

David Alejandro Perez Abreu

RESILIENCE IN THE INTERNET OF THINGS FOR
SMART CITY APPLICATIONS

Tese no âmbito do Programa de Doutoramento em Ciências e Tecnologias da
Informação, orientada pelo Professor Doutor Edmundo Monteiro, e pela Professora

Doutora Marilia Curado, e apresentada ao Departamento de Engenharia Informática da
Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Dezembro de 2020

Department of Informatics Engineering
Faculty of Sciences and Technology

University of Coimbra

Resilience in the Internet of
Things for Smart City

Applications

David Alejandro Perez Abreu

Doctoral Program in Information Science and Technology
PhD Thesis submitted to the University of Coimbra

Advised by Prof. Dr. Edmundo Monteiro
and Prof. Dr. Marilia Curado

December, 2020

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra

Resiliência na Internet das
Coisas para aplicações de

Cidades Inteligentes

David Alejandro Perez Abreu

Programa de Doutoramento em Ciências e Tecnologias da Informação
Tese de Doutoramento apresentada à Universidade de Coimbra

Orientado pelo Prof. Dr. Edmundo Monteiro
e pela Prof. Dr. Marilia Curado

Dezembro, 2020

This work was partially supported by the Portuguese Foundation for
Science and Technology (FCT) under the projects grants MITP-TB/C
S/0026/2013, FCT/13263/4/8/2015/S; as well as under the PhD grant
SFRH/BD/117538/2016. Additionally by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES) under the project grant CAPES-
FCT/8572/14-3.

Acknowledgments

By the end of this journey, I look back and I realize that many people,
in one way or another, encouraged me to move forward in the research
and academic path, and I could not miss this opportunity to thank

them formally.

I would like to thank my esteemed advisors Prof. Edmundo Monteiro and Prof.
Marilia Curado for their invaluable supervision, support, and advice during the
course of my PhD degree. Both of you are not only excellent researchers but also
splendid human beings. I am delighted to have chosen you both as my advisors
and even more glad to consider you friends.

My gratitude extends to all the staff of the Center for Informatics and Systems
of the University of Coimbra, which were always available to help me with
academic or administrative stuff. From the academic perspective, I thank Prof.
Luís Paquete for his time to discuss methods and approaches that were out of
my knowledge scope at the beginning of my PhD. Regarding the administrative
perspective, I have to thank Jorge Avila, who supported the paperwork for
publications.

I want to thank my friends, lab mates, colleagues, and research team for a
cherished time spent together in the lab and social setting. Moreover, special
recognition to the sixth-floor LCT posse (Ricardo, Mariana, David Lima, Mar-
celo, Duarte, Vitor, Rui, Proença, Ngombo, Paulo, Tina) for making me feel
accepted and part of a group; thanks a lot dudes.

To my grandparents, parents, and brothers for their unconditional support and
understanding.

Karima, there are not enough words to describe the things we have spent to-
gether. Thank you for being there to help and support me. We make an incred-
ible team.

ix

Abstract

Nowadays companies and governments are using Information and Com-
munication Technologies as tools to deploy their services and make
them accessible to citizens; in order to expand urban resource effi-

ciency with a low environmental impact and contributing with the development
of the economy. This trending is known as the Smart City paradigm and it
has taken advantage of the Cloud to Internet of Things continuum to provide
communication and collect a massive amount of data. This scenario permits
that the data can be processed and analyzed by applications to support smart
services, enabling heavy calculations that run inside powerful data centers in the
Cloud.

The Cloud to Internet of Things not only offers power to process data, but also
makes it possible to use virtualization technologies to enhance how the object
heterogeneity could be managed. Services like eHealth, smart traffic control,
and smart home applications are composed of different functions that can be
virtualized over physical hardware components within the network landscape.
These Virtual Functions are grouped in a structure called Service Chains that
fulfill particular smart service requirements, enabling a new broader set of smart
end-user applications. The Cloud to Internet of Things continuum infrastructure
provides communication, processing, and storage support for these applications.
However, this complex, heterogeneous, and distributed landscape requires or-
chestration and management mechanisms in order to guarantee their proper
functioning, especially in the face of failures.

One particular factor to manage is the resilience to provide service availability
even in the event of failures. Automated proactive solutions to enhance the
survivability of Service Chains when failures occur have to be considered within
the orchestration solution for the Cloud to Internet of Things continuum. This
research proposes an architecture and a set of mechanisms to orchestrate, form-
alize, and embed a collection of service requests for chaining Virtual Functions
jointly to fulfill specific requirements of applications while enhancing their resi-
lience.

The first contribution of this work is a resilience architecture for the deployment
of Internet of Things services and applications in Smart Cities. The architecture
proposed takes advantage of virtualization techniques to deal with the hetero-
geneity in the Cloud to Internet of Things continuum, as well as to provide a set
of components focused on improving the resilience of applications. Specifically,
the Resilience Manager module in the architecture implements a set of functions
to enhance the availability of applications in case of failures. The architecture
proposed worked as an inspiration for the design and implementation of an on-
tology to describe the Internet of Things infrastructure, to standardize how the
information of the underlying components is exchanged.

xi

The second set of contributions of this work are focused on the Resilience Man-
ager module of the proposed architecture. In detail, a framework to address the
composition and embedding of Service Chains in the Cloud to Internet of Things
continuum with support of replicas to increase the availability of applications
was designed and implemented.

The composition element in the framework is tackled via a formal grammar
that enables the description of customized applications, allowing the definition
of replicas for their components. In a second step, once the applications were
specified, a Pareto analysis is used to optimize the selection of the components
of the applications according to a given set of goals.

Regarding the embedding of Virtual Functions in the substrate infrastructure,
three contributions are proposed: (1) an Integer Linear Programming model
that prioritizes the use of nodes with higher availability; (2) a genetic algorithm
that uses a fitness function that combines node availability, use of disjoint nodes,
and the tiers to which the nodes belong to; and (3) a heuristic to handle more
complex scenarios by taking advantage of the multi-tier scenario comprising the
Cloud-Fog-Mist-Internet of Things.

The embedding mechanisms proposed in this work were evaluated via simulation.
The assessment included measurements of failure rate, node utilization, and
response time of the Service Chains embedded in the subtracted infrastructure.
Simulation results show that it is possible to increase the resilience of chained
Virtual Functions, while balancing the load of the infrastructure nodes.

Keywords: Internet of Things, Cloud, Smart City, Resilience,
Service Chains, Embedding.

xii

Resumo

Atualmente, governos e empresas estão a usar Tecnologias de Inform-
ação e Comunicação como ferramentas para disponibilizar os seus ser-
viços e torná-los acessíveis aos cidadãos; de forma a expandir a eficácia

dos seus recursos urbanos, com pouco impacto ambiental e contribuindo para o
desenvolvimento da economia. Esta tendência é conhecida como o paradigma
Cidades Inteligentes e tem tirado partido do continuum Nuvem-Internet das
Coisas para proporcionar comunicações e recolher dados em larga escala. Este
cenário permite que os dados sejam processados e analisados em aplicações que
suportam os Serviços Inteligentes, tornando possível correr cálculos pesados den-
tro de grandes centros de dados na Nuvem.

A Nuvem não somente oferece poder computacional para processar dados da, e
para a, Internet das Coisas, como também torna possível o uso de tecnologias
de virtualização que melhoram a forma como a heterogeneidade dos dispositivos
pode ser gerida. Serviços como saúde eletrónica, controlo de trânsito inteligente,
e aplicações para casas inteligentes são compostos por diferentes funcionalidades
que podem ser virtualizados em componentes de hardware físico, dentro do ambi-
ente da rede. Estas Funções Virtuais são agrupadas em estruturas denominadas
Cadeias de Serviço. As Cadeias de Serviço são responsáveis por cumprir re-
quisitos específicos de serviços inteligentes, possibilitando um novo conjunto de
aplicações inteligentes para os utilizadores finais. A infraestrutura do continuum
Nuvem-Internet das Coisas proporciona comunicações, poder computacional e
armazenamento para suportar estas aplicações. Contudo, este ambiente dis-
tribuído, complexo e heterogéneo necessita de mecanismos de orquestração e
gestão de forma a garantir o seu correto funcionamento, especialmente em caso
de falhas.

Um fator particular a ter em consideração é a resiliência, de modo a que um
serviço se mantenha disponível, incluso em caso de falhas. Soluções proativas e
automáticas para melhorar a capacidade de sobrevivência de Cadeias de Serviço,
quando ocorrem falhas, têm de ser consideradas na orquestração do continuum
Nuvem-Internet das Coisas. Esta tese propõe uma arquitetura e um conjunto de
mecanismos para orquestrar, formalizar e incorporar um conjunto de pedidos de
serviços para agrupar Funções Virtuais, de forma a cumprir requisitos específicos
das aplicações e ao mesmo tempo melhorar a sua resiliência.

A primeira contribuição deste trabalho é uma arquitetura para a implantação
de serviços de Internet das Coisas e aplicações em Cidades Inteligentes. A ar-
quitetura proposta tira partido das técnicas de virtualização para lidar com a
heterogeneidade no continuum Nuvem-Internet das Coisas, e ainda providencia
um conjunto de componentes focados em melhorar a resiliência das aplicações.
Especificamente, o módulo Gestor de Resiliência da arquitetura implementa um
conjunto de funções para melhorar a disponibilidade das aplicações na presença

xiii

de falhas. A arquitetura proposta serviu ainda de inspiração para projetar e im-
plementar uma ontologia para descrever a infraestrutura da Internet das Coisas,
de modo a uniformizar a maneira como a informação é comunicada entre os
componentes subjacentes.

O segundo conjunto de contribuições deste trabalho foca o módulo Gestor de Re-
siliência da proposta arquitetura. Nomeadamente, foi projetada e desenvolvida
uma framework para abordar a composição e incorporação de Cadeias de Ser-
viços no continuum Nuvem-Internet das Coisas com suporte de réplicas para
aumentar a disponibilidade das aplicações.

Considerando a incorporação das Funções Virtuais no substrato da infraestru-
tura, são propostos três mecanismos: (1) um modelo de Programação Linear
Inteira que prioriza a utilização de nós com alta disponibilidade; (2) um algor-
itmo genético que usa uma função de adequação que combina a disponibilidade
dos nós, uso de nós não adjacentes e a camada a que os nós pertencem; (3) uma
heurística para cenários mais complexos, que tira partido do ambiente multica-
mada Nuvem-Névoa-Neblina-Internet das Coisas.

Os mecanismos embebidos propostos neste trabalho foram avaliados através de
simulações. A avaliação inclui medições da taxa de falha, utilização dos nós e
o tempo de resposta das Cadeias de Serviço embebidas no substrato da infraes-
trutura. Os resultados das simulações demonstram que é possível aumentar a
resiliência de cadeias de Funções Virtuais, ao mesmo tempo que se equilibra a
carga da infraestrutura dos nós.

Palavras-chave: Internet das Coisas, Computação em Nuvem,
Cidades Inteligentes, Resiliência, Cadeias de Serviço, Incorpor-
ação.

xiv

Foreword

The work detailed in this thesis was accomplished at the Laboratory of
Communications and Telematics (LCT) of the Center for Informatics
and Systems of the University of Coimbra (CISUC), within the context

of the following projects and grants:

SusCity - Sustainable Cities; financed by Foundation for Science and Tech-
nology within the scope of the project (MITP-TB/C S/0026/2013). The goal
of this project was to design tools and services to promote the efficient use of
urban resources within the scope of Smart Cities. The work performed in this
project was related to the design of a trustworthy Information and Communic-
ation Technologies infrastructure for Smart City services, including the design
of a resilient Internet of Things architecture for Smart Cities.

SORTS - Supporting the Orchestration of Resilient and Trust-worthy Fog Ser-
vices; financed by the CAPES - Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES-FCT/8572/14-3) and by the FCT - Foundation for
Science and Technology (FCT/13263/4/8/2015/S). The aim of this project was
to design, implement, and develop a service orchestrator for Fog environments,
capable of maintaining resilience, trustworthiness, and low-latency in a dynamic
environment, such as the Fog. The work performed in this project was the iden-
tification of Cloud to Internet of Things continuum requirements, the design of
the orchestrator architecture, and the design and development of the embedding
framework for Service Chains and their Virtual Functions.

PhD grant - Foundation for Science and Technology (FCT)
(SFRH/BD/117538/2016).

The outcome of the design, experiments, and assessments of several mechanisms
on the course of this thesis resulted in the following publications:

Journal papers:

• Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2017b). A
resilient internet of things architecture for smart cities. Annals of Tele-
communications, 72(1):19–30;

• Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2020). A
comparative analysis of simulators for the cloud to fog continuum. Simu-
lation Modelling Practice and Theory, 101(1):1020291–10202927; and

• Perez Abreu, D., Velasquez, K., Paquete, L., Curado, M., and Monteiro, E.
(2020). Resilient service chains through smart replication. IEEE Access,
8(1):187021–187036.

xv

Conference papers:

• Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2015).
Resilience in iot infrastructure for smart cities. In 2015 Cloudification of
the Internet of Things (CIoT), pages 1–4, Paris, France. IEEE;

• Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2017a).
An iot infrastructure for smart cities: The suscity project use-case. In
3rd Energy for Sustainability International Conference (EfS), pages 1–5,
Madeira, Portugal. InderScience Publishers;

• Perez Abreu, D., Velasquez, K., Pinto, A. M., Curado, M., and Monteiro,
E. (2017c). Describing the internet of things with an ontology: The suscity
project case study. In 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), pages 294–299, Paris, France. IEEE; and

• Perez Abreu, D., Velasquez, K., Miranda Assis, M. R., Bittencourt, L. F.,
Curado, M., Monteiro, E., and Madeira, E. (2018). A rank scheduling
mechanism for fog environments. In 2018 IEEE 6th International Confer-
ence on Future Internet of Things and Cloud (FiCloud), pages 363–369,
Barcelona, Spain. IEEE.

Book chapters:

• Curado, M., Madeira, H., da Cunha, P. R., Cabral, B., Perez Abreu, D.,
Barata, J., Roque, L., and Immich, R. (2019). Internet of Things. In: Cyber
Resilience of Systems and Networks. In Cyber Resilience of Systems and
Networks, chapter 2, pages 381–401. Springer International Publishing.

Co-advisor of MSc Thesis:

• Abade, B. (2018). Context-Aware Improved Experiences in Smart Envir-
onment. Msc thesis, University of Coimbra, DEEC.

Cooperation papers:

• Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro, E. (2015).
Towards latency mitigation in emergency scenarios. In 2015 Cloudification
of the Internet of Things (CIoT), pages 1–4, Paris, France. IEEE;

• Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro, E. (2017).
Service placement for latency reduction in the internet of things. Annals
of Telecommunications, 72(1):105–115;

• Fernandes, J., Perez Abreu, D., Velasquez, K., Monteiro, E., and Martins,
A. (2017b). An architecture to support affordable internet of things applic-
ations: The suscity project case study. In 8th Congresso Luso-Moçambicano
de Engenharia V Congresso de Engenharia de Moçambique (CLME2017 -
V CEM), pages 1055–1056, Maputo, Moçambique. INEGI/FEUP;

• Velasquez, K., Perez Abreu, D., Gonçalves, D., Bittencourt, L., Curado,
M., Monteiro, E., and Madeira, E. (2017). Service orchestration in fog en-
vironments. In 2017 IEEE 5th International Conference on Future Internet

xvi

of Things and Cloud (FiCloud), pages 329–336, Prague, Czech Republic.
IEEE;

• Fernandes, J., Perez Abreu, D., Velasquez, K., Mateus, M., ao Carrilho, J.,
Silva, M., Monteiro, E., and Martins, A. (2017a). Building a smart city iot
platform - the suscity approach. In 48nd Spanish Congress on Acoustics
and the Iberian Encounter on Acoustics (TECNIACUSTICA), pages 1–9,
Coruña, Spain. Sociedad Española de Acústica (SEA);

• Abade, B., Perez Abreu, D., and Curado, M. (2018). A Non-Intrusive
Approach for Indoor Occupancy Detection in Smart Environments. MDPI
- Sensors, 18(11):1–18;

• Velasquez, K., Perez Abreu, D., Assis, M. R., Senna, C., Aranha, D. F.,
Bittencourt, L. F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E.,
et al. (2018). Fog orchestration for the internet of everything: state-of-the-
art and research challenges. Journal of Internet Services and Applications,
9(1):1–23;

• Velasquez, K., Perez Abreu, D., Paquete, L., Curado, M., and Monteiro,
E. (2020). A rank-based mechanism for service placement in the fog. In
2020 IFIP Networking, pages 64–72, Paris, France. IEEE; and

• Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro,E. (2021). Ser-
vice Placement for Latency Reduction in the Fog via Application Profiling.
Submitted for publication to IEEE Access, pages 1-15, IEEE.

