

Francisco Miguel Almeida Monteiro

FIELD SERVICE OPTIMIZATION FRONTEND
RELATÓRIO FINAL

VOLUME 1

Dissertação no âmbito do Mestrado de Engenharia Informática, Engenharia de
Software orientada pelo Professor Nuno Antunes e apresentada à Faculdade de Ciências

e Tecnologia/Departamento de Engenharia Informática

Junho de 2021

FI
EL

D
 S

ER
V

IC
E

O
PT

IM
IZ

AT
IO

N
 F

R
O

N
TE

N
D

R
EL

AT
Ó

R
IO

 F
IN

A
L

Fr
an

ci
sc

o
M

. A
. M

on
te

iro

Faculty of Sciences and Technology

Department of Informatics Engineering

Field Service Optimization Frontend
Final Report

Francisco Miguel Almeida Monteiro

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Prof. Nuno Antunes and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

June 2021

This page is intentionally left blank.

Abstract

More and more companies are looking for ways to maximize their profits while saving
time. A large part of the expenses of these companies are related to field operations, such
as transportation of resources. A work plan defines the work to be done by employees.
Most of the time these work plans are not built in the most smart and efficient way.

The goal of this work is to build a web application in which customers can interact in order
to obtain optimized work plans. The quality of these work plans can be evaluated by a
set of metrics (e.g., total distance). By doing so, they can minimize the costs of this type
of operations. We also hope to achieve some business generalization. In other words, we
want this tool to be able to adapt to different types of businesses.

In order to accomplish this we elaborated a state of the art which allowed us to gather
more information about this type of tools. Furthermore, we were able to define the high-
level functional requirements of our tool. Having these as a starting point, we designed an
architecture. Hereafter, we started the implementation process.

We used Agile as the methodology methodology. This process took about 4 months,
distributed across 7 sprints. Throughout this time, the frameworks used were Django for
the backend and React for the frontend.

Then, we had to validate our solution. In order to do this we did three types of tests:
unit testing, integration testing and functional testing. Since the usability is extremely
important in this internship context, we also applied a usability checklist.

As a result, we ended with a web application that is simple to use and that allows the end
user to carry out the desired tasks. In the end, all the main objectives of this curricular
internship were achieved. We built an interface that allows its users to minimize operating
costs. In addition, there is also the possibility of being adapted to different types of
businesses in the future.

Keywords

Route Optimization; Fleet Management; Route Planning

iii

This page is intentionally left blank.

Resumo

Cada vez mais empresas estão à procura de formas de maximizar os seus lucros e em
simultâneo poupar o seu tempo. A grande maioria das despesas destas empresas está
relacionada com as operações no terreno, como por exemplo o transporte de recursos. Um
plano de trabalho define o conjunto de tarefas a ser feito pelos funcionários. Na maioria das
vezes, estes planos de trabalho não são construídos da maneira mais inteligente e eficiente.

O objetivo deste trabalho é construir uma aplicação web na qual os clientes possam intera-
gir de forma a obter planos de trabalho otimizados. A qualidade destes planos de trabalho
pode ser avaliada por um conjunto de métricas (por exemplo: distância total). Conse-
quentemente, podemos minimizar os custos deste tipo de operações. Esperamos ainda
conseguir obter alguma generalização. Ou seja, queremos que esta ferramenta seja capaz
de se adaptar a diferentes tipos de negócios.

Para isso elaborámos um estado da arte que nos permitiu reunir mais informações sobre
este tipo de ferramentas. Além disso, fomos capazes de definir os requisitos funcionais
de alto nível da nossa ferramenta. Tendo isso como ponto de partida, construímos uma
arquitetura. Consequentemente, iniciámos o processo de implementação.

A metodologia de desenvolvimento utilizada foi Agile. O desenvolvimento durou cerca de
4 meses, distribuídos em 7 sprints. Durante esse tempo, os frameworks utilizados foram
Django para o backend e React para o frontend.

Posto isto, tivemos que validar a solução. Para o fazer, recorremos a três tipos de testes:
testes de unidade, testes de integração e testes funcionais. Para além disso, como a us-
abilidade é extremamente importante no contexto deste estágio, foi ainda aplicada uma
checklist de usabilidade.

Como resultado, terminámos com uma aplicação web simples de utilizar e que permite ao
utilizador final realizar as tarefas desejadas. No final, todos os objetivos principais deste
estágio curricular foram alcançados. Construímos uma interface que permite aos seus
utilizadores minimizar os custos operacionais. Além disso, existe também a possibilidade
de ser adaptada a diferentes tipos de negócios no futuro.

Palavras-Chave

Otimização de Rotas; Gestão de Frota; Planeamento de Rotas

v

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Internship objectives . 3
1.3 Document structure . 3

2 State of the art 5
2.1 Background . 5
2.2 Existing tools . 7

2.2.1 Routific . 7
2.2.2 OptimoRoute . 9
2.2.3 Track-POD . 11
2.2.4 eLogii . 12
2.2.5 ElasticRoute . 14
2.2.6 Honorable mentions . 16

2.3 Comparison . 16
2.3.1 General comparisons . 16
2.3.2 Features and technical comparisons 17
2.3.3 Interpretation . 21

2.4 Implementation framework . 21

3 Requirements 24
3.1 Functional Requirements . 24
3.2 Quality Attributes . 26
3.3 Constraints . 31
3.4 Prioritization . 31

4 Tool Overview 33
4.1 Design . 33
4.2 Architecture . 35

4.2.1 System Context Diagram . 35
4.2.2 Container Diagram . 36
4.2.3 Component Diagram . 38

4.3 Software development . 40
4.3.1 Implemented requirements . 40
4.3.2 System description . 40
4.3.3 System features . 41

5 Validation 44
5.1 Unit testing . 44
5.2 Integration testing . 46
5.3 System testing . 46
5.4 Usability checklist . 47

vii

Chapter 0

6 Internship Planning 49
6.1 Development Methodology . 49
6.2 Planning . 50

6.2.1 First Semester . 50
6.2.2 Second Semester . 51

6.3 Risk Analysis . 53

7 Conclusion 54

Appendices 57

viii

This page is intentionally left blank.

Acronyms

ASRs Architecturally Significant Requirements. 3

COD Cash On Delivery. 11

DOM Document Object Model. 22, 23

ETA Estimated Time of Arrival. 18

FSM Field Service Management. 1, 3, 5, 21

IPN Instituto Pedro Nunes. 1, 50

JSX JavaScript XML. 23

NFRs Non-Functional Requirements. 27, 31, 37

PM Project Manager. 53

QA Quality Attributes. 26, 31

x

This page is intentionally left blank.

List of Figures

2.1 Generic Work Plan (adapted from Tailored Field-Service Optimization [1]) . 6
2.2 Routific - Dashboard . 8
2.3 OptimoRoute - Dashboard . 10
2.4 Track-POD - Dashboard (from Track-POD website (www.track-pod.com)) . 12
2.5 Elogii - Dashboard - Map . 14
2.6 Elogii - Dashboard - Timeline . 14
2.7 ElasticRoute - Dashboard . 15

3.1 User story example (from emergn [2]) . 25
3.2 Quality Attribute Scenario (from University of New Brunswick [3]) 27

4.1 Dashboard - Mockup 1 . 34
4.2 Dashboard - Mockup 2 . 35
4.3 System Context Diagram . 36
4.4 Container Diagram - Field Service Optimization Tool 37
4.5 Component Diagram - Web Application . 38
4.6 Component Diagram - API Application . 39
4.7 Code structure . 41
4.8 Overview page . 42
4.9 Map dialog . 43

5.1 Test folder structure for Task application . 45

6.1 Agile methodology (from Bits in Glass [4]) 50
6.2 First Semester Planning - Gantt Chart . 51
6.3 Second Semester Planning - Gantt Chart . 52

xii

This page is intentionally left blank.

List of Tables

2.1 General aspects comparison . 17
2.2 Tools - Features and technical comparisons 18
2.3 Tools - Tasks - Features and technical comparisons 19
2.4 Tools - Drivers - Features and technical comparisons 20
2.5 Tools - Vehicles - Features and technical comparisons 20
2.6 Comparison - Angular vs React (Adapted from ImaginaryCloud [5]) 22

3.1 Functional Requirements - User stories . 26
3.2 Scenario 1 - Security . 27
3.3 Scenario 2 - Availability . 28
3.4 Scenario 3 - Testability . 28
3.5 Scenario 4 - Resilience . 28
3.6 Scenario 5 - Usability . 29
3.7 Scenario 6 - Usability . 29
3.8 Scenario 7 - Usability . 29
3.9 Scenario 8 - Compatibility . 30
3.10 Scenario 9 - Extensibility . 30
3.11 Scenario 10 - Extensibility . 30
3.12 Vote results . 32
3.13 Quality Attributes Scenarios prioritized . 32

4.1 Functional requirements - Development status 40

5.1 Driver - Models - Unit testing . 45
5.2 Driver - Urls - Unit testing . 45
5.3 Driver - Views - Integration testing . 46
5.4 Test Case 1 - Functional Testing . 47
5.5 Navigation and feedback - Feedback on user location is provided. 48

6.1 Planning for each sprint . 52
6.2 Identified risks . 53

xiv

This page is intentionally left blank.

Chapter 1

Introduction

Nowadays, more and more companies are increasingly trying to save resources in the man-
agement of their road transport operations. In order to do this, Field Service Management
(FSM) solutions are used. FSM is a software solution that assists companies in the man-
agement of field employees and resources (e.g., vehicles) [6]. The main purpose of these
tools is to get the job done in the best possible way, thus saving money.

These costs take into account many factors (e.g., fuel, tolls and vehicle wear) and for large
companies these expenses can reach astronomical values. For this reason, it is critical to
be able to maximize the resources available to each company.

Although there are many solutions on the market that help to overcome this problem,
they are not the right ones. Each business is different from the next, therefore the result
is not always the expected. With this in mind, many companies are looking for a solution
tailored and adapted to their business.

In addition, many of these tools are not appealing to the user. Sometimes the results are
not presented in the best way and as such they can become difficult to interpret.

In this internship, we try to address these problems. In order to do this we intend to create
a tool in the form of a web application. The main objective is to help Sentilant’s customers
to optimize their work plans in an easy way, improving their business value. At the same
time we want this tool to be able to adapt to different business types.

1.1 Context

This internship took place at a company named Sentilant, located on the Instituto Pedro
Nunes (IPN), Coimbra. One of Sentilant’s main focuses is the development of customized
FSM systems for its customers.

Although the company has an office at IPN, this internship was done remotely. The reason
for this is, at the time of writing, we are in the middle of the COVID-19 pandemic.

Since the market for FSM systems is very competitive, Sentilant seeks to find ways to
innovate. As such, one of the things to consider is the tool with which clients interact
directly. This tool must be appealing, easy and simple to use. In addition, it must also be
able to adapt to changes that may arise.

Sentilant solves different types of FSM problems. However, there is one that matters the

1

Chapter 1

most in the context of this internship, the Fuel Problem. Currently Sentilant is working
on a solution for this problem. In addition, it also has a client in this area.

The Fuel Problem consists of optimizing the transport of hazardous materials (e.g., fuels)
inside tank trucks. Each truck, contains a cistern that is divided in multiple compartments.
This compartments are distributed across different parts of the cistern. As such, the
stability of the vehicle must be taken into account. For example, if only the compartments
in the rear of the vehicle are filled, the vehicle may become unstable during a climb due to
the weight exerted. At the same time, we also want to maximize the amount of materials
the truck can transport. There are still other factors to take into account. The transport
of these types of substances usually require specific licenses for each driver. In addition,
some routes are quite extensive and require more than one driver. As such, the final tool
must address all these details.

Although we only talk about the fuel problem, this application will also have to adapt to
other types of problems.

For example, one of the other problems for which the company presents a solution is the
airport problem. This problem consists in obtaining a work plan for the transport of
multiple passengers between their homes and the airport.

There is an ambition for the application to be able respond to different types of businesses.
Each potential customer has their own "problem", which basically represents the business
process they are trying to optimize. While doing this, we need to find a way in which the
application works properly for all kinds of problems.

We want to have a web application that serves all the customers. In order to achieve this,
we need to build a multi tenant application. For consistency reasons, let’s assume each
customer is a tenant.

For example, lets assume we have two different tenants, with two different business types.
They also have two different links to access this web application. At the same time, the
information about each business is isolated and only accessible to the responsible tenant.

• Client A - has a fuel transport business - http://clienta.fsm.local

• Client B - has an airport transport business - http://clientb.fsm.local

The data model also has to be built in such a way that is able to adapt to different types
of problems.

In addition, we also need to make sure our tool communicates with external systems (e.g.,
solvers). If the tool is not able to communicate with the solvers, it cannot obtain the
solution. This is critical for the correct functioning of the application.

These solvers are a piece of software quite complex and difficult to understand. As such,
how these work is totally out of the context of this internship. The solver used throughout
this internship was built by a Sentilant member, during his internship at the company.
Section 2.1 describes how it is used.

Finally, if possible, we will still have to address how we are going to integrate our solution
with the current tools used by Sentilant. The main example of this is DrivianTasks,
Sentilant’s current solution. DrivianTasks is also a web application.

2

http://clienta.fsm.local
http://clientb.fsm.local

Introduction

1.2 Internship objectives

The main objective of this internship is the creation of a web application that can later
stand out from other optimization tools of route planning existing in the market. In other
words, the main focus of this work is to develop a web application in which customers can
interact in order to obtain their optimized work plans. We can divide this work in the
following sub-objectives:

• Develop a web application that allows the introduction of tasks and certain resources,
in order to obtain an optimized plan for execution, taking into account the resources
previously indicated

• Build a simple-to-use web interface that makes it possible to parameterize and man-
age the optimization and later view the results obtained in a concise way

1.3 Document structure

The rest of the present document is divided into the following chapters:

• Chapter 2 - State of the art: We start by providing a little background on
the topic of FSM. In addition, an analysis and comparison is made on the current
solutions on the market. Finally, we make a comparison to choose one of two tools
to be used in the development phase.

• Chapter 3 - Requirements: Defines the Architecturally Significant Requirements
(ASRs) of our tool, adopting an high-level overview. These include: functional re-
quirements, technical & business constraints and quality attributes.

• Chapter 4 - Tool Overview: A design of mockups was carried out. Additionally,
a preliminary high-level architecture is presented.

• Chapter 5 - Validation: Checks if we built the right product. Contains all the
tests made and also a usability checklist.

• Chapter 6 - Internship Planning: Illustrates the development methodology. Fur-
thermore, internship planning for the first and second semester is analyzed.

• Chapter 7 - Conclusion: Summarizes the work done throughout the internship.
Future work is also discussed.

3

This page is intentionally left blank.

Chapter 2

State of the art

Instead of "diving" directly into the construction and development of our application it
is a good practice to first do an in-depth search on the topic. The main objective of this
chapter is to elaborate a state of the art that allow us to gather some information on the
work to be done.

