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Abstract 
Detection of crop diseases is imperative for agriculture to 

be sustainable. Automated crop disease detection is a 

major issue in the current agricultural industry due to its 

cluttered background. Internet of Things (IoT) has gained 

immense interest in the past decade, as it accumulates a 

high level of contextual information to identify crop dis- 

eases. This study paper presents a novel method based on 

Taylor‐Water Wave Optimization‐based Generative Ad- 

versarial Network (Taylor‐WWO‐based GAN) to identify 

diseases in the agricultural industry. In this method, the 

IoT nodes sense the plant leaves, and the sensed data are 

transmitted  to  the  Base  Station  (BS)  using  Fractional 

Gravitational  Gray  Wolf  Optimization.  This  technique 

selects  the  optimal  path  for  data  transmission.  After 

performing IoT routing, crop diseases are recognized at 

the BS. For detecting crop disease, the input image ac- 

quired from the IoT routing phase is then forwarded to 

the  next  step,  that  is,  preprocessing,  to  improve  the 

quality of the image for further processing. Then, Seg- 

mentation Network (SegNet) is adapted to segment the 

images, and extraction of significant features is performed 

using the acquired segments. The extracted features are 

adapted by the GAN, which is trained by Taylor‐WWO. 

The  proposed  Taylor‐WWO  is  newly  devised  by  in- 

tegrating the Taylor series and WWO algorithms. The 
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proposed  Taylor‐WWO‐based  GAN  showed  improved 

performance with a maximum accuracy of 91.6%, max- 

imum sensitivity of 89.3%, and maximum specificity of 
92.3% in comparison with existing methods. 
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1    |   I N T R O D U C T I O N  

 
Artificial intelligence (AI), driven by machine learning (ML) and deep learning, is employed in 

many applications, including the detection of crop diseases. The agricultural sector is now 

adopting technological advancement through the Internet of Things (IoT). Cybernetics is a 

transdisciplinary approach that is applied in complex systems. Cybernetics, a term coined by 

Novikov,1 details the history of control methodology logically. Cybernetics deals with models in 

which  a  monitor  compares  and  contrasts  the  present  happenings  at  different  sampling 

times with that of the expected happenings at the same timings. By tracking this behavior, a 

controller can modify the behavioral patterns of the system accordingly. It is important for 

cybernetics to operate with core functionalities, such as feedback to understand complex sys- 

tems. This becomes crucial so that the systems can undergo modifications by themselves based 

on the environmental response. Jimeneza et al.2 discussed the comparison of multi‐agents and 

intelligent agent systems in agricultural applications. Figure 1 exemplifies the conceptualiza- 

tion of cybernetics approaches in Intelligent Systems applications. 
 
 

1.1   |   Significance of modernization in  agriculture  
 

Trends across the globe are creating an impact on issues, such as poverty, food security, and the 

overall sustainability of food and agricultural systems. About 58% of the Indian population6 relies on 

agriculture as the only source of livelihood.7 The ministries under the Indian Government, such as 

the Department of Commerce and the Ministry of Commerce and Industry, have fixed a target for the 

agricultural sector exports to 60 Billion USD by 2022, as per India Brand Equity Foundation (IBEF). 

According to the digiteum reports8,9  and survey,10  the market for global smart agriculture was 

estimated at a value of 5098 million USD in the year 2016, and is forecasted to increase up to 15,944 

million USD by the end of 2025. This infers that the growth of Compound Annual Growth Rate 

(CAGR) is more than 13% between 2017 and 2025.8–10 Figure 2 displays the global population growth. 
The economy of an agrarian nation mostly relies on its agricultural productivity. This 

means that there is a pressing need to understand and analyze disease detection in plants, 

which is imperative for the growth of agricultural products.12  The occurrence of diseases is 

quite natural, and proper care is needed. If proper care is void for plants, it leads to significant 

and devastating effects on plants, thereby affecting the plant's production and quality. In recent 

years, the need for automated techniques to detect plant diseases has increased due to growing 

interest among researchers in agriculture. 
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F I G U R E  1  Conceptualization of Cybernetics approaches in Intelligent Systems1,3–5 [Color figure can be 
viewed at wileyonlinelibrary.com] 

 

 
Automatic plant disease detection techniques are important as they reduce the need for 

large‐scale monitoring of plant forms and detect diseases at the very beginning when symptoms 

arise. In this regard, an image segmentation algorithm was developed to detect diseases in plant 

leaves.13  The algorithm is an extension of a genetic algorithm wherein the features included 

were disease detection in leaf, remote monitoring based on server, temperature sensing, sensing 

of humidity, and moisture sensing. In this paper, sensor‐based networks are utilized to measure 

parameters, such as humidity, moisture, and temperature to automate the process instead of 

manual checking. Controller‐type sensors are also used to control the farm sensors. The camera 

interfacing technique is used to detect leaf diseases. Wireless Fidelity (WIFI) servers are es- 

tablished at the farmer's receiving end. Sensors detect the status of the farm, leaf diseases' 

symptoms, and other environmental factors and disseminate information to the WIFI server, 

which facilitates the farmers to act accordingly.13–18 
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F I G U R E  2  Estimated global population growth11 [Color figure can be viewed at wileyonlinelibrary.com] 
 
 

IoT is a promising technology that has gained immense interest amongst researchers due to 

its ability to perform distributed monitoring in different applications.19  According to Khatua 

et al.,20  IoT has gained more attention these days, thanks to its ability to collect high‐ level 

contextual information for the sustainability application. The high‐level features effectually 

detect crop diseases in the wild.21 With this intellect, the number of sensors and devices used in 

agricultural domains increased drastically.22  The materialization of IoT and cloud models is 

preferred for the overall technological process to decide on agricultural data by the sensors with 

smart farming.23 
Both sensors and smart farming techniques leverage information and data technologies to 

conduct a comprehensive analysis of the farming model. These techniques consider certain factors 

that involve historical data points before acting on certain functions.24,25  There exist significant 

studies and different endeavors to adapt novel IoT technologies to agricultural sectors.15,26  The 

determination of crop disease is performed with an IoT‐based user‐friendly system. IoT brings 

changes in agricultural industries and enables the farmers to face the issues.20  The IoT system 

solves these problems in a significant manner and maximizes the amount of crop production.15 

Figure 3 shows the processes involved in IoT for smart agriculture. 
The existing plant disease detection methodologies employed in crop disease detection 

are discussed herewith their benefits and limitations.  A  deep learning method,  that is, 

MultiContext Fusion Network (MCFN) was developed to determine the diseases in crops 

using an IoT network.21  However, the method failed to use fine‐grained identification to 

detect crop disease. A deep learning method utilized certain factors involving environmental 

factors and soil fertility to perform crop disease identification.27  This method effectively 

handled the soil part using sensors and trained the Convolution Neural Networks (CNN) 

model. The method improved the overall system's efficiency though it failed to involve  
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F I G U R E  3  IoT framework for smart agriculture and crop disease detection. IoT, Internet of Things [Color 
figure can be viewed at wileyonlinelibrary.com] 

 
thermal cameras that can sense and predict leaves, whether infected with disease or not. 

Alonso et al.24  devised a method, using an agro‐ industry platform and Global Edge Com- 

puting Architecture, to exchange the IoT environmental data to a remote cloud. The goal of 

the method was to monitor, trace, and optimize the resource to process the chain value in 

assorted dairy circumstances. However, the method failed to equip consensus algorithms in 

the detection of possible health issues. 
An IoT‐based monitoring model for precise agriculture predicts the endemic disease.19 

This  monitoring  system  of  agriculture  offered  monitoring  of  the  environment  which 

maintained a  growing atmosphere of crops in optimum grade and predicted the circum- 

stances which result in the outbreak of the disease in an early manner and crop disease 

detection. Thus, the agricultural monitoring system could store information regarding the 

environment and soil accumulated from the wireless sensor network. A deep convolutional 

neural network to categorize rice plants based on the health status of plants diagnosed using 

images.28 Here, a three‐class classifier was utilized that segregated the status of plant disease 

as  normal,  snail‐ infested  plants,  or  unhealthy  plants  using  the AlexNet  deep  network. 