In parallel with the execution of the tasks related to this thesis, participation in
different projects during this PhD course led to discussions and exchange of ideas
that resulted in the publications listed as cooperation papers, which are framed
within the context of this research and enriched the work performed. For these
outcomes, the participation was focused on sharing knowledge of the Cloud to
Internet of Things continuum and the approaches to enhance the resilience in
this scenario. For all the cooperative papers the participation involved, besides
the discussion and conception of ideas, the design and implementation of the
experiments, and the analysis of results.

xvii

Contents

Acknowledgments ix

Abstract xi

Resumo xiii

Foreword xv

List of Figures xxii

List of Algorithms xxiii

List of Tables xxv

Acronyms xxvii

1 Introduction 1
1.1 Background and Motivation . 2
1.2 Objectives and Contributions 4
1.3 Outline of the Thesis . 6

2 Resilience in the Cloud to Internet of Things Continuum 9
2.1 Understanding the Cloud to IoT Continuum 10

2.1.1 Virtualization for the Cloud to IoT Continuum 11
2.2 Resilience in Communication Infrastructures 14

2.2.1 Resilience Metrics . 16
2.2.2 Resilience Challenges in the Cloud to IoT Continuum . . 17

2.3 Addressing Resilience in the Cloud to IoT Continuum 19
2.3.1 Managing the Cloud to IoT Continuum 19
2.3.2 Connecting the Cloud to IoT Continuum 21
2.3.3 Embedding in the Cloud to IoT Continuum 22

2.4 Discussion . 24
2.5 Summary . 26

3 Improving the Resilience of the Cloud to Internet of Things Con-
tinuum 29
3.1 Understanding Smart City Scenarios 30
3.2 A Resilience Architecture for the Cloud to IoT Continuum . . . 31

3.2.1 IoT Infrastructure . 32
3.2.2 IoT Middleware . 33
3.2.3 IoT Services . 36

3.3 Interaction among the Modules of the Architecture 37

xix

Contents

3.4 An Ontology to Describe the IoT Infrastructure 40
3.4.1 Evaluating the Ontology 43

3.5 Summary . 47

4 Formalizing Service Chain Composition 49
4.1 Softwarization in the Cloud to IoT Continuum 50
4.2 A Framework for the Composition and Embedding of Service

Chains . 52
4.3 A Grammar to Specify Service Chains 54
4.4 A Pareto Analysis for Service Chain Composition 56
4.5 Dealing with the Embedding of Service Chains 59
4.6 Summary . 60

5 Resilient Service Chains through Smart Replication 63
5.1 A Formal Model for Virtual Function Embedding 64

5.1.1 Maximizing Acceptance Rate 65
5.1.2 Maximizing Survivability 66

5.2 A Genetic Approach for Virtual Function Embedding 68
5.2.1 Combining Node Availability, Disjointedness, and Tiered

Infrastructure in the Fitness Function 71
5.3 A Fluid Community Heuristic for Virtual Function Embedding . 72

5.3.1 Building Fluid Communities 73
5.3.2 Embedding Service Chains in the Fluid Communities . . 75

5.4 Summary . 76

6 Assessing the Service Chain Embedding Mechanisms 79
6.1 An Analysis of Cloud to IoT Simulation Tools 80
6.2 Describing the Evaluation Setup 84
6.3 Results and Analysis . 89

6.3.1 Failure Ratio . 91
6.3.2 Node Utilization . 95
6.3.3 Response Time . 97
6.3.4 Discussion . 102

6.4 Summary . 103

7 Conclusions and Future Work 105
7.1 Synthesis of the Thesis . 106
7.2 Contributions . 108
7.3 Future Work . 109

Bibliography 111

Appendixes 123
A Results - Fitness Function Values 123
B Results - Response Time 125

xx

List of Figures

2.1 The Cloud to IoT Continuum. 12
2.2 Types of Virtualization. 13
2.3 ITU-T E.800 Availability Model. (source [ITU-T, 2009]) 17

3.1 A Smart City Example with its Services Domains. 31
3.2 A Resilience IoT Architecture for Smart Cities. 34
3.3 Interaction Among the Modules - Fault Detected. 38
3.4 Interaction Among the Modules - QoS Drop Detected. 38
3.5 IoT Communication Infrastructure Global View. 39
3.6 Class Hierarchy. 40
3.7 IoT Infrastructure Entity and its Relationships. 41
3.8 Device entity model. 42
3.9 Device - Location relationship. 43
3.10 Testbed used for Validation. 45
3.11 Query #1 - Down devices. 45
3.12 Query #2 - Status of backup devices from the primary ones that

are down. 46
3.13 Query #3 - Links ranked by their jitter. 46
3.14 Query #4 - Links with smaller jitter (i.e., primaries vs backups). 47

4.1 An Example of a Generic SC and its Components. 51
4.2 An Example of a SC with Components in an Arbitrarily Order. 51
4.3 Composition and Embedding Framework. 53
4.4 A SC for a Generic IoT Application. 56
4.5 A SC for a Mobile Operator with Replication and Optional Order

in their Virtual Functions (VFs). 57
4.6 Result of the Pareto Analysis for the Mobile Operator SC. . . . 58
4.7 Embedding SCs in the Cloud to IoT Infrastructure. 59

5.1 Representation of the Crossover. 69
5.2 Workflow of FluidC for K = 2 communities and tiers = 2 (Ad-

apted from [Parés et al., 2018]). 74

6.1 Experiment Setup Workflow. 85
6.2 Nodes per Community for the FluidC and Girvan-Newman Meth-

ods. 87
6.3 Fitness Function Values by Generations for SCs using End2End

Replication in the Scenarios Evaluated. 89
6.4 Service Chains Failure Ratio - Tiny and Small Scenarios. 92
6.5 Service Chains Failure Ratio - Medium and Large Scenarios. . . 94
6.6 Node Utilization - noReplicas. 96

xxi

List of Figures

6.7 Node Utilization - vsReplica. 96
6.8 Node Utilization - End2End. 97
6.9 SC Response Time - Tiny Scenario - noReplicas. 98
6.10 SC Response Time - Tiny Scenario - vsReplicas. 99
6.11 SC Response Time - Tiny Scenario - End2End. 99
6.12 SC Response Time - Large Scenario - noReplicas. 100
6.13 SC Response Time - Large Scenario - vsReplicas. 101
6.14 SC Response Time - Large Scenario - End2End. 101

A.1 Fitness Function Values by Generations for SC using noReplicas
Replication in the Scenarios Evaluated. 123

A.2 Fitness Function Values by Generations for SC using vsReplicas
Replication in the Scenarios Evaluated. 124

B.1 SC Response Time - Small Scenario - noReplicas. 125
B.2 SC Response Time - Small Scenario - vsReplicas. 126
B.3 SC Response Time - Small Scenario - End2End. 126
B.4 SC Response Time - Medium Scenario - noReplicas. 127
B.5 SC Response Time - Medium Scenario - vsReplicas. 127
B.6 SC Response Time - Medium Scenario - End2End. 128

xxii

List of Algorithms

4.1 Requests Analysis. 53

5.1 Weighted Sum Genetic Algorithm. 70
5.2 Build Communities. 75
5.3 Fluid Communities by Tiers - FCT. 77

xxiii

List of Tables

3.1 Data Properties for the SusCity IoT Ontology. 44

5.1 Parameters and Variables for the ILP Model. 65
5.2 Correspondence of Nature and GA terms. 68

6.1 Non-technical Comparison of Cloud/Fog Simulators. 81
6.2 Technical Comparison of Cloud/Fog Simulators. 82
6.3 Metrics reported by the Cloud/Fog Simulators. 83
6.4 Graph Partition Evaluation. 86
6.5 Simulation Parameters. 88
6.6 Service Chains. 88
6.7 Execution Time (in seconds). 90

xxv

Acronyms

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

BNF Backus-Naur Form

BNG Broadband Network Gateway

CC Chain Composition

CD Community Detection

CoAP Constrained Application Protocol

CR Cognitive Radio

DACOM Data Compression

DAGG Data Aggregator

DANA Data Analytic

DB Data Base

DES Discrete-Event Simulation

DPI Deep Packet Inspector

E2E End-to-End

ETSI European Telecommunications Standards Institute

FCT Fluid Communities by Tiers

FluidC Fluid Communities

FF First Fit

FW Firewall

GA Genetic Algorithm

GENSEN Generic Sensor

ICT Information and Communication Technologies

IDPS Intrusion Detection Prevention System

IDS Intrusion Detection System

ICN Information Centric Network

IETF Internet Engineering Task Force

ILP Integer Linear Programming

xxvii

Acronyms

IP Internet Protocol

IT Information Technology

IoT Internet of Things

M2M Machine-to-Machine

MANO Management and Orchestrator

MDT Mean Down Time

MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition

MQTT Message Queuing Telemetry Transport

MTTF Mean Time To Failure

MUT Mean Up Time

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NSGA-II Non-dominated Sorting Genetic Algorithm-II

QoR Quality of Resilience

QoS Quality of Service

RPL Routing Protocol for Lossy networks

SC Service Chain

SDN Software-Defined Networking

SFC Service Function Chaining

SIoT Social Internet of Things

SPARQL SPARQL Protocol and RDF Query Language

TM Traffic Monitoring

VF Virtual Function

VF-CC Virtual Function - Chain Composition

VM Virtual Machine

VN Virtual Network

VNF Virtual Network Function

VNE Virtual Network Embedding

VOC Video Optimization Controller

VS Virtual Sensor

VSDN Virtual Software Defined Network

xxviii

Acronyms

WAN Wide Area Network

WiFi Wireless Fidelity

WOC WAN Optimization Controller

WSGA Weighted Sum Genetic Algorithm

WSN Wireless Sensor Networks

YAFS Yet Another Fog Simulator

xxix

Chapter 1
Introduction

Contents
1.1 Background and Motivation 2
1.2 Objectives and Contributions 4
1.3 Outline of the Thesis 6

— 1 —

CHAPTER 1. INTRODUCTION

Nowadays, technology is part of our lives that the dependency on its
benefits is growing faster than ever. With the arrival of the paradigms
of Smart Cities and the Internet of Things (IoT), citizens are able to

improve their quality of life. Given that sensors and actuators deployed in
Smart Cities usually have limited resources, today, it is a common practice to
use Cloud computing to extend the scope and benefits of Smart Cities. Taking
into consideration that communication between applications and devices is vital
for a good performance of services in a Smart City, it is necessary to design
new architectures and mechanisms to provide reliability in communications. A
key aspect that has to be addressed by the new communications approaches is
the possibility to recover the network and its services in case of faults, without
human intervention. This chapter provides the background and motivation of
this research which is aimed at improving the resilience of applications deployed
into the Cloud to IoT, besides presenting a discussion about the objectives and
contributions of this thesis.

1.1 Background and Motivation
The Smart City paradigm emerged to describe the use of new technologies
in everyday urban life including Information and Communication Technolo-
gies (ICT), as well as incorporating other aspects present in urban scenarios
such as modern transportation, education, and public safety. In these envir-
onments, the communication endpoints are often special devices, like sensors
and actuators (Smart Objects), that need to exchange data to coordinate their
operations. Specifically, the interaction between these Smart Objects and their
services/applications define the IoT; which is the interconnection of embedded
computing devices (e.g., sensors and actuators) using the Internet infrastructure
and the services/applications offered to end-users in order to improve their daily
lives.

The convergence between devices and services in Smart Cities is only possible
with good end-to-end network and computational resources quality; this could be
achieved with a Cloud computing infrastructure capable of processing resource-
demanding applications and a Fog approach to deliver real-time services in the
last-mile, even in the worst scenarios. The Cloud computing paradigm adoption
by network operators and service providers has been massive, given its benefits in
cost-savings, enhancement in work and management response, business agility,
and Quality of Service (QoS) [Marston et al., 2011]. Despite the initial success
of Cloud adoption, in recent years, there has been a tendency shift to bring
computational resources and services towards the edge of the network to fulfill
the requirements of emerging paradigms such as the IoT. In this scenario, there
is a larger scale of heterogeneous devices and lower latency that could represent
a significant challenge for the traditional Cloud environments [Velasquez et al.,
2018].

— 2 —

CHAPTER 1. INTRODUCTION

The Fog emerges as a solution to improve Cloud-based services by offering a
distributed and federated compute model to decentralize the deployment, man-
agement, and orchestration of services and applications across the entire network
infrastructure. Thus, the Fog computing paradigm lays on a tiered model that
enables ubiquitous-access scalable computing resources. This model aids the
placement of context-aware services and applications in computational nodes,
which are set between smart end-devices and centralized Cloud systems. As
soon as the Fog computing paradigm was adopted, the use of geographically
dispersed, low-latency computational resources increased the need for more spe-
cialized and dedicated nodes closer to the end-users; thus, the concept of Mist
computing emerged. The Mist nodes are deployed in the Mist computing layer
which resides in the peripheral of the network infrastructure, even closer to the
end-users [Iorga et al., 2018].

In a Smart City scenario, many services are designed to improve the quality of life
of the citizens, for example, urban traffic control, emergency health assistance,
home energy monitoring, and evacuation routes in case of natural disasters;
turning the access to these services into a critical aspect. The Fog can be used
to enable a fresh breed of services within the scope of the Smart Cities, such as
smart traffic lights and train maintenance, both of which require high levels of
availability and low levels of latency. Even more, augmented reality applications
for guided tours in cities, could take advantage of the computation power and
lower latency provided by the Fog and Mist.

The Cloud-Fog-Mist-IoT scenario is composed of a set of hardware and software
components organized in tiers, going from the Cloud in the top, through the
Fog and Mist, to the IoT in the bottom, allowing the interconnection of the
Smart City services. This landscape has been heavily influenced by virtualiz-
ation technologies, such as Network Function Virtualization (NFV) [Yi et al.,
2018], Software-Defined Networking (SDN) [Kreutz et al., 2015], and Service
Function Chaining (SFC) [Gupta et al., 2018], that enable the design, develop-
ment, management and deployment of network functions [Wright et al., 2015]
using the available hardware and software resources in the infrastructure. The
same approach can be used transversely in the Cloud to IoT continuum to
provide End-to-End (E2E) services.

End-to-End services and applications in the Cloud to IoT continuum can be
described by a VF Forwarding Graph that links the endpoints through a set
of interconnected VFs, called Service Chains (SCs). The landscape where the
SCs are deployed lies on an extremely diverse substrate infrastructure composed
of information and communication devices (i.e., Cloud nodes, Fog nodes, Mist
nodes, Sensors, Actuators) and links (i.e., wired and wireless channels), which
have to be orchestrated to host a plethora of services and applications with differ-
ent performance as well as functional requirements. In such a complex scenario,
resilience becomes a key factor to orchestrate and guarantee the continuity of
the services and applications even in the face of failures. One possibility to
increase the resilience level of the services is to use replicas; such that, in the
event of a node failure, the replica can be activated and the service will be able
to maintain its availability [Schöller and Khan, 2015].

— 3 —

CHAPTER 1. INTRODUCTION

The reliability and availability of the E2E services/applications are based on the
behavior of their functional blocks (i.e., VFs and their communication links) [Na-
kamura, 2016]. Therefore, when replicas are considered as a resilience mechanism
for Service Chains, it is possible to apply two methods: (1) the replication is
applied to the entire chain, or (2) the replication is applied to one or more VFs
along the chain. Besides the method used during the replication phase, it is also
essential to consider where to place the replicas (e.g., deploy the primary and
backup VF in different nodes to avoid that in the case of a failure in said node,
the replica can be activated) and how to formally represent the SC requests
considering the possibility of having replicas.

The service infrastructure provider is responsible for the orchestration, composi-
tion, embedding, and management of these SCs so that they can be instantiated
to satisfy end-user requirements. Consequently, there is the need to formal-
ize the tasks required from the service infrastructure provider, including the
guidelines for resilient support to the composition and embedding of SCs in the
Cloud to IoT continuum to satisfy the Smart City services and applications
requirements.

Taking into consideration the discussion presented so far, in the next section
the objectives and resulting contributions to help with the current issues in this
context are shown. For the rest of this thesis, when the term Cloud to IoT
infrastructure is used, it encompasses computing and networking elements from
the substrate infrastructure.

1.2 Objectives and Contributions
The main goal of this research is to improve the resilience of Cloud to IoT con-
tinuum by designing and developing new mechanisms that prevent failures in
services and applications, avoiding the disruption of computational and com-
munication elements. To achieve this goal, the following objectives have been
established:

• Define an architecture to enable the Cloud to IoT continuum to reach high
levels of resilience on the infrastructure and service levels;

• Define a group of strategies that can be applied to improve the resilience
levels of the Cloud to IoT continuum infrastructure for smart services;

• Design a set of mechanisms that implement the strategies aimed at the
enhancement of the resilience of the Cloud to IoT continuum;

• Determine a set of metrics that take into consideration the resilience of
the Cloud to IoT continuum infrastructure that guide the proposed mech-
anisms; and

• Validate the mechanisms and strategies proposed.

These objectives were designed in an incremental way to answer the question:
how to improve the resilience in the Cloud to IoT continuum? A thorough revi-
sion of the state of the art is performed on the topic to provide deep knowledge

— 4 —

CHAPTER 1. INTRODUCTION

about the scenario where the mechanisms and strategies are implemented. Then,
a set of resilience metrics is selected to determine the efficiency of the mechan-
isms and strategies. This scenario is inspired by the Smart City paradigm that
provides the overall context for this research work. Smart communication infra-
structure virtualization and replication mechanisms are designed and developed
using the scenario previously identified.

The hypothesis for these mechanisms is based on the fact that using disjoint
nodes for the embedding of replicas and the different tiers in the Cloud to IoT
continuum could enhance the resilience of the SCs.

Taking into consideration the goals described above, this thesis has produced
the following contributions:

• Contribution 1, A Resilience Architecture for the Cloud to IoT
Continuum. To deal with the intricacy and heterogeneity of the Cloud to
IoT continuum, an architecture aimed to enhance the resilience of services
and applications is described in Chapter 3. From this architecture, it is
important to point out two significant outcomes, the Resilience Manager
module which implements the embedding mechanisms proposed and val-
idated in Chapters 5 and 6 respectively, as well as the ontology designed
and implemented to describe an IoT infrastructure;

• Contribution 2, A Framework for the Composition and Embed-
ding of SCs. One of the main contributions of this thesis lays in a stand-
ard approach to efficiently handle requests for virtualized services while
improving the availability of Cloud to IoT continuum services/applica-
tions. Thus, Chapter 4 presents a composition and embedding framework
designed and implemented to fulfill this goal. The composition element
of the framework uses a formal grammar to validate the requests before
performing a Pareto analysis focused on optimizing the selection of ap-
plication components according to a given set of goals (see Sections 4.2
to 4.4);

• Contribution 3, A Conceptual and Technical Review of Simulat-
ors for the Cloud to IoT Continuum. The selection of a proper tool
for the validation and assessment of approaches and mechanisms is a key
aspect of scientific research. For the Cloud to IoT continuum scenario,
there is a set of emulators and simulators that could be used; however,
which is the more adequate for a particular research? In Chapter 6, Sec-
tion 6.1 an analysis of a set of simulators for Cloud/Fog environments is
presented, describing their main characteristics and offering a comparison
among them intending to enlighten the decision process for the selection
of the proper simulation tool;

• Contribution 4, A Mathematical Model for the Embedding of
VFs to Enhance Resilience via Replication. An optimal solution
for the embedding of VFs in the Cloud to IoT continuum aimed to im-
prove availability was the first step to studying this embedding problem
defining an upper bound (see Section 5.1). The mechanism uses a bi-level

— 5 —

CHAPTER 1. INTRODUCTION

Integer Linear Programming (ILP) formulation. On the first level, the
goal is to maximize the acceptance rate; and the second one is focused on
maximizing survivability by placing the VFs in the most reliable nodes.
The limitations found in this approach regarding the computational cost
motivated the next two mechanisms;

• Contribution 5, A VFs Embedding Mechanism based on a
Genetic Algorithm (GA) aimed to Improve Resilience Using a
Weighted Sum of Metrics. The conceptual definition, implementation,
and assessment of an embedding mechanism that uses a GA approach is
another contribution of this thesis (see Section 5.2). This mechanism uses
a fitness function that combines node availability, use of disjoint nodes, and
the infrastructure tier to which the node belongs in the decision making;
and

• Contribution 6, A VFs Embedding Heuristic Mechanism based
on Graph Partition to Increase Resilience. The proposal, design,
and evaluation of a heuristic-based mechanism to enhance the resilience of
SCs and their VFs is one of the contributions of this thesis (see Section 5.3).
The mechanism uses a Fluid Communitiess approach for graph partition;
specifically, the VFs are to be embedded in communities performing a
vertical search in the Cloud to IoT continuum to find the optimal node
considering its availability, to improve response times for the SCs.

Having discussed the goals and contribution of this research, the next section
shows the outline of the thesis.

1.3 Outline of the Thesis
The remainder of this thesis is organized into seven chapters. Chapter 2 offers
the research context, describing the Cloud to IoT continuum and introducing
the concept of resilience in this environment. The chapter also presents possible
solutions to improve the resilience in the Cloud to IoT continuum and shows an
analysis of the existing approaches to handle this issue.

Chapter 3 introduces an architecture to improve the resilience of smart services
in the Cloud to IoT continuum outlining the functions of its different modules
and their interaction. Furthermore, the chapter presents an ontology for the
description of the IoT infrastructure.

Chapter 4 talks about the softwarization in the Cloud to IoT continuum and the
need of a standard way to represent the composition of VFs in SCs. A solution
for the composition of SCs is provided in the design of a formal grammar for the
representation and verification of SCs that allows the specification of the tiers
in which to embed the VFs as well as the number of desired replicas.

Chapter 5 presents three different embedding mechanisms for the SCs formally
defined in Chapter 4. The mechanisms include an ILP based approach, a GA
approach, and a heuristic based in graph partition.

