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Abstract

In the present work, the problem of determining sets of K dissimilar paths between a pair of
nodes in a given graph is studied. The concept of path dissimilarity, not being uniform, aims
to translate some diversity in the solution sought, which generally relates what the paths of
this solution have in common and how they differ. The characteristics of the dissimilarity
functions make it difficult to use them as objective functions for combinatorial optimization
problems, which was the motivation for looking for alternative ways of representing this
concept.
In the first part of the thesis, integer linear optimization formulations are introduced that
model the dissimilarity of a set of paths based on three assumptions: the minimization of
the number of overlapping arcs between the pairs of paths in the set; the minimization of
the number of overlapping arcs, and the minimization of the number of repetitions of the
overlapping arcs. Additionally, the last two types of formulations are combined with capacity
constraints, dependent on an upper-bound obtained by means of an auxiliary problem, which
have the double role of limiting the number of uses of the solution arcs and promoting
diversification in the event of ties. The suitability of each formulation for solving the original
problem, as well as its limitations, is assessed.
In the second part of the thesis, it is assumed that each arc is associated with a given real
value and that it is intended to simultaneously minimize two conflicting objective functions:
the dissimilarity of K paths and a linear function of its arc values. The extension of some of
the previous formulations to the mono-objective case is investigated and an ϵ-constraint type
method for the calculation of the Pareto frontier of the bi-objective problem is presented,
following two strategies: one in which the ϵ parameter is updated in a decreasing way and
another in which the same parameter increases, and which allows to explore the relationship
between the sequence of sub-problems that has to be solved.

Keywords: K alternative paths, Dissimilarity, Integer linear optimization formulations,
Bi-objective optimization





Resumo

No presente trabalho estuda-se o problema da determinação de conjuntos de K caminhos
dissimilares entre um par de nós de um grafo dado. O conceito de dissimilaridade de
caminhos, não sendo uniforme, pretende traduzir alguma diversidade na solução procurada,
que geralmente relaciona o que os caminhos dessa solução têm de comum e de diferente.
As características de funções de dissimilaridade dificultam a sua utilização como funções
objetivo de problemas de otimização combinatória, o que serviu de motivação para a procura
de formas alternativas de representar este conceito.
Na primeira parte da tese introduzem-se formulações de otimização linear inteira que modelam
a dissimilaridade de um conjunto de caminhos com base em três pressupostos: a minimização
da sobreposição de arcos entre os pares de caminhos do conjunto; a minimização do número de
arcos que se sobrepõem e a minimização do número de repetições dos arcos sobrepostos. Os
dois últimos tipos de formulações são combinados com restrições de capacidade, dependentes
de um majorante obtido através de um problema auxiliar, que têm a dupla função de limitar
o número de utilizações dos arcos da solução e promover a diversificação em caso de empates.
Para cada formulação é estudada a adequação à resolução do problema original, assim como
as suas limitações.
Na segunda parte da tese supõe-se que cada arco está associado a um valor real dado e que
se pretende minimizar simultaneamente duas funções objetivo conflituosas: a dissimilaridade
de K caminhos e uma função linear dos valores dos seus arcos. Investiga-se a extensão de
algumas das formulações anteriores para o caso mono-objetivo e apresenta-se um método
do tipo ϵ-restrito para o cálculo da fronteira de Pareto do problema bi-objetivo em causa,
seguindo duas estratégias: uma em que o parâmetro ϵ é atualizado de forma decrescente e
outra em que o mesmo parâmetro aumenta, e que permite explorar a relação entre a sequência
de sub-problemas que tem de ser resolvida.

Palavras-Chave: K caminhos alternativos, Dissimilaridade, Formulações de otimização
linear inteira, Otimização bi-objetivo
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Chapter 1

Introduction

In classic optimization problems a solution is sought which optimizes a known objective
function. In multi-objective optimization this translates into a set of solutions, but, like in
the previous case, the focus is on the objective functions to be optimized, rather than on
the composition of the solution(s). The enumeration of solutions by order of the objective
function values is generally more complex than the original problem, but it does allow to know
alternatives to the optimal solution, once again, guided by the objective function. However,
this model does not guarantee the “diversity” of the several solutions. On the contrary,
the second best solution is often not “very different” from the first. The first difficulty in
formalizing this issue lies in the definition of “diversity” that should be considered. The
second is related with a dependency of the objective function on the relationship between the
solutions in a given set.

Such issues are particularly important when, despite looking for solutions with a small
objective function value, it is important that these are true alternatives to one another.
In practical terms, this topic applies to the growing demand for security and reliability of
networks and services, or when dealing with concerns such as the transport of hazardous
materials or money distribution. Each of these applications has particular characteristics,
but they all have the common purpose of searching for a set of paths which are as “diverse”
as possible with respect to the nodes/arcs that compose them. The literature describes some
specific approaches to this theme, which determine solutions for a sequence of simplified
problems, related to the intended objective and mainly solved using heuristic methods.
However, there is a lack of formalization of the main problem in an integrated, rather than
a sequential way, which allows a better understanding of the structure of the problem and
also taking into account the interdependence between the solutions, which are the main
motivations of this work.

Let (N, A) denote a given directed network consisting of a set N = {1, . . . , n} of nodes and
a set A ⊆ N ×N of m arcs. Let s and t be two different nodes of N , called the source node
and the target node, respectively. Finding a path in the network (N, A) between the nodes s

and t is one of the most classical and widely used network optimization problems, and the
basis for several applications in operations research. Studying the determination of alternative
paths, on the other hand, is an interesting problem by itself that stems from different real-life

1



2 Introduction

problems but has been considerably less studied than the former. For instance, in a modern
and industrialized society, routing hazardous materials like poisonous gases or radioactive
materials is an important issue, so the need for alternative safe routes is crucial for reducing
the risk of disaster in case of accidents or if the best route becomes infeasible due to road
construction [1, 6, 15, 25]. Repeating paths is also avoided in money collection, where having
alternative paths/routes decreases the risk of robberies and can be used in case of danger
of robberies [5, 13]. Additionally, in telecommunications, a backup path is often replaced
by a primary one if a failure occurs along it or if it can be used simultaneously to spread
information transmitted at a specific time [23, 24, 49].

Let K ∈ N be a given number of alternative paths to be found. The definition of
alternative paths may vary depending on the application, the common denominator being
that the paths in the solution should share the least possible network resources. Several
works use dissimilarity measures between two paths as the metric for achieving this purpose,
nevertheless, also this notion is not uniquely defined, nor would that be desirable provided
that the metrics are often tailored to the application. For instance, [21] developed four indices
for measuring the similarity between two paths, defined as follows:

Index 1: S1(p, q) = 1
2

(
L(p ∩ q)

L(p) + L(p ∩ q)
L(q)

)

Index 2: S2(p, q) =
√

L2(p ∩ q)
L(p)L(q)

Index 3: S3(p, q) = L(p ∩ q)
max{L(p), L(q)}

Index 4: S4(p, q) = L(p ∩ q)
L(p ∪ q)

where p and q are two paths and L(p) denotes the length of path p, that is, its number of
arcs and L(p ∩ q) denotes the number of arcs in common between the two paths p and q.
The dissimilarity between p and q is then given by Di(p, q) = 1− Si(p, q), for i = 1, 2, 3, 4.
The dissimilarities vary between 0 and 1, the first when the two paths coincide and the latter
when they are arc disjoint. The authors also showed that there is a strong correlation between
these indices. Other works have extended these concepts by including information about the
underlying area affected by the paths or the distance between them, once again depending
on the problem [15, 38].

Additionally, in concrete applications the problem has frequently been handled from a
bi-objective point of view, having the goals of optimizing both the total paths length/cost
as well as the dissimilarity of the set of paths. Now, while the shortest path problem or the
ranking of K shortest paths problem are well-known and well-studied problems, the same is
not true when the objective function represents paths dissimilarity. Many of these bi-objective
problems have been addressed from an algorithmic approach whose primary goal is not to
optimize the dissimilarity and, to our knowledge, there are no published studies considering
the paths dissimilarity problem from an integer programming point of view.



3

s i j t

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(a) Solution with one repeated arc, shared by
several paths

s

i j

t

k l

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(b) Solution with many repeated arcs, shared
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Fig. 1.1 Different sets of K = 4 paths

Filling this gap and deepening the understanding of such problems are the main motivations
for the present work, also because this may be a relevant contribution for an efficient treatment
of a bi-objective problem involving paths dissimilarity.

As mentioned earlier, it is not uncommon to find different understandings of the term
“dissimilarity” in the literature. In this work, we focus on the conception of dissimilarity as
defined by D1. Thus, the presented models aim at producing sets of K paths with good
scores in terms of D1.

However, modeling D1 as the objective function of an integer linear programming (ILP)
model, presents some difficulties as this is a non linear metric involving an underlying
combinatorial problem. On the other hand, it is intuitive that minimizing the number of
arcs shared by the K paths or minimizing the number of paths that share a common arc
in the K paths, favor the dissimilarity of the solution. Furthermore, these problems can be
modeled quite easily, obviating the above mentioned difficulties. Thus these alternative ways
of looking into the K dissimilar paths problem seem promising and are worth exploring.

In the present work we introduce and compare three families of ILP formulations, each
one addressing one of the strategies mentioned before. Figure 1.1 illustrates their differences
and emphasizes some of their limitations.

For simplicity, assume that all the paths represented in Figure 1.1 have the same length.
There are 6 arc overlaps for every pair of paths in Figure 1.1a (that is, the sum of L(p ∩ q)
for every pair of paths p, q in the solution is equal to 6), while in the solution depicted in
Figure 1.1b there are only 2. Therefore, the second is a better solution than the first with
regard to their dissimilarity. However, if one chooses to count the arcs shared by more than
one path, there is only 1 in the solution in Figure 1.1a and there are 2 in the solution in Figure
1.1b. Thus, the first solution is the best with regard to this metric. This situation illustrates
the major drawback of the strategy devised by this approach – the lack of control over the
number of overlaps associated to arcs that are used by more than one path. By contrast,
if counting the number of arc repetitions in the solution (given by the number of times an
arc is present in the solution, besides its first use), there are 3 in the solution depicted in
Figure 1.1a and 2 in the solution depicted in Figure 1.1b, favoring the solution that seems to
be the most dissimilar one. Still, this third approach is not exempted of drawbacks, as it
does not distinguish between alternative solutions with different dissimilarities.

To (partially) overcome the drawbacks of the two approaches a set of additional constraints
is proposed, which imposes a bound on the number of paths that use each arc in the solution.



4 Introduction

In this thesis, we also address the determination of K paths between two network nodes,
with two goals:

• the minimization of the cost of the K paths,

• the maximization of the dissimilarity of the K paths.

In Chapter 3, we introduce and empirically compare four integer linear programming models
for the K dissimilar paths. To model the K shortest – dissimilar paths problem, we use the
two best integer linear formulations introduced in Chapter 3. In Chapter 4, we study how
these models behave in the context of a bi-objective problem, through a set of empirical tests.

Contribution of the thesis

This thesis address the problem of finding K dissimilar paths connecting a given pair of nodes
in a directed graph.

The first main contribution of the thesis is the proposal of four integer formulations for
finding K dissimilar paths [45]. The formulations have different motivations, but their general
goal is to minimize the number of arcs that appear in more than one path or the total number
of those overlaps, while searching for sets of paths with good dissimilarity. The inclusion of
an additional set of constraints to the previous formulations, with the goal of improving the
solutions dissimilarity, was also proposed. The performance of the new formulations and of a
traditional method in the literature, the iterative penalty method, was tested over random
and grid networks, assessing the required run time as well as the average and the minimum
dissimilarities of the solutions.

The second contribution of this work is the study of the bi-objective shortest–dissimilar
K paths problem [46]. In this case, it is assumed that each arc is assigned with a given
cost, and the main goal is then to address the problem of finding K dissimilar paths while
simultaneously minimizing the total cost. Previous formulations are extended with the cost
objective function, one of them also considers the minimization of the number of repeated
arcs, whereas the other one considers the minimization of the number of arc repetitions.
Properties of the resulting bi-objective problems are studied and the ϵ-constraint method is
adapted to solve them by using two strategies: one based on decreasing the parameter ϵ and
the other increasing it. The two variants of the method are tested for finding sets of 10 paths
with the two formulations.

Structure of the thesis

This thesis is structured in five chapters. The first of which is this introduction. Chapter 2
gives a literature overview of problems related with finding alternative paths. Chapter 3
starts with the problem of finding K dissimilar paths between two nodes, and then ILP
formulations are introduced to provide solutions based on the approaches described above.
In Chapter 4, we attempt to make use of the ϵ-constraint method to consider bi-objective
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shortest–dissimilar path problem. To do so, we first review basic properties of bi-objective
problems and then we propose a modification of ϵ-constraint algorithm. In Chapter 5 we
draw some concluding remarks based on the material covered during the thesis.





Chapter 2

Literature review

Several problems focus on finding a single path between two nodes in a network, which
optimizes either a certain criterion or several criteria simultaneously, while others aim at
finding a set with a given number of paths, again with respect to one, or several, criteria.
The single path problems have practical interest by themselves, but finding a set of paths
may still be relevant, for instance to ensure reliability and having a replacement path in case
of failure in the primary one, or simply if several alternatives should avoid sharing resources
with other paths. In this case ranking paths provides a pre-defined number of paths from the
source node to the target node by increasing order of the objective function.

Several network optimization problems search for a path between two nodes which
optimizes a certain criterion. In many cases it is of interest to extend this problem by
searching not only for the best solution but also for the second best, the third best and so on,
that is, to rank paths by increasing order of the objective function. In practice this is useful,
for instance, when the paths need to satisfy additional constraints, which can be checked as
new solutions are found. This problem, known as the K shortest paths problem, was first
proposed in 1959, by [29], and is usually classified into two variants, one that aims at the
determination of unconstrained paths and another one for which the nodes in each solution
cannot appear more than once. Despite the first being easier to solve than the second, both
can be solved in polynomial space and time, depending on the number K of paths to be
found and on the size of the network. See for example [19, 32, 39, 41] for works on ranking
unconstrained paths and [34, 40, 57] for works on ranking loopless paths.

The search for solutions when ranking paths is guided by the objective function, therefore,
very often the solutions which are close in terms of the cost are also similar in terms of
their composition. In the K disjoint paths problem, a cost objective function of K paths is
minimized, while the overlaps between them are forbidden. The problem can be classified
into arc disjoint or node disjoint, the second one being a particular case of the first (for
instance, if every node is split into two nodes that are linked by an arc). The disjointness of
the paths is often a requirement in telecommunications, in order to ensure the reliability of
communications. In practice this is managed by the computation of a pair of paths connecting
two given nodes, a primary path to be used as a first option and a backup path to replace the
first one if there is a failure along its arcs or nodes. The determination of K disjoint simple

7
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paths has been studied by [2, 52, 53]. Their approaches consist of formulating the problem as
a minimum cost flow problem and propose the application of a labeling algorithm, changing
the given network. The arc disjoint version of the problem has been studied in [22, 26, 56].
A review on disjoint path problems can be found in [31].

A handicap of the K disjoint paths problem is that the disjointness condition may be
too demanding for some instances and no solution is returned in those cases. The dissimilar
paths problem has been studied in the context of hazardous materials transportation, where
the alternative paths should not share a large number of arcs and they should be relatively
short in length.

Different methods have been proposed for approaching the dissimilar paths problem.
The iterative penalty method (IPM) [33] is one of the most intuitive methods, based on
the iterative application of shortest path algorithms. At each iteration, a cost penalty is
associated to each selected arc to discourage them of appearing in the forthcoming iteration;
hence, generating dissimilar paths. Another proposed method is the Gateway Shortest Path,
[36]. In this case, the generated shortest paths should go through a given set of nodes
called a “gateway”. Additionally, the concept of “area under a path” is used to evaluate the
similarity between two paths. The minimax method, by [35], selects paths starting from K

assigned paths using some dissimilarity indices. [1] reviews the three mentioned methods for
generating dissimilar paths, and proposes another dissimilar paths model that makes use of
a p-dispersion location model, [20]. [21] presents four indices to measure the dissimilarity
among two paths, one of which will be used later. In [7], the authors introduce a model for
generating dissimilar paths that takes into account also the risk induced on the arcs in the
neighborhood of a selected path.

In [8], the authors also considers the need to distribute the risk of the paths in an equitable
way with respect to both the space and the time, avoiding as much as possible the presence of
more than one hazardous vehicle at the same time on the same zone. Later on [15] study the
problem from a multi-objective perspective. They introduce the concept of “buffer zone” in
the measure of similarity. [38] choose approaches different from the previous and consider a
spatial point of view in their dissimilarity index. More recently, [58] works on the bi-objective
K dissimilar vehicle routing problem (kd-VRP). The work considers two dissimilarity indices:
the “grid metric”, which treats spatial dissimilarity, as well as the “edge metric”, which
defines dissimilarity via shared arcs between different routes.

The definition of dissimilarity given in Chapter 1 and the description above suggest a
multi-objective perspective of this type of problems, for two main reasons: the objective
function is intrinsically bi-objective, as it relates what the paths have in common as well
as their lengths; but also because its extension to a case where at least another objective
function is considered comes naturally and it is certainly useful in terms of applications.

Most real-life problems require taking into account several conflicting objectives. Multi-
objective optimization consists in optimizing simultaneously several objective functions that
are subject to several constraints. Usually these objectives are in conflict with each other
and have different natures, for instance, they may be measured in different units. Therefore,
normally, there is not a single solution that simultaneously optimizes every objective. Instead,
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the goal of solving a multi-objective optimization problem is to find solutions that can only
be improved in one objective by degrading at least one of the remaining objectives. This
notion of optimality is called Pareto optimality. In general, the multi-objective optimization
problems are hard to solve with exact methods, even if they are extensions simultaneously of
easy single objective optimization problems [16].

One of the problems in that class which has interested researchers is the multi-objective
shortest path problem, dedicated to the case where all objective functions are linear [10, 28, 55].
A survey, regarding the bi-objective case, has been published in [51]. Objective functions of
different types have also been addressed, like bottleneck functions or the number of distinct
arc colors [4, 30, 48], to name a few, which have been reviewed in the more general survey [11].
The solutions to the problem addressed in the present work are sets of K paths. Therefore,
the previous studies do not apply straightforwardly to the linear integer approach considered
in the following.

Additionally, some of the works mentioned above already incorporate several objectives
and propose approximate methods for finding possible solutions that may be of interest from a
practical point of view. The literature on bi-objective integer programming, on the other hand,
is rich for general problems and also when considering particular problems [3, 18, 42, 47, 50].
Surveys on these works can be found in [17, 54].





Chapter 3

The K dissimilar paths problem

In this chapter, the problem of finding K dissimilar paths between two nodes is presented,
and in the next three sections ILP formulations are introduced to provide solutions based
on the approaches described in introduction. Computational results for different variants of
each formulation are presented at the end of each section. A set of constraints which help
the new formulations to obtain more dissimilar solutions is introduced in Section 3.5. Overall
computational experiments for all approaches are presented in Section 3.6. The performance
of the proposed formulations is analyzed and this is compared to an intuitive and classical
approach in the literature of finding alternative paths, the iterative penalty method (IPM)
[33]. The formulations are compared both in terms of the run time and of the dissimilarity of
the output solutions, derived from D1. Some conclusions are outlined in Section 3.7.

