-and-effect relationships among
events in real-time in the Esper Engine. In other words, a rule can be as simple as wanting
to know if there are any events with a certain value above a predetermined threshold or
they can become extremely complex depending on what the user wishes to analyse. Al-
ternatively, an event can be thought of as a single type of data reading that arrived in
the engine after being processed by the architecture (E.g a Traffic Flow event contains
information of traffic in a certain location and time).

During the analysis and testing of Esper’s language, we found it easier to divide the rules
into three different levels. The first one could be described as the basic rules which in-
clude only looking for one event that could be restricted by one or more conditions. This
type of rules are similar to SQL queries with some of the same syntax being used (E.g select
* from Event where id > 3 and name=’A’ ). These rules, while being simple, can quickly
become complex through the addition of more conditions however they would always be
referred to as a single event. In other words, basic rules don’t have the ability to look for
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different events that may or not be related. For this problem, Esper provides the second
level of rules which we called complex rules that use the Event Pattern syntax which
revolves around defining patterns that match when one or more events occur in a specific
way according to the pattern’s definition. A pattern must appear in the From clause of
a statement and while it can be used together with other SQL syntax clauses, it also ex-
ponentially increases the complexity of the rules and the grammar and therefore the main
focus of the grammar will be the Pattern syntax.

According to [146], a pattern expression is composed of two things, namely atoms and
operators. The former is the base of the patterns and while they can be filter expressions,
plug-in custom observers or time schedulers, to further simplify and remove what seemed
unnecessary, we will assume that pattern atoms can only be filter expressions. These are
nothing more than the previously mentioned basic rules with a slightly different, more
event directed, syntax (E.g Event(id>3 and name=’A’ ) ). As to the latter, these combine
the atoms either logically or temporarily and in the developed grammar they include the
Tags, Operators and Timers. Last but not least, the third set of rules, or timed rules
are the result of restricting the complex rules temporarily through the addition of Timers.
Since events are asynchronous and can arrive out of order, that means that we cannot
create a rule that looks for two consecutive events but instead we can define a temporal
window that restricts how long we wait for another event after finding the first one which
ultimately creates the same effect.

5.3.2 Structure

As to details worth mentioning in the Grammar structure, as previously mentioned, we
decided to discard the SQL clauses that could be added and built on top of the Pattern
syntax to create even more complex rules and decided to focus on the main functional-
ities of patterns. Given this, all rules have the same basic building blocks, starting by
having a name (@name(‘string’)) tag which is unique to each rule, a description (@de-
scription(‘string’)) tag which allows users to better describe rules so that they can later be
understood and the basic SQL syntax that allows the use of patterns (select * from pattern
[ rule ]).
As to the rules themselves, they are going to be composed of one or more atoms that can be
logically connected through operators or temporarily through timers. It stands to notice
that there are two scenarios where a rule can be temporarily restricted. First and foremost,
the rule must have at least two atoms whereas in the second scenario, as we can see in the
Atom clause of the grammar, a temporal restriction can be applied if a repeat operator is
present which means that while it allows the sole atom to be present, there must be more
than one event of the same type. We can think of this exception as being equivalent to
having one atom followed by the same atom (A -> A) which ultimately reinforces the first
scenario where two atoms must be present for a timer to be applicable.
Moving on to the structure itself, portrayed below, shows the whole grammar developed
from a formal standpoint where the red words and symbols represent their literal values,
the blue words represent the variables and the black words represent either dynamic vari-
ables or user input from a certain type. It stands to notice that the Property and Type
clauses, which are portrayed in black, dynamically represent one data set model and their
properties out of every available data model in the Rule Engine. In other words, the Type
clause content will vary depending on what data models are registered in the engine while
the Property variable options will also vary depending on the properties of the chosen data
model. To provide an example, if the only data models available in the system are traffic
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and environment, those will be the options for the Type clause whereas if we chose traffic,
on the Property clause will be all traffic properties like average vehicle speed, location, and
so on.
Additionally, the remaining black words represent user input from the specified data type.
One last thing worth mentioning about the structure of the grammar is the tag#count
which, as previously mentioned, exists so that the events can be later fetched when the
rule is triggered to know which ones did it. While it is represented in red, only the tag
component is always the same, since the count resets in every rule, the#count will always
start at 1 and increment every time an atom is added. Despite changing, this is always
pre-defined and always takes the same values and therefore, is not user-dependent which
is why we portrayed it in red.

Base -> @name(‘String’) @description(‘String’) select * from pattern[ Rule ]
Rule –> Atom
Rule –> Atom Operator Rule
Rule –> ( Rule Operator Rule Timer )
Atom –> ( Tag AtomBody )
Atom –> ( [ Integer ] AtomBody Timer )
Atom –> ( every ( [ Integer ] AtomBody Timer ) )
AtomBody –> tag#count = Type( Condition )
Condition –> InnerCondition ConditionList
ConditionList –> Logical InnerCondition ConditionList
ConditionList –>
InnerCondition –> ( Property Relational Value )
Timer –> where time:within ( Integer Time )
Time –> sec
Time –> min
Relational –> <
Relational –> >
Relational –> =
Relational –> !=
Relational –> <=
Relational –> =>
Logical –> and
Logical –> or
Operator –> and
Operator –> or
Operator –> ->
Tag –> not
Tag –> [ Integer ]
Tag –> every
Tag –>
Value –> Integer
Value –> String
Value –> Property
Value –> Boolean
Value –> Float
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5.3.3 Examples

Having explained the grammar structure, we will now present a few grammar examples to
better demonstrate how the grammar works and what it can do. To achieve that, we’ve
divided the examples into two tables, where we will firstly showcase rules that are mostly
conditioned to help show what the tags do and how the rules are built and secondly a
group with the different timers to better exemplify how the grammar incorporates them
into the rules.
Each table will have the grammar notification, an explanation, and the created Esper rule.
To simplify things, the esper rule presented will be minified and therefore, discard the
name, description and SQL syntax which is always the same, to make them more readable.
Additionally, for demonstration purposes, the rules will be portrayed using a test Event
that has two properties, namely id and name. When A and B are used in the grammar,
they refer to an event with the name A or B in order to make it more readable.
For the tag ‘every’, we decided to include the examples on the Esper documentation used
to differentiate the impact of the tag depending on how you apply it. It stands to reason
that we only included three out of four examples since one of them cannot be achieved
using the developed grammar. As to these examples, given the sequence of events (A1 B1
C1 B2 A2 D1 A3 B3 E1 A4 F1 B4), we will include the pair of events that match and
trigger the pattern.

Grammar Explanation Esper Rule
event(name=A) and
event(Id=3)

If an event with an Id =3 appears, then it will
wait for another event with a name=A

[ tag1=Event(id = 3) and
tag2=Event(name = ’A’) ]

event(name=A and Id=3) Looks for one event that has id=3 and name=A [ tag1=Event( (id = 3) and (name=’A’) ) ]

(A) ->(B) and not (C) Looks for an A, followed by a B with
no C before or in between A and B.

[(tag1= Event(name=’A’) ->
tag2=Event(name=’B’))
and not tag3=Event(name=’C’)]

[3] (A) After finding an event with name=A it will look
for two more events with the same name. [ [3] (tag1=Event((name=’A’)) ) ]

(A) ->(B)
If an A is found, looks for a B (Only triggered
the first A and first B occurrence).
Matches on B2 {A1, B2}.