Though the method offered effective performance, it failed to include Leaf Blythe and other 

rice abnormalities. 
A video detection model to identify plant diseases was devised for real‐time crop disease and 

pests.29 Initially, the video was transformed into still frames. Then the video was fed into a still‐ 

image detector for diagnosis. At last, the frames were synthesized in videos. With a still‐image 

detector, a faster‐RCNN was utilized to detect the blurred videos. Moreover, video‐based eva- 

luation measures using ML classifiers were deployed to detect video quality. The method was 

applied in other crop diseases and pests. An integrated technique to detect the disease on 

leaves, that is, Rice Leaf Blast (RLB) was developed based on the image processing method.30 

This method contains a few stages, such as image segmentation, image preprocessing, and 

image analysis in which the Hue Saturation Value (HSV) color space was utilized. An image 
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segmentation process was applied to extract the interesting regions, and the patterns were 

recognized using the MultiLevel Threshold approach. Hence, the severity of RLB disease was 

classified into three classes: the spreading stage, the infection stage, and the worst stage. An 

automated diagnosis of crop disease using a prototype model was devised to detect the paddy 

disease.31 Here, image recognition was performed to detect the disease and improve the image 

quality using Twin Support Vector Machine (TSVM) to classify the type of disease in paddy. 

The method contained four phases: the acquisition of images, preprocessing, image analysis, 

and classification of diseases in paddy crops. The method attained improved recognition results 

though it failed to detect other types of diseases. 
A  Multidimensional Feature Compensation  Residual  Neural Network  (MDFC–ResNet) 

model was developed to diagnose crop fine‐grained disease.32  This model transmits the diag- 

nostic results to the farmers after the prediction of crop diseases. Also, this model is highly 

informative in actual agricultural production activities. A disease detection model was devel- 

oped for plants that function automatically in the IoT environment.33 In this system, the plant 

leaf images are captured by placing the nodes in the simulation environment. Aftermath, 

preprocessing is done for the images captured with the help of a median filter followed by the 

execution of the segmentation process. Then, the pixel level and segment level features are 

extracted. Finally, Sine Cosine Algorithm‐based rider neural network (SCA‐based RideNN) 

classifies the input to diagnose the disease. This model utilizes minimum resources to identify 

the plants quickly affected with the disease. However, this method has a disadvantage whereby 

it fails to identify the sort of plant disease. 
Water Wave Optimization (WWO) algorithm was developed to overcome the challenges 

involved in global optimization.4 Having been designed as a simple algorithmic framework, 

WWO can be implemented with ease. With few control parameters in place, WWO can be 

successfully incorporated with a small‐sized population too. The algorithmic framework of 

WWO is simple and easy to implement and only requires a small‐size population and few 

control parameters. An optimization algorithm named Fractional Gravitational Gray Wolf 

Optimization (FGGWO) was introduced for energy‐efficient routing.34  The FGGWO is de- 

veloped  by  integrating  the  Gray  Wolf  Optimization  (GWO)  and  fuzzy  gravitational 

search algorithm (FGSA). In the case of energy and alive nodes, the FGGWO algorithm 

exhibits excellent performance. 
The majority of the imaging methods are devised based on fluorescence and hyperspectral, 

multispectral, and digital images.35 In the literary works, the majority of the methods are devised 

for rice crop disease detection, which includes fuzzy logic,36 remote sensing, and SVM.15 In these 

methods, digital images are usually captured with the help of digital cameras equipped with high 

resolution. Some of the methods depend on deep learning,37 particularly CNN, to address the issues 

of  crop  disease  detection.  This  scenario  proved  to  exhibit  different  outperforming  automatic 

identification fields, like, Natural Language Processing and visual recognition.21,32 Rice disease can 

affect different parts of the plants. The major infected parts of the plants are the neck node, panicle, 

and leaf blade.23,38  From the literary works, the diseases are distinguished. The most number of 

breaches occurred in the domain of computer vision when DCNN was selected to win the rivalry of 

Image Net Large‐Scale Visual Recognition Challenge (ILSVRC).21,39  Deep learning seems to be a 

promising method for tasks related to identification.40 

The efficiency of CNN is high when it comes to dealing with generic object recognition 

tasks. This is possible with the help of the deep learning technique, an add‐on feature that can 

identify crop disease since this task suffers from unconvinced performance due to the impact of 

real‐world scenarios.41  Though different methods are available, for instance, deep learning 
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mechanisms to identify different crop diseases, like, tomato plant disease, banana leaf disease, 

and rice disease, researchers turned their spotlight towards the detection of multiclass crop 

disease concurrently in wild surroundings.21 
 
 

1.2   |   Motivation  
 

The Indian economy is dependent on agricultural productivity. Today's advanced technologies 

enable human society to be self‐reliant and produce the required food to meet the ever‐growing 

food demands. Nevertheless, food security remains endangered by various factors, such as 

climate change, crop diseases, and so on. Crop disease poses a major threat to food security and 

the livelihood of small‐scale farmers who rely completely on farming practices for their life. So 

it becomes inevitable to identify such diseases and curb their spread at very early stages itself. 

However, the lack of appropriate infrastructure for proper diagnosis remains a hindrance in 

this regard. To detect a crop disease in the initial stage, the utilization of automatic disease 

detection methods is favorable. An assortment of efforts has been taken to ensure there is no 

crop loss incurred due to diseases. 
ML techniques have great potential in terms of increased crop disease recognition rate and 

accuracy. Accordingly, this paper aims to devise a method using the ML model for detecting 

crop disease via IoT. Recently, the deep learning‐based ML model plays a major role in crop 

disease detection. Even though different deep learning models, such as Dilated Residual Net- 

works (DRN), Deep Long Short‐term Memory (LSTM), and Deep Belief Network (DBN) are 

available  for  the  various  disease  classification  problems,  Generative  Adversarial  Network 

(GAN) network played a major role in the plant health monitoring. However, the major issue 

faced by the GAN network is the training algorithm, which needs to be selected depending on 

the image characteristics so that the training performance in terms of the loss function can be 

improved through the improvement of faster convergence. 
Hence, an optimization algorithm named Taylor‐WWO has been developed to train the 

GAN. In this study, the crop disease prediction is done by utilizing GAN, which generates 

samples in parallel. This results in a considerable speed‐up in sampling. Also, GAN is trained 

by the proposed Taylor‐WWO algorithm, which inherits the advantages of both the Taylor 

series and WWO. Hence, the proposed Taylor‐WWO algorithm improves the overall classifi- 

cation accuracy of GAN to predict crop diseases. 
 
 

1.3   |   Contribution  
 

The main contribution of this paper is the Taylor‐WWO‐based GAN. The crop disease detection is 

performed by the proposed Taylor‐WWO‐based GAN, in which GAN is trained by the Taylor‐ 

WWO, which is made by integrating the Taylor series and WWO. 
 
 

2    |   IO T  S Y S T E M  M O D E L  
 

IoT comprises various types of objects in which smart devices are also included. There is an 

association that exists among these smart devices, which tend to exchange data collected 

throughout the network with each other. 
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F I G U R E  4  System model of IoT network. IoT, Internet of Things [Color figure can be viewed at 
wileyonlinelibrary.com] 

 
The association of numerous smart devices in the IoT is based on the resources that 

possess processing and communication potentials to exchange data. Figure 4 represents the 

components of a typical IoT network and how the system model is a part of it. Here, the 

network contains numerous nodes which disseminate the data packets to Base Station (BS) 

by leveraging efficient paths. IoT is spotted in several low‐power‐consuming networking 

protocols, for instance, Zwave, 6LoWPAN, and ZigBee. The above‐mentioned protocols are 

developed and focus on specific domains. Since the smart objects remain resource‐  and 

energy‐constrained, it becomes mandatory for the gateway to be receptive for administration 

purposes. 
Here, an IoT network is assumed in which the number of nodes is designated as g, that is, 

G = {G1, G2, …, Gb, …, Gg} and it is encompassed within the coverage area, F . Each IoT node b 

acquires information related to plant leaves. IoT is essential to enhance production in the agri- 

cultural domain, as the IoT nodes can be used for monitoring soil temperature and acidity 

variables in addition to agricultural variables. Moreover, IoT reinforces the level of productivity, 

reduces physical work and time, and assists in making the farming procedure a more effective one. 
 