— 6 —

CHAPTER 1. INTRODUCTION

Chapter 6 shows an analysis of different Cloud/Fog simulation tools that help
in the selection of the proper tool, to then describe the evaluation setup for
the embedding mechanisms. Results from simulations are also analyzed in this
chapter, including the SCs failure ratio, the infrastructure node utilization, and
SCs response time.

Chapter 7 concludes this document, offering a synthesis of the thesis and a
projection on possible research paths for extending this work.

— 7 —

Chapter 2
Resilience in the Cloud to Internet
of Things Continuum

Contents
2.1 Understanding the Cloud to IoT Continuum 10

2.1.1 Virtualization for the Cloud to IoT Continuum . . . 11
2.2 Resilience in Communication Infrastructures 14

2.2.1 Resilience Metrics 16
2.2.2 Resilience Challenges in the Cloud to IoT Continuum 17

2.3 Addressing Resilience in the Cloud to IoT Continuum 19
2.3.1 Managing the Cloud to IoT Continuum 19
2.3.2 Connecting the Cloud to IoT Continuum 21
2.3.3 Embedding in the Cloud to IoT Continuum 22

2.4 Discussion . 24
2.5 Summary . 26

— 9 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

In computing and communication infrastructures, it is very important to
take into consideration how to deal with possible faults to keep alive the
components that allow maintaining the continuity of the services and ap-

plications. With this in mind, it is not only necessary to pay attention to the
normal infrastructure operation state, but also to failure situations. The dif-
ferent failure situations are specified by the availability status of the links and
nodes in the substrate infrastructure, as well as by elevated volumes of traffic re-
lated to a particular service/application. Thus, management and orchestration
mechanisms are required to guarantee the proper functioning of services and ap-
plications that lay under the substrate infrastructure of service providers.

Since the communication infrastructure in the Cloud to IoT continuum plays a
crucial role in nowadays services/applications, the resilience of this infrastruc-
ture becomes critical to achieve higher levels of availability of services and ap-
plications. The term resilience has been included in different scientific fields
as a possible solution to manage unexpected behaviors and challenging circum-
stances, and it is used to indicate how a system responds to changes from inside
or outside itself. This chapter introduces the concept of resilience in the Cloud
to IoT continuum and some techniques based on virtualization used to improve
it. A review of the work done to enhance the resilience in the Cloud to IoT
continuum is also performed to identify open issues in this field of study with a
discussion focused on the context of IoT and Smart Cities.

2.1 Understanding the Cloud to IoT Continuum
To bring to reality the services and applications encompassed by the Smart City
ecosystem, a strong ICT infrastructure must provide communication, storage,
and computing support [Hou et al., 2016]. “A Smart City is a system that
enhances human and social capital wisely using and interacting with natural
and economic resources via technology-based solutions and innovation to ad-
dress public issues and efficiently achieve sustainable development and a high
quality of life on the basis of a multi-stakeholder, municipally based partner-
ship” [Fernandez-Anez, 2016]. The IoT enables the interaction of common in-
telligent objects to collect and analyze massive amounts of data; on the other
hand, the Cloud provides the large storage and high computational capabilities
required to deal with this scenario.

The Cloud computing paradigm is adopted in order to enable ubiquity, con-
venient, and on-demand access to the services in a Smart City scenario. The
Cloud provides a pool of resources (i.e., network, storage, compute) that
can be provided via the orchestration of the resources via the service pro-
vider [Peter Mell, 2011]. The Cloud offers several characteristics, such as broad
network access, elasticity, and resource pooling. However, large physical dis-
tances and extensive data to process and transport make the Cloud suffer from

— 10 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

some drawbacks such as large end-to-end delay, traffic congestion, and commu-
nication costs [Mukherjee et al., 2018]. In more recent years, and with the advent
of newer services and applications, especially with the emergence of the Smart
City paradigm, these and other different challenges arise [Chiang and Zhang,
2016]. The technological developments have brought the above mentioned tasks
(i.e., storage, computing, and management) closer to the end-user in order to
provide lower latency, mobility support, and location awareness. Fog comput-
ing is the more recent paradigm proposed to complement the use of the Cloud
and harbor these newer requirements [Dastjerdi and Buyya, 2016]. The Fog is
meant to enable the use of computational resources near IoT sensors/actuators
facilitating local storage and preliminary data processing, thus reducing network
traffic and response times and, ultimately, decision making.

For more specialized and dedicated nodes with lower capacities than the Fog
nodes emerges the paradigm of Mist computing. The Mist is also referred to as
a lightweight Fog, and is located even closer to the peripheral of the network,
bringing the Fog closer to the smart devices in the IoT [Iorga et al., 2018]. Thus,
the resource pool decreases its capacity while going down in layered network
infrastructure, from the Cloud, Fog, Mist, and ultimately the IoT layer. The
IoT connects objects around end-users to provide seamless communication and
contextual services provided by them. The main idea behind the IoT is to
materialize the interaction and cooperation of smart objects to make services
better and accessible anytime, anywhere [Lee et al., 2012].

Figure 2.1 depicts the scenario discussed above. On the top layer, large data-
centers offer access to extensive resources (i.e., storage, network, compute) to
provide ubiquity and elasticity to the Smart City services/applications. On the
lower layer, the Fog nodes offer smaller resource capacity but with the advantage
of pre-processing data to reduce the network congestion, as well as reducing the
response time to end-users. The following layer, comprised of the Mist nodes,
offers an even smaller resource pool in the immediate vicinity of the end-user, in
the IoT layer, where a set of smart objects (i.e., sensors and actuators) provide
smart services that include sensing applications to control lighting and tem-
perature in a smart home or control of traffic lights in smart transportation
services.

The impact of the Cloud to IoT continuum in the development of novel services
and applications for Smart Cities will depend in large part on the efficiency of
the orchestration mechanisms specifically designed to manage such a complex
scenario [Barcelo et al., 2016]. Accordingly, it is necessary to design, develop, and
implement procedures and mechanisms to exploit the characteristics of the edge
of the communication infrastructure, and paying special attention to maximizing
the availability of services and applications, even in case of failures.

2.1.1 Virtualization for the Cloud to IoT Continuum
For decades, services and communication infrastructures were operated directly
over the bare metal of a set of devices designed to perform specific tasks (e.g.,
servers, routers, firewall); however this approach has shifted from hardware-

— 11 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

Smart

Homes

Smart

Grids
Smart

TransportationeHealth

C
lo

u
d

F
o
g

M
is

t
Io

T

Figure 2.1: The Cloud to IoT Continuum.

based to software-based mode thanks to virtualization technologies which paved
the way to replace physical equipment by software capable to do the same func-
tions [Pujolle, 2020]. Virtualization is a technology that allows the creation of
software-based, or virtual, functions to fulfill particular tasks.The key compon-
ent of the virtual approach lays in a layer of software separated from the physical
resources usually called Hypervisor, which is in charge of managing and dividing
the physical resources and exposing them to the virtual environments at upper
layers [Uhlig et al., 2005].

Using virtualization technologies, resources are partitioned as required from the
physical environment to the virtual ones. Users interact with and execute their
tasks or functions in these isolated virtual environments. When an user, service
or application issues an instruction or task that needs additional resources from
the physical environment, the Hypervisor transfers the request to the physical
system and manages the changes. The key properties of virtualization are [Uhlig
et al., 2005; Pujolle, 2020]:

• Partitioning: enables running different functions over the same physical
device, distributing the physical resources;

• Isolation: facilitates detachment of failures and security risks to a single
virtual instance, preserving the performance of other virtual instances that
use the same physical device;

— 12 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

• Encapsulation: allows to save the entire state of a virtual instance into a
file that can be moved or copied to another physical device; and

• Hardware independence: allows the migration or instantiation of any vir-
tual instance to any physical device.

Virtualization can be divided into four types, according to the functionality or
resource that is being virtualized, and are depicted in Figure 2.2. Figure 2.2a
shows the data virtualization. Data spread across the storage infrastructure can
be seen as a consolidated single source, providing processing capabilities that
can include new data sources to the pool and applying any data transformation
required by the end-user.

Hypervisor

(a) Data Virtualization.

Hypervisor

(b) Processing Virtualization.

Hypervisor

(c) Operating System Virtualization.

Hypervisor

(d) Network Virtualization.

Figure 2.2: Types of Virtualization.

Figure 2.2b illustrate the processing of CPU virtualization. This process enables
the use of a single central manager that deploys simulated processing environ-
ments, either desktop or server, with the additional advantage of allowing mass
configuration, updates, and security checks. Particularly in the case of server
virtualization, computers designed for more specific tasks (unlike the general
purposes desktops) involves the partitioning of physical resources, so the com-
ponents can be distributed to serve multiple functions. Figure 2.2c depicts the
operating system virtualization. This virtualization type allows the use of differ-
ent operating systems side-by-side over the same computer, virtualizing at the
kernel level. As consequence, the security is increased, since all virtual instances
can be monitored and isolated, also reducing the time needed from Information
Technology (IT) teams for administrative tasks, such as system updates.

— 13 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

Figure 2.2d describes virtualization at the network level, also called NFV, which
distributes key network functions (e.g., file sharing, IP configuration) along with
the network environment. Since the software functions are independent of the
physical devices where they are embedded, they can be packaged and assigned
to different network environments. This approach reduces the number of phys-
ical devices (e.g., switches, firewalls, routers) needed to create multiple net-
works.

Next-generation communication infrastructures are being shaped by the soft-
warization of services and functions, as well as, the virtualization of physical
resources. New approaches are being developed to manage the compute, stor-
age, and networking resources; thus, application components are provisioned as
virtual instances using different virtualization technologies in order to fulfill the
requirements of the services and the capabilities of the communication infra-
structure [Galis et al., 2014]. Technologies such as SDN [Kreutz et al., 2015],
NFV [Yi et al., 2018], and SFC [Gupta et al., 2018] enable this landscape by com-
plementing the Cloud to IoT continuum, facilitating elasticity of the services,
migration when needed, and adaptability of general purpose hardware for spe-
cific functionalities required by applications such as Smart City services.

Virtualization also impacts the resilience levels of services, applications, and
communication infrastructures. Service instances can be migrated, replicated,
or instantiated online to recover from failures. A failing computing or network
node can be instantiated in a different physical device recovering its tasks at the
infrastructure. This opens a new door for resilience solutions for the Cloud to
IoT continuum. The basic concepts of resilience and its metrics are presented
in the following section.

2.2 Resilience in Communication Infrastructures
Despite the literature on network resilience being relatively broad, there is almost
no consensus regarding resilience in the network management context. Some of
the definitions available for resilience in this field include: (1) the ability to
come back to normal conditions after the occurrence of a disruptive event, (2)
the capability of a system to maintain its functions in the face of internal and
external changes, (3) the ability of a system to absorb unpredictable change and
still keep its essential functions, and (4) the aptitude of the system to withstand
a significant disruption within admissible degradation parameters and to recover
within an acceptable time and cost [Vugrin et al., 2010; Ahmadian et al., 2020].
For this reason, and before moving forward with the discussion, it is necessary
to specify the resilience definition to adopt for this research.

Starting from the principle that the main aspect of resilience lays in the ability
of an entity to recover from an external disruptive event, in this work, resilience
in communication infrastructures is defined as a set of mechanisms to ensure
service/application and networking robustness, by guaranteeing that resources
and components are restored in case of failures. For the restoration, it is possible
to use a proactive approach or protection (actions before a failure) and/or a

— 14 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

reactive approach or restoration strategy (actions after a failure) to improve
the availability of nodes and links of a communication infrastructure [Pioro and
Medhi, 2004].

Reactive techniques do not pre-allocate resources for backup, instead they deal
with failures once they take place. Using this approach might lead to slower reac-
tion time for recovery, but would be less demanding with regards of resource con-
sumption from the service provider perspective. Contrarily, proactive solutions
pre-allocate backup resources to guarantee fast recovery of services/applications
in case of failures of components in the communication infrastructure [da Fon-
seca and Boutaba, 2015].

From the viewpoint of the node failure, proactive approaches use backups or rep-
licas of services that are allocated since the beginning of the lifetime of the ap-
plication; while reactive approaches instantiate new replicas of services affected
by failures after said failure occurs. For link failures, the resilience is focused
on the path concept. A path is a logical communication provision identified by
source and destination end-components, which is associated to a physical inter-
face [Cholda et al., 2009]. Thus, the proactive approach or path protection is
understood as reservation of resources at the time the flow on the path is set up.
In path restoration (reactive approach), when a path is broken a Management
and Orchestrator (MANO) module starts the restoration process by first calcu-
lating the backup path using the available resources and then re-establishing the
flow.

Despite of the kind of failure recovery technique used, it is necessary to perform
the following tasks [Papadimitriou and Mannie, 2006]: (1) Fault Detection, where
an anomaly situation is identified; (2) Fault Localization, during this phase the
point of failure is determined; (3) Fault Notification, here the failure is informed
to the appropriate entity that has to triggering the recovery process; and (4)
finally, the actions to manage the problems and restore the normal operation
are executed in the Recovery Switching phase. The MANO module in the com-
munication infrastructure is in charge to execute the previous tasks to trigger
the proper actions to guarantee the resilience of services/application in case of
any disruption meanwhile achieving the end-users requirements.

Taking into consideration the previous discussion, resilience (Res) denote a pro-
portionality of the availability (Ava) and recovery (Rec) [Sousa, 2013], as per
Equation 2.1.

Res = Ava ∗Rec (2.1)

The main focus of resilience is to provide mechanisms to support continuity
to systems and infrastructures (applications and network). However, when dif-
ferent resilience techniques are available, it is important to make a conscious
decision about the proper technique regarding a particular set of requirements.
In order to be able to make a choice in this context and also to compare the
performance of the mechanisms to enhance resilience, it is necessary to define
metrics to measure the behavior and results of the mechanisms that deal with

— 15 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

resilience.

2.2.1 Resilience Metrics
To assess the best mechanisms to improve the resilience of services and applic-
ation in the Cloud to IoT, resilience metrics are defined in this subsection. An
important concept that has to be defined in this context is the Quality of Resi-
lience (QoR). QoR is defined as the features of a communication infrastructure
that affect the QoS perceived by users and are related to resilience [Cholda et al.,
2007]. Considering this definition, it is possible to divide the metrics that meas-
urement resilience according to their reliability attributes. A discussion about
the reliability attributes is presented below [Cholda et al., 2007].

Continuity is the first reliability attribute and denotes the length of a period
of time during which a service is not interrupted as a consequence of a failure.
The Mean Time To Failure (MTTF) could be used to measure the continuity.
MTTF is defined as the average duration of time from the time when a service
request was received, assuming that the service was up at this time, until the
service fails for the first time. In many systems, this metrics is estimated or
approximated using the notion of Mean Up Time (MUT). Figure 2.3 shows a
binary scenario of availability proposed by the ITU-T [ITU-T, 2009], where the
system is considered available (state = 1) or unavailable (state = 0). Using this
model, MUT corresponds to the moments where the system is in an available
state, namely, where the model’s function reaches the upper bound. Equation 2.2
represents a generic case of the MUT with n failures. In the absence of failures,
Equation 2.3 is used since tFailn = 0 and tAvain = 1.

MUT = (tFail1 − tIni) +
n∑

i=2
(tFaili − tAvaii−1) + (tEnd− TAvain) (2.2)

MUT = tEnd− tIni (2.3)

Downtime is the second reliability attribute, and is related to the time period
in which a service is inaccessible because of a failure in the communication
infrastructure. The length of the interruption may be determined using Mean
Down Time (MDT). MDT is the mean time duration from a service failure to
the point when the service is recovered. In Figure 2.3, MDT is represented by
the moment where the service is unavailable or reach the lower bound of the
model’s function. In a general case, MDT is determined by Equation 2.4. In
absence of failures, the MDT is equal to zero (MDT = 0).

MDT =
n∑

i=1
(tAvaii − tFaili) (2.4)

— 16 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

Figure 2.3: ITU-T E.800 Availability Model.
(source [ITU-T, 2009])

With the definitions of MUT and MDT, it is possible to describe the availability
(Ava) of a system as a function of these two metrics. The ITU-T [ITU-T, 2009]
proposes Equation 2.5 to relate the availability to the MUT and MDT. In
the computing and communication environment, is most useful the concept of
availability as steady-state, that may be understood as the probability of finding
an item (i.e., object, device, network, and connection) in an operating state at
any time that its service is required [Grover, 2003].

Ava = MUT

MUT + MDT
(2.5)

The definitions of resilience discussed so far are general enough to be applied
with different methods and mechanisms with the respective adjustment. The
metrics exposed (Ava, MUT, MDT) can be used to determine the performance of
mechanisms aimed at improving the resilience of the Cloud to IoT continuum,
which provide the communication infrastructure to end-user services/applica-
tions. Some resilience challenges in the Cloud to IoT continuum are described
below.

2.2.2 Resilience Challenges in the Cloud to IoT Continuum
Service continuity is not only an end-user desire but often a regulatory require-
ment, as Cloud and communication providers are considered to be part of critical
infrastructure that supports vital economic, government and citizens basic re-
quirements; thus, there has to be a continuity in their services and applications.
In the complex and diverse environment where the Cloud to IoT continuum acts,
a seamless interaction between all the actors that build the infrastructure, from
the physical (e.g., sensors, actuator, smart objects, links and nodes) to the lo-
gical perspective (e.g., service, applications, protocols), is a critical aspect. Even
more, in this kind of scenario, the availability of the physical and logical devices
and their services represent a key requirement, given that some critical applica-

— 17 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

tions such as assisted driving, augmented maps, and health monitoring require
continuous availability while providing real-time feedback to end-users.

An improved connectivity between Cloud services and devices in the IoT is
necessary to support the emerging applications that rely on this infrastructure.
To deal with disruptions, it is required to have mechanisms that enhance the
resilience both at infrastructure and service levels. Resilience has been defined
as the ability of the communication infrastructure to provide and maintain an
acceptable level of service in the face of various faults and challenges to normal
operation [Sterbenz et al., 2013].

The following objectives from the resilience point of view have to be considered
in this context:

1. It is necessary to ensure the availability of services and applications to
achieve a successful end-to-end communication;

2. During the design and implementation of services and applications, it is
necessary to define the expected availability of the constituent function
blocks; and

3. A module or component (e.g., MANO instance) to detect and mitigate
failures in the infrastructure is required.

To increase the resilience of smart objects that enable interaction with the phys-
ical world, replication and backup schemes must be implemented; however, how
is it possible to efficiently adopt the aforementioned schemes? One traditional
approach is using a primary and backup model, where devices and services are
duplicated for robustness purposes. This would not be adequate, considering
that this strategy could waste valuable resources in the already constrained Fog
and Mist nodes in case no failure occurs. In this context, virtualization mechan-
isms have proven to be useful from the cost and operational perspectives.

Emerging virtualization paradigms like Containers [Pahl and Lee, 2015] and
NFV [Matias et al., 2015] allow the improvement of the performance and
availability of service and device components. Once mapped as a logical item,
physical objects can be handled like any other piece of software, granting the
possibility to apply migration, instantiation, and other well-known techniques
over them. Thus, a failure concerning a service or device can be recovered by
migrating or instantiating a logical object over a different physical device.