[(tag1=Event(name=’A’)) ->
(tag2=Event(name=’B’)) ]

every (A) ->(B)

For every A found, looks for next B.
(Triggers once for every A)
Matches on:
B1 {A1, B1}
B3 {A2,B3} {A3,B3}
B4 {A4, B4}

[ every (tag1=Event(name=’A’)) ->
(tag2=Event(name=’B’)) ]

(A) ->every (B)

For the first A found, looks for all next Bs.
(Triggers once for every B)
Matches on:
B1 {A1, B1}
B1 {A1, B2}
B3 {A1, B3}
B4 {A1, B4}

[ every (tag1=Event(name=’A’)) ->
every (tag2=Event(name=’B’)) ]

every (A) ->every (B)

Pattern matches on every combination of A
followed by B.
Matches on:
B1 {A1, B1}
B1 {A1, B2}
B3 {A1, B3}, {A2, B3}, {A3, B3}
B4 {A1, B4}, {A2, B4}, {A3, B4}, {A4, B4}

[ every (tag1=Event(name=’A’)) ->
every (tag2=Event(name=’B’)) ]

Table 8: Grammar Examples
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Grammar Explanation Esper Rule

(A) ->(B) Timer
The first time it catches an A, it waits 10 secs for a B.
If a B never arrives during those 10 seconds, the rule
is never triggered. (Can only happen once)

[(tag1=Event(name=’A’)) ->
(tag2=Event(name=’B’))
where timer:within(10 sec) ]

every (A) ->(B) Timer
Every time an A appears, it waits 10 seconds
for a B to appear. If it doesn’t, it just starts waiting
for another A. ( E.g A A B B, just triggers once)

[ every (tag1=Event(name=’A’)) ->
(tag2=Event(name=’B’))
where timer:within(10 sec)]

[3] (A) Timer If a B is found, it waits 10 seconds for another 2 B’s
(Can only happen once) [ [3] (tag1=Event(name=’A’)) where timer:within(10 sec)]

every ([2] (A) Timer)
->(B) Timer

For each (AA) that occurs within 3 seconds it waits for
another B. The whole (AAB) must occur within 10 seconds

[ every ([2] (tag1=Event(name=’A’)
where timer:within(3 sec)) ->
(tag2=Event(name=’B’)))
where timer:within(10 sec) ]

A ->( (B ->C) Timer) If an A is found, it waits ‘forever’ for a B.
If a B is found, it waits 10 seconds until it finds a C.

[ (tag1=Event(name=’A’)) ->
( (tag2=Event(name=’B’)) ->
(tag2=Event(name=’C’))
where timer:within(10 sec) ) ]

every ((A ->B) Timer) ->C For each A found, it waits 10 seconds for a B.
If (A B) is found on time, then waits ‘forever’ for a C

[every ( ((tag1=Event(name=’A’)) ->
(tag2=Event(name=’B’)))
where timer:within(10 sec) ) ->
(tag2=Event(name=’C’))]

(A ->B ->C Timer) Must find A followed by B followed by C
within 10 seconds. (Can only happen once)

[ ( ( tag1 = Event( (name = ’A’) )) ->
( tag2 = Event( (name = ’B’) )) ->
( tag3 = Event( (name = ’C’) ))
where timer:within(10 sec) )]

every (A) ->every (B)

Pattern matches on every combination of A followed by B.
Matches on:
B1 {A1, B1}
B1 {A1, B2}
B3 {A1, B3}, {A2, B3}, {A3, B3}
B4 {A1, B4}, {A2, B4}, {A3, B4}, {A4, B4}

[[ every (tag1=Event(name=’A’)) ->
every (tag2=Event(name=’B’)) ]

Table 9: Grammar Timer Examples

5.4 Interface

The following subchapter reviews the developed interface and the important decisions that
had to be made. An overview of what is possible to do with the interface will be provided,
followed by a deeper discussion about the Add Rule functionality since it is the most
important aspect of the interface.

5.4.1 Overview and Functionalities

First of all, it stands to reason that since there wasn’t enough time for the development of
a graphical user interface, we opted to develop a command-line interface that intends to
facilitate the use of the system to users that don’t either have much experience in EPL or
are unfamiliar with the data models present in the system. The main focus of the interface
is to provide these users with a fool-proof, more restricted yet easier alternative to adding
rules that makes use of developed Grammar previously explained whilst allowing them to
make use of all the other functionalities of the Rule Engine. We will now go over all the
interface’s menus and functionalities except for the Add Rule which will be explained in
the next subsection.
First and foremost, when the user starts the interface, he is presented with the Main Menu,
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as we can see from figure 22, where he can choose a couple of options such as:

• /add - The user goes through a couple of options to create a new rule. This Will be
further explained in subsequent subsections;

• /find - The user will be asked to input an alphanumeric word which is sent to the
RuleAPI which verifies if there is a rule registered with that name. If the result
is positive and therefore holds a rule, the user will be redirected to the Rule Menu
where he will be presented with rule related options;

• /findall - If the user selects this option, he will be presented with all the registered
rules in the Engine;

• /delete - Similarly to the find functionality, the user will be asked for an alphanu-
meric word that indicates which rule he wants to delete. After requesting the RuleAPI
to delete that rule, he will be presented with the result, either informing him that
the rule was deleted or not found;

• /deleteall - If the user selects this option, a request to delete all the registered rules
will be issued to the RuleAPI. The user will be informed of the result;

• /help - This option allows the user to view the Main Menu options again by reprint-
ing them on the console;

• /exit - This option allows the user to shut down the interface and exit the program.

It stands to reason that in all user input scenarios, he can opt to select the /back option
which returns the user to the latest menu discarding all the information he had inputted.

(a) Interface Main Menu (b) Interface Rule Menu

Figure 22: Interface Menus

Given that the user finds a rule by inputting a name in the /find option, he is then
prompted with the rule he found and with the Rule Menu, which as depicted in Figure
22, allows the user to choose from the following options:

• /show - This option allows the user to view the rule and its details by reprinting
them on the console;

• /deleterule - This option is a shortcut that allows the user to delete the rule without
having to input the name again and if the user chose this option, he will be presented
with the result and redirected back to the Main Menu;

• /help - This option allows the user to view the Rule Menu options again by reprinting
them on the console;

• /back - This option allows the user to go back to the Main Menu.
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If the rule searched for has an Alarm level of Warning or Critical, the user will also be
presented with the email options related to the rule. Otherwise, these options will not
appear.

• /add - The user will be asked to submit any number of email addresses which will be
validated using the Email Validator class provided by the Apache Commons-validator
library. Each input, if valid, adds an email address to a list which will be sent to the
RuleAPI to be added when the user inputs the /submit option. Additionally, the
user can at all times reset the list by using the /clear option.

• /delete - The user will be requested to input an email Id to delete an email from
the rule. The user may use the /findall option to see the registered email addresses
and their corresponding identification numbers.

• /deleteall - If the user selects this option, a request to delete all the emails registered
to this rule will be issued to the RuleAPI. The user will be informed of the result;

• /findall - If the user selects this option, he will be presented with all the emails
registered to this rule in the Engine.

5.4.2 Create Rule

The main purpose of this subsection is to review and analyse the Add Rule functionality
in the Interface to give a better understanding of how the user interacts with it. This
functionality has three levels, the first one being the base of the rule decisions, the second
relates to the construction of one atomic condition and the third and last refer to building
the inner basic conditions. We will now go over these three steps.
The user starts the process by choosing the /add option in the Main Menu where he will
be redirected to the first input, choosing the rule name. As we can see in Figure 23, When
the user inputs a name, a request will be made to the Rule-API to make sure that it is
available. If it is, the user will then pick a description and an alarm level. From there,
a request is made to the Rule-API to retrieve the event types that currently exist in the
Engine (E.g TrafficFlow and Environment). After interpreting the response, the user will
be asked to add an Atomic Condition which we will explain later. Having finished one
condition, the user will be asked if he wants to add any more, and if he does, he will also
be asked to select an operator that will connect the atomic conditions logically.