 

3   |   PROPOSED  TAYLOR ‐WWO ‐  BASED  GAN  FOR  CROP 

D ISEASE  D E T EC TIO N  
 

This section explains the proposed Taylor‐WWO‐based GAN for detecting crop diseases. The 

phases involved are the IoT simulation phase, IoT routing phase, and IoT BS phase. Initially, 

the IoT nodes are subjected to IoT routing. In this phase, IoT routing is carried out based on 

FGGWO. Once the IoT routing is performed, the crop disease is identified at the IoT BS. The 

steps followed in the IoT BS are preprocessing, segmentation, feature extraction, and disease 

detection. The input image acquired from the IoT routing phase is then sent to the next step, 

that is, preprocessing to enhance the quality of the image for further processing. After pre- 

processing, segmentation is carried out based on Segmentation Network (SegNet), and in this 

process, the images are segmented. Then, the feature extraction is performed using texture and 

statistical features to extract the suitable features for better detection. Finally, the extracted 

features are utilized, wherein disease detection is carried out using GAN, trained by the pro- 

posed optimization algorithm, that is, Taylor‐WWO. The proposed Taylor‐WWO is a novel 
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design created by integrating the Taylor series and WWO. Figure 5 displays the crop disease 

detection model with the proposed Taylor‐WWO‐based GAN using an IoT network. 
Assume a plant disease data set B with c number of images and is expressed as 

 
B = {N1, N2, …, Nd, …, Nc}, (1) 

 
where Nd  signifies dth input image, and c indicates total images. 

Consider that bth IoT node contains the information related to the plant subjected to the 

routing phase. During this phase, the plant information is transmitted to BS to find the best 

path using the FGGWO algorithm. A brief description of routing and crop disease detection is 

given in the subsection below. 
 
 

3.1   |   Routing of sensed information to BS using FG G WO  
 

The next phase is routing, wherein the sensed information is transmitted to BS by choosing the 

best path using the FGGWO 34  algorithm. Thus, data transmission is performed using the 

FGGWO algorithm, a combination of GWO and FGSA, to identify the best paths. GWO al- 

gorithm works with gray wolves hunting behavior concepts.41–45 GWO has three major phases: 

the approaching phase, the hunting phase, and the attacking phase. The search agent's position 

is generated after the search agents' positions are updated. G WO has a set of four group 

functions, namely, alpha, beta, delta, and omega. Here, alpha, beta, and delta are deemed to 

be the fittest solutions. The positions of the search agents are updated by adding the FGSA. On 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F I G U R E  5  Taylor‐WWO‐based GAN architecture proposed in this study for crop disease detection using 
IoT network. GAN, Generative Adversarial Network; GLCM, gray‐level co‐occurrence matrix; IoT, Internet of 

Things [Color figure can be viewed at wileyonlinelibrary.com] 
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the basis of FGGWO, the best path is chosen for transmitting the information to the BS. The 

combined benefits of both the techniques offer numerous paths for transmission using con- 

vergence and the capability to function with constraint issues. Here, the update is performed in 

such a way that the term is added to the GWO algorithm, wherein the added term is based on 

FGSA. The obtained update equation of FGGWO is expressed as 
 
 

D (k + 1) = 
D1 + D2 + D3 + D4 

4 

 
, 

 
(2) 

 
where D1, D2, D3 denote the positions of gray wolves and D4 indicates the position of FGSA at 

time k. The representation of each gray wolf position is given as follows. 
 

D1 = Dα  − I1 (Mα), (3) 
 

D 2 = D β  −  I (M β), (4) 
 

D3 = Dδ  − I1 (Mδ), (5) 

 
where D α, D β, and D δ   represent the fittest solution, M α   indicates the distance that exists 

between agent α  and the evaluated position, M β  indicates the distance between evaluated 

position and the agent β , and M δ  indicates the distance that exists between agent δ  and the 

estimated position, and D4  represents the position of FGSA at the time k and is expressed as 

follows. 
 

D4 = γC ij (k) + K i (k + 1) +1 
2 

i 
γC (k − 1), 

j 

 
(6) 

 
where C i (k) represents the position of an agent i at jth dimension in kth time, whereas the 

j 
agent i's previous position at jth dimension in (k − 1)th time is denoted by C i (k − 1). Here, 

j 
K i (k + 1) represents velocity at (k + 1)th time, while γ indicates the real number in the range 

of 0–1. Thus, the information of plant data obtained from the IoT nodes is given to BS, wherein 

crop disease detection is done. The steps followed in crop disease detection are described below. 
 
 

3.2   |   Detection of crop disease at BS  
 

The crop disease detected from the agricultural field is exchanged to BS followed by the processes, 

such as preprocessing, segmentation, and feature extraction. Here, the segmentation is performed 

using SegNet architecture. The obtained segments undergo significant feature extraction for diag- 

nosing the crop disease. Finally, crop disease detection is performed using GAN that was trained 

earlier by the Taylor‐WWO algorithm proposed in this study. A brief illustration of each process in 

the detection of plant disease is discussed in the upcoming sections. 
 
 

3.2.1   |   Preprocessing 
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The preprocessing step is executed to accelerate smooth processing with input plant images. 

Here, preprocessing is a crucial step in image processing since it makes the images appropriate 
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for disease detection in crops. In addition, during the preprocessing step, the noise and artifacts 

in the image are removed. This characteristic is termed as an image enhancement model 

since it can improve the image contrast for the detection of plant diseases. After the images are 

preprocessed, it is then subjected to segmentation concurrently to extract significant features, 

which are apposite for plant disease detection. 
 
 

3.2.2   |   Preprocessed image segmentation for relevant feature extraction 
 

The image obtained after preprocessing is then segmented, for which SegNet46 is adapted to 

provide high dimensional segmentation of data. The image that underwent preprocessing 

comprises various segments,  with each one indicating the individual regions. In‐plant 

disease detection strategy, SegNet is adapted to detect the diseased regions considering each 

segment. Here, the procedure of segmentation for grouping the images, using SegNet, is 

discussed. Moreover,  the decision is taken for each pixel contained in the image.  The 

semantic segmentation technique analyses the images at the pixel level. Furthermore, the 

model categorizes each pixel based on a predetermined class. SegNet is comprised of an 

encoder and decoder with a pixelwise layer. Hence, SegNet generates the segments of the 

preprocessed input image. 
Consider the segments generated from the image, which are expressed as 

 
S = {s1, s2, …, se, …, sf }, (7) 

 
where f indicates the total segments present in the image, and se is the eth segment of the input 
image 

Figure 6  shows the structural design of SegNet46  for image segmentation.  Here, the 

encoder is comprised of convolutional layers to perform image segmentation. Hence, the 

process of training is started from weights that are already trained for classification using 

large  data  sets.  Each  encoder  is  comprised  of  the  corresponding  decoder  layer  for 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F I G U R E  6  SegNet for image segmentation. ReLU, Rectified Linear Nonlinearity; SegNet, Segmentation 
Network [Color figure can be viewed at wileyonlinelibrary.com] 
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reconstruction.  The  output produced b y  the decoder  is then provided to a  multiclass 

softmax classifier to generate the probabilities of class for all the pixels. To produce feature 

maps set, it becomes a must for every encoder to have convolution and a filter bank. Then, 

an elementwise Rectified Linear Nonlinearity (ReLU) is adapted while the resulting output 

is then subsampled. ReLU is utilized to ensure efficiency and rapid connotation of ReLU 

layer work when a huge network is maintained. In addition, the pool layers minimize the 

complexity, and there is no weight or bias to train. This is because it processes the inputs in 

the integration of local regions in the filter. Then, a suitable decoder is adapted to up‐  

sample the input feature maps along with feature maps and learned max‐pooling indices. 

