
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

Alexandre Daniel Pereira Brito 
 
 
 
 

AN HYPERVOLUME DICHOTOMIC SCHEME  
FOR MULTIOBJECTIVE OPTIMIZATION 

 
 
 
 
 
 
 

Dissertation in the context of the Master in Informatics Engineering, Specialization in 
Intelligent Systems, advised by Professor Luís Paquete and presented to  

Faculty of Sciences and Technology / Department of Informatics Engineering. 
 
 
 
 

June 2021 

A
N

 H
Y

P
ER

V
O

LU
M

E 
D

IC
H

O
TO

M
IC

 S
C

H
EM

E 
FO

R
 M

U
LT

IO
B

JE
C

TI
V

E 
O

P
TI

M
IZ

A
TI

O
N

 
A

le
xa

n
d

re
 D

an
ie

l P
e

re
ir

a 
B

ri
to

 



Faculty of Sciences and Technology

Department of Informatics Engineering

An Hypervolume Dichotomic
Scheme for Multiobjective

Optimization

Alexandre Daniel Pereira Brito

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Luís Paquete and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering

June 2021



This page is intentionally left blank.



Acknowledgements

First and foremost, I’d like to thanks my advisor Prof. Luís Paquete for inviting me to this
project, helping and trusting in me to develop this framework. Would like to thank him, in
particular, for his patience, understanding and continued availability during this last year,
even when his schedule was clearly full. This project was an important and significant
learning experience on one of the topics that I find most fun. I would also like to thank
CISUC for the scholarship they granted to me.

A heartfelt thank you to all my colleagues who have been a significant part of my journey
in this department. The last 5 years have not been easy, but all of you have made the
late night rushes to deliver a project, the all-nighters that were sometimes required, the
seemingly endless study sessions and of course, the all to fleeting free time a true joy to
remember. In particular I’d like to thank my close friends Vera, Sofia, Martinho, Sara,
Caio and Mariana. It is been five years and somehow, for some reason, you still put up
with me and support me.

Last but not least, thank you to my parents for, not only giving me the opportunity
to continue studying and expanding my horizons, but also strongly encourage it. You have
allowed me to explore what I love. You have shown unwavering support for all I try to do
and for that I am grateful. Thank you.

iii



This page is intentionally left blank.



Abstract

In this dissertation, we propose methods to solve multiobjective optimization problems.
In particular, these methods are based on the concept of hypervolume scalarization and
extend previous work on the following manner: i) we describe a software framework that
implements a dichotomic search to solve any biobjective optimization problem that can be
formulated in terms of hypervolume scalarization; this framework can provide the complete
set of optimal solution as well as a subset of it that has an approximation guarantee; ii)
we present a parallel version of the dichotomic scheme to find the complete set of optimal
solutions; iii) we extend the dichotomic approach for any number of objectives that works
under some assumptions. In addition, we present numerical results on a wide range of
instances.

Keywords

Multiobjective Optimization, Hypervolume Scalarization, Dichotomic Search, Integer Lin-
ear Programming.
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Resumo

Nesta dissertação propomos métodos para resolver problemas de otimização multiobjectivo.
Em particular, estes métodos são baseados no conceito de escalarização de hypervolume e
estendem o trabalho anterior na seguinte forma: i) descrevemos uma software framework
que implementa a procura dicotómica para resolver qualquer problema de otimização biob-
jetivo que pode ser formulado em termos de escalarização de hypervolume; esta ferramenta
é capaz de encontrar o conjunto completo de soluções ótimas, assim como um deste que
tem uma garantia de proximidade; ii) apresentamos uma versão do esquema dicotómico
com paralelização para encontrar o conjunto completo de soluções ótimas; iii) estende-
mos a abordagem dicotómica para qualquer número de objetivos que funciona sob alguns
pressupostos. Para além disso, apresentamos resultados numéricos numa ampla gama de
instâncias.

Palavras-Chave

Optimização Multiobjectivo, Escalarização de Hypervolume, Procura Dicotomica, Progra-
mação Linear Inteira.
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Chapter 1

Introduction

Multiobjective optimization problems can easily be found in our daily life. In multiple
cases we inadvertently find ourselves trying to optimize several objectives. Consider that
you are a businessman that wishes to invest in several different projects. Each project has
an involved up-front price and is characterized by the Return on Investment (RoI) and a
ecological benefit score. In this scenario you wish to find the subset of projects to invest
that would give you the maximum RoI and ecological benefit score while abiding to a limit
of how much money you wish to invest. If you are environmentally conscious you would
not ignore the ecological benefit and you would not choose only the subset with highest
RoI. At the same time you wish to have a good RoI, therefore you cannot give up the profit
completely. A balance between the two objectives may need to be found, depending of the
investor profile.

RoI

ecological benefit score

Figure 1.1: Possible investments with different ecological benefit scores and profits

We have to take this type of decisions on our daily life, most of the times without realiz-
ing it, but there is no perfect solution because the objectives may be conflicting, that is,
some of the possible solutions are better for some objectives but worse for others, requiring
choices to be made.

One way of finding the most preferable solution is to define preferences a priori, for exam-
ple, using a weighted sum of the objectives where the most relevant objectives are assigned
a larger weight. But in the example above, should we value the environment more than
money? How much more important is the RoI versus the possible damage to the envi-
ronment? How are we able to express our preferences in terms of weights? Given the

1



Chapter 1

difficulty of defining preferences a priori, a possibility is to access all potentially interesting
solutions, and by inspection, choose the most appropriate. A suitable notion of interesting
solutions is those that are nondominated. Clearly, a dominated solution, for which, for all
objectives, there exists at least another solution with better or equal objective values (with
at least one strict inequality) is not interesting. For instance, we can think of a solution
that has a marginal ecological benefit score but also negative RoI. This is not interesting
as we would lose money and still have a big ecological impact. There are also others that
have a better RoI and better ecological footprint and therefore are more interesting.

Our goal is to develop algorithms that are capable of finding all nondominated point of
problems like the one presented above. As such, in this dissertation we develop an imple-
mentation of the approach described in [22] for solving biobjective optimization problems
and make it available to both the research community and practitioners. The framework
integrates SCIP C++ libraries with the dichotomic approach and it can be easily adapted
to other biobjective optimization problems. The code is available in github 1.
In addition, we propose the following extensions for this algorithm:

• A parallelized version, that solves multiple subproblems in parallel, capable of finding
the nondominated set;

• An extension for any number of objectives that finds the nondominated set under
some assumptions.

This document is structured as follows: In Chapter 2, we provide an overview of the
concepts of optimality, scalarization and the basics of Integer Linear Programming and an
MILP solver, SCIP Optimization Suite (SCIPOPT). Chapter 3 introduces the notion of
hypervolume, its scalarization and the base algorithm of the framework developed, which
was first presented in [22]. In Chapter 4 we introduce a parallelized version of the algorithm,
while in Chapter 5 we present a generalized version of the algorithm capable of solving
problems for any number of objectives. In Chapter 6 we present the experimental analysis
of the approaches presented in this work. In Chapter 7 we present a guide to assist users in
using the framework available in GitHub, as well as an example for an biobjective knapsack
problem. Finally, Chapter 8 presents a general discussion and further work

1Frameworks code available at https://github.com/AlexdBrito/HVScalar
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Chapter 2

Basic Concepts

This chapter introduces the basic concepts that are required to understand multiobjective
optimization and other related notions of optimality.This material is mostly based on a
textbook written by Ehrgott [7]. In Section 2.1 we introduce the basic concepts of multi-
objective optimization and in Section 2.2 we present several methods for transforming the
multiobjective optimization problem into a single objective problem, known as a scalar-
ization, and corresponding properties. In Section 2.3 we introduce the concept of Integer
Linear Programming (ILP) and in Section 2.4 we present a solver capable of solving MILP
problems.

2.1 Multiobjective Optimization

In Multiobjective Optimization (MO) problems, the goal is to optimize m objective func-
tions f i : X → IR, i = 1, . . . ,m with a set of feasible solutions X ⊆ IRn.Set Y := {f(x) :
x ∈ X} ⊆ IRm represents the image of the feasible set in the objective space IRm and is
called the set of attainable outcomes.

A MO problem can be formalized as follows (assuming maximization of m objectives):

vmax f(x) = (f1(x), . . . , fm(x))

s.t. x ∈ X
(2.1)

where vmax still needs to be defined. For these problems, generally, there is no optimal
solution for all objective functions f i. In this dissertation, we will rely on the concept of
Pareto-optimal solutions, that is, solutions that cannot be improved in one of the objectives
without worsening any other. The concept of Pareto optimality is based on the component-
wise order relations in IRm. Let p, q ∈ IRm:

p = q ⇐⇒ pi ≥ qi for i = 1, . . . ,m (1.1)
p ≥ q ⇐⇒ p = q and p 6= q (1.2)

p > q ⇐⇒ pi > qi for i = 1, . . . ,m (1.3)

We say that a point p weakly dominates q if and only if p = q (see Expression(1.1)). We say
that a point p dominates q if and only if p = q and p 6= q (see Expression (1.2)). Finally,
point p strictly dominates q if and only if p > q (see Expression (1.3)). A solution x ∈ X is
called efficient if there is no other solution x̄ ∈ X such that f(x̄) ≥ f(x). If x is efficient,
we say that its image in the objective space, f(x), is a nondominated point. If f(x) ≥ f(x̄),

3
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we say that solution x dominates x and the corresponding point f(x) dominates the point
f(x). A solution x ∈ X is called weakly efficient, if there exists no other solution x ∈ X
such that f(x̄) > f(x).

Another order of special interest is the lexicographic order. Let p, q ∈ IRm:

p ≥` q ⇐⇒

{
p = q or
pi > qi i = min{k : pk 6= qk}

Let Sm be the symmetric group of order m, and let π ∈ Sm denote a permutation of
the numbers 1, . . . ,m,x ∈ X and fπ(x) := (fπ(1)(x), . . . , fπ(m)(x)). A solution x is called
lexicographically optimal with respect π if there exists no other solution x ∈ X such that
fπ(x̄) ≥` fπ(x) with f(x) 6= f(x).