Figure 23: Create Rule Flow Diagram

After the user is finished, if he has added more than one condition, the rule is eligible to
add a timer to restrict it and therefore, the user will be prompted to connect the rules
temporarily. If the user chooses to do so, he will be presented with the chosen conditions
and will be asked to select a start and an end position followed by a time window. These
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start and end positions will dictate in which condition the timer starts and where it ends
to dynamically append the timer to the rule to provide the user with the freedom of re-
stricting any set of conditions. To further exemplify this, given the rule (A -> B -> C) the
user may choose to add a timer to restrict A and B ((A->B Timer) -> C), B and C (A ->
(B->C Timer)) or the whole rule ((A->B->C)Timer). It stands to reason, that while the
user can add N-1 timers, being N the number of atomic conditions in the rule, the user
cannot however add two timers that start and end in the same positions.
As to the amount of time to restrict the conditions, the user is provided with a few options
such as (5 sec, 10sec, 1min, 10min) instead of being allowed to input any desirable window
since long windows can allocate an enormous amount of resources and therefore decline the
platforms processing capability. Last but not least, the rule will be converted to a JSON
and be sent to the Rule-API to be added to the Engine.

As to adding an Atomic Condition, the user starts by choosing a tag and if the choice
was a repeat ( [Integer] ), the user has to also provide the number of times he wants that
condition to repeat. Additionally, given the same tag, the user is also presented with the
option of adding a timer to that condition as previously explained. No matter what the
user decides on, after the tag, the user will be presented with all the available event types
in order to select one. Given the user choice, a request will be made to the Rule API to
retrieve all of those event properties which in turn will be used to add Conditions which
we will explain next. If the user wants to attach any additional number of conditions he
will also have to choose logical operators to connect the conditions.

Figure 24: Atomic Condition Flow Diagramt

Last but not least, regarding the Inner Conditions, the user will be presented with all
the available properties of the events, which were retrieved using JJSchema, previously
configured, in which he has to choose one. The next choice is going to be the relational
operator which is going to be different depending on the type of property. For example,
if the selected property is a Boolean, we can only pick an equality or inequality operator
whereas if it is an integer we can pick from a wide variety of operators. Lastly, the user will
have the ability to select a value that can be one out of two things. First, it can be another
event property that can be comparable, for example, if the user selected a property that
is a boolean, he may compare it to another boolean property and secondly, the user may
select an atomic value of the same type, for example, given the boolean choice, the user
may compare it to true or false.
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Figure 25: Inner Condition Flow Diagram

5.5 Data Pipeline

This subchapter reviews the developed pipeline while describing some of the important
decisions that had to be made. An in-depth view of the Nifi template will be given,
followed by a description of the developed Flink Job. It stands to reason that the following
steps are related to the Traffic Flow data model and therefore are highly specific to the
previously presented Use case scenario.

5.5.1 Nifi

To better understand how the ingestion layer works, Nifi provides basic building blocks
called processors that perform some kind of operation on a flowfile which is the abstraction
of a single piece of data. To simplify data flows and better organize them, Nifi supplies
Templates which are aggregations of processors in order to design a larger block of data
flow logic. It stands to reason that these templates should be as generic as possible and
therefore include as many different data sources as possible to prepare for future deploy-
ments. Despite this, given the shortage of time and the sole source provided to the intern,
the developed template is specifically designed for the Traffic Flow data model provided
by Here Technologies API.
The developed template can be seen in Figure 26 and 27 below and starts with a GetH-
TTP processor which performs a GET request every 60 seconds to the predefined URL.
It stands to reason that this request gets information from a certain bounding box. If the
user wanted to retrieve information from a bigger perspective that contains more streets,
he should enlarge the bounding box range and if he wanted to retrieve data from several
different locations, he should replicate the processor using different URLs. Lastly, on this
component, a certificate is needed since the connection is secure.

Figure 26: Nifi Template 1
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Figure 27: Nifi Template 2

As to the data model, Traffic Flow can be thought of as a hierarchical tree containing
several ramifications where the leaves are the Flowfiles or Events that we need to analyse
and therefore we need to go deeper inside the tree whilst splitting the JSON ramifications
to obtain all the events. Additionally, given that there is important data that only the
parent nodes have to reduce unnecessary duplication of data, whilst going through the tree
there are some fields we need to store to later merge them with the resulting Flowfiles to
create more informational final events. Examples of these attributes include the Created
Timestamp and the Units fields.
We can see that we have EvaluateJsonPath processors (E.g RWSAttributes) that obtain
specific JSON fields and create attributes that are connected to the Flowfile throughout the
template. In addition to this, we have SplitJson Processors that split the JSON Flowfiles
according to an expression that holds the key of the list (E.g SplitRWS has the expression
$.RWS). By continuously splitting the JSON Flowfiles we end up having several Flow Items
(FI) which are the basic events of the Traffic Flow request, that will then be merged with
the attributes previously stored in the TrafficAttributesToJSON processor. Last but not
least, given that the FIs end up with an unnecessarily complicated JSON, we decided to
make use of a JoltTransformJSON processor, as depicted in Figure 28, to simplify and
better identify the Events to make them easier to convert to POJOs in Flink.

Figure 28: Jolt Transformation Example
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In the example provided, there is one detail worth going over which is the absence of the
SHP location field. In reality, it is present in the JSON on the left and was removed for
demonstration purposes, however, given that it is not referenced in the Jolt specification,
it also doesn’t appear in the final event. The reason behind not including the location field
is that the final Traffic Flow event that results from Flink after being converted into the
NGSI-LD Standard, must have the Location field in a GeoJson format instead of Shapefile
which presented itself as a problem since the only method that the intern found was by
converting an external shapefile file into a GeoJson file using a library called GeoTool.
Given the remaining time for the deadline and the complexity behind analysing not only
how these formats work but also how the library operates to implement this feature, the
intern decided not to carry out this task after discussing and validating it with the super-
visors.
Subsequently, when the final events are ready, they will be sent to a Kafka topic using a
PublishKafkaRecord processor which needs to be configured to identify the Kafka broker
and topic. Additionally, this processor in addition to the previously mentioned Traffi-
cAttributesToJSON, require a Record Reader and Writer which in these cases are JSON
readers and writers that require a schema. It stands to reason that there are two basic
options when it comes to providing a schema, the first one being to use the infer-schema
option which automatically generates the schema based on the Flowfile and the second
one being to use a manually defined schema. The advantages of the former are that you
don’t have to spend time analysing and creating a complex schema since it is automatic,
however it is also heavier performance-wise. The chosen method, due to time-restrictions
was to use the infer-schema option.
Last but not least, we can see that the data flow only advances when processors success-
fully match or split the data with the failures, unmatched and also the original Flowfiles
being stored in queues so that they can be analysed. Arguably, given more time, all these
should also be logged in a way that they could easily be detected.

