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Abstract—In Software-Defined Networks (SDN) the placement
of controllers is an important factor for overall network reliabil-
ity. Whereas most studies assume that all links have similar link
failure rates/availability, placing controllers taking into account
differences in link availability can yield advantages. This is even
more relevant if the network is designed with a particular subset
of high availability links (a spine). After presenting integer lin-
ear programming formulations to support controller placement
considering differential link availability, we propose a simulation
approach to verify the reliability change due to that placement.
From a simulational study using 2 networks, 30 different link
availability configurations we found a definite advantage in
overall reliability in using the knowledge of high availability
links to place the controllers. However, while there were also
advantages to using certain spines for individual networks, these
advantages were not uniform, and varied according to networks,
the number of controllers placed and link availability ratio.
Further work is suggested to check whether fault patterns may
influence the reliability advantage of individual spines.

I. INTRODUCTION

In Software-Defined Networks (SDN) [8], the control func-
tion of data-plane components (such as switches and routers)
is transferred to a control plane (controllers), so the network
functions can be remotely programmed (application plane).
However, regardless of how many controllers a particular
network uses, each switching device must at all times be able
to receive and act upon fine-grained commands given by one
controller (of those assigned to it), which puts a premium
on controller-switch connection (control-path) reliability. The
correct placement of a suitable number of controllers is, there-
fore, a very important concern, and the so-called Controller
Placement Problem (CPP) has been subject to a large number
of studies (e.g. [3], [7]).

A. Motivation

To adequately place controllers to provide adequate net-
work reliability, the concept of link availability is relevant.
In fact, the availability of the control path is proportional to
the product of link availability of the links comprising it and,
all things being equal, selecting links with higher availability
would be expected to increase overall control path availability.
Networks availability concerns are frequently driven by the
reliability needs of the most demanding network services and
as such most networks do not assume differences in link

availability on the design or CPP stage. Such differences may
occur, either by network equipment evolution and degradation
or by explicit design (like proposed in [1]) and should be
considered when placing controllers. Analytical methods have
been the preferred method to assess placement quality, but in
this work we propose an alternative mechanism which intends
to actually measure network reliability using simulation. While
acknowledging the disadvantages in time and processing re-
quirements, we propose the added flexibility may prove useful
in addressing some less structured networks and fault patterns.

B. Related Work and Contribution

While the problem of optimal placement of SDN controllers
(CPP) has been widely studied (for some recent reviews, see
[3], [7], [12]) no definitive answer is yet evident. The problem
of defining what is optimal is itself complex, since many
conflicting objectives may be present, usually different spe-
cializations of latency, reliability and cost [9], but which may
also include less common objectives like energy-efficiency or
information sharing requirements [3]. Furthermore, many of
these objectives will be in conflict, hence the requirement
for multi-objective optimization also being common (see for
instance the multiple variations of the Pareto-based Optimal
COntroller placement (POCO) framework [6]). Regardless of
the actual mechanism used, however, the objective of CPP
usually includes the definition of the number and placement
of SDN controllers for a particular network.

Our work focuses in reliable control-paths. While the mech-
anisms of failure on an SDN network are quite varied (see
e.g. [15]) this work will explore link failures on the data
plane which translate to link failures in the control plane
for the control connection between controller and controlled
switch (in terms of reliability, we are concerned in supporting
multiple controllers and multiple control paths, but in this work
we aren’t concerned with inter-controller traffic). Among the
many proposals to solve this problem, our work is most closely
related to the proposals of Vizarreta et al. [14], particularly
in the support for multiple control paths to ensure control
plane reliability, but includes support for taking explicitly into
consideration the availability of individual links when deciding
which ones to consider. While a recent work [11] also takes
into account spine information for SDN networks, our proposal
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is not to design reliable SDN networks containing spines, but
rather to allow evaluation of their characteristics.

The usage of discrete-event simulation in SDN is common,
particularly to evaluate the performance of particular proto-
cols or network architectures [5]. However, reliability studies
frequently use it in the context of Monte-Carlo methods [4],
unlike in the discrete-event simulation used in this work.

The main contributions of this paper are:
• Integer Linear Programming (ILP) formulations for CPP

considering link availability, for single and multiple con-
trol paths and for a single or for a pair of controllers per
switch;

• The structure of a simulational approach to verify the
placement (see Figure 1). This process can be applied
to multiple placement approaches, since it isolates the
controller placement stage from the subsequent fault
simulation stage;

• The design and implementation of an expandable sim-
ulation artifact applying such approach to verify the
reliability results of particular controller placements in
networks with differential link availability.