3.1 The K dissimilar paths problem

Let (N, A) be a directed graph with |N | = n nodes and |A| = m arcs, where s denotes a
given source node and t denotes a given target node, s, t ∈ N . Let also P denote the set of
paths in (N, A) from node s to node t and K be a given positive integer. The goal of the K

dissimilar paths problem from s to t is to find a set of K paths in P , such that the paths in
the set are fairly distributed throughout the network. Considering dissimilarity based in the
index S1 introduced in Chapter 1, the problem can be defined as

max
K−1∑
i=1

K∑
j=i+1

D1(pi, pj)/
(

K

2

)
subject to p1, p2, . . . , pK ∈ P

where
D1(p, q) = 1− S1(p, q) = 1− 1

2

(
L(p ∩ q)

L(p) + L(p ∩ q)
L(q)

)
,

for any paths p, q ∈ P , and this is equivalent to minimizing the similarity of the set of K

paths,
K−1∑
i=1

K∑
j=i+1

(
L(pi ∩ pj)

L(pi)
+ L(pi ∩ pj)

L(pj)

)
.
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This objective function is fractional and difficult to handle directly. Therefore, we will consider
simplifications of the problem.

The next sections introduce four formulations, simpler than this one, but which try to
capture the main characteristic of this problem based on different assumptions.

3.2 Minimization of the number of arc overlaps for each pair
of paths

The length of the paths overlap is a common term to the several similarity indices described
in Chapter 1. For now we focus on that length and, by doing so, the objective function
becomes linear and simpler to handle. Thus, the current goal is to find solutions for

min
K−1∑
i=1

K∑
j=i+1

L(pi ∩ pj)

subject to p1, p2, . . . , pK ∈ P

(3.1)

Given two paths p, q ∈ P , it is said that there is an overlap whenever there is an
arc (i, j) ∈ A that belongs to both p and q, that is, if (i, j) ∈ p and (i, j) ∈ q. Thus,
the number of overlaps between those paths is the number of arcs that appear in both,
OL(p, q) = |{(i, j) ∈ A : (i, j) ∈ p ∧ (i, j) ∈ q}|, which coincides with L(p ∩ q). The number
of overlaps in a given set of K paths is the total number of overlaps for each pair of paths,
that is,

OL({p1, p2, . . . , pK}) =
K−1∑
i=1

K∑
j=i+1

OL(pi, pj),

which is the objective function in problem (3.1). To illustrate these concepts, we recall the
example in Figure 1.1. The arc (i, j) belongs to all four paths in Figure 1.1a. Therefore, the
number of overlaps for those paths is 6. In Figure 1.1b the arc (i, j) appears in the paths in
red and green, while the arc (k, l) appears in the blue and orange paths. So, there are 2 arc
overlaps in the 4 paths. This latter solution is better than the first with respect to problem
(3.1).

The first formulation intends to model problem (3.1) as an integer linear program.
Considering the decision variables xk

ij equal to 1 if the arc (i, j) lies in the k-th path from s to
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t, or 0 otherwise, for any (i, j) ∈ A and k = 1, . . . , K, the problem is formulated as follows:

min f1(x, z, v) =
∑

(i,j)∈A

vij (3.2a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.2b)

zkl
ij ≤ xk

ij , (i, j) ∈ A, k = 1, . . . , K − 1, l = k + 1, . . . , K (3.2c)
zkl

ij ≤ xl
ij , (i, j) ∈ A, k = 1, . . . , K − 1, l = k + 1, . . . , K (3.2d)

zkl
ij ≥ xk

ij + xl
ij − 1, (i, j) ∈ A, k = 1, . . . , K − 1, l = k + 1, . . . , K (3.2e)

vij =
K−1∑
k=1

K∑
l=k+1

zkl
ij , (i, j) ∈ A (3.2f)

xk
ij ∈ {0, 1}, zkl

ij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K, l = k + 1, . . . , K(3.2g)

This formulation may considerably big for problems of modest size, given that the
variables z are related with any pair of paths from s to t. Thus, it has O(mK2) variables
and O(mK2 + nK) constraints.

The flow conservation constraints (3.2b) ensure the existence of K paths from node s to
node t; the constraints (3.2c) – (3.2e) guarantee that variables zkl

ij ∈ {0, 1} are equal to 1 if
and only if the arc (i, j) is used both in the paths defined by the variables xk

ij and xl
ij , for

(i, j) ∈ A, k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}. In fact:

• If xk
ij = 0 or xl

ij = 0, then (3.2c) or (3.2d) imply that zkl
ij = 0, for any (i, j) ∈ A,

k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}.

• If xk
ij = xl

ij = 1, then both (3.2c) and (3.2d) imply that zkl
ij ≤ 1, whereas (3.2e) imply

that zkl
ij ≥ 1. Thus, zkl

ij = 1 for (i, j) ∈ A, k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}.

The constraints (3.2f) state that the auxiliary variables vij correspond to the number of paths
that use arc (i, j) ∈ A and constraints (3.2g) define the variables. Observe that because
the xk

ij are binary variables, then by (3.2c) – (3.2e), the variables zkl
ij are binary as well

and, consequently, by (3.2f), the variables vij are implicitly defined as non-negative integers,
for any (i, j) ∈ A, k ∈ {1, . . . , K − 1}, l ∈ {k + 1, . . . , K}. The objective function (3.2a)
corresponds to OL({p1, p2, . . . , pK}), the total number of arcs that are shared by at least two
paths from s to t.

Formulation (3.2) may admit optimal solutions that contain subtours.

Example 3.2.1 The network depicted in Figure 3.1a shows a possible solution for finding
K = 2 paths from node 1 to node 5. In this case, the solution has objective value 0, given that
the two paths p1 = {(1, 2), (2, 4), (4, 2), (2, 5)} and p2 = {(1, 3), (3, 4), (4, 1), (1, 4), (4, 5)} repre-
sented in red and in blue respectively. They do not have any arcs in common. However, each
of those paths contains one subtour, namely s1 = {(2, 4), (4, 2)} and s2 = {(1, 3), (3, 4), (4, 1)}.
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(e) Updated network (N ′, A′)

Fig. 3.1 Application of Algorithm 1 to a solution with loops

Nevertheless, if the problem is feasible, there always exists a loopless optimal solution to the
problem, and this is easy to compute after a first optimal solution has been found.

Solutions with loops can be avoided by adding subtour elimination constraints to the formu-
lation or by adding a term to the objective function that penalizes the utilization of arcs.
Another alternative is to apply a post processing algorithm that allows to extract one loopless
optimal solution from a given optimal solution. Algorithm 1 outlines the procedure to obtain
such a loopless solution, when given a solution x.

Algorithm 1: Algorithm for removing loops from a given solution x

1 N ′ ← {i ∈ N : xk
ij = 1 for some j ∈ N ∧ k = 1, . . . , K} ∪ {t}

2 A′ ← {(i, j) ∈ A : xk
ij = 1 for some k = 1, . . . , K}

3 for (i, j) ∈ A′ do uij ←
∑K

k=1 xk
ij

4 for k = 1, . . . , K do
5 for (i, j) ∈ A do x̄ij ← 0
6 x̄k ← shortest path from s to t in terms of the number of arcs in network (N ′, A′)
7 for (i, j) ∈ A′ such that x̄k

ij = 1 do
8 uij ← uij − 1
9 if uij = 0 then Delete arc (i, j) from A′

In lines 1 and 2 of Algorithm 1 the network corresponding to the arcs in the given solution
x is built. Line 3 assigns each arc (i, j) ∈ A′ with the number of times it appears in x, uij .
This value works like the arc (i, j)’s capacity. Then, in each iteration of the loop in lines
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4 to 9, one path is determined and the capacity of an arc is updated every time it is used.
The loop runs K times exactly, so that K paths are found. Moreover, the paths determined
on line 5 are always loopless. These paths can be found by means of breadth-first search,
Cormen et al. [14], and therefore the algorithm runs in O(Km) time. Also, the empirical
tests reported later showed that its run time is very small when compared to solving any of
the formulations here presented.

Proposition 3.2.1 Let (x, z, v) be a feasible solution for formulation (3.2) and x̄ be the
corresponding vector output by Algorithm 1. Then, x̄ defines K loopless paths from s to t.

Proof. The remarks above show that the result holds. Shortly, every path defined by x̄k is
loopless, for any k = 1, . . . , K, because it is the solution of a shortest path problem with all
costs positive (unitary). Additionally, x is the characteristic vector of K paths from s to t,
given that it satisfies the constraints (3.2b). Therefore, x̄k defines K loopless paths from s to
t. �

Proposition 3.2.2 Let (x, z, v) be an optimal solution for formulation (3.2). Let x̄ be the
vector output by Algorithm 1 when applied to x, and z̄ ∈ {0, 1}mK2 and v̄ ∈ Nm

0 be vectors
which satisfy the constraints (3.2c) – (3.2f). Then, (x̄, z̄, v̄) is a loopless optimal solution for
problem (3.2).

Proof. Suppose (x̄, z̄, v̄) is obtained from (x, z, v) according to Algorithm 1 and the directions
above. Then, xk

ij , x̄k
ij ∈ {0, 1} and

xk
ij ≥ x̄k

ij , (i, j) ∈ A, k = 1, . . . , K. (3.3)

Two aspects need to be considered:

1. According to Proposition 3.2.1, x̄ corresponds to K paths, so the constraints (3.2b)
hold. Moreover, z̄ and v̄ satisfy (3.2c) and (3.2f), therefore (x̄, z̄, v̄) is a feasible solution
of (3.2).

2. Because of condition (3.3), it also holds that

zkl
ij ≥ z̄kl

ij , (i, j) ∈ A, k = 1, . . . , K − 1, l = k + 1, . . . , K,

vij ≥ v̄ij , (i, j) ∈ A,

therefore f1(x, z, v) ≥ f1(x̄, z̄, v̄), which shows that the new solution is optimal.

It can then be concluded that (x̄, z̄, v̄) is an optimal loopless solution of (3.2). �

In the next section we describe some computational experiments performed on formulation
(3.2). Results will show that formulation (3.2) outputs solutions with very good dissimilarity
scores, indicating that problem (3.1) might be a good approach to the K dissimilar paths
problem, even though it neglects the role of the length of the paths in the dissimilarity of the
K paths. However, the high run times required to solve even problems of modest dimension
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compromise its usability in practical applications. These results are not at all unexpected,
due to the combinatorial nature of the model, but they reinforce the need for recurring to
alternative models, as mentioned in Chapter 1.

3.2.1 Computational experiments

The purpose of the tests presented in the following is to study the behavior of formulation
(3.2) in terms of the solutions it outputs, its run times and its integer programming gaps.

The code designated by MAO, standing for the implementation for minimizing the number
of arcs overlaps for each pair of paths, formulation (3.2), was implemented in C. This code
uses IBM ILOG CPLEX version 12.7 as the ILP solver. The Algorithm 1, also coded in
C, was applied to the result of this implementation, in order to remove the loops from the
obtained solutions. The tests were carried out on a 64-bit PC with an Intel®Core™ i7-6700
Quad core at 3.40GHz with 64GB of RAM.

. . .

. . .

. . .

. . .

...
...

...
...

...

s

t

Fig. 3.2 Grid network

In the performed tests K = 3, 4, . . . , 10 paths were computed in directed networks. Two
types of instances were considered:

• Random networks, denoted by Rn,m, with n = 100, 300, 500 nodes, and m = dn arcs,
for average degrees d = 5, 10. A Hamiltonian cycle is created for all the nodes in the
network, and afterwards the remaining arcs are generated randomly. This Hamiltonian
cycle is directed, therefore the strong connectivity of the graph is not fully ensured.
There are no parallel arcs between pairs of nodes. For each size of these networks, 30
instances were generated based on different seeds. The reported results are based only
on the 22, out of the 30, that originated feasible problems.

• Grid networks, denoted by Gp,q, with p = 3, 4, 6, 12 rows, q = 6, 12, 36 columns and
n = pq = 36, 144 nodes, arranged in a planar grid, numbered consecutively from left
to right and top to bottom – as shown in Figure 3.2. Any pair of adjacent nodes is
connected by an arc, thus m = 2pq − p− q = 57, 60, 248, 264.

In both cases the source and the target nodes are s = 1 and t = n, respectively, with no
loss of generality. It is worth noting that the considered grid networks are acyclic, therefore
Algorithm 1 was not applied for such instances. Moreover, the run times of Algorithm 1 were
small (at most 4% of the total run times, that is, up to 50 milliseconds), therefore they are
not included in the results reported in the following.
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We begin by observing that in a non negligible number of the random instances, K

disjoint paths can be found. This happens for 274 of the 1056 instances. Table 3.1 exhibits
the distribution of those instances.

Table 3.1 Number of instances with K disjoint paths in random networks

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 12 2 1 0 0 0 0 0
R100,1000 22 18 14 12 7 4 2 1

R300,1500 14 7 1 0 0 0 0 0
R300,3000 21 18 13 9 7 4 2 1

R500,2500 14 4 3 1 1 0 0 0
R500,5000 17 14 12 8 5 3 0 0

Unless otherwise stated, hereafter only the instances with no disjoint solutions are
considered. There are two reasons for this:

• the main goal of this work is to find good methods to obtain dissimilar paths in networks
where finding those paths is not easy (finding disjoint paths can be formulated as a
minimum cost flow problem [52, 53]);

• such instances are not evenly distributed throughout the set of instances, thus their
presence in different numbers in each group could skew the results.

The drawback of this decision is that each set Rn,m now has a smaller and different number
of instances. Table 3.2 indicates the final number for each type of instances. It should be
remarked that there are no disjoint solutions in the grid instances.

Table 3.2 Final number of random network instances

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 10 20 21 22 22 22 22 22
R100,1000 0 4 8 10 15 18 20 21
R300,1500 8 15 21 22 22 22 22 22
R300,3000 1 4 9 13 15 18 20 21
R500,2500 8 18 19 21 21 22 22 22
R500,5000 5 8 10 14 17 19 22 22

An upper bound of 300 seconds was set for the elapsed time when running the solver.
The results presented in the following for random networks are average values for solving
the instances with the same characteristics except for a seed, and with no disjoint solutions.
The results shown for grid networks are based on a single instance, again with no disjoint
solutions.
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Approximately 84 % of the random instances were solved to optimality (corresponding
to 659 out of 782 instances) and 44 % of the grid instances (corresponding to 14 out of 32
instances).

Table 3.3 Number of instances solved to optimality by MAO (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 100 100 100 96 77 50 27 23
R100,1000 – 100 100 100 100 100 100 95

R300,1500 100 100 100 100 95 80 59 41
R300,3000 100 100 100 100 100 100 100 86

R500,2500 100 100 100 100 86 73 55 32
R500,5000 100 100 100 100 100 100 86 82

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 100 100 100 100 0 0 0 0
G4,36 100 100 0 0 0 0 0 0
G6,6 100 100 100 100 0 0 0 0
G12,12 100 100 100 100 0 0 0 0

Due to the combinatorial nature of the model, it would be expected that the results of its
application depended heavily on the size of the network. However, according to Tables 3.31

and 3.4 many of the instances that were not solved within the time limit are actually associated
to the smaller networks. In fact, the results behaved as expected only for the first values of
K ≤ 4, for both the random and the grid networks. As K increases, other features seem
to have a more decisive influence. A finer analysis of the results allows to enumerate three
possible explanations for that situation: the layout of the network; the sparsity of the network;
and the relation between the number of paths K and the size of the network.

The differences in the layout of the network account for the fact that grid instances are,
in general, harder to solve than random instances, even though they are much smaller (recall
that 36 ≤ n ≤ 144 and 57 ≤ m ≤ 264 for the grid instances, whereas 100 ≤ n ≤ 500 and
500 ≤ m ≤ 5000 for the random instances). Furthermore, even among grid networks, there
are differences related to the layout, as the problem seems to be more difficult to solve in
rectangular grids rather than in square grids – see Table 3.4 and Figure 3.3.

Moreover, the effect of the sparseness of the network is particularly clear in the results
of the random instances. According to Figure 3.3, the run times decrease as the density of
the network2 increases when K ≥ 5, in all sets of instances but one, and that this factor
overcomes the one of the size of the network. The only exception is the smallest of the
instances. In spite of its density, second only to R100,1000, R100,500 instances have proven to
be, in average, the hardest of the random instances to solve. Another interesting conclusion
is that the impact of sparseness in grid networks is not so significant as it is in random

1There is only one grid instance of each kind, therefore, the listed values are either 0% or 100%.
2The density of a network is defined as m/(n(n − 1)).



3.2 Minimization of the number of arc overlaps for each pair of paths 19

Table 3.4 Run times of MAO (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.124 0.490 1.135 32.149 76.488 175.405 222.937 249.626
R100,1000 – 0.854 3.245 2.910 5.067 10.116 18.692 48.099

R300,1500 0.391 1.611 2.637 10.127 37.499 111.854 174.106 212.429
R300,3000 0.745 1.934 5.063 11.508 23.537 35.912 63.022 132.342

R500,2500 0.793 2.179 4.579 12.781 66.327 121.559 196.307 238.856
R500,5000 1.888 1.491 7.253 17.309 34.013 57.627 118.488 196.436

Average 0.788 1.426 3.985 14.464 40.488 85.412 132.258 179.631 57.306

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.072 2.665 10.150 52.917 300 300 300 300
G4,36 0.218 0.684 300 300 300 300 300 300
G6,6 0.096 0.265 2.776 11.783 300 300 300 300
G12,12 0.240 0.464 5.212 19.772 300 300 300 300

Average 0.156 1.019 79.534 96.118 300 300 300 300 172.103

networks. This finding becomes evident when comparing the run times for the G4,36 and
G12,12 networks, which have the lowest of the densities of the grid networks.

As for the third of the reasons presented: the proportion between the value of K and the
size of the network, finding K dissimilar paths in a given network becomes more difficult
as the value of K grows and this difficulty is increased in very small networks. This is a
plausible reason why the results obtained for the R100,500 cases do not follow the pattern
of the remaining random instances. Moreover, it is also expected that this factor has an
impact on the results for the grid instances. However, results for more grid networks would
be recommended for a sound conclusion.
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Fig. 3.3 Run times of MAO (seconds)

For the sake of completeness, the lower bounds obtained by solving the linear programming
relaxation of the model are also presented. Table 3.5 presents the average integer programming
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gaps, as well as the run times for solving the corresponding linear programming relaxations, for
each group of instances. The integer programming gaps are computed as 100(f∗

1−f∗
LR1

)/|f∗
1 |%,

where f∗
1 denotes the optimum value of (3.2) and f∗

LR1
denotes the optimum value of its

linear programming relaxation. Whenever the optimum value f∗
1 is unknown, the best known

integer is used to compute these gaps. The gaps associated with the grid instances were all
100%, therefore no such table is presented.

Table 3.5 Average integer programming gaps of MAOL (%)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 43 73 75 77 78 78 79 79
R100,1000 – 100 100 100 100 100 100 100

R300,1500 75 89 92 93 93 93 93 93
R300,3000 100 100 100 100 100 100 100 100

R500,2500 91 96 96 97 97 97 97 97
R500,5000 60 75 80 86 87 90 91 91

As it can be observed from Table 3.5, the linear programming relaxation of formulation
(3.2) produces very weak lower bounds. This often happens in models that use the same type
of linking constraints (3.2e) used in this formulation.

3.3 Minimization of the number of repeated arcs

While taking into account all the overlaps in the pairs of paths in the solutions, the formulation
(3.2) is not easy to handle from a practical point of view, as shown by the experiments reported
in Section 3.2.1. In the following an alternative, and simpler, approach to problem (3.1) is
introduced.

