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Abstract

Since its creation in 2008, Bitcoin, the ground-breaking and most popular cryptocurrency until
this day, has grown exponentially along several dimensions, attracting attention not only from investors
but also from the general public. It has been the subject of extensive research, especially regarding
its speculative nature, market efficiency, integration, and, a popular topic, volatility. The present
work focuses on daily forecasting the volatility in the overall Bitcoin market, and aims to answer the
question of whether other market information besides prices and Blockchain information are helpful for
forecasting that volatility. Our research design is based on the strong assumptions that CoinMarketCap
provides reliable price information on the overall Bitcoin market, and that its volatility is well measured
by the Parkinson range-based estimator. Accordingly, an examination is conducted regarding the
forecasting performance of Autoregressive and GARCH models with exogenous variables obtained
both from the online market and from the Blockchain network. The results show that, as already
documented in the literature, trading volume has no incremental information value, but realized
volatility of liquid online exchanges and other carefully chosen Blockchain variables may improve
the forecasting accuracy especially when using a GARCH-type model. The most striking result
is that Autoregressive models are clearly superior to their GARCH models, independently of the
predictor sets used, with the lag structure of the dependent variable corresponding to the main source
of predictability.





Resumo

Desde a sua criação em 2008, Bitcoin, a primeira criptomoeda e a mais popular até ao momento,
cresceu exponencialmente em diversas dimensões, atraindo não só a atenção dos investidores, mas
também do público em geral. Esta tem sido objeto de extensas investigações, especialmente no que diz
respeito à sua natureza especulativa, eficiência de mercado, integração e, um tópico particularmente
recorrente, volatilidade. O presente trabalho foca a sua atenção na previsão diária da volatilidade no
mercado da Bitcoin, como um todo, e visa concluir se outras informações de mercado, para além
das informações de preços, e de Blockchain são úteis para prever essa volatilidade. A premissa
desta investigação baseia-se em fortes suposições de que o CoinMarketCap fornece informações
confiáveis acerca dos preços na generalidade do mercado da Bitcoin, e que sua volatilidade é bem
medida pelo estimador de Parkinson. Nesse sentido, é estudado o desempenho de previsão de modelos
Autoregressivo e GARCH que incluem variáveis exógenas obtidas tanto no mercado online quanto
na rede Blockchain. Os resultados mostram que, em conformidade com o que já fora documentado
na literatura, o volume de transação não possui valor de informação incremental, no entanto a
volatilidade realizada proveniente de bolsas online líquidas e outras variáveis Blockchain que foram
cuidadosamente escolhidas podem produzir melhorias de precisão da previsão, especialmente quando
são utilizados modelos GARCH. O resultado mais surpreendente corresponde ao facto de que os
modelos Autorregressivos são claramente superiores aos modelos GARCH, independentemente dos
conjuntos de previsores utilizados, correspondendo o desfasamento da variável dependente à principal
fonte de previsibilidade.
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Chapter 1

Introduction

CoinMarketCap1 defines cryptocurrency as a digital medium of exchange, which assures financial
transactions, oversees the creation of additional units, and verifies the transfer of assets using strong
cryptography technology.

Since the creation of Bitcoin (BTC) in 2008, by Satoshi Nakamoto2, cryptocurrencies’ popularity
has grown tremendously, attracting attention from the general public and investors (Bação et al.,
2018). For instance, online commerce needs the presence of a financial institution that serves as
intermediary, i.e. as a third party that guarantees the processing of transactions. However, there
are some disadvantages associated with transactions processed by financial intermediaries, such
as slowness, and high costs. With the introduction of Bitcoin, this reality may change, due to its
open-source protocol, controlled by the users without the need of a reliable third party to ensure
safeness.

This peer-to-peer system uses network nodes to verify the transactions, which are then recorded
in a public distributed ledger called Blockchain. This ledger can record transactions between two
parties in a way that is efficient, verifiable, and immutable (Reid and Harrigan, 2013). The security
of Blockchain is based on the assumption that “miners”, motivated by financial incentives (rewards
in new units of Bitcoin), are working to maintain the integrity of the ledger. Bitcoin and some other
cryptocurrencies are designed to gradually decrease the production of new units, placing an artificial
cap on the total amount of circulating coins. This has been seen as a feature that has some affinity
with the real world maximum offer of precious metals (Barber et al., 2012).

Lansky (2018) emphasizes the unique features of cryptocurrencies, namely decentralization,
pseudo-anonymity, and ability to avoid double-spending attacks. The first feature concerns inde-
pendence from central authorities or other third parties, which assures that changes in the rules are
rare and can only happen in the case of a consensus among the majority of operators. The last two
features are provided by Blockchain mechanisms, that give users the possibility of keeping their real
life identity anonymous, and prevent the holder of the digital currency from using the same digital
entity in multiple payments at the same time.

1https://coinmarketcap.com/alexandria/article/what-are-cryptocurrencies
2Satoshi Nakamoto is a pseudonym created by a person or group of persons, whose real identity is, to the present date,

still unknown.
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2 Introduction

The increase in popularity of Bitcoin led to the emergence of other digital currencies, sometimes
referred to as altcoins3, offering more and more diversity to the world of cryptocurrencies. One
of these cryptocurrencies is Ethereum, which is not in fact just another digital currency. Ethereum
employs advanced Blockchain technology, when compared to other digital currencies, and therefore
enables new applications, usually referred to as smart contracts.

Presently, Bitcoin holds the top place in the cryptocurrencies market, with its market capitalization
situated at 954.3 billion USD (approximately 61.8% of the total cryptocurrency market capitalization).
Ethereum is the second biggest cryptocurrency, with a market capitalization of 208.3 billion USD,
representing 13.47% of the total market capitalization. At the present time, the cryptocurrency industry
consists of more than 8500 cryptocurrencies and 35000 online exchanges, with different user bases
and trade volumes4.

Forecasting the volatility of Bitcoin returns is of great interest if investors are considering in-
cluding this digital currency in their investment portfolios (Shen et al., 2020). Given the growing
interest in Bitcoin, it is not surprising the attention that the issue of selecting reliable models for
forecasting the risk associated with Bitcoin investments has been receiving in the literature (Ardia
et al., 2019). This work intends to contribute to this strand of the literature, that is aimed at studying
the volatility forecasting of Bitcoin, and more precisely to answer the question of whether market and
Blockchain information have incremental value for forecasting volatility. With this purpose in mind
the methodologies of Taylor and Xu (1997) and Pong et al. (2004) will be employed.

This study uses daily data for the period from January 3, 2014 to December 1, 2020. This period
was then divided into an in-sample period, from January 3, 2014 to December 31, 2017, and an
out-of-sample period, from January 1, 2018 to December 1, 2020. The data was collected from
three distinct sources, which will later be described: CoinMarketCap (https://coinmarketcap.com/),
Bitcoincharts website (https://bitcoincharts.com/) and Coinmetrics (https://coinmetrics.io/).

We start from the premise that comparison of volatility forecasts can provide more evidence
about incremental information. Thus, in order to reach a conclusion about the incremental value from
the inclusion of other market variables other than prices and Blockchain’s variables, we computed
forecasts using two classes of alternative models, with different sets of predictors. The first class
consists of Autoregressive Models with exogenous variables (AR-X) where the dependent variable
is the logarithm of the Parkinson measure of volatility, and the predictors include combinations
of lags of the dependent variable with market and Blockchain variables. The second class are
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, ranging from a simple
GARCH(1,1) model to more encompassing models with exogenous variables in the variance equation
(i.e. GARCH(1,1)-X). Next, 1-step-ahead forecasts of volatility were computed and compared using
several metrics. The goal is to assess whether the inclusion of additional variables has incremental
value for forecasting Bitcoin volatility. As a final step in this research, and in order to clarify whether
the observed differences between the forecasts are significant, we applied the test of Diebold and
Mariano (1995).

The contribution of this research to the literature is twofold. First, it introduces Blockchain
variables as a possible source of information regarding the volatility of Bitcoin. Second, it focus on the

3The term has several similar definitions, but basically means an alternative digital currency to Bitcoin (Chaum, 1983).
4Data obtained from the website https://coinmarketcap.com/, last accessed on February 17, 2021.

https://coinmarketcap.com/)
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Parkinson metric, which is a range-based volatility estimator, as a good measure for the unobserved
volatility of the Bitcoin market. The use of this estimator allows the measurement of volatility across
the entire Bitcoin market, i.e., considers the information from various online exchanges. It is almost
consensual the claim that realized volatility computed using 5-minute returns is the best measure
of volatility, however this approach would require reliable information on all transaction data from
several online exchanges, which besides being time consuming and a real computational challenge,
creates the additional problem on how to combine the returns from different exchanges. That is why
studies that use Bitcoin realized volatility, only gather information from one online exchange and
assume it to be representative of the overall Bitcoin market.

The remainder of this dissertation is structured as follows. Chapter 2 presents a brief historical
contextualization regarding cryptocurrencies. Chapter 3 presents a literature review, referring several
articles about digital currencies, that are relevant in the context of this study. Chapter 4 lays out the
methodologies on which this work is based. Chapter 5 describes the data employed in this study, as
well as the forecasts obtained with the several models under analysis. Finally, Chapter 6 highlights the
main conclusions.





Chapter 2

Brief Historical Contextualization

One of the first steps in the field of digital currencies was taken by Chaum (1983), who
conceived the idea of an anonymous cryptographic electronic money, eCash. The eCash software
could be installed in any user’s local computer, providing storage of a digital form of money. The
use of this digital currency would require a cryptographic signature by a bank, allowing users to
interact with government-issued and regulated currencies, however it did not completely resolved the
double-spending issue, and hence did not succeed in attracting a significant number of users.

In 2009 the first successful decentralized cryptocurrency was created, following the cryptography
proposal of Nakamoto (2008), where it is stated that “a purely peer-to-peer version of electronic cash
would allow online payments to be sent directly from one party to another without going through a
financial institution”. Satoshi Nakamoto, a person or group of people developed Bitcoin (BTC), as
well as Blockchain, the underlying mechanism on which cryptocurrencies are based and legitimized
(Lakhani and Iansiti, 2017; Sebastião et al., 2021).