However, since we are not developing our work in a scientific scope, but in a curricular
internship context we have some minor differences. Most of the time in this phase, reading
articles and papers is the way to go. Instead, we intend to build a web-based application
to be used by potential clients. So, the approach to be followed consists of analyzing the
tools currently on the market, which serve the same purpose as the system we intend to
build.

This work not only allows us to have an idea of the approaches that others have used to
deal with similar problems, it also allows us to have an idea of the possible competition in
the market. Furthermore, when doing this market analysis, we can observe the weaknesses
of the competitor’s tools and aim to build a more complete application for our clients.

In Section 2.1 we can find the Background knowledge needed to understand some aspects
of this document. Section 2.2 lists some tools on the market that have similar objectives
to the tool to be built. In Section 2.3 these tools are placed side by side in order to be
compared. Since we have to choose one tool specialized in frontend web development, in
Section 2.4 we put React and Angular side by side.

2.1 Background

Before we begin to structure the problem towards the solution, there are some concepts
and terms that need to be introduced. As mentioned earlier, one of the main goals of a
Field Service Management (FSM) system is to optimize routes. Some questions may arise
to the reader. What does this mean? How are we going to do this?

Route Optimization is the process of calculating the best possible route while minimizing
its costs [7]. It is not always this linear, because we must consider external factors such as
fuel price, traffic, tolls, among others. The process of calculating the most optimal route,
taking into account all the constraints imposed, is done by a piece of software called solver.
Although the solvers are quite important in what concerns the quality of the solution, as
mentioned earlier, they are not within the scope of this internship. Instead, we focus on
the looks and functionalities of our tool.

5

Chapter 2

Analogously, we can think of a solver as a car. We can know how to drive a car, but not
how it works internally. Basically, all we need to know is how to use this component.

As mentioned before, a solver is a piece of software that receives a list of resources (drivers
and vehicles) and a list of tasks to be optimized. Returns a list of optimized routes with
tasks. In addition, it also returns a set of metrics about each route, as well as general
metrics. If it is not possible to optimize certain tasks, we also receive that information and
the reasons for doing so. In order to use the solver, we need to make a HTTP POST
request where we pass all the information in a JSON object. The response, an optimized
work plan, is also a JSON object.

Furthermore, there are some terms we must have in mind throughout this document. We
have 3 main entities that need to be defined:

• Tasks: Sometimes referred as orders. They can be of many types (e.g., delivery and
pickup). They represent the work that needs to be done, normally has a deadline
associated. For example: "Package A must be delivered at Place B before Friday,
10:00 AM". They are usually under many restrictions. For example, they may require
special vehicles or drivers.

• Vehicles: Means of transport used to perform these tasks. They have several char-
acteristics, such as load capacities (e.g., volume and weight).

• Drivers: Person responsible for the vehicle and for carrying out the tasks. It also
has a certain type of characteristics, such as skills.

Additionally, we need to define what a work plan is. The work plan is where we can find
all the information regarding all the work to be done in a specific time window. It has
information on the tasks to be performed and the routes to follow in order to do them. It
also has a set of metrics (e.g., total time, total distance and total costs) in order to assess
its quality. The work plan contains the optimized solution that is presented to the user,
whether it is displayed in a map or in some other way. Figure 2.1 illustrates a generic work
plan.

Figure 2.1: Generic Work Plan (adapted from Tailored Field-Service Optimization [1])

6

State of the art

2.2 Existing tools

Before jumping into the market analysis, no restrictions were imposed on the type of tools
to be analyzed. The only thing to consider is that they should have the main functionalities
of the application to be built within the scope of this internship. With this is mind, we
proceed to search all kinds of tools (free, paid, web-based, desktop, among others).

Although we did not impose any restrictions in relation to the type of platform on which
the application runs, all that we found were web-based tools. Just like ours will be, with
one or two exceptions. In addition, it should be mentioned that many of the tools found
had integration with a mobile app, mostly for the field end-users, in this case drivers.

As soon as we started looking for route optimization tools, we were immediately over-
whelmed by the amount of results found when searching for tools with similar goals. As
such, we ended up finding more than 30 tools that perhaps made sense to analyze with
more detail. However, doing this would be a very time-consuming job. In order to solve
this problem, I explained the situation to my advisor in the company. In consequence, we
agreed that the best thing to do was to make a shortlist with a few tools to analyze with
more detail. At this point, the problem arose as to how we could choose the best tools
that would make this shortlist.

A superficial (high-level) analysis was performed on all the candidate tools. Those that
stood out are part of the shortlist. Some are interesting and for that reason are mentioned
in the honorable mentions in Subsection 2.2.6. The rest of the tools were ignored and
discarded.

With that done, we ended up with 5 tools on this list. They will be analyzed in more
detail in the following subsections. Finally, the analysis of each tool will be divided into
5 components: brief explanation of how the application works, main features,
size of the problems it can optimize, weaknesses and strengths.

2.2.1 Routific

Routific is a cloud web-based route optimization software platform that helps delivery
businesses plan their routes more efficiently. The company responsible for this product
appeared in 2012 and since it was founded based on this solution, both the company and
the tool share the same name. Compared to the rest of the tools on this list, Routific
is probably the simplest. Not only from the point of view of use, but also in terms of
configuration. Its simplicity is one of the main reasons why this tool was chosen. Regarding
the price, this tool is paid and has several subscription tiers.

The first step to start using this platform is to create an account at www.routific.com.
Once done, we can proceed to authenticate with the email and password previously reg-
istered. The first time we enter the application, we are asked to create a project. Each
project created is saved in the cloud and has certain associated characteristics such as
drivers and tasks. In addition, it still has a name (to make it easier to distinguish) and
a date. This tool also allows us to view the list of previously saved optimized plans. As
such, we can return to use recurring plans. In addition, in this list we can compare our
optimizations in general, since we are presented with a certain set of metrics. Within these
metrics we have: number of drivers, number of tasks (assigned and unassigned), total dis-
tance and total working time. This can be seen as a kind of comparison since it grants us
a general idea of the quality of the plans.

7

Chapter 2

Once the project is created, we are presented with a main dashboard. In order to start
optimizing tasks, first we have to configure our drivers and tasks. In the case of the drivers,
there are 3 ways to do it. The first one, which is the simplest, we just need to introduce the
starting address for the designated driver. In the second one, in addition to the starting
address, we can also add several additional parameters such as working hours, capacity of
the vehicle, lunch break, among others. Last, but not least, we can also import our drivers
using properly formatted .csv or .xls files.

Regarding the tasks, as with the drivers, we also have 3 ways to create them. The simplest
way is to just enter a name for the stop and its address. Alternatively, we can create more
detailed tasks, with parameters such as duration, customer email, delivery notes and so on.
Finally, we can also import a .csv or .xls file with all tasks, as long as it is in the correct
format.

Once that is done, we can finally proceed to the optimization process on the main dash-
board. We just have to select the tasks and drivers we want to use and optimize our plan.
Still within the main dashboard, we can observe our tasks and drivers distributed across
the map. From the moment we optimize the plan, the routes are also displayed on the
map. Additionally, at the bottom of our dashboard, we also have a timeline where it shows
the assigned drivers and their tasks. On this timeline, we can also get an idea of some
metrics of the plan such as total distance, working time, tasks scheduled, among others.
Figure 2.2 illustrates Routific dashboard.

Figure 2.2: Routific - Dashboard

It is also important to mention that this tool has a configuration menu that concerns each
project. In this menu, we can define a number of restrictions and parameters that can
directly affect our plan. We can choose metrics related to distances (miles or kilometers),
select expected traffic levels as well as some settings that can be applied in general to all
tasks. In addition, we can also specify some general configurations that concern drivers.
Such as working overtime and additionally balancing routes so that all drivers have the
same workload.

With regard to features, this platform also has integration with a mobile app. This allows
us to send the routes to each one of the drivers as soon as the plan is optimized, as long as
they have the mobile application installed. Then, the drivers can configure their navigation

8

State of the art

system taking into account the tasks assigned. Another feature is the existence of end of
the day reports. This way we can have a general idea of how the work day went in view of
the plan used.

When it comes to the size of the problems that Routific can handle we were not able to find
that much information. When consulting the price list (https://dev.routific.com/pricing),
we found out that the tool supports an unlimited number of vehicles and that it allows up
to 2000 tasks (also known as visits) per optimization

In order to conclude the analysis of Routific, we will summarize its strengths as well as
its weaknesses. The ease of configuration and use of this platform was seen as one of its
strengths. In addition, it is still quite trivial to interpret the results of the optimized plan,
both on the map and on the timeline table. Finally, the speed with which we can obtain
a plan, from the beginning of the configuration to the end of the optimization.

On the other hand, the fact that this tool is quite simple, also has its drawbacks. One
of these weaknesses is the fact that we are very restricted when it comes to possible
configurations. The tasks that can be defined are quite simple with few metrics and
dimensions and as such they often do not allow to simulate real-world problems. Finally,
there is also no distinction between drivers and vehicles. There are no vehicles in this
tool, it is as if they were part of the driver’s entity. Once again, we are faced with a new
constraint that does not occur in the real world.

2.2.2 OptimoRoute

OptimoRoute is a cloud-web based software which focus on route optimization and sched-
ules for delivery and field service businesses. It was founded in 2012 in Palo Alto, US,
and just like Routific, both the company and the product have the same name. This tool,
although simple, manages to give a wide choice of possible configurations to the end-user.
Regarding the price, it also has a business model based on subscription plans. However,
we are able to subscribe to a 30-day free trial.

Here there is also the need to create a user account. Once that is done, we can authenticate
ourselves in the website in order to start the optimization process.

The first time we enter the application we have to fill in some general information about
our business. First, we need to enter the address of our main depot. In a nutshell, a depot
is like a warehouse where we can store large quantities of goods. In this case, the depot
will be the place from where the drivers will depart. Then, we need to choose our type of
business (food delivery, retail & distribution, among others). Finally, we define the number
of drivers we have and their working hours. Additionally, we can define break times for
these. Once that is done, the initial configuration is finished and the program generates a
certain number of tasks so that we can start exploring the application.

As with other applications, OptimoRoute is composed of a main dashboard. In this dash-
board, in the center, we have a map where our tasks are arranged. At the bottom, we have
an interactive list of our orders, routes and a timeline of our plan. On the left side of our
screen, we can see our drivers with some metrics just like their orders and their working
time. Additionally, we can also see the number of tasks scheduled and unscheduled and
the total number of routes generated.

Figure 2.3 illustrates OptimoRoute dashboard.

9

Chapter 2

Figure 2.3: OptimoRoute - Dashboard

This application also has a configurable settings menu. Here we can define parameters
like how the routes should be balanced. For example, we can decide to use all available
drivers and balance routes between them. Alternatively, we can opt to just balance the
routes, which can lead to unused drivers. Additionally we can also select the balancing
factor which can be either the working time or the number of orders per driver.

When compared to other applications, with regard to the number of features and possibility
of configurations, OptimoRoute can be considered very complete. We can configure several
parameters related to entities like drivers, tasks, locations, vehicles, among others. One
of the most interesting features is the possibility of customizing our entire vehicle fleet.
We can define types of vehicles, such as "refrigerated vehicles", "vehicles for transporting
dangerous goods" and so on. Furthermore, unlike Routific, there is a clear distinction here
between the entities of the driver and the vehicle. Just like it should be, since it is what
happens in real world problems.

We could continue to list more features, however we will not do so. Since later on we will
place the tools side by side and we will take this into account.

When it comes to the size of the problems that OptimoRoute can handle in the optimization
process we were only able to find information about the number of tasks. This tool can
handle up to 750 tasks per optimization.

The ease of configuration and use of this platform can be seen as one of its strengths. It
is extremely easy to setup and to start using. Besides that, the optimization is done very
quickly. It also has a wide range of possible configurations and constraints that can be
used in the process. Last but not least, it is quite simple and easy to interpret the results
of the optimized plan. At the same time, it also allows us to be aware of the quality of the
plan, if we analyze the metrics calculated alongside the plan.

Finally, we went looking for weaknesses. The tool does not allow us to have more than
one depot. Therefore, we are restricted in a way that all the drivers must have the same

10

State of the art

starting point. This does not always happen in real world problems.

2.2.3 Track-POD

Track-POD is a cloud-based delivery management system specialized in route optimiza-
tion. It is web-based, just like the previous tools. In addition, it is also paid, based on
subscription plans. The company that supports this tool was established in 2016 in Vilnius,
Lithuania.

In order to start using the application, the first thing we need to do is create a user account.
The first time we authenticate ourselves, we come across a window where we need to enter
the address of our depot or alternatively our office. Afterwards, we configure our first
driver. Some of the characteristics of each driver are: name, vehicle, phone number,
location where he ships from, and so on. Additionally, when a driver is being created, we
can define also a username and password. This is for him to be able to access his work plan
through the mobile application developed to be used in conjunction with this tool. That
said, we are in a position to start adding tasks. Each task can be one of these 4 types:
Delivery, Collection, Pickup & Delivery and Pickup-Hub-Delivery. A task has associated
some fields such as a client, address, date, contact, type of goods. Additionally it also has
information about where it ships from and details about the cargo (e.g., weight, volume,
quantity and so on). We can also specify a Cash On Delivery (COD) value in each order.

Regarding the main dashboard, we can consider this more complex than the other tools
analyzed so far. The dashboard divides the screen vertically into two halves. On the right
half, we have the map. On the map we can see the disposition of our drivers as well as
our deliveries. Since we do not have the routes represented on the map, it becomes a little
difficult to interpret our plan. On the left half, we have three tables which are the main
reason why this dashboard can be more complex. The first table has all the routes and
the second one has all the sites for deliveries. The last table, the third one, has all the
deliveries to be done.

Figure 2.4 illustrates Track-POD dashboard.

11

Chapter 2

Figure 2.4: Track-POD - Dashboard (from Track-POD website (www.track-pod.com))

Concerning the size of the problems that this tool can handle, we were unable to find any
information.

In short, the vast number of features and functionalities at our disposal can be seen as a
major strength of this application. Although we were unable to test many of them since
they are not part of the free trial. In addition, it is also worth mentioning how quickly the
optimization is done.

However, there are also a few weaknesses to point out. First, due to its complexity, this
tool is significantly more complicated to configure and use when compared to the others.
In a certain way, we can say that the learning curve is high. When we were exploring the
tool we had a few struggles in order to do the first optimization. Lastly, the optimized
plane is also significantly complicated to interpret. This is mainly due to the way the
dashboard is built. The high number of tables full of information becomes overwhelming
to the end-user.

2.2.4 eLogii

eLogii is a cloud-based delivery management software solution for route planning and route
optimization. Just like the previous tools it is also web-based. eLogii is part of the Brisqq
Group which was founded in 2015 in London, UK. This tool is paid for and uses subscription
plans that can be paid monthly or annually.