A given arc (i, j) ∈ A is said to be repeated in a set of K paths if it belongs to more than
one of them. A way to ensure that the K paths are sufficiently different from each other is
to consider a relaxed version of the K disjoint paths problem, where instead of forbidding
the occurrence of repeated arcs, the number of arcs in those conditions is minimized. This
concept was explored in the example illustrated in Figure 1.1, given in the introductory
section. Because this approach simply privileges the number of repeated paths, it favors the
solution depicted in Figure 1.1a, rather than the one in Figure 1.1b.

In order to model such a problem, let us consider, as before, the decision variables xk
ij

equal to 1 if the arc (i, j) lies in the k-th path from s to t, or 0 otherwise, for any (i, j) ∈ A

and k = 1, . . . , K. The problem of minimizing the number of repeated arcs can then be
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formulated as follows:

min f2(x, y) =
∑

(i,j)∈A

yij (3.4a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.4b)

yij ≤
K∑

k=1
xk

ij , (i, j) ∈ A (3.4c)

(K − 1)yij ≥
K∑

k=1
xk

ij − 1, (i, j) ∈ A (3.4d)

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (3.4e)

This formulation has O(Km) binary variables and O(Kn+m) constraints. The constraints
(3.4b) are flow conservation constraints that model K paths from node s to node t. The
constraints (3.4c) and (3.4d) relate the x and the y variables, in a way that yij is 1 if and only
if the arc (i, j) is used in more than one path, that is, if this arc is repeated, and 0 otherwise.
In fact, given the arc (i, j) ∈ A:

1. If xk
ij = 0 for every k = 1, . . . , K, then by (3.4c) we have yij = 0, whereas (3.4d) has no

implications on the value of yij .

2. If xk
ij = 1 for exactly one k ∈ {1, . . . , K}, then neither (3.4c) nor (3.4d) have implications

on the value of yij .

3. If xk
ij = 1 for more than one k ∈ {1, . . . , K}, then (3.4c) has no implications on the

value of yij , whereas by (3.4d) we have yij = 1.

When in situation 2., that is, if only one variable xk
ij has value 1, the value of yij can be

arbitrary. However, the objective function minimizes the sum of all these variables and this
minimization is achieved if the arbitrary yij ’s are equal to 0, as intended. Therefore, the
objective function counts the number of repeated arcs, that is the number of arcs that are
used more than once.

The same reasoning can be used to prove that the set of constraints (3.4c) can be dropped.
In fact, because the goal of this formulation is to minimize ∑A yij , the values of yij are 0 by
default.

Just like for the formulation presented in the previous section, an optimal solution of
formulation (3.4) may contain loops, as long as they do not include any arc that is common
to several paths. However, given any such optimal solution, Algorithm 1 can be applied in
order to remove its loops. The arguments for proving Proposition 3.3.1 are similar to those
used for Proposition 3.2.2, therefore its proof is omitted.

Proposition 3.3.1 Let (x, y) be an optimal solution for problem (3.4). Let x̄ ∈ {0, 1}Km be
the corresponding vector output by Algorithm 1 when applied to x, and ȳ ∈ {0, 1}m be such
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that the constraints (3.4c) and (3.4d) are satisfied. Then, (x̄, ȳ) is a loopless optimal solution
for problem (3.4).

3.3.1 Computational experiments

In the following, formulation (3.4), which minimizes the number of repeated arcs, is analyzed
empirically. The code that implements this formulation is designated by MRA. It was written
in C and uses IBM ILOG CPLEX version 12.7 to solve the integer programs. The variant of
the same formulation obtained by removing the constraints (3.4c) was also implemented. Note
that both models are valid formulations of the problem, the latter being a weaker (in terms
of its linear programming bound) but smaller variant of the first. Because the differences
in the run times obtained with both variants were not significant, only the original one is
presented below.

The experimental setup was as described in Section 3.2.1. Algorithm 1 was applied to
the results of the code MRA to remove the loops from the obtained solutions in the random
instances.

Table 3.6 Number of instances solved to optimality by MRA (%)

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 100 100 100 100 100 100 100 100
G4,36 100 100 100 100 100 0 0 0
G6,6 100 100 100 100 100 100 100 100
G12,12 100 100 100 100 100 0 0 0

MRA was able to solve to optimality all the random network instances, within the 300
seconds time window. Additionally, Table 3.6 shows the same number but for grids. It was
possible to solve 81% of these instances, corresponding to 26 out of the 32 instances. The
interruptions after 300 seconds occurred in problems of finding 8 or more paths in the 144
node grids. Finally, it is worth noting that even though formulations (3.2) and (3.4) model
different problems it is still of interest to compare them, since they both are relaxations of
the K dissimilar paths problem, and that far more instances were solved by MRA than by MAO.

The run times of code MRA are summarized in Table 3.7 and depicted in Figure 3.4. The
results were particularly sensitive to the number of paths. However, other features have
negative repercussions as well.

First, the results depend greatly on the layout of the network. In fact, unsolved instances
were only found solo in the case of grids. Furthermore, the magnitude of the run times
associated to the solved grid instances is several times higher than the run times for solving
the random instances (up to 221.5 seconds in the former case and to 2.2 seconds in the latter).
Another evidence of the difficulty associated to solving the grid instances, is the fact that
between 4 and 256 arcs have to be repeated in these instances, against between 1 and 24
for random networks. In this way, both formulations (3.2) and (3.4) are very sensitive to
the layout of the network and both work worse in the case of grid networks. In the case of
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Table 3.7 Run times of MRA (seconds)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.051 0.061 0.098 0.173 0.254 0.657 0.981 2.092
R100,1000 – 0.108 0.145 0.189 0.206 0.351 0.373 0.385
R300,1500 0.138 0.204 0.279 0.312 0.432 0.539 1.057 2.144
R300,3000 0.280 0.347 0.411 0.485 0.614 0.723 0.855 0.949
R500,2500 0.256 0.323 0.457 0.557 0.723 0.964 1.458 1.586
R500,5000 0.394 0.542 0.770 0.944 1.074 1.271 1.488 1.836

Average 0.223 0.261 0.360 0.443 0.550 0.750 1.053 1.498 0.640

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.054 0.154 0.455 0.859 0.696 0.902 1.078 1.235
G4,36 0.103 0.107 1.833 5.047 221.466 300 300 300
G6,6 0.019 0.093 0.327 1.200 11.392 3.075 2.176 1.441
G12,12 0.166 0.239 1.070 4.359 47.101 300 300 300

Average 0.085 0.148 0.921 2.866 70.163 150.994 150.813 150.669 65.832

the grid networks, the run times of MRA vary both with the shape of the grid and with K.
Further conclusions would require more exhaustive tests.

Second, as made evident by analyzing Table 3.7 and Figure 3.4, the pattern behavior of
the MRA run times for random networks changes for K ≥ 7. Prior to that value, the run times
vary with the size of the networks; afterwards other factors become dominant. This type of
behavior was identified in Section 3.2.1, when analyzing MAO results. Then, the density of
the network and the proportion between the value of K and the size of the network were
identified as determinant factors of the observed deviation. The corresponding MRA results,
seem to be affected in a similar way – the density of the network smooths the growth of the
run times, whereas the increase of K causes abrupt increases from a certain threshold for the
R100,500 and R300,1500 instances.
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Table 3.8 Average integer programming gaps of MRAL (%)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 10 40 36 38 36 42 43 43
R100,1000 – 12 23 25 40 46 48 49
R300,1500 14 33 45 41 39 39 47 47
R300,3000 2 11 25 35 38 44 49 47
R500,2500 17 42 35 37 35 42 45 45
R500,5000 7 14 17 30 38 41 48 42

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 50 61 50 46 41 37 35 32
G4,36 50 67 72 59 51 46 41 37
G6,6 50 67 67 70 70 66 60 56
G12,12 50 67 67 70 70 71 71 72

Finally, Table 3.8 presents the average integer programming gaps determined by the lower
bound produced by the linear relaxation of the formulation (3.4). These gaps are computed
as explained in Section 3.2.1. In the random instances the gap values are at most 49%. The
gaps are even bigger for the grid networks, between 32% and 72%.

3.4 Minimization of the number of arc repetitions

The goal of formulation (3.4), presented in the previous section, is to minimize the number of
arcs which are repeated in the solutions. The undesired effect of this single objective may
be that few arcs appear in many different paths. This situation is illustrated in Figure 1.1.
Another example is depicted by the two sets of K = 3 paths in Figure 3.5. Both the solutions
in Figure 3.5 have a single repeated arc. However, the paths in the solution in Figure 3.5b
are more dissimilar than the paths in Figure 3.5a, the reason being that in the first case the
arc (i, j), which is repeated, appears only twice, while it appears in all the three paths in
the latter case. In the following two approaches are presented which intend to model a more
complete understanding of how dissimilar paths should look like.
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Fig. 3.5 Different sets of K = 3 paths

According to the example above, the way how paths spread in a network is affected by
the number of repeated arcs as well as by the number of times that the repeated arcs appear
in the paths. This issue will be addressed with two approaches in the following. First, by
minimizing the number of times the repeated arcs appear in the set of the paths. Later, by
minimizing the number of times they are repeated, which accounts also for the number of
paths where they appear.
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The number of occurrences of the arc (i, j) ∈ A in a set of K paths PK is defined as:

Occ(i, j; PK) =
{

0 if |{p ∈ Pk : (i, j) ∈ p}| ≤ 1
|{p ∈ Pk : (i, j) ∈ p}| otherwise

and the number of repeated arc occurrences in Pk is given by

RO(PK) =
∑

(i,j)∈A

Occ(i, j; PK).

This value is RO(P3) = 3 in Figure 3.5a, and RO(P ′
3) = 2 in Figure 3.5b, which makes the

solution in the second plot better than the first with respect to the number of repeated arc
occurrences. The purpose of the next formulation is to find a set of K paths which minimizes
the number of repeated arc occurrences, RO(PK).

Let xk
ij be decision variables defined as before and let us consider the formulation:

min f3(x, y, u) =
∑

(i,j)∈A

uij (3.5a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.5b)

yij ≤
K∑

k=1
xk

ij , (i, j) ∈ A (3.5c)

(K − 1)yij ≥
K∑

k=1
xk

ij − 1, (i, j) ∈ A (3.5d)

uij ≤ K yij , (i, j) ∈ A (3.5e)

uij ≤
K∑

k=1
xk

ij , (i, j) ∈ A (3.5f)

uij ≥ yij +
K∑

k=1
xk

ij − 1, (i, j) ∈ A (3.5g)

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, uij ∈ N0, (i, j) ∈ A, k = 1, . . . , K (3.5h)

This formulation has O(Km) variables and O(Kn + m) constraints. For any (i, j) ∈ A,
the variable yij is defined as in the previous formulation. Additionally, for a given (i, j) ∈ A:

• If xk
ij = 0 for any k = 1, . . . , K, then the constraints (3.5f) imply that uij = 0.

• If xk
ij = 1 for exactly one k ∈ {1, . . . , K}, then by constraints (3.5f), uij ≤ 1, and by

constraints (3.5g), uij ≥ 0. Because the goal of the problem is to minimize ∑A uij ,
then uij = 0.
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• If xk
ij = 1 for more than one k ∈ {1, . . . , K}, because in the last section we saw that

then yij = 1, then by constraints (3.5f), uij ≤
∑K

k=1 xk
ij , and by constraints (3.5g),

uij ≥
∑K

k=1 xk
ij . Combining the two conditions implies that uij = ∑K

k=1 xk
ij .

Thus, the variable uij counts the number of times the arc (i, j) appears in the solution, or
is equal to 0 if (i, j) is not repeated in that solution, for any (i, j) ∈ A. According to these
points it can also be concluded that the variables uij can be relaxed as uij ≥ 0, without
changing the solution. The constraints (3.5e) and (3.5f) can be dropped, because by default
the minimization of the objective function implies that uij = 0. Moreover, also the constraints
(3.5c) can be skipped because the variables yij are only useful when the arc (i, j) appears in
more than one path and this constraint is not affected in that case.

s i j t

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(a) Solution with one repeated arc, shared by several paths

s

i j k l

t

. . . . . . . . .

. . . . . . . . .

. . .

. . .

(b) Solution with two repeated arcs, shared by one path

Fig. 3.6 Different sets of K = 4 paths

In the case shown in Figure 3.6, counting the number of times that the repeated arcs
appear in the solution is not enough to distinguish between the two depicted solutions. In
fact, Figures 3.6a and 3.6b we have RO(P4) = RO(P ′

4) = 4, where the repeated arcs are (i, j)
in the first case, and (i, j) and (k, l) in the second. Nevertheless, the fact that the repetitions
happen in different arcs should be valued, given that this is reflected in the dissimilarity
of these two sets of paths. Therefore, a new concept will be introduced, the number of
repetitions for any arc that appears in the solution more than once.

Let the number of repetitions of an arc (i, j) ∈ A in the set PK be the number of paths it
belongs to, excluding its first utilization, that is,

Rep(i, j; PK) =
{

0 if |{p ∈ Pk : (i, j) ∈ p}| ≤ 1
Occ(i, j; PK)− 1 otherwise

Then, the number of arc repetitions in Pk is given by

Rep(PK) =
∑

(i,j)∈A

Rep(i, j; PK).
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The number of arc repetitions defined above reflects two aspects: the number of arcs
shared by more than one paths as well as the number of paths that share them. Recalling the
example in Figure 1.1, for the solution P4 in Figure 1.1a we have Rep(P4) = 3, because the
arc (i, j) is repeated 3 times, whereas for the solution P ′

4 in Figure 1.1b we have Rep(P ′
4) = 2,

because both the arcs (i, j) and (k, l) are repeated once. The next formulation aims at
minimizing Rep(PK).

Like before, for modeling the problem of finding K paths from s to t which minimize the
number of arc repetitions, the variables xk

ij represent K paths and have value 1 if the arc
(i, j) is in the k-th path from s to t or are 0 otherwise, for any (i, j) ∈ A. The formulation is
as follows:

min f4(x, w, u) =
∑

(i,j)∈A

uij (3.6a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.6b)

xk
ij ≤ wij , (i, j) ∈ A, k = 1, . . . , K (3.6c)

wij ≤
K∑

k=1
xk

ij , (i, j) ∈ A (3.6d)

uij =
K∑

k=1
xk

ij − wij , (i, j) ∈ A (3.6e)

xk
ij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0 (i, j) ∈ A, k = 1, . . . , K (3.6f)

This formulation has O(Km) variables and O(K(m + n)) constraints. The constraints
(3.6b) are flow conservation constraints that define a set of K paths from node s to node t.
The constraints (3.6c) and (3.6d) are used to define the variables wij ∈ {0, 1}, each one equal
to 1 if and only if the arc (i, j) is used in at least one path, or 0 otherwise, for any (i, j) ∈ A.
Additionally, the constraints (3.6e) define the auxiliary variables uij , which corresponds to
the number of times that arc (i, j) ∈ A is repeated in different paths. For a given (i, j) ∈ A:

• If xk
ij = 0 for any k = 1, . . . , K, then the constraints (3.6d) imply that wij = 0.

Therefore the constraints (3.6e) imply that uij = 0.

• If xk
ij = 1 for exactly one k ∈ {1, . . . , K}, then by constraints (3.6c), wij ≥ 1 which

together with (3.6f) imply wij = 1, and by constraints (3.6e), uij = 0.

• If xk
ij = 1 for more than one k ∈ {1, . . . , K}, then by constraints (3.6c), wij ≥ 1 which

together with (3.6f) imply that wij = 1, and by constraints (3.6e), uij = ∑K
k=1 xk

ij − 1.

Because both xk
ij and wij are binary variables, the variables uij are implicitly defined as

integers for any (i, j) ∈ A, k = 1, . . . , K. Additionally, (3.6e) together with the non-negative
constraints of the variables uij imply (3.6d). Therefore, the constraints (3.6d) can be skipped
from the formulation.
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Finally, we observe that constraints (3.6c) can be aggregated as

K∑
k=1

xk
ij ≤ K wij , (i, j) ∈ A. (3.7)

Like for formulations (3.2) and (3.4), both formulations (3.5) and (3.6) admit optimal
solutions with loops. However, in such cases Proposition 3.4.1 holds and the Algorithm 1 can
be applied in order to obtain loopless optimal solutions.

Proposition 3.4.1 1. Let (x, y, u) be an optimal solution for problem (3.5). Let x̄ ∈
{0, 1}Km be the vector output by Algorithm 1 when applied to x, ȳ ∈ {0, 1}m and
ū ∈ Nm

0 be such that the constraints (3.5c) to (3.5h) are satisfied. Then, (x̄, ȳ, ū) is a
loopless optimal solution for problem (3.5).

2. Let (x, w, u) be an optimal solution for problem (3.6). Let x̄ ∈ {0, 1}Km be the vector
output by Algorithm 1 when applied to x, and w̄ ∈ {0, 1}m and ū be such that the
constraints (3.6c) to (3.6f) are satisfied. Then, (x̄, w̄, ū) is a loopless optimal solution
for problem (3.6).

3.4.1 Computational experiments

The tests setup presented in the following for experimentally assessing formulations (3.5) and
(3.6) is similar to what was described in Section 3.2.1.

While a number of relaxations of formulation (3.5) were tested, only the results for the one
with the best behavior with regard to the run times are reported. These correspond to the
variant that omits the set of constraints (3.5c) from the original model, (3.5). For simplicity,
we keep the same designation and in the following refer to the new model as formulation (3.5).
Likewise, several variants of (3.6) were tested. The model obtained from (3.6) by replacing
constraints (3.6c) with its aggregated version, constraints (3.7), was significantly faster than
the others. Thus, only the results for this new model are presented. Again, for simplicity, we
keep the same designation and hereafter refer to this new model as formulation (3.6).

The following codes were written in C, while using IBM ILOG CPLEX version 12.7 for
solving the integer programs:

• MRO: Implementation for minimizing the number of repeated arc occurrences, formulation
(3.5).

• MAR: Implementation for minimizing the number of arc repetitions, formulation (3.6).

Unlike the code MAR, which was able to find the optimal solution for all the instances, the
code MRO resumed after the 300 seconds limit for the 4× 36 grids when seeking for more than
7 paths. This can be seen in Table 3.9, which reports their average run times, depicted in
Figure 3.7.