5.5.2 Flink

When it comes to the main processing tool of our system, Flink offers numerous options to
deal with data. For the Traffic Flow scenario, we decided to use the DataStream API which
provides detailed control over state and time that allows for easier and better event-driven
systems. The developed Flink Job or in other words, the Flink’s Java program, can be
divided into the following steps:

1. Obtaining the stream execution environment - Allows to execute the job in
the previously started server cluster;

2. Create the Kafka Consumer - Allows to configure the Kafka properties that allow
the data source to work;

3. Add the Data Source - Creates an input stream using the source with the previ-
ously configured Kafka Consumer;

4. Convert the JSON messages to the Traffic Flow POJO - Allows the input
stream to be mapped into a stream containing Traffic Flow events using Gson;

5. Convert Traffic Flow Event to Standard NGSI-LD Format - This is the
transformation process in our pipeline in which each field of the input event will be
analysed and mapped or transformed, if necessary, into the correct output format.
It stands to reason that Here Technologies traffic flow data set fields are mostly
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provided in the correct formats which simplified this process. This step can arguably
be the most complex depending on the necessary changes. As to what is done in this
scenario, we first start by creating the DateObserved field since it is the timestamp
for the beginning of the transformation. Following this, we add a unique UUID to
the event and set the event type to ‘TrafficFlowObserved’. Additionally, we set the
reversed lane and the congested lane booleans according to the values in the input
event. If these fields are not present, the booleans are set to false. Sequentially,
we check for the existence of the lane direction and if it exists, we translate it into
the correct format (E.g The character ‘+’ is translated into the string ‘forward’).
In the next place, given that the date format is already in ISO-8601 (YYYY-MM-
DDTHH:mm:ss. sssZ (UTC)), there was no need for any transformation. Lastly, as
to the average speed, we check the field existence and if positive, we will either use
the provided value given a metric unit system or we will convert the value from miles
to kilometres. It should be noted that this transformation between events, due to
the time restrictions imposed on the internship, was not as protected as it should be
which means that one of the future steps would include improving the Flink’s error
tolerance and response;

6. Create output stream - Allows the new Traffic Flow standard event stream to be
converted into a stream with JSON messages using Gson;

7. Create the Kafka Producer - Allows to configure the Kafka properties that allow
the data sink to work;

8. Add the Data Sink - Adds the configured sink using the Kafka Producer to the
output stream previously created in step 6;

9. Executing the environment - Executes the defined job with the previously de-
signed steps.

5.6 How to add another data set

The following subchapter aims to underline and describe the changes that must be made
to the system to add a new data set. We will go over each system component to provide
a deeper and clearer explanation of what needs to be included.

Nifi
First of all, when it comes to data ingestion since the added data sets can be completely
independent of one another, these must be treated accordingly. Therefore, to include a
new data set, the developers must first understand and clarify whether the data being
introduced in the system is new or not. If a data set of the same type already exists, there
is the possibility of them being processed similarly and even if there are differences, there
might be the opportunity to re-use some of the logic. In spite of this, the developers must
also inspect to see if the information must be split into several events or if the data being
sent into Nifi is already split and ready to be consumed by Flink. This means that for
every data set of a different type, the comprehension, analysis and development of new
data ingestion components must be completely renewed.

Flink
Similarly, when it comes to the data processing that is done in Flink, the input models
that Nifi generates, will most certainly be different. The same might happen with the
output models, if we introduce a new data set of traffic flow into the system since we
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have already created the output standard model, it can be reused for the new data set,
however, if the data sets contain completely different properties, then we need to add a
new output model. As to the transformation stage, when a new data set is added, we
need to create a new Map Function that transforms the input data into the output data.
While some components can be reused, most likely, the whole transformation process will
have to be designed. Despite this, the abstract process of adding a new data set in Flink
is always the same:

1. Create a new Kafka Consumer;

2. Create the input stream that reads data from the consumer;

3. Convert the input stream into a stream of the input model using Gson;

4. Transform the input data into the correct output data format using a Map Function;

5. Convert the output data into a JSON data stream using Gson;

6. Create a new Kafka Producer;

7. Sink the information to the Kafka topic.

Rule Engine
As to what needs to be added in the Rule Engine, in comparison to Nifi and Flink, most
changes are simple and straightforward. First of all, the developer must, only if needed,
add a new POJO model with the addition of identifying each property using JJSchema
attributes so that they can be later retrieved when the user wants to know which properties
are in that data set.
Additionally, the user must include a new Kafka Consumer using the @KafkaListener
tag, which retrieves events from a previously created Kafka topic. In this Kafka consumer,
the user must convert the JSON string into the correct format, namely the previously
created POJO model. To better organize things, the user should add a method in the
format service interface that receives a string and returns an instance of the model
using Gson. Alternatively, the user must add a new Send Event method that receives
the new model and sends it to the Engine. To simplify, this method consists of only one
line of code that needs to receive the event and sends it to the engine.
For this method to work, we also need to include the new Event type to the Engine
Configuration, which in the end, means adding a line of code to the addEventTypes
method that fills the engine configuration with the available event types.
Last but not least, the developer should also include the event type in the getEvent-
Types method and the getEventProperties method. The former returns a list with
the names of the event types in the engine so that the user can see which are available and
the latter returns the event properties specified in the model using JJSchema.

Kafka Topics
Last but not least, given that the Kafka Topics are the queues used to store data between
Nifi, Flink and the Rule Engine and given that we want a queue for each different data
set to allow a better division and overall a more organized system ready to scale, we need
to create two new topics which will store data between Nifi and Flink and between Flink
external systems like the Urban Platform or the Rule Engine. As to how we create the new
Kafka topics we can either use the docker exec command presented below, as the container
is running or we can add it by changing the docker-compose file before running the service.

docker exec kafka /opt/kafka_2.11-0.10.1.0/bin/kafka-topics.sh
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--create --zookeeper localhost:2181 --replication-factor 1
--partitions 1 --topic [TOPIC]

Rule API and Interface
It stands to reason that in these components, since they get event types and their properties
from the Rule Engine, they don’t directly have access to the data models and therefore
don’t require any changes when data sets are added.
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Testing

The following chapter presents the formal tests performed on the system and is mainly
divided into three sections. First and foremost we will go over the setup, the monitoring
tools used and the metrics and then will move on to the test scenarios and the results
regarding Load Testing and Failure Injection.

6.1 Setup and Environment

In order to test the developed system, the intern used his personal desktop which has the
following specifications:

• CPU - Intel® Core™ i5-4460 CPU @ 3.20GHz × 4

• GPU - NVIDIA GeForce GTX 970

• RAM - 8gb

• Disk - HDD 1TB

First of all, it is important to note that the intern’s testing environment was nowhere near
as recommended due to the number of heavy performance-wise tools running as Docker
containers like Nifi and Flink, and also due to the desktop’s lack of performance. It is
visible during the tests that the computer was already in a stressful state just by running
most of the architecture, with the Memory usage being above 65%. These conditions led
the tests to quickly reach their practical limit. To conclude, the intern was not provided
with a suitable testing environment and did not have one at his disposal.

As to how monitoring was conducted, the intern looked into the tools Prometheus and
Grafana to easily collect information and design a proper analytical dashboard. Prometheus
is an open-source monitoring software that collects metrics, or small descriptions of an
event so that they can be analysed. The Prometheus server actively pulls metrics from
applications it monitors, through an exposed HTTP endpoint that makes the metrics
available, at a certain defined interval. Last but not least, Prometheus provides the user
with a functional query language called PromQL (Prometheus Query Language) that en-
ables the selection and aggregation of time series data in real-time. As to the other tool,
Grafana is an open-source visualization and analytics software that allows the user to
add Prometheus as a source and, therefore, easily add visual and analytical capabilities to
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the metrics captured by Prometheus. In addition to these tools, a Prometheus exporter, a
software component that can collect statistics from another non-Prometheus system, was
used to collect hardware and OS metrics, namely Node-Exporter.