The persistent cypherpunk movement in the eighties and nineties contributed to promoting
the concept of cryptocurrency (Karlstrøm, 2014). With the primary focus on the premise that
governments and large corporations are unable to guarantee individual privacy, this movement argued
that these institutions monitor and censor the communications between individuals and therefore
constrain individual freedom. Pursuing an ideological and philosophical agenda, the cypherpunk
movement pushed for individual autonomy, freedom of choice and voluntarism. Thus, in the beginning,
cryptocurrency enthusiasts contemplated cryptocurrencies as a close approximation to the ideal concept
of money advocated by Friedrich von Hayek and right-libertarians of the Austrian school of economics
(Hayek, 1990), who argued in favour of ending the monopoly of central banks in the production,
distribution, and management of money (Sebastião et al., 2021).

The subprime mortgage crisis from 2007 to 2010, which had a worldwide impact, involved not
only international financial markets but also the banking sector, and deeply affected the European
sovereign debt. The crisis contributed to distrust of banks and financial institutions in general, and
also affected negatively the views on monetary authorities, regulators, and politicians. This created
favorable conditions for attention to be given to alternative monetary systems, namely to Bitcoin
(Sebastião et al., 2021).
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Chapter 3

Literature Review

The initial research on cryptocurrencies was produced in the fields of Computer Science, Cryp-
tography and Law, with primary focus on Bitcoin and its technical and methodological characteristics
(Bação et al., 2018). Subsequently, the literature approaching the issue from a Finance perspective
quickly became very large, mainly due to the rise in interest from the public, together with the
surprising explosive price behaviour of cryptocurrencies. In fact, the speculative nature of Bitcoin is a
major topic in the literature. For example, Cheah and Fry (2015) provide evidence of the existence
of speculative bubbles in the prices of Bitcoin, while Fry and Cheah (2016) resort to the close
relationship between Mathematical Finance and Statistical Physics to develop an Econophysics model
which suggests that Bitcoin and Ripple had episodes of negative bubbles.

Despite those concerns, cryptocurrencies, and especially Bitcoin, have been establishing them-
selves as an highly speculative investment asset, often being referred to as New Gold. For instance,
Matkovskyy et al. (2020) investigate the relationship — regarding returns and volatility — between
Bitcoin and traditional financial markets, represented by five stock market indices, namely NAS-
DAQ100, S&P500, Euronext100, FTSE100 and NIKKEI225, with a focus on the effects of Economic
Policy Uncertainty (EPU). The conclusion of that analysis is that Bitcoin may provide a hedge against
uncertainty in traditional markets, especially in the USA, as it seems to be the case with gold. Con-
versely, the analysis of this topic presented in Klein et al. (2018) lead to the conclusion that Bitcoin is
not the new gold, as its properties appear to differ markedly from those of gold, especially in periods
of market distress.

An important part of the literature on cryptocurrencies focuses on cryptocurrency volatility
modeling and forecasting, the issue to which the present study aims to contribute. A wide range of
models have been employed, a significant part of which include exogenous variables in the variance
equation. An exception is provided by Chaim and Laurini (2019), who study the return and volatility
dynamics of the nine major cryptocurrencies: Bitcoin, Ethereum, Ripple, Litecoin, Stellar, Dash,
Monero, NEM, and Verge. The authors rely on the estimation of a multivariate stochastic volatility
model with common discontinuous jumps to returns and volatility. The analysis emphasizes two high
volatility periods in 2017 and at the beginning of 2018. The permanent volatility component appears
to be influenced by developments in the market and by the interest of the public in these markets. The
transitory mean jumps become more important in the second part of the sample, indicating a shift in
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8 Literature Review

the dynamics of these cryptocurrencies. Another important result is that stationary models with jumps
seem to account for the long-memory characteristics of cryptocurrencies.

Nevertheless, the most popular models for volatility appear to be in the GARCH family. One
part of this literature has used GARCH-MIDAS models to add information to the standard GARCH
model. For example, Conrad et al. (2018) examine the economic determinants of long-term Bitcoin
volatility. The variables considered are macroeconomic and financial variables, such as the Baltic dry
index and VIX (the Chicago Board Options Exchange Volatility Index), as well as Bitcoin variables,
such as trading volume. The results show that Bitcoin volatility is pro-cyclical, i.e., it increases in
periods when economic activity is higher. Walther et al. (2019) apply the same approach to five
major cryptocurrencies: Bitcoin, Ethereum, Litecoin, Ripple, and Stellar. The authors find Global
Real Economic Activity to be the most important exogenous driver of volatility, outperforming all the
others that were examined. Fang et al. (2020) also include five cryptocurrencies (Bitcoin, Ethereum,
Ripple, Litecoin and New Economy Movement) in the analysis, but the focus is limited to the News-
based Implied Volatility (NVIX), a text-based index that captures investors’ perceptions of future
uncertainty. The results show that NVIX is an important determinant of the long-term volatility of the
five cryptocurrencies. The authors conclude that investor’s perception of uncertainty is more important
than uncertainty regarding economic fundamentals.

The GARCH family of models is very large. Therefore it is possible to find papers using many
different GARCH-type models. To allow for asymmetry in the response to shocks to the volatility
of twenty major cryptocurrencies, Baur and Dimpfl (2018) use both a TGARCH and a quantile
autoregressive model of order 1. They find that a positive shock produces larger volatility increases
than a negative shock, i.e., that there is asymmetry, which the authors relate to the behaviour of
informed and uninformed investors. Bouri et al. (2016) also find evidence of asymmetric response to
volatility shocks in Bitcoin. However, they include VIX as an additional variable in their asymmetric
GARCH model. The results show that Bitcoin volatility responds negatively to the VIX. Nevertheless,
the results also show that the dynamics of volatility has changed over time. A model in the GARCH
class that addresses the issue of time-varying behaviour is the Markov–switching GARCH model
(MSGARCH). Ardia et al. (2019) used an MSGARCH to test for regime changes in the volatility
dynamics of Bitcoin. They find strong evidence of regime changes in the volatility of Bitcoin.

Instead of focusing on a single GARCH model, Trucíos (2019) compares the forecasting perfor-
mance of alternative GARCH models. The forecasts concern one-step-ahead volatility and Value-at-
Risk in the Bitcoin market. The results highlight the importance of employing robust procedures to
deal with outliers. Using a similar approach, Köchling et al. (2020) evaluate the forecasting ability of
a wide range of GARCH-type models. Again the focus is on one-day-ahead forecasts of the volatility
of Bitcoin returns. The main conclusion is that it is difficult to select one model as clearly superior to
the rest, highlighting the difficulty of forecasting volatility in a changing environment.

An alternative to GARCH models are then heterogeneous autoregressive (HAR) models. Bouri
et al. (2021) use a HAR model, as well as the machine-learning technique of random forests, to
study the importance of the US-China trade war in forecasting out-of-sample daily realized volatility
of Bitcoin. The basic HAR model is extended to include controls, namely for jumps, while the
measure of US-China trade tensions is based on Google Trends data. The authors conclude that
this measure improves the accuracy of volatility forecasts. Another study of the volatility of Bitcoin
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where HAR models are used is Shen et al. (2020). This paper compares the forecasting accuracy of
several HAR models. The results show that the HAR models that allow for jumps or structural breaks
perform better. A further example of HAR modeling of Bitcoin volatility is provided by Aalborg et al.
(2019). Their HAR models include several additional variables: returns, trading volume, change in
the number of unique Bitcoin addresses, the VIX index and Google searches for “Bitcoin”. Of these
variables, at the 5% significance level, only the trading volume improves the basic HAR model for
daily volatility. Aalborg et al. (2019) also analyze similar models for Bitcoin returns, but the variables
are not consistently significant.

The common procedure in HAR models is to use realized volatility (RV) as the dependent variable,
i.e., as a proxy for the latent volatility, following Andersen and Bollerslev (1998). In the present
dissertation we use both RV and a range-based estimator of volatility, proposed by Parkinson (1980).
Range-based estimators are based on the evidence that daily extreme prices, i.e. the lowest and
highest prices of each day, reveal information about the entire price process. In fact, Christensen and
Podolskij (2007) proposed an alternative volatility measure, called the realized range-based volatility
(RRV), which is given by the difference between the maximum and minimum prices during a certain
period, while the RV is defined as the sum of non-overlapping squared returns within a fixed period.
For further information regarding realized volatility measures see Liu et al. (2015).

Another approach that has become more popular in recent years makes use of quantile regression
techniques combined with Granger causality tests. This approach is used by Balcilar et al. (2017) to
study the causal relationships between trading volume and Bitcoin’s volatility and returns. Specifically,
they apply a non-parametric causality-in-quantiles test to the analysis of the causal relationship
between trading volume and Bitcoin returns and volatility, testing at different quantiles across the
conditional distributions. The results show that volume can predict Bitcoin returns in the middle part
of the distribution, but not in the tails. However, the volume has no information regarding the volatility
of Bitcoin returns in any part of the conditional distribution. Although the result regarding the ability
to forecast returns is contradicted by Bouri et al. (2019), this latter study also concludes that volume
does not predict volatility. Relative to Balcilar et al. (2017), the innovation in Bouri et al. (2019) is
the addition of copulas to the quantile causality approach, i.e. they use a copula-quantile causality
approach to study Granger causality from trading volume to returns and volatility. Additionally, they
apply the approach not just to Bitcoin, but to seven leading cryptocurrency markets (Bitcoin, Ripple,
Ethereum, Litecoin, Nem, Dash, and Stellar). Bouri et al. (2019) find evidence of Granger causality
from trading volume to the returns of the cryptocurrencies, at both left and right tails, whereas Balcilar
et al. (2017) only find that in the middle of the distribution. But, as mentioned above, Bouri et al.
(2019), like Balcilar et al. (2017), do not find Granger causality from volume to volatility. Granger
causality is also used in Yang and Kim (2015) in the context of network theory, i.e., they view the
Bitcoin market as a network of agents that establish connections by trading. Therefore, they compute
complexity measures that quantify the activity in the network, and test the Granger causality from
those complexity measures to returns and volatility in the Bitcoin market. The authors conclude that
one of the complexity measures that they compute is useful for forecasting both returns and volatility
in the Bitcoin market.