The code MAR outperformed the previous in almost all cases in terms of run time. Figure 3.8
illustrates the results summarized in Table 3.10. The major differences are found in the
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Table 3.9 Run times of MRO (seconds)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.051 0.067 0.108 0.183 0.274 0.572 0.836 1.322
R100,1000 – 0.123 0.157 0.220 0.238 0.307 0.386 0.497
R300,1500 0.161 0.214 0.253 0.331 0.439 0.706 0.998 1.601
R300,3000 0.303 0.370 0.444 0.508 0.677 0.724 0.846 1.000
R500,2500 0.280 0.382 0.485 0.594 0.757 1.035 1.326 1.687
R500,5000 0.486 0.603 0.746 0.906 1.083 1.285 1.500 1.781

Average 0.256 0.293 0.365 0.457 0.578 0.771 0.892 1.314 0.627

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.037 0.251 0.815 1.041 5.496 15.547 8.673 11.894
G4,36 0.094 0.293 2.204 43.209 140.598 300 300 300
G6,6 0.165 0.009 0.276 0.752 2.409 3.930 23.715 14.426
G12,12 0.075 0.274 0.880 3.660 15.674 9.391 87.845 146.961

Average 0.092 0.206 1.043 12.165 41.044 82.217 150.058 118.320 45.018

results associated to the grid networks (where run times fall, in average, by 99.6%) and in
the subset of the random networks previously identified as the harder to solve (which has
reductions of 48% for the R100,500 instances, 41% for the R300,1500 instances and 25% for the
R500,2500 instances). Still, more than emphasizing the relative reductions towards MRO, it is
important to point out that MAR solved all instances, in less than 2 seconds. Moreover, results
suggest that MAR is far less susceptible to the effect of the variables that have been identified
as inhibiting to other models (the layout of the network, its sparseness and the proportion
between the value of K and the size of the network), indicating that this model can be used
in a wider range of situations. As a final remark, there was some instability in the run time
of the grid networks that should be clarified in a future work.
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Fig. 3.7 Run times of MRO (seconds)
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Table 3.10 Run times of MAR (seconds)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.051 0.078 0.116 0.172 0.181 0.301 0.342 0.519
R100,1000 – 0.097 0.140 0.143 0.193 0.265 0.236 0.316
R300,1500 0.139 0.193 0.222 0.259 0.313 0.426 0.486 0.717
R300,3000 0.226 0.323 0.391 0.458 0.609 0.706 0.773 0.905
R500,2500 0.249 0.318 0.374 0.442 0.593 0.733 1.003 1.172
R500,5000 0.384 0.571 0.825 1.024 1.211 1.369 1.576 1.730

Average 0.209 0.263 0.344 0.416 0.516 0.633 0.736 0.893 0.501

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.010 0.016 0.012 0.017 0.020 0.021 0.023 0.054
G4,36 0.047 0.083 0.126 0.157 0.215 0.250 0.620 0.382
G6,6 0.010 0.004 0.114 0.012 0.018 0.214 0.157 0.020
G12,12 0.034 0.049 0.142 0.242 0.124 0.383 0.323 1.292

Average 0.025 0.038 0.098 0.107 0.094 0.217 0.280 0.437 0.162

The average integer programming gaps produced by the linear relaxation of (3.5), in
Table 3.11, range between 1% and 18% for the random instances and between 7% and 33%
for the grid instances. The same values were all 0 for the linear relaxation of formulation
(3.6).

3.5 Bounding the number of arc presences

Formulation (3.4) aims at minimizing the number of arcs which appear in more than one
path. The undesired consequence of the simplicity of this objective function may be that
few arcs appear in many different paths, a situation which is illustrated in Figure 1.1. This
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Table 3.11 Average integer programming gaps of MROL (%)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 5 18 12 11 8 9 9 10
R100,1000 – 6 10 9 15 15 14 12
R300,1500 7 15 18 12 10 8 11 11
R300,3000 1 5 11 13 12 14 14 12
R500,2500 8 19 11 11 9 11 12 11
R500,5000 3 6 7 11 13 12 14 10

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 25 28 17 13 11 10 9 9
G4,36 25 33 36 21 14 11 8 7
G6,6 25 33 29 28 25 24 22 21
G12,12 25 33 29 28 25 24 22 21

was the motivation to consider the number of times that each repeated arc appears in the
objective function of formulations (3.5) and (3.6), presented in Section 3.4. In the following
we propose an intermediate solution, consisting of overcoming this handicap by adding a
constraint over the number of times that each arc is present in the solution. In addition, we
found that this approach also had an interesting side effect in the paths dissimilarity of the
solutions generated by formulations (3.5) and (3.6): when in the presence of multiple optimal
solutions with respect to the number of arc repetitions, bounding the number of times that
each arc appears gives an extra condition for untying those solutions, thus increasing their
dissimilarity. Therefore, the new set of constraints will also be considered in the context of
formulations (3.5) and (3.6). Naturally, on the downside, the new models may be more time
consuming.

The new set of constraints are very similar to the set of constraints proposed by [13] to
prevent repetitions of the arcs over the time horizon. However, whereas in [13] the bound
is an external parameter, in our case the bound is fixed by solving a simple problem that
optimizes the worst case in terms of the number of times that each arc is present in the
solution.

The new formulation aims at finding a set of K paths with the minimum maximum
number of arc presences. It is as follows

min max
(i,j)∈A

{
K∑

k=1
xk

ij

}
(3.8a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.8b)

xk
ij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (3.8c)
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where the decision variables are xk
ij ∈ {0, 1} equal to 1 if and only if the arc (i, j) appears in

path k, (i, j) ∈ A, k = 1, . . . , K. This formulation can be linearized as

min r (3.9a)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (3.9b)

r ≥
K∑

k=1
xk

ij , (i, j) ∈ A (3.9c)

xk
ij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (3.9d)

which is equivalent to its linear programming relaxation.
Now, let R∗ be the optimal value for problem (3.9) computed in advance. Then a new

constraint can be added to formulations (3.4), (3.5) and (3.6) in order to prevent the number
of arc presences from exceeding that value,

K∑
k=1

xk
ij ≤ R∗, (i, j) ∈ A. (3.10)

The problems modeled by the resulting formulations are constrained and, therefore, different
versions of the original ones. To assess whether the new problems produce better solutions to
the K dissimilar paths problem, a set of computational experiments was performed. The
values of R∗ for random and grid networks are reported on Table 3.12. Results are discussed
in Sections 3.5.1 and 3.6.2.

3.5.1 Computational experiments

In this section we analyze the impact of adding the constraints (3.10) to formulations (3.4),
(3.5) and (3.6) on the run times. Considering the experimental setup described in Section 3.2,
the following codes were tested:

• MRAA: implementation of formulation (3.4) including the constraints (3.10);

• MROA: implementation of formulation (3.5) including the constraints (3.10);

• MARA: implementation of formulation (3.6) including the constraints (3.10).

Like before, the codes were written in C, calling the integer programming solver IBM ILOG
CPLEX version 12.7. The impact of adding the constraints (3.10) to the formulations
introduced before on the several parameters is measured as 100 × (MA − M)/M %, where M
stands for each of the codes listed above.

Of the new codes, MARA was the only one able of finding the optimal solution for all the
instances within the time limit of 300 seconds. Both MRAA and MROA resumed after that limit
for the 4× 36 grids and K = 10.
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According to Table 3.13, in most cases the constrained problems require more time to
solve when the networks are denser, while the run times do not change much for the sparser
instances. In some of the latter cases there is even a speed up. The speed up happens mostly
for MRA and MRO, and is particularly relevant in grids, which are instances where finding
solutions is difficult. It should be added that the run times required for solving the problem
(3.9) are included in the values on Table 3.13. The results regarding the run times for the
grid networks were uneven.

The integer programming gap associated with MARA was equal to 0 in all the tested
instances. In general these values increased for the remaining formulations after adding the
new constraints, specially in the random instances and in the smaller grids and big K’s.
However, this variation is not very meaningful, as the unconstrained and the constrained
problems are different.

Table 3.12 Average of R∗ value

Instance R∗

R100,500 5.52
R100,1000 2.75
R100,1500 1.90
R500,2500 4.68
R500,5000 3.50
R500,7500 2.00

Instance R∗

G12,12 5.00
G4,36 5.00
G15,15 5.00
G5,45 5.00
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3.6 Application to finding K dissimilar paths

In the previous sections, integer formulations were presented for the problems of finding K

paths between a given pair of nodes, such that:

• the number of arc overlaps for each pair of paths is minimized;

• the number of repeated arcs is minimized;

• the number of occurrences of repeated arcs, or the number of arc repetitions, is
minimized.

These problems were suggested with the purpose of capturing characteristics of sets of K

dissimilar paths. Therefore in the current section the behavior of the presented approaches is
discussed and compared from the perspective of the dissimilarity, based on the metric D1

defined in Chapter 2. In addition, these approaches are also compared with the classical
method known as the IPM and proposed in [33]. As mentioned in Chapter 2, the idea
behind this method is to solve K shortest path problems and penalize the cost of the selected
arcs every time one of those paths is computed, in order to prevent their overlap as much
as possible. This approach has often been used for comparisons in the literature due to
its flexibility to incorporate features of various problems as well as the simplicity of its
implementation.

While a relative comparison of the dissimilarities produced by the different approaches is
possible, an absolute assessment of the results requires the optimal value of D1 to be known
for each instance. As that is the case only for some of the grid instances, the analysis is based
on a description of the results of each model followed by a relative overall comparison. For
that purpose, both the average dissimilarity between the pairs of paths in the solution (AvDi)
and their minimum dissimilarity (MiDi) are calculated for each instance. Then, the averages
of AvDi and of MiDi for each set of instances are calculated.

The test bed used for this study and the testing conditions are the same described in
Section 3.2. Furthermore, the IPM code implements the method with the same name, in C
and calling the CPLEX solver for solving the shortest path problems. A set of preliminary
tests was run, in order to decide how to parametrize the IPM. IPM works with unitary arc
costs and was tested with the additive penalizations α = 0.25, 0.50, 0.75, 1.00, applied to
the cost of the arcs of the most recently found path. Since considering the penalization
α = 1.00 produced better results than the remaining penalties for AvDi and MiDi in all
random instances, this was the value fixed in the rest of the experiments. Tables 3.14 and
3.15 present the dissimilarities and the run times of this implementation, which will be used
for comparison with the introduced formulations. The dissimilarity results are far better for
grids than for random networks. This is due to the fact that all paths in the used grids of a
certain size have the same length. In effect, IPM naturally avoids the arcs previously used,
unless the cost associated to the increase in the number of arcs exceeds the penalty. When
applied to the random networks, the length of the paths varies and so does the dissimilarity
of the solutions found by the method. Because this method essentially solves K shortest path
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problems, it has polynomial complexity of O(Km + Kn log n) and it run fast for any of the
considered instances: in less than 0.70 seconds in random networks and in less than 0.05
seconds in grid networks.

Table 3.14 Average AvDi and MiDi of IPM in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.712 0.823 0.841 0.847 0.839 0.846 0.830 0.830
R100,1000 – 0.857 0.910 0.918 0.941 0.943 0.947 0.941

R300,1500 0.774 0.868 0.892 0.895 0.890 0.886 0.888 0.885
R300,3000 0.917 0.913 0.937 0.919 0.929 0.942 0.942 0.941

R500,2500 0.896 0.911 0.904 0.907 0.911 0.911 0.906 0.904
R500,5000 0.764 0.853 0.867 0.894 0.909 0.917 0.927 0.927

Average 0.812 0.870 0.891 0.896 0.903 0.907 0.906 0.904 0.886

MiDi K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.429 0.485 0.484 0.428 0.373 0.301 0.212 0.158
R100,1000 – 0.145 0.312 0.316 0.430 0.419 0.423 0.369

R300,1500 0.613 0.642 0.621 0.621 0.491 0.347 0.338 0.251
R300,3000 0.750 0.531 0.550 0.541 0.503 0.521 0.500 0.464

R500,2500 0.736 0.640 0.634 0.576 0.569 0.526 0.498 0.448
R500,5000 0.525 0.588 0.539 0.530 0.564 0.564 0.580 0.580

Average 0.610 0.505 0.523 0.502 0.488 0.446 0.425 0.378 0.484

Table 3.15 Run times of IPM (seconds)

K

Rn,m 3 4 5 6 7 8 9 10

R100,500 0.021 0.028 0.034 0.040 0.046 0.057 0.063 0.070
R100,1000 – 0.053 0.065 0.076 0.089 0.101 0.113 0.126

R300,1500 0.064 0.087 0.110 0.129 0.150 0.176 0.197 0.219
R300,3000 0.116 0.151 0.181 0.210 0.244 0.279 0.311 0.344

R500,2500 0.109 0.139 0.174 0.207 0.245 0.285 0.317 0.351
R500,5000 0.191 0.251 0.322 0.395 0.469 0.545 0.599 0.691

Average 0.100 0.118 0.147 0.176 0.207 0.240 0.266 0.300 0.194

K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.000 0.002 0.003 0.004 0.005 0.003 0.005 0.005
G4,36 0.008 0.013 0.016 0.012 0.021 0.026 0.030 0.033
G6,6 0.003 0.003 0.001 0.002 0.004 0.000 0.007 0.008
G12,12 0.005 0.007 0.010 0.013 0.011 0.018 0.017 0.014

Average 0.004 0.006 0.007 0.007 0.010 0.011 0.014 0.015 0.009

The rest of the section is organized as follows: first, the results for the four initial
formulations and the IPM are compared; then the effect of adding the constraints (3.10) to
the original models is discussed.
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Table 3.16 Average AvDi and MiDi of IPM in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.948 0.833 0.800 0.769 0.758 0.741 0.732 0.728
G4,36 0.892 0.912 0.982 0.859 0.830 0.817 0.805 0.798
G6,6 0.933 0.933 0.900 0.893 0.866 0.857 0.844 0.840
G12,12 0.969 0.969 0.954 0.951 0.939 0.935 0.929 0.926

Average 0.958 0.911 0.886 0.868 0.848 0.837 0.827 0.823 0.870

MiDi K

Gp,q 3 4 5 6 7 8 9 10

G3,12 0.846 0.153 0.153 0.153 0.153 0.000 0.000 0.000
G4,36 0.947 0.526 0.526 0.500 0.500 0.131 0.078 0.078
G6,6 0.900 0.900 0.600 0.600 0.600 0.600 0.500 0.500
G12,12 0.954 0.954 0.818 0.818 0.681 0.681 0.681 0.681

Average 0.911 0.633 0.524 0.517 0.483 0.353 0.314 0.314 0.506

3.6.1 Unconstrained formulations

The average and minimum dissimilarities of MAO, MRA, MRO, and MAR are compared in the
following. The detailed results for each formulation can be found in Appendix A.1.
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Fig. 3.9 Average AvDi values of the unconstrained formulations in random networks

We begin by analysing the results for the random networks. Figure 3.9 depicts the
variation of the average AvDi for each model. In general, the highest values of the average
AvDi are associated to the code MAO, which is followed closely by MAR (the difference between
the values associated to the two models does not exceed 2%). Nevertheless, MAR surmounts
MAO for K = 3 and K = 4. On the other hand, IPM has the worst performance with this
regard, except for K ≥ 8, where it outperforms MRA. In fact, the average dissimilarity obtained
by IPM tends to improve when K grows, whereas it tends to worsen for all the formulations
but MAO.

Figure 3.10 summarizes the average AvDi results for each random instance. The variation
of the dissimilarities follows closely the pattern identified in Sections 3.2.1, 3.3.1 and 3.4.1
for the run times of the formulations: the instances recognised as harder to solve, namely
R100,500, are associated to the worst AvDi values.
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Figure 3.11 allows a comparison of the dispersion of the results. The best scores are
associated to MAO, followed by MAR and MRO, whereas the IPM is the code with more disperse
values. In terms of the formulations, MRA was worse than the others. The box-plots in
Figures A.1 – A.16, in Appendix A.1, allow a thorough analysis of the dispersion of the average
AvDi and MiDi values for each formulation. In general, the dispersion of the dissimilarities
increases with K. It can also be concluded that, as expected, the hardest instances have
smaller dissimilarities and a bigger dispersion of values.

The values of MiDi allow to study the worst case in terms of dissimilarity. Figure 3.12
depicts a summary of the average MiDi for random networks. In this case, the best results are
found for the MRO and the MAR models. IPM is worse than all formulations with this regard,
while all the latter show very similar performances (the inner differences do not exceed 5%).
Also worthy of note, is the significant decrease of the MiDi values observed with the increase
of K.
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Fig. 3.10 Average dissimilarity of the unconstrained formulations in random networks
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Fig. 3.12 Average MiDi values of the unconstrained formulations in random networks

To summarize, the best and least disperse average AvDi’s are associated to the MAO model.
However, its high run times undermine its application. In contrast, MAR produced solutions
with good average and dispersion dissimilarities in less than 2 seconds, for all instances.
Furthermore, the MiDi analysis indicates that MAR is less likely to produce solution with very
poor dissimilarities.

Next, the results for the grid networks are analyzed. As already mentioned, for some grid
networks it is possible to know the optimal value of D1. In fact, the length of the paths in a
grid network Gp,q is constant, namely q + p− 2. Consequently, maximizing D1 is equivalent
to minimizing only the numerator of the fractions in its expression, which is precisely the goal
of formulation (3.2). Thus, the values of AvDi for all the instances solved to optimality by
MAO are optimal dissimilarities. Figure 3.13 illustrates the main differences between the five
codes. Like what happened for the random networks, MAO produces the best results. However,
this model is now followed by IPM, and the differences towards MAR have become wider and
go as high as 10% whereas they do not exceed 2% for IPM. MRA still provides the worst results.
Despite the good dissimilarities obtained by MAO, it is worth noting that these are affected by
the fact that most of these instances were not solved to optimality within the time limit.

Figure 3.14 allows a more comprehensive comparison of the AvDi values produced by each
code. The results highlight the greater difficulty of solving the square instances, as pointed
out in sections 3.2.1, 3.3.1 and 3.4.1, and also some inconsistency in the values associated to
MRA. Figure 3.15 allows the analysis of the dispersion of these results. MAO is the formulation
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Fig. 3.13 Average AvDi values of the unconstrained formulations in grid networks

with the more uniform values, followed by IPM. On the other hand, the models MAR, MRO
and MRA present the smallest dispersion (in this order). Overall, the differences between the
models lay in the low quartiles, thus MAO and IPM offer less chances of obtaining solutions
with low values AvDi for this type of networks. The figures and the tables in Appendix A.1,
show that the trends discussed above regarding Figure 3.14 are also present when studying
the dissimilarity.
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Fig. 3.14 Average dissimilarity of the unconstrained formulations in grid networks

As shown in Figure 3.16, there is no clear dominance regarding the values of MiDi.
Nevertheless, the worst results are associated to the IPM for K = 3, 4 and to MRA model for
K ≥ 5. It should be mentioned that, in all cases, the results follow heavily with the increase
of K. In fact, the new formulations only look for good average dissimilarities between the
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pairs of paths in the solution, which may hide solutions with pairs of paths with very different
dissimilarities.
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Fig. 3.16 Average MiDi of the unconstrained formulations in grid networks

In conclusion, the dissimilarity results suggest the use of MAO model when dealing with
grid networks. However, once again, its run times limit its application. On the other hand,
IPM was also able of finding good solutions and has the strong advantage of running in little
time. Therefore, IPM seems a sound approach for this specific type of networks. As to the
remaining formulations, the AvDi values associated to MAR are smaller but close to the above
mentioned methods (with an average difference of 5%, to both). Moreover, the MiDi results
favor MAR. This information together with the good run times associated to this method,
suggest that MAR is also worth considering in this context.

3.6.2 Constrained formulations

As shown in Table 3.17, the models obtained by adding the constraints (3.10) to formulations
(3.4), (3.5) and (3.6) produce solutions with better dissimilarity results, with few exceptions.
Furthermore, the increase in the dissimilarities is bigger when more paths need to be found and
bigger in the grids than in the random networks. As expected, the most significant differences
occurred to the pair MRA–MRAA, with dissimilarity improvements of up to 10% for the random
networks and up to 244% for the grid networks. As to the pair MRO–MROA, Table 3.17 indicates
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also an improvement of the average dissimilarity of the solutions. However, the differences
were smaller both in the cases of the random and of the grid networks (up to 6% in the
first case and to 24% in the latter). There were no changes in the dissimilarities obtained
on the square grids. Finally, the smallest difference was found for MAR and MARA. Even so,
the improvements on the rectangular grids were quite significant. Again, no differences were
registered in the dissimilarity results for square grids. Detailed information about the three
models can be found in Appendix A.2.