After this, the feature maps are convolved using a trainable decoder filter bank to produce 

dense feature maps. The output, generated by the final decoder, is then subjected to a soft‐  

max classifier that can be trained. The soft‐max classifier segregates every pixel in a so- 

vereign manner. The output generated by the soft‐max classifier is L , where L indicates 

the count of classes. The forecasted segmentation aligns with the class, and it generates the 

maximal probability in each pixel. Hence, the SegNet is held accountable for producing the 

segments. SegNet is effectual as it can store the max‐pooling indices of feature maps and 

use it on the decoder to achieve optimal concert. 
 
 

3.2.3   |   Extraction of features using statistical and texture features 
 

After obtaining the segments, the features are extracted using every segment present in the 

image that underwent preprocessing. The extraction of features certifies effectual plant disease 

detection in which gray‐level co‐occurrence matrix (GLCM) features, statistical and texture 

features are utilized. In case of extraction of the features, every segment is made use of, such 

that the accuracy in detecting the plant disease gets increased. The features extracted from the 

segments include GLCM features, texture features, such as Local Gradient Pattern (LGP), and 

statistical features, which are explained below: 
 

(a)  Mean: This value is determined by calculating average pixels present in the image and is 
formulated as given herewith. 

 
 

T1 
 
=  

1 
d (Sf ) 

 
×  

|d (Sf )| 
∑  
f =1 

 
d (Sf ), 

 
(8) 

 
where the total number of segments is denoted by f , the pixel values of each segment is 

denoted by d (S f ), and  the whole  set of pixels available in the segment  is denoted 

by |d (Sf )|. 
(b)  Variance: Variance feature T2  is computed based on the mean value and is formulated as 

follows: 
 

|d (Sf )| 
 
 

T2 
 
=  

∑  |S f  −  T1| 
f =1 

d (Sf ) 

 
. 

 
(9) 
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(c)  Standard deviation: It is a square root of the variance and is symbolized as T3. 
(d)  Skewness: Skewness T4 implies that it illustrates object shape using a numerical value. 
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(e)  Kurtosis: Kurtosis T5 indicates evenness which describes peak sharpness. Kurtosis indicates 

the relative peakedness of probability distribution. 
(f)  Entropy: Entropy47  is a standard measure that is utilized to discover uncertainty in any 

data. This measure can be used to maximize mutual information in several functions. The 

ample accessibility of variations in entropy makes it the right choice for a specific opera- 

tion. Hence, the entropy of the image is utilized to target the difference that exists between 

neighbor pixels or pixel groups. In addition, entropy is defined as the corresponding in- 

tensity level, which the individual pixels can acclimatize. It is possible to make use of the 

entropy of image pixels in analytical quantities to compute image details. It offers a better 

comparison among the details of the image. Hence, entropy is evaluated to obtain the 

probability and is represented as flows. 
 

T6 = −Q log(Q), (10) 

 
where Q represents the probability distribution of image pixels. 

(g)  LGP: LGP48 adapts the value of gradient in eight pixels and is adapted in the current study. 

The center pixel and gradient values are evaluated using absolute difference, center pixel 

intensity, and neighboring pixel intensity. The threshold is evaluated as an average of 

gradient values of the neighboring pixels. Here, the kernel is employed to evaluate the 

neighbor pixels for the center pixel. After designating the value of a neighboring pixel to 

be one, the value of the gradient pixel becomes higher than the threshold or otherwise, the 

value is zero. LGP operator is expressed as 
 

β−1 
q,l 

T 
7 =  

ul,vl 
LGP 

δ,α =  ∑η [¯μn − μ¯*] × 2n, (11) 

 
 

η (s) = 

n=0 
⎧ 
⎨0,  s < 0, 
⎩ 

1,  otherwise, 

 
 
(12) 

 
where μ* represents the average of gradient values and μ¯n  signifies the value of gradient 

among center pixel (λ*) located at (ul, vl) and its neighboring pixels (λ) and is expressed as 
 

μ¯  = |λ − λ*| . 
n 

(13) 

 
LGP uses a locally adapted threshold λ* to generate codes, by initiating the threshold with 

an absolute intensity difference. LGP produces invariant patterns with gradient differences, 

and it does not get influenced by variations of local color. The size of color histograms is 
expressed as [3 × γ] where ‘γ’ represents bins. 

(h)  GLCM features: GLCM45 indicates a second‐order efficient statistical feature and is devised 

by distinguishing the gray‐level values for two pixels, using a described spatial location. 

The combination frequencies of occurrences are evaluated for each gray‐level value. GLCM 

is a two‐dimensional array that considers the explicit pixel position based on other pixels. 
 
 

T8 = P (h1, h2, …, ht ) = 
Am (h1, h2, …, ht ) 

Nh−1 Nh−1 
∑  ∑  Am 
(h1, h2, …, ht ) 

z1′ z2 

 
, 



16 
 

 
(14) 
 

where Nh denotes the total number of gray levels in the image, based on tth‐order GLCM. 
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3.2.4   |   Construction of feature vector 

 
In Equation (15), a set of features is revealed that include GLCM, statistical features, and 

texture features. The feature vector is a collection of features, which are extracted from the 

input data. It is a one‐dimensional matrix used to describe features of the input data. The 

feature vector is formed based on the features, which are useful for the application at hand. 

Selecting the key features with high predictive value improves the performance of the learning 

algorithm by enhancing the classification accuracy. Hence, the features acquired from every 

segment are represented as 
 

T = {T1, T2, T3, T4, T5, T6, T7, T8}, (15) 

 
where T  represents the feature vector obtained with each segment, T1  indicates the mean, 

T2   indicates  the  variance, T3   indicates  the  standard  deviation, T4   indicates  the  Skewness, 

T5  indicates the kurtosis, T6  represents the entropy, T7  signifies the LGP, and T8  denotes the 

GLCM features. 
Feature vector T is then fed to GAN, which categorizes the input images based on features 

provided earlier, after which the class label is derived. The plant is segregated by the classifier 

as either healthy one or infected, equivalent to the input image. 
 
 

3.2.5   |   Detection of crop disease using the proposed 

Taylor‐WWO‐based GAN 
 

GAN is a class of AI learning algorithms, which is utilized in unsupervised ML. GAN consists 

of two neural networks, namely, a generative model and a discriminative model. The internal 

parameters of a model play a major role in training a model and producing accurate results. 

This is a reason to use different optimization algorithms to update and calculate appropriate 

and optimum values of model parameters that influence the learning process and the output of 

a model. Optimization algorithms are used to train and compile the model of the network. The 

main purpose of the optimizer is to adjust the weights to minimize errors. Hence, to build 

efficient and effective models the key is to choose the most appropriate optimization algorithm. 

Figure 7 describes the workflow of Taylor‐WWO‐based GAN to detect crop diseases. 
Here, the disease is detected using the feature vector obtained earlier. The features extracted 

in the steps discussed earlier are fed into classification with GAN,49,50  and the features are 

trained with the proposed Taylor‐WWO, a combination of Taylor series51  and WWO.52  The 

purpose  of  the  proposed  Taylor‐WWO‐based  GAN  is  to  detect  plant  diseases  based  on 

the extracted features. Taylor series51 elaborates the functions of complicated variables and is 

an extension of a function in an infinite sum of terms. It is a powerful tool, and assists in 

computing integrals and infinite sums by detecting the Taylor series. In addition, the Taylor 

series is a one‐step procedure that has the potential to handle high‐order terms. Taylor series is 

beneficial for derivations and is utilized to attain hypothetical error bounds. Taylor series 

facilitates classification accuracy. On the other hand, having been inspired by wave motions, 

WWO52  employs three wave‐based operators with propagation, refraction, and breaking to 

enhance a high‐dimensional solution space of an optimization issue. The method ensures the 

balance between exploitation and exploration. In addition, this method increases the con- 

vergence  process,  increases  the  vibrant  nature  of  the  solution,  and  achieves  equilibrium 
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F I G U R E  7  Crop disease detection using TWWO‐based GAN. GAN, Generative Adversarial 
Network; GLCM, gray‐level co‐occurrence matrix; LGP, Local Gradient Pattern; TWWO, Taylor‐Water Wave 

Optimization [Color figure can be viewed at wileyonlinelibrary.com] 
 

 
between being explored and getting exploited. The authors integrate both WWO and Taylor 

series to improve the overall performance of the proposed algorithm. The following sections 

detail the architecture of GAN and its relevant steps. 
 