Chapter 4

Methodology

The essential elements of the methodology used in this dissertation are based on two papers:
Taylor and Xu (1997), concerning the testing of incremental information about volatility, and Pong
et al. (2004), which compares the forecasting ability of volatility models. The first paper, Taylor and
Xu (1997), extends a previous study by the same authors (Xu and Taylor, 1995), by moving from
daily data (Forex exchange rates) to high frequency data, and thus incorporating more information
in the computation of volatility measures. Taylor and Xu (1997) use the intraday data to compute a
measure of observed volatility, realized volatility. Each day t in the sample is divided into n periods,
with corresponding returns rti. The realized volatility at day t is then computed as

RVt =

√
n

∑
i=1

r2
ti (4.1)

where r2
ti represents the squared logarithm return at the ith interval. The value of n is chosen so

that the returns are computed on a time interval with a certain length, usually chosen to be 5 minutes.
Taylor and Xu (1997) then proceed to estimate GARCH-type models of log-return conditional

volatility. They estimate several versions of the baseline model, excluding or including, realized
volatility and another measure of volatility, given by the volatility implicit in the price of options
(implied volatility). To test the existence of additional information on those two measures of volatility,
the authors test the significance of the corresponding parameters and compare the log-likelihood of the
alternative models. In addition, the authors also evaluate the out-of-sample forecasting performance
of the alternative models. Differently, in Pong et al. (2004) the variable to be forecasted is realized
volatility, as in Equation (4.1). Pong et al. (2004) compare the forecasting performance of several
models: ARMA, ARFIMA, GARCH, and a regression model with option implied volatility as an
explanatory variable. The forecasts are compared on the basis of the mean squared error, the Diebold-
Mariano test (Diebold and Mariano, 1995), and of the R-squared in a regression of the actual values
on the forecasts.

The empirical strategy used in this dissertation takes inspiration from the procedures employed in
both those papers, while moving the focus of attention from the foreign exchange rate market to the
Bitcoin market.

As volatility is not an observable variable, it is necessary to begin by computing a measure of
it. In this dissertation we assume that the volatility range-based estimator of Parkinson measure

11



12 Methodology

(Parkinson, 1980) provides a good measure of that latent variable. Hence, the variable to be forecasted
is this measure but we also assume that this task can be accomplished using the conditional variance
forecasts provided by GARCH models. In addition, as in Taylor and Xu (1997), realized volatility
in a particular online exchange is also used as a predictor. Realized volatility has been shown to
be a highly accurate volatility measure (Andersen and Bollerslev, 1998). The measure of realized
volatility used was calculated with 5-minute returns. The returns were computed with the transaction
prices obtained from the Bitstamp exchange, one of the most liquid, and hence representative, Bitcoin
exchanges. Because online exchanges are open for trading 24/7, the choice of 5-minute returns implies
that, in Equation (4.1), n = 288, i.e.

RVt =

√
288

∑
i=1

r2
ti (4.2)

where r2
ti represents the squared logarithm return at the ith 5-minute interval, counting from 00:00:00

UTC.

The Parkinson realized-range-based volatility is here applied in a daily basis (Christensen and
Podolskij, 2007). This estimator requires the maximum and minimum Bitcoin prices observed in each
day t, also called the high and low prices, respectively, as shown in the following formula:

σt = ln(Ht/Lt)/2
√

ln(2) (4.3)

where Ht and Lt are the high and low Bitcoin prices recorded during day t.

The reason why the Parkinson estimator is used as a measure of the volatility to be forecasted,
while realized volatility is only used as a predictor, is that the interest is on measuring volatility in the
overall Bitcoin market instead of volatility in one particular Bitcoin exchange. In fact, the Parkinson
estimate is computed by aggregating the information from many Bitcoin exchanges, as the high and
low prices refer to a price index weighted by trading volume of several relevant exchanges constructed
by CoinMarketCap. In contrast, the measure of realized volatility, which requires intraday data, is
computed using data from just one Bitcoin exchange. For further details on the data used in this
dissertation, see Section 5.1.1.

As predictors in the models used for forecasting Bitcoin volatility, besides realized volatility, this
dissertation will use the transaction volume (another market variable), as well as daily Blockchain
information.

After collecting all the data and organizing the database, the next step was to estimate in-sample
(see Section 5.1.1) two different classes of models. The first class consists of AR models where the
dependent variable is the time series of the Parkinson estimate of volatility in the Bitcoin market.
Several versions of the AR model will be estimated, differing in the combination of exogenous
variables added to the autoregressive terms (AR-X). The second class of models is Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) models. Again, we estimate both a baseline
model, GARCH(1,1), and more more complex GARCH(1,1) models that include exogenous variables
in the variance equation (GARCH(1,1)-X models). As remarked in the Literature Review (Section 2),
this type of model is very popular, not only among academics, but also among practitioners.
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The AR-X models estimated in this dissertation can be written as

ln(σt) =
p

∑
i=1

ai ln(σt−i)+
q

∑
j=1

B jXt− j + εt (4.4)

where σt is the Parkinson estimator from Equation (4.3), ai is the coefficient of lag i of the dependent
variable, p is the order of the autoregressive part, X is the column vector of exogenous variables, B j is
the row vector of coefficients of the lag j of the exogenous variables, and εt is a white-noise error
term. In practice we may use a more flexible model, allowing for the exogenous variables to have
different lag structures.

As for the GARCH(1,1)-X models, Equations (4.5) and (4.6) are, respectively, the mean equation
and the variation equation:

rt = µ + εt (4.5)

h2
t = ω +αε

2
t−1 +βh2

t−1 +BXt−1 (4.6)

In Equations (4.5) and (4.6), rt = ln(Pt)− ln(Pt−1) are the log-returns, computed as the difference
between two consecutive close prices, µ is a constant, and εt is the error term, assumed to follow
a normal distribution with mean zero and conditional standard deviation ht . B is the row vector of
coefficients of the lagged exogenous variables, and ω is a positive constant, while α and β are the
(non-negative) parameters of the ARCH and GARCH components, respectively. Notice also that in
the conditional variance equation we only consider the first lag of the exogenous variables.

Given the estimated models, 1-step-ahead volatility forecasts are produced for the out-of-sample
period. The procedure for a given model is the following: the model is initially estimated using the
in-sample data, that is, until T , the last observation in-sample, using the estimated model we compute
the forecast for T +1, then we re-estimate the model using data until T +1 and compute the forecast
for T +2 and so forth until we obtain all forecasts for the out-of-sample period. In sum, the models
are reiterated on an expanded window. These forecasts are then compared with the realized values
of σt in order to assess the forecasting performance of the several models that, within each class,
distinguish themselves by the different predictors space. The statistics used in this study are the Mean
Error (ME), the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), the Mean Percent
Error (MPE), the Mean Absolute Percent Error (MAPE) and Theil’s U. Letting n be the number of
forecasts, t = 1, . . . ,n be the forecasted periods, yt be the actual value of the forecasted variable at
time t, and ŷt be the forecast of yt , the formulas for these statistics are the following:

ME =
1
n

n

∑
i=1

(yt − ŷt) (4.7)

MAE =
1
n

n

∑
i=1

|ŷt − yt | (4.8)

MPE =
100%

n

n

∑
i=1

(
yt − ŷt

yt

)
(4.9)
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MAPE =
100%

n

n

∑
i=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (4.10)

RMSE =

√
∑

n
i=1 (yt − ŷt)

2

n
(4.11)

U =

√√√√√√ ∑
n
i=1

(
ŷt−yt
yt−1

)2

∑
n
i=1

(
yt−yt−1

yt−1

)2 (4.12)

It should be noted that in Equations (4.7) to (4.12), yt is given by ln(σt) and ŷt is given by ln(σ̂t)

in the case of AR-X models and ln(ĥt) in the case of GARCH(1,1)-X models.
The Mean Error (ME) measures the average difference between the estimated values and the

actual observed values. Its purpose is to detect biases. The Mean Absolute Error (MAE) gives a
measure of the average magnitude of the errors. The usual alternative to the MAE is the Root Mean
Square Error (RMSE), which also gives a measure of the average magnitude of the errors, but giving a
larger weight to larger errors.

For positive variables, it is also common to evaluate the size of the errors as a proportion of the
actual value of variable. This leads to the Mean Percent Error (MPE) and Mean Absolute Percent Error
(MAPE), i.e., the mean of the percent errors and the mean of the absolute percent errors, respectively.

Finally, and also for use with positive variables, Theil’s U is useful to evaluate whether a forecasting
model is superior to naïve forecasts, i.e., to using the actual value at time t as the forecast of the value
at time t +1. The forecasting model will be superior to naïve forecasts when Theil’s U is less than
one. When it equals one, then the forecast performance is identical. If Theil’s U is larger than one,
then the model performs worse than naïve forecasts.

To complement the comparison of the forecast performance based on the previous statistics, this
study will also employ the test proposed by Diebold and Mariano (1995) on the null hypothesis that
two forecast sets are equal. This test provides information about whether the difference in forecast
performances is statistically significant or not.



Chapter 5

Empirical Results

5.1 Data and Preliminary Analysis

5.1.1 Data

In this dissertation the object of study is the digital currency Bitcoin (BTC), in the period
from January 3, 2014 to December 1, 2020 (which gives a total of 2525 daily observations). The
period covered by the sample was divided into two sub-periods. The first is the “in-sample”, and
corresponds to the period from January 3, 2014 to December 31, 2017. The second sub-period is the
“out-of-sample” period, which starts in January 1, 2018 and ends in December 1, 2020.

The data was collected from three sources: CoinMarketCap (https://coinmarketcap.com/), the
bitcoincharts website (https://bitcoincharts.com/) and Coinmetrics (https://coinmetrics.io/).

CoinMarketCap provided daily data on close prices (i.e., the last reported prices before 00:00:00
UTC of the next day), daily high and low prices per day, and the daily trading volume, all denominated
in USD. CoinMarketCap computes these series by aggregating the information from several exchanges,
intending to give a comprehensive portrait of the overall Bitcoin market. For instance, the close prices
are not trading prices but instead weighted average prices, with the weights given by the previous
24h market shares of the exchanges and are eligible. In this dissertation, the close prices are used
to compute the daily log-returns, rt = ln(Pt)− ln(Pt−1). The high and low daily prices are used to
compute the Parkinson daily range-based volatility estimator, using the formula in Equation (4.3).
Trading volume information is used as a predictor of volatility.