From the communication point of view, the traditional approach of distributed
systems relies on trying to hide the distributed nature of the system to offer
a perspective of a single machine. In Cloud/Fog environments, this “hiding”
approach remains for the network layout considering that Cloud services just
expose high-level information about their setup and distribution. On the other
hand, in Fog scenarios it is essential to know about the network topology to take
advantage of the geographical distribution which requires a more fine-grained
topology abstraction. Thus, it is necessary to have an efficient and flexible
way to control the route of the data and the topology of the communication
infrastructure in the IoT.

— 18 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

Regarding the resilience at the communication infrastructure level, an approach
in two phases could be applied using a detailed fine-grained topology abstraction
at Cloud and Fog levels. In a first step, an offline mechanism to find disjoint
paths between the components of the IoT could be executed to obtain backup
paths that can be switched in case of failures. In a second stage, the detection
of a failure and the migration of the data flows will be performed inline. To
achieve this last task, the use of path-splitting and multipath routing strategies
appears to be a feasible solution Perez Abreu et al. [2017b].

To guarantee a smooth work of the proposals mentioned above from the resi-
lience perspective, an Orchestrator should be in charge of intelligent migration
and instantiation of resources and services, providing a global view of the status
of the Cloud to IoT continuum. Furthermore, the interaction between federat-
ive Clouds and services represents an additional challenge since the Orchestrator
has to unify politics from different administrative entities smoothly. Some works
have already been carried out to deal with resilience in the Cloud to IoT con-
tinuum. An analysis of said works is provided in the next section.

2.3 Addressing Resilience in the Cloud to IoT Con-
tinuum

The surplus and heterogeneity of devices in the Cloud to the IoT represent a new
challenge for the mechanisms that manage the interaction and communication
between smart objects. In order to satisfy these new demands, various research
efforts have been carried out. This section shows a set of works related to
the Cloud-Fog-Mist-IoT, which outcomes could be used to enhance the level
of resilience in Cloud to IoT continuum. These works are grouped into three
categories: (1) Managing the Cloud to IoT Continuum, focused on architectures
to orchestrate the Cloud to IoT; (2) Connecting the Cloud to IoT Continuum, to
address efforts regarding networking issues in this context; and (3) Embedding
in the Cloud to IoT Continuum, concerning how to embed end-user requests in
a substrate communication infrastructure.

2.3.1 Managing the Cloud to IoT Continuum
The Cloud to IoT continuum described in Section 2.1 brings challenges at many
different levels. Looking from a broader perspective, one of the first challenging
issues is the modeling of the managing and orchestration elements that need
to be able to perform the deployment of the services and applications [Chen
et al., 2015; Satyanarayanan et al., 2009] in the underlying communication in-
frastructure and handle tasks inside the environment, while at the same time
guarantying good performance and service resilience for end-users. This subsec-
tion provides a look at some of the efforts already made in designing general
solutions to manage the Cloud to IoT continuum and its components.

A reference architecture for the IoT in the context of the IoT-A European pro-
ject [Internet of Things Architecture, 2010] is described by Bassi et al., [Bassi

— 19 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

et al., 2013]. The idea behind this research is to provide a general IoT archi-
tecture that could be instantiated in more concrete use-cases using a domain
model that allows representing the key concepts involved in the IoT. Pohls et
al., [Pöhls et al., 2014] took some ideas of the IoT-A architecture to develop
a framework in the context of the RERUM FP7 European Union project [RE-
RUM, 2013] allowing that IoT applications for Smart Cities to add security and
privacy mechanisms in early design phases.

Datta et al., [Datta et al., 2014] propose an IoT gateway centric architecture
to support Machine-to-Machine (M2M) services, allowing real-time interaction
between clients and IoT devices via a wireless gateway. Atzori et al. [Atzori
et al., 2012] combine social networks and IoT, defining the Social Internet of
Things (SIoT). In their work, they describe an architecture that enables the in-
tegration of things in a social network and analyze the characteristics of the pro-
posed network structure using simulations. Hao et al., [Hao et al., 2014] propose
an architecture for the future Internet, called DataClouds, based on Information
Centric Networks (ICNs) to improve the accommodation of services. The archi-
tecture takes into consideration the characteristics of data-centric services under
the IoT, using a logical and a physical layer that allows to group users in order
to enhance how data is shared and disseminated.

Jin et al., [Jin et al., 2012] present four different architectures based on the IoT
that enable various Smart City applications, including their QoS requirements.
The proposed network architectures are (1) Autonomous, that supports networks
not connected to the Internet; (2) Ubiquitous, where Smart Object networks are
a part of the Internet; (3) Application-Layer Overlay, which uses NFV to reduce
the stress and congestion among nodes; and (4) Service-Oriented, where special
gateways deal with the intrinsic heterogeneity of the IoT environment.

Montori et al., [Montori et al., 2018] introduce an architecture focused on data
that handles heterogeneous data sources from the IoT combined with data from
crowdsensing campaigns. The unified data is used for IoT service composition
enabling monitoring tasks in a Smart City environment by exploiting end-users
devices. The proposed architecture is tested in a controlled environment via
a set of IoT services connected among them in order to collect environmental
data and display it to end-users via a dashboard. Qiu et al., [Qiu et al., 2020]
present an architecture for the Industrial IoT including proposals for routing,
task scheduling, and data storage and analytics. The architecture is comprised
of the Cloud layer and the Edge layer. The authors also include a discussion on
application scenarios including Smart Grids, Manufacturing, and Smart Logist-
ics.

The service provider Orchestrator or Manager must have a global view of all the
resources and services, from the edge of the infrastructure (i.e., IoT and Fog)
to the computation and storage place on top in the Cloud. This global view
will allow implementing smart mechanisms to optimize communication tasks,
which are described in the following subsection. A comparative analysis of this
set of works led to the identification of open issues that have to be addressed
in order to improve resilience in the Cloud to IoT continuum. The discussion is

— 20 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

presented in Section 2.4.

2.3.2 Connecting the Cloud to IoT Continuum
The evolution of the Cloud to IoT continuum to support new types of applic-
ations and services brings additional demands to the network infrastructure
because of the presence of challenges such as the heterogeneity of the devices
interconnected, the increasing number of end-users accessing the services, and
the massive amount of data exchanged. In addition, the interconnection must
consider the characteristics of entities that use the network, new services and
applications provided over the Internet, and communication platforms such as
wireless technologies and Cloud to IoT systems. A discussion about how to
enhance communication among devices in Cloud-Fog-Mist-IoT environments is
presented below.

The first group of works is related to the IoT infrastructure and proposes im-
provements directly aimed at the physical infrastructure that allows the commu-
nication between smart objects. Particularly, these works present mechanisms
for topology control to grant fault tolerance by smart device placement or by
taking advantage of the communication infrastructure providing alternative and
simultaneous routing paths.

Han et al., [Han et al., 2010] present two algorithms for relay node placement
to provide fault tolerance (full and partial) considering the heterogeneity of the
wireless sensor network, particularly the different transmission radio footprint.
Al-Turjman et al., [Al-Turjman et al., 2011] introduce a grid-based deployment
for relay nodes to maximize the disjointed-sectors connectivity taking into con-
sideration cost constraints.

Le et al., [Le et al., 2014] propose three multipath solutions based on Routing
Protocol for Lossy networks (RPL). The first one consists in an energy-based
load balancing strategy; the second one focuses on a fast local repair approach,
and the last one is a combination of the previous two schemes. Pavković et
al., [Pavković et al., 2011] present an adaptation of the IEEE 802.15.4 cluster-
tree to enable the association of different parent nodes taking advantages of
super-frames at the MAC layer. Using this modification, authors develop an op-
portunistic forwarding scheme that allows RPL to forward packets over multiple
paths.

A set of mechanisms focused on a global view of the network infrastructure, from
the IoT to the Cloud, Fog, and Mist environments, to allow smart decisions
are proposed in the next group of works. The SDN approach [Kirkpatrick,
2013] is used in these researches providing a finer granularity of the network
infrastructure and making possible to improve the resilience of the network (e.g.,
applying better forwarding and routing decisions).

Francisco et al., [Ros and Ruiz, 2014] propose a placement solution for SDN
controllers using a k-terminal-reliability metric to increase the probability of
having at least one operational path in the network. Beheshti and Zang [Beheshti
and Zhang, 2012] introduce a set of algorithms to improve the resilience of the

— 21 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

connection between control and data planes in SDN, based on resilience-aware
controller placement and traffic control routing in the network.

Stephens et al., [Stephens et al., 2013] present an SDN resilience architecture
to build networks with forwarding backups paths that, assuming large forward-
ing tables at data plane level, is resilient against t link failures. Reitblatt et
al., [Reitblatt et al., 2013] propose a language for coding fault-tolerant network
programs based on regular expressions. It allows specifying the paths of packets
in the network along with the degree of fault tolerance required.

ElDefrawy and Kaczmarek [ElDefrawy and Kaczmarek, 2016] introduce a pro-
totype for an SDN controller for Byzantine faults using a replication strategy.
The performance of their proposal is assessed against other standard SDN con-
trollers, and the results indicate that their proposal is not applicable for large
scenarios.

Rehman et al., [Rehman et al., 2019] present a survey about SDN fault toler-
ance research efforts. The idea is identifying fault tolerance requirements for
SDN environments and how it can be addressed. Despite a complete discussion
regarding how to tackle faults at data and control planes in SDN is presented
in this research, no particular solution or mechanism is proposed.

Malik et al., [Malik et al., 2020] propose an approach for fault management at the
data plane aimed at eliminating the convergence time required to allocate new
network paths to forward the traffic once a failure is detected. The availability
of the services should be increased by reducing the service disruption time using
a time windows approach to reconfigure the network before anticipated failures
take place in the communication infrastructure.

These works handle fault tolerance to increase resilience by managing the com-
munication infrastructure. Virtualization technologies have paved the way to
build a reliable Cloud to IoT infrastructure not only from the communication
point of view but also taking into consideration services and applications. An
analysis of the limitations of this set of works is provided in Section 2.4. Some
approaches based on smart mechanisms for embedding virtual services/applic-
ations in the substrate communication infrastructure are presented in the next
subsection.

2.3.3 Embedding in the Cloud to IoT Continuum
Virtualization techniques, in the context of the Cloud to IoT, have been used to
provide services and functions to reach end-user requirements, for example, when
the NFV approach is used to map a virtual network in a substrate communica-
tion infrastructure (see Subsection 2.1.1). When this approach is implemented,
a key aspect to consider lays in the embedding mechanisms adopted to perform
the mapping of the VFs that belong to a SC in the best devices of the physical
infrastructure to enhance the QoS of end-users, as well as, fulfill the metrics of
the service providers.

There has been some work previously done in VFs embedding, and more specific-

— 22 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

ally, concerning how to embed requested VFs in the substrate communication
topology with the objective of increasing the survivability of the SCs. This sub-
section presents some works on embedding before introducing works focused on
the area of resilient embedding.

Chowdary et al. [Chowdhury et al., 2009] propose two heuristics (called D-
ViNE and R-ViNE). Their aim was to increase the acceptance ratio and rev-
enue while decreasing the cost for the substrate network. The heuristics map
Virtual Networks (VNs) requests into the substrate network based on previous
requests.

Beck and Botero [Beck and Botero, 2017] tackle the NFV resource allocation
problem by dividing it into two phases: service chain composition and service
chain embedding. The embedding algorithm, called CoordVNF, tries to assign a
Virtual Network Function (VNF) to a node in the substrate network and follows
the flow of the service chain to assign the following VNF in a neighboring node.
In case of finding a problem (e.g., not enough resources in neighboring nodes),
the algorithm backtracks until finding a solution.

Three evolutionary algorithms for service embedding in the Fog are proposed
by Guerrero et al. [Guerrero et al., 2019]: single-objective genetic algorithm
with Weighted Sum Genetic Algorithm (WSGA); Non-dominated Sorting Ge-
netic Algorithm-II (NSGA-II); and, a Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D). Three objectives were drawn: minimizing
latency; minimizing free resources; and optimizing service spread (even distri-
bution of services). The best results were obtained with NSGA-II overall, but
MOEA/D showed lower latency. WSGA showed better convergence times in
comparison with the other algorithms.

Bays et al. [Bays et al., 2016] uses knowledge of the substrate network to create
a virtual infrastructure abstraction allowing the representation of VN require-
ments, while also proposing an embedding model ensuring physical feasibility.
They use SDN and particularly OpenFlow to gather information about the sub-
strate network. Embedding requests are processed by a privacy-aware com-
piler.

Mehraghdam et al. [Mehraghdam et al., 2014] present a model to specify network
function chaining requests before introducing an embedding solution. The rep-
resentation model proposed takes into consideration Network Functions (NFs)
chaining with ordered and unordered NFs, and provides the possibility of split-
ting the communication flows through a set of NFs; however, the resilient com-
ponent of the NFs, as well as, the tiered approach that drives the Cloud to IoT
continuum are not considered in the model.

So far, the works analyzed focus on VFs embedding, without considering the sur-
vivability of the SCs. The following works are aimed at increasing the resilience
of the SCs.

Khan et al. [Alam Khan et al., 2016] tackle the survivable VF embedding prob-
lem. They propose SiMPLE, a multi-path link embedding mechanism to max-
imize survivability while minimizing resource wastage with replicas. SiMPLE

— 23 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

works in two stages: a proactive one to embed the VFs as they arrive, and a
reactive stage in case of link failure. This solution relies on the existence of
disjoint paths in the substrate network in order to guarantee its success.

Rahman and Boutaba [Rahman and Boutaba, 2013] also analyze the survivable
virtual function embedding problem. They propose a hybrid heuristic as well
as a baseline heuristic. The hybrid heuristic uses a re-routing strategy that
previously reserves a backup quota on each physical link. The proposal is based
on single substrate link failures and does not deal with node failures.

Proactive and reactive approaches are also studied by Souza et al. [Souza et al.,
2017], who model them as the well-known multidimensional knapsack problem.
Their proactive recovery strategy consists of pre-allocating backup resources for
each primary resource that can become available as soon as the failure occurs;
while the reactive recovery strategy has a pool of backup resources that is shared
among primary resources to minimize resource utilization.

Aidi et al. [Aidi et al., 2018] propose the use of replicas to increase the survivab-
ility of SFCs. They also present two heuristics for more complex scenarios. The
first heuristic analyzes each node to determine the maximum amount of VFs
that it can backup. The second heuristic allows the host to backup VFs that
are as spread as possible in different physical nodes.

Lera et al. [Lera et al., 2019a] introduce an embedding policy aimed at increasing
the service availability and the QoS. They use communities to divide the network
infrastructure and embed the SC inside said communities. The graph partition
technique applied to create the communities among the Fog nodes is based on
the work of Newman and Girvan [Newman and Girvan, 2004].

After analyzing these efforts, it is possible to establish research paths to en-
hance the resilience in the Cloud to IoT continuum. Some open research issues
identified are presented in the following section.

2.4 Discussion
Despite the abundance of available studies in the area of resilience for the Cloud
to IoT continuum, there are still open challenges regarding the availability of
virtual services and functions, as well as the management and orchestration of
the heavily virtualized infrastructure used in this context.

From the managing perspective, many works are solely based on proposals
without including some sort of validation [Bassi et al., 2013; Atzori et al., 2012;
Hao et al., 2014; Jin et al., 2012; Qiu et al., 2020], with some works even focusing
only on social-based approaches [Atzori et al., 2012; Hao et al., 2014; Montori
et al., 2018]. On the other hand, some implementations were carried out [Mon-
tori et al., 2018] and some were tested in real Smart City scenarios [Pöhls et al.,
2014].

The Cloud to IoT (not considering the Fog or Mist) was taken into account in
most proposals [Bassi et al., 2013; Datta et al., 2014; Atzori et al., 2012; Hao

— 24 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

et al., 2014; Montori et al., 2018] with some works only based on IoT [Datta
et al., 2014]. Most recent works include the notion of Fog computing [Qiu et al.,
2020], since this is a more recent paradigm. Resilience was not included as
a main characteristic in some of the studied architectures [Datta et al., 2014;
Atzori et al., 2012; Hao et al., 2014; Montori et al., 2018].

Taking into consideration the characteristics and requirements of the Cloud to
IoT infrastructure that support Smart Cities [Jiong et al., 2014], and the revision
of the state of the art; a proposal of a novel Cloud to IoT infrastructure architec-
ture for Smart Cities, emphasizing the survivability of the services is presented
in this research. The lack of support from the communication infrastructure for
the IoT Services is addressed in this proposal by offering heterogeneity, flexib-
ility, and resilience support. The proposed architecture is detailed in Chapter 3
considering the SusCity project specifications.

The SusCity project [SusCity-Project, 2015] is taken as a case study to gather
the requirements of the Smart City services using the Cloud to IoT continuum
as interconnection backbone. The SusCity project involves the collaboration
of several universities (University of Coimbra, University of Minho, Instituto
Superior Técnico de Lisboa, Massachusetts Institute of Technology) and com-
panies (IBM, Energias de Portugal - EDP), with the objective of facilitating the
transition of the city of Lisbon to a Smart City. The idea of this project is to
collect data from different sources in order to build models that can produce
predictions about possible smart solutions like mobility, buildings, and energy
grids, to help government and citizens make appropriate decisions.

For the communication perspective, the research area shows maturity regarding
the protocol and algorithms used to enable the interconnection of devices along
the tiers in the Cloud-Fog-Mist-IoT, favoring the decoupling of the data and
control planes. SDN was used in many of the works [Ros and Ruiz, 2014; Be-
heshti and Zhang, 2012; Stephens et al., 2013; Reitblatt et al., 2013; ElDefrawy
and Kaczmarek, 2016; Rehman et al., 2019; Malik et al., 2020]; however these
proposals were generic enough to not focus on the Cloud or IoT, unlike other
works that were aimed at connectivity in the IoT [Han et al., 2010; Al-Turjman
et al., 2011; Le et al., 2014; Pavković et al., 2011]. The solutions were based on
mathematical models [Han et al., 2010; Al-Turjman et al., 2011; Ros and Ruiz,
2014; Stephens et al., 2013; Malik et al., 2020], heuristics [Han et al., 2010; Al-
Turjman et al., 2011; Ros and Ruiz, 2014; Beheshti and Zhang, 2012; Stephens
et al., 2013; Malik et al., 2020], protocols [Pavković et al., 2011; Le et al., 2014],
and prototypes for SDN controllers [ElDefrawy and Kaczmarek, 2016; Reitblatt
et al., 2013].

As expected, the majority of works based on connectivity were focused on link
failures [Le et al., 2014; Pavković et al., 2011; Ros and Ruiz, 2014; Beheshti
and Zhang, 2012; Stephens et al., 2013; Reitblatt et al., 2013; ElDefrawy and
Kaczmarek, 2016; Rehman et al., 2019; Malik et al., 2020], with some exceptions
based on node and link failures [Han et al., 2010; Al-Turjman et al., 2011].
Simulation was the evaluation tool used in most of the works [Han et al., 2010;
Al-Turjman et al., 2011; Le et al., 2014; Pavković et al., 2011; Ros and Ruiz,

— 25 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

2014; Beheshti and Zhang, 2012; Malik et al., 2020] although some works used
a testbed [Le et al., 2014; Pavković et al., 2011; Stephens et al., 2013; Reitblatt
et al., 2013; Malik et al., 2020] and even emulation [ElDefrawy and Kaczmarek,
2016].