(i)  Structural design of GAN 
The feature vector T is fed into GAN to detect plant disease. GAN49,50 is a deep learning 

classifier that acquires accurate access when it comes to the detection of plant disease. Most 

of the time, GAN is leveraged to perform highly precise detection, which brings about a 
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complex phenomenon. There are two different components present in GAN, such as 

generator and the discriminator. While the former attempts to create confusion for the 

latter by producing conceivable data, the latter is generally used to identify fake data in the 

pool of real data sets. To ensure global convergence, generators, as well as discriminators 

are made to undergo training in parallel. The generator, present in GAN, is developed 

based on a full‐connected neural network. The data samples are mapped by GAN following 

prior distribution which in turn is based on the data samples of other such distributions. 

The plant diseases are accurately detected during the mapping process. Assume the data 

points as T in which the feature vector is fed as input to GAN. Here, r denotes the high‐  

dimensional random variable while Ea  corresponds to the distribution of the generative 

model. Further, the symbol Edata denotes real data distribution while a random variable is 

denoted by Eo. In this equation, the generator maps the feature vector T  which is re- 

presented G (T ) in a symbolic fashion. But, the generator function is specifically denoted 

through I (·) while in case of discrimination function, J (·) denotes the same. Accordingly, 

the value function R (J, I ) is modeled as 
 

R (J, I ) = U 

O~Vdata 
 
g (16) 

R (J, I ) = Q 

O~Vdata 
 
s (17) 

 
In the equations, the sigmoid function is denoted by J (W ). This is utilized in the com- 

putation  of  probability  output  to  identify  renewable  energy  with  the  help  of  a  dis- 

criminator. Here, I (w) calculates the synthetic information corresponding to distribution. 

Further, Q I~K corresponds to the expectation set by a random variable of data I samples in 
distribution, K . In this scenario, renewable energy is detected with the help of a dis- 

criminator. Further, the modeling of the loss function is performed by the authors using 

binary  classification  and  cross‐entropy.  The  expression  for  the  loss  function  of  the 

discriminator is given in the following equation. 
 
 

ℏJ 
 
= −  1 

ϑ 

ϑ 

∑Gρ 

ρ=1 

 
log(J (Wρ)) − 

1 
ϑ 

ϑ 

∑ 
ρ=1 

 
(1 − Gϑ)log(1 − J (Wϑ)). 

 
(18) 

 
 

In the equation above, the number of samples is denoted by ϑ . The generator helps 

in  reducing  the  discriminator  gain  and  is  modeled  as  generator  loss  function  ℏL, 

represented as 
 

ℏL = max R (J, I ). 
P 

(19) 

 
GAN is trained using the proposed Taylor‐WWO algorithm, after which the crop disease is 
detected. 

(ii)  Training of GAN using the proposed Taylor‐WWO algorithm 

 

[log   (   )] +  ~[log(1 −    (   ))],

 J  W  Q  J  W
 O   V [log  (   )] +  ~[log(1 −    ( (  )))].

 J  W  Q  J  I w
 O    V 
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According to Figure 7, the weight of the classifier is made to undergo training with the help 

of the proposed Taylor‐WWO to generate the best solution. Taylor‐WWO modifies GAN by 

combining Taylor series51  with WWO 52  to select the optimal weights to achieve an update 

process. For disease detection in the plant, the Taylor‐WWO optimization is proposed in this 
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study. The proposed Taylor‐WWO optimization is used to train the weight of the GAN classifier 

to produce the optimal solution. Through the integration of the WWO and Taylor series, the 

parametric features of both optimization methods are exploited. This hybrid method increases 

the performance of classification accuracy. The following is the list of steps for this algorithmic 

procedure during plant disease detection. 
Step 1. Initialization: The foremost step is the initiation of solution and is given as 

 
Y = {Y1, Y2, …, Yν, …, Yκ}, 1 ≤  ν ≤  κ , (20) 

 
where κ represents the total number of solutions and Yν  signifies e th solution 

Step 2. Computation of the error: The optimal solution is obtained with error and is modeled 

as a minimization problem. So, the solution that possesses the least Mean Square Error (MSE) 

is finalized as the optimal solution. Here is the formulation for MSE. 

 
MSerr 

 
=1 

c 

 
c 

∑ 
d=1 

⎡⎣ξd  − ξd*  2 ,  
(21) 

 
where the expected output is denoted by ξd, the predicted output is denoted by ξ * and c 
corresponds to the number of data samples, where 1 < d ≤ c. 

Step 3. Determination of weights: To address the issues of optimization, WWO is employed. 
As per WWO,52 the update equation is expressed as 

 
Y ′x  = Yx + Rand (−1, 1)λXx , (22) 

 
where Rand (−1, 1) is the random number, λ indicates the wavelength, and Xx  signifies the 
length of xth search space dimension. 

To attain the global optimal solution in plant disease detection, Taylor series32 is leveraged 

in the current algorithm. Thus, the updated position of the Taylor series algorithm is given as 

follows. 
 

Y 
y−1 y−2 y−3 y−4 

′x = 0.5Yx + 1.3591Yx − 1.359Yx + 0.6795Yx − 0.2259Yx 
y−5 y−6 −3   y−7 −5    y−8 

+ 0.0555Y − 0.0104Y + 1.38e   Y − 9.92e   Y , 
x x x x 

 
(23) 

 
Yx 

⎡ y−1 y−2 y−3 y−4 ⎤ 
⎢Y ′x  − 1.3591y−5Yx + 1.359y−Y6x − 0.6795−3   yY−7x + 0.2259−5   yY−x8 ⎥. 

= 2⎣⎢− 0.0555Yx + 0.0104Yx − 1.38e   Yx + 9.92e   Yx ⎥⎦ 

 
(24) 

 
Substituting Equation (24) in Equation (22), 

 
Y 

⎡ 
⎢Y ′x  − 1.3591Yxy−1 + 1.359Yxy−2 − 0.6795Yxy−3 + 0.2259Yxy−4 ⎤ 

x y−5 y−6 −3   y−7 −5   y−8 ⎥, 
− 0.0555Y + 0.0104Y − 1.38e   Y + 9.92e   Y ⎥⎦ 

x x x x 

 
(25) 

⎡ 
y−1 y−2 y−3 y−4 ⎤ 

2 x   −    ′  =  21.3591Y x − 1.359Y + 0.6795Y − 0.2259Y 
Y ′ x y x x x ⎥. 

+ 0.0555Y −5 − 0.0104Y y−6 + 1.38e−3Y y−7 − 9.92e−5Y y−8⎥⎦ 
x x x x 

 
(26) 

⎤⎦ 

′   = 2⎢

 

⎣ 

⎢ 
Y ⎢ ⎣ 

⎢ 
⎢

 

⎣ 

⎥ 



22 
 

 
The update equation of the proposed Taylor‐WWO algorithm is represented as 

 
Y 

⎡ 
y−1 y−2 y 

′  =  21.3591Y x − 1.359Yx + 0.6795Yx −3 
x 

−3   y−7 −5    y−8 
+ 1.38e   Y − 9.92e   Y 

x x 

 
y−4 

− 0.2259Y 
x 

 
y−5 

+ 0.0555Y 
x 

⎤ 
y−6 

− 0.0104Y 
x 

⎥⎦. 