Figure 5.1 presents the evolution of Bitcoin prices. It displays an erratic behaviour marked by
a long run positive trend. From the beginning of the period, January 2014, to the end of November
2017, at which time Bitcoin reached 8000USD, Bitcoin presents an approximately linear growth.
From then on, an explosive growth behaviour is perceptible, with the Bitcoin price reaching almost
20000USD in mid December 2017. This could be related to the recognition granted in Japan to 11
firms as exchange houses of this digital currency in September of that year. However, the end of
December was characterized by a sharp decline in the Bitcoin price, to around 14000USD, which
was mainly attributed to the creation at that time of the Bitcoin futures by the the Chicago Board
Options Exchange (CBOE) and the Chicago Mercantile Exchange (CME) (Sebastião and Godinho,
2020). The oscillations continued in the beginning of 2018, with accentuated growth followed by
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rapid decline. In 2020 the global pandemic caused by the COVID-19 virus had worldwide economic
effects, including the markets for digital currencies. A large fall, to close to 5000USD, in the Bitcoin
price was observed during the first half of March. In the rest of 2020, despite the fluctuations, the
overall trend was clearly positive, leading to the high values registered at the end of 2020.

The evolution of returns is in Figure 5.2. An extreme negative drop around the time when the
pandemic spread out worldwide is quite visible in Figure 5.2.

Notes: The top figure represents Bitcoin daily prices in USD in the full sample period, while (a)
concerns the in-sample period and (b) the out-of-sample period.

Fig. 5.1 Bitcoin daily prices (USD)

The growth of Bitcoin trading volume in the final part of the in-sample accompanied that of the
Bitcoin price — see Figure A.1 in Appendix A. In the out-of-sample period there also seems to be
some association between the evolution of prices and the evolution of volume, for example, in March
2020. Thus, it is possible that trading volume contains information about the evolution of prices.



5.1 Data and Preliminary Analysis 17

Notes: The top figure represents Bitcoin daily returns in USD in the full sample period, while (a)
concerns the in-sample Period and (b) the out-of-sample period.

Fig. 5.2 Bitcoin daily returns

Figure 5.3 presents the evolution of the Parkinson estimator. The volatility displays strong
oscillating movements throughout the full sample. Nevertheless, it is clearly visible the extreme peak
in mid-March 2020, coinciding with the quick spread of the COVID-19 pandemic across the world.
Besides that peak, special attention should also be given to the period centered around 2018, which is
characterized by persistently high levels of volatility.

The second database used in this dissertation contains transaction data from the Bitstamp exchange.
Bitstamp was chosen because of its reputation as one of the most important exchanges in the trans-
mission of information on the USD/Bitcoin hourly prices since the bankruptcy of MtGox (Sebastião
et al., 2018), because of its importance in terms of trading volume (Hileman and Rauchs, 2017), and
because it is one of the exchanges from which the Chicago Mercantile Exchange computes the Bitcoin
Reference Rate (BRR). The transaction prices were sampled at 5-minute intervals (considering the last
known price at each sampling point) and used to compute the daily realized volatility, RVt , according
to Equation (4.2). Figure A.2 in Appendix A shows the evolution of this variable. As was the case for
the Parkinson estimator, realized volatility also exhibits large fluctuations throughout the full sample.
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There are two major peaks: the first in January 2015, and the second one in March 2020, similarly to
the Parkinson measure.

Fig. 5.3 Parkinson estimator

Finally, daily Blockchain information was collected from Coinmetrics. This dataset contains 42
variables (see Table A.1 in Appendix A, which describes all the 42 variables). These variables were
subjected to visualization, and 10 were dropped out because they did not present almost any variability.
Hence, the analysis proceeds with 32 Blockchain variables.

5.1.2 Stationarity Analysis and Selection of Blockchain’s Variables

Before continuing with the analysis of the stationarity of trading volume and of the 32 blockchain
variables, the variables that only assume positive values and are clearly skewed were transformed using
logarithms. The stationarity analysis was conducted using the ADF test. The results are presented in
Table 5.1. The variables are only tested in levels when at least one variant of the test suggests that
they do not have a unit root at the 1% significance level; otherwise the first difference of the variables
was also tested. The latter was the case of the trading volume; thus henceforth the first difference of
the log of the trading volume, d_log_Vol, is used in the analysis.
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Table 5.1 ADF unit root tests

ADF
Log Level (L) Fist Difference (D) L or D

T C C NC
Trading Volume Y -3.06 -0.39 -13.06*** -12.93*** D
AdrActCnt Y -2.18 -1.94 -14.65*** -14.41*** D
BlkCnt N -6.89*** -6.37*** – – L
BlkSizeByte Y -2.43 -2.32 -16.16*** -16.00*** D
BlkSizeMeanByte Y -2.71 -2.61** -15.73*** -15.57*** D
DiffMean N -0.83 1.80 -32.95*** -32.80*** D
FeeMeanNtv N -3.70** -3.71*** – – L
FeeMeanUSD N -5.42*** -5.25*** – – L
FeeMedNtv N -3.85** -3.85** – – L
FeeMedUSD N -5.18*** -5.04*** – – L
FeeTotNtv N -3.64** -3.60*** – – L
FeeTotUSD N -5.33*** -5.16*** – – L
HashRate Y -2.89 -4.66*** – – L
IssContNtv N -2.66 -1.39 -14.90*** -14.83*** D
IssContPctAnn N -2.44 -1.80 -15.37*** -15.23*** D
IssContUSD N -3.02 -1.89 -12.83*** -12.83*** D
IssTotNtv N -2.66 -1.39 -14.90*** -14.83*** D
IssTotUSD N -3.02 -1.89 -12.83*** -12.83*** D
NVTAdj N -2.69 -2.51 -15.98*** -15.98*** D
NVTAdj90 N -3.21* -2.68* -50.76*** -50.77** D
SplyFF N -1.12 -1.28 -8.50*** -7.47*** D
TxCnt Y -1.99 -2.04 -13.92*** -13.80*** D
TxTfrCnt Y -2.68 -2.24 -16.52*** -16.41*** D
TxTfrValAdjNtv Y -2.70 -2.71* -15.62*** -15.62*** D
TxTfrValAdjUSD Y -2.38 -0.56 -13.49*** -13.41*** D
TxTfrValMeanNtv N -12.90*** -11.53*** – – L
TxTfrValMeanUSD Y -2.66 -1.29 -17.82*** -17.82*** D
TxTfrValMedNtv N -6.90*** -3.65*** – – L
TxTfrValMedUSD N -4.16*** -3.08** – – L
TxTfrValNtv N -9.84*** -9.65*** – – L
TxTfrValUSD Y -2.38 -1.06 -15.39*** -15.35*** D

Notes: The number of lags included in the test regressions was chosen according to the AIC criterion.
“T” identifies tests ran with a constant and a trend. “C” identifies tests ran with only a constant. “NC”
identifies tests ran without a deterministic term. The null hypothesis of the ADF test is the existence of
a unit root. Significance at the 1%, 5% and 10% levels is denoted by “***”, “**” and “*”, respectively.
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Having decided whether to use the level or the first difference of the variables, the next step was to
reduce the number of variables under analysis. The first selection criterion was based on the in-sample
correlation between the lagged variable and the volatility measure ln(σt). Thus, only those variables
for which the null hypothesis of no lagged correlation with log-volatility — i.e. Corr(ln(σt),Xt−1) = 0
— was rejected at the 5% significance level were considered for inclusion in the volatility forecasting
models. The correlations are presented in Table 5.2. According to the previous criterion, there are
11 candidates to be included in the volatility forecasting models. However, some of these variables
are highly cross-correlated, which may result in a multicollinearity issue. At a first glance, this
seems to be the case of the variables measuring transaction fees. To solve this problem, we use
a second criterion: if two Blockchain variables have a cross-correlation equal or higher than 0.85,
the one with the lowest correlation with ln(σt) is discarded. This pairwise analysis results in the
following information set to be included in the models, ranked by descending order of correlation
with ln(σt): TxTfrValMedUSD, FeeMeanNtv, FeeMeanUSD, NVTAdj90, BlkCnt, HashRate, and
TxTfrValAdjNtv. The cross-correlation matrix is presented in Table 5.3 and the evolution of the seven
selected Blockchain variables is in Appendix A, Figure A.3.

Table 5.2 Correlation between the Parkinson volatility series and lagged Blockchain variables

AdrActCnt BlkCnt BlkSizeByte BlkSizeMeanByte DiffMean

0.0161 0.0703*** -0.0005 0.0098 0.0072

FeeMeanNtv FeeMeanUSD FeeMedNtv* FeeMedUSD FeeTotNtv

0.2990*** 0.2922*** 0.2842*** 0.2834*** 0.2896***

FeeTotUSD HashRate IssContNtv IssContPctAnn IssContUSD

0.2751*** 0.0488** -0.0054 -0.0036 -0.0302

IssTotNtv IssTotUSD NVTAdj NVTAdj90 SplyFF

-0.0054 -0.0302 -0.0354* -0.0704*** 0.0178

TxCnt TxTfrCnt TxTfrValAdjNtv* TxTfrValAdjUSD TxTfrValMeanNtv

0.0017 0.0074 0.0461** 0.0383* 0.0089

TxTfrValMeanUSD TxTfrValMedNtv TxTfrValMedUSD TxTfrValNtv TxTfrValUSD

0.0359* 0.0104 0.3142*** 0.0254* 0.0382*
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Table 5.3 Blockchain’s variables crosscorrelation matrix

TxTfrValMedUSD FeeMeanNtv FeeMeanUSD NVTAdj90 BlkCnt HashRate TxTfrValAdjNtv
TxTfrValMedUSD 1
FeeMeanNtv 0.5256 1
FeeMeanUSD 0.8106 0.7856 1
NVTAdj90 -0.0137 -0.0640 -0.0592 1
BlkCnt -0.0199 0.0033 0.0060 -0.0003 1
HashRate 0.5954 0.0338 0.2208 0.0103 -0.2019 1
TxTfrValAdjNtv 0.0455 0.0133 0.0042 -0.03208 -0.0426 -0.0030 1

5.1.3 Data Descriptive Analysis

The descriptive statistics for Bitcoin returns are presented in Table 5.4, for the full sample and
the two subsamples. The most striking difference is in the mean: in the second sub-sample (the
out-of-sample period) the mean is substantially smaller than in either the full sample or the first
subsample. However, the variance does not change visibly across samples. The consequence is that
the coefficient of variation does change markedly. The skewness and kurtosis statistics indicate that the
distribution of returns is negatively skewed and leptokurtic. The non-normality of these distributions
is corroborated by the large values of the Bera-Jarque test of the null hypothesis of normality, which
is rejected at the 5% significance level.