The set of nondominated points (the nondominated set or Pareto front), is denoted by
YN ⊆ Y and the set of efficient solutions (the efficient set or Pareto set) by XE ⊆ X . In
this dissertation, we are particularly interested on combinatorial optimization problems,
that is, the solution has some combinatorial property, such as path in a graph, or as a
subset of a larger set. In multiobjective combinatorial optimization problems, the set of
feasible points Y is finite, or countably infinite, and discrete. It is important to know the
limits of the nondominated set, as provided by the ideal point and nadir point, which are
illustrated in Figure 2.1.

f2

f1

yI

yN

Figure 2.1: Illustration of Nadir point (yN ) and Ideal point (yI)

The ideal point yI = (y1I , . . . , y
m
I ) is given by

yiI := max{yi : y ∈ Y} i = 1, . . . ,m,

Generally, the ideal point is not an element of Y, as if that was the case, i.e. if yI ∈ Y,
it would dominate all other feasible points in the set, making it the only nondominated
point, YN = {yI}. The ideal point is an upper bound on YN .

The nadir point yN = (y1N , . . . , y
m
N ) is given by

yiN := min{yi : y ∈ Y} i = 1, . . . ,m,

No efficient method to determine yN for a general MO problem is known, except when
m = 2. The nadir point is a lower bound on YN .

4
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2.2 Scalarization

There are several techniques for solving MO problems that consist of transforming them
into a single-objective problem. These are known as scalarization methods and we will in-
troduce some in this section: Weighted Sum Scalarization, ε-Constraint Scalarization, and
the Weighted Chebycheff Scalarization. These scalarizations can be solved using single-
objective methods. The optimal solution(s) to the scalarized optimization problem, de-
pending on the scalarization parameters, usually allow to compute a subset of XE of the
original MO problem.

2.2.1 Weighted-Sum Scalarization

The Weighted-Sum Scalarization (WSS) method was introduced by Gass and Saaty [9] in
1955 for linear programming problems with two objectives. In this method, a weighting
coefficient is associated with each objective function. The scalarized function consists of
aggregating the m objective functions into a weighted sum. This way, the feasible set re-
mains the same and with the same number of constraints. The Weighted-Sum Scalarization
is formulated as follows:

max
x∈X

m∑
i=1

λi · f i(x), WSS

where λ represents the weights with λ ∈ IRm.

The WSS method has some well-known properties [10]: For the set of weights {λ ∈ IRm :
λi ≥ 0, for i = 1, . . . ,m} every optimal solution is a weakly-efficient solution of the related
MO problem. For the set of weights {λ ∈ IRm : λi > 0, for i = 1, . . . ,m} every solution of
WSS is an efficient solution of the MO problem. However, the opposite is not true, that is,
there are efficient solutions that are not optimal for any weight taken from this set. These
solutions are called unsupported and the remaining are called supported. Every supported
efficient solution of the original problem can be found as an optimal solution of the WSS
with appropriate weights λ ∈ IRm

>0.

2.2.2 ε-Constraint Scalarization

The ε-Constraint Scalarization (ε-C) method was introduced by Haimes et al. in 1971 [14];
see also [3]. In this method, one objective function fk, k ∈ {1, . . . ,m} of the MO problem
is selected to be optimized, while the other objectives are converted into inequality con-
straints. Let ε = (ε1, . . . , εm) ∈ IRm, where each εi is associated with an objective function
f i(x) for i = 1, . . . ,m, the ε-Constraint Scalarization of a MO problems formalized as
follows:

max
x∈X

fk(x)

s.t f i(x) ≥ εi i = 1, . . . ,m, i 6= k
ε-C

For this method it is known that, for any ε ∈ IRm, an optimal solution of the ε-Constraint
problem is a weakly efficient solution of the MO problem. If the set of solutions of ε-C
only has one element, then this solution is an efficient solution of the MO problem. Lastly,
by choosing the appropriate vector, it is possible to find every efficient solution of the MO
problem in the ε-Constraint method for any k ∈ {1, . . . ,m}.

5
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2.2.3 Weighted Chebycheff Scalarization

The Weighted-Chebycheff Scalarization (WCS) method was originally proposed by Bow-
man in 1976 [2] (see also [15] and [16]). In order to find the efficient set YN , this method
uses a weight vector λ = (λ1, . . . , λm) ∈ IRm

≥0 and a point z = (z1, . . . , zm), that is defined
as follows for each component i:

zi = max
x∈X

f i(x)

The Weighted Chebycheff scalarization problem for a MO problem can then be formalized
as follows:

min
x∈X

max
i=1,...,m

{λi(zi − f i(x))} WCS

where maxi=1,...,m λ
i(zi − f i(x)) represents the weighted Chebycheff distance between the

ideal point z and the objective function f(x), and 0 < λi < 1.

For the (WCS) method it is well known that every optimal solution is a weakly effi-
cient solution of the MO problem, and the set of all optimal solutions of the WCS method
contains, at least, one efficient solution of the original problem. Furthermore, if the set
of optimal solutions has only one element, that solution is efficient for the corresponding
MO problem. Lastly, if x is an efficient solution of the original problem, then there exists
a λ > 0 such that x is optimal for the WCS problem.

2.3 Integer Linear Programming

A Linear Programming (LP) problem is the problem of optimizing a linear function subject
to linear constraints. The linear function is called objective function in the literature,
and the constraints can be either equalities or inequalities. The set of feasible solutions
forms a polytope, a generalization of the three-dimensional polyhedron, which is a convex,
connected set with flat, polygonal faces [20].
The standard form of a LP is formalized as the following:

max
x∈Zn

cTx

s.t Ax ≤ b
x ≥ 0

And the canonical form is formalized as follows:

max
x∈Zn

cTx

s.t Ax+ w = b

x, w ≥ 0

where A denotes a matrix, b and w are vectors [13]. Vector w is often called a vector of
slack variables [20] and is introduced to convert the inequality constraints to equalities. In
an Integer Linear Programming (ILP) formulation, the variables take only integer values.
They are used to model discrete optimization problems where the objective function and
the constraints are linear. In a Mixed-Integer Linear Programming (MILP), we allow both
continuous and integer variables. Usually, an MILP solvers reads an MILP model and
solves it using implicit enumeration techniques, such as branch and bound.

6
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Figure 2.2: Operational stages of SCIP with the arrows representing possible transitions
between stages

2.4 MILP Solver

In order to solve a MILP problem we can use a solver such as SCIP Optimization Suite
(SCIPOPT). SCIPOPT is a toolbox that contains Solving Constraint Integer Programs
(SCIP), a solver framework that we will use to build and solve each instance of the prob-
lem. A detailed description can be found in [1].

SCIP is a Mixed-Integer Linear Programming (MILP) solver and constraint programming
framework implemented as a C callable library. It gives complete control of the solution
process and access to detailed information. The central objects of SCIP are the constraint
handlers. Their primary task is to check a given solution for feasibility with respect to all
constraints of its type that exist in the problem instance. To improve the performance of
the solving process, constraint handlers may provide additional algorithms and informa-
tion about their constraints to the framework, such as: presolving methods to simplify the
problem’s representation; propagation methods to tighten the variables’ domains; a linear
relaxation, which can be generated in advance or on the fly, which strengthens the linear
programming relaxation of the problem; and branching decisions to split the problem into
smaller subproblems, using structural knowledge of the constraints in order to generate
a well-balanced branching tree. During the execution of SCIP, the formalized optimiza-
tion problem goes through several stages, limiting the operations the user may perform in
each of them. Figure 2.2 shows a flow chart of the operational stages that are traversed.
A problem can be allocated and initiated using the method SCIPcreate(). With the
problem created we must now include the plugins, for example, the default plugins with
SCIPcreateProbBasic(). Afterwards we create the problem with SCIPcreateProb-
Basic(). This transitions the solver to the Problem Specification Stage, illustrated as the
the lower yellow rectangle in Figure 2.2.

During the specification stage we can set the objective direction, as well as add variables
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and constraints. The objective direction of the problem is set using SCIPsetObjsense(),
setting it to either SCIP_OBJSENSE_MAXIMIZE or SCIP_OBJSENSE_MINIMIZE.
A basic variable can be created using SCIPcreateVarBasic() and then we add it to the
problem with SCIPaddVar(). With the variable added to the problem we must now de-
fine its coefficients with SCIPaddCoefLinear(). A linear constraint can be created using
SCIPcreateConsBasicLinear() and added to the problem with SCIPaddCons().

With the problem defined we can solve it with SCIPsolve(). Upon calling this function
the solver goes through several stages. Firstly, it transitions to the Transforming Stage,
where it creates a copy of the data of variables and constraints to a separate memory area.
The copy is called the transformed problem and protects the original problem instance
from modifications applied during Presolving or Solving stages. When this is completed
the solver transitions to the Transformed Stage. This state is only an intermediate state,
as it transitions immediately to the Presolving Stage.

During the presolving stage the solver detects fixings, i.e. variables whose value can be
changed in order to gain some advantage in terms of performance or speed of solving,
aggregations of variables that will be deleted from the transformed problem and replaced
by their fixed or their representing active variables, respectively. The solver also checks if
any of the constraints can be upgraded into a more specific type, as by doing this it can
store the data in a more compact form and employ specialized, more efficient algorithms.
For example, a linear constraint could be converted into a knapsack constraint, which is
a more specific type of a linear constraint. After finishing all the aforementioned tasks
the solver transitions to the Presolved Stage, that, much like the Transformed Stage, is an
intermediate stage, as it immediately switch to the Init Solve Stage.

If the problem was solved during the Presolving Stage, then the solver automatically
switches to the Solved Stage. Otherwise, the solving process begins as it transitions
to the Solving Stage. When the solving process ends, we can obtain the result with
SCIPgetBestSol(), which returns the best feasible primal solution of the problem. If
we wish to know the result in more detail, including which variables were chosen, we can
use SCIPprintBestSol() to print the best solution.