(27) 
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T A B L E  1  Pseudocode of the proposed Taylor‐WWO algorithm 

 
Input: Population P such that Y = {Y1, Y2, …, Yν, …, Yκ}, 1  ν  κ 

 
Output: Best solution Y * 

Begin 

Initialize the population of κ solutions in random manner 

Compute error using Equation (21) 

while stop criteria not satisfied do 
 

for each wave Y ∈  P do 
 

Propagate Y to new Y ′ using Equation (22) 
 

if f (Y ′) > f (Y ) then 
 

if f (Y ′) > f (Y *) then 

Break Y ′ into waves 

Update Y * with Y ′ 

Replace Y with Y ′ 

Else 
 

Y . ℓ = Y . ℓ −  1; 
 
if Y . ℓ = 0 then 

 
Refract Y to a new Y ′ using Equation (27) 

 
Update wavelengths 

 
Compute error using Equation (21) 

Return Y * 

 

 
Step 4. Error evaluation for update solutions: In this step, the updated solutions' error is 

analyzed when the weights linked to minimal error are adapted for training GAN. 
Step 5. Terminate: Until the optimum weights are attained, the maximum number of 

iterations is performed. The pseudocode of the proposed Taylor‐WWO algorithm is shown in 

Table 1. 
 
 

4    |   R E S U L T S  A N D  D I S C U S S I O N  
 

This section presents a detailed note on the evaluation of the proposed strategy against con- 

ventional strategies using a rice disease data set based on three parameters, such as accuracy, 

sensitivity, and specificity. In addition, the energy and throughput plots were drawn by varying 

the number of iterations. The analysis was conducted by changing the training data percentage. 

In addition, the authors also analyzed how far the proposed Taylor‐WWO‐based GAN is ef- 

fective. The proposed strategy was implemented in MATLAB installed in a PC configured with 

the Windows 10 operating system, Intel core i3processor, and 2GB RAM. The parameters used 

for the experimentation: Kernel size—5, activation function— sigmoid, learning rate—0.001, 

and a maximum number of Epoch—80. 
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4.1   |   Data set description  

 
The analysis was performed using Rice Leaf Diseases data set.53 This data set contains three classes 

of diseases, such as bacterial leaf blight, Brown spot, and Leaf smut, with each disease containing 40 

images in the JPG format. The characteristic of each data set was multivariate, and the characteristic 

of the attribute was an integer. The task associated with the data set was classification. The number 

of instances was 120, and the number of web hits attained 40,468. 
 
 

4.2   |   Performance measures  
 

The efficiency of the proposed Taylor‐WWO‐based GAN was evaluated using the measures, 

such as accuracy, sensitivity, and specificity. 
 
 

4.3   |   Experimental  results  
 

Figure 8 portrays the experimental results attained from the proposed Taylor‐WWO‐based 

GAN using rice plant images. Figure 8A shows the input images obtained from the rice plant 

image data set, while Figure 8B depicts the preprocessed image obtained from the input image. 

Figure 8C depicts the ground truth image, whereas the segmented image obtained by SegNet is 

portrayed in Figure 8D. The LGP extracted image is portrayed in Figure 8E. 
 
 

4.4   |   Performance analysis  
 

This section details the analysis conducted for the proposed Taylor‐WWO‐based GAN to show 

its effectiveness in terms of accuracy, sensitivity, and specificity parameters by varying different 

Epoch and batch sizes. 
 

(a)  Analysis by varying Epoch 
Figure 9 portrays the analysis of the proposed Taylor‐WWO‐based GAN after varying Epoch 

with accuracy, sensitivity, and specificity parameters. The analysis of the proposed Taylor‐WWO‐ 

based GAN using the accuracy parameter is shown in Figure 9A. In the case of 90% training data, 

the accuracy value measured by the proposed Taylor‐WWO‐based GAN with Epoch=2000 was 

0.755, Epoch=3000 was 0.854, Epoch=4000 was 0.830, and Epoch=5000 was 0.896. 
The analysis of the proposed Taylor‐WWO‐based GAN using sensitivity parameter is depicted in 

Figure 9B. In the case of 90% training data, the sensitivity measured by the proposed Taylor‐WWO‐ 

based GAN with Epoch=2000 was 0.706, Epoch=3000 was 0.756, Epoch=4000 was 0.793, and 

Epoch=5000 was 0.873. The analysis of the proposed Taylor‐WWO‐based GAN using specificity 

parameter is depicted in Figure 9C. In the case of 90% training data, the specificity measured by the 

proposed  Taylor‐WWO‐based  GAN  with  Epoch=2000  was  0.767,  Epoch=3000  was  0.820, 

Epoch=4000 was 0.780, and Epoch=5000 was 0.877. 

 
(b)  Analysis of different batch sizes 

In Figure 10, the author portrays the analysis of the proposed Taylor‐WWO‐based GAN 
with varying batch sizes using accuracy, sensitivity, and specificity parameters. The analysis of 
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F I G U R E  8  Experimental results of the proposed Taylor‐WWO‐based GAN using: (A) original image, 
(B) preprocessed image, (C) ground truth, (D) segmented image, and (E) LGP extracted image. GAN, Generative 

Adversarial Network; LGP, Local Gradient Pattern; WWO, Water Wave Optimization [Color figure can be 

viewed at wileyonlinelibrary.com] 
 
 

the  proposed  Taylor‐WWO‐based  GAN  using  the  accuracy  parameter  is  portrayed  in 

Figure 10A. In the case of 90% training data, the authors measured the accuracy values attained 

by the proposed Taylor‐WWO‐based GAN with different batch sizes. The results are as follows: 

batch size=50 achieved 0.806; batch size=100 attained 0.884; batch size =150 attained 0.798; 

and batch size =200 accomplished 0.853. The analysis of the proposed Taylor‐WWO‐based 

GAN using sensitivity parameter is depicted in Figure 10B. 
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F I G U R E  9  Analysis of the proposed Taylor‐WWO‐based GAN with different Epochs using: (A) accuracy, 
(B) sensitivity, and (C) specificity. GAN, Generative Adversarial Network; WWO, Water Wave Optimization 

[Color figure can be viewed at wileyonlinelibrary.com]  
 

 
In the case of 90% training data, the values of sensitivity measured by the proposed Taylor‐ 

WWO‐based GAN with batch size=50 was 0.834, and with batch size=100, it was 0.855. 

In the case of batch size =150, the value was 0.864, and for batch size =200, it was 0.873. The 

analysis of the proposed Taylor‐WWO‐based GAN using specificity parameter is depicted in 

Figure 10C. In the case of 90% training data, the specificity value measured by the proposed 

Taylor‐WWO‐based GAN with batch size =50 was 0.853, and for batch size=100, it was 0.814. 

Likewise, for batch size=150, 0.812 was achieved, and for batch size =200, the value attained 

was 0.867. 
 
 

4.5   |   Comparative analysis  
 

The authors adapted a few methods to analyze including MCFN,21 Deep learning‐NN,27 CNN,23 

MDFC–ResNet,54   SCA‐based  RideNN,36   and  the  proposed  Taylor‐WWO‐based  GAN.  The 

methods were analyzed with three parameters, such as accuracy, sensitivity, and specificity as 

its basis, on different training data. In addition, the energy and throughput were computed on a 

different number of iterations. 
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F I G U R E  1 0  Analysis of the proposed Taylor‐WWO‐based GAN with different batch sizes using: 
(A) accuracy, (B) sensitivity, and (C) specificity. GAN, Generative Adversarial Network; WWO, Water Wave 

Optimization [Color figure can be viewed at wileyonlinelibrary.com] 
 
 
 

4.5.1   |   MCFN  
 

The aim of developing this method is to deploy it in agricultural IoT, especially in recognizing 

the wild diseases that affect the crop. A standard CNN is first adopted to extract dynamic, 

unique, and discriminative visual features from 50,000 in‐field crop disease samples. Followed 

by contextual factors are collated as prior information by the image acquisition sensors to help 

in the classification of crop disease and eventually mitigate the number of false positives. 

Finally, a deep fully connected network collates contextual features and the visual features to 

produce the output, that is, correct prediction of crop disease. 
 