Virtualization is the fundamental property of the new communication infrastruc-
ture, making necessary to deal with the mapping of virtual services, objects, and
functions in the proper substrate physical components. Thus, in recent years a
considerable effort has been done concerning how to deal with the embedding
in the context of the Cloud to IoT continuum. For the analysis performed in
the literature regarding embedding, some observations arise. First, simulation
seems to be the main method for evaluation [Chowdhury et al., 2009; Guerrero
et al., 2019; Alam Khan et al., 2016; Souza et al., 2017; Aidi et al., 2018; Lera
et al., 2019a], which is due to the complex scenario comprised by the Cloud to
IoT continuum. Mathematical solutions are also broadly used, following ILP
models [Chowdhury et al., 2009; Bays et al., 2016; Alam Khan et al., 2016; Aidi
et al., 2018; Lera et al., 2019a]; even though these models perform well in off-
line studies, they suffer from time constraints when applied to online scenarios.
Heuristics were also explored [Chowdhury et al., 2009; Beck and Botero, 2017;
Guerrero et al., 2019; Alam Khan et al., 2016; Rahman and Boutaba, 2013; Aidi
et al., 2018; Lera et al., 2019a].

Although the embedding problem has been previously addressed, SCs resiliency
has been mostly overlooked [Chowdhury et al., 2009; Beck and Botero, 2017;
Guerrero et al., 2019; Bays et al., 2016; Mehraghdam et al., 2014]. The works
considering resiliency can be grouped into link failures [Alam Khan et al., 2016;
Rahman and Boutaba, 2013], and node failures via resource allocation [Souza
et al., 2017] or replication [Aidi et al., 2018; Lera et al., 2019a]. Thus, there
is still room for improvement of the resilience of computing and networking
elements in the Cloud to IoT continuum.

The embedding of computing and communication virtual services/functions is a
key aspect in the Cloud to IoT continuum to guarantee resilience to applications,
particularly for Smart Cities scenarios. This research presents a framework for
embedding SCs and their VFs in a Cloud to IoT infrastructure using a method
to formalize customized Service Chains requests, depicted in Chapter 4; and a
set of mechanisms that take into consideration information about the substrate
components(i.e., the availability factor of the nodes, and the tiered infrastruc-
ture) for the embedding process, introduced in Chapter 5. The mechanisms are
validated via simulations in Chapter 6, since this is a common evaluation tool
used for this type of complex scenarios.

2.5 Summary
In a Cloud to IoT environment, smart devices communicate with each other
and with the end-users through the Internet to gather, process, and analyze
data, without much (or any) human intervention. This inevitably will enable
the rise of new generation services and applications where unique and custom-

— 26 —

CHAPTER 2. RESILIENCE IN THE CLOUD TO INTERNET OF THINGS
CONTINUUM

ized information will be processed for end-users on demand. This brings along
different challenges that have to be addressed to guarantee their proper function
while providing acceptable performance for end-users.

Thus, it arises the need of automating application workflows in the sense of
providing dynamic policy-based life cycle management of the communication
infrastructure and services. This includes provisioning, management, and mon-
itoring on a large number of nodes and devices with a broad range of capabilities
that include computing (computer resources), routing (network), and distributed
databases (storage). This calls for the design and development of an efficient
management/orchestration architecture to supervise and administrate hetero-
geneous, and distributed systems spread across a wide geographical area while
delivering services to end-users maintaining their availability even in the face
of failures, taking into consideration that Smart City services handle critical
functions that can not be disrupted.

Virtualization has evolved as a technique that allows improving the usage of
physical resources. However, the decision on how to use the physical resources,
for instance, to select the physical nodes on which to embed the virtual services
and/or network functions, becomes crucial in such a complex landscape. Some
work has been dedicated to address resource provisioning and management of
SFCs assuming the complete availability of the physical infrastructure, which
is not realistic as failures are common in the Cloud to IoT continuum. Con-
sequently, it is necessary to have mechanisms that allow dealing with failures in
the Cloud to IoT infrastructure. A possible approach is to study the problem of
VFs placement using smart replication as a resilience mechanism since replicas
can be activated or instantiated in case of failures.

This chapter presented a revision of the research context, including a descrip-
tion of the Cloud to IoT continuum and the virtualization techniques applied
to facilitate the management and deployment of services in such environments,
to later describe resilience in communication infrastructures also identifying the
resilience challenges that the Cloud to IoT bring. Moreover, a revision on ex-
isting efforts to improve the resilience of the Cloud to IoT continuum is also
introduced, including visions on managing, interconnection, and embedding in
the Cloud to IoT. This revision allowed to identify novel research paths that
enable the further improvement of the resilience in the Cloud to IoT continuum
using Smart City applications as a case study.

The research paths identified in this chapter include the design of an architec-
ture to overlook the proper functioning of smart services in the Cloud to IoT
continuum, focused on improving the resilience of the services, and the proposal
of smart service composition and embedding solutions for the Cloud to IoT con-
tinuum. Replication of the VFs was chosen as the resilience approach to use
during the embedding process

— 27 —

Chapter 3
Improving the Resilience of the
Cloud to Internet of Things
Continuum

Contents
3.1 Understanding Smart City Scenarios 30
3.2 A Resilience Architecture for the Cloud to IoT Con-

tinuum . 31
3.2.1 IoT Infrastructure 32
3.2.2 IoT Middleware 33
3.2.3 IoT Services . 36

3.3 Interaction among the Modules of the Architecture 37
3.4 An Ontology to Describe the IoT Infrastructure . . 40

3.4.1 Evaluating the Ontology 43
3.5 Summary . 47

— 29 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

To deal with the complexity and variety of the Cloud to Internet of Things
continuum, an architecture that improves the resilience of this environ-
ment following an end-to-end approach (i.e., from the IoT Infrastruc-

ture, traversing the network and Cloud/Fog domains to the IoT services) is
discussed in this chapter.

The architecture proposed takes into consideration the design and implementa-
tion aspects of each layer, proposing protocols and technologies that support key
resilience features. Additionally, an ontology for the IoT infrastructure in Smart
City scenarios is designed to deal with the plethora of heterogeneous devices and
data sources in a unified and standard way.

3.1 Understanding Smart City Scenarios
Many cities worldwide are trying to evolve to the paradigm of Smart City. In this
paradigm shift process, ICT have the important role to provide the infrastructure
to deploy a surplus of devices and services. This infrastructure can be quite large
and heterogeneous, composed of different types of devices and Smart Objects
(e.g., sensors, actuators), that need to use diverse communication networks (e.g.,
cellular, satellite, the Internet) to provide services to final users. Frequently,
these services are running totally or partially in Cloud and Fog environments;
where a vast number of digital equipment such as servers, network devices, and
storage components interact to fulfill the requirements of end-users.

According to IBM [IBM Industry Solutions, 2013], the services that need to
be deployed in a Smart City could be grouped in the following key domains:
Government and Agency Administration, Public Safety, Urban Planning, Social
and Health, Education, Transportation, Energy and Water, and Environmental.
These services have the common goal of improving the quality of life of the
citizens. Figure 3.1 shows a typical scenario of a Smart City highlighting these
domains.

In a Smart City, data is collected from sensors deployed in strategic positions.
In order to process the data and make smart decisions, given the resource con-
straints of the Smart Objects, the gathered data has to be sent to the Cloud or
Fog, where particular services perform an analysis of the urban activities of the
city. Furthermore, it is important to highlight the role of the actuators in this
context, since these devices carry out actions defined by the IoT Services in the
physical environment (e.g., controlling traffic lights).

An example of the tasks previously described is depicted in Figure 3.1. Envir-
onment monitoring and noise sensors are deployed in the Smart City to collect
data that is sent to Urban Analytics services hosted in the Cloud, using a com-
munication network infrastructure. The combination of Smart Objects and IoT
Services is becoming a reality in several cities across the world [TUWIEN. Vi-
enna University of Technology , 2015]. To guarantee the reliability of the IoT

— 30 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Services in this new paradigm, novel solutions must be designed. An architec-
ture to ensure resilience in the deployment of Smart City services is presented
in the following section. The proposed architecture was designed and validated
in the scope of the Suscity project [SusCity-Project, 2015] taking advantage of
the requirements and use cases embedded in it.

v

v

Government and

Agency

Administration

Social and

Health
Education

Urban

Planning

Public

Safety

Transportation

Energy and

Water

Environmental

Social and

Health

Social and

Health

Transportation

Figure 3.1: A Smart City Example with its Services Domains.

3.2 A Resilience Architecture for the Cloud to IoT Con-
tinuum

To satisfy the requirements of the scenario described in Section 3.1 while guaran-
teeing a high resilience level to the services and infrastructure, the Cloud to IoT
continuum architecture depicted in Figure 3.2 is proposed. This architecture has
three layers (IoT Infrastructure, IoT Middleware, and IoT Services) that tackle
specific functions to make possible the support of the Smart City paradigm us-
ing the IoT, Cloud, and Fog nodes. A key feature of the architecture is the
possibility to have more than one instance by layer; this is represented by the
overlap of boxes (i.e., slices). Each group of instances from the architecture,
represented by the slices, compose an IoT Domain; denoting the specific com-
ponents and modules that belong to a particular entity. Additionally, in order
to reach ubiquity and more flexibility of the components that shape the archi-
tecture; the IoT Middleware and the IoT Services layers reside in the Cloud/Fog
environment. Furthermore, the architecture allows the deployment and virtual-
ization of crucial components (i.e., IoT Gateways and IoT Services) at the edge

— 31 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

of the ICT infrastructure, in Fog Nodes, achieving a latency reduction which is
important particularly for real-time and critical applications.

In the remaining of this section, the components and modules of each layer and
their interactions will be discussed in detail, identifying possible protocols/tech-
nologies that could be applied to enhance the resilience of each component.

3.2.1 IoT Infrastructure
The lower layer of the architecture deals with the physical Devices deployed in
the city. These devices are Smart Objects that enable the gathering of data and
react to specific situations. A group of devices is referred to as an IoT Island.
Typically, the data collected by an IoT Island has to be sent to IoT Services to
be processed and to perform a complete analysis. Given that the devices usually
are limited from the performance point of view, it is common to deploy special
devices (i.e., IoT Gateways) at the edge of the network topology to connect
the IoT Island with the Internet. These IoT Gateways together with virtual
devices and services hosted in Fog nodes can perform data compression and
aggregation to minimize network load and add intelligence to the IoT environ-
ment. A possible approach to improve the performance of the IoT infrastructure
is to virtualize the IoT Gateway functions allowing to instantiate and deploy
them on-demand; this could be achieved, for example, using Kura [IoT-Eclipse,
2015a].

An IoT Gateway provides access to multiple IoT Islands during the data trans-
mission from the IoT Infrastructure to the upper layer. The communication
between objects in this layer has to be ruled by an efficient routing protocol that
achieves the special requirements of the IoT. RPL [Winter et al., 2012], defined
by the Internet Engineering Task Force (IETF) IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN) working group [IETF, 2015], could be used
to deal with the dynamism of the IoT network in an automatic way, by using
different objective functions to react to the changes. Moreover, RPL supports
two basic mechanisms to recover from failures (Global and Local repair) that
could be extended in order to improve the resilience features of this protocol.
Also, RPL allows the use of multipath techniques, which further enhance the
resilience of the solution [Le et al., 2014; Pavković et al., 2011]. In addition,
6LoWPAN [Mulligan, 2007] could pave the way to use the well-known Inter-
net technologies and protocols in the IoT to enable the use of Wireless Sensor
Networks (WSN) approaches (e.g., relay node placement to provide fault toler-
ance [Han et al., 2010; Al-Turjman et al., 2011]). Regarding ultra-low latency
applications and critical services, it is possible to deploy them directly at the
Fog level, near to the IoT Infrastructure [Satyanarayanan et al., 2009].

After having defined the layer that is in charge to map the world of things into
the world of computationally processable information, in the next section, we
discuss the layer responsible for guaranteeing that the data gathered in the IoT
Infrastructure reach its destination, the IoT Middleware.

— 32 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

3.2.2 IoT Middleware
Due to the vast number of technologies typically in place within an IoT scenario,
it becomes necessary to have a layer to offer a seamless integration of devices and
data that build the IoT, the IoT Middleware. This layer encompasses common
functionalities and abstraction mechanisms that wrap the IoT infrastructure
details to developers and users in order to achieve an easier interaction between
these actors [Bandyopadhyay et al., 2011].

Research projects such as LinkSmart [LinkSmart, 2015] and
OpenIoT [OPENIoT, 2015] provided important contributions to this in-
tegration layer; however, regarding the resilience mechanisms needed in the
infrastructure, there is still room for significant improvements. With this in
mind, we propose an IoT Middleware layer focused on the enhancement of the
resilience of the IoT. A discussion of the modules of this layer is presented
next.

Heterogeneity Manager

Given the devices deployed in the IoT Infrastructure have a heterogeneous
nature, it is necessary to have a standard language to reach an agnostic commu-
nication between the IoT Infrastructure and the upper layers. The Heterogeneity
Manager works as an interpreter between the components of the IoT located in
the Cloud and the IoT Islands. The translation of the communication protocols
used in the IoT Island to a common language is the main role of this com-
ponent. For the tasks that have to be performed in this layer, the IoT Eclipse
project [IoT-Eclipse, 2015b] looks useful; since it offers open source implement-
ations of well-known communication protocols for the IoT. In this context, the
framework proposed by Sköldström et al. [Sköldström et al., 2014] addresses the
unification of the network and Cloud resources, which is a key aspect for the
IoT.

Communication Manager

The Communication Manager rules how the data is exchanged between services,
applications, and Smart Objects. The main goal of this component is to offer
an efficient and flexible way to control the route of the data, the structure of
the communication infrastructure, the mobility of the entities, and the specific
requirements in the context of the IoT.

Four modules integrate the Communication Manager. The Path Control deals
with the dynamism of the IoT environment and support mechanisms to change
in real-time the path for specific flows. The Topology Control provides a global
view of the infrastructure by using the knowledge of the status of the devices
that support the communication process. An additional feature supported by
this module is the possibility of having different VN, as disjoint as possible, over
the same physical infrastructure, enabling the overlaying of network topologies.
The Mobility Control is responsible for storing data in temporary buffers at in-
termediate devices, while the mobile service or object reaches its destination.
The QoS Control module guarantees that the traffic demands of services and

— 33 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

IoT Infrastructure

Devices

Heterogeneity Manager

D
at

a
C

ol
le

ct
io

n
&

 D
iff

us
io

n

O
th

er
 M

an
ag

em
en

t F
un

ct
io

ns

Communication
Manager

Path
Control

Topology
Control

Mobility
Control

QoS
Control

Virtualized
Device

Manager

Name
Resolution

Discovery &
Location

Placement
& Migration

Resilience
Manager

Monitor

Protection
& Recovery

IoT Service Manager

IoT Middleware

IoT Services

Smart Services Urban Analytics

IoT Gateways

Figure 3.2: A Resilience IoT Architecture for Smart Cities.

applications are met by offering the possibility to manage different traffic con-
figurations and also supports the proper mechanisms to achieve the service-level
agreements.

A possibility to carry out the tasks described before is using a combination
of the SDN [Kirkpatrick, 2013] and VN [Chowdhury and Boutaba, 2010] ap-
proaches, obtaining a Virtual Software Defined Network (VSDN) [Gomes et al.,
2016]. By decoupling the control and forwarding functions inside the Commu-
nication Manager component, it is feasible to incorporate desirable features to
the infrastructure that support the services and applications of a Smart City,
for example, dynamism, mobility, and resilience. From the infrastructure resi-
lience point of view, the possibility to integrate disjoint VNs with a multipath

— 34 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

approach using VSDN is a promising strategy.

Virtualized Device Manager

The administration of the devices is supported by the Virtualized Device Man-
ager. This component offers the mechanisms to identify, discover and locate
services and devices deployed in the IoT Infrastructure, allowing the elements
inside of the IoT to move across domains.

The three modules in this component and their functions are the following.
The Name Resolution module has to take into consideration two basic tasks;
the first is name mapping, where a local name could be translated to a flat
or agnostic name; then in a second phase, it is necessary to apply a name
resolution strategy. The Discovery & Location module tracks the devices and
objects deployed in the IoT Infrastructure. The Placement & Migration module
allows to instantiate services or devices to improve or maintain the requirements
of the IoT applications while minimizing the resource consumption. Using a
migration strategy makes it possible to keep alive important services even in a
fault scenario.

We identified some useful approaches to perform the tasks of the modules inside
the Virtualized Device Manager. With NFV [Matias et al., 2015], it will be
possible to virtualize network services and devices on-demand. Moreover, Jemaa
et al. [Ben Jemaa et al., 2016] combined the approach of NFV with the Fog to
make flexible the deployment of services. These technologies allow to decrease
the resource consumption in the backbone of the IoT; furthermore, it is feasible
to handle a higher number of devices, an essential requirement for the IoT. In
addition to NFV, the adoption of smart and cognitive techniques to improve the
service placement and migration, as well as machine learning approaches, could
bring significant benefits to the IoT adding self-management features.

Resilience Manager

The main goal of the Resilience Manager component is to offer robustness to
the IoT infrastructure by a permanent supervision of the activities (Monitor
module) performed by the fundamental modules of the IoT architecture. Addi-
tionally to the monitoring actions, the module of Protection & Recovery works
in conjunction with the Path Control, Topology Control, and Placement & Mi-
gration modules to guarantee that the proper actions will be applied in case of
faults.

Consequently, with the discussion of the architecture so far, it is important to
make clear that the Resilience Manager is not solely in charge of increasing
the resilience of the overall system, but instead works as an orchestrator of
the resilience-related tasks that are disseminated throughout the architecture.
Hence, the architecture follows a distributed approach towards the resilience
task application, minimizing the bottleneck result of grouping these functions
in a single component.

Another key aspect to be considered in this module is that given that the in-
frastructure is broad and heterogeneous, recovery tasks must be automatized.

— 35 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Having a knowledge base of the infrastructure and its status and using this know-
ledge with some cognitive strategies is a feasible solution. Both online/offline
mechanisms to recover the IoT infrastructure after failures have to be imple-
mented.

Other Management Functions

The component Other Management Functions represents additional manage-
ment tasks that could be required by the IoT Middleware. An important com-
ponent that could be required by an entity would be a Security Manager. This
component should deal with the threats present in the IoT in order to mitigate
vulnerabilities.

Data Collection & Diffusion and Knowledgment Database

The Data Collection & Diffusion component is in charge of gathering the data
from the sensors in the IoT Infrastructure and disseminate this data to the
requiring IoT Services. On the other hand, the Knowledgment Database stores
the information about the devices and the physical topology of the network.
This module needs to deal with the heterogeneity of the devices in the lower
layer. Thus, it is important to use a standard to manage and describe these
devices uniformly. A tentative approach for this last component could be using
semantic web techniques, such as ontologies [Wei et al., 2012].

IoT Service Manager

The IoT Services layer requires a standardized way to access the functionalities
provided by the IoT Middleware. This is the task of the IoT Service Manager,
which implements a common Application Programming Interface to enable a
transparent communication of the services with the south-bound region of the
architecture.

After discussing the tasks performed by the IoT Middleware and pointing out its
importance; in the next section, we explain the components of the IoT Services
layer.