Before closing the problem we must release all the variables and constraint with the
help of SCIPreleaseCons() and SCIPreleaseVar(). After releasing them we can use
SCIPfree() to release the SCIP environment.
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Hypervolume

In this chapter we review the notion of hypervolume, based on the survey of Guerreiro
et al. [12]. In Section 3.1, we introduce the hypervolume indicator and in Section 3.2 we
present the Hypervolume Scalarization (HS). In Section 3.3, we present a Hypervolume
Dichotomic Scheme as proposed in [22], which is the basis of this work.

3.1 Hypervolume Indicator

The hypervolume indicator was introduced by Zitzler and Thiele in 1998 [28] and it has
become a versatile tool in multiobjective optimization for the evaluation of the performance
of multiobjective evolutionary optimization algorithms. The hypervolume indicator is the
measure of the region weakly dominated by a given point set S ⊂ IRm and the reference
point r ∈ IRm with r 5 p for all p ∈ S. This can be represented as:

H(S) := vol({q ∈ Rd | ∃p ∈ S : p ≥ q and q ≥ r})

The hypervolume contribution of a point p with respect to a point set S, H(p,S), is the
region that is dominated by a point p and not dominated by any other point in S, and is
defined as

H(p,S) := H({p} ∪ S)−H(S).

The hypervolume indicator has some interesting properties, namely, it is a submodular
function, that is, the contribution of a point p, with respect to a set S, decreases as the
number of elements in the point set S increases. Furthermore, the nondominated set has
maximal hypervolume value among all subsets of feasible points. This is illustrated in Fig-
ure 3.1, plot (a) illustrated the hypervolume indicator of a set of points (H({p1, . . . , p5})),
and plot (b) illustrated the hypervolume contribution of point p2 with respect to a point
set (H(p2, {p1, p3, p4, p5})).
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Figure 3.1: Illustration of (a) hypervolume indicator of a set of points, given a reference
point, and (b) hypervolume contribution of a point p2 with respect to a point set (light
gray region)

3.2 Hypervolume Scalarization

A recent concept of scalarization is to consider the concept of hypervolume to aggregate
the m objective functions. This is explored in [22] for solving biobjective problems and it
will be the basis of this work. The hypervolume scalarization of a MO problem is defined
as follows:

max
x∈X

m∏
i=1

f i(x)− ri

s.t. f i(x) ≥ ri ∀i = 1, . . . ,m

HS(MOP)

Important to note that an optimal solution of the HS(MOP) is weakly efficient for the MO
problem, and all efficient solutions of the MO problem can be determined as an optimal
solution of a corresponding HS(MOP) for a given reference point r [22]. The constraint
guarantees that the optimal point found dominates the reference point.

Unlike the Weighted-Sum Scalarization, the Hypervolume Scalarization can be applied
without being restricted to supported efficient solutions. In this sense, it shares similar
properties to that of the Weighted-Chebycheff Scalarization, mentioned in Section 2.2.3.

3.3 Hypervolume Dichotomic Scheme

In this section, we describe the Hypervolume Dichotomic Scheme (HDS) proposed in [22],
which allows to find the efficient set of a MO problem for m = 2.

The pseudocode is shown in Algorithm 1. This approach requires an initial reference point,
a list S that keeps a sequence of nondominated points found, ordered with respect to the
first objective, and a priority queue P that stores candidate points in which the element
in its top has the highest hypervolume contribution. The algorithm chooses, iteratively, a
point s from the top of the priority queue P and solves two subproblems associated to that
point. Each of the two subproblems to be solved are defined by a reference point, which
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results from a combination of coordinates of s and of its predecessor or successor in set S.
This reference point is known as local lower bound in the literature [6]. These subproblems
then originate, at most, two new nondominated points, each of which are added to set
P , if their hypervolume contribution with respect to S is positive. A null hypervolume
contribution means that the solver obtained a point whose coordinates were either equal
to the ones that define the reference point, or equal to ones that define a point already
in set S. At the end of each iteration, a point s is removed from P and inserted into S.
This process continues until P is empty, which implies that S corresponds to the nondom-
inated set. This process can be stopped early, which, in this case, implies that a subset
of the nondominated set is returned. Let (

←−
s1 ,
←−
s2) and (

−→
s1 ,
−→
s2) (see Line 7 and Line 13 in

Algorithm 1: Hypervolume Dichotomic Scheme (HDS)
Data: (r10, r

2
0)

1 S = P = ∅
2 insert((r10,+∞), S)
3 insert((+∞, r20), S)
4 s← solve(r10, r

2
0)

5 insert(s, S)
6 do

7 (
−→
s1 ,
−→
s2)← succ(s, S)

8 (r1, r2)← (s1,
−→
s2)

9 p← solve(r1, r2)
10 if H(p, S) > 0 then
11 queue(p, P )
12 end

13 (
←−
s1 ,
←−
s2)← pred(s, S)

14 (r1, r2)← (
←−
s1 , s2)

15 p← solve(r1, r2)
16 if H(p, S) > 0 then
17 queue(p, P )
18 end
19 insert(s, S)
20 s← dequeue(P )

21 while |P | > 0;
22 remove((r10,+∞), S)
23 remove((+∞, r20), S)
24 return S

Algorithm 1) be the points immediately before and after point s, respectively. To ensure
that, in the main loop, a point always has a predecessor and a successor, we consider two
dummy points, (r10,+∞) and (+∞, r20) (see Lines 2-3 in Algorithm 1), where (r10, r

2
0) is the

initial reference point, which are inserted into S in a preprocessing step. The two reference
points that define the next two hypervolume scalarized problems are (r1, r2) := (s1

−→
s2) and

(r1, r2) := (
←−
s1 , s2).

According to the authors in [22], the algorithm should follow a greedy principle, that
is, at each iteration the point s with the largest hypervolume contribution with respect to
the current subset S is chosen to be added to S. The authors in [22] show that this strategy
allows to find a subset S with an hypervolume that is, in the worst case, an (1 − 1/e)-
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approximation to the optimal hypervolume of a subset of the same size, if stopped early.
This is an advantage over other approaches as the algorithm can terminate and be able
to find a representative subset of the nondominated set with an approximation quality
guarantee. The changes on Algorithm 1 to allow finding such a subset of size J are shown
in Algorithm 2. By modifying the termination condition and changing the loop to a while
do (see Lines 7-21 in Algorithm 2), it is possible to define, a priori, a maximum number of
points to find (J). We also need to move insert(s, S) out of the loop, placing it before the
while loop and, finally, add a second insert(s, S) as the last instruction of the loop (see
Line 20 in Algorithm 2). Then, if the number of elements in S, excluding the two initial
dummy points, is equal to J , the algorithm terminates and returns the contents of S. The
algorithm performs J − 1 iterations of the while loop, which means 2J − 1 hypervolume
scalarized problems are solved. The efficiency of this dichotomic search depends on how
efficient the scalarized problems can be solved (see Line 9 and Line 15 in Algorithm 1).

Algorithm 2: Hypervolume Dichotomic Scheme (HDS)
Data: (r10, r

2
0), J

1 . . .
6 insert(s, S)
7 while (S − 2) < J do

8 (
−→
s1 ,
−→
s2)← succ(s, S)

9 ...
20 insert(s, S)

21 end
22 remove((r10,+∞), S)
23 remove((+∞, r20), S)
24 return S

Algorithm 2 explores the following invariant at each iteration of the while loop (see Lines
6-21 in Algorithm 1): for each point s that is removed from the priority list P , with s
being the point with highest hypervolume contribution in the queue, the next point to be
chosen by the algorithm can only be one of the following:

1. the point that is on top of the priority queue P ;

2. the point that maximizes the hypervolume contribution above s;

3. the point that maximizes the hypervolume contribution to the right of s.

This invariant is illustrated in Figure 3.2. In plot (a) (see also plot (b)), the next point to
be chosen after p0 can either be above it with reference point r1, to its right with reference
point r2 or, in the case that none of these reference points yield an optimal point that has
a larger hypervolume contribution than the one that is currently on the top of the queue,
the latter is chosen.

Figure 3.2 also shows another property of this algorithm: whenever a point is calculated,
for example when, in plot (a) p0 is found, a curve can be traced representing all points with
hypervolume equal to that of p0 from the reference point r0. This curve is an upper bound
on the search region associated to the reference point. Then, any further nondominated
point will be found under this curve, as shown in plots (b) (see also plots (c) and (d)).
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Figure 3.2: Representation of: (a) solution of the first subproblem with reference point r0,
with a curve that represents all points with hypervolume equal to p0; (b) solution of the
second and third subproblem with reference points r1 and r2 respectively; (c) curves that
represent all points with hypervolume contribution equal to p1 and p2; (d) solutions of the
subproblems with reference points r3-r6

3.4 Discussion

In this chapter we presented a dichotomic search algorithm capable of solving multiobjec-
tive problems using a sequence of hypervolume scalarizations proposed in [22]. We also
presented a modification of the algorithm to allow it to obtain a specific amount of opti-
mal points with guarantee that the calculated hypervolume is in the worst case, (1− 1/e)
approximation to the optimal hypervolume of a subset of the same size, if stopped early
[22]. However, the algorithm is only usable for biobjective problems and solves each sub-
problem sequentially. In the following chapters we will discuss the possibility of improving
its efficiency by using parallelization and to generalize it for more than two objectives.
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Chapter 4

Parallelization of the Dichotomic
Scheme

In this chapter, we will discuss the parallelization of the dichotomic scheme presented
on the previous chapter in order to speed up the overall processing time. In Section 4.1
we introduce the necessary concepts of parallelization and review the various methods
available. In Section 4.2 we present the chosen parallel paradigm and the required changes
to Algorithm 1 in Chapter 3 to allow for parallelization.

4.1 Basic Concepts of Parallelization

Parallel computing refers to a type of computation in which larger problems are broken
down into smaller and independent subproblems allowing for many calculations or pro-
cesses to be executed simultaneously by multiple processors. These processors generally
communicate through either shared memory architecture, which is memory shared be-
tween all processing elements in a single address space or distributed memory architecture
in which each processing element has its own local address space. Parallel computing is
introduced with the goal of reducing execution time, allowing a better way of using the
resources available by taking advantage of multi-core processors.