 

4.5.2   |   Deep learning NN  
 

This system aims to find out the stress‐causing factors among plants, for instance, crop disease, 

fertility of the soil, and environmental imbalance 
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4.5.3   |   CNN 

 
This system uses image processing techniques and the CNN technique to achieve the key objective, 

that is, identification of leaf disease and recommend remedies to get rid of the disease. 
 
 

4.5.4   |   MDFC–ResNet 

 
The primary function of this system is to identify crop disease. Followed by, the farmers are 

updated with  the results from disease diagnosis.  The  system functions based  on three 

dimensions, such as fine‐grained disease, coarse‐grained disease, and species. All these 

dimensional results are fused by the compensation algorithm present in the compensation 

layer. 
 
 

4.5.5 |  SCA‐based RideNN 

 
In this scheme, the nodes are deployed above the simulation environment to capture the 

images of plant leaves. This scheme maintains a sink node when the information is collected 

via an automated plant disease detection module and aids in IoT‐based monitoring. Then, the 

median filter is used to preprocess the images from these nodes to make it compatible with the 

plant disease detection process. Image segmentation is then executed, which extracts pixel level 

and segment level features from the source image. Followed by, SCA‐based RideNN is utilized 

in the classification of disease detection. 
 
 

4.5.6 |  Proposed Taylor‐WWO‐based GAN 
 

The current research work makes use of Taylor‐WWO‐based GAN for disease identification in 

agriculture. 

 
(a) Analysis by varying training data 
In Figure 11, the author portrays the results attained from the compared methods using training 

data in terms of accuracy, sensitivity, and specificity parameters. Figure 11A shows the accuracy 

analysis of various methods. For 50% training data, the accuracy values of the methods, like, MFCN, 

Deep learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and proposed Taylor‐WWO‐based 

GAN were 0.629, 0.336, 0.681, 0.580, 0.685, and 0.689, respectively. 
When 90% training data was used, the accuracy values of the methods, like, MFCN, Deep 

learning‐NN, CNN, and proposed Taylor‐WWO‐based GAN were 0.645, 0.782, 0.840, 0.885, 

0.885, and 0.916, respectively. Figure 11B shows the sensitivity analysis of different methods. 

When 50% training data was used, the sensitivity values of the methods, such as MFCN, Deep 

learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and the proposed Taylor‐WWO‐based 

GAN are 0.532, 0.270, 0.618, 0.451, 0.611, and 0.604, respectively. 
Likewise, for 90% training data, the sensitivity values of the methods, such as MFCN, 

Deep learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and the proposed Taylor‐  

WWO‐based GAN are 0.620, 0.738, 0.833, 0.824, 0.843, and 0.850, respectively. Figure 11C 

portrays the specificity analysis on different methods. In the case of 50% training data, the 
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F I G U R E  1 1  Analysis of methods with varying training data using: (A) accuracy, (B) sensitivity, and 
(C) specificity. CNN, Convolution Neural Networks; GAN, Generative Adversarial Network; MCFN, 

MultiContext Fusion Network; MDFC, Multidimensional Feature Compensation; NN, Neural 
Networks; ResNet, Residual Neural Network; SCA, Sine Cosine Algorithm; WWO, Water Wave Optimization 

[Color figure can be viewed at wileyonlinelibrary.com]  
 

specificity values of the methods, such as MFCN, Deep learning‐NN, CNN, and the pro- 

posed Taylor‐WWO‐based GAN were 0.638, 0.550, 0.589, 0.601, 0.625, and 0.669, respec- 

tively. The specificity values of the methods, such as MFCN, Deep learning‐NN, CNN, and 

the proposed Taylor‐WWO‐based GAN for 90% training data were 0.887, 0.815, 0.808, 

0.899, 0.869, and 0.923, respectively. 

 
(b) Analysis by varying number of rounds 
Figure  12  plots  the  energy  and  throughput  rates  by  varying  the  number  of  rounds. 

Figure 12A shows the analysis with an energy parameter. At 200 rounds, the energy values 

computed by ABC+ACO, FABC +EACO, FGGWO, and FGSA+FGGWO were 0.433, 0.443, 

0.447,  and  0.448,  respectively.  Likewise,  at  1000  rounds,  the  energy  values  computed  by 

ABC+ACO, FABC +EACO, FGGWO, and FGSA+FGGWO were 0.167, 0.183, 0.205, and 

0.216, respectively. Figure 12B shows the analysis results with the throughput rate parameter. 

At 200 rounds, the throughput rates computed by ABC+ACO, FABC+EACO, FGGWO, and 

FGSA+FGGWO were 0.903, 0.950, 0.950, and 0.950, respectively. As earlier, during 1000 
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F I G U R E  1 2  Analysis of methods with varying rounds using: (A) energy and (B) throughput rate. ABC, 
Artificial Bee Colony; ACO, Ant Colony Optimization; EACO, efficient ant colony optimization; FABC, fully 
informed artificial bee colony; FGGWO, Fractional Gravitational Gray Wolf Optimization; FGSA, 

fuzzy gravitational search algorithm [Color figure can be viewed at wileyonlinelibrary.com] 
 
 

rounds,  the  throughput  rates  computed  by  ABC+ACO,  FABC+EACO,  FGGWO,  and 

FGSA+FGGWO were 0.234, 0.283, 0.425, and 0.500, respectively. 
 

(c)  Analysis using cross‐validation 
Cross‐validation is a prevailing defensive measure against overfitting. Using the cross‐  

validation, the hyperparameters of the model are tuned with only the original training set. 

This allows one to keep the test set as a truly unseen data set for selecting the final model. 

Cross‐validation splits the training and testing set repeatedly. Using the initial training data, 

multiple mini train‐test splits are generated. Then, these splits are used to tune the model. In 

standard k‐fold cross‐validation, the data are partitioned into k subsets, called folds. Then, the 

model is trained iteratively on k − 1 folds while using the remaining fold as the test set. 
Figure 13 shows the results attained from the compared methods using cross‐validation in 

terms of accuracy, sensitivity, and specificity parameters. Figure 13A shows the accuracy 

analysis of various methods. When k =6, the accuracy values of the methods, like, MFCN, 

Deep learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and proposed Taylor‐WWO‐ 

based GAN are 0.611, 0.637, 0.658, 0.669, 0.679, and 0.738, respectively. When k =10, the 

accuracy values of the methods, such as MFCN, Deep learning‐NN, CNN, and proposed Taylor‐ 

WWO‐based GAN are 0.811, 0.834, 0.847, 0.876, 0.885, and 0.898, respectively. Figure 13B 

shows the sensitivity analysis of different methods. When k =7, the sensitivity values of the 

methods, such as MFCN, Deep learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and 

the proposed Taylor‐WWO‐based GAN are 0.561, 0.531, 0.603, 0.604, 0.656, and 0.725, re- 

spectively. Likewise, when k =9, the sensitivity values of the methods, such as MFCN, Deep 

learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN, and the proposed Taylor‐WWO‐based 

GAN are 0.724, 0.694, 0.809, 0.819, 0.841, and 0.845, respectively. Figure 13C portrays the 

specificity analysis on different methods. When k =6, the specificity values of the methods, 

such as MFCN, Deep learning‐NN, CNN, and the proposed Taylor‐WWO‐based GAN are0.601, 

0.604, 0.624, 0.626, 0.650, and 0.682, respectively. The specificity values of the methods, such as 

MFCN, Deep learning‐NN, CNN, and the proposed Taylor‐WWO‐based GAN when k =10 

are0.776, 0.832, 0.846, 0.883, 0.898, and 0.909, respectively. 
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F I G U R E  1 3  Analysis of methods using cross‐validation: (A) accuracy, (B) sensitivity, and (C) specificity. CNN, 
Convolution Neural Networks; GAN, Generative Adversarial Network; MCFN, MultiContext Fusion Network; 

MDFC, Multidimensional Feature Compensation; NN, Neural Networks; ResNet, Residual Neural Network; SCA, Sine 

Cosine Algorithm; WWO, Water Wave Optimization [Color figure can be viewed at wileyonlinelibrary.com] 
 
 

4.6   |   Comparative discussion  
 

The methods were analyzed to showcase the effectiveness of the proposed Taylor‐WWO‐based 

GAN using accuracy, sensitivity, and specificity parameters. In addition, both energy and 

throughput rate graphs were plotted with varying numbers of iterations. 
 