Table 3.17 Average dissimilarity variation for MRAA, MROA and MARA (%)

MRAA MROA MARA

K K K

Rn,m 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
R100,500 1 1 2 4 6 7 7 12 0 1 2 4 3 6 6 5 −1 1 1 2 2 2 2 2
R100,1000 – 2 2 3 2 3 3 10 – 0 1 2 2 3 4 4 – 1 1 0 0 1 1 1
R300,1500 1 0 2 2 3 4 4 5 0 0 2 3 3 3 3 3 −2 0 0 1 1 1 2 2
R300,3000 0 5 1 10 9 9 9 8 0 −1 1 1 2 3 3 4 −1 1 1 1 1 1 1 1
R500,2500 0 1 1 3 2 4 5 6 1 0 0 2 2 3 2 2 1 0 0 1 0 1 1 1
R500,5000 2 2 1 1 2 2 3 4 1 1 1 0 1 1 2 2 0 0 1 1 0 1 1 1

MRAA MROA MARA

K K K

Gp,q 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10
G3,12 0 3 37 138 158 202 218 244 0 3 4 16 18 23 22 24 0 2 1 11 6 10 13 15
G4,36 0 0 24 38 31 16 73 28 0 0 0 0 0 16 14 24 0 0 0 0 −2 14 19 15
G6,6 0 8 13 0 0 64 60 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G12,12 0 0 0 0 0 1 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

In the following, we analyze the trade-off between the improvements in the dissimilarities
and the variations in the run time, identified in Section 3.5.1, to assess to what extent the
constrained models are worth considering. The new models are compared to IPM and MAO.
The code MROA was ruled out of the study, because it follows closely MARA but always with
some disadvantage.

Figure 3.17 depicts the variation of the average AvDi for MRAA, MARA, MAO and IPM in the
random networks. In spite of the improvement on the average dissimilarities associated to
the MRAA when compared to MRA (see Figures 3.9 and 3.17), the constrained version of MAR is
still the best, in average. The differences, however, are now very tenuous.

Comparing Figures 3.11 and 3.18 reveals a reduction in the dispersion of the results of
both MARA and MRAA. Nevertheless, MARA outperforms MRAA and performs even better than
MAO regarding the worst cases. Again, IPM produces the poorest results.

Figure 3.19 reports the average run times of the models. As shown in Section 3.5.1, adding
the constraints (3.10) affected MAR more than MRA. In fact, MARA and MRAA are now very close
– MRAA runs faster for the smaller networks and MARA for the larger. It is worth mentioning
the increase of the run times from 1 to 5 seconds for the biggest instances. As expected, IPM
is faster than the other codes.
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In short, both MRAA and MARA seem tailored for this type of network: the average difference
in the dissimilarities towards MAO is of 0.50% for MRAA and of 0.08% for MARA; as to the run
times, MRAA is in advantage for K ≤ 7 and MARA for the remaining values of K. However,
taking into account the earlier good dissimilarities and run times of MAR, it is not clear
whether its constrained model is the best option.

Figure 3.20 presents the average AvDi for MRAA, MARA, IPM and MAO in grid networks.
In spite of the significant improvement for the pair MRA–MRAA (see Figure 3.13), MARA still
produced solutions with higher average dissimilarities. In addition, it solved all the instances
to optimality, which did not happen for MRAA (it was not possible to find 10 paths in
G4,36 within 300 seconds). Nevertheless, MAO provides the solutions with the best average
dissimilarities, now followed closely by IPM. On the other hand, there are reductions in the
dispersion of the results for the pairs MRA–MRAA and MAR–MARA, when comparing Figures 3.15
and 3.21. Furthermore, as the most significant improvements occurred in the lower quartiles,
it can be concluded that both MRAA and MARA are less likely to produce solutions with low
dissimilarities than MRA and MAR for this type of network. Nevertheless, the best results are,
again, associated to MAO and IPM.
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Fig. 3.19 Run times of the constrained formulations in random networks (seconds)

3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

K

MAO MRAA MARA IPM

K

3 4 5 6 7 8 9 10
MAO 0.959 0.930 0.887 0.874 0.854 0.845 0.833 0.827
MRAA 0.959 0.930 0.871 0.838 0.813 0.808 0.779 0.775
MARA 0.959 0.930 0.881 0.860 0.816 0.825 0.803 0.797
IPM 0.958 0.911 0.886 0.868 0.848 0.837 0.827 0.823

Fig. 3.20 Average AvDi values of the constrained formulations in grid networks

3 4 5 6 7 8 9 10
0

10
20
30
40
50
60
70
80

K

MAO MRAA MARA IPM

K

3 4 5 6 7 8 9 10

MAO 0.158 1.019 79.534 96.118 300 300 300 300
MRAA 0.055 0.059 0.667 5.111 11.194 1.702 3.270 76.915
MARA 0.043 0.054 0.101 0.093 0.233 0.155 0.260 0.404
IPM 0.004 0.006 0.007 0.007 0.010 0.011 0.014 0.015

Fig. 3.22 Run times for the constrained formulations in grid networks (seconds)

According to Figure 3.22, MRAA is much slower than MARA for this type of instances, which
is, in turn, much slower than IPM. Thus, even though MARA has good run times it is clearly
overtaken by IPM. As mentioned earlier, in general, the run times associated to MAO are very
high. Tables A.11 and A.12 in Appendix A.2 give detailed run times of the MRAA and MARA
models.

The previous discussion confirms IPM as the most suitable method for solving instances
in grid networks. IPM is the fastest of the codes being compared and produced the solutions
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with the highest overall average dissimilarity. On the other hand, the results associated to
MARA are also to be considered. In average the difference towards MAO is 2%. This, together
with the very reasonable run times, makes MARA also interesting for this type of network.
In Section 3.6.1 we also pointed out MAR as an interesting option for this type of network.
However, comparing to MARA, we realize that MAR offers worse dissimilarities in the same
amount of time.

3.7 Concluding remarks

This chapter addressed the search for K dissimilar paths connecting a given pair of nodes in
a directed graph. Four integer formulations were introduced. The formulations have different
motivations, but their general goal is to minimize the number of arcs that appear in more than
one path or the total number of those overlaps, while searching for sets of paths with good
dissimilarity. The inclusion of an additional set of constraints to the previous formulations,
with the goal of improving the solutions dissimilarity, was also proposed. The performance
of the new formulations and of a traditional method in the literature, the iterative penalty
method, was tested over random and grid networks, assessing the required run time as well
as the average and the minimum dissimilarities of the solutions. The dissimilarity of a given
solution is the average of the pairwise dissimilarity between their paths, which is measured
based on the ratios between the number of overlaps of the pair of paths and the length of the
involved paths. Three classes can be considered with this respect:

• The code IPM, which not surprisingly is the fastest, given that it simply solves K

shortest path problems. Besides being the fastest code, IPM provided solutions with
good dissimilarity for the grid networks. On the other hand, the solutions produced by
this method for the random networks are very poor as to the dissimilarity of the K

paths.

• The code MAO, clearly the slowest of the five codes and often unable of finding an optimal
solution within the established 300 seconds. In spite of this drawback, in general, MAO
produced the solutions with the best dissimilarity, both for the random and the grid
networks.
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• And the final group, composed of codes MAR, MRAA and MARA, which also provide solutions
of good quality with regard to the dissimilarity. The three codes have similar behaviors
for the random networks, however, for the grid networks, the latter unequivocally
outperforms the others. Unlike MRAA, both MAR and MARA were able to find the optimum
within the time bound for all instances. Furthermore, the run times of MAR and MARA
are much smaller than the run times of the remaining codes in this group.



Chapter 4

The bi-objective K shortest -
dissimilar paths problem

This chapter is organized into four parts. The next section is dedicated to the presentation
of general concepts of bi-objective optimization. In Section 4.2 the K shortest and dissimilar
paths problem is defined. The goal of the problem is to find K dissimilar paths with minimum
total cost. The methods described in Section 4.2 are adapted to this problem, based on the
two best formulations presented in Chapter 3. Finally, the methods developed in Section 4.3
are tested. Computational results of the experiments are presented in the next section.
Concluding remarks are provided in Section 4.4.

4.1 Bi-objective optimization

In this section we cover some concepts of bi-objective optimization problems. Let us consider
the bi-objective optimization problem (BOP) defined as

min f(x) = (f1(x), f2(x))
subject to x ∈ X

(4.1)

where f1, f2 : Rn → R are two objective functions and X ⊆ Rn is the set of feasible solutions.
The image of set X under the objective function f is denoted as Y = f(X). In general the
functions f1, f2 are conflicting, therefore there is no single solution which simultaneously
optimizes both. Thus, instead of searching for an optimal solution, in bi-objective optimization
we search for compromise solutions, that is, solutions which cannot be improved in one of the
objective functions without worsening the other. In the following we adopt the definition
below of Pareto optimality or efficiency.

Definition 4.1.1 ([16]) A feasible solution of the BOP (4.1), x1 ∈ X, is said to dominate
another feasible solution for the same problem x2 ∈ X if

1. fi(x1) ≤ fi(x2), for i = 1, 2, and

2. fi(x1) < fi(x2), for at least one index i ∈ {1, 2}.

47
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Definition 4.1.2 A feasible solution of the BOP (4.1) x̂ ∈ X is called efficient or Pareto
optimal if there is no other feasible solution x ∈ X that dominates x̂. If the solution x̂ is
efficient, then its outcome vector f(x̂) is called a non-dominated point.

Some dominated solutions are dominated by others for only one of the objective functions.

Definition 4.1.3 A feasible solution of the BOP (4.1) x̂ ∈ X is weakly efficient if there is
no x ∈ X such that f1(x) < f1(x̂) and f2(x) < f2(x̂). The corresponding outcome vector f(x̂)
is then said to be weakly non-dominated.

Definition 4.1.4 A feasible solution of the BOP (4.1) x̂ ∈ X is called strictly efficient
(strictly Pareto optimal) if there is no x ∈ X, x ≠ x̂ such that f1(x) ≤ f1(x̂) and f2(x) ≤ f2(x̂).
The strictly efficient sets are denoted XsE.

Whenever it is established that the two objective functions have different priorities, we talk
about lexicographic optimization. This case is based on an order relation. Given y1, y2 ∈ R2

we say that y1 is lexicographically smaller than y2, and write y1 <lex y2, if y1
q < y2

q where
q = min{k : y1

k ̸= y2
k}, and say that y1 is lexicographically smaller than or equal to y2, and

write y1 ≤lex y2, if y1 = y2 or y1 <lex y2.

Definition 4.1.5 A feasible solution of the BOP (4.1), x̂ ∈ X, is lexicographically optimal
with respect to (f1, f2), or a lexicographic solution, if f(x̂) ≤lex f(x), for all x ∈ X.

An efficient solution is not necessarily a lexicographically optimal solution. However, the
opposite holds, that is, any lexicographically optimal solution is also an efficient solution.

Lemma 4.1.1 ([16]) Let x̂ ∈ X be such that f(x̂) ≤lex f(x) for any x ∈ X. Then x̂ is an
efficient solution to the BOP (4.1).

The set of all efficient solutions will be denoted by XE and called the efficient set. The set
of all non-dominated points ŷ = f(x̂) ∈ Y , where x̂ ∈ XE , is denoted by YN and called the
non-dominated set.

The ideal and the nadir points of the BOP (4.1) are defined as lower and upper bounds
on its non-dominated points, respectively. These points give an indication of the range of the
values that the non-dominated points can attain [43, 44, 59].

Definition 4.1.6 1. The point yI = (yI
1 , yI

2), where yI
k = minx∈X{fk(x)}, for k = 1, 2, is

called the ideal point of the BOP (4.1).

2. The point yN = (yN
1 , yN

2 ) where yN
k = maxx∈XE

{fk(x)}, k = 1, 2, is called the nadir
point of the BOP (4.1).

In bi-objective optimization, the worst value of the second objective function is attained
among the solutions that minimize the first objective function and vice versa, which makes
it easy to compute the nadir point. In other words, both the ideal and the nadir point can
be found by computing the lexicographic optimal solution with respect to (f1, f2) and the
lexicographic optimal solution with respect to (f2, f1).
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4.1.1 The ϵ-constraint method

Traditional approaches for solving bi-objective optimization problems are based on scalar-
ization. This involves formulating a single objective optimization problem that is related to
the BOP (4.1) by means of a real-valued scalarizing function which typically depends on
the objective functions of the BOP, auxiliary scalar or vector variables, or scalar or vector
parameters. Sometimes the feasible set of the BOP is additionally restricted by new constraint
functions related to the objective functions of the BOP or the new variables introduced.

One of the simplest methods to solve bi-objective problems is the weighted-sum method [12,
37], which solves the weighted-sum problem

min
x∈X

2∑
k=1

λkfk(x).

where λ1, λ2 ≥ 0 are parameters such that λ1 + λ2 = 1. This method solves a sequence of
weighted-sum problems of this type, where the parameters λ1, λ2 vary in order to obtain
different solutions. All the weighted-sum problems are of the same type as the original, given
that the feasible region does not change. However, the method requires the normalization
of the two objective functions if they represent different quantities. Furthermore, it is
unable of finding non-dominated solutions that are not extreme (usually known as supported
solutions) [16].

Together with the weighted-sum approach, the ϵ-constraint method is probably the
best known technique to solve bi-objective optimization problems. In this case there is no
aggregation of objectives. Instead, only one of the original objective functions is minimized,
while the other is transformed to a constraint. The scalar ϵ represents the upper bound
on the objective function involved in the new constraint, and by varying this scalar in an
appropriate way, the complete set of non-dominated points can be generated. The method
was first introduced by Haimes, Lasdon and Wismer [27], and extensive discussions about
the topic can be found in Chankong and Haimes [9] or Mavrotas [42]. In the following some
more details are given on this method. For easiness of presentation, without loss of generality,
we consider that f1 is the objective function to minimize and f2 is the objective function
included in the constraints.

As explained above, in the ϵ-constraint method, the BOP (4.1) is replaced by the ϵ-
constraint problem

minimize f1(x)
subject to x ∈ X

f2(x) ≤ ϵ

(4.2)

where ϵ ∈ R. Furthermore, updating ϵ as f̂2 −∆, where f̂2 is the solution value in the second
objective of a feasible solution and ∆ > 0 is a small number, guarantees an improvement of
the second objective. The solution of this problem may be an efficient solution of the BOP,
although in a general case only its weakly efficiency can be ensured.

Proposition 4.1.1 ([16]) Let x̂ be an optimal solution of (4.2). Then x̂ is weakly efficient.
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Proof. Assume x̂ is not weakly efficient. Then there is an x ∈ X such that f1(x) < f1(x̂)
and f2(x) < f2(x̂). Since f2(x) < f2(x̂) ≤ ϵ, the solution x is feasible for (4.2). This is a
contradiction to x̂ being an optimal solution of (4.2). �

In order to strengthen Proposition 4.1.1 to obtain efficiency we require the optimal solution
of (4.2) to be unique.

Proposition 4.1.2 ([16]) Let x̂ be a unique optimal solution of (4.2). Then x̂ ∈ XsE (and
therefore x̂ ∈ XE).

Proof. Assume there is some x ∈ X with f2(x) < f2(x̂) ≤ ϵ. If in addition f1(x) ≤ f1(x̂)
we must have f1(x) = f1(x̂) because x̂ is an optimal solution of (4.2). So x is an optimal
solution of (4.2). Thus, uniqueness of the optimal solution implies x = x̂ and x̂ ∈ XE . �

In general, the efficiency of x̂ is related to x̂ being an optimal solution of the constrained
problem with respect to each of the objective functions with the same ϵ. It can be shown
that with appropriate choices of ϵ all non-dominated solutions can be found.

The choice of which function to optimize and which to include in the constraints, as well
as the strategy adopted for updating the bound ϵ, can vary and may depend on the particular
form of the problem. An outline of a generic ϵ-constrained method is given in Algorithm 2.

Algorithm 2: The ϵ-constraint method – Decreasing ϵ version
1 (yI

1 , yI
2)← ideal point for (f1, f2) in X

2 (yN
1 , yN

2 )← nadir point for (f1, f2) in X
3 YE ← {(yI

1 , yN
2 )}

4 x̄← (yI
1 , yN

2 )
5 ϵ← yN

2 −∆
6 while ϵ ≥ yI

2 do
7 x∗ ← optimal solution of problem (4.2)
8 if f1(x∗) > f1(x̄1) then YE ← YE ∪ {(f1(x̄), f2(x̄))}
9 x̄← x∗

10 ϵ← f2(x∗)−∆
11 YE ← YE ∪ {(f1(x̄), f2(x̄))}

The set YE stores the non-dominated points of the problem as they are computed. A
new solution is found for each value of ϵ, and the parameter ϵ is updated according with its
objective value. The variable x̄ is an auxiliary variable that stores the latest solution found
until it is concluded whether it is efficient or it is dominated. The line 8 in the pseudo-code
corresponds to a dominance test for solution x̄. As a result, in case x̄ is an efficient solution,
its image is included in the set YE .

Algorithm 2 is illustrated in Figure 4.1a. Point 1, image of x∗
1, is the first non-dominated

point to be computed. Then ϵ1 is set to f2(x∗
1)−∆, where ∆ is a suitably chosen and problem

dependent value. Then the solution corresponding to point 2, image of x∗
2, is obtained. The

procedure is then repeated for ϵ2 = f2(x∗
2)−∆ and the new solution corresponds to point 3,

image of x∗
3. Comparing points 2 and 3, it can be concluded that point 2 is weakly dominated,

because it is dominated by point 3. Therefore, point 2 is not inserted in set YE . Instead, the
next step consists of computing the solution corresponding to point 4, image of x∗

4, and when
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this is compared to x∗
3, the latter solution is inserted in the set YE . These instructions are

repeated until ϵ reaches the ideal value for f2, thus computing the solutions represented by
point 5, which is also a non-dominated point.

f1

f2

yI
1 yN

1

yI
2

yN
2

ϵ1
ϵ2
ϵ3

ϵ4

•1
•2
•3

•4
•5

(a) Decreasing ϵ version (Algorithm 2)

f1

f2

yI
1 yN

1

yI
2

yN
2 ϵ5

ϵ4
ϵ3
ϵ2
ϵ1

•4

•3

•2
•1

(b) Increasing ϵ version (Algorithm 3)

Fig. 4.1 The ϵ-constraint method

The ϵ-constraint algorithm has two main drawbacks. One is that weakly dominated
solutions can be found along the process, as shown above. In this case the method presumably
may solve more ϵ-constrained programs than what is actually required, that is, more problems
than the number of non-dominated points. The other is that the new constraint may ruin
the structure of the underlying problem and, thus, make it harder to solve. The first of these
drawbacks can be overcome by:

• Comparing the solutions as they are computed, and filtering those that are dominated,
as already indicated in Algorithm 2 .

• Or transforming every sub-problem into a lexicographic problem with respect to (f1, f2),
that is, minimizing f1 and considering the best value for f2 whenever there is a tie
in function f1. This way the solution obtained is guaranteed to be efficient, and the
condition on line 8 of Algorithm 2 can be skipped.

• Or even deleting the dominated solutions from the set of all computed solutions after
they have been determined.

Additionally, the objective function can be perturbed in order to avoid the computation of
these weakly efficient solutions [42].