One of the earliest classification systems for parallel, and sequential, computing was pro-
posed by Michael J. Flynn in 1972 in [8] and is still used today due to its simple and easy
to understand model. His system defines four categories based upon the number of con-
current instruction streams and data streams available in the architecture, these categories
are:

1. SISD (Single instruction Stream, Single Data Stream) where a single control unit
performs sequential operations on a single data stream;

2. SIMD (Single Instruction Stream, Multiple Data Stream) where a single instruction
is performed on different data streams, instructions can be executed sequentially or
in parallel by multiple units;

3. MISD (Multiple Instruction Stream, Single Data Stream) an uncommon architecture
where multiple systems operate on the same data stream and must agree on the
result which is normally used for fault tolerance;
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4. MIMD (Multiple Instruction Stream, Multiple Data Stream) the most common ar-
chitecture currently in which multiple processors simultaneously execute different
instructions on different data streams.

There are multiple types of parallelization, namely bit-level, instruction-level, task/data
and superword level parallelism. Bit-level parallelization [4] consists in increasing the pro-
cessor word size - the amount of information the processor can manipulate for cycle, which
reduces the quantity of instructions the processor must execute in order to perform an
operation on variables greater than the length of the word, i.e., a 8-bit processor that
must add two 16-bit integers. In instruction-level parallelism [27], the processor re-orders
and combines instructions into groups that can be executed in parallel without affecting
the result of the program. Task/data parallelism [26] is the more traditional parallelism
where problems are divided into smaller subproblems that are then allocated to a processor
for execution. The processors then execute these sub-tasks concurrently and sometimes
cooperatively. In task parallelism different calculations can be performed on the same or
different sets of data while in data parallelism the same calculations are performed on the
same or different sets of data. Lastly superword level parallelism [18] is a vectorization
technique that can exploit the parallelism of inline code.

In terms of parallel programming, there are several models that are currently used. These
models are abstractions and machine architecture independent. Therefore they can, the-
oretically, be implemented on various hardware and memory architectures. Some of the
more prevalent models are: 1) Shared Memory Model, in which tasks share a common
address space that they can use to read and write asynchronously. These interactions are
normally moderated by a control access mechanism like locks or semaphores; 2) Threads
Model in which a process can have multiple, concurrent execution paths. The main pro-
gram loads and obtains all the necessary resources to activate the process. During the
execution the main program creates threads to asynchronously execute subroutines that
communicate with the main program or other threads through global memory, commonly
using the shared memory architecture, and later are destroyed when their work is done;
3) Message Passing Model in which exists a set of tasks that use their own local memories
during computation. These multiple tasks can reside on the same or different machine and
exchange data by sending and receiving messages. 4) Data Parallel Model in which most of
the parallel work focuses on performing operations on a data set. This data set is typically
organized into a common structure like an array and the tasks work collectively, each on
different portions of the data set.

When discussing parallelism it is important to remember Amdalh’s Law [23], that states
that the theoretical maximum speedup possible when introducing multiple processors is the
time needed by the slowest non-divisible part of the program. In other words, if a program
needs 10 hours to complete and can it can be divided into a maximum of 20 independent
and indivisible sub-tasks but one of these sub-tasks takes around one to complete then the
minimum time that a parallelized version of this program will take is around one.

4.2 Parallelization of Dichotomic Scheme

Each call of solve function in Algorithm 1 (see Lines 6-20) solves a subproblem that receives
a reference point and returns either a new optimal point in case a feasible solution exists or
null if no new optimal point can be found. Therefore, the most appropriate parallelization
method for us is task/data parallelization with the threads model because each subproblem
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Figure 4.1: Illustration of: (a) search regions of reference points r1 and r2 and their overlap;
(b) solutions p1 and p2 for subproblems with reference points r1 and r2 respectively; (c)
search areas for the new reference points without the overlap; (d) solutions to the new
reference points within their search areas.

is a task that can be executed by a worker thread while the main program performs other
calculations. As these subproblems are implemented by the user they are also the smallest
non splittable part of our framework. Therefore, if the algorithm is able to execute mul-
tiple subproblems at the same time, the theoretical minimum execution time is reached,
according to Amdalh’s Law. For the case of dichotomic scheme presented in Section 3.3,
Algorithm 1 (see also Algorithm 2), each two subproblems that arise in the while loop
can be solved in parallel, since they are mutually independent. This fact is illustrated in
Figure 4.1. Plot (a) shows two search regions, each of which is related to reference points
r1 and r2, respectively, and where the patterned region corresponds to their overlap. A
solution to each of the two subproblems cannot arise in the patterned region, since this
would imply point p0 to be dominated, leading to a contradiction, since p0 is, by definition,
a nondominated point. Therefore, both problems can be solved independently, allowing
for a theoretical speed up of 2.

Note that the parallelization of each two new subproblems that arise at each iteration
of the main loop can be applied to find a representation of size J as described in Algo-
rithm 2. However, we can take further advantage of parallelization by parallelizing each
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subproblem that corresponds to a reference point of every point that is in the priority queue
P . This is illustrated in Figure 4.1, plot (c) which shows that the search regions of reference
points r5 and r6, generated by p2, and the search regions of the reference points generated
by p1, are disjoint. However, the greedy approach cannot be applied here, as we no longer
choose the next point s with the highest hypervolume contribution before restarting the
while loop. All available reference points are parallelized as they are generated and the
solutions are obtained as the problems are solved without a specific order. Because of this,
if we stop it early, the guarantee of approximation to the optimal hypervolume cannot hold.

Algorithm 3 presents a Parallelized Hypervolume Dichotomic Scheme (PHDS) that par-
allelizes all the available reference points in queue P . In order to parallelize the solve
function we create a function thread, which receives the solve function and a new set T .
This function parallelizes the solve function and queues the solution on set T . We create
a thread for all reference points available (see Lines 6-20 in Algorithm 3) and, whenever
no more points are available, it waits for a thread to return a new solution. Then, it
calculates two new reference points (see Lines 15-19 in Algorithm 3). These two points
will immediately be used for two new subproblems and it waits again for another thread
to resolve. This process continues until there are no more threads running and no more
reference points available.

Algorithm 3: Parallelized Hypervolume Dichotomic Scheme (PHDS)
Data: (r10, r

2
0)

1 S = P = T = ∅
2 insert((r10,+∞), S)
3 insert((+∞, r20), S)
4 s← solve(r10, r

2
0)

5 queue(s, P )
6 do
7 s← dequeue(P )
8 insert(s, S)

9 (
−→
s1 ,
−→
s2)← succ(s, S)

10 (r1, r2)← (s1,
−→
s2)

11 thread(solve(r1, r2), T )

12 (
←−
s1 ,
←−
s2)← pred(s, S)

13 (r1, r2)← (
←−
s1 , s2)

14 thread(solve(r1, r2), T )
15 while P = ∅ and T 6= ∅ do
16 p← dequeue(T )
17 if H(p, S) > 0 then
18 queue(p, P )
19 end
20 end
21 while |P | > 0;
22 remove((r10,+∞), S)
23 remove((+∞, r20), S)
24 return S
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4.3 Discussion

In this chapter we have described how to modify the Hypervolume Dichotomic Scheme
in order to parallelize it. This parallelization strategy described can be used to find the
complete efficient set and, if stopped early, it returns a subset of the latter. However,
this subset no longer has the same approximation guarantee since it is not possible to
implement the greedy choice. It is an open question whether it is possible to solve more
than two subproblems in parallel, keeping the same approximation. Details about the
implementation and an experimental analysis performed on Algorithm 4 are described in
Chapter 6 and Chapter 7.
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Chapter 5

Extension for larger number of
objectives

In this chapter, we will discuss the generalization of the HDS presented in Algorithm 1
to more than two objectives. In Section 5.1 we will describe the required changes to our
framework when dealing with more objectives. Section 5.2 introduces an extension of the
framework that finds the efficient set under some assumptions.

5.1 Changes caused by more objectives

When dealing with more objectives we need to take into account that there are more non-
dominated points, more reference points, the subproblems cannot be solved independently
and there are points with shared coordinates. Unfortunately, some of these changes make
our approach harder to generalize for a larger of objectives. In the following we discuss
how these changes impact our dichotomic approach described in Section 3:

More nondominated points With the increase in the number of objectives the number
of nondominated points, in general, also increases. This leads to an increase on the number
of subproblems to solve and, consequently, more computational time is required.

More reference points The number of reference points also increases, because each
nondominated point can have as many neighboring points as those already found. In fact,
an upper bound on the number of reference points, for a fixed dimension, is linear with
respect to the number of points found. This bound is given in [6] which corresponds to
the number of local lower bounds for a given set of nondominated points. Note that a
reference point is also a local lower bound. This is illustrated in Figure 5.2, in which plot
(a) shows that point p0 generates three new reference points and p1 generates four.

Subproblems cannot be solved independently The increase in the number of ob-
jectives also causes the subproblems to have overlapped search regions where there might
exist nondominated points. Therefore, these subproblems cannot be solved independently
anymore. This stems from the fact that, with m > 2, a nondominated point can be found
by more than one reference point. This is illustrated in Figure 5.1 plots (c) and (d) (see
also plot (b)), where p1 can be found by solving the subproblems with reference points r1
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Figure 5.1: Illustration of: (a) Reference points generated by nondominated point p0; (b)
second nondominated point p1 found by reference point r1; (c) stripped region not calcu-
lated by the dichotomic scheme and reference points generated by p1; (d) nondominated
point p1 found by different reference point r3 with the reference points it generates.

and r2. Losing subproblem independence can affect the behaviour of the greedy principle
as well as it limits usage of parallelization. We recall that an important aspect to allow
paralellization is to have independent subproblems.