As always, we first need to create a user account in order to be able to access the application.
The first time we authenticate ourselves, we are presented with a quick setup tutorial. That
said, the first step is to add our first depot, similar to what happened with other tools. To
do this, we just need to give our depot a name and specify its address. It should be noted
that in this tool we can have more than one depot. The second step, is to set up some

12

State of the art

dimensions, which are defined by their name and unit. This dimensions are used both
when defining vehicles and their capacities, and creating new deliveries and their size. For
example, we can define a dimension called "Weight" with the unit "Kg". The third step
on our setup tutorial is to establish some skills for our soon to be drivers. Drivers skills
allows us to define which drivers can be assigned to which tasks. Afterwards, we can also
set up vehicle capabilities. Vehicle capabilities allows us to define which vehicles can be
used for which tasks. For instance, we can have a refrigerated vehicle to transport specific
goods. Next, we are presented with a menu with the optimization settings (e.g., return to
depot at end of route or allow driver overtime tolerance). Subsequently, we are required
to define at least a vehicle type before we can start to insert our fleet into the system.
Vehicle types serve to represent vehicles with similar characteristics. For example, we can
create a "Light vehicle" type that has a "Weight" dimension with a capacity of 3500 kg.
Alternatively, we can create a "Heavy vehicle" type for larger weights. This allows us to
make our problems much more realistic, just like we want them. With that done, we can
then start creating our vehicles. To do this we just need to enter a name and the type of
vehicle. That said, all that remains is to create the drivers. In order to do so, we must
insert his name, mobile number and a username and password. With this credentials, the
driver can authenticate in the mobile app, which is integrated with the system, and access
the tasks assigned to him. Additionally, when creating a driver, we can still assign him a
vehicle, schedule and skills. Finally, all that remains is to create the tasks. We have two
types of tasks: single delivery or pickup & delivery. A single delivery is a delivery where
the starting point is the depot and the ending point is the recipient. On the other hand,
pickup & delivery consists of a delivery in which we will collect the order at a point A that
later will be delivered at a point B. Once the tasks are created, we are able to finish the
introduction tutorial and optimize the plan.

In the main dashboard, the results are arranged in two components. As usual, we have a
map in the center with the routes of each driver drawn. Below, we have the traditional task
timeline, also referring to drivers. We also have the percentage of load that each one takes,
as well as the percentage of working time. Finally, we are presented with some general
metrics about the plan (e.g., total distance, total duration and average driver utilization
percentage).

Figure 2.5 illustrates elogii map, and Figure 2.6 illustrates elogii timeline.

13

Chapter 2

Figure 2.5: Elogii - Dashboard - Map

Figure 2.6: Elogii - Dashboard - Timeline

Concerning the size of the problems, eLogii can handle a number of unlimited tasks. In
relation to the number of vehicles, it supports more than 1000.

Regarding the strengths of this tool, we can highlight a few. It is worth mentioning the
ease of configuration and usage of this tool. The learning curve is quite low. This can be
easily explained by the high quality of the introduction tutorial. Besides that, the speed
with which the optimization is done is also quite high. Finally, the dashboard is very
appealing and well built which allows for an easy interpretation of results.

About the weaknesses, we did not find much. We just considered that the tool could be
more complete in terms of possible configurations.

2.2.5 ElasticRoute

ElasticRoute is a web-based route planning and optimization solution. Like the other tools,
it also has its infrastructure in the cloud. The responsible company was founded in 2017
in Singapore, SG. This tool is free, but has more complete subscription plans that are paid
monthly or annually.

The first time we use this tool, we are presented with a menu with an extensive menu with
the general settings. We must insert our location and respective timezone. This menu is
very complete and has a lot of possible settings. Once we have configured the settings, we
can begin to enter the information about our business. The first step is to insert a depot,

14

State of the art

giving it a name and its address. It should be noted that we can add more than one depot.
Now, we can start to define our vehicle fleet. As with eLogii, we have to define a vehicle
type first (e.g., truck). A vehicle can have more that one type. That said, we are able
to create our vehicles. A vehicle has a name and a type and in addition can also have a
start and end depot. As expected, we must also define its capacity. In order to do this,
we have 3 dimensions: weight, volume and seating. Regarding the drivers, we can define
break time windows and availability schedules. As with Routific, in ElasticRoute there
is no clear distinction here between drivers and vehicles. With the vehicles defined and
initial configurations done, we can start to introduce the tasks. We can then calculate our
optimized work plan.

In order to interpret the results, we also have a kind of dashboard. This dashboard is
similar to the ones we have seen so far, despite this there are some differences. It consists
of a map with the routes and a table where we can see the stops. As such, it does not
have a timeline as the others tools usually have. In a certain way, we can say that this
dashboard is not so good when compared to the others.

Figure 2.7 illustrates ElasticRoute dashboard.

Figure 2.7: ElasticRoute - Dashboard

Concerning the size of the problems this tool can deal with, the information found is quite
explicit. We can route up to an unlimited number of vehicles with a maximum of a 1000
stops per plan. The number of plans and re-planes we can do is also unlimited.

This tool, despite its construction quality, still has its strengths. In this case, it is just one.
The large number of possible configurations, perhaps the largest analyzed so far. This is
perhaps the main reason why we analyzed this tool in depth and why it is a part of this
short list.

Regarding the weaknesses, we managed to point out a few. The tool is not well structured
and as such it is not intuitive to use. The way the dashboard is found is one of the main
reasons, it becomes very difficult to interpret the results. Furthermore, it is also quite
difficult to navigate within the application. In addition, as mentioned earlier, there is no

15

Chapter 2

distinction between the driver and the vehicle. This should not happen.

2.2.6 Honorable mentions

Although they are not on the short list, there are still some tools worth mentioning. As
such, this subsection serves to list some of these tools.

• Less Platform: cloud-native and web-based logistics optimization and management
platform. The speed of optimization is one of its main strengths. However, the
dashboard is a little overwhelming and clumsy.

• onfleet: delivery management software. Apparently quite appealing in the world of
FSM systems, won some awards in 2020. Good amount of functionalities. On the
other hand, can be considered quite complex.

• GSMTasks: web-based route planning & optimization software. Reasonable num-
ber of features and easy to use. It has been around for a few years (since 2000), so
it is a little outdated. In addition, it also appears to have some technical problems.

2.3 Comparison

Placing these tools side by side and comparing them directly is not feasible. Although in
the end they are similar, they were built for different purposes, with different end goals.
As such, in order to be able to compare these tools efficiently, we need to find comparison
points. In this approach, we create tables taking into account the characteristics of each
one the tools.

In the following two subsections we have two tables in order to represent this vectors. The
first table takes into account the general general aspects of each. The second one focuses
on more technical and functional aspects.

2.3.1 General comparisons

Before analyzing the technical aspects of each tool, we should compare them in a more
general context. Features such as price, have to be taken into account. For instance, we
can have two similar tools with identical prices. However, if we analyze with more detail,
one can be much more complete than the other. This subsection serves to compare our
tools, regarding this type of characteristics that do not fit into a technical aspect.

• Price: Starting price of the tool

• Free trial: If the tool provides a free trial. It is a good way to attract potential
customers.

• Owner: Company responsible for the tool

• Configuration difficulty: The difficulty to configure the application in order to
start using it

• Difficulty of use: The difficulty to use the application once its configured

16

State of the art

• Premium features: Can we buy new features inside the tool?

• Tutorial: Existence of a beginners tutorial inside the application

Routific OptimoRoute Track-POD eLogii ElasticRoute
Price Starting 39$ per vehicle/month Starting 19$ per driver/month Starting 35$ per driver/month Starting 159$/month Free
Free trial 3 3 3 3 3

Owner Routific OptimoRoute Track-POD eLogii Detrack Systems
Configuration
difficulty Simple Simple Elevated Relatively simple Moderate

Difficulty
of use Simple Simple Elevated Simple Moderate

Premium
features 3 3 3 3 3

Tutorial 3 3 7 3 7

Table 2.1: General aspects comparison

By looking at Table 2.1, we can draw some conclusions. Regarding pricing (according
to salesforce.com) we have some differences. There are 4 different business models here.
Routific charges per vehicle per month. OptimoRoute and Track-POD use another ap-
proach and charge by driver. Meanwhile eLogii charges per month. ElasticRoutes despite
being free, only supports one vehicle in this plan. However, for 39$ per month we can
activate a more complete subscription plan.

In relation to the difficulty of configuration and use, it is important to note that the
Track-POD has an elevated difficulty. This factor can make a difference to the end-user.

When it comes to the tutorial, Track-POD and ElasticRoute do not have it. Finally, all
the tools have free trial and premium features.

2.3.2 Features and technical comparisons

Since we have finished comparing the tools in general terms, we can now proceed to do a
comparison in technical terms by analyzing the features. In order to do that, we thought
that was a good idea to divide this subsection in 4 parts, one for each component.

As such, we ended up with a component that concerns the most general features of the
application. In addition, we also have a part for each one of the most important entities
discussed so far: tasks, drivers and vehicles. This subsection serves that purpose.

The metrics that follow are features that most of the analyzed applications have in general.
These are also features that can make sense to be considered for our solution. Furthermore,
it is still important to analyze them for reasons of consistency. For example, it does not
make sense to compare tools, side by side, that are built for different types of devices (e.g.,
mobile vs desktop).

General

• Web based: Is the tool web based? Can it be used on a web-browser?

• Cloud based: If the tool is cloud based. Is the tool hosted on the cloud?

• Mobile integration: If the tool provides a complementary mobile application (e.g.,
for drivers to use)

• Multi user: Can the tool be accessed by multiple users?

17

Chapter 2

• Optimization: Type of optimizations the tool can do

• Live tracking: Does the tool provide a feature in order to see the current position
of a vehicle?

• ETA: Does it provide a Estimated Time of Arrival (ETA)?

• Multi depot: Can we have more than one depot?

• Optimization time: Does it provide information about the optimization time?

• Results presentation: How are the results of the optimization presented?

• Stationary time: Can we see the amount of time a vehicle is stationary?

• Empty time: Can we see the amount of time a vehicle is driving with no cargo?

• Compare optimization: Can we compare optimizations?

• Save optimization: Can we save optimizations?

• Fuel problem: Can the fuel problem be solved using this tool?

Routific OptimoRoute Track-POD eLogii ElasticRoute
Web based 3 3 3 3 3

Cloud based 3 3 3 3 3

Mobile integration 3 3 3 3 7

Multi user 7 3 3 3 3

Optimization Time
Distance

Time
Distance
Working time

Time
Distance

Time
Distance Time

Live tracking 3 3 3 3 7

ETA 3 3 3 3 3

Multi depot 3 7 3 3 3

Optimization time N/A N/A N/A N/A 3

Results presentation Routes on map
Drivers work plan

Routes on map
Drivers work plan

Routes on map
Drivers work plan

Routes on map
Drivers work plan

Routes on map
Drivers work plan

Stationary time 7 7 7 7 7

Empty time 7 7 7 7 7

Compare optimization 3 7 7 7 7

Save optimization 3 3 7 3 3

Fuel problem 7 7 7 7 7

Table 2.2: Tools - Features and technical comparisons

If we take a look at Table 2.2 we can see that all this tools are web and cloud-based. Only
ElasticRoute does not provide any integration with a mobile application.

Regarding the optimation, the majority of this tools allow to do optimizations by time
and distance. However, ElasticRoute only allows to optimize routes by time. Additionaly,
OptimoRoute allows to optimize routes by working time. This can be extremely valuable.

OptimoRoute is the only tool that does not allow us to have a multi depot. Track-POD
does not allow to save optimizations. These can be considered major flaws.

All tools present the optimization results in the same way: routes displayed on the map
and through a driver’s work plan.

Finally, none of these tools provide important metrics such as stationary time and empty
time. In addition, they are unable to solve the fuel problem.

18

State of the art

As far as our solution is concerned, we can take some important notes. We can see the
importance of the results presentation. The routes displayed on the map as well as the
work plan of each worker should be a must in our application. These are undoubtedly
points to be taken into account when gathering the requirements.

Tasks

• Size of the problems: Size of the problems the tool can handle, regarding the
number of tasks.

• Type: Does the tool have different types of tasks?

• Import tasks: Can we import tasks from external sources?

• Balance by drivers: Can we balance the tasks by driver?

Routific OptimoRoute Track-POD eLogii ElasticRoute

Size of the problems 2000 tasks
per optimization

More than 750
tasks per optimization N/A Unlimited 1000 tasks

per optimization
Type 3 3 3 3 3

Import tasks 3 3 3 3 3

Balance by driver 3 3 3 N/A N/A

Table 2.3: Tools - Tasks - Features and technical comparisons

Table 2.3 shows us that eLogii is way more powerful than the others, when it comes to
the number of tasks it can handle. Routific, with 2000 tasks per optimization, looks
pretty decent when compared to the rest of the tools. Track-POD does not provide any
information about this subject.

Regarding the type of tasks, all the tools provide this feature. In addition, they all can
import tasks from external files.

Last but not least, when it comes to balance tasks by driver, eLogii and ElasticRoute do
not provide any information about this.

Drivers

• Skills: Can we assign skills to drivers?

• Multi driver: Can we have more than one driver?

• Import drivers: Can we import drivers from external sources?

• Breaks: Can we have non-mandatory breaks?

• Mandatory breaks: Can we have mandatory breaks?

• Shifts: Can we have shifts between drivers?

• Associated costs: Can the driver have an associated cost (e.g., 0.89€ per Km) ?

19

Chapter 2

Routific OptimoRoute Track-POD eLogii ElasticRoute
Skills 3 3 7 3 N/A
Multi driver 3 3 3 3 3

Import drivers 3 3 3 3 3

Breaks Only for
meals

Only one
break

Only one
break 7 No limit

Mandatory
Breaks 7 7 3 7 7

Shifts 7 7 7 7 7

Associated
costs 7 3 3 7 7

Table 2.4: Tools - Drivers - Features and technical comparisons

Table 2.4 contains all the information about the Drivers on each tool. All the tools allow
to import drivers and also have multiple drivers. These drivers can have skills associated
on Routific, OptimoRoute and eLogii.

When it comes to optional breaks, there are some differences. OptimoRoute and Track-
POD only let the driver have one break. Routific only allows the driver to have a meal
break. ElasticRoute does not have a limit of breaks and eLogii does not provide any
type of break. Regarding the mandatory breaks, those that are mandatory by law, only
Track-POD has them.

OptimoRoute and Track-POD allows to have associated costs to the drivers.

Finally, none of these tools lets the drivers take turns.

Vehicles

• Size of the problems: Size of the problems the tool can handle, regarding the
number of vehicles.

• Capacity: What capacity dimensions can we assign to the vehicle (e.g., Weight and
Volume)?

• Type: Can we have types of vehicles (e.g., Refrigerated and Truck)?

• Import vehicles: Can we import vehicles from external sources?

Routific OptimoRoute Track-POD eLogii ElasticRoute
Size of
the problems Unlimited N/A N/A >1000 vehicles Unlimited

Capacity Only 1
dimension

Up to 4
dimensions

Yes
(not specified)

Yes
(not specified)

Weight
Volume
Seats

Type 7 3 3 3 3

Import vehicles 7 3 3 3 3

Table 2.5: Tools - Vehicles - Features and technical comparisons

Table 2.5 depicts all the information about the vehicles for each tool.