(a)  Analysis with training data 
Table 2 describes the accuracy, sensitivity, and specificity evaluation analysis of various 

techniques using different training data. The proposed Taylor‐WWO‐based GAN accomplished 
the  maximum  accuracy  of  0.916,  whereas  the  accuracy  values  attained  by  MFCN,  Deep 
learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN were 0.645, 0.782, 0.840, 0.885, and 
0.885. With the accuracy parameter, the performance improvement of the proposed Taylor‐  
WWO‐based GAN compared to MFCN was 29.585%. The proposed Taylor‐WWO‐based GAN 
achieved the maximum sensitivity of 0.850, whereas the sensitivity values achieved by MFCN, 
Deep learning‐NN, and CNN were 0.620, 0.738, and 0.833. With sensitivity parameter, the 
performance improvement of the proposed Taylor‐WWO‐based GAN, compared to MFCN, was 
27.058%. The maximum specificity of 0.923 was achieved by the proposed Taylor‐WWO‐based 
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T A B L E  2  Analysis of the methods with training data  

 
Metrics 

 
MFCN 

Deep 
learning‐NN 

 
CNN 

MDFC– 

ResNet 
SCA‐based 

RideNN 
Proposed Taylor‐  

WWO‐based GAN 

 
Accuracy 0.645 0.782 0.840 0.885 0.885 0.916 

 
Sensitivity 0.620 0.738 0.833 0.824 0.843 0.850 

 
Specificity 0.887 0.815 0.808 0.899 0.869 0.923 

 
Abbreviations: CNN, Convolution Neural Networks; GAN, Generative Adversarial Network; MCFN, MultiContext Fusion 

Network; MDFC, Multidimensional Feature Compensation; NN, Neural Networks; ResNet, Residual Neural Network; 

SCA, Sine Cosine Algorithm; WWO, Water Wave Optimization. 
 
 

T A B L E  3  Analysis of the methods with rounds 
 

Metrics ABC+ ACO FABC+EACO  FGGWO FGSA+FGGWO 
 

Energy 0.167 0.183 0.205 0.216 
 

Throughput rate 0.234 0.283 0.425 0.500 
 

Abbreviations: ABC, Artificial Bee Colony; ACO, Ant Colony Optimization; EACO, efficient ant colony optimization; 

FABC, fully informed artificial bee colony; FGGWO, Fractional Gravitational Gray Wolf Optimization; FGSA, 
fuzzy gravitational search algorithm. 

 

 
GAN, whereas the specificity values computed by MFCN, Deep learning‐NN, and CNN were 

0.887, 0.815, and 0.808. With specificity parameter, the performance improvement of the 

proposed Taylor‐WWO‐based GAN, compared to MFCN, was 3.900%. 
The results attained from the analysis established the supremacy of the presented Taylor‐  

WWO‐based GAN in detecting plant disease. A significant improvement was observed in the 

training capability of the proposed algorithm, thanks to the incremental behavior of the opti- 

mization algorithm in deep learning. The results infer that the presented Taylor‐WWO‐based 

GAN can enhance prediction accuracy and get rid of the overfitting problem. The accuracy got 

improved since the current research work combined GAN and Taylor‐WWO in contrast to 

existing approaches that used only GAN. GAN can produce high‐resolution labeled images and 

can grasp the hierarchy of representations from a wide range of image data sets. With this 

added advantage, the proposed technique attained excellent results in contrast to traditional 

methods. 

 
(b)  Analysis with number of rounds 

 
Table 3 displays the analysis of methods by varying the number of rounds. Here, energy and 

throughput rate graphs were plotted against varying number of iterations. The maximal energy of 

0.216 was accomplished by FGSA+FGGWO, whereas the energy values achieved by ABC+ACO, 

FABC+EACO, and FGGWO were 0.167, 0.183, and 0.205. The maximal throughput rate, that is, 

0.500  was  accomplished  by  FGSA+FGGWO,  whereas  the  throughput  rates  of  ABC+ACO, 

FABC+EACO, and FGGWO were 0.234, 0.283, and 0.425. Hence, the analysis reveals that the 

combination of FGSA+FGGWO achieved an improvement in energy and throughput rate. It is also 

found to be suitable for effective routing and determining effective paths. 
It is precise from the discussion made above that the proposed technique accomplished 
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superior performance in comparison with traditional methods. The proposed method gained a 
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T A B L E  4  Analysis of the methods using cross‐validation 

 
 

Metrics 
 
MFCN 

Deep 
learning‐NN CNN 

MDFC– 

ResNet 
SCA‐based 

RideNN 
Proposed Taylor‐  

WWO‐based GAN 

 
Accuracy 0.811 0.834 0.847 0.876 0.885 0.898 

 
Sensitivity 0.810 0.753 0.876 0.881 0.883 0.893 

 
Specificity 0.776 0.832 0.846 0.883 0.898 0.909 

 
Abbreviations: CNN, Convolution Neural Networks; GAN, Generative Adversarial Network; MCFN, MultiContext Fusion 

Network; MDFC, Multidimensional Feature Compensation; NN, Neural Networks; ResNet, Residual Neural Network; 

SCA, Sine Cosine Algorithm; WWO, Water Wave Optimization. 

 
significant level of training capability since the optimization technique gained excellent insights 

during deep learning. On the basis of FGGWO, the optimum path was selected to transmit the 

information to BS. The combined FGSA+FGGWO method is highly advantageous, thanks to 

the combination of both techniques. It provides different paths to transmit the information 

using convergence, and it can function in the presence of multiple constraints too. These 

unique characteristics helped in achieving the best results. 
(c) Analysis using cross‐validation 
Table 4 describes the accuracy, sensitivity, and specificity of various techniques using cross‐ 

validation based on the best performance. The proposed Taylor‐WWO‐based GAN obtained the 

maximum accuracy of 0.898, whereas the accuracy values attained by MFCN, Deep learning‐ 

NN, CNN, MDFC–ResNet, SCA‐based RideNN are 0.811, 0.834, 0.847, 0.876, and 0.885, re- 

spectively. The proposed Taylor‐WWO‐based GAN achieved the maximum sensitivity of 0.893, 

whereas the sensitivity values achieved by MFCN, Deep learning‐NN, CNN, MDFC–ResNet, 

SCA‐based RideNN are 0.810, 0.753, 0.876, 0.881, and 0.883, respectively. The maximum spe- 

cificity of 0.909 is achieved by the proposed Taylor‐WWO‐based GAN, whereas the specificity 

values computed by MFCN, Deep learning‐NN, CNN, MDFC–ResNet, SCA‐based RideNN are 

0.776, 0.832, 0.846, 0.883, and 0.898, respectively. 
 
 

5   |   C O N C L U S I O N  
 

This paper devised a novel method, that is, Taylor‐WWO‐based GAN for disease identification 

using an IoT network. In this method, the IoT nodes sensed the plant leaves, whereas the 

sensed data was transmitted to BS using FGGWO. This FGGWO selected the best path for data 

transmission. Thus, the routing was performed using an IoT network. After IoT routing, crop 

diseases were identified at BS. For detecting crop diseases, the input image acquired from the 

IoT routing phase was subjected to preprocessing to improve the quality of the image. Then, 

SegNet was adapted to segment the images, and the feature extraction was performed with the 

acquired segments. The extracted features were then employed by GAN, trained by the Taylor‐ 

WWO algorithm. The proposed Taylor‐WWO was developed by integrating the Taylor series 

and WWO algorithm. The proposed Taylor‐WWO‐based GAN exhibited improved performance 

with maximum accuracy, sensitivity, and specificity values of 91.6%, 89.3%, and 92.3%, re- 

spectively. In the future, advanced deep learning methodologies can be adapted to improve the 

crop disease detection process. Also, the data set for training can be gathered from various 

sources with various cultivations, image capturing modes, and geographical areas. 
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