3.2.3 IoT Services
The management of applications and services that support the Smart City, as
well as the analysis of the data collected from the city are performed in the
IoT Services. In this layer, the Urban Analytics component takes as input the
data gathered by the Data Collection & Diffusion to perform characterization
and analysis in order to generate information that feeds the Smart Services. In
the IoT Services, Big Data techniques [Akusok et al., 2015] play a vital role
to process the vast amount of data collected by sensors; that is consumed by
the Smart Services using a standard protocol like the Constrained Application
Protocol (CoAP) or Message Queuing Telemetry Transport (MQTT) [Palattella
et al., 2013]. To cope with the resilience requirements for this layer, the use of
caching and replication techniques at the service level could be applied. Fur-
thermore, instances of IoT Services could be run on Fog nodes allowing access
to end-user in a single-wireless-hop fashion.

— 36 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

So far, in this section, we have explained in detail the layers of the proposed
architecture and also the interconnection of the modules and their tasks. Using
the previous discussion, we now explain how this architecture overcomes fault
scenarios, with the combined efforts of its modules.

3.3 Interaction among the Modules of the Architecture
The different modules described in Section 3.2 tackle individual tasks involved in
the global Smart City scenario, with the goal of increasing the overall resilience
level of the infrastructure and the services provided. However, the success of
the architecture relies on the harmonious interaction among the modules. To
illustrate this fact, two examples are provided in this section.

Figure 3.3 depicts the first example. Imagine a scenario where a fault is detected
in a component of the substrate network. The Monitor is constantly querying
the Topology Control module to get the status of the VNs. Once a failure is
detected, the Monitor begins the restoration process by requesting the recovery
of the failure to the Protection & Recovery module. This module will analyze
the fault that occurred and will take the proper actions to overcome it. To
achieve this, it can request information from other modules, such as Placement
& Migration. Assuming that the fault detected in the topology is such that the
sensor which the service is trying to reach is no longer available; the Protection &
Recovery module determines that the best option is to create another instance of
the Virtual Sensor (VS) that will replace the one affected by the failure detected.
Afterward, a new VN must be configured in which the new VS instance is
included. Finally, the Protection & Recovery module notifies the Monitor that
the recovery actions are completed.

Another example is depicted in Figure 3.4. In this case, imagine that instead of a
failure, a drop in the QoS is detected, for instance, by an increment in the traffic
that would generate congestion and eventually a greater latency for the services.
Once again, the Monitor will be permanently checking the system status and will
get a QoS drop notification from the QoS module. The restoration actions begin
by a notification sent to the Protection & Recovery module, which will determine
the appropriate tasks to overcome this situation. In this example, assuming that
there is an alternative path (with lower latency) to reach the same destination,
the Protection & Recovery module indicates to the Path Control module that
this alternative path should be upgraded as the primary path. The recovery
process finishes with a notification to the Monitor.

It is important to notice that, although there is a specific Resilience Manager
in the architecture, all the modules were designed with the idea of augmenting
the resilience level of the infrastructure. Thus, there are different tasks that
provide more resilience to the final scenario in other modules, such as the backup
topologies calculated by the Topology Control module.

Furthermore, it is essential to emphasize the importance of using both the Cloud
and Fog paradigms. By placing the modules and services on the Cloud, the
architecture becomes infused with ubiquity. The positioning of the gateways in

— 37 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Fog nodes allows the execution of some services and analytics in a single-hop
wireless fashion, which provides an inherent resilience to the services since they
become reachable even in the case of faults at the Cloud level.

Topology
Control

Protection &
Recovery

Placement &
Migration

Monitor

getStatus()

status_Ok

getStatus()

status_Failure

requestRecovery()

analizeFault()

requestInfo()

locationInfo

recoveryAction()

requestInstantiation()

instantiationValue

requestVN()

identifierVN

responseRecovery

Figure 3.3: Interaction Among the Modules - Fault Detected.

QoS
Protection &

Recovery
Path

Control
Monitor

getStatus()

status_Ok

getStatus()

status_QoS_drop

requestRecovery()

analizeQoSdrop()

requestInfo()

backupInfo

requestBackup()

backupActivation

responseRecovery

Figure 3.4: Interaction Among the Modules - QoS Drop Detected.

— 38 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Moreover, by combining the proposed architecture with the proper mechanisms
and protocols, an even higher resilience can be achieved. For instance, consider
Figure 3.5. On the top of the figure, at the Cloud level, reside the services that
are trying to reach the sources of data (i.e., sensors). Then, at the Cloudlet/Fog
level, reside the gateways, in charge of the data aggregation tasks. Finally, at the
lower level, reside the IoT island, composed of groups of sensors and actuators.
In Figure 3.5, straight lines represent the primary paths, while dashed lines
represent backup paths.

On a scenario like the one depicted in Figure 3.5, is noticeable that given the
redundancy of the communication links, it is possible to create VNs allowing the
reachability of an IoT Island via more than one disjoint path. This approach in-
creases the availability of the services in case of failures while also allows recovery
from a low-performance situation. Furthermore, since a sensor can have more
than one parent on the physical topology; it is possible to combine RPL with a
multipath approach [Le et al., 2014; Pavković et al., 2011] to enhance the resili-
ence of the smart object using the network infrastructure (e.g., a sensor can be
connected to different gateways from different Fog nodes), see Figure 3.5.

Notice that one IoT Island could be connected to several gateways located on
different Fog nodes which are connected to each other. This provides an extra
level of resilience in the case of a failure on a Fog node or in the occurrence of
a failure in the connection between a Cloudlet/Fog and the Cloud.

Cloud Environment

Cloudlet/Fog

IoT Infrastructure

Primary Paths

Alternative Paths

Figure 3.5: IoT Communication Infrastructure Global View.

— 39 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

3.4 An Ontology to Describe the IoT Infrastructure
As an additional contribution of the architecture described above, an ontology
for the IoT infrastructure in Smart City scenarios is proposed. The idea behind
this ontology is to unify the access to the data, making it possible to collect, in a
standard and easy way the information that protocols, services, and user applic-
ations need to make smart decisions to optimize the performance of the network,
according to the requirements inherent to Smart Cities. The proposed ontology
was successfully tested against consistency issues and also populated and quer-
ied using SPARQL Protocol and RDF Query Language (SPARQL) [W3C, 2013].
Particularly, two optimization scenarios (i.e., lower latency and high resilience)
were utilized in the design of the example queries as a way to illustrate the poten-
tial impact of using this type of solution to describe a Smart City environment
to optimize the performance of the infrastructure.

The main objective of this proposal is to build a complete and detailed onto-
logy to model all the components involved in the IoT infrastructure. The pro-
posed ontology was tested in the context of the SusCity project [SusCity-Project,
2015], making particularly emphasis on the communication devices with the goal
of gathering information that enables the decision-making process of different
mechanisms that guarantee the proper function of the infrastructure. A com-
plete version of the ontology discussed in this section is available online [Perez
Abreu and Velasquez, 2016].

The IoT infrastructure is represented by an entity (IoT_Infrastructure) that in-
cludes different elements attached to it. After evaluating the interests and needs
of the SusCity project, four additional entities were identified (Device, Link, In-
terface, and Metric). Two additional classes (Action and Location) were added
to simplify the modeling of some required information that is going to be detailed
later in this section. The main class hierarchy is shown in Figure 3.6.

Thing
Action
Device

Wired_Interface
Wireless_Interface

Interface

Communication_Device
Location_Device
Multimedia_Device
Transducer_Device

IoT_Infrastructure

Wired_Link
Wireless_Link

Link

Location

Device_Metric

Link_Metric

Metric

Figure 3.6: Class Hierarchy.

— 40 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

There are several facts of interest at this point; for instance, the support for both
wired (e.g., Fiber, Ethernet) and wireless (e.g., Bluetooth, Cellular, Wireless
Fidelity (WiFi)) communication interfaces and links, the wide variety of hetero-
geneous devices included in the infrastructure (e.g., Communication, Location,
Multimedia, Transducer), and also the inclusion of both devices and link metrics
that will enable the monitoring of the network status.

Once the class hierarchy is described, it is important to further detail the
classes in the ontology. Since the main goal of this work is to design and
implement mechanisms to manage and optimize the resilience of the computing
and communication infrastructure, this becomes the main component of the
developed ontology. The description of the IoT Infrastructure class is provided
below.

IoT_Infrastructure v Thing
IoT_Infrastructure v ∃ isComposedBy Interface
IoT_Infrastructure v ∃ isComposedBy Metric
IoT_Infrastructure v ∃ isComposedBy Device
IoT_Infrastructure v ∃ isComposedBy Link

The composition of the IoT infrastructure is also depicted in Figure 3.7. Fig-
ure 3.7a shows how the IoT infrastructure is composed of devices and the com-
munication interfaces and links that they use to exchange information. Addi-
tionally, it is of particular interest to store some metrics related to the devices
(e.g., Continuity, Downtime, and Packet Loss) and links (e.g., Jitter, Latency)
that can be useful for the different management and monitoring mechanisms
that are going to be implemented.

(b)

DEVICE

INTERFACE

LINK

METRIC

IoT
INFRASTRUCTURE

be
lo

ng
sT

o

(a)

DEVICE

INTERFACE

LINK

METRIC

IoT
INFRASTRUCTURE

is
C

om
po

se
dB

y

Figure 3.7: IoT Infrastructure Entity and its Relationships.

On the other side, on Figure 3.7b is depicted the reversed relationship or Object
Property, that indicates that the devices, interfaces, links, and metrics belongs
to the IoT infrastructure.

For the SusCity project, different devices are considered to take part of the IoT
infrastructure and are grouped in the Device class, that is described below. It
is important to mention that the classes Device, Metric, Interface, and Link are

— 41 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

pairwise disjoint.

Device v Thing
Device v ¬ Metric
Device v ¬ Interface
Device v ¬ Link
Device v = belongsTo IoT_Infrastructure
Device v ∃ hasDeviceMetric Device_Metric
Device v = isBackupOf Device
Device v ∃ isPrimaryOf Device
Device v ∃ hasInterface Interface

For the Device entity, it was particularly important to take into consideration
the use of a primary and backup device that would enable the use of self-healing
mechanisms. This was modeled as depicted in Figure 3.8, with the functional
object property isBackupOf and its inverse functional object property isPrima-
ryOf, both characterizing that some devices are primary and some are backup
for the aforementioned primary devices.

DEVICE

isPrimaryOf

isBackupOf

Figure 3.8: Device entity model.

This will allow instantiating a different backup device in case of a fault in the
primary one, whether accidental or provoked. Additionally, the isBackupOf
property is irreflexive, to avoid that a Device becomes backup of itself, rendering
to a wrongful solution. The same approach was used for the Link class, using
the concept of primary and backup links.

The collection of data gathered by the sensors could be automatized or accom-
plished through the use of Data Loggers. In the case of the automatized data
collection, it is essential to include in the model how the devices communicate.
The communication interfaces could be wired or wireless. The description of
the Interface class is provided below.

Interface v Thing
Interface v = belongsTo IoT_Infrastructure
Interface v = isAttachedTo Device
Interface v = uses Link

— 42 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Another important issue is keeping track of the actual physical location of the
devices. This was modeled with the entity Location that has the Data Prop-
erties: Latitude, Longitude, and Elevation. This relationship, depicted in Fig-
ure 3.9, allows to identify the physical location of the device which will ease the
recovery process in case of a failure. A location can host some devices (hosts-
Device), and a device is located at exactly one physical location (hasLocation).
Additionally, some Data Properties were also used to model the IoT infrastruc-
ture. Table 3.1 shows a list summarizing some of the Data Properties with their
description.

DEVICE LOCATION

hasLocation

hostsDevice

Figure 3.9: Device - Location relationship.

The final ontology, developed using Protégé [Stanford University, 2015], was
consulted with different members from the SusCity project to verify that it
included all the required elements to model the IoT infrastructure to properly
use it in the various mechanisms aimed at managing the network. Further
validation was carried out and is discussed in the next section.

3.4.1 Evaluating the Ontology
To corroborate the correctness of the ontology, a validation against consistency
issues was performed using HermiT 1.3.8.3 [University of OXFORD Informa-
tion Systems Group, 2015]. The results obtained showed that the ontology has
no consistency issues. Furthermore, DL expressivity metrics were also calculated
using Protégé [Stanford University, 2015], obtaining SHIQ(D). The expressivity
evaluation allows obtaining an upper bound on the performance of querying the
ontology once it is fully populated. Some restrictions modeled (e.g., inverse ob-
ject properties) will enable faster response times while querying. The ontology
was also evaluated by performing a set of queries. The results are discussed in
this subsection.

The ontology was populated with the description of the devices being used in
the SusCity project (e.g., smartmeters, sensors) and the communication links
that connect them. With this information, some sample queries were designed
to verify if the results match the expected values, thus validating the ontology.
The goal is to use this ontology with different network, service, and application
managing mechanisms. Some possible scenarios are focused on the resilience of
the infrastructure and the latency of the communication network, which are two
of the key features to optimize in the network. The scenario used in the tests is
described in Figure 3.10.

— 43 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Table 3.1: Data Properties for the SusCity IoT Ontology.

Entity Data Property Description

Device

hasIdentifier Integer representing an unique
identifier

hasFirmwareName String describing the name of
the firmware

hasFirmwareVersion String describing the version of
the firmware

hasRole String indicating if the device is
primary or backup

hasStatus String indicating the device status,
e.g., up, down

hasMode String describing the device mode,
e.g., power safe

hasMeasurementFrequency Float indicating the time between
each capture interval

Link
hasCapacity Float indicating the link capacity

in Mbps

hasPhyTechnology String describing the link
technology, e.g., fiber, satellite

Metric hasValue Float containing the value of
the metric measured

Location

hasElevation Float indicating the elevation
in meters of the location

hasLatitude Float indicating the latitude of
the location

hasLongitude Float indicating the longitude of
the location

Interface
hasNumberOfAntennas Integer indicating the amount of

antennas for a wireless interface

hasPhyAddress HexBinary depicting the physical
address of the interface

The scenario is divided into four zones (Zone 0 to Zone 3) interconnected. Zone
0 has one smartmeter (SM0) with redundant links (L0, L1) connected to two
different routers (R0, R1). Zone 1 has two smartmeters (SM5, SM6) connected
to R0 and R1 via L4 and L5, respectively. Similarly, Zone 2 has four smartmeters
(SM1 to SM4) connected through L2 and L3; and finally, Zone 3 has two access
points (AP0, AP1), where AP0 has redundant links to R0 (L6) and R0 (L7)
and also is connected to eight CO2 sensors (S0 to S7), and AP1 is connected via
L8.

To improve resilience, one common approach is using backup devices that are
instantiated once the primary device is down in order to increase availability.
In the test scenario described in Figure 3.10 some devices were configured as
primary while some others were identified as a backup. Additionally, information
about the status of the devices (e.g., Up, Down, Rebooting) is also stored.

The first test consisted of querying the ontology to find out which devices are
down (see Figure 3.11). The query provided this information, and the results
were as expected according to the information used to populate the ontology.

— 44 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

S4 S5 S6 S7

S2 S3

SM0

L0
R0

L1
R1

ZONE 0

L7
R0

L6
R0

AP1

L8
R0

ZONE 3

ZONE 1ZONE 2

SM5

SM6

L4
R0

L5
R1

SM1, SM2

L2
R0

L3
R1

SM3, SM4

S0 S1

AP0

R0 R1

Figure 3.10: Testbed used for Validation.

This example confirms that this type of queries can be used to build intelligent
IoT infrastructure management services, in this case, aimed at the improvement
of resilience.

Figure 3.11: Query #1 - Down devices.

The query depicts in Figure 3.11 effectively listed all the devices with status
“Down”. This information is beneficial for a mechanism aimed at improving
resilience since it clearly identifies the devices that need to be replaced. As
stated before, a common technique is to upgrade a backup device to a primary
status, thus recovering the failure. To test this, a second query was designed,
with the objective of listing the backup devices associated with the primary
devices with a current status “Down”. The query also provided the status of the
backup device (see Figure 3.12).

— 45 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Figure 3.12: Query #2 - Status of backup devices from the primary ones that
are down.

For the query showed in Figure 3.12, devpri refers to the primary device and
devbac to the backup device. Similarly, statusp and statusb refer to the status of
the primary and backup devices, respectively. Once again, this type of queries
could be used on smart management services for the ICT in the IoT.

Other queries were designed to further evaluate the ontology, this time with a
different management objective in mind. For the following queries, a mechanism
to improve the network latency was used as a possible example to test the
ontology.

In the scenario designed, the communication links are modeled as well as some
metrics of interest such as the jitter. It could be useful to compare the jitter
from different links and use this information, for instance, in a routing mechan-
ism giving higher priority to links with lower jitter to select these links for the
routes. The query depicted in Figure 3.13 lists the links ranked by their jitter
in ascendant order.

Figure 3.13: Query #3 - Links ranked by their jitter.

Using the same concept applied to the devices, the links were also modeled as
primary and backup. The query showed in Figure 3.14 was used to list the
backup links whose jitter was smaller than its primary correspondent link. This
information could be used to update routes and eventually improve the service
for final users.

For the query presented in Figure 3.14, linkp and linkb refer to the primary and
backup links respectively, metricp and metricb indicate the metric associated to
the primary and backup links, and analogously jitterp and jitterb specify the
jitter for their corresponding links.

— 46 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

Figure 3.14: Query #4 - Links with smaller jitter (i.e., primaries vs backups).

Results for all the queries described in this subsection returned the expected in-
formation according to the data that was used to populate the ontology. These
results confirm the possibility to use this ontology as input for intelligent man-
agement web services (e.g., with a workflow of interaction with the user), where
user’s queries are translated into SPARQL queries on demand.

3.5 Summary
New solutions to support daily activities of citizens, like smart traffic control,
health care, public safety, among others, are being incorporated in the paradigm
that intends to interconnect objects in the scope of a city, also known as a
Smart City. The Cloud computing and the IoT seem to be two of the most
critical technologies that are going to constitute the foundation for this reality.
However, there are still open issues that need to be tackled to bring this paradigm
to reality. One of these open issues is the necessity of maintaining the robustness
of the services that are hosted in the ICT infrastructure that interconnects Smart
Objects and services within the IoT. In this chapter, a novel architecture with
resilience features for the IoT environments was introduced.

The proposed architecture takes into consideration the communication require-
ments of the IoT, besides using the advantages of the Cloud and Fog paradigms
to add ubiquity and scalability to the environment. The interaction between
components in the IoT Middleware combined with the proper technologies al-
lows to fulfill an efficient communication process between the Smart Objects
and the end-users. Particularly, the proposed architecture was designed taking
into consideration the SusCity project [SusCity-Project, 2015] scenario and the
requirements needed for its communication platform.

Furthermore, an ontology to describe the IoT infrastructure was also introduced.
The ontology comprises as main classes the IoT infrastructure, its devices, com-
munication interfaces and links, and the performance metrics related to them.
This information will ease the managing of the infrastructure in order to guar-
antee its proper work for user services and applications. The ontology was suc-
cessfully validated with different procedures, including consistency evaluation
and also queries to corroborate its correctness.

— 47 —

CHAPTER 3. IMPROVING THE RESILIENCE OF THE CLOUD TO
INTERNET OF THINGS CONTINUUM

It is essential to mention that although the proposed ontology was designed
for the requirements of the SusCity project, it can easily be adapted to other
Smart City scenarios since it includes all the main classes involved in a Smart
City infrastructure (e.g., sensors, actuators, multimedia device, communication
device). For each implementation, it would only be necessary to adjust the
ontology population to comply with the different scenarios.