20

State of the art

Regarding the size of the problems, we were not able to gather much. With Routific and
ElasticRoute we can have an unlimited number of vehicles. With eLogii, according to the
official website, we can have more than 1000 vehicles.

When it comes to the capacities, there are a few differences. Routific only allows to have
one configurable dimension. OptimoRoutes lets us have up to 4 dimensions. ElasticRoute
has 3 non-configurable dimensions: weight, volume and seats. eLogii and Track-POD do
not have any information about the number of dimensions.

Finally, with the exception of Routific, all tools can import vehicles and have types assigned
to them.

2.3.3 Interpretation

The present chapter allows us to draw some conclusions regarding our project.

All these tools previously analyzed focus on generic route optimization problems. As we
have seen, none of these is capable of solving a more specific problem. For example, the
fuel problem.

Each business is different and as such, we need to have this in consideration when building
an FSM system. One of these systems can work very well for one company while for another
it can have the opposite effect. In other words, many of these tools, despite solving similar
problems, may not solve ours.

As mentioned earlier, these tools can solve many problems. However, in most cases it does
not solve them in the best way possible. A customized solution that adapts to the business,
always has added value. A company that uses a tailor-made solution can easily recover its
investment in the tool.

Finally, by doing this analysis we were able to gather a good amount of information on
how our tool should look like. Both at the functional and structural level. We were able
to see some features that can add value to our tool. Additionally, we can also get the idea
of some characteristics that are not desirable, thus we should avoid them.

2.4 Implementation framework

As we will mention further in section 3.3, we are restricted in relation to the tools that we
can use in the frontend development. As such, within the two candidates, we must find out
which is the best suitable for the job. This section serves to make a comparison between
these two technologies, Angular and React.

The best way to make a comparison of this type is through a table, just like it was previously
done when comparing the tools on the market.

It is worth mentioning that these tools, despite having similar objectives, have many dif-
ferences. A superficial analysis was carried out putting in perspective the main aspects of
each one of these tools. The following characteristics were analyzed:

• Free: Is the tool free to use?

• Open source: Is the tool open source?

21

Chapter 2

• Company: What company supports the tool.

• Release: Year of release.

• GitHub Stars: Number of stars in GitHub

• Type: What kind of tool is it (e.g., framework or library)?

• Data binding: How is the data binded by the tool?

• Language: What kind of language is used?

• DOM: What type of Document Object Model (DOM) is used?

• Learning curve: How is the learning curve of this tool?

• Complexity: How is the complexity of this tool?

• Flexibility: How flexible is this tool?

As mentioned before, in this analysis only the main aspects of each tool were taken into
account. No exhaustive research was carried out, as it was not worth it. In Table 2.6 we
can observe the resulting comparison vector.

Angular React
Free Yes Yes
Open source Yes Yes
Company Google Facebook
Year 2016 2013
GitHub Stars 69.7k (01-10-2021) 162k (01-10-2021)
Type Framework Library
Data binding Two-way data binding One-way data binding
Language TypeScript JavaScript XML (JSX)
DOM Incremental DOM Virtual DOM
Learning curve High Low
Complexity High Low
Flexibility Moderate High

Table 2.6: Comparison - Angular vs React (Adapted from ImaginaryCloud [5])

Regarding open source and the fact that they are free, both tools are on the same
level. Both have big companies supporting them, Angular has Google and React has
Facebook. However, if we take a look at when they were released, we can see that Angular
is 3 years more recent. On the other hand, if we look at the number of stars on GitHub
there is almost a 100k difference favoring React.

Regarding the type of tool, there is also a difference between the two here. Angular is a
framework, while React is a library. In a library, we are responsible for the course of
our application actions [8]. This does not happen in a framework. This is an important
aspect to have in mind, since there is a small degree of freedom at stake here.

22

State of the art

Angular has two-way data binding, which means that if we change an input in the UI
it will also change the state of a component. This does not happen in React since it has
one-way data binding.

When it comes to the programming language used there there are also differences. Angular
uses TypeScript while React uses JavaScript XML (JSX). TypeScript is a superset of
JavaScript and can be considered more simple version because it is a typed language. JSX
allows us to write HTML code in React.

With regard to DOM, Angular uses an Incremental DOM while React uses a Virtual
DOM. Both have their advantages and disadvantages. However, Virtual DOM has a
slightly better performance.

The learning curve it is more steep in Angular. This can be easily explained by the use
of the TypeScript language. Additionally, Angular has some concepts that are only used
in this framework. Angular is also more complex and in a certain way, more powerful than
React.

At this point, it is important to mention that we will use Django for the backend devel-
opment. Django will provide the main functionalities of our tool. With that in mind, if
we use Angular for the frontend, we will probably end with an heavy application.

In conclusion, we can probably consider that React is the obvious choice. It is the lightest,
simplest and flexible of the two tools.

23

Chapter 3

Requirements

The proper identification of the software requirements is one of the most important pro-
cesses in a software engineering project. Additionally, the requirements have a significant
influence in the architecture of the software to be developed. So, they must be defined a
priori, before any decision about the architecture is made. This chapter serves to document
those requirements.

In Section 3.1 we describe the functional requirements, documented via user stories, adopt-
ing a high-level view. In Section 3.2 we can observe the Quality Attributes (also known as
Non-functional Requirements) captured through scenarios. In Section 3.3 the restrictions
to which our project is subject are presented. Section 3.4 states how the quality attributes
were prioritized through a voting.

3.1 Functional Requirements

Functional requirements represent the functionalities of our system. They can be defined
as the way the system behaves under different conditions [9].

These Functional Requirements (high-level) were gathered through meetings with the com-
pany. These meetings were also extremely important to validate them. In addition, the
information collected in the state of the art was also taken into account. User stories were
used in order to document the functional requirements.

A user story is an informal way of describing a feature of a software system through text
[10]. This method has the following components: user, task and goal. The user, as the
name says, is the one interacting with the system. A task, is what the user will do in order
to achieve a specific goal. Lets analyze an example. Imagine a person that it is looking
for a book to buy. How can we write a user story for this scenario? Figure 3.1 illustrates
an example.

24

Requirements

Figure 3.1: User story example (from emergn [2])

Table 3.1 represents our functional requirements documented using user stories. We have
18 user stories in total. Since the writing of the intermediate report, two new user stories
have been added, with IDs 17 and 18, respectively.

25

Chapter 3

ID Name User story
1 Login As an unauthenticated user, I want to securely authenticate myself

in the system, in order to be able to access the main dashboard where it
is possible to optimize my tasks.

2 Define vehicles As a user, I want to be able to define a set of characteristics for the
vehicles (eg weight, type of cargo, compartments, etc ...), in order to be
taken into account in the optimization process.

3 Define drivers As a user, I want to be able to define a set of characteristics for drivers
(eg schedules, availability days, skills, etc ...), in order to be taken into
account in the optimization process.

4 Define tasks As a user, I want to be able to define the work to be planned (set of
tasks), in order to get it optimized taking into account the restrictions
imposed.

5 Select resources As a user, I want to be able to select the resources I want to use in my
work plan, in order to achieve my business goals.

6 Interpret Gantt As a user, I want to be able to analyze the result of the work plan, in a
Gantt diagram format (with information such as waiting time, loading
time, working time, etc.), in order to be able to assess the quality of the
work. solution.

7 Interpret KPI As a user, I want to be able to analyze the key performance indicators
related to the optimized work plan, in order to be able to assess the
quality of the solution.

8 Interpret routes As a user, I want to be able to analyze the route of the work plan on
the map, in order to be able to assess the quality of the solution found.

9 Save plan As a user, I want to be able to save the optimized work plan so that I
can consult it later.

10 Erase plan As a user, I want to be able to delete the optimized work plan, as it
does not meet my business goals.

11 Export plan As a user, I want to be able to export my final work plan in an appro-
priate format (eg .csv), in order to be able to use it in another context.

12 Import resources
and tasks

As a user, I want to be able to import (for example, through a .csv)
my resources (vehicles and drivers) and tasks simultaneously, in order to
minimize the time for setting up the plan.

13 Compare plans As a user, I want to be able to compare two or more work plans, taking
into account their key performance indicators, in order to be able to
understand which is the best for my business.

14 Re-optimize plan
through Gantt

As a user, I want to be able to drag resources on the work plan in the
form of a Gantt diagram, in order to get a new work plan that takes into
account the changes made.

15 Consult saved
work plans

As a user, I want to be able to obtain the list of previously saved opti-
mized work plans, in order to be able to use them again.

16 Integration with
the Sentilant
system

As a developer, I want to be able to integrate the web interface with
the current Sentilant product, so that it can function as an operational
management tool.

17 Internationalization As a user, I want to be able to change the application language.
18 Edit routes As a user, I want to be able to edit the optimized routes (e.g., change

drivers and add new tasks).

Table 3.1: Functional Requirements - User stories

3.2 Quality Attributes

When we are defining the functional requirements (high-level or not), we are answering
one question: "WHAT should the system do?" [11]. However, we need to answer one
more question: "HOW should the system work?" [11]. Quality Attributes (QA) answer

26

Requirements

this question.

Quality attributes, also known as Non-Functional Requirements (NFRs) can be
considered characteristics that the system must have in addition to its functionalities. Non-
Functional Requirements usually are in conflict with each other. For that reason they can
be very hard to define. [12].

In order to make this process easier, quality attributes scenarios are used. Figure 3.2
illustrates a generic quality attributes scenario. Each scenario has 6 distinct components:
source, stimulus, artifacts, environment, response and response measure.

Figure 3.2: Quality Attribute Scenario (from University of New Brunswick [3])

Authentication - Scenario 1

Description: The application prevents access by unauthenticated users. The system
checks the user’s credentials and prevents them from having access if the credentials are
incorrect.

Quality Attribute Authentication
Source Unauthenticated user
Stimulus The user attempts to access the system
Artifacts System
Environment Runtime

Response
The system checks the validity of the user’s credentials.
The user has access to the system if the credentials are valid.
Otherwise, access is prevented.

Response measure There are no unwanted accesses to the system by unauthen-
ticated users

Table 3.2: Scenario 1 - Security

Availability - Scenario 2

Description: In the event that a user needs to obtain an optimized work plan for their
tasks, the system must be available and capable of responding to the customer’s needs.

27

Chapter 3

Quality Attribute Availability
Source User
Stimulus The user asks the system to optimize a work plan
Artifacts System
Environment Runtime
Response The system presents an optimized work plan to the user
Response measure The system has a 99.95% availability

Table 3.3: Scenario 2 - Availability

Testability - Scenario 3

Description: Whenever a system functionality is introduced or modified, we need to make
sure that no new errors and/or flaws have been introduced.

Quality Attribute Testability
Source Developer
Stimulus The developer wants to introduce changes to the system in

production
Artifacts System
Environment During development
Response The change is introduced in the production system
Response measure No errors were introduced

Table 3.4: Scenario 3 - Testability

Resilience - Scenario 4

Description: The system must be able to detect invalid inputs introduced by the user,
whether larger than the supported size or even in incorrect formats, right from the start.
These inputs must be detected right at the interface (frontend) in order to avoid being
sent to the logical part (backend) thus avoiding possible errors and resulting in a better
management of resources.

Quality Attribute Resilience
Source User
Stimulus The user enters a set of invalid tasks and/or resources
Artifacts System
Environment Runtime
Response The system warns the user with a specific error message
Response measure The system maintains its normal operation

Table 3.5: Scenario 4 - Resilience

Usability - Scenario 5

Description: Each time the user performs an action within the system, he receives feed-
back on it (eg, error messages, alerts, success messages), so that he can be aware of what

28

Requirements

is happening.

Quality Attribute Usability
Source User
Stimulus The user asks the system to perform an action
Artifacts System
Environment Runtime
Response The system, if possible, performs the user’s action
Response measure The system provides the user feedback on the action taken

Table 3.6: Scenario 5 - Usability

Usability - Scenario 6

Description: In the need for the user to optimize a work plan, he must be able to have
an overview of the same plan on a single page, in order to facilitate its interpretation.

Quality Attribute Usability
Source User
Stimulus The user optimizes a work plan
Artifacts System
Environment Runtime
Response The system presents the optimized work plan solution to the

user
Response measure All information on the optimized work plan is presented on

a single page

Table 3.7: Scenario 6 - Usability

Usability - Scenario 7

Description: Possibility for the user to modify the optimization result in order to obtain
information in real time about the impact of this change. Example: dragging resources
on the Gantt diagram, resulting from the optimization of the work plan, and consequently
obtaining a new optimization in real time (user story 14)

Quality Attribute Usability
Source User
Stimulus The user interacts with the gantt diagram, resulting from

the optimization, in order to introduce changes in the work
plan

Artifacts System
Environment Runtime
Response The system, taking into account the changes made, calcu-

lates the new work plan
Response measure The system presents the new work plan to the user

Table 3.8: Scenario 7 - Usability

29

Chapter 3

Compatibility - Scenario 8

Description: The application works correctly and consistently across different types of
web browsers.

Quality Attribute Compatibility
Source User
Stimulus The user tries to access the system in a web browser other

than the one he usually uses
Artifacts System
Environment Runtime
Response The system allows the user to be able to use the system
Response measure The user is able to use the system without noticing any dif-

ference in its normal operation

Table 3.9: Scenario 8 - Compatibility

Extensibility - Scenario 9

Description: The system must be able to connect to different information points (e.g.,
databases), without the need to change the source code.

Quality Attribute Extensibility
Source System
Stimulus Need to add a new source of information for the system to

retrieve data (vehicles, drivers or tasks).
Artifacts External source
Environment Runtime
Response Developers develop a new independent component to estab-

lish the connection
Response measure There is no need to change the remaining source code

Table 3.10: Scenario 9 - Extensibility

Extensibility - Scenario 10

Description: The system must be able to be embedded in DrivianTasks (Sentilant’s
current solution) in order to be presented to the user.

Quality Attribute Extensibility
Source DrivianTasks
Stimulus Need to embed the system in DrivianTasks
Artifacts System
Environment Runtime
Response The system is embedded in DrivianTasks
Response measure Authentication, authorization and connection to tenants is

functional

Table 3.11: Scenario 10 - Extensibility

30

Requirements

3.3 Constraints

In software architecture design, we may have some restrictions that affect directly and/or
indirectly the architecture of the tool to be built. As such, they have to be taken into
account before designing the architecture.

These constraints can be one of two types: Business or Technical. In this project only
technical constraints were found.

Technical constraints are impositions that are made during the system design process. As
such, these have to be fulfilled. Usually these constraints are provided by the stakeholders
of the project [13].

Within Sentilant, certain development tools are used that are already part of the imple-
mentation processes. As such, we have to use these tools during this internship. We are
therefore facing a technical constraint.