Table 5.4 also shows the autocorrelation coefficients for lags 1 to 7, both for the returns and for
the squared returns. The Ljung-Box test was used to test for joint residual autocorrelation up to lag 7.
For the returns, there may be autocorrelation in the first subsample, if one uses the 1% significance
level. For the squared returns, as expected, the test shows that there are significant ARCH effects in
the residuals of the returns, in all samples.

The same analysis was applied to the natural logarithm of the Parkinson estimator — see Table
5.5. In this case, the descriptive statistics are very similar across subsamples. Again, the Jarque-Bera
test rejects of the null hypothesis of normality at the 5% significance level for all samples. Finally,
also as expected, there is clear evidence of strong positive autocorrelation in this series.

Table 5.6 shows the descriptive statistics for the first difference of the log of trading volume
(d_log_Vol) and for the realized volatility in the Bitstamp exchange (RVt). In both cases, the mean and
the variance seem to decrease in the second subsample (the coefficient of variation does not change
much in the case of realized volatility). Similarly to the previous variables, the Jarque-Bera test on
again rejects of the null hypothesis of normality at the 5% significance level for these variables in all
samples.
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Table 5.4 Descriptive statistics of Bitcoin return series

Returns (full data sample) in-sample Returns out-of-sample Returns

Observations 2525 1459 1066
Mean 0.0012 0.0020 0.0003
Median 0.0015 0.0018 0.0012
Std. Dev. 0.0392 0.0388 0.0398
Var. Coeff. 31.373 19.697 149.40
Minimum -0.4647 -0.2376 -0.4647
Maximum 0.2251 0.2251 0.1671
Skewness -0.9149 -0.3859 -1.5816
Kurtosis 15.491 9.7777 22.416
Jarque-Bera 16767 2828.8 17189

Autocorrelations
Returns

lag(1) -0.0241 0.0090 -0.0661
lag(2) -0.0154 -0.0804 0.0606
lag(3) 0.0179 0.0351 0.0006
lag(4) 0.0042 -0.0081 0.0169
lag(5) 0.0128 0.0030 0.0244
lag(6) 0.0458 0.0612 0.0371
lag(7) -0.0293 -0.0265 -0.0364
Q(7) 10.802 18.018 12.458
Q(7) p-value 0.1475 0.0119 0.0865

Autocorrelations
Squared Returns

lag(1) 0.1295 0.2673 0.0603
lag(2) 0.0429 0.0763 0.0254
lag(3) 0.0339 0.0669 0.0157
lag(4) 0.0713 0.0810 0.0669
lag(5) 0.0471 0.0837 0.0269
lag(6) 0.0406 0.0820 0.0175
lag(7) 0.0943 0.0547 0.1124
Q2(7) 95.153 153.67 24.332
Q2(7) p-value 0.0000 0.0000 0.0010
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Table 5.5 Descriptive statistics of the natural logarithm of the Parkinson estimator series

full sample in-sample out-of-sample

Observations 2525 1459 1066
Mean -3.9451 -3.9938 -3.8784
Median -3.9226 -3.9660 -3.8710
Std. Dev. 0.8194 0.8789 0.7253
Var. Coeff. -0.2077 -0.2201 -0.1870
Minimum -6.4575 -6.4575 -5.8893
Maximum -1.2244 -1.7200 -1.2244
Skewness -0.0483 -0.0735 0.1431
Kurtosis 2.7595 2.6233 2.7077
Jarque-Bera 7.0691 9.9408 7.4303

Autocorrelations

lag(1) 0.6289 0.6687 0.5416
lag(2) 0.5395 0.5838 0.4376
lag(3) 0.5345 0.5681 0.4532
lag(4) 0.5191 0.5323 0.4780
lag(5) 0.4725 0.4920 0.4129
lag(6) 0.4630 0.4834 0.4001
lag(7) 0.4670 0.4836 0.4106
Q(7) 4801.4 3081.1 1519.5
Q(7) p-value 0.0000 0.0000 0.0000

Table 5.6 Descriptive statistics of Bitcoin trading volume and realized volatility in the full sample,
in-sample, and out-of-sample periods

d_log_Vol FS d_log_Vol IS d_log_Vol OS RVt FS RVt IS RVt OS

Observations 2525 1459 1066 2525 1459 1066
Mean 0.0028 0.0039 0.0013 0.0404 0.0434 0.0363
Median -0.0140 -0.0188 -0.0109 0.0332 0.0360 0.0295
St. Dev. 0.3463 0.4266 0.1871 0.0271 0.0284 0.0246
Var. Coeff 122.07 108.18 141.58 0.6706 0.6544 0.6784
Minimum -1.6634 -1.6634 -1.0214 0.0000 0.0000 0.0073
Maximum 2.4917 2.4917 0.8709 0.3460 0.3460 0.2972
Skewness 0.5206 0.4584 0.2813 3.0905 3.0752 3.1361
Kurtosis 6.5160 4.7454 5.4493 20.869 20.390 21.738
Jarque-Bera 1414.7 236.29 280.51 37612 20684 17342

Notes: FS, IS and OS refer to full sample;in-sample out-of-sample, respectively.
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As for the 7 previously selected Blockchain variables, the descriptive statistics are in Tables A.2)
(full sample), A.3) (in-sample) and A.4) (out-of-sample) in Appendix A. Some of the statistics show
considerable variation across the subsamples. Again, the Jarque-Bera tests reject the null hypothesis
of normality at the default 5% significance level for all variable in all subsamples.

5.2 Forecasting Models

The next step in this study is to compare the forecasting performance of the competing models.
In the first sections the comparison is made within each class of models — The autorregressive models
on the natural logarithm of the Parkinson estimator (AR-X) and the GARCH(1,1)-X models, with
different sets of exogenous variables. The third section performs a comparison between selected
models using the teste of Diebold and Mariano (1995).

5.2.1 AR-X Models

Firstly, the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the
dependent variable, ln(σt), until lag 21 (3 weeks) were analyzed to assess the order of the lag structure
(Figure B.1). According to the PACF there are 7 significant lags, which coincides with a calendar
week. Having this into consideration, the same number of lags are initially considered for the other
market variables, RVt e d_log_Vol. When regressing the models on the 7 lags of the three variables, it
was noticed that only the first 2 lags of d_log_Vol were significant. Hence we proceed running the
several models with just 2 lag of d_log_Vol.

We estimated 32 AR-X (see Table B.2). All these models use 7 lags of the dependent variable
and then use different combinations of the exogenous variables. The two last models deserve further
explanation. Model ALL includes all the regressors (7 lags lags of the dependent variable and of
realized volatility, 2 lags of trading volume and 1 lag of the 7 Blockchain variables). The Model SLCT
is obtained from Model ALL by removing in a sequential order the regressors with higher p-value,
until all the regressors in the final model have a p-value lower than 10%. That is, the variable that
presented a higher p-value was removed, and the model was re-estimated, the process was iterated
until all the remaining variables presented a significance level of, at least, 10%. This Model SLCT
includes the 7 lags of the dependent variable, some of the lags of RVt and 1 lag of four of the seven
previously selected Blockchain variables.

Before we proceeded with the interpretation of the results on the metrics of the 1-step-ahead
forecasts, we compared the adjusted coefficient of determination, R̄2, of the estimations in-sample.
Model A, which is the most basic model achieved an R̄2 = 0.5155 meaning that just the 7 lags of
the dependent variable explain more than 50% of the variation of the response variable around its
mean. Model ALL and Model SLCT have an R̄2 = 0.5310 and an R̄2 = 0.5313, respectively. These
are slight increases in relation to Model A, indicating that most probably the trading volume, realized
volatility and Blockchain variables do not add significant information to forecast volatility, at least
measured by the Parkinson estimator.

This claim is supported by the results presented in Table B.2. The AR-X models produce very
similar results in terms of forecasting performance, with very small differences in the metrics (with a
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magnitude of only 10−3), and without a clear winner. For instance the RMSE ranges from 0.5645
(Model R) to 0.5678 (Model P), the MAE ranges from 0.4380 (Model U) to 0.4459 (Model P), the
MAPE ranges from 12.331 (Model R) to 12.477 (Model SLCT) and the Theil’s U ranges from 0.7977
(Model R) to 0.8123 (Model SLCT). In a nutshell, the lag structure of the dependent variable captures
almost all the forecasting potential, and the differences produced by introducing other explanatory
variables are not statistically or economically significant.

5.2.2 GARCH(1,1)-X Models

Here the focus shifts into the GARCH(1,1)-X models, that is, on the conditional volatility
and their one-step-ahead forecasts. Table B.3 presents the forecasting statistics for 28 GARCH
models. The first model (Model A) is the GARCH(1,1), and the following models consider several
combinations of the first lag of 1, 2 and 3 exogenous variables. The last one, Model ALL, includes all
the relevant exogenous variables in the variance equation.