The following Figure 29 describes the testing environment which is composed of the
base system and most of the Rule Mechanism components. It stands to reason that the
Interface and the Nifi Registry were not part of the following setup mostly because they
weren’t used by any component and therefore, there was no need to further stress a system
that was already holding more performance requiring tools than it should. As to the data
types, due to the problems that arose during the second semester, we were only able to
include Traffic Flow and therefore, all the tests will reflect the impact of this data type.
It stands to reason that while the system is ready to add other data types, there was no
time to fully analyse and include all the processing and ingestion steps of another complex
data set.
As to the data flow, the data will be simulated at Nifi and sunk into a Kafka topic that
Flink will consume, transform into the correct format and in turn, output the events into
another topic. The events will, last but not least, be sent to the rule engine where they
will be cross-referenced against two previously created rules that if triggered will send an
alarm notification to a Kafka topic that the Rule alarm microservice will consume and
not only send a notification to the Rule-API but also an email to the intern. As to the
topics, there is a Kafka container that manages and orchestrates them. Last but not least,
Prometheus will receive metrics from the Node Exporter, regarding hardware and OS, and
from Flink which will, in turn, be analysed using PromQL queries that will be visualized
using Grafana.

Figure 29: Testing Environment

As to how data was simulated, we decided to make use of a Nifi component to generate
the events that were ingested into our system. As previously mentioned, there was no time
to include more data sets, and therefore, the tests will consist of Traffic Flow events. The
component generateFlowFile receives a String parameter that replicates into each and every
Flowfile and also includes a configurable parameter that alters the rate at which messages
are generated. Additionally, by replicating a real-life message from Here Technologies right
into the start of the designed Nifi template we were able to provide a more realistic scenario
while at the same time including Nifi in the testing scenarios.

Last but not least, as to the analysed metrics, we decided to use Node-Exporter to obtain
hardware information such as CPU and Memory percentage usage. We also used Flink
manual metrics to export the number of events being processed, which we used to display
the system throughput and latency which depicts the duration that the event was in Nifi
and Flink. Additionally, we also used Flink’s default metrics to evaluate the number
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of Kafka records being consumed and to check whether Flink had enabled backpressure
mechanisms.

6.2 Load Testing

In the following subsection, we will present the configurations for the load test we performed
whilst going over the test acceptance criteria and results.

6.2.1 Overview

First and foremost, as to how the system was tested, we decided to divide the load tests
into two scenarios:

• Stress Scenario - The simulated events are incrementally simulated to better un-
derstand the maximal load that the system can handle and how the system recovers;

• Spike Scenario - The simulated events are released in sudden large bursts or spikes
to analyse how the system handles these situations.

Alternatively, we decided to include the Rule Mechanism with two previously defined rules
in order to provide a better whole system testing scenario. This allowed us to simultane-
ously display that these rules were triggered and that the email service was working since
an email was previously added to the first rule. We added the following rules:

• Rule #1 - When the third Traffic Flow event with an average speed superior to 50
km/h arrives at the Esper engine, the rule is triggered and an email is sent to the
intern;

• Rule #2 - When a Traffic Flow congested event arrives after an event with an
average speed superior to 50 km/h in a 5-minute window, the rule is triggered.

6.2.2 Stress Scenario

In order to incrementally test the system, we decided to set a certain frequency to the Nifi
component and more or less every 5 minutes, we would stop the component, quickly change
the parameter to a higher frequency and would just turn the component back on. This
means that before every change of throughput, there is a slight interruption. Additionally,
in Table 10, we display the frequencies used as well as the number of requests and events
that would generate and lastly the timestamps of when we changed the frequencies.

Frequency in seconds Number of Requests Number of Events Time of Increase
1 60 240 20:05
0.1 600 2400 20:10
0.02 3 000 12 000 20:15
0.01 6 000 24 000 20:20
0.005 12 000 48 000 20:25
0.0025 24 000 96 000 20:30

Table 10: Stress loads
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Figure 30: Stress Grafana Dashboard 1

Figure 31: Stress Grafana Dashboard 2

Analysis
First and foremost, we can see that the system’s CPU increases gradually with the through-
put and surpasses 80% usage at around 28k to 30k events which indicates that the system
starts to reach its limit at this range.
Alternatively, with regards to throughput, we can see that until 20:25 where the num-
ber of events per minute increased to 48k, the system easily scaled, showing little to no
fluctuations. However, from that point, while Nifi didn’t queue any event as they were all
dispatched into Kafka, Flink’s throughput variations fluctuated between 26k and 33k which
led us to speculate two possible scenarios. On the one hand, it was possible that with the
system reaching its practical limit having little to no free resources left, Flink could have
activated backpressure mechanisms which would lead to its inability to cope with all the
data being generated. To further back this up, we can see from the Flink Kafka consumer
rate graphic that while there appeared to be 48k events being sunk into the Kafka Topic
per minute, only around a third of those records were being consumed by Flink. On the
other hand, when we looked at the latency values, while they showed an increase, if more
than 10k events were being queued per minute due to Flink’s backpressure mechanism,
there would be some significant and easily noticeable increase in latency and not just 30
milliseconds. This led us to perform some tests on Nifi where we found out that despite
being configured to produce 48k events per minute, it was not keeping up with demand.
We can also notice this reduction in production in the 24k events per minute where Flink
only consumes around 21k with no latency decay. These tests mainly consisted of changing
the rate at which information should be generated while analysing the actual amount of
data being outputted, using or two similar sources to see if the problem derived from using
increasingly smaller units of time. After reaching the conclusion that the lower units of
time had nothing to do with the problem, we concluded that this was most likely due to
the computer having little to no resources left but it could have something to do with
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some misconfigured setting that the intern may not have noticed. To further back this up,
after looking through Flink’s metrics being exported to Prometheus, we found one that
indicated when the TaskManager activated the backpressure mechanism and there was no
sign of it ever happening which led us to discard the first possible scenario.
When looking at latency, we can see a spike to the 100s milliseconds which was after we
increased the output rate to 96k events per minute which eventually froze the computer
that only came back to life after 20:35 where the data being generated decreased.
Moving on to the Memory usage graphic, we can see that it quickly reaches values above
85% at only 2.4k events per minute and reaches its peak of 90% at 20k events. After that,
it appears to be practically stable.
We can conclude that with the setup previously mentioned, the system stably handles
around 21k events per minute, or 350 events per second. After this, while the system, es-
pecially Flink, appears to easily handle more events, the computer has practically reached
its limit and Nifi starts having trouble maintaining a stable generation of data.
Last but not least, we can see in the Figure ?? below, that Rule1 was triggered and that
the system sent an email to the intern.

Figure 32: Email Alarm Notification

6.2.3 Spike Scenario

In order to test the system with bursts of data, we decided to set a certain limit on the
queue between the component that generates data and the beginning of Nifi’s template,
let it fill up and then let the queue evacuate the data into the system. When the system
finishes processing all the events, we would redefine the limit and repeat the process. In
the following Table 11, we display the number of requests generated as well as the number
of events.

Number of Requests Number of Events
1000 4 000
2000 8 000
3000 12 000
4000 16 000
5000 20 000
7000 28 000
10000 40 000
15000 60 000

Table 11: Spike loads
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Figure 33: Spike Grafana Dashboard 1

Figure 34: Spike Grafana Dashboard 2

Analysis
First and foremost, we can see that when it comes to CPU usage, the system easily reaches
above 80% usage with a 28k burst of events which is in accordance with the previous stress
test, however, by further increasing the number of events, the main difference in this metric
is how long the system takes to process all the events.
As to Memory usage, we can notice that there is a stable increase of around 25% while the
bursts of data get bigger.
Alternatively, we can see that after the 6th spike of events, the throughput begins to show
a less steep ascension with the appearance of smaller increases. At first glance, we could
argue that Flink’s backpressure had something to do with this, however, after looking at
Nifi during the more substantial 40k burst of events, we can see on Figure ??, that a
specific queue was backing up the pipeline.