The development of the project is divided into two phases: backend and frontend. On
that account, we were able to identify two technical constraints.

Frontend

Regarding the frontend development of our tool, we were given two options:

• React: Open-source JavaScript library developed by Facebook, specialized in web
development

• Angular: Open-source TypeScript framework developed by Google, specialized in
web development

Backend

When it comes to backend development, we must use Django. Django is an open-source
framework, written in Python, also focused on web development.

3.4 Prioritization

Sometimes NFRs are in conflict with each other, resulting in a trade-off. A trade-off is
when a quality attribute is being affected in a positive way while the other is affected in
a negative way [14]. In a nutshel, one is favored and the other is harmed. In order to
manage this, is a good practice in Software Engineering to prioritize NFRs.

In order to decide the priority of each one of the quality attributes scenarios previously
defined we decided to prioritize them using a voting system.

Each participant was entitled to 10 votes, which he could distribute across the scenarios
of each one of the QA. The number of votes was decided based on the number of QA
scenarios. We have 10 scenarios, so we have 10 votes. No restrictions were imposed, just
that the number of votes did not exceed the previously defined number. Additionally, each
vote is anonymous, so there is no type of influence whatsoever.

31

Chapter 3

The voting was carried out using an excel sheet created for this purpose. This sheet was
sent to each one of the stakeholders and later returned to me.

Besides me, two more people participated in this vote: Bruno Cabral (Advisor) and
Rafael Henriques (Developer).

The results obtained can be observed in Table 3.12.

Votes
Authentication

Scenario 1 3
Availability

Scenario 2 8
Testability

Scenario 3 1
Resilience

Scenario 4 6
Usability

Scenario 5 5
Scenario 6 3
Scenario 7 2
Compatibility

Scenario 8 0
Extensibility

Scenario 9 0
Scenario 10 2
Total 30

Table 3.12: Vote results

In Table 3.13 we can observe the Quality Attributes Scenarios ordered by priority.

Priority Quality Attribute - Scenario Votes
1 Availability - Scenario 2 8
2 Resilience - Scenario 4 6
3 Usability - Scenario 5 5
4 Authentication - Scenario 1 3
4 Usability - Scenario 6 3
5 Extensability - Scenario 9 2
5 Real time - Scenario 10 2
6 Testability - Scenario 3 1
7 Compatibility - Scenario 7 0
7 Extensibility - Scenario 8 0

Table 3.13: Quality Attributes Scenarios prioritized

We can draw some conclusions by analyzing this table. We can see the importance of some
quality attributes scenarios such as Scenario 2 (Availability), Scenario 4 (Resilience) and
Scenario 5 (Usability). In addition, we can also observe that there were 3 draws, as such
these scenarios have the same priority.

32

Chapter 4

Tool Overview

From the requirements documented in Chapter 3, we can begin to visualize how our tool
will look like. This chapter covers some design aspects as well as some technical concepts
of the system to be built.

Section 4.1 discusses some design aspects, through mockups, that are important to analyze
before starting the implementation. Section 4.2 provides the reader with an early high-level
architecture of our system. Section 4.3 has information about the implementation status
of each requirement. It also describes how the system is organized when it comes to code,
and what libraries and frameworks were used. Finally, we have a little description on how
the system works.

4.1 Design

Since we are building a tool that may be used by customers, there are some precautions
to take. In this section we pay special attention to Usability. There are many tools on the
market with similar goals. As such, we want to build one that stands out by providing a
good user experience. When discussing with my advisor, we came to the conclusion that
our tool should follow two basic principles:

• Whenever a user optimizes a work plan, all information related to the optimized work
plan should be displayed on a single page

• The main functionalities of the tool should always visible and quickly accessible to
the user

With this in mind, 2mockups were built using Balsamiq. Figure 4.1 illustrates a possible
optimization of a work plan. As mentioned earlier, all relevant information is presented to
the user on a single page.

33

Chapter 4

Figure 4.1: Dashboard - Mockup 1

In Figure 4.2, we can see a potential look of the window where the optimized plans will be
saved.

34

Tool Overview

Figure 4.2: Dashboard - Mockup 2

It is easy to see in both mockups that there is a navigation bar on the left side. This
navigation bar facilitates the user to access the main features of the application quickly.
In addition, these mockups show how our application will likely look in terms of design.

4.2 Architecture

In this section we can find a high-level system architecture, mapped from the requirements.
It is important to mention that this architecture only takes functional aspects into account.

In order to design our architecture we used the C4 Model [15]. Although this model has 4
distinct views to document an architecture, only the first 3 were used: Context, Container
and Component.

4.2.1 System Context Diagram

This type of Diagram (System Context) is a good starting point to design a software
architecture. We can observe the system as if we were an outside spectator. In this
diagram we can see our system, the systems with which it interacts and its users.

Figure 4.3 illustrates the System Context Diagram for our system.

35

Chapter 4

Figure 4.3: System Context Diagram

At the center, we have our system, Field Service Optimization Tool. This system
represents the web application with which the user (Client) will interact in order to obtain
their optimized work plans. This plan is sent to another system (Solver) where it will be
optimized. In addition, we have another system from which we can retrieve and/or send
information, DrivianTasks. DrivianTasks is Sentilant’s current solution.

4.2.2 Container Diagram

If we zoom-in on our system (Field Service Optimization Tool) we can obtain a Con-
tainer Diagram. In a nutshell, a container is like a separate application or even a data
store. Each system is composed by several containers. Additionally, in this Diagram we
can also see how this containers communicate with each other.

Figure 4.4 illustrates the Container Diagram for our system.

36

Tool Overview

Figure 4.4: Container Diagram - Field Service Optimization Tool

The Web Application container represents the interface (website) the user will interact
with. To obtain full access to this interface the user needs to authenticate first. This Web
Application is where the work plan is introduced in order to be optimized. It also serves to
observe the results obtained. This container is the most important one when it comes to
Usability, one of our most important NFRs. This container is in constant communication
with the API Application via a JSON/HTTPS API.

The API Application is responsible for communicating with the rest of the systems
(Solver and DrivianTasks) and with the last container, the Database. The Database is
where all our data will be stored, such as: user’s credentials, previously optimized work
plans and so on. These two containers are mainly responsible for the two NFRs with the
highest priority in our application: Availability and Resilience.

Regarding the main responsibilities and the technologies used within these containers we
have the following:

• Web Application: Responsible for providing all the functionalities to the client
(e.g., login and optimize work plan). It will make API calls using JSON/HTTPS to
the API Application in order to obtain the functionalities. Will be developed using
React.

• API Application: Responsible for the main functionalities of the application. Main
point of communication. Will be sending the plans to the solver, via JSON/HTTPS,
in order to be optimized. In addition, it will also be in constant communication
with DrivianTasks to obtain information. Finally, interacts with the Database using
Django ORM, in order to read or persists data. This container will be built using
Django and will run on a nginx web server.

37

Chapter 4

• Database: Responsible for persisting all the information of our application (e.g.,
credentials, work plans and resources). It will be a Relational DB, probably using
PostgreSQL or MySQL.

4.2.3 Component Diagram

If we follow the same approach, and zoom-in on each one of our containers, we can decom-
pose them in components. A component can be defined as the major structural building
blocks within a container. In addition, we also take into account their interactions.

In this subsection we divided the two main containers of our system: Web Application
and API Application. The database was not decomposed because it was not worth it.

Web Application

As mentioned in the previous section, the Web Application container is responsible for
interacting with the user. By doing so it provides all the functionalities of our application.

Figure 4.5 illustrates the Component Diagram for our Web Application.

Figure 4.5: Component Diagram - Web Application

We have the following components:

• Web Pages: They represent all web pages presented to the user. HTML, CSS and
React will be used to build them.

• Controllers: Responsible for controlling the flow of our web application. React will
be used for this aspect.

38

Tool Overview

• Scripts: All the scripts that provide functionalities in some way. JavaScript and
React will be used to develop them.

API Application

The API Application container is responsible for providing the main functionalities of our
application. In order to do this, it also interacts with other external systems.

Figure 4.5 illustrates the Component Diagram for our Web Application.

Figure 4.6: Component Diagram - API Application

We have the following components, all built using Django:

• Authentication Controller: Allows users to authenticate themselves in order to
access the application.

• Work Plan Controller: Responsible for controlling all the information related to
the work plans to be optimized. Needs to communicate with the external solver.

• Security Controller: Makes sure that the authentication process is done in a secure
way.

• Resources Controller: Responsible for controlling all the information regarding
the resource of our application, such as: Tasks, Vehicles and Drivers.

39

Chapter 4

4.3 Software development

In this section, we document all the developments carried out throughout the implemen-
tation phase. In addition, we also describe how the system is structured and how it works.

4.3.1 Implemented requirements

InChapter 3, 18 high-level functional requirements were documented through user stories.
However, not all have been implemented. This can be easily explained. Some requirements,
although useful, do not add significant value to the tool. In addition, since the intermediate
report, 2 new functional requirements emerged. Lastly, some of these took a lot more of
work to implement than might have been expected. As a consequence, some were given
more priority than others.

Below, Table 4.1 contains the list with all the functional requirements and the respective
implementation status.

ID User story name Status ID User story name Status
1 Login Not implemented 10 Erase plan Finished
2 Define vehicles Finished 11 Export plan Not implemented

3 Define drivers Finished 12 Import resources
and tasks Finished

4 Define tasks Finished 13 Compare plans Finished

5 Select resources Partially 14 Re-optimize plan
through Gantt Not implemented

6 Interpret Gantt Finished 15 Consult saved
work plans Finished

7 Interpret KPI Finished 16 Integration with the
Sentilant system Not implemented

8 Interpret routes Finished 17 Internationalization Finished
9 Save plan Finished 18 Edit routes Finished

Table 4.1: Functional requirements - Development status

4.3.2 System description

As mentioned earlier, our tool is mainly made up of two distinct parts: the backend, built
using Django, and the frontend, built in React. In addition, whenever a new plan needs to
be optimized, we call an external solver API, which is currently inside a docker container.
The solver, receives a list of resources (vehicles and drivers) and tasks, and returns the
optimized workplan. Since this solver is outside the context of this internship, we will not
get into details on how it works.

In our tool, we can have multiple clients using the same web application and at the same
time, their data is totally isolated. In other words, a client can only see the data that
concerns him. This is the definition of multi tenancy, an important principle for this
project.

In order to achieve this multi tenant system, we needed to use a django application called
django-tenants (https://github.com/django-tenants/django-tenants). This appli-
cation allows us to have multiple tenants with isolated data. This is achieved via different
PostgreSQL schemas, one for each client.

40

https://github.com/django-tenants/django-tenants

Tool Overview

Regarding the frontend, we use React to build our web application interface. Furthermore,
all the decorative elements are from thematerial-ui framework (https://material-ui.
com/)

Lastly, together with React we used Webpack (https://webpack.js.org/) as a module
bundler and Babel (https://babeljs.io/) as a Javascript transpiler. In addition, leaflet
(https://leafletjs.com/) was used to build the map dialog that is presented to the
user. React Google Charts (https://react-google-charts.com/) was used to build
the Gantt chart with all the tasks that a driver has.

When it comes to the organization of the code, Figure 4.7 shows how it is structured. This,
adopting a high-level view, without great detail.

Figure 4.7: Code structure

Each one of these folders, by definition, is a django application. The fsm_app repre-
sents the main application, where we have the structural logic of our application. With
the exception of the frontend folder, all the others represent one of the main entities of the
system. The frontend folder, despite being a django application, contains all the code
related to the frontend. That is, all React components with which the user interacts.

4.3.3 System features

As mentioned in the previous subsection, each tenant has an isolated schema with all its
data. With that said, lets analyze some of the main functionalities.

Figure 4.8 depicts the Overview page, which is the main page of the system. This page
already has an optimized work plan. For privacy reasons, some data fields were blurred,
since we are dealing with a real test case.

41

https://material-ui.com/
https://material-ui.com/
https://webpack.js.org/
https://babeljs.io/
https://leafletjs.com/
https://react-google-charts.com/

Chapter 4

Figure 4.8: Overview page

The navigation sidebar allows the user to move freely between pages. The header compo-
nent has the name plan as well as some action buttons that can be used to save, erase or
create a new plan. In addition, it also has the settings button where we can change the
language. Whichever page we are on, these components are always accessible.

In the "Overview" page we have all we need to know about a plan. On the top we have
a few cards with some KPIs such as total distance and percentage of allocated tasks. In
the middle of the screen, we have a tab panel that is composed by 3 main components:
"Routes", "Unassigned tasks" and "Gantt".

The "Routes" tab contains a customized table with all the optimized routes in the plan.
Each route has a driver assigned. In addition, it also has some metrics such as driving
time and total distance. If we click on the arrow icon on the left, the route is expanded.
When the route is expanded we can see all the tasks that route has. Here we can take some
actions such as edit task, insert new task and delete task. We can also see the products
and respective quantities that are being loaded/unloaded. There is also a special button
that opens a popup dialog with a map, Figure 4.9. This map has all the locations of
the tasks that compose the route being analyzed. Blue represents the loading location.
Green represents the unloading locations.

42

Tool Overview

Figure 4.9: Map dialog

In the "Unassigned Tasks" tab has all the tasks that were not assigned. Here, we can
assign a task manually to a driver.

Lastly, the "Gantt" tab contains all the drivers in a route, with the respective tasks dis-
tributed over time.

Regarding the optimization process, we have some buttons below the cards. The main
button, "Optimize" sends all the resources (vehicles and drivers) and tasks to the external
solver API in order to receive the optimized work plan. Whenever there is any change in
the routes already optimized that requires re-optimization, the "Estimate" button becomes
active.

All the remaining pages available on the navigation sidebar, such as "Tasks", "Drivers",
"Vehicles", "Capacities", "Products" and "Skills" allow the user to import these entities
into the system. In order to do this, the user has to select a .csv file with a specific format.
However, all data that is in the system will be used when it is time to optimize the plan.
A future implementation would be a feature where the user could be able to choose which
resources and tasks he wants to select.

The "Plans" page has a list with all the previously saved plans, as well as some general
metrics about each one.

43

Chapter 5

Validation

In the development of a software engineering project, two very important questions are
raised. As defined by Barry Boehm, we have to ask ourselves the following: "Did we build
the product right?" and "Did we build the right product?" [16]. The answer to these
questions is directly related to the terms verification and validation, respectively.

Throughout this document, we have been answering the first question. Activities previously
done, such as requirements gathering (Chapter 3) and architecture design (Chapter 4)
are part of this process.

At this point, we need to make sure that the system is able to fulfill its purpose. Which
means, perform the tasks for which it was designed. In other words, we need to validate
our tool. We have to validate if the objectives previously defined, were met. With that in
mind, a dynamic approach through testing was adopted.

This chapter is composed by three different sections. In section 5.1 we test the simplest
components of the system, through unit testing. Section 5.2 contains integration testing in
which we test how these components interact with each other. Finally, in section 5.3 the
system is tested as a whole. To do this, we check if the requirements previously defined are
fulfilled. Since the usability is quite important in the context of our solution, in Section
5.4 we measure the usability levels with a usability checklist.