Points with shared coordinates Form > 2, it is possible to have nondominated points
with shared coordinates. Therefore, it is now possible for a subproblem to find a new non-
dominated point with null hypervolume contribution. This differs from m = 2, where a
null hypervolume contribution means that the point had already been found (see Section
3.3). Moreover, it is also not clear if another reference point will find this new nondomi-
nated point. This is illustrated in Figure 5.2 plot (b), which shows that p1 can be found
by r1 and also by r3. However, p1 would have null hypervolume contribution if found by r3.

Whenever a nondominated point can be found by multiple reference points, the hyper-
volume contribution, with respect to the set of points already found, can also be miscal-
culated. As shown in Figure 5.1, plots (c) and (d), the region that is stripped represents
a part of the hypervolume contribution of the nondominated point that is not taken into

22



Extension for larger number of objectives

f1

f2

f3

p0

p1 r1

r2

r3

r4

r5

r6

r7

(a)

f1

f2

f3

p0

p1
r1

r2

r3

r4

r5

(b)

Figure 5.2: Illustration of two degenerate cases: (a) p1 can be found by multiple reference
points; (b) p1 shares coordinates with another nondominated point (p0)

account by the dichotomic scheme, because it only a reference point to define the search
region.
Therefore, in some situations, the value of the hypervolume contribution calculated does
not correspond to the actual hypervolume contribution of the point with respect to the
set of nondominated points already found. Consequently, choices made related to the next
point to analyse can be wrong in terms of the greedy principle.

5.2 An extension for more than two objectives

Despite the difficulties described in the previous sections, it is still possible to extend the
dichomotic approach to find all nondominated points, under some assumptions about the
latter. The approach described in this section does not use the greedy choice for the reasons
explained in the previous section. In addition, we assume that the efficient set contains
only points in the general position, because it is unclear how the algorithm would behave
when faced with nondominated points with shared coordinates. Moreover, due to the fact
that the an efficient point may be found more than once with positive hypervolume contri-
bution from different reference points, it is expected that some subproblems are redundant.
However, we no longer need to explicitly calculate the hypervolume contribution because
the choice of the next reference point no longer needs to rely on it.

This new version, Hypervolume Dichotomic Scheme for m-Dimensions (m-HDS), is pre-
sented in Algorithm 4. Each reference point, r is implemented as a data structure that
must not only keep the information of its coordinates (r.coords), but also, at most, m non-
dominated points that generated it (r.gen). In this version, R is a set of reference points
to be used, and can be implemented as a list. The method of verifying if a nondominated
point is new or feasible also changes. As we no longer calculate the hypervolume of every
nondominated point we just verify whether the new point p already exists in the set of
nondominated points S or not. In case it does not exist we use it to calculate the new
reference points and insert it into the set S. This is executed by function isNewPoints()
(see Line 8 in Algorithm 4).
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Algorithm 4: Hypervolume Dichotomic Scheme for m-Dimensions (m-HDS)
Data: (r0,m, n)

1 S = R = ∅
2 s← solve(r0)
3 insert(s, S)
4 insert(calcNewRefPoints(R, p, r0,m, n), P )
5 do
6 r ← dequeue(R)
7 p← solve(r)
8 if isNewPoint(p, S) then
9 insert(s, S)

10 calcNewRefPoints(R, p, r,m, n)

11 end
12 while |R| > 0;
13 return S

For each new point found, there is the need to find the reference points that define the
new subproblems to be solved. An algorithm explored by Lacour et al. [17] is of particular
interest to us, as they present a method to calculate local lower bounds for a given set of
points for a general number of objectives. This method is used in the m-HDS (see Line
4 and Line 9 in Algorithm 4) to calculate the new reference points which is presented in
Algorithm 5.

Given a nondominated point p, found by reference point r, the algorithm iterates through
the current set of reference points, R, and extracts the reference points that are dominated
by the new nondominated point, p, creating a new set H, which also contains r (see Line
1 in Algorithm 5). For every point h ∈ H, and for every objective i, if point p dominates
h, when excluding objective i, we create a new point u, which will be a new reference
point (see Lines 2-4 in Algorithm 5). For all coordinates of point u, except i, we let point
u share the same coordinates of point h; the coordinate i of u is equal to that of p (see
Lines 5-7 of Algorithm 5). Similarly, we let the points that generated u as being the same
that generated h, for all coordinates except i, and p for coordinate i (see Lines 9-12 in
Algorithm 5). Lastly, the new reference point u is added to the set of reference point R
(see Line 13 in Algorithm 5).

5.3 Discussion

In this chapter, we presented the changes that we need to take into account when consid-
ering more objectives and their consequences to our framework. We also introduced a new
approach that does not use the greedy principle and uses a new method to calculate new
reference points. As the subproblems are no longer independent, as explained in Section
5.1, it stays as an open question if it is possible to introduce parallelization to Algorithm 4.
In the following chapter we will present an experimental analysis performed on Algorithm
4, as well as details about its implementation.
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Algorithm 5: calcNewRefPoints
Data: (R, p, r,m, n)

1 H ← r ∪ extractDominatedSet(R, p)
2 foreach h ∈ H do
3 for i = 1, 2, ...,m do
4 if hj < pj for all j = {1, 2, ...,m} \ {i} then
5 u.coord[i]← p.coord[i]
6 foreach k ∈ {1, 2, ...,m} \ {i} do
7 u.coord[k]← h.coord[k]
8 end
9 u.gen[i]← p

10 foreach k ∈ {1, 2, ...,m} \ {i} do
11 u.gen[k]← h.gen[k]
12 end
13 insert(u,R)

14 end
15 end
16 end



This page is intentionally left blank.



Chapter 6

Experimental Analysis

In this chapter, we discuss the experimental analysis that was conducted to evaluate the
performance of sequential HDS (Algorithm 1), the PHDS (Algorithm 3) and m-HDS (Al-
gorithm 4). In Section 6.1 we introduce the problem used in the analysis and compare the
CPU-time taken by HDS and PHDS. In Section 6.2 we analyze several data structures to
store the set of reference points and how they impact the performance of m-HDS.
All experiments were conducted on a machine running Windows 10 Version 20H2 (OS
Build 19042.985), using WSL Version 2 with Ubuntu Version 20.04.2 (64-bit), an Intel-i9
10980HK Octa-core running at 2.4 GHz (base frequency) undervolted by 0.1V with 16MB
of Smart Cache and 64GB RAM.

6.1 Two-dimensional case

In order to successfully test the dichotomic search scheme, we reproduced the work in [22]
for the case of a biobjective knapsack problem with a cardinality constraint. This problem
consists of maximizing two linear sum objective functions, with a cardinality constraint
that allows only k items to be selected, which is formalized as follows.

max f(x) :=

(
n∑
i=1

aixi,

n∑
i=1

bixi

)

s.t.

n∑
i=1

xi = k

xi ∈ {0, 1} ∀i ∈ {1, . . . , n},

where xi is a binary variable that takes value 1 if element i is chosen and 0 otherwise, a, b
represent the value of element i for the first and the second objective, respectively and k
represents the maximum number of elements that can be chosen.

The authors in [22] show that the hypervolume scalarization of this problem leads to
the following optimization problem with r = (r1, r2)T as the reference point.
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max f(x) :=

(
n∑
i=1

aixi − r1
)
·

(
n∑
i=1

bixi − r2
)

=

n∑
i=1

n∑
j=1

aibjxixj −
n∑
i=1

(r2ai + r1bi)xi + r1r2

s.t.
n∑
i=1

aixi ≥ r1

n∑
i=1

bixi ≥ r2

n∑
i=1

= k

xi ∈ {0, 1} ∀i ∈ {1, . . . , n}, i

Since this is a quadratic formulation, the authors linearized it into an ILP formulation in
order to use a MILP solver. We used the following ILP linearization of the hypervolume
scalarized biobjective knapsack with cardinality constraints. We define Qij = ai · bi for all
i, j ∈ {1, . . . , n} and yij , i, j ∈ {1, . . . , n}, that will get value 1 if and only if xi = 1 and
xj = 1. The formulation is as follows:

max
n∑
i=1

n∑
j=1

Qijyij −
n∑
i=1

(r2ai + r1bi)yii + r1r2

s.t.

n∑
i=1

aiyii ≥ r1

n∑
i=1

biyii ≥ r2

n∑
i=1

yii = k

n∑
i=1
i 6=j

yij ≤ (k − 1) · yjj ∀j ∈ {1, . . . , n}

yij = yji ∀i, j ∈ {1, . . . , n}, i < j

yij ≤ yii ∀i, j ∈ {1, . . . , n}, i 6= j

yij ≥ yii + yjj − 1 ∀i, j ∈ {1, . . . , n}, i < j

yij ∈ {0, 1}

This formulation was implemented in SCIP version 7.0.1.0 in C++ version 14 and compiled
with g++ version 9.3.0, which corresponds to the method solve() in HDS and PHDS. In
both cases the framework was set such that the algorithm only stopped when all non-
dominated points were found. Details about the implementation are provided in Chapter
7.

A series of tests were performed on HDS (Algorithm 1) and PHDS (Algorithm 3) of the di-
chotomic scheme in order to compare the results. We followed the same generation of prob-
lem instances as used in [22], that is, ai and bi follow a uniform discrete distribution within
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n k HDS PHDS Speedup

10
n/4 1.00 0.53 1.89
n/2 1.43 0.78 1.83

3n/4 0.28 0.20 1.40

20
n/4 31.64 13.96 2.27
n/2 62.99 21.84 2.88

3n/4 15.51 7.97 1.95

30
n/4 367.09 82.31 4.46
n/2 975.19 190.52 5.12

3n/4 277.19 65.80 4.21

40
n/4 1389.58 384.70 3.61
n/2 4499.89 1558.89 2.89

3n/4 1535.07 483.32 3.18

50
n/4 3863.71 1030.37 3.75
n/2 28621.70 10224.93 2.80

3n/4 6272.20 1795.22 3.49

Table 6.1: Average execution time, in seconds, for dichotomic scheme solved sequentially
(HDS) and with parallelization (PHDS) for instances of size n and cardinality constraint
k and speedup of the parallel implementation

[1,250] and were generated using the function random.randint() available in Python, ver-
sion 3.8.5. A total of 25 instances were generated for each size n = {10, 20, 30, 40, 50} and
cardinality values k = {n/4, n/2, 3n/4}. The running time is measured only with respect
to Algorithm 1 and Algorithm 3 using function std :: chrono :: high_resolution_clock ::
now() in C++. The results obtained by the dichotomic scheme were validated against the
output of a brute force algorithm implemented in Python.