Like in Algorithm 2, in traditional implementations of the ϵ-constraint method for
minimization problems, the values of ϵ decrease as solutions are computed. The region
defined by the ideal and the nadir points, where non-dominated points lie. However, may
as well be swept by increasing the parameter ϵ rather than by decreasing it. The solutions
of sub-problems (4.2) are still weakly solutions regardless of the policy for updating ϵ. In
practical terms the difference is that by increasing ϵ the feasible regions in the sequence of
sub-problems become larger and each sub-problem is a relaxation of the previous, as stated
next.
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Proposition 4.1.3 Let x∗ and x′ be optimal solutions for the constrained problems

minimize f1(x)
subject to x ∈ X

f2(x) ≤ ϵ∗
(4.3)

and
minimize f1(x)
subject to x ∈ X

f2(x) ≤ ϵ′
(4.4)

respectively, where ϵ∗ ≤ ϵ′. Then the following hold:

1. x∗ is a feasible solution of problem (4.4);

2. f1(x∗) ≥ f1(x′).

The first point in Proposition 4.1.3 implies that x∗ can be used as an initial feasible
solution and the starting point for solving problem (4.4), which is expected to speed up the
resolution of each sub-problem. On the other hand, a consequence of the second point in the
same result is that the same solution may be obtained more than once, thus requiring more
sub-problems to be solved. Additionally, ϵ needs to be updated differently in order to progress
the search in the image space when a solution is repeated. In this case ϵ should be updated
as max{ϵ, f2(x∗)}+ ∆, if x∗ denotes the optimal solution for the previous sub-problem.

The outline of the ϵ-constraint method when the parameter ϵ is increased is provided in
Algorithm 3.

Algorithm 3: The ϵ-constraint method – Increasing ϵ version
1 (yI

1 , yI
2)← ideal point for (f1, f2) in X

2 (yN
1 , yN

2 )← nadir point for (f1, f2) in X
3 YE ← {(yN

1 , yI
2)}

4 x̄← (yN
1 , yI

2)
5 ϵ← yI

2 + ∆
6 while ϵ ≤ yN

2 do
7 x∗ ← optimal solution of problem (4.2)
8 if f1(x∗) < f1(x̄1) then YE ← YE ∪ {(f1(x̄), f2(x̄))}
9 x̄← x∗

10 ϵ← max{ϵ, f2(x∗)}+ ∆
11 YE ← YE ∪ {(f1(x̄), f2(x̄))}

Like what happens with Algorithm 2, weakly efficient solutions can still be obtained with
Algorithm 3. However these can be easily discarded after being compared with the latest
computed solution.

The application of Algorithm 3 is illustrated in Figure 4.1b. In this case point 1 is the first
to be obtained, and then ϵ is set to ϵ1, thus generating point 2. At this point ϵ is updated to
ϵ2, which produces a problem with an optimal solution that corresponds again to point 2.
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Nevertheless, that solution is discarded and ϵ is set to ϵ3 which allows point 3 to be obtained.
The procedure continues until ϵ reaches the second coordinate of the nadir point, that is, yN

2 .

4.2 The bi-objective K dissimilar paths problem

Let us now consider that each arc in the network is associated with a cost value cij ∈ R+, for
any (i, j) ∈ A. Additionally, given K vectors xk ∈ {0, 1}m, k = 1, . . . , K, their total cost is
defined as the sum of all their arc costs, that is

∑
(i,j)∈A

cij

K∑
k=1

xk
ij .

If each vector xk is the characteristic vector of a path from node s to node t, its total cost
defines the cost of the K paths.

As mentioned before, besides finding dissimilar paths that can serve as alternative routes,
it is of interest to find paths which are relatively short in terms of the travel distance or
the cost. This can be the solution of a BOP with the goals of minimizing the total cost of
their paths and minimizing the number of arcs that they share. We will refer to the two
objective functions as a cost objective and an overlaps objective, respectively. The resulting
bi-objective problem will be called the K shortest and dissimilar paths problem.

Following the two best approaches for the K dissimilar paths problem presented in
Chapter 3, we formulate two versions of the K shortest and dissimilar paths problem. One of
the versions focuses the minimization of the total cost as well as of the number of repeated
arcs in the set of K paths; the other one focuses the minimization of the total cost as well as
of the total number of arc repetitions. Each version is, in turn, associated to two models, the
difference between them being the inclusion of constraint (3.10). Next, we introduce the four
models.
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4.2.1 Minimization of the number of repeated arcs

The bi-objective problem that results from extending formulation MRA, (3.4), is formulated as:

min v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij (4.5a)

min v1(x, y) =
∑

(i,j)∈A

yij (4.5b)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (4.5c)

yij ≤
K∑

k=1
xk

ij , (i, j) ∈ A (4.5d)

(K − 1)yij ≥
K∑

k=1
xk

ij − 1, (i, j) ∈ A (4.5e)

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K (4.5f)

where the decision variables have the same meaning as in Chapter 3. Hereinafter this
model will be designated as BORA. We now analyze some properties of this formulation and of
its solutions.

Proposition 4.2.1 Any efficient solution of problem (4.5) is loopless.

Proof. Let x∗ be an efficient solution of (4.5). By contradiction, assume that the k′-th path
defined by x∗ contains one loop, which is defined by the set of arcs L ⊆ A. (The reasoning
can be replicated if more than one loop exists or several paths contain several loops.)

Let x∗
A−L ∈ {0, 1}Km denote a vector that results from removing the loop L from x∗,

that is, the components of x∗
A−L are equal to 0 when (i, j) ∈ L and k = k′, and equal to x∗

for all other components. Moreover, let y∗
A−L ∈ {0, 1}m denote a vector equal to y∗ for the

positions (i, j) ∈ A − L and satisfying the constraints (4.5d) and (4.5e) for the remaining
positions. Then,

v3(x∗, y∗) = v3(x∗
A−L, y∗

A−L) +
∑

(i,j)∈A−L

cijx∗k′
ij > v3(x∗

A−L, y∗
A−L),

because all the arc costs are positive. Similarly

v1(x∗, y∗) ≥ v1(x∗
A−L, y∗

A−L),

because A− L ⊆ A and therefore the set of repeated arcs in x∗
A−L is contained in the set of

repeated arcs in x∗.
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Additionally, a set of K paths is still obtained if the loop formed by L is deleted, therefore,
x∗

A−L defines a feasible solution of problem (4.5) such that

v3(x∗, y∗) > v3(x∗
A−L, y∗

A−L) and v1(x∗, y∗) ≥ v1(x∗
A−L, y∗

A−L).

We thus conclude that x∗ is dominated by x∗
A−L, which contradicts the assumption. �
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(a) Network

Paths from 1 to 5
p1 = ⟨1, 3, 5⟩
p2 = ⟨1, 4, 3, 5⟩
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P2 v3(P2) v1(P2) = v2(P2)
{p1, p1} 4 2
{p1, p2} 6 1
{p1, p3} 6 1

(b) Efficient solutions

Fig. 4.2 Finding K = 2 shortest and dissimilar paths from node 1 to node 5

In order to illustrate the problem in hand we consider the problem of finding K = 2 paths
from node 1 to node 5 in the network in Figure 4.2a. Figure 4.2b lists all those paths and
the possible solutions, P2, together with the corresponding objective values. There are three
efficient solutions for formulation BORA in the rightmost table: {p1, p1}, {p1, p2} and {p1, p3},
the latest two of them have total cost 6 and in both cases the arc (3, 5) is shared by the two
paths. The ϵ-constraint method finds a set of efficient solutions, each one corresponding to
one non-dominated point. As a consequence, only one of those solutions, either {p1, p2} or
{p1, p3}, is computed and stored.

Nevertheless, the solution {p1, p3} is longer than the solution {p1, p2}, and therefore the
dissimilarity of the solution is 0.625 in the first case, and solution 0.583 in the second. This
means that listing the solutions according to the minimization of different objective functions
may change the order by which the solutions are computed, originating different sets of
non-dominated solutions, and thus translate into solutions with different dissimilarities.

Two questions need to be discussed before applying the ϵ-constraint method to this
problem: the factor ∆ which is used to update ϵ and which objective function to optimize
versus which one to constrain.

Regarding the first point, the function v1 is intrinsically integer, therefore ∆ = 1 is a
natural choice if v1 is constrained. The cost function v3 is also integer when the arc costs are
integers too, and then ∆ = 1 is a suitable choice if the function v3 is constrained, but in a
more general case a small ∆ can be fixed, however it is difficult to find the right value that
does not prevent any non-dominated point from being computed.

As to the second point, the two objective functions are bounded by

1 ≤ v3(x, y) ≤ K(n− 1) max
(i,j)∈A

{cij} and 0 ≤ v1(x, y) ≤ m,

for any feasible solution (x, y) of (4.5). Thus, in general, the range of v3 is larger than that
of v1, which suggests that restricting function v1 may yield fewer sub-problems to solve than
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restricting function v3. Moreover, the sub-problems to solve in each case are:

min v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij

subject to (4.5c)− (4.5e)∑
(i,j)∈A

yij ≤ ϵ

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(4.6)

and
min v1(x, y) =

∑
(i,j)∈A

yij

subject to (4.5c)− (4.5e)∑
(i,j)∈A

cij

K∑
k=1

xk
ij ≤ ϵ

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(4.7)

The first of these problems is close to an extension of K shortest path problems. Thus any
optimal solution of it is loopless.

Contrarily, formulation (4.7) is closer to formulation (3.4) and may admit solutions with
loops, which can however be discarded without compromising the objective value.

The loops in a given optimal solution can be discarded by applying algorithm 1 with time
of O(Km) presented in Chapter 3. Nevertheless, experiments revealed that problem (4.7) is
harder than problem (4.6). For this reason, in the following we consider that function v3 is
minimized, while function v1 is restricted, and ∆ = 1 will be used.
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p2 = ⟨1, 2, 3, 5⟩
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p4 = ⟨1, 2, 3, 4, 5⟩

(b) Paths from 1 to 5

P3 v3(P3) v1(P3) v2(P3)
{p1, p1, p1} 6 2 4
{p1, p1, p2} 7 2 3
{p1, p1, p3} 7 2 3
{p1, p1, p4} 8 2 2
{p1, p2, p3} 8 2 2

(c) Efficient solutions for BORA or BOAR

P3 v3(P3) v1(P3) v2(P3)
{p1, p1, p4} 8 2 2
{p1, p2, p3} 8 2 2

(d) Efficient solutions for BORAA and BOARA

Fig. 4.3 Finding K = 3 shortest and dissimilar paths from node 1 to node 5

To conclude this section, we consider the bi-objective version of formulation MRAA, obtained
by adding the set of constraints (3.10) to formulation MRA to model the dissimilarity constraints.
Figure 4.3 illustrates the new problem, when seeking for K = 3 paths from node 1 to node 5.
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There is only one efficient solution for BORA, the set {p1, p1, p1} listed in Figure 4.3c. When
imposing that the arcs cannot appear more than twice (R = 2) in the paths from node 1 to
node 5, that solution becomes unfeasible. Therefore, there are two efficient solutions in this
case, listed in Figure 4.3d.

The sub-problems to solve in case of the bi-objective extension of formulation MRAA are as
follows:

min v3(x, y) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij

subject to (4.5c)− (4.5e)
K∑

k=1
xk

ij ≤ R, (i, j) ∈ A∑
(i,j)∈A

yij ≤ ϵ

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(4.8)

and

min v1(x, y) =
∑

(i,j)∈A

yij

subject to (4.5c)− (4.5e)
K∑

k=1
xk

ij ≤ R, (i, j) ∈ A

∑
(i,j)∈A

cij

K∑
k=1

xk
ij ≤ ϵ

xk
ij ∈ {0, 1}, yij ∈ {0, 1}, (i, j) ∈ A, k = 1, . . . , K

(4.9)

Hereinafter the corresponding formulation will be designated as BORAA.

The two questions discussed earlier regarding (4.6) and (4.7) also arise when analyzing
(4.8) and (4.9). However, since adding the constraints (3.10) does not alter the premises of
the previous discussion, the same line of reasoning applies. Thus, also in this case we consider
that function v3 is minimized, while function v1 is restricted, and ∆ = 1 will be used.



58 The bi-objective K shortest - dissimilar paths problem

4.2.2 Minimization of the number of arc repetitions

Considering again the decision variables defined as in Chapter 3, the bi-objective problem
from extending formulation MAR, (3.6) can be written as:

min v3(x, w, u) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij (4.10a)

min v2(x, w, u) =
∑

(i,j)∈A

uij (4.10b)

subject to
∑

j∈N :(i,j)∈A

xk
ij −

∑
j∈N :(j,i)∈A

xk
ji =


1 i = s

0 i ̸= s, t

−1 i = t

, k = 1, . . . , K (4.10c)

K∑
k=1

xk
ij ≤ K wij , (i, j) ∈ A (4.10d)

uij =
K∑

k=1
xk

ij − wij , (i, j) ∈ A (4.10e)

xk
ij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . , K (4.10f)

which will be designated as BOAR in the following.

The same reasoning applied in Proposition 4.2.1 holds to prove that any efficient solution
of problem (4.10) is loopless.

Moreover, the function v3 is common to the previous problem and, like before, function
v2 assumes integer values, therefore the value of ∆ can be set to 1 if v2 is the function chosen
to include in the constraints. Additionally,

0 ≤ v2(x, w, u) ≤ Km,

for any feasible solution (x, w, u). Once again, in general, the range of v3 is larger than that
of v2. Furthermore, the minimization of function v3 is also easier than the minimization of v2

and it produces loopless solutions. Therefore, v3 will be the function to minimize and v2 the
function to restrict, and ∆ = 1 will be chosen. In this case the sub-problems to be solved in
the ϵ-constraint method are:

min v3(x, w, u) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij

subject to (4.10c)− (4.10e)∑
(i,j)∈A

uij ≤ ϵ

xk
ij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . , K

(4.11)

where the parameter ϵ > 0 is updated as new solutions are found.
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Again, the constrained version of formulation (4.10) is obtained by adding the set of
constraints (3.10) to the model, thus:

min v3(x, w, u) =
∑

(i,j)∈A

cij

K∑
k=1

xk
ij

subject to (4.10c)− (4.10e)
K∑

k=1
xk

ij ≤ R, (i, j) ∈ A∑
(i,j)∈A

uij ≤ ϵ

xk
ij ∈ {0, 1}, wij ∈ {0, 1}, uij ≥ 0, (i, j) ∈ A, k = 1, . . . , K

(4.12)

hereinafter designated as BOARA. Like before, the premises of the discussion regarding
(4.10) also hold when analyzing (4.12). Therefore, we consider that function v3 is minimized,
while function v2 is restricted, and that ∆ = 1 is used.

To conclude this section, we consider the bi-objective version of formulation MRAA, obtained
by adding the set of constraints (3.10) to formulation MRAA to model the dissimilarity
constraints. Revisiting the problem depicted in Figure 4.3, the five sets listed in Figure 4.3c
are all efficient solutions for formulation BOAR. When preventing each arc from appearing in
more than R = 2 paths from node 1 to node 5, the first three solutions in that table become
unfeasible, and then there are two efficient solutions for formulation BOARA, shown in Figure
4.3d. It is interesting to observe that, unlike what happened when adding the new constraints
to the problem presented in the previous section, in this case the number of efficient solutions
decreased.

4.3 Computational results

Empirical experiments were run in order to evaluate the presented methods and formulations.
The purpose of the tests is bifold: assess the extent to which the ϵ-constrained algorithm is
efficient when increasing ϵ, and compare the decreasing and the increasing algorithms for
finding sets of K shortest and dissimilar paths.

4.3.1 Test conditions

The two ϵ-constraint algorithms described in Section 4.1 were implemented for the four
formulations presented in Section 4.2. The following codes were implemented:

• codes DEC.BORA, DEC.BORAA, DEC.BOAR and DEC.BOARA, for finding the non-dominated
set using the decreasing ϵ-constraint method, Algorithm 2, for formulations (4.5), (4.10),
(4.8) and (4.12), respectively;

• codes IEC.BORA, IEC.BORAA, IEC.BOAR and IEC.BOARA, for finding the non-dominated
set using the increasing ϵ-constraint method, Algorithm 3, for formulations (4.5), (4.10),
(4.8) and (4.12), respectively.
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The eight variants of the methods were coded in C language, calling CPLEX 12.7 to solve the
intermediate mixed-integer programs. As mentioned earlier, for all codes, the cost function
was selected as f1 to be minimized, and the overlaps function f2 was included in the set of
constraints. The update of the parameter ϵ consisted of decreasing or increasing as described
in Algorithms 2 and 3, taking ∆ = 1.

The codes ran for two sets of instances, namely random graphs and grid graphs, such
that:

• Random graphs, Rn,m, with n = 100, 500 nodes were obtained generating randomly
m = dn arcs, with d = 5, 10, 15.

• The grid graphs, Gp,q, comprised the following sizes: p×q = 4×36, 12×12, 5×45, 15×15.

In either case each arc (i, j) ∈ A was associated with an integer cost value, cij , uniformly
obtained in {1, 2, . . . , 100}. The results presented in the following correspond to average
values obtained after finding sets of K = 10 paths over 20 different instances generated for
each dimension of these data sets.

All the tests ran on a 64-bit PC with an Intel ®Core™ i7-6700 Quad Core at 3.40GHz with
64GB of RAM. For all tests we used a time limit of 300 seconds for each of the sub-problems
solved along the generation of the non-dominated set. To ease the reading, the test statistics
are summarized in Table 4.1.

Table 4.1 Description of the column headings

Heading Description

T̄ Average total run time, in seconds
¯|YE | Average number of computed non-dominated solutions

N̄ Average number of solved sub-problems
f̄ j

min Average value for the minimum value of fj in each set of paths, j = 1, 2
f̄ j

max Average value for the maximum value of fj in each set of paths, j = 1, 2
D̄min Average value for the minimum of AvDi in each set of paths
D̄max Average value for the maximum of AvDi in each set of paths

4.3.2 Test results

We first consider the results for the unconstrained formulations afterwards focus on constrained
formulations.

Unconstrained formulations The average results obtained when finding the non-dominated
set for the BOP (4.5) using the unconstrained formulation that looks for the repeated arcs
minimization, codes DEC.BORA and IEC.BORA, are presented on Tables 4.2 and 4.3. The codes
were not able to solve some of the grid network instances until the end within the established
time limit (of 300 seconds). Therefore, the corresponding results in the tables are marked
with a ∗.

According to Table 4.2, and as expected, the range of the cost objective function, f1, is
significantly larger than the range of the number of repeated arcs, f2. The latter is rather
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Table 4.2 Characteristics of the non-dominated points with the unconstrained version of
minimizing the number of repeated arcs

Instance ¯|YE | f̄1
min f̄1

max f̄2
min f̄2

max

R100,500 3.00 906.80 1 530.60 2.21 4.42
R100,1000 4.00 555.50 1 097.50 1.00 4.15
R100,1500 3.70 387.00 827.50 0.80 3.55
R500,2500 5.25 1 239.40 2 044.30 1.93 6.31
R500,5000 4.75 761.00 1 218.20 1.10 5.10
R500,7500 4.95 481.00 895.80 0.70 4.75
G∗

12,12 7.00 6 596.00 9 386.50 16.00 22.00
G∗

4,36 1.00 14 676.00 14 676.00 38.00 38.00
G∗

15,15 13.00 7 842.00 12 417.75 16.00 28.00
G∗

5,45 1.00 18 660.50 18 660.50 48.00 48.00
∗: Sub-problems interrupted after 300 seconds.