One should notice that too many exogenous variables in the variance equation increases non-
trivially the potential for non-converge problems in the GARCH estimations. Hence in order to
reduce the dimensionality of the predictors space we proceed in the following manner: We run
the GARCH(1,1)-X using d_log_Vol as the only exogenous variable (Model B) and compute the
RMSE statistic for one-step-ahead forecasts. Then we use this value as a threshold to select the other
exogenous variables, i.e. if the RMSE of the GARCH(1,1)-X with just one of the other exogenous
variables (Model C to Model I) is below that threshold, the variable is used afterward in other
GARCH(1,1)-X models with more than one exogenous variable, otherwise that variable is discarded.
The reason behind the choice of this threshold is the evidence provided in the literature that volume
may have some predictive ability on volatility. After this additional filtering, besides RVt , 4 Blockchain
variables remain: FeeMeanNtv, NVTAdj90, BlkCnt and HashRate. All these models produce very
similar results. In terms of RMSE the best one is Model C that considers RVt as the unique exogenous
variable and the worst one is Model B that considers d_log_Vol. Basically, the RVt stands out as the
best exogenous variable as the models that include it are the ones with the best forecasting performance.
This is the case of models C, K, L and M. The Model ALL even has worst results than those models
suggesting that other variables, especially d_log_Vol, introduce more noise than information on the
estimations.

5.2.3 Statistical tests on the forecasting performance of different models

This subsection summarizes and provides a comparative analysis between the several models
within and between the two different models’ classes, namely by applying the test of Diebold and
Mariano (1995) on the null hypothesis that one-step-ahead forecasts are equal.

The full set of AR-X and GARCH(1,1)-X models are presented in Appendix, Tables B.2 and
B.3, respectively. The most important performance metrics for the base model, and the best and
second-best models, according to the RMSE, in each class are presented in Table 5.7.
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Table 5.7 Summary of the forecasting performance of selected models

AR-X GARCH(1,1)-X
Base Best Second-Best Base Best Second-Best

Model (Model R) (Model Q) Model (Model L) (Model K)
RMSE 0.5668 0.5645 0.5647 0.7990 0.7633 0.7649

MAE 0.4419 0.4397 0.4385 0.6659 0.6329 0.6340
MAPE 12.41% 12.33% 12.37% 16.47% 15.74% 15.76%

Theil’s U 0.8086 0.7977 0.8090 1.0958 1.0456 1.0495

Notes: In the AR-X models, the base model corresponds to the model including 7 lags of the dependent
variable, ln(σt), and in the GARCH(1,1)-X models to the GARCH(1,1) model. In the AR-X, the best
model (Model R) correspond to a model with a predictors set formed by 7 lags of ln(σt), 2 lags of
d_log_Vol and 1 lag of NVTAdj90, the second-best model (Model Q) uses 7 lags of ln(σt), 2 lags of
d_log_Vol, and 1 lag of FeeMeanNtv. In the GARCH(1,1)-X, the best model (Model L) considers as
exogenous variables RVt and NVTAdj90, the second-best model (Model K) uses RVt and FeeMeanNtv.

The results presented in Table 5.7 clearly show that AR-X models are superior to the GARCH(1,1)-
X models, independently of the predictor sets used. This is quite striking even when the AR-X base
model is compared with the Best GARCH(1,1)-X model: all the performance measures of former
model are lower than the correspondent ones last model. It remains to know if these differences
are statistically significant and if the smaller differences between models within each class are also
statistically significant. This more refined analysis is presented in Table 5.8, wich presents the results
of the Diebold-Mariano test.

Table 5.8 Diebold-Mariano Tests between Selected Models

D−M p-value

AR-X Base model vs Best AR-X model 1.2445 0.2133
AR-X Best model vs AR-X Second Best Model -0.0776 0.9381
AR-X Base model vs GARCH(1,1)-X Base model -14.103 0.0000
GARCH(1,1)-X Base model vs GARCH(1,1)-X Best model 13.663 0.0000
GARCH(1,1)-X Best model vs GARCH(1,1)-X Second-Best model -1.0344 0.3009
Best AR-X model vs Best GARCH(1,1)-X model -12.875 0.0000

Notes: See notes of the previous table on the predictor sets of the different models. The column D-M
is the statistic of the Diebold and Mariano (1995) test on the null that two forecast sets are equal, and
the last column refers to its p-value.

Several inferences can be made from the Diebold-Mariano statistics (D−M).
First, as it was already mentioned, the D-M test is not able to reject the null that the forecasts of the

AR-X model and the Best AR-X model are equal at any usual significance level (the p-value is 0.2133)
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implying in this class of models the predictive potential is almost all captured by the lag structure
of the dependent variable, ln(σt), and hence the exogenous variable only contribute marginally to
increase the forecasting performance of AR-X models.

Second, the contrary happens with the GARCH(1,1)-X models. The statistic on the test between
the GARCH(1,1)-X Base model vs GARCH(1,1)-X Best model is 13.663, statistically significant
at the 1% level. Hence within this class of models some exogenous variables have incremental
information that can be used to forecast volatility, namely the realized volatility, RVt , and NVTAdj90.
This last variable corresponds to the "ratio of the network value (or market capitalization, current
supply) to the 90-day moving average of the adjusted transfer value".

Third, the selection of Blockchain information to include in the GARCH(1,1)-X models should be
made carefully, as different variables will have a non-trivial impact on the accuracy of the forecasts.

Fourth, the claim that the AR-X models are generally better than the GARCH(1,1)-X models is
supported by the D-M statistic for the comparison between the AR-X Base model and GARCH(1,1)-X
Base model (D−M =−14.103, significant at the 1% level) and by the D-M statistic for the comparison
between the Best AR-X model vs Best GARCH(1,1)-X model (D−M =−12.875, significant at the
1% level).





Chapter 6

Conclusion

Launched in 2008, Bitcoin was the first cryptocurrency to solve the double-spending problem. It
thrived and remains nowadays the most popular and influential digital currency.

This dissertation examines the several alternatives to forecast the volatility of the overall Bitcoin
market, using daily data that spans from January 3, 2014 to December 1, 2020. We should reinforce
that our goal is different from previous studies on Bitcoin volatility forecasting. These studies aim
at forecasting the volatility of a particular online exchange, and for that matter the latent volatility
is proxied by the realized volatility at that exchange. Here, we intend to forecast the overall Bitcoin
volatility, which has the price input from several exchanges. Our research design is in fact based on two
strong assumptions. First, it is assumed that CoinMarketCap provides reliable price information on the
overall Bitcoin market, and second that its volatility is well measured by the Parkinson range-based
estimator. With this in mind, we proceed by examine the forecasting performance of Autoregressive
and GARCH models with exogenous variables obtained from the online market, namely the realized
volatility of a liquid online exchange — Bitstamp, overall trading volume, and other variables obtained
from the Blockchain network. The analysis is conducted on 1-step ahead forecasts, i.e. in a daily
basis, using some procedures already documented in the literature for other more traditional markets,
such the Forex (Pong et al., 2004; Taylor and Xu, 1997).

Our results show that while realized volatility may help explaining the overall volatility, trading
volume has no incremental information value, which support the claims already presented elswere (see,
for instance, Balcilar et al., 2017; Bouri et al., 2019). The incremental value of Realized Volatility and
other carefully chosen Blockchain variables is especially important when using GARCH-type models.
The most compelling result is that Autoregressive models are clearly superior to their GARCH models,
and that the lag structure of the dependent variable is the main source of predictability. However, one
should relative this result as the methodology used here is biased in this direction, that is while the
Autoregressive models tackle directly the problem of forecasting the Parkinson estimator, the GARCH
models intend to forecast the conditional volatility and hence only indirectly forecast that estimator.
There are other analyses that could be made to reinforce or contradict our main conclusions. Use
different forecasting horizons or improving on the GARCH forecasts by introducing a second step in
which the forecasts of the conditional volatility are regressed on the realized Parkinson estimates, are
among some of these additional analyses.
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Appendix A

More on trading volume, realized
volatility and Blockchain variables

Table A.1 Description of the 42 collected variables from Coinmetrics site (https://coinmarketcap.com/).

ID Name Description

AdrActCnt Addresses, active,
count

The sum count of unique addresses that were
active in the network (either as a recipient or
originator of a ledger change) that interval. All
parties in a ledger change action (recipients and
originators) are counted. Individual addresses
are not double-counted if previously active.

BlkCnt Block, count The sum count of blocks created that interval
that were included in the main (base) chain.

BlkSizeByte Block, size, bytes The sum of the size (in bytes) of all blocks
created that interval.

BlkSizeMeanByte Block, size, mean,
bytes

The mean size (in bytes) of all blocks created
that day.

BlkSizeMeanByte Block, size, mean,
bytes

The mean size (in bytes) of all blocks created
that day.

CapMVRVCur Capitalization,
MVRV, current
supply

The ratio of the sum USD value of the current
supply to the sum "realized" USD value of the
current supply.

CapMrktCurUSD Capitalization, mar-
ket, current supply,
USD

The sum USD value of the current supply. Also
referred to as network value or market capital-
ization.

Continues on the next page

35

https://coinmarketcap.com/


36 More on trading volume, realized volatility and Blockchain variables

ID Name Description

CapRealUSD Capitalization, real-
ized, USD

The sum USD value based on the USD closing
price on the day that a native unit last moved
(i.e., last transacted) for all native units.

DiffMean Difficulty, mean The mean difficulty of finding a hash that meets
the protocol-designated requirement (i.e., the
difficulty of finding a new block) that interval.
The requirement is unique to each applicable
cryptocurrency protocol. Difficulty is adjusted
periodically by the protocol as a function of
how much hashing power is being deployed by
miners.

FeeMeanNtv Fees, transaction,
mean, native units

The mean fee per transaction in native units
that interval.

FeeMeanUSD Fees, transaction,
mean, USD

The USD value of the mean fee per transaction
that interval.

FeeMedNtv Fees, transaction, me-
dian, native units

The median fee per transaction in native units
that interval.

FeeMedUSD Fees, transaction, me-
dian, USD

The USD value of the median fee per transac-
tion that interval.

FeeTotNtv Fees, total, native
units

The sum of all fees paid to miners that interval.
Fees do not include new issuance.

FeeTotUSD Fees, total, USD The sum USD value of all fees paid to miners
that interval. Fees do not include new issuance.

HashRate Hash rate, mean The mean rate at which miners are solving
hashes that interval. Hash rate is the speed
at which computations are being completed
across all miners in the network. The unit of
measurement varies depending on the protocol.