Table 6.1 presents the average running time of the 25 instances for each n and k for
both Algorithm 1 referred as HDS and Algorithm 3 referred as PHDS. We also present a
speedup of the parallel implementation. We can observe that the parallel algorithm has
an overall lower execution time than sequential, with a higher speedup on higher values
of n. The smaller speedup value for size n = 10 and 20 is expected because there are less
nondominated points to be found and, consequently, less subproblems to solve in parallel,
leading to a smaller benefit with parallel. For larger n, the benefits of parallel execution
become more evident, with speedup values of up to fives times. This is very significant as,
with this size, problems can take upwards of hours to solve.

We can also observe that, for the hypervolume scalarized biobjective knapsack problem, a
cardinality value of k = n/2 seems to be worst case scenario, having the highest execution
time when compared with the other cardinality values tested, across all different sizes of
n.

6.2 Multidimensional case

In this section, we describe the experimental analysis of dichotomic search scheme for
m > 2 (Algorithm 4) for different methods of selecting the subproblem to solve. Since we
did not have the ILP linearized formulation of the knapsack problem for m > 2 objectives,
we decided to consider a set of nondominated points as input data. Therefore, rather than
calling solve (see Line 7 in Algorithm 4) to solve an ILP formulation, the algorithm returns
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Dims Number
Points

Subproblems Generated Subproblems Solved
Selection Method Total Selection Method TotalQueue Random Stack Queue Random Stack

3D

10 27.00 27.00 27.00 30.00 21.24 22.16 25.08 30.00
20 57.00 57.00 57.00 60.00 47.28 48.88 54.28 60.00
30 87.00 87.00 87.00 90.00 74.72 76.64 83.64 90.00
40 117.00 117.00 117.00 120.00 106.68 108.28 113.92 120.00
50 147.00 147.00 147.00 150.00 135.64 137.88 141.8 150.00

4D

10 44.96 45.12 45.28 50.04 26.68 31.00 40.88 50.04
20 108.20 108.64 108.40 113.52 79.84 73.56 94.40 113.52
30 174.00 174.44 174.64 179.76 143.76 122.24 153.52 179.76
40 240.88 241.52 241.48 246.48 211.04 183.44 217.48 246.48
50 311.56 311.56 311.92 316.96 272.48 233.40 285.92 316.96

5D

10 84.04 84.84 85.88 94.64 42.00 39.72 64.68 94.64
20 237.40 238.28 237.64 248.40 131.60 103.32 175.40 248.40
30 403.24 404.68 406.44 416.40 246.64 186.56 294.64 416.40
40 586.04 588.44 586.60 597.52 464.92 324.52 456.64 597.52
50 792.20 794.44 792.44 803.44 630.48 454.88 619.12 803.44

Table 6.2: Total number of subproblems generated and solved by the algorithm and average
number of subproblems generated and solved by each of the selection methods for each
number of objectives and number of nondominated points

the point, from the input data, that maximizes the hypervolume indicator with respect to
the reference point chosen. For this reason, we did not record the overall CPU-time, but
the number of subproblems generated and solved.

We consider the following three selection methods to determine the next subproblem to
solve: Queue, which is a First In, First Out (FIFO) data structure and corresponds to
a Breadth-first search; Stack, which is a First In, Last Out (FILO), corresponding to
a Depth-first search; and Random, in which a reference point from in R (see Line 6
in Algorithm 4) is chosen at random. The random element of R is obtained by using
std::uniform_int_distribution and std::mt19937, available in C++ version 14. The
function extractDominatedSet() (see Line 1 in Algorithm 5) used is part of a library for
filtering and maintaining a set of nondominated points implemented in C++ and is pre-
sented in [5].

A total of 25 instances were generated for each number of nondominated points considered
(10, 20, 30, 40 and 50) and for each number of objectives m = 3, 4 and 5. The nondomi-
nated points were generated using Mullers method to obtain points uniformly distributed
on the surface of a hyperdimensional sphere [19].

For each instance, we recorded the total number of subproblems generated and solved by
the algorithm (see Line 10 and Line 7 of Algorithm 4, respectively). We decided to record
these values because, as explained in Section 5.1, the number of reference points generated
by each nondominated point, for m > 2, is not always the same, as opposed to m = 2, in
which two reference points are always generated by each nondominated points. Note that a
reference point originates a subproblem and, as such, both of these can be seen as the same.

The preliminary result we obtained were all equal between the different selection methods,
which means that all selection methods generated and solved the same number subprob-
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Figure 6.1: Plot of the average number of subproblems solved by random selection method
for each number of objectives m and for each number of nondominated points

lems in each scenario by the end of the algorithms execution. However, we noticed that
some selection methods arrived at the complete set of nondominated points faster than
others. As such we also recorded the number of subproblems at the moment that the
nondominated set was found.

Table 6.2 presents the average number of subproblems generated and solved for each
number of nondominated points, in column Number Points, and number of objectives,
in column Dims. The columns Total represent the number of subproblems generated and
solved by the algorithm at the end of its execution. The columns under Selection Method
represent the average number of subproblems generated and solved by each method.

As we can observe, for 3 objectives, the queue selection method solves, on average, slightly
fewer subproblems when compared to the other two. However for 4 and 5 objectives, the
random selection method solves less subproblems overall, by a significant margin. As ran-
dom selection is the most beneficial for higher number of objectives, we decided to analyze
how the number of subproblems solved grows with the number of nondominated points
used as input. We performed a linear, quadratic and cubic regression for each number of
objectives of the random selection method. In Figure 6.1 is illustrated a line plot of the
average values, represented by the solid lines, alongside the regression with better R2 value
for each number of objectives, represented by the dashed lines. The best regression for all
cases was quadratic, meaning that, the number of subproblems may grow quadratically
with the number of nondominated points.
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The expressions that we obtained for the quadratic regressions, corresponding to the dashed
lines in Figure 6.1, are as follows:

• 3 objectives: y = 0.01x2 + 2.50x− 3.66 with a R2 of 0.97;

• 4 objectives: y = 0.02x2 + 3.98x− 12.02 with a R2 of 0.89;

• 5 objectives: y = 0.13x2 + 2.45x+ 0.46 with a R2 of 0.72;

6.3 Discussion

In this chapter we presented the experimental analysis performed on the HDS, the PHDS
and m-HDS algorithms. The speedup obtained by the PHDS is substantial, when com-
pared to the sequential version, specially for larger sizes of input. In the case of the m-HDS
algorithm, we were able to conclude that a random selection method for the next subprob-
lem to solve has the best performance. This selection method could be useful for a version
of m-HDS capable of using the greedy principle, presented in Section 3.3. It is left as
an open question if the results obtained pertaining the selection method are due to the
method used for generating the inputs or if there is no correlation and random selection is
the best in all scenarios.
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Framework User Manual

One of the objectives of this dissertation is to build a framework in C++ that implements
the dichotomic search algorithm for m = 2, Hypervolume Dichotomic Scheme (HDS), de-
scribed in Chapter 3. This framework will serve as a base that can be expanded to any
biobjective problem as long as an Hypervolume Scalarization can be derived. The authors
in [22] have developed a simple prototype for performing experiments using python and
using SCIP as an ILP solver. However, the solver was solving hypervolume scalarizations
from data files that were generated for each new subproblem. This has a strong overhead
on the overall running time. Moreover, no attempt to make a code that could be reused for
other problems was considered. For this reason, we developed a framework that integrates
SCIP C++ libraries with the dichotomic approach and allows to be easily adapted to other
problems. The framework is available on github 1 and the current version has implemented
the HDS, allowing to find for the complete nondominated set (see Algorithm 1) or to find
a subset of the nondominated set that has an approximation guarantee (see Algorithm 2),
as discussed in Section 3.3.

In Section 7.1 we will identify the requirements that ensure that the framework func-
tions as expected. In Section 7.2 we give an overview of the functions available to the user
and an explanation of their functionality. In Section 7.3 we present a step-by-step guide on
how to use the framework, and in Section 7.4 we present examples on how to implement
the problem described in Section 6.1 with SCIP in C++.

7.1 Requirements Elicitation

To ensure that the framework has all the expected functionalities and works as intended,
we gathered a set of the requirements. Each requirement includes an unique ID, a small
description and the priority. The priority is a value from 1-5, with 5 being the highest and
1 the lowest.

7.1.1 Functional Requirements

In this subsection we will present a list of functional requirements. These requirements
define what the program must be able to do and its behavior, and are essential for the

1Frameworks code and user guide available at https://github.com/AlexdBrito/HVScalar
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correct functioning of the framework. These requirements are presented in Table 7.1.

ID Description Priority

FR-01 The user can implement a data structure and set it on the
framework 3

FR-02 The user can implement an input function and set it on the
framework 3

FR-03 The user can implement a function to initialize the problem
and set it on the framework 5

FR-04 The user can implement a function that solves an instance
of the problem and returns a point 5

FR-05 The user can implement a function that frees the problems
resources and set it on the framework 5

FR-06 The user can choose to calculate all optimal points or a sub-
set of them 2

FR-07 The user can specify the number of points that belong to the
Pareto Front (J) to be calculated 4

FR-08 If the problem does not have J optimal points the framework
must return all that were calculated 5

FR-09 If the problem does not have J optimal points the framework
must warn the user 1

FR-10 The user can opt for a verbose version of the framework,
giving more information on each step 2

FR-11 The user can indicate a folder where all the frameworks ver-
bosity output will be written to 2

FR-12 The results must be displayed on the console and/or sent to
a file indicated by the user 3

FR-13 The framework must accept problems that are not imple-
mented with SCIP 4

FR-14 In the case of error the framework must correctly free all
resources and warn the user 4

Table 7.1: Functional Requirements

7.1.2 Non-Functional Requirements

In this subsection we will present a list of non-functional requirements. These requirements
are not essential and failing to implement them does not hinder the basic functionalities of
the framework. They should not be ignored however, as they are fundamental for a good
user experience and overall usability. These requirements are presented in Table 7.2.
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ID Description Priority

NFR-01 All functions must have explicit and easy to under-
stand names 4

NFR-02 All functions must be documented with description
of the functionality, input and output 3

NFR-03 All loose values and variables must be global defined
with an easy to understand name 3

NFR-04 All resources must be correctly freed before the end 5

Table 7.2: Non-Functional Requirements

7.2 Overview of available functions

In this section we give an overview of the variables and functions, implemented in the
framework, that the user interacts with. We will go over their inputs and outputs as well
as an explanation of what each variable or function does and their purpose.