Table 4.3 Number of sub-problems, path dissimilarities and run times (in seconds) when
minimizing the number of repeated arcs

DEC.BORA IEC.BORA

Instance ¯|YE | N̄ D̄min D̄max T̄ T̄ /N̄ N̄ D̄min D̄max T̄ T̄ /N̄

R100,500 3.21 4.21 0.000 0.518 4.746 1.18 4.73 0.000 0.518 3.631 0.77
R100,1000 4.00 5.00 0.015 0.855 12.544 2.68 5.45 0.015 0.855 10.828 2.08
R100,1500 3.70 4.70 0.010 0.905 12.941 2.55 4.75 0.000 0.905 11.650 2.23
R500,2500 5.25 6.25 0.013 0.833 183.447 27.40 6.63 0.013 0.833 166.086 22.20
R500,5000 4.75 5.75 0.006 0.867 178.601 28.47 6.25 0.006 0.867 174.767 25.96
R500,7500 4.95 5.95 0.000 0.936 338.883 47.48 6.30 0.010 0.936 319.571 41.58
G∗

12,12 7.00 8.00 0.010 0.779 2 700.823 337.60 8.50 0.010 0.779 2 101.022 248.03
G∗

4,36 1.00 2.00 0.000 0.000 600.694 300.34 3.00 0.000 0.000 300.824 100.27
G∗

15,15 13.00 14.00 0.004 0.865 4 501.163 321.51 14.60 0.003 0.864 3 901.710 267.54
G∗

5,45 1.00 2.00 0.000 0.000 601.116 300.55 3.00 0.000 0.000 301.466 100.48
∗: Sub-problems interrupted after 300 seconds.

small, which results in a small number of non-dominated points to be found, between 3 and 4
for random networks with 100 nodes and around 5 for random networks with 500 nodes. Also,
the number of elements in YE seems to be very close to the range of the number of repeated
arcs, given by function f2. This indicates that there is approximately one non-dominated
point for each of those values. Few conclusions can be drawn from the results on grids,
as the code was not able to solve all the sub-problems within the time limit. Yet, in the
case of rectangular grids only one solution was found, while, taking the range of function
f2 into account, for the square grids all the non-dominated points seem to have been found
nonetheless.

Table 4.3 summarizes the results in terms of the number of solved sub-problems and
solution dissimilarities for this set of codes. In average, one extra sub-problem had to be
solved for finding the non-dominated set and this number increased to around 1.5 when talking
about the increasing version of the ϵ-constrained algorithm. In the random instances the
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average maximum dissimilarity grows with the average degree of the network, and specially
with the number of nodes, varying from 0.518 to 0.936. The average minimum dissimilarity,
on the other hand, is always nearly 0.

With respect to the grid networks, as noted before only one solution was found on
rectangular grids, which means that the only problem solved consisted in the single objective
minimization of the cost function. In general, in this case, the solution is simply formed
by K = 10 paths (see Figures 4.2 and 4.3), all equal to the shortest path and with full
overlapping arcs. This is also shown by the average values D̄min reported in Table 4.3, which
are always very close to 0.

0 5 10 15
0

5

10

15

20

25

d

ru
n

tim
e

(s
)

DEC.BORA IEC.BORA

(a) n = 100

0 5 10 15
0

100

200

300

400

500

d

ru
n

tim
e

(s
)

DEC.BORA IEC.BORA

(b) n = 500
Fig. 4.4 Run times (in seconds) in random networks with the unconstrained version of
minimizing the number of repeated arcs

The average run times for finding non-dominated sets when counting the number of
repeated arcs are presented in Table 4.3 and in Figure 4.4. The average time for solving
each sub-problem was shorter when applying the increasing version of the ϵ-constrained
algorithm, and this speedup is observed for the total run times as well. Therefore, although
the two methods are fairly similar in terms of time, the increasing version of the ϵ-constrained
algorithm was consistently faster than the decreasing version for all instances. The partial
run times depend mainly on the number of nodes in the random instances and also tend
to increase with their average degree. The biggest random instances were solved by code
IEC.BORA in less than 320 seconds. The results obtained for grids follow the same trend, with
the difference that the corresponding sub-problems are much harder to solve than on the
random networks. In this case, IEC.BORA required about 3 900 seconds to find 13 efficient
sets of paths in 15× 15 grids.

A comparison of the average results of the codes DEC.BOAR and IEC.BOAR for random and
grid networks is summarized in Tables 4.4 and 4.5, whereas Figure 4.5 shows the run times
for solving instances. In general, the code DEC.BOAR was faster than the code IEC.BOAR for
both the random and the grid instances. The average dissimilarity for square grid networks
was higher than for rectangular ones with the same number of nodes.

For the biggest random networks, comprising 500 nodes, the method with decreasing
ϵ, DEC.BOAR, computed 34 solutions in an average time of 344.693 seconds, with minimum
dissimilarity 0.017 and maximum dissimilarity 0.977. As for the method IEC.BOAR, the same
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Table 4.4 Characteristics of the non-dominated points with the unconstrained version of
minimizing the number of arc repetitions

Instance ¯|YE | f̄1
min f̄1

max f̄2
min f̄2

max

R100,500 24.68 906.80 1 821.40 11.42 39.78
R100,1000 28.55 555.50 1 137.20 4.70 36.90
R100,1500 27.25 387.00 888.30 2.70 31.85
R500,2500 38.12 1 239.40 2163.90 8.50 56.50
R500,5000 34.15 761.00 1 246.10 5.75 45.60
R500,7500 34.36 481.00 917.10 2.63 40.78
G12,12 139.35 6 596.00 10 363.80 40.00 196.85
G4,36 102.80 14 676.00 17 337.50 214.00 342.00
G15,15 188.20 7 842.00 12 629.90 40.00 251.25
G5,45 167.60 18 660.50 22 169.40 228.00 431.80

Table 4.5 Number of sub-problems, path dissimilarities and run times (in seconds) when
minimizing the number of arc repetitions

DEC.BOAR IEC.BOAR

Instance ¯|YE | N̄ D̄min D̄max T̄ T̄ /N̄ N̄ D̄min D̄max T̄ T̄ /N̄

R100,500 24.68 25.68 0.000 0.826 10.840 0.41 31.31 0.000 0.826 11.228 0.34
R100,1000 28.55 29.55 0.015 0.931 28.531 0.92 35.20 0.012 0.931 29.388 0.80
R100,1500 27.25 28.25 0.010 0.970 38.753 1.36 32.15 0.010 0.970 39.445 1.22
R500,2500 38.12 39.12 0.013 0.910 97.103 2.48 50.93 0.013 0.910 111.698 2.20
R500,5000 34.15 35.15 0.006 0.933 204.975 5.79 42.85 0.006 0.933 225.352 5.21
R500,7500 34.36 35.36 0.017 0.977 344.693 9.84 41.15 0.017 0.977 369.727 8.86
G12,12 139.35 140.35 0.016 0.919 264.034 1.88 158.90 0.010 0.919 268.740 1.69
G4,36 102.80 103.80 0.000 0.675 167.345 1.61 130.20 0.000 0.675 183.490 1.40
G15,15 188.20 189.20 0.008 0.936 602.591 3.18 213.25 0.008 0.936 615.861 2.88
G5,45 167.60 168.60 0.001 0.757 537.591 3.17 205.85 0.000 0.757 583.330 2.83

solutions were obtained in an average time of 369.727 seconds. Finally, it should be recalled
that the presented times refer to solving all sub-problems.

Figure 4.6 depicts the comparison of the costs of the solutions of each formulation in
random and grid networks. In general the maximum cost for BOAR is bigger than for BORA in
all networks. This difference is more observable in the sparser networks. The minimum costs
for BOAR and BORA are the same.

Figure 4.7 summarizes the comparison of the dissimilarities of the solutions obtained by
BORA and BOAR. Clearly the minimum dissimilarity is 0 in the random and the grid networks.
The code BOAR is better than BORA in terms of maximum dissimilarity for all kind of instances.
Additionally, the maximum dissimilarity increases with d, in the random instances. Therefore,
it is bigger in the denser networks. In grid networks, the maximum dissimilarity is higher in
square grids than in rectangular ones.

Constrained formulations Tables 4.6 and 4.7 summarize the results obtained by the
codes that implement the constrained version of BORA. The number of non-dominated points
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Fig. 4.5 Mean run times (in seconds) in random networks when minimizing the number of
arcs repetitions
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Fig. 4.6 Comparison of the costs for BORA and BOAR

change when constraint (3.10) is included in the formulation. Both the cost and the number
of repeated arcs in the solutions change, as shown in the first table and in Figure 4.10. The
problem also has more non-dominated points than the unconstrained, in average less than 16
in 500 node random networks and than 41 in 15× 15 grids. It should be noted, though, that
again not all sub-problems could be solved within the set time limit.
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Fig. 4.7 Comparison of the dissimilarity for BORA and BOAR

Table 4.6 Characteristics of the non-dominated points with the constrained version of mini-
mizing the number of repeated arcs

Instance ¯|YE | f̄1
min f̄1

max f̄2
min f̄2

max

R100,500 7.84 1 264.37 1 825.05 3.74 11.05
R100,1000 11.05 953.80 1 191.75 2.80 14.55
R100,1500 11.45 784.25 934.10 2.40 16.25
R500,2500 12.25 1 516.00 2 107.56 3.63 15.88
R500,5000 15.15 1 057.70 1 329.35 3.30 22.05
R500,7500 11.30 818.25 937.35 2.15 16.70

G∗
12,12 28.95 7 296.00 10 563.90 16.00 44.00

G∗
4,36 3.00 16 415.50 17 252.90 74.00 76.00

G∗
15,15 40.70 8 764.75 13 672.05 16.00 56.00

G∗
5,45 7.00 21 035.00 22 853.00 90.00 96.00

∗: Sub-problems interrupted after 300 seconds.
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Table 4.7 Number of sub-problems, path dissimilarities and run times (in seconds) with
constrained version of minimizing the number of repeated arcs

DEC.BORAA IEC.BORAA

Instance ¯|YE | N̄ D̄min D̄max T̄ T̄ /N̄ N̄ D̄min D̄max T̄ T̄ /N̄

R100,500 7.84 8.84 0.514 0.814 15.634 1.76 10.31 0.514 0.814 15.367 1.49
R100,1000 11.05 12.05 0.831 0.958 17.590 1.46 14.70 0.829 0.958 18.382 1.25
R100,1500 11.45 12.45 0.903 0.982 12.350 0.99 16.85 0.903 0.982 14.783 0.87
R500,2500 12.25 13.25 0.627 0.911 393.120 29.66 15.18 0.624 0.911 392.795 25.86
R500,5000 15.15 16.15 0.729 0.940 164.442 10.18 21.45 0.730 0.940 177.550 8.27
R500,7500 11.30 12.30 0.899 0.984 143.932 11.70 17.50 0.899 0.984 160.079 9.14

G∗
12,12 28.95 29.95 0.556 0.919 6 482.459 216.44 30.95 0.558 0.919 5 940.803 191.94

G∗
4,36 3.00 4.00 0.556 0.651 1 318.946 329.73 5.00 0.556 0.651 746.092 149.21

G∗
15,15 40.70 41.70 0.559 0.937 11 367.102 272.59 42.85 0.557 0.937 10 840.249 252.98

G∗
5,45 7.00 8.00 0.556 0.704 2 507.128 313.39 9.00 0.556 0.691 1 907.911 211.99

∗: Sub-problems interrupted after 300 seconds.

Due to the higher number of solutions for the constrained problem, Table 4.7 also shows
that the improvement in the time for solving each sub-problem does not always compensate
the bigger number of sub-problems to be solved for the random instances. The improvement
in the partial run times is bigger for grids, and therefore the IEC.BORAA was always faster
than DEC.BORAA for these instances. Another important remark regards the improvement
in the dissimilarity of the solutions. This improvement is constant in what the maximum
average dissimilarity is concerned, but it is equally constant and bigger for the minimum
average dissimilarity, which was always 0 with the unconstrained version.

Table 4.8 Characteristics of the non-dominated points with the constrained version of mini-
mizing the number of arc repetitions

Instance ¯|YE | f̄1
min f̄1

max f̄2
min f̄2

max

R100,500 22.10 1 264.36 1 900.94 12.00 37.57
R100,1000 15.65 953.80 1 195.50 4.70 22.20
R100,1500 11.00 784.25 934.10 2.70 17.35
R500,2500 28.68 1 516.00 2 152.50 9.62 44.00
R500,5000 20.15 1 057.70 1 324.15 5.95 33.90
R500,7500 12.40 818.25 937.35 2.75 19.90
G12,12 120.10 7 296.00 10 363.80 40.00 175.40
G4,36 59.40 16 415.50 17 470.00 220.00 303.65
G15,15 159.45 8 764.75 12 629.90 40.00 222.80
G5,45 114.95 20 215.50 22 265.30 232.00 383.80
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Table 4.9 Number of sub-problems, path dissimilarities and run times (in seconds) with
constrained version of minimizing the number of arc repetitions

DEC.BOARA IEC.BOARA

Instance ¯|YE | N̄ D̄min D̄max T̄ T̄ /N̄ N̄ D̄min D̄max T̄ T̄ /N̄

R100,500 22.10 23.10 0.514 0.853 12.117 0.52 28.57 0.514 0.853 13.119 0.45
R100,1000 15.65 16.65 0.831 0.959 20.142 1.21 20.50 0.830 0.959 22.603 1.10
R100,1500 11.00 12.00 0.903 0.982 23.524 1.96 17.65 0.903 0.982 30.030 1.70
R500,2500 28.68 29.68 0.627 0.923 91.706 3.08 37.25 0.627 0.923 105.053 2.82
R500,5000 20.15 21.15 0.730 0.947 157.248 7.43 30.90 0.730 0.947 203.888 6.59
R500,7500 12.40 13.40 0.900 0.984 180.441 13.46 20.15 0.900 0.984 231.502 11.48

G12,12 120.10 121.10 0.559 0.920 221.821 1.83 137.65 0.558 0.920 228.539 1.66
G4,36 59.40 60.40 0.556 0.746 94.450 1.56 85.95 0.556 0.746 116.652 1.35
G15,15 159.45 160.45 0.560 0.937 517.730 3.22 184.85 0.560 0.937 537.129 2.90
G5,45 114.95 115.95 0.556 0.796 374.270 3.22 154.20 0.556 0.796 440.711 2.85

Figure 4.8 allows a comparison of the results obtained by BORAA and BOARA. Both the
minimum and maximum cost are sensitive to the average degree of the network in random
networks. They decrease when d increases. In total, the costs for the BOARA are higher than
for the BORAA. In grid networks, the costs for rectangular grids are higher than the square
ones for both models. We should also consider that BORAA has bigger maximum cost than
BOARA in grids G15,15 and G5,45.
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Fig. 4.9 Comparison of the dissimilarity for BORAA and BOARA

Figure 4.9 depicts the comparison of dissimilarities for constrained formulations. The
best scores are associated to BOARA in random and grid networks. Like what was seen for
unconstrained formulations, the dissimilarity increases in denser networks. We thus conclude
that adding the capacity constraints improves the minimum dissimilarity in random networks
and grid networks.
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Fig. 4.10 Comparison of the costs for the unconstrained and the constrained problems when
minimizing the number of repeated arcs

Comparison of the costs for the unconstrained and the constrained problems when
minimizing the number of repeated arcs are depicted in Figure 4.10. The plots show that
adding the constraints increases the minimum and maximum costs in all kind of networks.
The costs decrease with the increasing of the average degree of the network and the costs are
higher in rectangular grids than square ones.



4.3 Computational results 69

R
10

0,
50

0

R
10

0,
10

00

R
10

0,
15

00

R
50

0,
25

00

R
50

0,
50

00

R
50

0,
75

00

0

0.2

0.4

0.6

0.8

1

D̄
BORA BORA BORAA BORAA

(a) Random networks

G
12

,1
2

G
4,

36

G
15

,1
5

G
5,

45

0

0.2

0.4

0.6

0.8

1

D̄

BORA BORA BORAA BORAA

(b) Grid networks

Fig. 4.11 Comparison of the dissimilarity for the unconstrained and the constrained problems
when minimizing the number of repeated arcs

Figure 4.11 summarizes comparison of the dissimilarities for the unconstrained and the
constrained problems when minimizing the number of repeated arcs for random and grid
networks. The plots show that the additional constraints increase the minimum and maximum
dissimilarity in all kind of networks. The difference between minimum and maximum
dissimilarity in constrained formulations is small in denser networks. This difference in
rectangular grids is smaller than square ones in grid networks.
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Fig. 4.12 Comparison of the costs for the unconstrained and the constrained problems when
minimizing the number of arc repetitions
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Fig. 4.13 Comparison of the dissimilarity for the unconstrained and the constrained problems
when minimizing the number of arc repetitions

Figures 4.12 and 4.13 illustrate the comparison of the cost and dissimilarity for the
unconstrained and the constrained problems when minimizing the number of arc repetitions
respectively. The conclusions are similar to the previous plots for minimizing the number of
repeated arcs.

4.4 Concluding remarks

In this chapter, we addressed the problem of finding set of K paths that are dissimilar as much
as possible, while minimizing the cost. A bi-objective approach to this problem (the BOP
problem) was introduced. The approach consists of a modification of the ϵ-constraint method,
while finding the nondominated solutions. The two versions of the proposed algorithm were
compared on random and grid instances and extensive computational results were obtained
and discussed.

The increasing ϵ-constraint method outperformed the original when applied to the for-
mulations based in BORA, as the number of non-dominated points is not very large and
the sub-problems are difficult to solve. Contrarily, the original version of the ϵ-constraint
method was more efficient than the increasing version when applied to BOAR. In both cases,
the constrained version of the problems, namely BORAA and BOARA greatly improved the
dissimilarity of the solutions up to 0.937, specially the minimum dissimilarity, allowing to
discard some solutions of little practical interest. In fact, the minimum dissimilarity for
unconstrained problems was near 0, while for the constrained version of the problems, it
was at least 0.514 in the random, and 0.556 in the grid, networks. However, the cost of the
solutions slightly increased as well. The code BORA was faster than BOAR for the random
instances, because less non-dominated points are computed in that case, while the opposite
happened for the grid networks. As to the run times for the constrained version of the
problems, either they were not affected by the new constraints or even decreased, and the
two approaches behaved very similarly with this respect.



Chapter 5

Conclusion

The search for alternative paths linking two fixed nodes arises as a natural question related
with an important combinatorial problem with many interesting applications. If no further
conditions are imposed it is highly likely that the several alternatives have a lot in common,
which may be undesired. Similarity indexes measure the degree to which objects resemble
one another, while dissimilarity represents the inverse situation. Including the concept of
dissimilarity as one of the objectives of a paths problem is not trivial, though. Despite the
obvious interest of including dissimilarity as the goal of paths problems when looking for
several solution, the complexity of those indexes makes difficult its integration in problems.
Therefore, many works have gave dealt with it as a metric used as a way of filtering solutions
a posteriori, rather than incorporating it as the main objective.

Instead we look at dissimilarity as the objective of the problem, when considering the
determination of a set of K paths between a given pair of nodes, and consider alternative
linear integer formulation that attempt to model it.

After revising some literature related with paths and routing problems involving dissimi-
larity requirements, in Chapter 3 the K dissimilar paths problem was defined and integer
linear formulations were introduced with the goal of capturing its main characteristics, while
assuming the simplification that all paths are of the same length. Three types of approaches
were proposed:

• A formulation of combinatorial nature, MAO, which takes the overlaps between all pairs
of K paths into account. This formulation provides exact dissimilarities under certain
assumptions and it showed empirically to be accurate in other cases as well, which
can also be useful for assessing the quality of the solutions obtained by the remaining
formulations. The main handicap of this formulation is that it is too sensitive to the
size of the instances, and, thus, its practical application becomes rather limited.

• A simpler formulation focused on the minimization of the number of arcs that appear
in more than one path, MRA. Although able of solving a wider range of instances than
MAO, the dissimilarities it produced were far from the best.