Figure 35: Nifi Queue

After further analysis, it was quite logically concluded that the automatic schema creation
for transforming the events into JSON was not a good performance-wise option despite
making things easier. The solution for this bottleneck would be to create manual schemas
that did not have to be automatically generated for each and every event.
Moving on to latency, we decided to generate the simulated events with a timestamp which
would be later used, after transforming them in Flink, to obtain the values that reflect the
life of an event inside Nifi and Flink together. This method, in conjunction with how
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bursts of events were injected into the system, led to the appearance of a human error that
contemplates stopping the data generator and initiating the template. Alternatively, we
are able to see that the latency values more than doubled after the 6th burst of data when
Nifi started backing up the previously mentioned queue.
Despite this, we can see that with the current configurations, the system stably handles
up to 20k events in a burst environment with the ability to reach even better results if the
aforementioned problem is dealt with.

6.3 Failure Injection

To perform failure tests on the system, we decided to focus on three injection points,
namely Nifi, Flink and Rule Engine since they are the core of our system. In addition to
this, we decided to perform two scenarios of failure injection tests, malformed JSON inputs
which can include missing fields, unknown fields or even malformed fields and lastly wrong
data types. In the following table 12, we will present the failure tests performed, in what
tool they were performed and lastly the result. To better display which tests failed, they
will be displayed in red while the tests that pass will be green. Last but not least we will
present an overview of the tests that fail.
It stands to reason that we will be injecting malformed events based on the Traffic Flow
data set.

Analysis
From the performed tests, we can see that Flink is currently the least protected system
component with the most vulnerabilities. As to the specific results, it is evident that
Flink’s input Json has to be in accordance with the input model as well as the data types
or it will most likely crash. In addition to this, if Flink receives an empty event with just
two empty fields, he will create an output event that contains null values which opens up
possible future problems. It is without a doubt that Flink is the component that requires
the most attention to create a more protected system.
Moving on to Nifi, we can see that it is mostly protected against malformed Json and
just requires some tweaking on what to do if the event fields are empty. Nevertheless, the
developed Nifi template does not currently have any protection against malformed data
types which poses a problem. The solution for this would be to include an intermediary
component that would verify the data type of each possible field to validate the event.
As to the Rule Engine, since the development time of this component was not affected
by the problems that arose during the initial of the second semester, we can see that it is
the most secured component of all passing all of the Failure Injection tests performed.
Last but not least, it should be noted that losing about three weeks in refactoring the
architecture, as was previously mentioned, mainly impacted Flink’s and Nifi’s development.
These weeks were essential to further make the components more fool-proof and also to
add more data sets.
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ID Failure Scenario Injection Point Result

FS#1 Json containing unknown
fields during a split Nifi

Given that Nifi splits the events based
on a field name and that field is unknown,
Nifi sets the event aside to a Failure Queue
not allowing it to continue in the template.

FS#2
Json containing unknown
fields as a leaf
(after the events are all split)

Nifi

Given that in the Jolt component Nifi
reformats the input event into a specific
format, all unknown fields are simply ignored
and don’t appear in the final event.

FS#3
Json containing no known leaf
fields and no Units and Created
Timestamps fields

Nifi

Nifi ignores every unknown field and the
event is created with Units and Created
timestamp being empty due to how they
are added to the event.

FS#4 Malformed data types
(String where Integer should be) Nifi Nifi doesn’t detect the malformed types and

normally deals with the events.

FS#5 Json with only 2 empty fields.
Namely Unit and Created Timestamp. Flink

Flink transforms the event with default
values and processes it normally.
It stands to reason that the final event
ends up having two null values
(dateCreated and laneDirection)

FS#6 Json containing a Json array where a
field should be Flink Flink crashes - Json Syntax Exception

FS#7 Malformed data types
(E.g String where Integer should be) Flink Flink crashes - Number Format Exception

FS#8 Adding 2 rules with the same name Rule Engine The Rule Engine catches the error and
returns that the rule already exists

FS#9 Adding a wrongly constructed Rule Rule Engine The Rule Engine catches the error and
returns a warning message

FS#10
Adding a rule with malformed
data types (E.g String where
Integer should be)

Rule Engine The Rule Engine catches the error and
returns a warning message

FS#11 Adding a rule using a Malformed
Json with missing fields Rule Engine The Rule Engine catches the error and

returns a warning message

FS#12 Adding a rule with the correct
Json but with more unknown fields Rule Engine The Rule Engine ignores the added fields

and correctly adds the rule

FS#13 Attempt to add, delete or find
an email from a non-existing rule Rule Engine The Rule Engine catches the error and

returns that the rule was not found

FS#14 Attempt to add a malformed
email to an existing rule Rule Engine The Rule Engine catches the error and

returns a warning message

FS#15 Attempt to find or delete a
rule that doesn’t exist Rule Engine The Rule Engine catches the error and

returns that the rule was not found

Table 12: Failure Injection tests

83



Chapter 7

Planning and Methodology

In this chapter, the methodology adopted throughout the internship is described as well
as all the planning performed, the established success criteria, the used tools and the risk
management performed in order to mitigate possible problems.

7.1 Success Criteria

The main goals of this project are to develop a Master’s thesis report and to develop the
proposed proof of concept system in order to solve the challenge presented by Ubiwhere to
the Intern. As to the Threshold of Success (ToS), in order to have a successful internship,
a group of success criteria were defined:

• The project’s proposed architecture and the requirements must be reviewed and
approved by Ubiwhere;

• The developed architecture and project must ensure all the quality attributes re-
quirements defined in this document;

• The proposed requirements, classified as “Must Have” in accordance with the MoSCoW
methodology, must be successfully implemented;

• The internship and all the previously defined goals must be completed within the
time planned.

7.2 Process Management

Agile has become one of the most popular and most commonly used project manage-
ment methodologies. One of the main principles behind Agile is that it is human-centred,
meaning that continuous delivery with periodical meetings between teams and the client
proposes a more open environment where requirements are open to change even in late de-
velopment. Additionally, Agile methodologies are iterative, which means that they divide
the workload between several time periods called sprints, preferably shorter ones, where
working software is frequently analysed, changed, improved and delivered promoting more
disciplined management that has recurrent inspections and adaptations that better en-
courage teamwork [147], [148].
Throughout the duration of this internship, an adaptation of Scrum, which is an Agile
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framework, was used. In Scrum [149], software development starts with the analysis of
the product backlog which is a list of features that are wanted in the project and how
long they are estimated to take. Additionally, Scrum relies on the Agile concept of Sprint
by dividing the workload between periodical deliveries that may take from one week to
two months to complete an item of the product backlog. In each sprint, the team has a
meeting to the extent of forecasting the work needed in order to fulfil the backlog item
which is then divided into smaller tasks to be developed, tested and integrated. During
the sprint, daily meetings, which are brief and descriptive, are advised to make sure that
every team member is aware of the project state and also to analyse possible changes and
improvements. At the end of the sprint, the current state of the product is presented to the
clients so as to promote a better product that matches the client’s needs and to prioritize
the most important requirements. Sequentially, the team meets and discusses the sprint’s
result in order to plan for the future sprint, repeating the cycle mentioned above.
Provided that the development is the responsibility of solely the intern, there is no team,
and therefore, the framework proposed must adapt to this specific case. First and fore-
most, the clients, in this case are the intern supervisors and should therefore be present
on the sprint planning and retrospective meeting. Additionally, it stands to notice that
while daily meetings are not needed, communication is still crucial and therefore the intern
should maintain open channels of communication with the supervisors so that the proposed
work does not get delayed.