The framework uses only one structure, HVS to store all the necessary data. This struc-
ture holds information about all the user implemented functions and basic information
about the problem such as the number of nondominated points to find, if set, the objective
direction, either maximization or minimization, the initial reference point and the data
structure created by the user. It is required as input by all the frameworks functions.
We define a point, HVS_Point, as a vector of doubles. We also define a set HVS_Set,
as a set of pointers to points (HVS_Point). The set also has a comparator, which keeps
the points ordered in relation to the first objective. Lastly we define two enumerates,
HVS_ObjectiveDir and HVS_SolveType. The former defines the objective direction of the
problem (HVS_MIN and HVS_MAX) and the latter defines the whether the goal is to find
all nondominated points (HVS_2D_ALL) or to find a subset of all nondominated points
(HVS_2D_NUM).
The variable data and functions input, init, solve and close refer to user implemented
data structure and functions, respectively. The variable numNdPnts refers to an integer and
variables verbose refers to a boolean. More details are given below.

The available functions are the following:

• HVSstart(HVS): Receives a pointer to the framework data structure, initialized it
and sets default values.

• HVSfree(HVS): Receives a pointer to the framework data structure and frees all
associated data.

• HVSsetProblemDS(HVS, data): Receives a user implemented data structure that
contains the problems variables, saving a reference to it on the framework data struc-
ture.

• HVSsetInput(HVS, input): Receives a user implemented function that reads the
problems input, saving a reference to it on the framework data structure.

• HVSsetInit(HVS, init): Receives a user implemented function that initializes the
problem and all the necessary variables, saving a reference to it on the framework
data structure.
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• HVSsetSolve(HVS, solve): Receives a user implemented function that solves a ver-
sion of the problem and returns the best point calculated, saving a reference to it on
the framework data structure.

• HVSsetClose(HVS, close): Receives a user implemented function that frees all vari-
ables associated with the problem, saving a reference to it on the framework data
structure.

• HVSsetObjectiveDir(HVS, HVS_ObjectiveDir): Receives the value representing
the objective of the function, HVS_MAX for maximization and HVS_MIN for minimiza-
tion, setting it on the frameworks data structure.

• HVSsetNumNdPoints(HVS, numNdPnts): Receives an integer value indicating how
many nondominated points the framework needs to find before stopping, only used
when HVS_2D_NUM is selected as the solving method.

• HVSsetIRefPoint(HVS, HVS_Point): Receives a point that is set as the initial ref-
erence point for the frameworks solving process.

• HVSsetVerbose(HVS, verbose): Receives a boolean. If set to True, the framework
will output additional information during the solving process.

• HVSsolve(HVS, HVS_SolveType): Receives and executes the solving method desired.
This function will execute all the user implemented functions in the following order:
input, init, solve and close. If called with HVS_2D_ALL, it will calculate all non-
dominated points, while with HVS_2D_NUM, calculates the number of nondominated
points indicated by HVSsetNumNdPoints(), defined above. If the number of solutions
desired is not set, HVS_2D_NUM will calculate all nondominated points.

• HVSgetSols(HVS): Returns the set of nondominated points found.

• HVSprintSet(HVS_Set): Receives a HVS_Set of points and print them to the console.

7.3 User Guide

In this section we present a step-by-step guide on how a user can use the framework to
implement a problem, run the desired algorithm and print the resulting nondominated set
on the console. The flow of the framework can be seen in Figure 7.1, in which the col-
ored words represent what the user must implement, and is presented in the following steps:

1. Implement functions input, init, solve and close. These functions are responsible
for reading all the inputs necessary, initializing the problem, solving an instance of
the problem and freeing all the resources allocated to the problem, respectively.

2. If, in order to solve a subproblem additional variables are needed, excluding the
reference point, create a data structure that holds all the required variables associated
to the implemented problem.

3. On the main() function, declare the main data structure HVS and initialize it by
calling HVSstart(HVS).
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Figure 7.1: Flow diagram of the steps required to use the framework. The highlighted
words represent functions or a data structure that the user must implement

4. Set all the user implemented functions on the framework by calling, in any order,
HVSsetInput(HVS, input), HVSsetInit(HVS, init), HVSsetSolve(HVS, solve),
HVSsetClose(HVS, close), HVSsetDataStructure(HVS, data).

5. In order to set the initial reference point, the function HVSsetIRefPoint(HVS, HVS_-
Point) should be called. The objective of the problem should also be set using
function HVSsetObjectiveDir(HVS, HVS_ObjectiveDir).

6. If the user wants to calculate a specific number of nondominated points, they must
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call function HVSsetNumNdPoints(HVS, numNdPnts), with numNdPnts being an inte-
ger of how many points to calculate.

7. With all necessary variables set, function HVSsolve(HVS, HVS_SolveType) should
be called. This will run the algorithm chosen.

8. The results can be obtained by using function HVSgetSols(HVS), which returns a
HVS_Set, and displayed using function HVSprintSet(HVS_Set).

9. Lastly, the function HVSfree(HVS) must be called to release all the frameworks vari-
ables.

7.4 Implementation example

In this section we will follow the steps given in Section 7.3 and give example of an im-
plementation of the ILP linearization of the hypervolume scalarized bi-objective knapsack
with cardinality constraints, presented in Section 6.1 in C++ using SCIP. We will give ex-
amples of the implementation of functions init, solve and close and an example of a
data structure that holds all the variables needed by the problem. The examples presented
are simplified. Throughout the examples SCIP_CALL() is used. This is a built in define of
SCIP and ensures that, in case of error, it is caught and the user is warned of the function
that gave an error.

Figures 7.2, 7.3, 7.4 and 7.5 are parts of function init. Figures 7.6 and 7.7 refer to
function solve. Figure 7.8 presents a snippet of the implementation of function close.
Figure 7.10 refers to the main function of the program.

As shown in Section 7.3 the first steps consists of implementing the functions input, init,
solve and close, and a data structure if necessary. We will not shown an example of func-
tion input.

In order to create a problem with SCIP, we first need to start the SCIP environment,
add the plugins and set the problems objective. This is illustrated in Figure 7.2. Variable
scip will be used throughout the examples and refers to the one initialized in this figure.

/* init SCIP */
SCIPcreate(scip);

/* include default plugins */
SCIP_CALL(SCIPincludeDefaultPlugins(scip));

/* define problem */
SCIP_CALL(SCIPcreateProbBasic(scip, "Bi-Objective Knapsack"));

/* set objective function direction */
SCIP_CALL(SCIPsetObjsense(scip, SCIP_OBJSENSE_MAXIMIZE));

Figure 7.2: Declaration of the SCIP environment, add addition of the default plugins,
definition of a problem and setting of the objective direction
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std::vector<std::vector<SCIP_Real>> matrixQ;
std::vector<SCIP_VAR *> matrixY;

/* calculate matrixQ[0][1] and add it to SCIP as a variable */
matrixQ[0][1] = arrayA[0] * arrayB[1];
SCIP_CALL(SCIPcreateVarBasic(scip, &(matrixY.at(1)), ("y01"), 0.0,

1.0, matrixQ[0][1], SCIP_VARTYPE_BINARY));↪→

SCIP_CALL(SCIPaddVar(scip, matrixY.at(1)));

/* calculate r1r2 and add it to SCIP as a variable */
SCIP_CALL(SCIPcreateVarBasic(scip, &(matrixY.back()), ("r1r2"), 1.0,

1.0, iRefPoint[0] * iRefPoint[1], SCIP_VARTYPE_BINARY));↪→

SCIP_CALL(SCIPaddVar(scip, matrixY.back()));

Figure 7.3: Calculation of two binary constraints, creation of the corresponding SCIP
variables and addition the variable to SCIP

SCIP_CONS *cons1 = nullptr;
std::vector<SCIP_CONS *> cons4;
/* init constraints */
/* cons1 -> sum{i=1,..,n} (a{i}y{ii}) >= r1 */
/* cons4 -> sum{i=1,..,n; i!=j} (y{ij}) <= (k-1)y{jj} for all j in

{1,..,n} */↪→

SCIP_CALL(SCIPcreateConsBasicLinear(scip, &cons1, "cons1", 0, nullptr,
nullptr, iRefPoint.first, SCIPinfinity(scip)));↪→

for (int i = 0; i < numElems; i++) {
SCIP_CALL(SCIPaddCoefLinear(scip, cons1, matrixY.at(numElems * i +

i), arrayA[i]));↪→

}

for (int j = 0; j < numElems; j++) {
SCIP_CALL(SCIPcreateConsBasicLinear(scip, &cons4.at(j), ("cons4_"

+ std::to_string(j + 1)).c_str(), 0, nullptr, nullptr,
-SCIPinfinity(scip), 0));

↪→

↪→

for (int i = 0; i < numElems; i++) {
if (i != j) {

SCIP_CALL(SCIPaddCoefLinear(scip, cons4.at(j),
matrixY.at(numElems * i + j), 1));↪→

}
}
SCIP_CALL(SCIPaddCoefLinear(scip, cons4.at(j), matrixY.at(numElems

* j + j), - (coef - 1)));↪→

}

Figure 7.4: Creation of a simple constraint and a vector of constraints, setting of their
coefficients
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The next step consists of adding the binary variables to the problem. Figure 7.3 shows
the calculation of two coefficients, Q[0][1] and r1r2.Matrix MatrixQ holds the coefficients
and MatrixY hold the associated SCIP variables. iRefPoint is the initial reference point.
As coefficient Q[0][1] is associated to a binary variable, the lower bound is set to 0.0 and
the upper bound is set to 1.0. In contrast, as r1r2 must always be considered, both lower
and upper bounds are set to 1.0.