IssContNtv Issuance, continuous,
native units

The sum of new native units issued that inter-
val. Only those native units that are issued by a
protocol-mandated continuous emission sched-
ule are included (i.e., units manually released
from escrow or otherwise disbursed are not
included).

IssContPctAnn Issuance, continuous,
percent, annualized

The percentage of new native units (continu-
ous) issued over that interval, extrapolated to
one year (i.e., multiplied by 365), and divided
by the current supply at the end of that interval.
Also referred to as the annual inflation rate.

Continues on the next page
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ID Name Description

IssContUSD Issuance, continuous,
USD

The sum USD value of new native units issued
that interval. Only those native units that are is-
sued by a protocol-mandated continuous emis-
sion schedule are included (i.e., units manually
released from escrow or otherwise disbursed
are not included).

IssTotNtv Issuance, total, native
units

The sum of all new native units issued that
interval.

IssTotUSD Issuance, total, USD The sum USD value of all new native units
issued that interval.

NVTAdj NVT, adjusted The ratio of the network value (or market cap-
italization, current supply) divided by the ad-
justed transfer value. Also referred to as NVT.

NVTAdj90 NVT, adjusted, 90d
MA

The ratio of the network value (or market capi-
talization, current supply) to the 90-day mov-
ing average of the adjusted transfer value. Also
referred to as NVT.

PriceBTC Price, BTC The fixed closing price of the asset as of 00:00
UTC the following day (i.e., midnight UTC
of the current day) for end-of-day data or the
closest prior hour (nearest to that block) for
block-by-block data, denominated in BTC.

PriceUSD Price, USD The fixed closing price of the asset as of
00:00 UTC the following day (i.e., midnight
UTC of the current day) denominated in
USD. This price is generated by Coin Met-
rics’ fixing/reference rate service. Real-time
PriceUSD is the fixed closing price of the asset
as of the timestamp set by the block’s miner.

ROI1yr ROI, percent, 1yr The return on investment for the asset assum-
ing a purchase 12 months prior.

ROI30d ROI, percent, 30d The return on investment for the asset assum-
ing a purchase 30 days prior.

SplyCur Supply, current The sum of all native units ever created and
visible on the ledger (i.e., issued) at the end of
that interval. For account-based protocols, only
accounts with positive balances are counted.

Continues on the next page
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ID Name Description

SplyExpFut10yrCMBI Supply, future ex-
pected, next 10yr
(CMBI)

The sum of all native units counting current
supply and including all those expected to be
issued over the next 10 years from that inter-
val if the current known continuous issuance
schedule is followed. Future expected hard-
forks that will change the continuous issuance
are not considered until the day they are acti-
vated/enforced.

SplyFF Supply, free float Free float supply refers to the number of native
units of a crypto asset that are readily available
to trade in open markets (i.e. not restricted) at
the end of the time interval. It includes all na-
tive units visible on the ledger minus company,
foundation and founding team native units.

TxCnt Transactions, count The sum count of transactions that interval.
Transactions represent a bundle of intended
actions to alter the ledger initiated by a user
(human or machine). Transactions are counted
whether they execute or not and whether they
result in the transfer of native units or not (a
transaction can result in no, one, or many trans-
fers). Changes to the ledger mandated by the
protocol (and not by a user) or post-launch new
issuance issued by a founder or controlling en-
tity are not included here.

TxTfrValAdjNtv Transactions, trans-
fers, value, adjusted,
native units

The sum of native units transferred between
distinct addresses that interval removing noise
and certain artifacts.

TxTfrValAdjUSD Transactions, trans-
fers, value, adjusted,
USD

The USD value of the sum of native units trans-
ferred between distinct addresses that interval
removing noise and certain artifacts.

TxTfrValMeanNtv Transactions, trans-
fers, value, mean, na-
tive units

The mean count of native units transferred per
transaction (i.e., the mean "size" of a transac-
tion) between distinct addresses that interval.

TxTfrValMeanUSD Transactions, trans-
fers, value, mean,
USD

The sum USD value of native units transferred
divided by the count of transfers (i.e., the mean
"size" in USD of a transfer) between distinct
addresses that interval.

Continues on the next page
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ID Name Description

TxTfrValMedNtv Transactions, trans-
fers, value, median,
native units

The median count of native units transferred
per transfer (i.e., the median "size" of a trans-
fer) between distinct addresses that interval.

TxTfrValMedUSD Transactions, trans-
fers, value, median,
USD

The median USD value transferred per transfer
(i.e., the median "size" in USD of a transfer)
between distinct addresses that interval.

TxTfrValUSD Transactions, trans-
fers, value, USD

The sum USD value of all native units trans-
ferred (i.e., the aggregate size in USD of all
transfers) between distinct addresses that inter-
val.

VtyDayRet180d Volatility, daily re-
turns, 180d

The 180D volatility, measured as the standard
deviation of the natural log of daily returns
over the past 180 days.

VtyDayRet30d Volatility, daily re-
turns, 30d

The 30D volatility, measured as the standard
deviation of the natural log of daily returns
over the past 30 days.

VtyDayRet60d Volatility, daily re-
turns, 60d

The 60D volatility, measured as the standard
deviation of the natural log of daily returns
over the past 60 days.

TxTfrCnt Transactions, trans-
fers, count

The sum count of transfers that interval. Trans-
fers represent movements of native units from
one ledger entity to another distinct ledger en-
tity. Only transfers that are the result of a trans-
action and that have a positive (non-zero) value
are counted.
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Notes: The top figure represents BTC Trading Volume in the full sample period, while (a) concerns
the in-sample Period and (b) the out-of-sample period.

Fig. A.1 BTC Trading Volume

Fig. A.2 BTC Realized Volatility of the Bitstamp exchange
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Fig. A.3 Evolution of the 7 previously selected Blockchain’s variables
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Table A.2 Descriptive statistics of the 7 previously selected Blockchain’s variables

a) b) c) d) e) f) g)

Observations 2525 2525 2525 2525 2525 2525 2525
Mean 54.433 0.0003 1.6806 0.0212 150.97 15.389 0.0003
Median 48.609 0.0002 0.4235 0.0850 151.00 15.420 -0.0142
Std. Dev. 56.609 0.0004 4.4718 2.3932 16.609 2.5329 0.2972
Var. Coeff. 1.0400 1.2049 2.6608 112.89 0.1100 0.1646 1030.9
Minimum 0.0023 0.0265 0.0243 -30.419 80.000 9.1511 -1.3464
Maximum 534.85 0.0039 56.308 15.660 216.00 18.905 1.9368
Skewness 3.1421 3.4790 6.4458 -0.9104 0.0788 -0.2990 0.3651
Kurtosis 20.236 18.829 53.757 18.146 3.6997 1.8884 4.9923
Jarque-Bera 35410 31455 288530 24482 54.1258 167.62 473.71

Notes: Blockchain variables are here denoted as a) TxTfrValMedUSD; b) FeeMeanNtv; c)
FeeMeanUSD; d) NVTAdj90; e) BlkCnt; f) HashRate; g) TxTfrValAdjNtv.

Table A.3 Descriptive statistics of the 7 previously selected Blockchain’s variables for the in-sample
period

a) b) c) d) e) f) g)

Observations 1459 1459 1459 1459 1459 1459 1459
Mean 28.296 0.0004 1.2787 -0.0016 153.25 13.522 0.1513
Median 15.210 0.0394 0.1081 0.0643 152.00 13.531 0.0008
Std. Dev. 47.142 0.0004 4.6613 2.0629 16.908 1.6139 0.2666
Var. Coeff. 1.6660 1.0791 3.6452 25.487 0.1103 0.1194 322.75
Minimum 0.0023 0.0001 0.0243 -10.209 80.00 9.1511 -1.3464
Maximum 501.84 0.0039 56.308 15.660 216 16.564 1.9368
Skewness 5.3616 3.1699 7.3368 0.0219 0.1962 -0.3139 0.3801
Kurtosis 40.606 16.493 65.826 10.155 3.8115 2.6100 20.236
Jarque-Bera 92963 13511 253040 3111.8 49.4021 33.2016 596.83

Notes: Blockchain variables are here denoted as: a) TxTfrValMedUSD; b) FeeMeanNtv; c)
FeeMeanUSD; d) NVTAdj90; e) BlkCnt; f) HashRate; g) TxTfrValAdjNtv.
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Table A.4 Descriptive statistics of the 7 previously selected Blockchain’s variables for the out-of-
sample period

a) b) c) d) e) f) g)

Observations 1066 1066 1066 1066 1066 1066 1066
Mean 90.207 0.0002 2.2307 0.0524 147.84 17.944 -0.0004
Median 82.544 0.0001 0.9882 0.1591 149 17.879 -0.0135
Std. Dev. 48.326 0.0003 4.1380 2.7833 15.668 0.5758 0.3346
Var. Coeff. 0.5357 1.3561 1.8550 53.075 0.1060 0.0321 -746.82
Minimum 33.683 0.0000 0.1613 -30.419 92.000 16.435 -1.0441
Maximum 534.85 0.0021 35.268 11.801 196.00 18.9047 1.7386
Skewness 4.8616 4.3441 5.0328 -1.3994 -0.2102 -0.3175 0.3454
Kurtosis 34.347 24.512 31.420 19.387 3.1906 2.0935 4.0314
Jarque-Bera 47844 23908 40376 12276 9.4634 54.408 68.449

Notes: Blockchain variables are here denoted as: a) TxTfrValMedUSD; b) FeeMeanNtv; c)
FeeMeanUSD; d) NVTAdj90; e) BlkCnt; f) HashRate; g) TxTfrValAdjNtv.





Appendix B

More on forecasting models

Table B.1 Autocorrelation function for the Log Parkinson

LAG ACF PACF Q-stat.