5.1 Unit testing

Unit testing consists in testing a small part of the system in isolation, which we call unit.
In other words, we test the simplest components that make our system, separately.

We can divide our django backend project into 4 separate components: driver, vehicle, task
and plan. Each of these concerns one of the main entities of our system. These components
can be divided in 3 main parts:

• models.py - concerns the data model

• views.py - concerns the requests and responses

• urls.py - concerns the urls of the views

Each component, also known as django app, has a folder named tests which contains 3
files. Each file has the test cases for each part. We can observe an example below, Figure

44

Validation

5.1

Figure 5.1: Test folder structure for Task application

In this section, since we are only performing unit testing, we will only focus on testing
models.py and urls.py. The tests that concern views.py will be described in the next
section. The reason for this is that views.py involve interactions between different units.
As such, this is outside the scope of unit testing.

One of the advantages of unit testing is that if we need to make any change, we are able to
guarantee that it did not affect what was already done. In order to do that we just need
to rerun the tests. This is known as regression testing.

A pass/fail criteria was defined, in order to know if a test is valid or not. With regard to
the pass/fail criteria, we consider that a test has passed as long as it has an outcome equal
to the expected outcome. In addition, if a test throws an error, the test is not accepted.

In order to run these tests we used Django’s test-execution framework. However,
since we built a multitenant system we also needed to use django-tenants test package [17].

This type of tests were written along with the code. As such, it made no sense to use any
coverage criteria. Finally, all these tests are done through the use of assertions.

In the tables bellow we can observe the unit tests results for the entity Driver. Table 5.1
concerns the models. Table 5.2 concerns the urls.

Test ID Description Function reference Expected Outcome Actual Outcome Result
Driver_U_M1 Create driver test_driver_is_created Driver created Driver created Pass
Driver_U_M2 Create skill and add to driver test_driver_has_skill Driver has a skill associated Driver has a skill associated Pass
Driver_U_M3 Delete driver test_delete_driver Driver is deleted Driver is deleted Pass
Driver_U_M4 Remove skill from driver test_delete_skill_from_driver Skill is removed from driver Skill is removed from driver Pass
Driver_U_M5 Edit driver test_edit_driver Driver information is edited Driver information is edited Pass
Driver_U_M6 Add workblocks to driver test_add_workblocks_to_driver Workblock is added to driver Workblock is added to driver Pass
Driver_U_M7 List drivers test_list_drivers All drivers are shown All drivers are shown Pass

Table 5.1: Driver - Models - Unit testing

Test ID Description Function reference Expected Outcome Actual Outcome Result
Driver_U_U1 Create driver url test_driver_is_created CreateDriverView is called through the url CreateDriverView is called through the url Pass
Driver_U_U2 Create skill url test_create_skill_url CreateSkillView is called through the url CreateSkillView is called through the url Pass
Driver_U_U3 List drivers url test_list_drivers_url ListDriversView is called through the url ListDriversView is called through the url Pass

Driver_U_U4 Get driver by id url
(when given a driver id) test_get_driver_by_id_url GetDriverByIDView is called through the url GetDriverByIDView is called through the url Pass

Driver_U_U5 Edit driver test_edit_driver Driver information is edited Driver information is edited Pass
Driver_U_U6 Add workblocks to driver test_add_workblocks_to_driver Workblock is added to driver Workblock is added to driver Pass
Driver_U_U7 List drivers test_list_drivers All drivers are shown All drivers are shown Pass

Table 5.2: Driver - Urls - Unit testing

A total of 39 test cases were used for unit testing. 22 of these are related to models, and
the remaining 17 to urls. If we take a look at Appendix A we can observe all the test cases

45

Chapter 5

that were made for unit testing the Models. We have 4 distinct tables, one for each entity
(Driver, Task, Vehicle and Plan). Additionally, Appendix B, contains all the test cases for
unit testing the Urls.

5.2 Integration testing

Integration testing consists in testing the units once these are combined. In these type of
tests, interactions between different units are under analysis.

As mentioned earlier, in this section we will focus on testing the views.py. In a nutshell, a
django view receives a web request and returns a web response. Basically, corresponds to
the interaction between different units tested in the previous section, such as models and
urls.

We are testing the views mentioned in the previous section. A total of 17 test cases were
used. The same amount of test cases used for unit testing the urls.

Test ID Description Function reference Expected Outcome Actual Outcome Result
Driver_I_V1 Sends a POST request to create a driver test_create_driver_POST Web response that confirms the driver is created Web response that confirms the driver is created Pass
Driver_I_V2 Sends a POST request to create a skill test_create_skill_POST Web response that confirms the skill is created Web response that confirms the skill is created Pass
Driver_I_V3 Sends a GET request to list all drivers test_list_drivers_GET Web response that lists all drivers Web response that lists all drivers Pass

Driver_I_V4 Sends a GET request to obtain driver
with a specific id test_get_driver_by_ID_GET Web response that lists the driver with that ID Web response that lists the driver with that ID Pass

Table 5.3: Driver - Views - Integration testing

The Appendix C contains the rest of the test cases for integration testing. We also have 4
tables, one for each different entity, with the respective test cases.

5.3 System testing

In System testing, the system is tested as a whole. It is one of the last stages of the
validation process, and one of the most important. In this type of tests we check whether
the requirements have been met or not. In order to do this, based on the requirements in
Chapter 4, we created a list of functional tests. As such, we are under a functional testing
approach.

In addition, it is worth mentioning that the input used throughout this testing methodology
corresponds to a real-world example. This is extremely important at this point, since we
are trying to validate our tool.

Before starting, we need to have a coverage criteria. Coverage criteria can be defined as
the amount of program that is examined in a test suite [18]. Since it is impossible to test
all the inputs a program can take, we need to define this criteria prior to testing. Normally,
the criteria defined is the percentage of code executed by a test suite. In this case, instead
of measuring the percentage of code executed, we will cover all the main functionalities.

In Table 5.4 we have an example of a test case. The rest of the test cases can be found
attached to this document, Appendix D. In this appendix we a test case for each one of
the main functionalities.

46

Validation

Test ID F_TC_1

User Story
2. Define vehicles
12. Import resources
and tasks

Description The user has a list of vehicles, with the appropriate characteristics,
that are imported into the system

Pre
conditions None

Steps to reproduce

1. List of vehicles and characteristics
are in a .csv file (in a specific format)
2. Navigate to "Vehicles" page
3. Select "Import file" and select the .csv file
4. Select "Submit" button

Expected Result A message appears saying the vehicles were successfully
inserted into the system

Actual Result A message appears saying the vehicles were successfully
inserted into the system

Result Pass

Table 5.4: Test Case 1 - Functional Testing

A total of 17 test cases were used. All tests passed successfully, which allows us to take an
important step towards the validation of our tool.

Furthermore, just like mentioned earlier, the input used corresponds to an input from a
real client from Sentilant, in the fuel problem. The fact that this input gives the results
we were expecting also helps in the validation process.

5.4 Usability checklist

Since the scope of this internship is a frontend tool, usability is an important factor to be
taken into account. In addition to fulfill the goals for which it was designed, the system
has to be user-friendly. In a nutshell, it has to be easy for the end user to understand how
the tool works.

At this point, the best thing to do would be a usability test. However, since we are talking
about a relatively small project, this process was not carried out. As an alternative, a
usability checklist was applied. This list allows us to check if the most important usability
principles are being fulfilled.

In order to do that, we used a usability checklist made by Sapo (https://ux.sapo.pt/
checklists/usabilidade/). This UX checklist was applied and later translated to English
for consistency reasons with the present document.

Although some do not apply, the checklist is divided into the following topics:

• Navigation and feedback

• Layout

• Readability

• Forms and messages

47

https://ux.sapo.pt/checklists/usabilidade/
https://ux.sapo.pt/checklists/usabilidade/

Chapter 5

• Help

• Social networks

• Responsive

• Performance

This checklist proved to be quite useful. It allowed us to correct some points that were
not being fulfilled. For example, we were not providing any information on user’s location
when navigating through the website. Thanks to this process we were able to detect this
problem and fix it. We can observe this principle being applied bellow, Table 5.5.

ID Name Description

2 Feedback on user location is provided We must always inform the user’s location, preferably through
a clear visual feedback in the menu, indicating the section in which the user is.

Table 5.5: Navigation and feedback - Feedback on user location is provided.

If at least 80% of these metrics are met, we can say that our tool is within acceptable
usability levels.

There are a total of 28 principles. However, it makes no sense to apply 6 of them to our
tool. That leaves us with a total of 22. Our tool complies with 18 of these rules, which
corresponds to approximately 82%. With that said, we can assume that our usability levels
are within the standards.

In addition to this checklist, during the implementation process we always tried to have in
mind the two principles defined in Section 4.1.

If we take a look at the state of our solution, we can easily see these two principles are
being fulfilled. All the information about an optimized work plan is displayed to the user
in one page. This is very important as it makes its interpretation easier for the end user.
In addition, all the main functionalities are always visible and and can be easily accessed.

In conclusion, our solution passed all the tests carried out, along with the fact that it has
the minimum usability levels. This allows us to validate our tool with some confidence.

Analogously to what happened with the tests, the rest of this checklist is attached to
this document, Appendix E. This appendix is organized by the usability topics previously
listed. If a principle is colored green means it is verified. Otherwise, it is colored red.

48

Chapter 6

Internship Planning

This chapter serves to document the internship planning. Section 6.1 shows the processes
adopted in terms of software development, in the context of the company. In Section 6.2
we can find the work done in the first semester and in the second semester, respectively.
Section 6.3 contains a small risk analysis, in order to follow the best software engineering
practices.

6.1 Development Methodology

In software development, when planning, it is very important to choose an appropriate
development methodology. With this in mind, the methodology used by Sentilant is Agile.

Agile is an iterative process in which a team divides a project in several parts (sprints) in
order to continuously improve the product together with the stakeholders [19].

Figure 6.1 illustrates how this kind of methodology works. The Product Backlog is our
starting point and represents the requirements, through user stories, to be implemented in
the project. From the Product Backlog, some user stories are selected to be part of the
Sprint Backlog. Before a Sprint begins, the Sprint Backlog is defined in a meeting usually
referred as Sprint Planning. A Sprint is a period of time (2-4 weeks) in which a team
completes the tasks previously assigned. These tasks correspond to the Sprint Backlog.
During a Sprint it is common to have daily meetings to monitor progress within the team.
Whenever a Sprint is finished, the product is incremented. This process is repeated until
the product is finished.

This methodology is based on an iterative process, as such it has some advantages. The
main reason is that since it is very flexible, it is much easier to respond to possible changes
that may arise throughout the project.

In an Agile methodology we have to assign roles to the members involved in this process.
We are a small group, so some adaptations had to be made.

In this methodology I have two roles: Team Lead and Developer. This project is being
carried out in the context of my curricular internship, so I will be the only doing all the
development. For the same reason, I can also be considered the Team Lead, since the
responsibility for the success of the project is mine.

As a Developer I was in charge of product design, implementation and testing. As a
Team Lead I have to make sure that everything is going as expected. Otherwise, I have

49

Chapter 6

to make the necessary changes.

Additionally, the rest of the company will act as Stakeholders. Their main job is to
ensure that the project meets its business objectives. They are also responsible for the
management of the Product Backlog.

Figure 6.1: Agile methodology (from Bits in Glass [4])

6.2 Planning

In this section we can find out how the internship was planned over time. We can observe
the approximately 10 months of internship divided by two semesters.

6.2.1 First Semester

As planned, the internship started in the middle of September, with a face-to-face meet-
ing with the entire company. This meeting took place in a meeting room at Instituto
Pedro Nunes (IPN), where Sentilant is based. It is important to mention that, taking
into account the context of the COVID-19 pandemic, all Direção Geral de Saúde (DGS)
recommendations were followed throughout the meeting.

To mitigate the risk of the pandemic, Slack and Zoom were used as the main means of
communication. Slack mainly for quick conversations and scheduling meetings. Zoom was
used to hold video conference meetings.

At the meeting, in addition to introducing me to the company members, I was given some
more information about the internship. My first task was to read my colleague’s Rafael
Henriques, internship intermediate report, which is related to my internship. In doing so, I
would be learning about his work and at the same time learning more about the topic. This
served as a kind of introduction, since I would work with him, within the same subjects.

50

Internship Planning

For better interpretation, this report was read twice while taking some notes. In addition,
I was asked to write the objectives of the internship, as a guarantee that I had understood
them. At the same time, I was also trying to get in touch with the tools that I would use
in development, in this case Angular, React and Django.

In this period, in order to receive feedback, I started to have remote weekly meetings with
the company via Zoom. These meetings lasted at most 1 hour.

Figure 6.2 illustrates the planning for the first semester. We have two colors to represent
the time window of each task. In red we have the expected time. In green we have the
effective (actual) time that each one took.

Figure 6.2: First Semester Planning - Gantt Chart

At the beginning of October, I was in a position to start gathering material for my state of
the art. For that, I started by researching all the tools that could make sense to analyze.
The state of the art took roughly a month to gather information. It can be easily explained
taking into account the large number of tools found. Nevertheless, I continued to try to
learn some of the tools that were going to be used in development.

In early November, we started to identify high-level requirements. In this part, we also
paid attention to the restrictions imposed. During the requirements survey, some mockups
were also designed.

We arrived in December, close to the holidays, and it was time to start designing a high
level architecture of our tool to be presented in the present report.

The rest of the time was reserved for writing the intermediate report.

6.2.2 Second Semester

The majority of the second semester was dedicated to the development process. As such,
we have a total of 7 Sprints.

Figure 6.3 illustrates the planning for the second semester. As we can see, there were some
differences between the actual vs expected timeline.

51

Chapter 6

Figure 6.3: Second Semester Planning - Gantt Chart

We started the semester by discussing the information collected in the intermediate pre-
sentation. For that reason, a meeting was held with the advisor in the company and the
advisor in the department.

The next step involved completing the architecture. This process took a short time as
we came to the conclusion that there was not much to add. However, in this process,
some new tools emerged that had not been discussed in the first semester. As such, it
was necessary to configure these tools and prepare the development environment. This
step was not taken into account in the first planning, and as such there was an advance of
approximately one week here.

That said, the development process started. Most sprints lasted 2 weeks, with 2 exceptions,
that lasted 3 weeks (Sprint#1 and Sprint#7). As a result, we had one less sprint. However,
this is perfectly fine since we are using a flexible methodology, Agile. Throughout each
sprint, in addition to the implementation, some tests were also performed.

Although a staging phase was planned, it ended up not happening.

Lastly, the final two weeks of June were set aside for writing the final report.

The following table, Table 6.1, describes briefly what was done in each one of the sprints.