• Two other formulations focused the total number of times that the shared arcs appear
in the paths, MRO and MAR, which somehow extends the latter. One of these formulations
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showed a very good compromise with respect to the integer programming gaps, the
instances it was able to solve under a fixed time limit, and the dissimilarity of the
solutions.

Additionally, the formulation MRA was combined with a set of capacity constraints, in order
to prevent the dissimilarity from worsening in some cases. These constraints were also added
to the formulation MAR. While the impact on MRA was significant, it is not clear whether the
improvement in the dissimilarity of MAR pays off, as it also slows down the method.

This preliminary study of the K dissimilar paths problem is important for setting the
foundations for the K shortest and dissimilar paths problem addressed in Chapter 4, which is
clearly more challenging to solve but also more interesting from an application point of view.
In this case the formulations MRA and MAR, both unconstrained and with capacity constraints
were extended to the bi-objective case. The ϵ-constraint method was adapted for finding
the non-dominated points for the new problems. A new ϵ-constraint method was developed
with the same purpose. It takes advantage of the way the parameter ϵ is updated to use
information obtained earlier for solving the several sub-problems. The drawback of this
approach is that it may require solving more sub-problems.

The increasing ϵ-constraint method outperformed the original when applied to the for-
mulations based in BORA, as the number of non-dominated points is not very large and the
sub-problems are difficult to solve. Contrarily, the original version was more efficient than
the increasing ϵ-constraint method when applied to BOAR. In both cases, the constrained
version of the problems greatly improved the dissimilarity of the solutions, specially the
minimum, allowing to discard some solutions of little practical interest. However, the cost of
the solutions slightly increased. As to the run times, either they were not affected by the new
constraints or even decreased.

To our knowledge this is the first time that integer linear formulations are developed
with the goal of addressing directly the optimization of dissimilarity. In this sense the
present work is more a starting point than a finished study and several questions remain
to be investigated as well as others are raised. For instance, it would be most interesting
to investigate a simpler/smaller alternative formulation to MAO, accounting for the number
of overlaps between each pair of paths, given that this is more in accordance with the
dissimilarity measure that has been used for assessing the solutions. Knowing the optimum
dissimilarity value for a set of instances would also enable a more accurate assessment of the
ability of each proposed formulation to model that measure.

Another important line of research, would be to better understand the relation between
the dissimilarity and the run times of the formulations for the K dissimilar paths problem
and some influencing characteristics of the networks, such as their density, average degree and
topology. This aspect would allow a better use of the new models, particularly in the context
of real world applications of the problem, for, in those cases, a wider variety of networks can
arise.

As mentioned above, the total number of arcs of the solutions was not taken into account
in the proposed formulations, despite the fact that it is part of the definition of dissimilarity.
Therefore, it is worth considering unitary arc costs in the K shortest and dissimilar paths
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problem, and, thus, analyzing the relation between the dissimilarity of the solutions and their
total number of arcs.
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Appendix A

A.1 Dissimilarities for the formulations

Table A.1 Average AvDi and MiDi of MAO in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.855 0.913 0.911 0.904 0.902 0.891 0.887 0.886
R100,1000 – 0.942 0.965 0.967 0.968 0.973 0.970 0.970
R300,1500 0.922 0.947 0.952 0.954 0.946 0.947 0.940 0.937
R300,3000 0.979 0.970 0.976 0.972 0.971 0.972 0.975 0.973
R500,2500 0.957 0.967 0.961 0.961 0.956 0.958 0.952 0.947
R500,5000 0.900 0.948 0.940 0.953 0.956 0.957 0.967 0.958

Average 0.923 0.948 0.951 0.951 0.952 0.950 0.950 0.950 0.944

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.855 0.763 0.720 0.691 0.650 0.615 0.555 0.547
R100,1000 – 0.654 0.750 0.740 0.700 0.698 0.682 0.684
R300,1500 0.822 0.813 0.801 0.782 0.763 0.745 0.704 0.705
R300,3000 0.938 0.850 0.829 0.971 0.723 0.691 0.721 0.707
R500,2500 0.887 0.882 0.822 0.814 0.774 0.792 0.730 0.720
R500,5000 0.819 0.862 0.819 0.794 0.778 0.760 0.780 0.756

Average 0.864 0.804 0.790 0.761 0.731 0.731 0.717 0.696 0.687
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Table A.2 Average AvDi and MiDi of MRA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.852 0.895 0.885 0.862 0.826 0.803 0.794 0.741
R100,1000 – 0.933 0.951 0.939 0.944 0.940 0.937 0.877
R300,1500 0.915 0.942 0.933 0.925 0.913 0.904 0.901 0.884
R300,3000 0.979 0.924 0.971 0.886 0.891 0.892 0.897 0.896
R500,2500 0.952 0.950 0.945 0.935 0.929 0.907 0.904 0.889
R500,5000 0.879 0.929 0.927 0.938 0.940 0.934 0.933 0.922

Average 0.915 0.929 0.935 0.914 0.907 0.897 0.894 0.868 0.909

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.772 0.735 0.720 0.666 0.603 0.532 0.513 0.416
R100,1000 – 0.726 0.746 0.753 0.743 0.727 0.723 0.652
R300,1500 0.817 0.824 0.815 0.766 0.750 0.729 0.695 0.642
R300,3000 0.938 0.833 0.850 0.744 0.741 0.704 0.722 0.710
R500,2500 0.888 0.866 0.848 0.803 0.804 0.742 0.738 0.704
R500,5000 0.798 0.831 0.811 0.806 0.795 0.791 0.766 0.734

Average 0.843 0.802 0.798 0.756 0.739 0.704 0.693 0.643 0.751

Table A.3 Average AvDi and MiDi of MRO in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.866 0.906 0.885 0.865 0.849 0.828 0.815 0.808
R100,1000 – 0.978 0.957 0.944 0.951 0.943 0.932 0.931
R300,1500 0.931 0.947 0.938 0.929 0.916 0.912 0.907 0.904
R300,3000 0.963 0.974 0.971 0.968 0.956 0.951 0.941 0.931
R500,2500 0.942 0.965 0.952 0.942 0.932 0.929 0.929 0.923
R500,5000 0.919 0.941 0.935 0.950 0.948 0.944 0.942 0.938

Average 0.924 0.952 0.940 0.933 0.925 0.918 0.911 0.906 0.926

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.763 0.758 0.719 0.674 0.632 0.577 0.533 0.525
R100,1000 – 0.869 0.757 0.749 0.755 0.711 0.703 0.710
R300,1500 0.835 0.836 0.792 0.789 0.746 0.740 0.707 0.687
R300,3000 0.889 0.899 0.858 0.831 0.759 0.763 0.736 0.707
R500,2500 0.851 0.893 0.862 0.837 0.814 0.787 0.780 0.710
R500,5000 0.841 0.849 0.832 0.833 0.805 0.809 0.777 0.793

Average 0.836 0.851 0.803 0.785 0.752 0.731 0.706 0.689 0.768
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Table A.4 Average AvDi and MiDi of MAR in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.876 0.903 0.895 0.878 0.871 0.858 0.849 0.845
R100,1000 – 0.962 0.957 0.958 0.964 0.957 0.955 0.955
R300,1500 0.950 0.949 0.950 0.940 0.936 0.930 0.920 0.913
R300,3000 0.977 0.969 0.970 0.973 0.968 0.965 0.965 0.960
R500,2500 0.956 0.962 0.957 0.954 0.951 0.945 0.942 0.934
R500,5000 0.925 0.948 0.938 0.949 0.954 0.948 0.957 0.952

Average 0.937 0.949 0.945 0.942 0.941 0.934 0.931 0.926 0.938

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.820 0.751 0.720 0.657 0.635 0.567 0.537 0.503
R100,1000 – 0.773 0.739 0.725 0.727 0.717 0.732 0.685
R300,1500 0.895 0.827 0.818 0.780 0.762 0.722 0.713 0.678
R300,3000 0.930 0.868 0.833 0.842 0.808 0.748 0.730 0.712
R500,2500 0.891 0.869 0.841 0.836 0.806 0.774 0.779 0.716
R500,5000 0.875 0.866 0.820 0.813 0.806 0.777 0.809 0.754

Average 0.882 0.825 0.795 0.775 0.757 0.717 0.717 0.675 0.766

Table A.5 Average AvDi and MiDi of MAO in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.833 0.800 0.787 0.762 0.745 0.741 0.730
G4,36 0.982 0.982 0.892 0.859 0.848 0.845 0.819 0.811
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.844 0.840
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.929 0.927

Average 0.959 0.930 0.887 0.874 0.854 0.854 0.833 0.876 0.883

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.846 0.538 0.231 0.154 0.154 0.154 0.000 0.000
G4,36 0.974 0.947 0.526 0.158 0.105 0.105 0.105 0.053
G6,6 0.900 0.900 0.700 0.700 0.600 0.500 0.500 0.500
G12,12 0.955 0.909 0.909 0.864 0.773 0.818 0.818 0.727

Average 0.919 0.824 0.592 0.469 0.408 0.394 0.356 0.320 0.535
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Table A.6 Average AvDi and MiDi of MRA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.808 0.538 0.308 0.264 0.231 0.205 0.185
G4,36 0.982 0.982 0.718 0.584 0.560 0.570 0.414 0.506
G6,6 0.933 0.867 0.800 0.893 0.867 0.521 0.519 0.511
G12,12 0.970 0.970 0.955 0.952 0.939 0.929 0.924 0.758

Average 0.959 0.907 0.753 0.684 0.657 0.563 0.516 0.490 0.691

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.923 0.462 0.308 0.000 0.000 0.000 0.000 0.000
G4,36 0.974 0.947 0.132 0.158 0.132 0.000 0.000 0.000
G6,6 0.900 0.700 0.400 0.600 0.000 0.000 0.000 0.000
G12,12 0.955 0.955 0.909 0.818 0.773 0.727 0.773 0.318

Average 0.938 0.766 0.437 0.419 0.376 0.182 0.193 0.080 0.424

Table A.7 Average AvDi and MiDi of MRO in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.808 0.708 0.641 0.597 0.569 0.551 0.542
G4,36 0.982 0.982 0.892 0.804 0.729 0.650 0.621 0.581
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.927 0.864 0.822 0.783 0.753 0.732 0.716 0.819

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.923 0.538 0.462 0.308 0.308 0.308 0.308 0.231
G4,36 0.947 0.974 0.132 0.132 0.132 0.158 0.132 0.132
G6,6 0.900 0.800 0.700 0.700 0.600 0.400 0.200 0.200
G12,12 0.909 0.909 0.864 0.864 0.818 0.773 0.727 0.773

Average 0.920 0.805 0.539 0.501 0.464 0.410 0.342 0.334 0.539
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Table A.8 Average AvDi and MiDi of MAR in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.821 0.769 0.708 0.670 0.654 0.607 0.610
G4,36 0.982 0.982 0.892 0.814 0.759 0.690 0.643 0.652
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.926 0.879 0.842 0.809 0.784 0.752 0.751 0.839

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.923 0.538 0.231 0.385 0.231 0.308 0.308 0.231
G4,36 0.947 0.974 0.237 0.132 0.158 0.132 0.158 0.132
G6,6 0.800 0.800 0.600 0.600 0.600 0.500 0.200 0.200
G12,12 0.955 0.909 0.864 0.864 0.864 0.818 0.727 0.727

Average 0.906 0.805 0.533 0.495 0.463 0.439 0.348 0.322 0.539
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Fig. A.1 AvDi dispersion of MAO in random networks
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Fig. A.3 AvDi dispersion of MRA in random networks
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Fig. A.4 MiDi dispersion of MRA in random networks
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Fig. A.5 AvDi dispersion of MRO in random networks
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Fig. A.6 MiDi dispersion of MRO in random networks
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Fig. A.7 AvDi dispersion of MAR in random networks
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Fig. A.8 MiDi dispersion of MAR in random networks
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Fig. A.9 AvDi dispersion of MAO in grid networks
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Fig. A.10 MiDi dispersion of MAO in grid networks
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Fig. A.11 AvDi dispersion of MRA in grid networks
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Fig. A.12 MiDi dispersion of MRA in grid networks
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Fig. A.13 AvDi dispersion of MRO in grid networks
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Fig. A.14 MiDi dispersion of MRO in grid networks
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Fig. A.15 AvDi dispersion of MAR in grid networks
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Fig. A.16 MiDi dispersion of MAR in grid networks
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A.2 Dissimilarities and run times for the formulations includ-
ing additional constraints

A.2.1 Individual results

Table A.9 Average AvDi and MiDi of MRAA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.864 0.910 0.907 0.893 0.873 0.859 0.851 0.828
R100,1000 – 0.951 0.968 0.967 0.968 0.968 0.968 0.966
R300,1500 0.923 0.943 0.952 0.947 0.941 0.943 0.934 0.932
R300,3000 0.979 0.973 0.977 0.972 0.968 0.973 0.974 0.971
R500,2500 0.952 0.961 0.955 0.959 0.949 0.948 0.948 0.942
R500,5000 0.896 0.944 0.939 0.952 0.954 0.954 0.960 0.958

Average 0.923 0.947 0.949 0.948 0.942 0.941 0.939 0.933 0.941

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.774 0.742 0.723 0.669 0.625 0.582 0.515 0.498
R100,1000 – 0.704 0.754 0.743 0.720 0.680 0.675 0.670
R300,1500 0.811 0.790 0.799 0.766 0.747 0.730 0.702 0.701
R300,3000 0.938 0.855 0.837 0.738 0.719 0.709 0.728 0.707
R500,2500 0.888 0.860 0.819 0.790 0.769 0.743 0.739 0.680
R500,5000 0.798 0.841 0.810 0.802 0.803 0.766 0.771 0.761

Average 0.842 0.799 0.790 0.752 0.731 0.702 0.688 0.670 0.745
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Table A.10 Average AvDi and MiDi of MARA in random networks

AvDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.867 0.911 0.904 0.900 0.885 0.873 0.864 0.862
R100,1000 – 0.970 0.962 0.962 0.969 0.969 0.969 0.965
R300,1500 0.929 0.951 0.949 0.951 0.944 0.941 0.935 0.933
R300,3000 0.966 0.977 0.976 0.979 0.976 0.976 0.972 0.973
R500,2500 0.960 0.967 0.961 0.963 0.955 0.955 0.950 0.947
R500,5000 0.922 0.948 0.948 0.960 0.957 0.958 0.966 0.961

Average 0.929 0.954 0.950 0.952 0.948 0.945 0.943 0.940 0.945

MiDi K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.794 0.752 0.718 0.671 0.636 0.582 0.540 0.497
R100,1000 – 0.819 0.731 0.719 0.740 0.706 0.710 0.671
R300,1500 0.832 0.819 0.793 0.770 0.763 0.721 0.714 0.697
R300,3000 0.899 0.883 0.833 0.822 0.785 0.752 0.707 0.705
R500,2500 0.905 0.867 0.845 0.831 0.793 0.759 0.756 0.723
R500,5000 0.867 0.848 0.803 0.836 0.802 0.764 0.796 0.755

Average 0.859 0.831 0.787 0.775 0.753 0.714 0.714 0.675 0.760

Table A.11 Run times of MRAA for random networks (seconds)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.068 0.095 0.135 0.216 0.301 0.564 0.815 1.048
R100,1000 – 0.177 0.218 0.261 0.353 0.499 0.594 0.601
R300,1500 0.204 0.285 0.372 0.451 0.637 0.741 1.028 1.702
R300,3000 0.414 0.561 0.682 0.805 1.039 1.241 1.455 6.490
R500,2500 0.382 0.480 0.661 0.787 1.131 1.468 1.625 2.109
R500,5000 0.567 0.755 1.171 1.432 1.924 2.283 5.247 19.440

Average 0.327 0.329 0.540 0.659 0.898 1.133 1.794 5.320 1.394

Table A.12 Run times of MARA for random networks (seconds)

K

Rn,m 3 4 5 6 7 8 9 10
R100,500 0.073 0.112 0.156 0.206 0.313 0.422 0.508 0.639
R100,1000 – 0.178 0.245 0.267 0.341 0.395 0.466 0.588
R300,1500 0.220 0.309 0.370 0.466 0.599 0.710 0.806 1.021
R300,3000 0.398 0.517 0.671 0.787 1.075 1.496 1.567 1.814
R500,2500 0.398 0.517 0.671 0.787 1.075 1.496 1.567 1.814
R500,5000 0.588 0.891 1.276 1.540 2.055 2.447 5.342 19.563

Average 0.333 0.429 0.566 0.681 0.906 1.119 1.693 5.014 1.364
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Table A.13 Average AvDi and MiDi of MRAA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.833 0.738 0.703 0.714 0.681 0.656 0.641
G4,36 0.982 0.982 0.892 0.804 0.732 0.759 0.702 0.718
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.930 0.871 0.838 0.813 0.808 0.779 0.775 0.847

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.923 0.538 0.231 0.231 0.154 0.154 0.000 0.000
G4,36 0.974 0.947 0.237 0.053 0.105 0.105 0.079 0.105
G6,6 0.900 0.800 0.800 0.700 0.500 0.500 0.300 0.200
G12,12 0.955 0.909 0.818 0.818 0.727 0.727 0.727 0.682

Average 0.938 0.805 0.521 0.450 0.372 0.372 0.277 0.247 0.498

Table A.14 Average AvDi and MiDi of MARA in grid networks

AvDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.949 0.833 0.777 0.785 0.711 0.720 0.686 0.699
G4,36 0.982 0.982 0.982 0.812 0.747 0.787 0.767 0.748
G6,6 0.933 0.933 0.900 0.893 0.867 0.857 0.833 0.822
G12,12 0.970 0.970 0.955 0.952 0.939 0.935 0.924 0.919

Average 0.959 0.930 0.881 0.860 0.816 0.825 0.803 0.797 0.859

MiDi K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.846 0.308 0.308 0.154 0.231 0.154 0.154 0.154
G4,36 0.974 0.947 0.211 0.184 0.079 0.184 0.105 0.132
G6,6 0.800 0.800 0.800 0.700 0.700 0.500 0.200 0.200
G12,12 0.909 0.955 0.909 0.818 0.727 0.818 0.727 0.773

Average 0.876 0.752 0.557 0.464 0.434 0.414 0.297 0.315 0.514

Table A.15 Run times of MRAA for grid networks (seconds)

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.047 0.024 0.137 0.253 0.272 0.514 0.842 0.905
G4,36 0.078 0.117 0.197 19.864 42.651 3.999 4.611 300
G6,6 0.022 0.012 0.103 0.097 0.370 0.493 2.487 1.093
G12,12 0.073 0.082 0.456 0.227 1.484 1.802 5.142 5.582

Average 0.055 0.059 0.667 5.111 11.194 1.702 3.270 76.915 12.371
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Table A.16 Run times of MARA for grid networks (seconds)

K

Gp,q 3 4 5 6 7 8 9 10
G3,12 0.016 0.022 0.022 0.027 0.029 0.036 0.039 0.092
G4,36 0.074 0.112 0.153 0.188 0.231 0.276 0.357 0.377
G6,6 0.017 0.016 0.024 0.025 0.116 0.030 0.083 0.036
G12,12 0.063 0.065 0.204 0.130 0.558 0.277 0.561 1.111

Average 0.043 0.054 0.101 0.093 0.233 0.155 0.260 0.404 1.364
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A.2.2 Comparative results
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Fig. A.17 Average dissimilarity in random networks
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Fig. A.19 Minimum dissimilarity in random networks
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