The following contributions were produced from the literature review and the
proposals presented in this chapter:

• A resilience architecture for the deployment of IoT services in Smart Cities.
The main focus of the architecture is the depiction of its middleware, able
to handle the vast heterogeneity of Cloud/Fog environments, and with
special emphasis on the resilience component. The Resilience Manager
provides functions for protection and recovery to maintain the survivability
of the applications in case of failures;

• An ontology to describe the IoT infrastructure, to standardize the in-
formation of the underlying infrastructure to be shared among different
protocols, network services and user applications; and

• Additionally, the results obtained from the research presented in this
chapter also helped in the development of deliverables for the SusCity
project (MITP-TB/C S/0026/2013 - SusCity).

The outcomes of this chapter allowed the identification of tasks needed to provide
resilience to the Cloud to IoT continuum. The design of a resilience architecture
frames these tasks into modules. The Resilience Manager module handles the
protection and recovery of applications in case of failures to offer them surviv-
ability. The architecture yielded us the conceptual framework to design and
implement the resilience mechanisms to enhance the availability of services and
applications in the Cloud to IoT ecosystem. In the next chapters, we present
more details about these mechanisms.

— 48 —

Chapter 4
Formalizing Service Chain
Composition

Contents
4.1 Softwarization in the Cloud to IoT Continuum . . . 50
4.2 A Framework for the Composition and Embedding of

Service Chains . 52
4.3 A Grammar to Specify Service Chains 54
4.4 A Pareto Analysis for Service Chain Composition . 56
4.5 Dealing with the Embedding of Service Chains . . . 59
4.6 Summary . 60

— 49 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

In a smart city scenario, many services and applications are designed to
improve the quality of life of the citizens, for example, urban traffic con-
trol, emergency health assistance, home energy monitoring, and evacuation

routes in case of natural disasters; turning the survivability of these services
into a critical aspect. The architecture described in the previous chapter offers
the frame of reference to handle the challenges imposed by the Cloud and IoT
paradigms that support the Smart Cities, but it is necessary to design and de-
velop specific solutions that deal with the tasks specified for each module.

In particular, the Resilience Manager from the architecture, along with the Pro-
tection & Recovery module is in charge of infusing the Smart City solutions with
robustness and survivability in the face of failures. This chapter focuses on defin-
ing a framework that can handle requests for virtualized services in an efficient
manner while enhancing the survivability of the Smart City applications.

4.1 Softwarization in the Cloud to IoT Continuum
The Cloud-Fog-Mist-IoT service infrastructure can be represented as a set of
hardware and software components organized in tiers (i.e., from the Cloud on
the top to the IoT on the bottom going through the Fog and Mist tiers) that
enables the deployment and interconnection of smart end-user applications and
devices empowering low-latency and context awareness data processing in a dis-
tributed way. The capabilities, service types, and deployment models available
in the Cloud-Fog-Mist-IoT have been influenced by virtualization techniques
usually known as the softwarization of the Cloud to IoT continuum [De Turck
et al., 2017]. Particularly, the network softwarization [Wright et al., 2015] al-
lows the design, development, test, management, and deployment of services
and applications via NFs using the available resources (i.e., hardware or soft-
ware components) in the infrastructure to route the network flows through the
right components [Quittek, 2014]. This approach could be extrapolated along
all the tiers in the Cloud to IoT continuum in order to provide services and ap-
plications to end-users via a chain of VFs. Some examples of the softwarization
approach on this domain are NFV [Yi et al., 2018], SDN [Kreutz et al., 2015],
and SFC [Gupta et al., 2018].

Services, such as video streaming, online gaming, mobile connectivity, and IoT
applications, are composed of different software and hardware components usu-
ally hosted on top of a network infrastructure organized according to the Cloud
to IoT continuum approach. Consequently, the infrastructure operator is re-
sponsible for the embedding, management, and orchestration of a set of services
that can be instantiated and used by various service providers and their final
users, frequently applying softwarization techniques via VFs with the objective
of fulfilling service and application requirements [Fischer et al., 2013; Quittek,
2014; Gupta et al., 2018]. These VFs can be focused on different domains, such
as network infrastructures or computational activities. The VFs are grouped

— 50 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

in structures known as SCs (see Figure 4.1), which combine the specific func-
tionality requirements needed to fulfill more complex service and application
requirements.

EndPoint VF1 ... VFn EndPoint

Service Chain

Figure 4.1: An Example of a Generic SC and its Components.

In the Cloud to IoT continuum, a common assumption adopted by infrastructure
operators is based on the notion that the dependencies between a set of services
or VFs in a SC are fixed [Quinn and Nadeau, 2015]. For example, consider a
SC at the border of a Wide Area Network (WAN) that requires to inspect and
compress the traffic; typically, the packets should pass by the Intrusion Detection
System (IDS) before the WAN optimizer compresses the content.

Even though the fixed/ordered approach for the composition of SCs could be
used in some particular use cases, it could be inflexible in some other situations.
Thus, in cases where the VFs of a given SC do not have a strict order or de-
pendency between them, there are multiple possibilities for the composition of
the components of the SC [Mehraghdam et al., 2014]. Consider a SC composed
by a set of VFs where two of them correspond to a Firewall (FW) and a Video
Optimization Controller (VOC), respectively, which are independent from each
other as depicted in Figure 4.2. Despite that the result of the traffic flow going
from the FW to the VOC or from the VOC to the FW is the same from the
end-user perspective; the processing order of these components could have some
impact on the communication infrastructure. For example, regarding important
decision making, such as placement decisions considering the FW could filter
part of the incoming flow consuming fewer resources on the outgoing link.

EndPoint

FW VOC

EndPoint

VOC FW

Figure 4.2: An Example of a SC with Components in an Arbitrarily Order.

Once the infrastructure operator has defined how to deal with the composition
of the users’ requests (i.e., SCs), it is necessary to move forward to the mapping

— 51 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

or embedding of the requests into the physical or substrate infrastructure. At
this stage, the infrastructure operator has to decide the best embedding for the
SCs requested considering the current state of the physical infrastructure. For
delivering services and applications in the Cloud to IoT continuum, a set of VFs
and infrastructure components have to be instantiated or activated, so the cor-
responding communication flows can be routed between the endpoints. For this
purpose, the architecture described in Chapter 3 could be instantiated and used
like a MANO solution focused on the resilience of services and applications. In
this context, a couple of challenges related to the softwarization and composition
of SCs arise: (1) how to standardize and formalize a request of a service chain
considering the communication and dependencies between the VFs?; and (2)
how to embed the service chain and its components efficiently into the substrate
infrastructure?

A framework to deal with the two challenges discussed above is presented in the
next section. Specifically, a strategy to address the SC composition is proposed
in this chapter before moving forward to the SC embedding challenge, which is
tackled in Chapter 5.

4.2 A Framework for the Composition and Embedding of
Service Chains

The Cloud/Fog ecosystems have been moved to more software-oriented solu-
tions to decouple essential orchestration functions and empower a finer granu-
larity level at the resource management level to fulfill services and infrastruc-
ture requirement changes [He et al., 2019]. Consequently, the microservice soft-
ware architecture has been adopted to effectively built large-scale Cloud/Fog
applications and services from reusable and independently deployable compon-
ents [Chowdhury et al., 2019]. Taking advantage of the microservice architecture,
applications can be designed and implemented via a SC which defines an ordered
or partially ordered set of abstract VFs and ordering constraints be applied to
the interactions between these components [Quinn and Nadeau, 2015].

The modeling of SCs composition on the Cloud has been addressed using fixed
and pre-defined approaches [Sun et al., 2012; Keller et al., 2014]. More re-
cently, implementing pliable strategies for the Cloud/Fog and NFV environ-
ments [Mehraghdam et al., 2014; Beck and Botero, 2017] have been proposed.
These different methods were discussed in Section 4.1 leading to the identi-
fication of the main challenges in this topic. To cope with these challenges,
a framework to deal with the composition of SCs from the user’s requests to
the embedding and instantiation of components in the substrate communication
infrastructure is presented below.

The scenario considered for the design and implementation of the composition
framework is depicted in Figure 4.3. The infrastructure provider offers a set of
VFs via a catalog, which is maintained by an instance of the MANO [Quittek,
2014], from where users can select them. Users structure their requests by
grouping different VFs, forming a SC according to a set of rules that guarantee

— 52 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

PARETO

GRAMMAR

REQUEST ANALYSIS REQUEST EMBEDDING

EMBEDDING

MECHANISM

USER

REQUEST

CATALOG

SUBSTRATE

NETWORK

Figure 4.3: Composition and Embedding Framework.

the correctness of the request.

To validate the user requests, the embedding framework uses a context-free
grammar focused on enabling flexibility and resilience for the SCs. The grammar
proposed is generic enough to be enhanced and extended in order to incorporate
it in the design of a data modeling language used for the management and
orchestration of the components of an infrastructure provider.

Once the request of the user has been validated, a Pareto analysis is performed.
Considering that a SC could contain components on a fixed or partial order,
the Pareto technique allows to identify the most suitable SC on a collection
of possible combinations according to a given set of optimization goals. The
Request Analysis module is one of the elements of the embedding framework
proposed (see Figure 4.3), whose tasks are performed according to Algorithm 4.1
producing a set of requests that will be the input of the next module.

Algorithm 4.1: Requests Analysis.
Result: Set of SCs to embed

1 SCs ← get_requests()
2 req_list ← parser(SCs, grammar)
3 catalog ← get_catalog()
4 req_embed ← Pareto_analysis(req_list, catalog)
5 return req_embed

The outgoing of the Request Analysis module produces the set of SCs that will be
embedded in the substrate network. The elements of the set are selected using
service and application metrics (e.g., data rate, resource consumption, number
of instances) via a Pareto analysis as previously explained.

The Request Embedding module is in charge of mapping the SCs and their VFs
in the physical nodes of the infrastructure prioritizing the availability of the

— 53 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

services in order to enhance the resilience of applications from failures in the
physical components of the infrastructure.

The components of the Request Analysis module are described in detail in the
following sections, while the mechanisms for the Request Embedding module are
introduced in the following chapter.

4.3 A Grammar to Specify Service Chains
This section describes the solution designed to tackle the first challenge men-
tioned in Section 4.1, particularly, a context-free grammar to deal with the
representation of the Service Chain requested, enabling the possibility to spe-
cify replicas for the VFs. After validating the correctness of the SCs requests, a
Pareto analysis is performed before invoking the embedding mechanisms presen-
ted in Chapter 5, that deal with the second challenge.

In the Cloud to IoT continuum considered for this research, the substrate infra-
structure where the VF chains will be instantiated and embedded is modeled as
a graph denoted by G = (N, L), where N and L are the sets of nodes and links of
the communication infrastructure, respectively. Each physical node n ∈ N has
a computing capacity Ωn (i.e., CPU, memory, storage); similarly, each physical
link ` ∈ L has a transmission capacity Γl (i.e., propagation delay, bandwidth).
The set of Virtual Functions V that could be instantiated in the infrastructure
is accessed via a catalog, which is maintained by an instance of the MANO
made available by the infrastructure provider. Detailed information about each
virtual function v ∈ V , such as their resource requirements ω, is also accessible
via the catalog.

Service chains are deployed in the infrastructure as a sequence of VFs, where a
service s denotes a chain of Virtual Functions vf1, vf2, ..., vf|V | connected via a
set of virtual links E. The order of the VFs that compose the service chain could
be fixed or variable according to a given criterion that represents the interaction
between the components; for example, in an IoT application that requires sens-
ing, analytics, and storage services, the order of the last two components could
swap depending on the application domain or user.

An infrastructure provider receives requests to deploy services, which are
modeled as a graph S = (V, E), where V denotes the set of VFs, and E rep-
resents the set of edges that connect the VFs. These requests specify particular
requirements that must be fulfilled, such as the number of replicas of a partic-
ular VF to increase its availability and the order of a set of VFs inside a given
chaining request. Additionally, it is considered that a VF could favor a specific
tier (i.e., Cloud, Fog, Mist, IoT) for its embedding.

Besides the assumptions already presented, some additional considerations were
taken into account to model the Cloud to IoT environment:

1. All the nodes in the communication infrastructure have the capacity to
execute network, computational, storage, or even sensing functions (i.e.,
each Virtual Function can be embedded in any node);

— 54 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

2. Functions and services are used interchangeably, considering that the re-
quired functionalities to fulfill the desired actions can be virtualized and
executed across all the network infrastructure;

3. The amount of resources, as well as the availability per node, decreases
from the nodes in the Cloud to those in the IoT in the hierarchical tiered
infrastructure, taking into account the constraints present in each tier; and

4. The Cloud tier has infinite resources and its availability is not affected by
failures.

A context-free language was designed in order to have a standard and formal
method to represent application/user’s chaining requests. With this represent-
ation, it is possible to build customized complex requests composed of a set
of ordered/un-ordered VFs to provide services. Each chain request is formed
by a different kind of modules. Various of these modules can be placed in a
chain request to denote a particular set of requirements for a given service.
To process/recognize the Virtual Function - Chain Composition (VF-CC) re-
quests, the production rules of the formerly mentioned grammar, in Backus-Naur
Form (BNF) [Aho et al., 2007], are listed from (4.1) to (4.11).

〈start〉 |= service{〈chain〉} (4.1)
〈chain〉 |= 〈order〉 〈chain〉 |

〈modules〉 〈chain〉 |
〈order〉 |
〈modules〉

(4.2)

〈order〉 |= fix_order{〈modules〉} (4.3)
〈modules〉 |= 〈optorder〉 | 〈replica〉 | 〈term〉 〈moreterm〉 (4.4)
〈optorder〉 |= opt_order{〈term〉 〈moreterm〉} (4.5)
〈replica〉 |= replica{〈chain〉 : 〈num〉} (4.6)

〈moreterm〉 |= , 〈term〉 〈moreterm〉 | ε (4.7)
〈term〉 |= 〈vf〉 〈tier〉 (4.8)
〈tier〉 |= cloud | fog | mist | iot | ε (4.9)
〈vf〉 |= vf1 | vf2 | . . . | vf|v| (4.10)

〈num〉 |= 1 | 2 | 3 | . . . | n (4.11)

The terminals of the grammar, plus the empty set, are given in bold font. The
grammar enables the definition of VF service chains. The chains can have a
fixed order (i.e., fix_order) defined by the user or not, giving the service pro-
viders the possibility to rearrange the VFs to their convenience (i.e., opt_order).
This grammar also enables the definition of replicas for each VF in the chain,
specifying the number of copies desired. Furthermore, there is the possibility
to request the deployment of the VFs in a particular tier of the infrastructure:
cloud, fog, mist, or iot.

The grammar described deals with the first challenge introduced at the beginning

— 55 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

of this chapter, specifically about how to standardize and formalize a service
chain request with support of replication for the VFs. In the next section, the
Pareto analysis performed to build the set of SCs that will be the input of the
Request Embedding module is presented using as input a collection of requests
(i.e., SCs) expressed using the context-free grammar defined in this section.

4.4 A Pareto Analysis for Service Chain Composition
Using the grammar described in the previous section, the service operator has a
standard way to process and validate users’ requests, even more, in certain cases
has the possibility to decide the composition of a SC (i.e., when the opt_order
token is present in the request) in the best possible way to fulfill the require-
ments of the user and the computing and communication infrastructure. To
better understand the applicability of the context-free grammar proposed, let
us consider how to formalize two adapted service chains from well-known uses
cases presented and discussed by the IETF Networking Group [Liu et al., 2014]
and the European Telecommunications Standards Institute (ETSI) NFV Work-
ing Group [ETSI GS NFV, 2013].

The SC depicted in Figure 4.4 represents a generic IoT application for sensing
that involves the sensor (Generic Sensor (GENSEN)), a data aggregation
function (Data Aggregator (DAGG)), a data compression function (Data
Compression (DACOM)), data analytics (Data Analytic (DANA)), and a final
database for storage (Data Base (DB)). The formal request for this SC using
the grammar is:

service{fix_order{GENSEN,DAGG,DACOM,DANA,DB}}

For this particular request, the interaction between the components is specified
as fixed. Thus the service provider is obliged to follow the order of the VF in
the SC composition without violating the user requirements.

GENSEN DAGG DACOM DANA DB

Figure 4.4: A SC for a Generic IoT Application.

A pliable SC for a mobile operator use case scenario is depicted in Fig-
ure 4.5. The request involves three modules in fix_order (i.e., Cognitive
Radio (CR), FW, and Broadband Network Gateway (BNG)), and two other
modules (i.e., Deep Packet Inspector (DPI) and CACHE) that require 2
replicas and their interaction is flexible, this is, their composition is dictated by
the descriptor opt_order. The formal request for this SC using the grammar is:

service{fix_order{CR,FW}fix_order{replica{opt_order{DPI,CACHE}:2}}BNG}

— 56 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

For requests where part of their VFs can be arbitrarily ordered, the service
provider should consider all the permutations of the set of components or VFs
as candidates for the set of SCs that will be embedded in the substrate infra-
structure (see Figures 4.5a and 4.5b). However, this flexibility on the service
composition generates a drawback regarding the cardinally of the candidates set.
Thus, for a SC with n components in optional order, there are n! possible can-
didates that represent valid solutions. To automate the selection of the optimal
SC according to a given criteria, a Pareto analysis is used.

CR FW BNG

CACHE1DPI1

CACHE0DPI0

(a) First Composition of a SC with Pliable Components.

CR FW BNG

DPI1CACHE1

DPI0CACHE0

(b) Second Composition of a SC with Pliable Components.

Figure 4.5: A SC for a Mobile Operator with Replication and Optional Order in
their VFs.

The Pareto analysis is a formal technique based on the “80/20” rule aimed at
identifying the top portion of causes that need to be addressed to resolve a
given problem [Mehraghdam et al., 2014; Noghin, 2018]. Using this approach in
conjunction with meaningful metrics at the service level (i.e., SC), it is possible
to find a trade-off in order to identify the most suitable SC in a set that fulfills
the requirements of users and the optimization goals of the service provider.
In this research, the following metrics are considered for the evaluation and
comparison of a set of SCs to guide the final selection of the SC to embedded in
the substrate network:

• The data rate between the endpoints of the all possible combination for a
given SC;

• The computational requirements of all VFs for the possible combination
of a given SC;

• The number of required instances of all service components (i.e., VFs) over
all the combination for a SC, including replicas.

In a scenario where various metrics should be optimized, the Pareto analysis

— 57 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

results lead to a set of solutions that cannot improve one metric without com-
promising at least one of the others. Thus, in the framework proposed, first the
Pareto solution is computed and after that a SC is selected using a single metric,
such as the data rate. The input data for this analysis are the requests previ-
ously validated and selected metrics provided by the Catalog included in the
Embedding Framework. Figure 4.6 shows a graphic view of the Pareto analysis
performed to the SC for a Mobile Operator discussed above (see Figure 4.5).
For this SC the composition with id = 0 (see Figure 4.5a) was selected for
embedding considering it got the best trade-off of the metrics selected.

Data Rate

2100
2200

2300
2400

2500
2600

2700 Computati
onal R

equirem
ent

57

58
59

60
61

62
63

In

st
an

ce
s

6.7

6.8

6.9

7.0

7.1

7.2

7.3

0

1

Figure 4.6: Result of the Pareto Analysis for the Mobile Operator SC.