7.3 Tools

Through the duration of the Internship, the following tools were and are expected to be
used:

• Clockify - Clockify is a time tracking tool used by the company in order to track
the hours spent by each employee on all tasks;

• BambooHR - Bamboo is a human resources management software as a service
used by the employees to track time, request time-off and perform self and hetero-
assessments;

• Slack - Slack is an instant messaging platform used as the primary communication
tool inside Ubiwhere that allows for a better, more organized reporting through the
use of not only direct messaging, but also groups and chat threads;

• Google Meets - Meets is a video-communication service developed by Google and
was the primary tool used for video conferencing between the intern and Ubiwhere;

• Google Drive - Google Drive is a file storage service developed by Google that was
used to share files between Ubiwhere and the Intern;

• Gitlab - Gitlab is an open-source Git-repository manager used internally in Ubi-
where with plenty of features. Some of these features include Continuous Integra-
tion/Continuous Deployment (CI/CD) pipelines, issue-tracking and Wiki;

• Docker - Docker is a set of open-source Platform-as-a-Service products that simplify
the process of creating, deploying and running applications through the use of con-
tainers. These containers allow bundling the application software with the addition
of the needed libraries and other dependencies into one package ensuring that the
application will execute on any given machine.
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7.4 Planning

In the following section, the planning for the first and second semester is explained and
the planned Gantt for the internship is displayed.

7.4.1 First Semester

During the first semester of the internship, the following stages were expected:

• Problem Context and Motivation - The first stage in the internship was defining
and narrowing down the scope of the project in order to better understand Ubiwhere’s
problem and how we would tackle it. This is available in chapter 1;

• Research - This task included the continuous research on the several concepts such
as Smart Cities, IoT, Big Data, Data ingestion and Data processing as well as the
analysis of the tools and techniques available on the market. This can be translated
into chapter 2;

• Requirements Specification - Given the problem statement, the next step was
gathering, analysing and specifying the scope, stakeholders, constraints and lastly the
requirements. Subsequently, the defined requirements were discussed and reviewed
by Ubiwhere. These requirements can be found in chapter 3;

• Propose Architecture - For this task, having gathered the requirements and having
researched the topics, the next step was coming up with an architecture that fulfils
the previously stated requirements whilst analysing the available technologies. This
is available in chapter 4;

• Planning and Methodologies - For this phase, the process and tools used were
described. Additionally, planning and risk assessment were presented. This can be
seen in chapter 5;

• Intermediate Report - The intermediate report, which was done in parallel to
the other phases, aims to present all the work done during the first semester and
is expected to include all of the above topics which went through several iterations
after receiving feedback from both advisors.

7.4.2 Second Semester

During the second semester of the internship, the following stages were expected:

• Training & Setup - Before starting the development phase, the intern had to be-
come accustomed to the technologies chosen since it is crucial for the subsequent
tasks. Additionally, this is the phase where the intern configures the projects envi-
ronment using Docker;

• Base System Development - This is one of the two main phases of the semester
since this is where all the previous research, planning and preparation came to use.
This task consists of the development of the Ingestion layer, Processing layer and
Message Queue which ingest data into the Urban Platform by making it available on
a Kafka Topic;
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• Rule Mechanism Development - This is the other main phase of the semester.
This task consists of the development of the Rule Mechanism which allows the users
to submit custom rules with custom thresholds and alarms;

• Testing Base System - This task was performed during the base system develop-
ment phase, inside each sprint;

• Testing Rule Mechanism - This task was performed during the rule mechanism
development phase, inside each sprint;

• Testing the Whole System - This task was performed after integrating the rule
mechanism with the base system and focuses on making sure the system works as a
whole accordingly and on finding possible problems;

• Final Report - The report was done parallelly to the rest of the tasks as it should
address all the decisions made and all the challenges, solutions and thought-process
behind them. Additionally, this report was revised incrementally by both Ubiwhere
and the University supervisor.

7.4.3 Planning Overview

In the following subsection, a Gantt chart, namely Figure 36, is displayed in order to
provide a better understanding of the project planning over the duration of the intern.

Figure 36: Planned Gantt

7.4.4 Planning Analysis

In the following subchapter, a second Gantt diagram of exclusively the second semester,
namely Figure 37, is presented to show the real duration of each task in comparison with
the expected diagram presented in the first semester.
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Figure 37: Second Semester Gantt

When comparing them, we can immediately see that there is a newly added task called
Architecture Refactoring which is directly related to the problem that arose. During the
first phase of the second semester, development ended up deviating from the planning
due to two setbacks. On the one hand, while going through Nussknacker’s documentation
and installation tutorial, the intern discovered that not only did the tool only have one
source and one sink components but also to develop new ones, it had to be done in Scala
with close to no documentation or examples. This led to analysing Nifi’s components and
ultimately changing what tool to use in the Ingestion layer. Additionally, during the same
process with Flink, after experimenting with FlinkCEP library, it came to our attention
that there was no mechanism that allowed injecting rules during runtime which in the
end led to discarding FlinkCEP for Esper. This setback was longer than expected since
in addition to all the time spent experimenting with FlinkCEP, there was also the time
spent in researching solutions, restructuring the architecture and learning the new tool.
Ultimately, not only did this problem impact the training duration but these issues also set
the intern back around three weeks, that while didn’t compromise the project by delaying
the delivery, still withdrew development time from other tasks.

Alternatively, we can see that training was renamed to training and setup and took around
four times the planned duration. As to the previous planning, It is arguable that the
planned time was naive and optimistic especially since there were many tools that the
intern was unfamiliar with which ultimately led to a longer training period. One of these
tools, Docker, which the intern had to learn to configure the many technologies, is the
main reason behind why the task was renamed. It stands to reason, that this task was the
one that took the longest during training, since setting up the environment and making it
not only effortlessly easier to setup and run but also lighter, since the intern’s computer
was nowhere near as good as it should performance-wise, was a harder challenge than
anticipated.

In the end, both these changes led to not having as much time to make the system more
fool-proof and to include more datasets.

7.5 Risk Management

Risk management is a crucial and continuous task that allows for project managers to
minimize the potential problems that may arise throughout the life cycle of the project by
identifying, evaluating and creating mitigation approaches to certain possible situations
that may compromise the process and possibly lead to a project failure. This activity is
therefore essential due to the fact that if we plan for possible problems, we can preemptively
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act and evade catastrophic outcomes that affect the thresholds of success. The first step
is risk identification with the subsequent activity being the risk impact and prioritization
analysis followed by the creation of a mitigation plan so that the risk may be continuously
monitored so as to minimize the damages it may cause in case it activates.
In order to classify and better understand the risk, the impact and the probability of the
risk were presented. While the impact of a risk is connected to the damage it would create
if it was not dealt with, the probability of an identified risk is related to the odds of a risk
happening. Both scales were identified, in Table 13, as:

Rating Impact Probability
High The success criteria is not achievable The risk is likely to happen.

Medium The success criteria can be achieved.
Requires great effort and cost The risk might happen

Low The success criteria can be achieved.
Doesn’t require much effort and cost It is unlikely that the risk happens

Table 13: Rating Impact and Probability

7.5.1 Risk Analysis

Each of the following tables identifies and analyses a risk, identified by an Id of the format
R#Number, while categorizing it in accordance with the previously established scales.