Sprint Description Duration

1
Design the data model
Creation of API endpoints to insert entities
(vehicles, drivers and tasks) into the system

3 weeks

2 Frontend design
Import .csv files into the system (via interface) 2 weeks

3 Integration with the Solver API 2 weeks
4 Data presentation in the frontend 2 weeks

5 Save plan feature
Map presentation 2 weeks

6 Internationalization
Gantt chart 2 weeks

7 Route manipulation 3 weeks

Table 6.1: Planning for each sprint

52

Internship Planning

6.3 Risk Analysis

Throughout the development process of a Software Engineering project, one of the respon-
sibilities of the Project Manager (PM) is to identify risks. A risk is a potential problem
that may affect, directly or indirectly, the outcome of a software project [20]. As such, it
can significantly influence its success. Subsequently, it is important to identify them early
on, and also find a way to mitigate them. In order to identify these risks, at the beginning
of each sprint, a short discussion was held with the advisor. In Table 6.2 we can observe
all the risks identified in this project and the respective mitigation strategies.

Description Consequences Mitigation Probability Impact Sprint
Focusing the development only
in the backend and leave the
frontend part once this is completed.
Bearing in mind that two frameworks
(Django and React) are being used
without previous experience.

This could lead to a
poor and/or incomplete
frontend component.

Start from the beginning
working on both parts in
order to obtain experience

Medium Medium 2

Small details are always coming
up that cause the data model to
be constantly changing.

We need to be constantly
erasing and creating the DB.
These changes can
affect significantly
the schedule of the project.

Assess from the beginning
if the data model is capable
of modeling diverse real
problems in order to avoid
continuous changes

High Medium 3

Table 6.2: Identified risks

53

Chapter 7

Conclusion

After about 10 months, this curricular internship came to an end. Throughout all this
process, there were no major problems or delays. In addition, it was successful since all
the previously defined objectives were achieved. As such, we can conclude that the project
went as expected.

In the first semester we were able to define the main functional aspects of our solution.
Through the realization of the state of the art we managed to find that there is no ideal
tool to solve our problem. In addition, we gathered a good amount of characteristics and
features that should be considered for our solution. High-level functional requirements
have also been defined. From these, a high-level architecture was designed.

In the second semester we started the development process. The development methodology
adopted was Agile. There was a total of 7 sprints. Each sprint lasted about 2 weeks, with
exception for two sprints.

Also during this semester, it was necessary to carry out a validation. This was important as
it allows us to make sure we built the right product. In order to achieve this, three types
of testing methodologies were followed: unit testing, integration testing and functional
testing.

Lastly, the in the final step of the validation process, the usability of the system was
evaluated. This had to be done since the usability levels are a very important aspect of
this project.

Regarding the future work issue. Due to lack of time, some of the functional requirements
were not implemented (e.g., authentication). The next logical step would be to implement
them. Later, it would be interesting to integrate this solution with Sentilant’s current
solution, DrivianTasks. Finally, in this type of tool there is always some new feature to
develop. Whether by need or by customer request.

In conclusion, we delivered a tool that meets the requirements for which it was built. As
mentioned earlier, all the main objectives were fulfilled. As such, this tool can be used by
the end user in order to achieve their business goals and help reduce costs.

54

References

[1] Rafael Filipe Carreira Henriques. Work plan. In Tailored Field-Service Optimization,
2020.

[2] Emergn. How to write a great user story for product planning and development,
2017. https://www.emergn.com/blog/write-great-user-stories/, (Accessed on
2020-01-06).

[3] University of New Brunswick. Understanding quality attributes, 2011. https://www.
cs.unb.ca/~wdu/cs6075w10/sa2.htm, (Accessed on 2020-01-11).

[4] Aaron Emmert, Bits in Glass. Agile methodologies enhance
appian delivery – part 1, 2019. https://bitsinglass.com/
agile-methodologies-enhance-appian-delivery-part-1/, (Accessed on 2020-01-
08).

[5] João Reis. Angular vs react: A comparison of both frameworks, 2020. https://www.
imaginarycloud.com/blog/angular-vs-react/, (Accessed on 2020-01-08).

[6] Margaret Rouse. What is field service management?, 2016.
https://searchcustomerexperience.techtarget.com/definition/
field-service-management-FSM, (Accessed on 2020-01-10).

[7] Verizon Connect. What is route optimization?, 2020. https://www.verizonconnect.
com/ca/glossary/what-is-route-optimization/, (Accessed on 2020-01-11).

[8] Brandon Wozniewicz. The difference between a framework
and a library, 2019. https://www.freecodecamp.org/news/
the-difference-between-a-framework-and-a-library-bd133054023f/, (Ac-
cessed on 2020-01-10).

[9] QRA. Functional vs non-functional requirements: The definitive guide,
2020. https://qracorp.com/functional-vs-non-functional-requirements/,
(Accessed on 2020-01-08).

[10] Wikipedia. User story, 2017. https://en.wikipedia.org/wiki/User_story, (Ac-
cessed on 2020-01-06).

[11] Nikolay Ashanin. Quality attributes in software ar-
chitecture, 2018. https://medium.com/@nvashanin/
quality-attributes-in-software-architecture-3844ea482732, (Accessed
on 2020-01-11).

[12] A. A. A. Saeed and S. Lee. Non-functional requirements trade-off in self-adaptive
systems. In 2018 4th International Workshop on Requirements Engineering for Self-
Adaptive, Collaborative, and Cyber Physical Systems (RESACS), pages 9–15, 2018.

55

https://www.emergn.com/blog/write-great-user-stories/
https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm
https://www.cs.unb.ca/~wdu/cs6075w10/sa2.htm
https://bitsinglass.com/agile-methodologies-enhance-appian-delivery-part-1/
https://bitsinglass.com/agile-methodologies-enhance-appian-delivery-part-1/
https://www.imaginarycloud.com/blog/angular-vs-react/
https://www.imaginarycloud.com/blog/angular-vs-react/
https://searchcustomerexperience.techtarget.com/definition/field-service-management-FSM
https://searchcustomerexperience.techtarget.com/definition/field-service-management-FSM
https://www.verizonconnect.com/ca/glossary/what-is-route-optimization/
https://www.verizonconnect.com/ca/glossary/what-is-route-optimization/
https://www.freecodecamp.org/news/the-difference-between-a-framework-and-a-library-bd133054023f/
https://www.freecodecamp.org/news/the-difference-between-a-framework-and-a-library-bd133054023f/
https://qracorp.com/functional-vs-non-functional-requirements/
https://en.wikipedia.org/wiki/User_story
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732
https://medium.com/@nvashanin/quality-attributes-in-software-architecture-3844ea482732

Chapter

[13] Michael Keeling. Dealing with constraints in software archi-
tecture design, 2014. https://www.neverletdown.net/2014/10/
dealing-with-constraints-in-software-architecture.html, (Accessed on
2020-01-05).

[14] Darius Sas and Paris Avgeriou. Quality attribute trade-offs in the embedded systems
industry: an exploratory case study. Software Quality Journal, 28(2):505–534, Jun
2020.

[15] Simon Brown. The c4 model for visualising software architecture, 2011. https:
//c4model.com/, (Accessed on 2020-01-09).

[16] Hoang Pham. Verification and validation. In Software Reliability, 2000.

[17] Django Tenants Documentation. Tests, 2020. https://django-tenants.
readthedocs.io/en/latest/test.html, (Accessed on 2021-06-21).

[18] Jeff Offutt Paul Ammann. Coverage criteria. In Introduction to Software Testing,
2013.

[19] Wrike. What is agile methodology in project management?,
2018. https://www.wrike.com/project-management-guide/faq/
what-is-agile-methodology-in-project-management/, (Accessed on 2020-01-09).

[20] Cast Software. Risk management in software development and software en-
gineering projects, 2021. https://www.castsoftware.com/research-labs/
risk-management-in-software-development-and-software-engineering-projects,
(Accessed on 2021-06-15).

56

https://www.neverletdown.net/2014/10/dealing-with-constraints-in-software-architecture.html
https://www.neverletdown.net/2014/10/dealing-with-constraints-in-software-architecture.html
https://c4model.com/
https://c4model.com/
https://django-tenants.readthedocs.io/en/latest/test.html
https://django-tenants.readthedocs.io/en/latest/test.html
https://www.wrike.com/project-management-guide/faq/what-is-agile-methodology-in-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-agile-methodology-in-project-management/
https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects
https://www.castsoftware.com/research-labs/risk-management-in-software-development-and-software-engineering-projects

Appendices

57

This page is intentionally left blank.

Driver

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not executed /
Suspended

Driver_U_M1 Create driver test_driver_is_created Driver created Driver created Pass
Driver_U_M2 Create skill and add to driver test_driver_has_skill Driver has a skill associated Driver has a skill associated Pass
Driver_U_M3 Delete driver test_delete_driver Driver is deleted Driver is deleted Pass
Driver_U_M4 Remove skill from driver test_delete_skill_from_driver Skill is removed from driver Skill is removed from driver Pass
Driver_U_M5 Edit driver test_edit_driver Driver information is edited Driver information is edited Pass
Driver_U_M6 Add workblocks to driver test_add_workblocks_to_driver Workblock is added to driver Workblock is added to driver Pass
Driver_U_M7 List drivers test_list_drivers All drivers are shown All drivers are shown Pass

Vehicle

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not executed /
Suspended

Vehicle_U_M1 Create vehicle test_vehicle_is_created Vehicle is created Vehicle is created Pass
Vehicle_U_M2 Create capacity and add to vehicle test_vehicle_has_capacity Vehicle has a capacity associated Vehicle has a capacity associated Pass
Vehicle_U_M3 Delete vehicle test_delete_vehicle Vehicle is deleted Vehicle is deleted Pass
Vehicle_U_M4 Remove capacity from vehicle test_remove_capacity_from_vehicle Capacity is removed from vehicle Capacity is removed from vehicle Pass
Vehicle_U_M5 Edit vehicle test_edit_vehicle Vehicle information is edited Vehicle information is edited Pass
Vehicle_U_M6 List vehicles test_list_vehicles All vehicles are shown All vehicles are shown Pass

Task

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not executed /
Suspended

Task_U_M1 Create task test_task_is_created Task is created Task is created Pass
Task_U_M2 Create skill and add to task test_task_has_skill Task has a skill associated Task has a skill associated Pass
Task_U_M3 Delete task test_delete_task Task is deleted Task is deleted Pass
Task_U_M4 Edit task test_edit_task Task information is edited Task information is edited Pass
Task_U_M5 List tasks test_list_tasks All tasks are shown All tasks are shown Pass

Plan

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not executed /
Suspended

Plan_U_M1 Create plan test_plan_is_created Plan is created Plan is created Pass
Plan_U_M2 Delete plan test_delete_plan Plan is deleted Plan is deleted Pass
Plan_U_M3 Edit plan test_edit_plan Plan information is edited Plan information is edited Pass
Plan_U_M4 List plans test_list_plans All plans are shown All plans are shown Pass

Appendix A

59

This page is intentionally left blank.

Driver

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed / Suspended

Driver_U_U1 Create driver url test_driver_is_created CreateDriverView is called through the url CreateDriverView is called through the url Pass
Driver_U_U2 Create skill url test_create_skill_url CreateSkillView is called through the url CreateSkillView is called through the url Pass
Driver_U_U3 List drivers url test_list_drivers_url ListDriversView is called through the url ListDriversView is called through the url Pass
Driver_U_U4 Get driver by id url (when given a driver id) test_get_driver_by_id_url GetDriverByIDView is called through the url GetDriverByIDView is called through the url Pass

Vehicle

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed / Suspended

Vehicle_U_U1 Create vehicle url test_create_vehicles_url CreateVehicleView is called through the url CreateVehicleView is called through the url Pass
Vehicle_U_U2 List vehicles url test_list_vehicles_url ListVehiclesView is called through the url ListVehiclesView is called through the url Pass
Vehicle_U_U3 Create vehicle capacity url test_create_vehicle_capacity_url CreateCapacityView is called through the url CreateCapacityView is called through the url Pass
Vehicle_U_U4 Get vehicle by id url (when given a driver id) test_get_vehicle_by_id GetVehicleByID is called through the url GetVehicleByID is called through the url Pass

Task

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed / Suspended

Task_U_U1 Create task url test_create_task_url CreateTaskView is called through the url CreateTaskView is called through the url Pass
Task_U_U2 Create product url test_create_product_url CreateProductView is called through the url CreateProductView is called through the url Pass
Task_U_U3 List tasks url test_list_tasks_url ListTasksView is called through the url ListTasksView is called through the url Pass
Task_U_U4 List locations url test_list_locations_url ListLocationsView is called through the url ListLocationsView is called through the url Pass
Task_U_U5 List products url test_list_products_url ListProductsView is called through the url ListProductsView is called through the url Pass
Task_U_U6 Get last task ID url test_get_last_task_id_url GetLastTask is called through the url GetLastTask is called through the url Pass
Task_U_U7 Get tasks by ID url test_get_tasks_by_id_url GetTasksByID is called through the url GetTasksByID is called through the url Pass

Plan

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed / Suspended

Plan_U_U1 Save plan url test_save_plan_url SavePlanView is called through the url SavePlanView is called through the url Pass
Plan_U_U2 List plans url test_list_plans_url ListPlansView is called through the url ListPlansView is called through the url Pass

Appendix B

61

This page is intentionally left blank.

Driver

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed /
Suspended

Driver_I_V1 Sends a POST request to create a driver test_create_driver_POST Web response that confirms the driver is created Web response that confirms the driver is created Pass
Driver_I_V2 Sends a POST request to create a skill test_create_skill_POST Web response that confirms the skill is created Web response that confirms the skill is created Pass
Driver_I_V3 Sends a GET request to list all drivers test_list_drivers_GET Web response that lists all drivers Web response that lists all drivers Pass
Driver_I_V4 Sends a GET request to obtain driver with a specific id test_get_driver_by_ID_GET Web response that lists the driver with that ID Web response that lists the driver with that ID Pass

Vehicle

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed /
Suspended

Vehicle_I_V1 Sends a POST request to create a vehicle test_create_vehicle_POST Web response that confirms the vehicle is created Web response that confirms the vehicle is created Pass
Vehicle_I_V2 Sends a GET request to obtain all vehicles test_list_vehicles_GET Web response that lists all vehicles Web response that lists all vehicles Pass
Vehicle_I_V3 Sends a POST request to create a vehicle capacity test_create_capacity_POST Web response that confirms the vehicle capacity is created Web response that confirms the vehicle capacity is createdPass
Vehicle_I_V4 Sends a GET request to obtain vehicle with a specific id test_get_vehicle_by_ID_GET Web response that lists the vehicle with that ID Web response that lists the vehicle with that ID Pass

Task

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed /
Suspended

Task_I_V1 Sends a POST request to create a task test_create_task_POST Web response that confirms the task is created Web response that confirms the task is created Pass
Task_I_V2 Sends a POST request to create a product test_create_product_POST Web response that confirms the product is created Web response that confirms the product is created Pass
Task_I_V3 Sends a GET request to list all tasks test_list_tasks_GET Web response that list all tasks Web response that list all tasks Pass
Task_I_V4 Sends a GET request to list all locations test_list_locations_GET Web response that list all locations Web response that list all locations Pass
Task_I_V5 Sends a GET request to list all products test_list_products_GET Web response that list all products Web response that list all products Pass
Task_I_V6 Sends a GET request to obtain last inserted task ID test_get_last_task_ID_GET Web response with the ID of the last inserted task Web response with the ID of the last inserted task Pass
Task_I_V7 Sends a GET request to obtain tasks with a specific ID test_get_task_by_ID_GET Web response with the tasks requested by ID Web response with the tasks requested by ID Pass

Plan

Test ID Description Function reference Expected Outcome Actual Outcome Pass / Fail / Not
executed /
Suspended

Plan_I_V1 Sends a POST request to save a plan test_save_plan_POST Web response that confirms the plan is saved Web response that confirms the plan is saved Pass
Plan_I_V2 Sends a GET request to list all plans test_list_plans_GET Web response that list all the plans Web response that list all the plans Pass

Appendix C

63

This page is intentionally left blank.