II. SIMULATIONAL APPROACH

To test the approach proposed, we generated (adapting
minimally the formulations presented in [14]) a set of con-
troller placement ILP models which try to generate controller
placements taking into account different availability levels in
edges. After this, we created a discrete event fault simulator to
verify whether this placement would yield better results than
a placement not using this information.

A. Controller placement strategies in differential link avail-
ability networks using linear programming

TABLE I
BASIC NOTATION

Symbol Definition

V set of switches
E set of physical links (i, j) with i, j ∈ V
nV = |V | number of switches
k number of controllers
dij penalty associated with link (i, j)
ρij availability value for link (i, j)

Using the notation defined in Table I, we define Fn ⊂ E
and Sn ⊂ E as the set of edges of the first and second control-
paths, respectively, to a controlled switch n ∈ V . We assume
the paths to be node-disjoint (and edge-disjoint), therefore
Fn ∩ Sn = ∅.

We can then define two sets of binary variables:

U =
{
unij ∈ {0, 1} |n ∈ V, (i, j) ∈ E

}
W =

{
wn

ij ∈ {0, 1} |n ∈ V, (i, j) ∈ E
}

Where:

unij =

{
1 ⇐⇒ (i, j) ∈ Fn

0 ⇐⇒ (i, j) /∈ Fn

wn
ij =

{
1 ⇐⇒ (i, j) ∈ Sn

0 ⇐⇒ (i, j) /∈ Sn

To solve the problem, we add additional binary variable sets
X and Y :

X =
{
xji ∈ {0, 1} |i ∈ V ∧ j ∈ V

}
Y =

{
yj ∈ {0, 1} |j ∈ V

}
Where:

xji =

{
1 ⇐⇒ i is controlled by j
0 ⇐⇒ i is not controlled by j

yj =

{
1 ⇐⇒ j has a controller placed there
0 ⇐⇒ j does not have a controller placed there

To simplify the flow control equations, we can also define
an auxiliary constant (adapted from [14]):

tnm =

{
−1 ⇐⇒ n = m
0 ⇐⇒ n 6= m

Using this notation, the controller placement problem for k
controllers, can be formulated as a integer (binary) linear pro-
gramming problem intending to obtain Fn as (for conciseness
we omit the explanations present in [14]):

Minimize Z =
∑
n∈V

∑
(i,j)∈E

diju
n
ij

Such that:∑
j∈V

yj ≤ k (1)∑
j∈V

xji = 1 ∀i ∈ V (2)∑
i∈V

xji ≤ nV y
j ∀j ∈ V (3)∑

(i,m)∈E

unim −
∑

(m,j)∈E

unmj − xnm = tnm ∀n,m ∈ V (4)

If one assumes uniform costs for all edges
(dij = 1,∀(i, j) ∈ E) the problem will provide paths
for hop-count minimization, while with different link
costs we can incorporate other objectives. If however
some links have different availability characteristics, the
solution to this problem may not yield a sufficiently robust
controller placement. A simple solution to prevent the
usage of lower availability links is simply to add additional
constraints/variable bounds to exclude links with lower than
the desired link minimum availability level P :

unij ≤ 0 ∀(i, j) ∈ E|ρij < P (5)



1) Disjoint paths for the same controller: As shown in [14],
the previous problem statement may be expanded to support
multiple control paths for the same controller (RCP-DCP
problem), by expanding the ILP problem with variables for
a second path for the same controller (defined by set Sn). We
assume the paths to be edge-disjoint, therefore Fn ∩Sn = ∅.
We also add restrictions to the problem for node disjunction
(except for the controller and the node being controlled on
each path).

To try to minimize the length of the first path before the
length of the second, the objective function was amended to
increase the weight placed on U versus W .

Minimize Z =
∑
c∈V

∑
(i,j)∈E

dij(nV u
n
ij + wn

ij) (6)

To the restrictions defined in equations (1)–(4) we add new
ones to support the second path flow control∑

(i,m)∈E

wn
im −

∑
(m,j)∈E

wn
mj − xnm = tnm ∀n,m ∈ V (7)

and some restrictions to guarantee node disjunction:∑
(m,j)∈E

(unmj + wn
mj) ≤ 1− tnm ∀n,m ∈ V (8)

∑
(i,m)∈E

(unim + wn
im)− xnm ≤ 1 ∀n,m ∈ V (9)

∑
(i,m)∈E

(unim + wn
im) ≤ 1 ∀n,m ∈ V (10)

As stated previously, the inclusion of the restrictions of
equation (5) will force the first path to be on high availability
links. Equation (10) is redundant for this problem, however it
is defined here since it will be used in all multiple-controller
problems.