1 0.6687*** 0.6687 *** 653.7 ***
2 0.5838 *** 0.2473 *** 1152 ***
3 0.5681 *** 0.2099 *** 1625 ***
4 0.5323 *** 0.1064 *** 2040 ***
5 0.4920 *** 0.0532 ** 2395 ***
6 0.4834 *** 0.0812 *** 2738 ***
7 0.4836 *** 0.0888 *** 3081 ***
8 0.4552 *** 0.0277 3385 ***
9 0.4298 *** 0.0132 3657 ***
10 0.4323 *** 0.0530 ** 3932 ***
11 0.4149 *** 0.0188 4185 ***
12 0.3879 *** -0.0037 4407 ***
13 0.3959 *** 0.0500 * 4638 ***
14 0.3988 *** 0.0446 * 4873 ***
15 0.4118 *** 0.0768 *** 5123 ***
16 0.3605 *** -0.0602 ** 5315 ***
17 0.3559 *** 0.0066 5502 ***
18 0.3383 *** -0.0199 5671 ***
19 0.3159 *** -0.0158 5819 ***
20 0.3207 *** 0.0292 5971 ***
21 0.3105 *** -0.0036 6114 ***

Notes: “***”, “**” and “*” indicate significance at the 1%, 5% and 10% levels, respectively. These p-
values were computed using standard error computed as 1/T 0.5, where T is the number of observations.
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Table B.2 Forecasting Performance of AR-X models

Model ME RMSE MAE MPE MAPE Theil’s U

A 0.0092 0.5668 0.4419 -2.6361 12.4090 0.8086
B 0.0095 0.5655 0.4412 -2.6501 12.395 0.8097
C 0.0098 0.5677 0.4439 -2.6220 12.460 0.8068
D 0.0099 0.5668 0.4423 -2.5786 12.375 0.8029
E -0.0349 0.5667 0.4455 -1.4195 12.346 0.8112
F 0.0277 0.5660 0.4392 -3.1197 12.388 0.8077
G 0.0056 0.5655 0.4405 -2.5228 12.352 0.8076
H 0.0103 0.5662 0.4406 -2.6404 12.354 0.7987
I 0.0065 0.5669 0.4422 -2.5595 12.408 0.8086
J -0.0113 0.5672 0.4442 -2.0789 12.404 0.8093
K 0.0092 0.5667 0.4428 -2.6283 12.427 0.8074
L 0.0101 0.5666 0.4432 -2.6395 12.446 0.8073
M 0.0236 0.5669 0.4414 -2.9877 12.429 0.8060
N 0.0098 0.5675 0.4437 -2.6102 12.443 0.8030
O 0.0076 0.5677 0.4442 -2.5574 12.460 0.8069
P -0.0104 0.5678 0.4459 -2.0705 12.448 0.8079
Q 0.0279 0.5647 0.4385 -3.1291 12.374 0.8090
R 0.0107 0.5645 0.4397 -2.6556 12.331 0.7977
S 0.0067 0.5655 0.4416 -2.5699 12.392 0.8096
T -0.0100 0.5658 0.4436 -2.1199 12.394 0.8101
U 0.0277 0.5655 0.4380 -3.0966 12.332 0.7983
V 0.0257 0.5661 0.4394 -3.0598 12.384 0.8077
W 0.0259 0.5673 0.4404 -3.0941 12.419 0.8102
X 0.0078 0.5663 0.4409 -2.5691 12.354 0.7988
Y -0.0109 0.5666 0.4430 -2.0669 12.350 0.7996
Z -0.0117 0.5673 0.4443 -2.0647 12.405 0.8093

AA 0.0239 0.5659 0.4410 -3.0038 12.421 0.8067
AB 0.0101 0.5662 0.4426 -2.6263 12.415 0.8018
AC 0.0079 0.5667 0.4436 -2.5732 12.446 0.8073
AD -0.0095 0.5668 0.4453 -2.1010 12.437 0.8080

ALL 0.0111 0.5674 0.4439 -2.6172 12.441 0.8082

SLCT 0.0132 0.5680 0.4446 -2.6842 12.477 0.8123

Notes: All AR-X models bellow include 7 lags of the dependent variable, the Parkinson estimator,
ln(σt). The exogenous variables considered in each model are listed bellow. Model A is the baseline
model that includes only the lags of the dependent variable.
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Model A: n.a.;

Model B: 2 lags of d_log_Vol;

Model C: 7 lags of the RVt ;

Model D: 1 lag of each of the 7 Blockchain variables;

Model E: 1 lag of TxTfrValMedUSD;

Model F: 1 lag of FeeMeanNtv;

Model G: 1 lag of FeeMeanUSD;

Model H: 1 lag of NVTAdj90;

Model I: 1 lag of BlkCnt;

Model J: 1 lag of HashRate;

Model K: 1 lag of TxTfrValAdjNtv;

Model L: 7 lags of the RVt and 2 lags of d_log_Vol;

Model M: 7 lags RVt and 1 lag of FeeMeanNtv;

Model N: 7 lags of the RVt and 1 lag of NVTAdj90;

Model O: 7 lags of the RVt and 1 lag of BlkCnt;

Model P: 7 lags of the RVt and 1 lag of HashRate;

Model Q: 2 lags of d_log_Vol and 1 lag of FeeMeanNtv;

Model R: 2 lags of d_log_Vol and 1 lag of NVTAdj90;

Model S: 2 lags of d_log_Vol and 1 lag of the BlkCnt;

Model T: 2 lags of d_log_Vol and 1 lag of HashRate;

Model U: 1 lag of FeeMeanNtv and NVTAdj90;

Model V: 1 lag of FeeMeanNtv and BlkCnt;

Model W: 1 lag of FeeMeanNtv and HashRate;

Model X: 1 lag of NVTAdj90 and BlkCnt;

Model Y: 1 lag of NVTAdj90 and HashRate;

Model Z: 1 lag of BlkCnt and HashRate;

Model AA: 7 lags of the RVt , 2 lags of d_log_Vol and 1 lag of FeeMeanNtv;

Model AB: 7 lags of the RVt , 2 lags of d_log_Vol and 1 lag of NVTAdj90;

Model AC: 7 lags of the RVt , 2 lags of d_log_Vol and 1 lag of BlkCnt;

Model AD: 7 lags of the RVt , 2 lags of d_log_Vol and 1 lag of HashRate;

Model ALL: 7 lags of the RVt variable, 2 lags of d_log_Vol and 1 lag of each of the 7 Blockchain
variables;;

Model SLCT: Model selected from Model ALL by applying sequentially the rule of omitting
one-by-one the variables with a p-value higher than 10%.
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Table B.3 Forecasting Performance of GARCH(1,1)-X models

Model ME RMSE MAE MPE MAPE Theil’s U

A -0.5506 0.7990 0.6659 0.1197 0.1647 1.0958
B -0.5554 0.8035 0.6699 0.1209 0.1659 1.1024
C -0.5114 0.7716 0.6409 0.1091 0.1591 1.0580
D -0.6344 0.8631 0.7273 0.1409 0.1782 1.1715
E -0.5368 0.7888 0.6564 0.1162 0.1627 1.0829
F -0.5819 0.8192 0.6863 0.1279 0.1690 1.1188
G -0.5447 0.7959 0.6633 0.1182 0.1642 1.0914
H -0.5373 0.7916 0.6585 0.1160 0.1631 1.0848
I -0.5401 0.7953 0.6607 0.1170 0.1639 1.0915
J -0.5380 0.7896 0.6573 0.1164 0.1630 1.0838
K -0.5010 0.7649 0.6340 0.1065 0.1576 1.0495
L -0.4962 0.7633 0.6329 0.1051 0.1574 1.0456
M -0.5094 0.7691 0.6397 0.10867 0.1589 1.0540
N -0.5384 0.7943 0.6607 0.1157 0.1634 1.0828
O -0.5536 0.8024 0.6688 0.1205 0.1657 1.1018
P -0.5410 0.8005 0.6658 0.1168 0.1652 1.0967
Q -0.5546 0.8029 0.6697 0.1208 0.1658 1.1015
R -0.5446 0.8005 0.6643 0.1181 0.1649 1.0989
S -0.5316 0.7861 0.6541 0.1149 0.1622 1.0788
T -0.5209 0.7807 0.6477 0.1118 0.1608 1.0709
U -0.5030 0.7817 0.6447 0.1070 0.1606 1.0722
V -0.5260 0.7856 0.6532 0.1130 0.1620 1.0762
W -0.5454 0.8003 0.6657 0.1183 0.16501 1.0967
X -0.5491 0.8047 0.6692 0.1188 0.1656 1.0998
Y -0.5346 0.7878 0.6552 0.1156 0.1626 1.0820
Z -0.5083 0.7737 0.6414 0.1082 0.1595 1.0600

AA -0.5337 0.7852 0.6544 0.1153 0.1623 1.0768

ALL -0.5348 0.8018 0.6637 0.1145 0.1644 1.0921

Notes: This table only presents successful estimations. Although other combinations of exogenous
variables are possible, some of these combinations are not presented because the corresponding
GARCH(1,1) did not converge at some point.The exogenous variables considered in each successful
model are listed bellow. Notice that the variance equation only consider the first lag of these variables.
Model A is the baseline model corresponding to a GARCH(1,1).

Model A: n.a.;
Model B: d_log_Vol;
Model C: RVt ;
Model D:TxTfrValMedUSD;
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Model E: FeeMeanNtv;
Model F: FeeMeanUSD;
Model G: NVTAdj90;
Model H: BlkCnt;
Model I: HashRate;
Model J: d_log_Vol and RVt ;
Model K: RVt and FeeMeanNtv;
Model L: RVt and NVTAdj90;
Model M: RVt and BlkCnt;
Model N: RVt and HashRate;
Model O: d_log_Vol and FeeMeanNtv;
Model P: d_log_Vol and NVTAdj90;
Model Q: d_log_Vol and BlkCnt;
Model R: d_log_Vol and HashRate;
Model S: FeeMeanNtv and NVTAdj90;
Model T: FeeMeanNtv and BlkCnt;
Model U: FeeMeanNtv and HashRate;
Model V: NVTAdj90 and BlkCnt;
Model W: NVTAdj90 and HashRate;
Model X: BlkCnt and HashRate;
Model Y: d_log_Vol and RVt and FeeMeanNtv as;
Model Z: d_log_Vol, RVt and NVTAdj90 ;
Model AA: d_log_Vol, RVt and BlkCnt ;
Model ALL: d_log_Vol, RVt and 4 Blockchain variables (FeeMeanNtv, NVTAdj90, BlkCnt and

HashRate).
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