Test ID User Story Description Pre conditions Steps to reproduce Expected Result Actual Result Result

F_TC_1 2. Define vehicles
12. Import resources and tasks

The user has a list of vehicles, with the appropriate
characteristics, that are imported into the system

None 1. List of vehicles and characteristics
are in a .csv file (in a specific format)
2. Navigate to "Vehicles" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the vehicles were
successfully inserted into the system

A message appears saying the vehicles were
successfully inserted into the system

Pass

F_TC_3 3. Define drivers
12. Import resources and tasks

The user has a list of drivers, with the appropriate
characteristics, that are imported into the system

None 1. List of drivers and characteristics are
in a .csv file (in a specific format)
2. Navigate to "Drivers" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the drivers were
successfully inserted into the system

A message appears saying the drivers were
successfully inserted into the system

Pass

F_TC_4 4. Define tasks
12. Import resources and tasks

The user has a list of tasks, with the appropriate
characteristics, that are imported into the system

None 1. List of tasks and characteristics are
in a .csv file (in a specific format)
2. Navigate to "Tasks" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the tasks were successfully
inserted into the system

A message appears saying the tasks were
successfully inserted into the system

Pass

F_TC_5 Not defined The user has a list of vehicle capacities, that are
imported into the system

None 1. List of vehicle capacities are in a .
csv file (in a specific format)
2. Navigate to "Capacities" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the vehicles capacities were
successfully inserted into the system

A message appears saying the vehicles capacities
were successfully inserted into the system

Pass

F_TC_6 Not defined The user has a list of products, that are imported into
the system

None 1. List of products are in a .csv file (in a
specific format)
2. Navigate to "Products" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the products were
successfully inserted into the system

A message appears saying the products were
successfully inserted into the system

Pass

F_TC_7 Not defined The user has a list of skills, that are imported into the
system

None 1. List of skills are in a .csv file (in a
specific format)
2. Navigate to "Skills" page
3. Select "Import file" and select the .
csv file
4. Select "Submit" button

A message appears saying the skills were successfully
inserted into the system

A message appears saying the skills were
successfully inserted into the system

Pass

F_TC_8 5. Select resources All the available resources and tasks loaded into the
system are ready to be used in the optimization
process

We need to have tasks, products,
vehicles (with vehicles capacities) and
drivers previously imported to the
system

1. Navigate to "Overview" page
2. Select "Optimize" button

After a few seconds we receive the optimized plan
(routes, unasigned tasks and metrics) from the external
solver.

After a few seconds we receive the optimized plan
(routes, unasigned tasks and metrics) from the
external solver.

Pass

F_TC_9 6. Interpret gantt Once the plan is optimized we can have a general view
in a Gantt chart

We need to have a previously
optimized plan

1. Navigate to "Overview" page
2. Select "Gantt" tab

We can observe the results of the optimized plan in a
Gantt diagram format

We can observe the results of the optimized plan in a
Gantt diagram format

Pass

F_TC_10 7. Interpret KPI Once the plan is optimized we can have see some
important KPIs that allows us to have an opinion in the
quality of the optimized plan (e.g., total distance and
percentage of assigned tasks)

We need to have a previously
optimized plan

1. Navigate to "Overview" page
2. Observe the cards in the top middle
of the screen

We can observe some important KPIs about the plan We can observe some important KPIs about the plan Pass

F_TC_11.1 8. Interpret routes Once the plan is optimized we can see all the routes
listed with information such as cargo location, starting
time, driver, among others

We need to have a previously
optimized plan

1. Navigate to "Overview" page
2. Observe the routes list

We can observe the list of routes of the optimized plan We can observe the list of routes of the optimized
plan

Pass

F_TC_11.2 8. Interpret routes We can expand a specific route and observe the list of
tasks and respective details

We need to have a previously
optimized plan

1. Navigate to "Overview" page
2. Click the "Arrow" icon in a route to
expand it

We can observe the list of tasks in each route
individually

We can observe the list of tasks in each route
individually

Pass

F_TC_11.3 8. Interpret routes We can expand a specific route and observe the tasks
on map

We need to have a previously
optimized plan

1. Navigate to "Overview" page
2. Click the "Arrow" icon in a route to
expand it
3. Click the "Position" icon to open a
map dialog

We can observe the starting position and the tasks on
the map

We can observe the starting position and the tasks
on the map

Pass

F_TC_12 9. Save plan We can save the optimized plan We need to have a previously
optimized plan

1. Select a name for the plan in the
Header component of the application
2. Click the "Floppy" icon in the Header
component to save the plan

A message appears informing the user that the plan
was successfully saved

A message appears informing the user that the plan
was successfully saved

Pass

F_TC_13 10. Erase plan We can delete the optimized plan We need to have a previously
optimized plan

1. Click the "Garbage" icon in the
Header component to delete the plan

A message appears informing the user that the plan
was successfully erased

A message appears informing the user that the plan
was successfully erased

Pass

F_TC_14 13. Compare plans We can compare previously saved plans in general We need to have more than one plan
previously saved

1. Navigate to "Plans" page

We can observe the list of plans previously saved with a
few KPIs that allows the user to compare them
generally

We can observe the list of plans previously saved
with a few KPIs that allows the user to compare them
generally

Pass

F_TC_15 15. Consult saved plans We can open previously saved plans We need to have a previously
optimized plan saved

1. Navigate to "Plans" page
2. Click on the plan name to open it

We are redirected to the "Overview" page where we can
see the overview of the plan we tried to open

We are redirected to the "Overview" page where we
can see the overview of the plan we tried to open

Pass

F_TC_16 17. Internationalization We can change the application language (between
portuguese and english)

None 1. Click the "Settings" icon in the
Header component
2. Select the flag of the language

The page is refreshed and loads the selected language The page is refreshed and loads the selected
language

Pass

Appendix D

65

This page is intentionally left blank.

ID Name Description Result

Navigation and Feedback

1
Feedback is always provided on
user actions

The user should always receive immediate
feedback on their actions, so that they know that
the system has received their command and is
processing it. This feedback can be provided in
several ways: when the user hovers over a link (a:
hover); when the user clicks on a link (a:active);
when the user navigates with the keyboard (a:
focus); when the user is filling in form fields (input
[type=text]:focus, textarea:focus); when the user
clicks on a link that opens on the same page (#id:
target); and/or when the action triggered by the
user takes a long time to be processed (progress
bar, "loading" icon or other information that gives
the feeling that the action is taking place and that
the user must wait for its completion).

2

Feedback on user location is
provided.

We must always inform the user's location,
preferably through a clear visual feedback in the
menu, indicating the section in which the user is.
This information can also be complemented with
"breadcrumb" type navigation in case there are
more than 2 hierarchical levels of navigation.

3

The titles of links and menus are
clear and understandable

The texts in the menus must be clearly visible so
that the user can understand from the outset what
content they will see if they click on a particular
link. Whenever possible, the use of abbreviations
in the main menus should be avoided.

4

Clickable items look clickable
and different from the rest of the
content

Clickable items must be clearly distinguishable
from other items. Links in the middle of the text
must be immediately identifiable as such and must
not be confused with the rest of the text. Once the
appearance of the links is defined, that aspect
must be kept identical on all other pages of the
site.

Appendix E

67

5
Non-clickable items don't look
like links or buttons

The use of underlined texts when they do not
contain links should be avoided. Additionally, in the
middle of the text, different colors should not be
used in words, sentences or paragraphs. A
consistency must be maintained in which the text
always maintains the same color across all pages,
as the use of text in a different color can also be
associated with the existence of a link to another
page. Even more serious is to use the same color
chosen for links in text that is not a link (if you do
not use underlined links, it is advisable to identify
them with a different color/appearance from the
rest of the text).

6

Link text makes sense when
read out of context

Users should be able to look at links and
automatically understand something about their
destination even before they click. The use of
terms such as "click here" can be quite counter-
productive and when read out of context does not
provide additional information.

7
There are no broken links

Links should be tested so that there are no broken
links (to non-existent pages, or to incorrect pages)

8
There is enough padding on the
paging links

In paging links, an extra spacing (padding) must be
created around each link. This makes navigation
easier as links placed only on one character
become too narrow and difficult to click. By
creating this extra spacing you increase the
clickable area on the links and at the same time
give better visual feedback to the user. Not applicable

Layout

9

Pages are consistent across the
entire website.

Important information and clickable items (major
and minor navigation blocks) should always be
placed in the same places throughout the entire
website.

Chapter

68

10

There is a specific style sheet for
printing

The website must be prepared so that the contents
can be read online or on paper. According to some
studies, the reason users choose to print an article
or read it online is because of its size. The larger
the size of the article, the more likely users are to
choose to print it rather than read it online. Thus,
the option to print the contents of a web page must
always be provided. This option must be done
through a specific style sheet (CSS) for printing
and not through a link that opens the same article
in a different version (optimized for printing). Not applicable

11

No fixed heights are defined for
the elements

It is important that the graphical appearance does
not limit the contents and that it grows as the
content increases or the text size increases. Thus,
the graphic elements should not have fixed
heights, as the contents that will be placed inside
can grow more than the height defined at the
beginning, thus breaking the layout.

12

The icons used are consistent
with the actions they perform.

Icons must always represent the same actions and
should not be reused for different actions
throughout the website.

13

Decorative images are not used
in the middle of the HTML

The use of decorative images in the middle of the
HTML (eg rounded corners, spacing images, etc)
should be avoided. All elements related to the
presentation/decoration must be included via CSS.
On the other hand, images that convey important
information or that are part of the content must be
included directly on the page via the IMG tag and
not as a background image of a DIV. Not applicable

Readability

14

Line spacing has been increased
to improve readability

A minimum line spacing of 1.4 points must be
maintained in the text blocks of the contents (texts
and articles). Greater line spacing helps make text
easier to read and reduce the feeling of tired eyes
after reading long text on the screen. This spacing
can be easily added via a CSS line: line-height:1.4;

69

15

Critical information (which
requires the user's attention) is
highlighted enough on the page

Critical information can be of various types, but it is
usually related to information about changed
content on the page or validation of data entered
by the user in forms. It could be warnings,
information, or errors. The highlight effect should
not be overused as it is more efficient when used a
few times on the page. On a website where the
user is constantly confronted with highlight text, the
effect of drawing the user's attention is easily lost.

16

Only bold text blocks are used to
highlight relevant information on
the page.

Excessive use of bold text should be avoided. Bold
text should only be used to highlight certain words
or phrases. Excessive use makes the emphasis we
want to give to the highlighted elements to lose its
effect. If everything is highlighted, nothing stands
out.

17

There is sufficient contrast
between the text color and the
background color

The color used in the texts must make a sufficient
contrast with the background color to ensure good
readability. A bad contrast between the two colors
can make the texts unreadable for a good part of
the population, even for people with “normal”
vision.

Forms and Messages

18

The mandatory items are
distinguishable from the others

Users must be able to clearly distinguish the fields
in which completion is mandatory from the other
fields. These days, most websites use an asterisk
in front of the field name to identify them as
required; other websites use the word "required"
instead of the asterisk. Both solutions are valid, but
the use of an asterisk requires a caption at the top
of the form to indicate that fields marked with * are
mandatory.

19

Error messages are next to the
elements that contain the error.

Error messages must be indicated next to the
fields that contain the error and not just at the top
or end of the form. This allows for better
contextualization of errors and helps to understand
where users need to correct them.

Chapter

70

20

The main actions are clearly
distinguishable from the
secondary actions on the forms.

There must be a visual differentiation between the
main actions and the secondary actions in order to
avoid potential errors on the part of the user. This
differentiation also helps to clearly see which
action confirms and which action cancels the form.

21

The forms are working and send
to the correct recipients

The forms must all be tested and the data
reception accounts must be verified to confirm that
the data was received successfully.

22

Search is working and error
messages are adequate

The search form must return results for the
searches carried out and when there are no
results, a message must be displayed indicating
that the search did not return any results.

Help

23

There is contextual help for more
complex interactions

Since most people do not usually read the
instructions/help before starting to use a system,
the most useful way to help users navigate and
overcome situations that can be more complicated
is to provide contextual help at the right time. and
in the right place, where we know users will need
it.

24

Error messages help resolve the
issue

Error messages should be clear and should help
the user to correct the error. A message such as:
"An error occurred while filling out the form" does
not help at all to know why the error occurred or
how to correct it.

Social networks

25
Added "Open Graph" tags

Open Graph tags must be added at the beginning
of all content pages that allow you to indicate a
series of parameters about the content of the page
and that will be used in shares on social networks. Not applicable

Responsive

71

26

The site has been tested on
devices of various sizes

When developing responsive websites, they should
be tested on multiple devices with different screen
sizes to confirm that the layouts are correctly
applied. Not applicable

Performance

27

All static files have been minified
and compressed

All static files (eg CSS, JS and HTML) must be
minified and compressed. This saves a lot of KB
every time pages are loaded.

28

The contents were optimized for
mobile

It is important to ensure that the content that a
responsive website loads is optimized to be
consumed under these circumstances. This
includes serving lighter images, replacing Flash
elements (if any) with HTML5 equivalents (eg
video players) and reducing decorative elements to
as few items and files as possible. Not applicable

Chapter

72

	Introduction
	Context
	Internship objectives
	Document structure

	State of the art
	Background
	Existing tools
	Routific
	OptimoRoute
	Track-POD
	eLogii
	ElasticRoute
	Honorable mentions

	Comparison
	General comparisons
	Features and technical comparisons
	Interpretation

	Implementation framework

	Requirements
	Functional Requirements
	Quality Attributes
	Constraints
	Prioritization

	Tool Overview
	Design
	Architecture
	System Context Diagram
	Container Diagram
	Component Diagram

	Software development
	Implemented requirements
	System description
	System features

	Validation
	Unit testing
	Integration testing
	System testing
	Usability checklist

	Internship Planning
	Development Methodology
	Planning
	First Semester
	Second Semester

	Risk Analysis

	Conclusion
	Appendices