2) Disjoint paths to different controllers: A variation of
the previous model allows the paths to be directed to different
controller replicas. Almost the same notation can be reused,
although we now define Fn

c1 ⊂ E as the set of edges in the
first control-path from controller c1 ∈ V to switch n ∈ V ,
whereas Sn

c2 ⊂ E is the set of edges belonging to a second
path from controller c2 ∈ V to n ∈ V . We continue to assume
the paths to be edge-disjoint and node-disjoint (except for the
controlled node), therefore Fn

c1 ∩ S
n
c2 = ∅.

As in [14], we redefine the set X to correspond to the first
controller, and must create a new set of variables Z which
perform the same task for the second controller:

X =
{
xji ∈ {0, 1} |i ∈ V ∧ j ∈ V

}
Z =

{
zji ∈ {0, 1} |i ∈ V ∧ j ∈ V

}

xji =

{
1 ⇐⇒ i is controlled by c1 placed in j
0 ⇐⇒ i is not controlled by c1 placed in j

zji =

{
1 ⇐⇒ i is controlled by c2 placed in j
0 ⇐⇒ i is not controlled by c2 placed in j

The ILP formulation uses the same objective function as
before (equation (6)) and also the constraints in equations (1)–
(4), but some additional constraints must be added:

∑
i∈V

zji ≤ nV y
j ∀j ∈ V (11)

The constraint group in equation (7) must be adapted to
point to the new controller:

∑
(i,m)∈E

wn
im −

∑
(m,j)∈E

wn
mj − znm = tnm ∀n,m ∈ V (12)

Finally, some new disjunction constraints must be added to
the ones in equations (8) and (10):

xji + zji ≤ 1 ∀i, j ∈ V (13)

As before, the inclusion of the restrictions of equation (5)
will force the first path to be placed on high availability links.

B. Failure simulation using OMNeT++

Once the controller placement program has been solved,
we can now look into any actual reliability gains achieved
by taking explicitly into account the different availability of
network links when determining the controller placement. To
do so, we developed a failure simulator, using the discrete
event simulation platform OMNeT++ [13].

1) A rationale for failure simulation: While reliability in
networks has been studied frequently using analytical models
[2], [4], the usage of simulation for its study can be justified
frequently due to its inherent flexibility, allowing the creation
of models with support for various customization capabilities
which would be harder to model with simple analytic models.

Some of these include multiple networks and edge charac-
teristics, including multiple reliability levels and non-linear re-
liability for some edges. Also the multiple fault models can be
successfully integrated, including changes on failure rate and
duration, sequential failures and “geographically” correlated
failures. While it can be argued that specific analytic models
can be developed to support each of these characteristics, it
would be hard to create a general analytic model able to
encompass all of these.

2) Simulator structure: An application was developed in
OMNeT++ able to load a network, annotated with reliability
information (a set of links with a different availability rating)
and a set of SDN network controllers.

It uses the base simulation support, and is created via four
custom built simple modules (see Figure 2):
Loader responsible for loading the network with reliability

annotations, and an additional file containing the con-
troller placement, and create an OMNeT++ network layer
model, comprised of nodes and links to visually represent
the information;

DataBase supports the internal network model and acts as a
focal point to exchange information regarding link faults
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TABLE II
SIMULATOR INPUT VARIABLES

Variable Module Description

nodeModType Loader The module type to associate to a
node (to support node specialization)

simFilePath DataBase Simulation files path (common to all
files on a run)

simFileName Loader Simulation file name
ratio spine Base Generator Fault probability ratio between high-

availability and low-availability links
generation delay Base Generator Interval between generated faults
failure duration Base Generator Duration of each fault

and path failures, and updates (as needed) the OMNeT++
network layer;

Base Generator generates faults, communicating with the
DataBase to update the internal network information;

Simple Node is used to represent each switch in the SDN
network (each instance of simple node is procedurally
created and linked by the loader module).

These simple modules are in turn integrated in the complex
module Fault Generator, which, as required by OMNeT++, is
integrated in a Network for actual simulation.

This simulation structure allows for redefining the different
components (e.g. specializing the Base Generator with another
one that allows for different kinds of faults) to support
evolution. Isolating the Fault Generator from the network
loader (Loader) allows for supporting several networks and
even new network formats without a needing to greatly change
the simulator (or at all). To support it, a format for loading
has been specified (Sim File format) and a file converter has
been developed to create it from the network data (in SDNlib
[10] format) and controller placement information.

A set of input variables is defined in the simulator, to allow
for run configuration (see Table II). Besides the input variables,
additional customization may be achieved via the network file
generator (e.g. allowing for different reliability profiles on the
same network, and different number of controllers) outside of
the simulator.