Id R#1

Condition The intern has little to no experience in the technologies and
tools chosen

Consequence The development of the Proof of Concept system may take
longer than expected

Impact Low
Probability High

Table 14: Risk - R#1

Id R#2

Condition Given the current pandemic state we are living in, the intern
may become infected with the disease

Consequence The development of the system may have to come to a stop
for the duration of the symptoms

Impact Medium
Probability High

Table 15: Risk - R#2
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Id R#3

Condition Given the current pandemic state, we are living in, the intern’s
direct supervisors may become infected with the disease

Consequence There will be a delay in the feedback and on the instructions
needed to continue the development of the system.

Impact Low
Probability High

Table 16: Risk - R#3

Id R#4
Condition The internship’s scope is not clear

Consequence The complexity of the system increases, leading to changes in the
Requirements and the Proposed Architecture

Impact High
Probability Low

Table 17: Risk - R#4

Id R#5
Condition Time spent on a task surpasses the expected.

Consequence Next tasks will be delayed which will impact the time left for
the deadline

Impact Medium
Probability Medium

Table 18: Risk - R#5

Id R#6
Condition The chosen tools have to be replaced

Consequence
The complexity of the system may increase, leading to changes in
the Requirements and the Proposed Architecture and an overall
development delay.

Impact Medium
Probability Medium

Table 19: Risk - R#6

7.5.2 Risk Exposure Matrix

In the previous subsection, the different risks were identified and in the sequence, they were
labelled in accordance with their respective Probability and Impact on the Internship’s
success. Following that, in Figure 38, an exposure matrix where these two criteria are
represented is shown. The main goal of this matrix is to graphically represent the severity
of each risk that needs to be mitigated. It stands to notice that each square represents a
rating previously stated as Low, Medium or High.

90



Planning and Methodology

Figure 38: Risk Exposure Matrix

7.5.3 Risk Mitigation

Having, classified and analysed each risk, the remaining step is to create a mitigation plan
for each one in order to not only minimize the probability of them happening but also to
develop a way to diminish the consequences of them triggering during the internship.
From the previous matrix we can see only one of the risks is on the high-risk “critical zone”
while the remaining are all on the medium-risk zone. The following measures were defined
in order to mitigate each risk:

• R#1
Allocate some time to learn the technologies and if needed, delay the start of the
project’s development while the intern is not comfortable.

• R#2
After checking with Ubiwhere, the internship will mostly take place remotely to
minimize the risk of infection.

• R#3
To minimize this risk, Ubiwhere has several Supervisors which may help other interns
if the need arises.

• R#4
The interns must not only be explicit on the requirements and on the proposed
architecture but must also validate these with Ubiwhere and with the University
supervisor so that no doubts emerge in later stages.
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• R#5
The event should be reported to the supervisor in the weekly reviews to analyse
the situation and re-evaluate the importance of the task while bearing in mind the
remaining tasks so as to firstly focus on the most relevant and crucial tasks.

• R#6
Assign some time to experiment with the technologies and if required, exchange the
necessary tools before starting development. All changes must be evaluated with the
Supervisors.

7.5.4 Risk Analysis

Risk R#6, which had not been formally analysed in the first semester, was realised leading
to changes in not only the tools previously selected but also changes in the architecture
in the Rule Mechanism. The first change was switching Nussnacker with Nifi due to
problems identified during the testing phase where the intern experimented with the tool.
The other, more significant change, was the removal of FlinkCEP as the CEP tool since it
could not have dynamic runtime injection of rules. This ultimately led to restructuring the
architecture, moving the Rule Mechanism away from the main pipeline and turning it into
an external system that parallelly consumes the data with the Urban Platform. Despite
not having predicted the risk in the first semester, its mitigation process was the same
as the Risk R#1 and therefore, while it was triggered, its consequences ended up being
diminished. As to the exact consequences of triggering this risk, there was a loss of 3 weeks
since all the work spent on researching FlinkCEP and Nussnacker was discarded and also
because the architecture had to be remade and new tools had to be analysed, compared
and learned.
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Conclusion

The following chapter presents the conclusion of not only the internship but also the work
done throughout its duration. Additionally, some remarks will be made concerning future
work to improve the proof of concept.
As to the work done, this document describes the work done by the intern during the
internship at Ubiwhere. Taking into account the previously defined success criteria, even
if there were some setbacks during the internship, we can consider the overall results a
success since:

• Both the requirements and the architecture were reviewed and approved by Ubiwhere
previous to starting development.

• All the quality attributes were detailed in the document, either met in chapter 4.Pro-
posed Architecture or tested in chapter 6.Testing.

• Of the proposed functional requirements, only 2, which were not ‘Must Have’, were
not developed:

– US#3 - This Could Have requirement, implied filtering the rules and the main
reason behind not implementing this requirement was a shortage of time.

– US#5 - This Should Have requirement stated that users should be able to
edit existing rules and it was not implemented because Esper does not allow to
update running statements.

• Of all the previously defined goals, only 1 was not completed within the planned
time. This goal was the constraint R02 where the intern had to implement 2 data
sets. As previously discussed in chapter 7. Planning and Methodologies, the changes
in the architecture led to not being able to include a second data set.

Moving on to the challenges and lessons learned, firstly, the intern had never been
involved in a project of this magnitude both in size and complexity which ended up being
a great learning experience due to not only all the work done but also all the problems that
the intern had to overcome. On top of that, the intern had no experience in a company
which proved to be quite an opportunity to improve his critical thinking and problem-
solving capabilities while gaining some knowledge of how working in a company is like.
Additionally, the development of this proposed system included quite a few setbacks. First
of all, the proposed system was more complex than anticipated which involved adding
more unexpected technologies while maintaining the time constraints ultimately resulting
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in prioritizing some aspects of the system. Additionally, It stands to reason that the intern
had close to no experience with most of the technologies chosen which resulted in a longer
training period than expected. One other aspect that complicated the process was the
project setup which revolved around learning to use Docker and Docker-Compose while at
the same time having to prevail over the DevOps problems that arose. This was one of
the areas where the intern had the least experience and also one of the most rewarding.
Alternatively, one of the most noteworthy learning experiences throughout this internship
was that software development is far from straightforward where problems appear and have
to be solved which was clearly seen in the architectural refactoring stage during the second
semester.
As to future work, even though the proof of concept system is nowhere near ready for
production, there are still some notable improvements that could enhance the results which
would help in the decision-making process of improving not only the Urban Platform but
also any other system currently facing a data ingestion bottleneck. First and foremost, the
current system uses the exact deployed solution that has to manage its resources ultimately
leading to problems in horizontally scaling. To solve this problem, an orchestration system
that handles deployment, scaling and management of the containers like Kubernetes could
be used. However, due to the considerable increase in complexity that this would imply, this
option had to be discarded. One other improvement worth noticing would be to improve
Flink’s resilience by protecting it against malformed inputs. In addition to this, Nifi could
also use some improvements by not only making it more fool-proof but also switching
from automatically generated schemas to previously created manual schemas to prevent
a bottleneck in backed-up queues and ultimately boosting performance. Additionally, the
developed Grammar can always be improved to broaden the spectre of rules it allows and
it can also be further tested so as to more efficiently outline its capabilities and restrictions.
Alternatively, a more adequate, user-friendly interface could be developed using some web
framework to not only make the system more accessible to use by the more inexperienced
users but also improve the overall usability of the developed grammar. To further improve
the current data set, the transformation of the location field from shapefile to geoJson
using GeoTools should also be added to the Traffic Flow events. Last but not least, more
tests should be done using additional data sets in a better, more performant environment
to provide more realistic testing scenarios and also better results.
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