/* add constraints to scip */
SCIP_CALL(SCIPaddCons(scip, cons1));

for (int i = 0; i < cons4.size(); i++) {
SCIP_CALL(SCIPaddCons(scip, cons4.at(i)));

}

Figure 7.5: Addition of the constraints to SCIP

SCIP *scipCp = nullptr;

/* creating the SCIP environment that will be used to solve the
problem */↪→

SCIPcreate(&scipCp);

/* updating matrixQ in position (i,i) due to new reference point */
for(int i = 0; i < numElems; i++) {

matrixQ[i][i] = arrayA[i] * arrayB[i] - (refPoint[HVS_Y] *
arrayA[i] + refPoint[HVS_X] * arrayB[i]);↪→

SCIPchgVarObj(scip, matrixY.at(numElems * i + i), matrixQ[i][i]);
}
/* updating r1r2 due to new reference point */
SCIPchgVarObj(scip, matrixY.back(), refPoint[HVS_X] *

refPoint[HVS_Y]);↪→

/* updating constraints due to new reference point */
SCIPchgLhsLinear(scip, cons1, refPoint[HVS_X]);
SCIPchgLhsLinear(scip, cons2, refPoint[HVS_Y]);

/* copying the problem to the new SCIP env */
SCIPcopy(scip, scipCp, nullptr, nullptr,

(std::to_string(refPoint[HVS_X]) + "," +
std::to_string(refPoint[HVS_Y])).c_str(), 1, 1, 0, 1, nullptr);

↪→

↪→

Figure 7.6: Modification of the necessary problem variables and constraints due to new
reference point and creation of a copy of the SCIP environment in other to be solved

After that, we need to create the constraints as well as to set their coefficient. If a con-
straint is an equality, the upper bound and the lower bound must be set to the same value.
If a constraint is an inequality with one bound being infinite, SCIPinfinity(scip) must
be used. Figure 7.4 shows examples of how to create basic constraints in SCIP and how to
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add coefficients to each constraint. In this figure, numElems refers to the number of values
for each objective and coef refers to the coefficient constraint of the problem.

The last step necessary in order to initialize a SCIP problem is to add the created con-
straints to the environment. This is illustrated in Figure 7.5, in which the two constraints
created previously are added.

In order to solve a subproblem, we need to take in consideration that, because each sub-
problems has a different reference point, all the problems variables and constraints that
have reference to the reference point must be updated. This is illustrated in Figure 7.6. In
this example we also create a copy of the SCIP environment after all the modifications are
done. This is done, because in order to modify the problems variables and constraints it
is required to have a reference of the container that holds them. Therefore, as we have the
information of the variables and constraints of the problem created previously we do the
necessary alterations on the main SCIP environment. We also create a copy of the problem
because it makes it easier to solve multiple subproblems in a row, as we do not need to
free the solved and transformed state in order to go back to the problem specification, as
shown in Section 2.4.

/* solving the problem */
SCIPsolve(scipCp);

/* getting the best solution */
SCIP_SOL *sol = SCIPgetBestSol(scipCp);

int numVars = SCIPgetNOrigVars(scipCp);
SCIP_VAR **vars = SCIPgetOrigVars(scipCp);
double *results = (double *)malloc(sizeof(double)*numVars);
SCIPgetSolVals(scipCp, sol, numVars, vars, results);

/* calculating the hypervolume coordinates of the solution */
SCIP_Real hvX = 0;
SCIP_Real hvY = 0;
for(int i = 0; i < numElems; i++) {

hvX += arrayA[i] * results[i * numElems + i];
hvY += arrayB[i] * results[i * numElems + i];

}
free(results);
/* freeing the SCIP environment */
SCIPfree(&scipCp);

Figure 7.7: Solving of a SCIP subproblem, extraction of the results and calculation of the
new nondominated point

With the copy of the modified SCIP environment we can call the function to solve the
subproblem, extract the results and free the copied SCIP. This is shown in Figure 7.7,
in which the copied environment is solved. We use SCIPgetBestSol, SCIPgetNOrigVars,
SCIPgetOrigVars and SCIPgetSolVals to extract the value of the binary variables of the
problem. From their output, it is possible to calculate the resulting nondominated point.
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/* freeing the variables */
for (int i = 0; i < matrixY.size(); i++) {

SCIP_CALL(SCIPreleaseVar(scip, &matrixY.at(i)));
}

/* freeing the constraints */
SCIP_CALL(SCIPreleaseCons(scip, &cons1));

for (int i = 0; i < cons4.size(); i++) {
SCIP_CALL(SCIPreleaseCons(scip, &cons4.at(i)));

}

/* freeing the SCIP environment */
SCIP_CALL(SCIPfree(&scip));

Figure 7.8: Freeing the variables, constraints and the SCIP environment.

SCIP requires all variables and constraints to be freed. Figure 7.8 shows how to free these
variables and constraints and finally how to free SCIP itself. If some variable of constraint
is not freed before calling SCIPfree, an error is given.

As the problem presented requires additional variables, like for example matrixQ, we need
to create a data structure that stores them. This is illustrated in Figure 7.9. The data
structure shown only has the variables that were used in these examples. Therefore, other
necessary variables, like for the other constraints, are omitted.

struct problemVariables {
int numElems; /**< Number of elements for each objective */
int maxElems; /**< Max number of elements in each solution */
std::vector<SCIP_Real> arrayA; /**< Gain for objective A */
std::vector<SCIP_Real> arrayB; /**< Gain for objective B */
SCIP *scip; /**< Pointer for SCIP*/
std::vector<std::vector<SCIP_Real>> matrixQ;
std::vector<SCIP_VAR *> matrixY;
SCIP_CONS *cons1 = nullptr;
std::vector<SCIP_CONS *> cons4;

};

Figure 7.9: Demonstration of the data structure required for the biobjective knapsack
problem

With all required functions implemented, we can call all the required functions on main(),
solve the problem and print the resulting set of nondominated points found, which corre-
sponds to steps 3 to 9 presented in Section 7.3. Figure 7.10 contains an example of how
the main() function could be implemented. Although we call setInitialRefPoint() on
the main function, it can be called inside the user defined function input, allowing the
reference point to be passed as input alongside the problems data. In this example we use
HVS_2D_NUM in order to find 5 nondominated points, as set by HVSsetNumNdPoints().
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HVS *hvs;
HVSstart(&hvs);

HVSsetInput(hvs, readInput);
HVSsetInit(hvs, initProblem);
HVSsetSolve(hvs, solveProblem);
HVSsetClose(hvs, closeProblem);
HVSsetDataStructure(hvs, new problemVariables());
HVSsetNumNdPoints(hvs, 5);
setInitialRefPoint(data, {0.0,0.0});
HVSsetVerbose(hvs, true);
HVSsolve(HVS_2D_NUM, hvs);
HVS_Set results = HVSgetSols(hvs);
HVSprintSet(results);

HVSfree(&hvs);

Figure 7.10: Example of the main() function
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Chapter 8

Conclusions and Future Work

In this dissertation we proposed a version of the Hypervolume Dichotomic Scheme (HDS)
algorithm, proposed in [22], that is capable of solving multiple subproblems in paral-
lel, namely Parallelized Hypervolume Dichotomic Scheme (PHDS). This version can be
stopped early in order to obtain a subset of nondominated set. But, unlike the sequential
version, the subset found does not have the same approximation guarantees, as it no longer
uses the greedy principle. We performed an experimental analysis in order to compare the
execution time of HDS and PHDS. We concluded that the parallel version is significantly
faster, specially for larger input sizes.

In addition we also proposed an extension of HDS, namely, m-HDS, for any number of
objectives, but under the assumption that the nondominated points are in general posi-
tion, i.e. no two nondominated points share a coordinate. This extension also does not use
the greedy principle and it uses a different method of calculating the reference points based
on the work of Lacour et al. in [17]. We also have tested m-HDS for 3, 4 and 5 objectives
and analyzed the effect of different choices for the next subproblem to be solved. We have
found that a random choice allows to find the complete nondominated set by generating
and solving less number of subproblems.

Finally, we implemented HDS in a way that could be used by a user that has knowl-
edge of C++ and SCIP to solve any biobjective combinatorial optimization problem, given
that is possible to derive the corresponding hypervolume scalarization. The implementa-
tion is available in a public repository for the scientific community and practitioners to use
it. In addition, we provided the required documentation to help the user to implement it,
with an application example for a biobjective knapsack problem.

Future Work

A future work opportunity is to further improve the proposed m-HDS. This version works
under the assumption that the nondominated points are in the general position. However,
this is impractical for real world usage, as it requires knowledge of the nondominated set a
priori. Therefore, further work would be to investigate how to overcome the problems that
arise when relaxing this assumption. The version described in this work computes only
an m-dimensional box that is bounded from below by the reference point and from above
by the optimal point. We showed that the hypervolume contribution of this point is not
only a m-dimensional box, but a m-dimensional orthogonal polyhedron that is bounded
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from below by a set of reference points and other nondominated points found. In order
to compute this hypervolume contribution, more sophisticated methods are required, as
those described in [11]. Other interesting aspect to consider is the parallel implementation
of m-HDS, which raises difficulties since the subproblems to be solved are not independent,
in general. Some preliminary experiments indicated that is not possible to simply extend
PHDS for more than two objectives, given that some nondominated points would not be
found. We suspect that this issue is related to the orderding of the problems to be solved.
Lastly, is it of particular interest to expand the framework presented here to other classes
of problem.
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