The set of output variables is comprised by the disconnected
time fraction (per-switch, per-link and per-network) for each

TABLE III
SIMULATOR RUN PARAMETERS

Variable Unit type Values #

ratio spine ratio 1, 4, 7, 10, 13 5
generation delay second 10, 15, 20, 25 4
failure duration second 5, 10, 15, 20, 25, 30 6
repetition seed 0, 1, 2, 3, 4 5

switch in terms of each controller-switch path (and when
applicable, of all the controllers assigned to a switch – which
would imply switch disconnection). Further output variables
can be added (by specializing the DataBase module).

III. RESULTS AND DISCUSSION

The simulator was used with two SNDlib [10] networks,
Germany50 (50 nodes and 88 edges), and Polska (15 nodes
and 18 edges) topologies, with a set of 20 different high-
availability spanning trees/spines [1] plus one with uniform
availability for all links for the Germany50 network, and 9
different spines plus one with uniform availability for all links
the Polska network.

For each of these network/spine pairs, solutions to the
controller placement problem were created for a single path
for the controller, for disjoint paths to a single controller per
node, and for disjoint paths to different controllers, with unit
link costs. The problems were solved (using CPLEX) for a
total number of controllers k ranging from 1 to 9 (which is
excessive for Polska, but was used for regularity). For 4 of
the spines in the Germany50 network, with a single controller
it was not possible to find disjoint paths to that controller if
the first path would need to use exclusively spine links. For
all the remaining, a solution was possible for all the options.
All the placements were run twice, once using unit link costs
(hop-count) and the other using geographical distance costs.

For the solutions thus created, faults were simulated taking
into account the differential availability of the spine links.
The options selected are presented in Table III, which meant
that each tuple (network/spine/placement) was run 600 times.
Notice that the values of delay between faults and duration of
those faults are intentionally kept small and near each other.
These values were selected so that simultaneous failures could
be possible without having to run rare-event simulations (for
which OMNeT++ is not best optimized). However, even if that
made the failure rates inordinately high, it should not distort
too much the insights gained from the simulation.

While the results are too many to present here in full, an
aggregate analysis allow us to state some preliminary findings,
which will be illustrated with some graphs for a subset
of the results (focusing only in simultaneous failures/switch
disconnection):

• When there is a spine in the network, the probability of
disconnection by faults is always lower if the controllers
are placed taking it into account, for ratio spine ≥ 4
(ratio between the availability rating of the edges of the
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spine and the others), as seen in Figure 3. This advan-
tage further increases for higher values of ratio spine.
Conversely, as expected, when forcing one path on links
with no availability advantage (ratio spine = 1) there
is increased disconnection.

• In general, the disconnection rate is lower when using two
separate controllers than when using two disjoint paths to
the same controller (but there is a marginal exception in
the Germany50 network when using only 2 controllers –
see Figure 4).

• More controllers on the network generally imply less
chance of disconnection due to faults (a possible excep-
tion occurs when the number of controllers is very large
on the Polska network, suggesting a tipping point where
too many controllers on a small network actually decrease
reliability – see Figure 5).

• There is some impact on the choice of specific high-
availability links (that is, the usage of particular spines),
but this varies strongly with the number of controllers, so
no pattern can be discerned a-priori (see Figure 6 which
shows a subset of the Germany-50 spines).

• As expected, the probability of disconnection upon fault
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always increases with increasing duration and frequency
of faults (see Figure 7).

While most simulations were run without the graphical
interface, a frontend to the simulator was developed using
the built-in capabilities of OMNeT++ (see Figure 8). In this
picture you can see the higher availability links (blue links).
It is also visible that in this simulation we have placed 3
SDN controller nodes (Dortmund, Braunschweig e Stuttgart).
Finally it also shows that a fault (not directly displayed) is
affecting the path from Augsburg, Kemptem and Muenchen
to their main controller, and the path from Nuernberg, Passau,
Regensburg and Ulm to their secondary controller (no failed
nodes were created by this single fault).

IV. CONCLUSIONS AND FUTURE WORK

We presented a simulational approach to validate the place-
ment of controllers in a SDN network with different avail-
ability links. The results show that taking the differential
availability in consideration is useful, particularly for large
availability differences among links. However the advantage is
influenced by the actual high-availability links present, and no
a priori relation was discernible from the results (and neither
traffic displacement nor scalability effects were considered in
the analysis). Further work is required in this area, and is also
suggested in the area of complex fault and reliability patterns,
for which the flexibility granted by the approach is ideally
suited.
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