With the Pareto analysis, the tasks from the Request Analysis module from
the framework discussed in Section 4.2 are completed. The result from this
module is a set of verified SCs to embed that are optimized according to a group
of metrics of interest that take into consideration the needs of both users and
service providers.

The metrics chosen in this work for the Pareto analysis can easily be replaced
according to the demands of users and/or service providers, resulting in a dif-
ferent set of SCs to embed but maintaining the functionality of the proposed
framework.

Mechanisms for the next module in the framework (Request Embedding) that
tackles the second challenge identified in Section 4.1 regarding the embedding
of the SCs resulting from the first module are presented in the next chapter;
however, a context regarding the allocation of resources for SCs in the Cloud

— 58 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

to IoT continuum is discussed in the next section for a better understanding of
this particular issue.

4.5 Dealing with the Embedding of Service Chains
Virtualization has evolved as a fundamental enabler in the context of the Cloud
to IoT continuum as discussed in Section 4.1. A key aspect of this scenario is
deploying the different service instances over geographically distributed compu-
tational resource centers/nodes, guaranteeing a quality interconnection. In the
previous sections, a discussion about how to address the manage composition
of SCs was presented; now, it is time to move forward to understand how to
deal with the embedding process of the SCs in the substrate infrastructure of
the service provider, which is the main task of the Request Embedding module
of the framework depicted in Figure 4.3.

Figure 4.7 depicts the general idea regarding the mapping/embedding of the SCs
in the physical infrastructure. A set of requests (i.e., SCs) should be allocated
in the substrate resource infrastructure of the Cloud to IoT continuum. The ob-
jective of this process is to optimize certain metrics (e.g., utilization, operational
expenses, capital expenditures) from the point of view of the service provider
and, at the same time, to fulfill the requirements of users, such as the response
time and availability level of services/applications.

S
er

v
ic

e
C

h
ai

n
s

C
lo

u
d

 to
 Io

T
 In

frastru
tu

re

Figure 4.7: Embedding SCs in the Cloud to IoT Infrastructure.

Commodity hardware available in the substrate infrastructure of a service pro-
vider offers different functionalities leading to diverse capabilities. Some hard-
ware components offer better support for forwarding network packets, others
provide more powerful computing resources, and others come with functions
more suitable for the IoT (i.e., sensing and actuating). Consequently, by vir-
tualizing services, functionalities can be decoupled from location, allowing the
software to be deployed at the most appropriate places.

The efficient use of the substrate infrastructure in the Cloud-Fog-Mist-IoT is de-
pendent on effective techniques for Virtual Function embedding which maps the

— 59 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

VFs on the physical substrate infrastructure resources [Rahman and Boutaba,
2013; Beck and Botero, 2017]. The VF embedding problem is challenging due
to finite nodes and link resource constraints and the online nature of the SCs
requests. Additionally, the requests of users specify a set of requirements that
should be satisfied and considering in the embedding process, such as the availab-
ility of services/applications in case of a failure on virtual or physical components
of the infrastructure. The requirements of availability of a given SC denote the
resilience degree of an application impacting directly in the QoS of the end-user.
Thus, the embedding mechanisms in the Cloud to IoT context must consider
how to deal with failures in the service provider infrastructure.

In the context of service mapping with failures recovery, replication mechanisms
have been proposed to achieve the availability expected by the components on
SCs [Rahman and Boutaba, 2013; Carpio et al., 2017; Aidi et al., 2018]. These
and other approaches were studied and used as inspiration to design and imple-
ment a set of mechanisms for the embedding of SCs considering the requirement
to achieve a high level of resilience that should be provided by service operators
to applications in the Cloud to IoT continuum, which are presented in the next
chapter.

4.6 Summary
The Cloud-Fog-Mist-IoT continuum offers the infrastructure for virtualized ser-
vices at different levels (i.e., software and hardware), called Virtual Functions.
These VFs are grouped in a structure called Service Chains, which are a set
of VFs interconnected in order to fulfill a set of specific service/application re-
quirements. The service provider has to furnish the proper management and or-
chestration for said SCs, offering certain availability even in the face of failures.
Replicating the VFs among the network infrastructure allows the activation of
replicas in case of failures to increase the availability of the SCs. The VFs and
their replicas must be strategically embedded in order to enhance resilience. In
this chapter, two challenges were identified in this context: (1) the formaliza-
tion of the service request, and (2) the embedding of the SCs in a substrate
infrastructure.

A framework to address the composition and embedding of SCs in the Cloud
to IoT continuum is proposed in this chapter. This framework is composed of
two main modules, namely Request Analysis and Request Embedding being the
first one described in the context of this chapter and the second just introduced,
leaving its details for the next chapter.

For the Request Analysis module, a formal grammar that enables the customized
specification of SC requests and the replicas of their constituent VFs was presen-
ted. The grammar allows declaring chains with fixed order or not, providing the
freedom to the service provider to reorganize the constituent VFs in order to op-
timize the resource usage of the underlying network. Additionally, the grammar
supports the specification of the number of desired replicas for each VF and a
particular tier (Cloud, Fog, Mist, IoT) in which the VF should be embedded (if

— 60 —

CHAPTER 4. FORMALIZING SERVICE CHAIN COMPOSITION

possible). In the case of multiple options to create the SC (i.e., optional order of
the constituent VFs is allowed), a Pareto analysis of the candidate SCs is used
to select the final SC to embed. The Pareto analysis uses the data rate, number
of instances, and resources used as metrics to select the SC to embed.

The contributions presented in this chapter include:

• A modular framework for the composition and embedding of service chains,
that can be adapted to different optimization goals;

• A BNF grammar to specify Service Chains, as well as to validate their
correctness according to specifications provided via a catalog; and

• A proposal to optimize the selection of alternative Service Chains that
satisfy the same requirements by using a Pareto analysis.

The grammar and the Pareto analysis solve the first challenge identified at the
beginning of the chapter, regarding standardization and formalization of the re-
quest of service chains. The rest of the document describes different mechanisms
aimed at the embedding of VF to enhance the survivability of applications in
the Cloud to IoT continuum.

— 61 —

Chapter 5
Resilient Service Chains through
Smart Replication

Contents
5.1 A Formal Model for Virtual Function Embedding . 64

5.1.1 Maximizing Acceptance Rate 65
5.1.2 Maximizing Survivability 66

5.2 A Genetic Approach for Virtual Function Embedding 68
5.2.1 Combining Node Availability, Disjointedness, and

Tiered Infrastructure in the Fitness Function 71
5.3 A Fluid Community Heuristic for Virtual Function

Embedding . 72
5.3.1 Building Fluid Communities 73
5.3.2 Embedding Service Chains in the Fluid Communities 75

5.4 Summary . 76

— 63 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

The embedding process of the Service Chains requested via the context-
free grammar previously described is detailed in this chapter. The main
requirement considered for the embedding of the VFs in the substrate

network is the survivability of the Service Chains components (i.e., VFs) via the
replication of all or part of them in disjoint physical nodes (if it is possible) of
the substrate infrastructure.

Three different mechanisms for Virtual Function embedding are presented in this
chapter, one based on Integer Linear Programming aimed to obtain an upper
bound of availability, one based on Genetic Algorithms focused on finding near-
optimal solutions consuming less computational time and resources, and the
last one based on a graph community detection algorithm that advantage of the
Cloud to IoT tiered architecture to achieve high resilience for online solutions.
The proposed mechanisms are focused on single failures of nodes in the substrate
communication infrastructure.

The mechanisms proposed in this chapter were designed and implemented in an
incremental way to study their results and identify weaknesses. The analysis
of each mechanism inspired ideas that were applied in the design of the next.
Considering this methodology, we describe the mechanisms in this chapter in a
formal way, and present their results and comparison in the next one to avoid
repetition.

5.1 A Formal Model for Virtual Function Embedding
The first mechanism is based on the formulation of a mathematical model to find
the optimal solution for the embedding problem. Even though the computational
cost to find the optimal solution is high for online scenarios, the optimal solution
was key for the study to define an upper bound. The mathematical model
uses a bi-level ILP formulation. On the first level, the goal is to maximize the
acceptance rate of the Service Chains; on the second level, the aim is to maximize
the survivability of the Service Chains by placing the VFs in the most reliable
nodes.

Table 5.1 introduces the parameters and variables used in the optimization solu-
tion. Service chains s ∈ S are composed by virtual functions v ∈ V . Each virtual
function can be replicated up to R times. The virtual function instances are to
be deployed in nodes n ∈ N belonging to the physical topology. For the feas-
ibility restrictions, the abstraction of resource unit is applied, where a resource
unit reflects the resources (i.e., CPU, memory, storage) of node n ∈ N , depicted
in Ω; or the resource requirements of VF v ∈ V listed in ω.

— 64 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

Table 5.1: Parameters and Variables for the ILP Model.

Parameters

Parameter Description

V Set of Virtual Functions

S
Set of Service Chains requested composed by
a set of Virtual Functions v ∈ V

R
Set of instances of Virtual Functions (i.e., replicas)
for a single Service Chain

N Set of nodes in the physical topology
Ω Capacity vector. Resource capacity for n ∈ N

F Survivability vector. Availability for n ∈ N

I

Instance matrix. An |S| × |V | matrix indicating
the amount of instances of each Virtual Function v ∈ V

in a Service Chain s ∈ S

ω
Requirement vector. Resource requirement for
the Virtual Function v ∈ V

T
Tier vector. Indicates the tier in the infrastructure
to which node n ∈ N belongs to

Variables

Variable Description

A Acceptance vector. An |S| vector
P Placement matrix. An |R| × |V | × |S| × |N | matrix

5.1.1 Maximizing Acceptance Rate
Equation (5.1) depicts the goal of the first optimization level, which is maximiz-
ing the acceptance ratio. Vector A is a variable that holds the accepted service
chains s ∈ S. In case of shortage of resources, it would lead to the prioritization
of the service chains that request a lower amount of resource units; thus, it pen-
alizes the requests that include an excessive amount of replicas for their virtual
functions.

max
∑
s∈S

As (5.1)

The following constraint (see Equation (5.2)) guarantees that only the replicas
requested are placed.

∑
r∈R

∑
n∈N

P s,v
i,n ≤ Is,v ∀s ∈ S, ∀v ∈ V (5.2)

— 65 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

The next constraint (see Equation (5.3)) limits the placement of the replicas in
different nodes. In case of a failure in a node, the replica is not affected and can
be activated.

∑
n∈N

P s,v
i,n ≤ 1 ∀s ∈ S, ∀v ∈ V, ∀r ∈ R (5.3)

Equations (5.4) and (5.5) are interdependent and ensure that only the service
chains placed are accepted for embedding. M ∈ N is a constant with a large
value usually called “big M”.

∑
n∈N

P s,v
r,n ≤M × As ∀s ∈ S, ∀v ∈ V, ∀r ∈ R (5.4)

As ≤
∑
v∈V

∑
r∈R

∑
n∈N

P s,v
r,n ∀s ∈ S (5.5)

Equation (5.6) guarantees that all the replicas of the virtual functions v ∈ V
that belong to the accepted service chain s ∈ S are placed.

As × Is,f =
∑
r∈R

∑
n∈N

P s,v
r,n ∀s ∈ S, ∀v ∈ V (5.6)

Equation (5.7) enforces the feasibility constraints. It only allows the placement
of virtual functions v ∈ V when node n ∈ N has enough resources to host
them.

∑
s∈S

∑
v∈V

∑
r∈R

P s,v
r,n × ωs ≤ Ωn ∀n ∈ N (5.7)

5.1.2 Maximizing Survivability
The second level of the optimization problem aims to maximize the survivabil-
ity of the Service Chains. The vector F holds the availability indicator of each
node n ∈ N in the physical topology. This factor is periodically updated via
orchestration mechanisms, executed by the MANO, that collect and maintain
information regarding the availability of the infrastructure nodes. This inform-
ation is used to calculate the most recent availability values and update the F
vector periodically with the current state of the infrastructure.

The availability is computed as the ratio between the uptime of the nodes and

— 66 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

the aggregate of the expected values of uptime and downtime [Bauer and Adams,
2012]. Equation (5.8) shows the calculation for the availability.

Availability = E[uptime]
E[uptime] + E[downtime] (5.8)

Equation (5.9) shows the formulation for the objective function of this level
of the optimization problem. The T vector indicates the tier in the network
infrastructure to which node n ∈ N belongs; there are four possible tiers and
their associated values go from lower to higher as the tiers go closer to the user.
The tiers and their respective values are: Cloud (0.6), Fog (0.8), Mist (0.9), and
IoT (1). These values represent a penalty associated with the propagation delay
between the nodes according to the tier where they belong, based on previous
work [Souza et al., 2016; Mahmud et al., 2018]. Thus, this objective function
tries to balance the embedding in nodes with the highest survivability factor
and also those nodes that are closer to the user, hence taking advantage of the
entire network infrastructure by performing a vertical search (i.e., between all
the tiers) instead of focusing only in a subset of nodes (e.g., Fog nodes).

max
∑
s∈S

∑
v∈V

∑
r∈R

∑
n∈N

P s,v
r,n × Fn × Tn (5.9)

Equation (5.10) is added to ensure that the results from the first optimization
problems are kept. This means, the service chains s ∈ S that were accepted in
the first step are fixed, and the selection of the nodes n ∈ N can be changed in
order to satisfy the second optimization goal.

As × Is,v =
∑
r∈R

∑
n∈N

P r,v
s,n ∀s ∈ S, ∀v ∈ V (5.10)

In order to keep the results from the first level, the acceptance vector resulting
from the first optimization level is fixed and used as a parameter for the second
optimization level. Constraints depicted from (5.3) to (5.7) are kept at this stage
to guarantee feasibility.

The bi-level formulation presented for Service Chain embedding is more suited
for offline scenarios taking into consideration the time required to get a solution
in complex online scenarios. Additionally, as is the case with optimization,
the optimal node(s) in the topology to embed VFs end up being overloaded.
Alternative solutions are presented in the following sections.

— 67 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

5.2 A Genetic Approach for Virtual Function Embedding
The second mechanism was conceived to shrink the search space of possible
solutions for the embedding problem. The idea was to find a near-optimal
solution consuming less computational time and resources. With this in mind,
we used a genetic approach using a multi-objective fitness function to improve
the resilience of SCs using the availability and disjointedness of the nodes, as
well as the tiered nature of the Cloud to IoT infrastructure.

Genetic Algorithms are a type of search algorithms where the search space is a
group of potential solutions, and the search is performed using notions of nat-
ural evolution [Renner and Ekárt, 2003; Pham et al., 2020]. As new organisms
in nature evolve to adapt to their environment, GAs evolve solutions to solve a
given problem. Table 5.2 lists the nature terms used in GA and its correspond-
ence with artificial evolution.

Table 5.2: Correspondence of Nature and GA terms.

Nature GA
Individual Solution
Population Set of solutions
Generations Iterations until reaching the final solution
Offspring Set of solutions from a follow-up iteration
Fitness Quality of a solution
Chromosome Representation of a solution
Gene Part of the representation of a solution
Crossover Binary search operator
Mutation Unary search operator
Reproduction Reuse of solutions
Selection Keeping good solutions

A GA generates a set of solutions called population, out of this population, the
individuals are ranked according to the optimization goal for the problem us-
ing a fitness function. New solutions are created by combining two parents by
crossover and mutation. The fittest individuals will be passed to the next gener-
ation, the offspring, while weaker individuals die off. Individuals are represented
as chromosomes composed by genes. For the sake of clarity, the same variables
used for the ILP model listed in Table 5.1 are used for the GA.

A solution or individual is represented by the placement matrix P . The solution
P r,v

s,n = 1 indicates that instance r ∈ R from VF v ∈ V in SC s ∈ S is embedded
in node n ∈ N , and P r,v

s,n = 0 otherwise. To generate the offspring population, the
crossover binary operator combines two individuals (i.e., parents) to generate
two new individuals (i.e., the children). Figure 5.1 shows an example of the
crossover. A portion of the SC from the first solution is mixed with a portion
of the SCs from the second solution using a crossover point which is chosen
randomly, as depicted in Figure 5.1. After generating the new individuals via
the crossover, a mutation is randomly introduced in some of the new individuals.
This means, in the placement matrix P , some of the nodes n ∈ N are changed
for the solution.

— 68 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

1 0 1 0

1 1 0 1

1 1 0 1

1 1 0 1

1 0 1 0

1 1 0 1

0 1 1 1

0 1 0 0

0 1 1 0

1 1 1 1

1 1 0 1

1 1 0 1

0 1 1 1

0 1 0 0

0 1 1 0

1 1 1 1

Parent 1 Parent 2

Child 1 Child 2

Figure 5.1: Representation of the Crossover.

In a GA the individuals should be ranked according to their quality using a
fitness function. One possible function to compute the fitness of individuals is
the WSGA; this approach allows to combined different objectives in a single
fitness function [Mehboob et al., 2016; Guerrero et al., 2019]. Equation (5.11)
shows the calculation for the fitness function, where ωi is the scaling factor, θi

is the weight, and Xi is the value of the objective function.

∑
i ∈ numObj

ωi × θi ×Xi (5.11)

Algorithm 5.1 shows the implementation of the WSGA used in this work. The
first step is to randomly generate the first population with a given size (pop_size)
of individuals, as shown in line 1. For this population, the objective values
(line 2) and the fitness function (line 3) of each solution are calculated using
the WSGA approach before move forward to the evolution of the first popula-
tion.

For a given number of generations (line 4) the offspring population is initialized
as the empty set (line 5). From the individuals in the current population (line
6) two parents are randomly selected using a binary tournament (see lines 7
and 8). The two parents reproduce using the crossover operator, generating two
children (line 9). The crossover mixes the two parents combining a portion from
the first parent with a portion of the second. The resulting children are then
mutated with a uniformly random probability of 25% (see line 10); this means
that some of the nodes (i.e., with cardinality num_genes) marked in the solution
for embedding are changed. The number of nodes to alter on each solution
correspond with 10% of the VFs to embed in the entire solution, including

— 69 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

Algorithm 5.1: Weighted Sum Genetic Algorithm.
Result: Embedding of SCs and their VFs

1 Pt ← generate_random_population(pop_size)
2 obj_values ← get_obj_values(Pt)
3 fitness ← ws(obj_values, ω, θ)
4 foreach i in generations do
5 Poff ← ∅
6 foreach j in pop_size do
7 parent1 ← select_parent(Pt, fitness)
8 parent2 ← select_parent(Pt, fitness)
9 child1,child2 ← crossover(parent1, parent2)

10 if random() ≤ mutation_prob then
11 mutate(child1, child2, num_genes)
12 end
13 Poff ← Poff ∪ {child1, child2}
14 end
15 obj_values ← get_obj_values(Poff)
16 fitness_off ← ws(obj_values, ω, θ)
17 fitness ← fitness ∪ fitness_off
18 Poff ← Poff ∪ Pt
19 Poff ← order(Poff, fitness)
20 Pt ← Poff[1...pop_size]
21 end
22 solution ← max (Pt, fitness)
23 return solution

replicas (see line 11). The new mutated children are joined to the offspring
population in line 13. The objective function (see Subsection 5.2.1) and fitness
values (using Equation (5.11)) are recalculated for all new individuals in the
offspring population in lines 15 and 16 respectively.

All the newly calculated fitness values are combined in line 17, and the new
offspring population is combined with the current population in line 18. Indi-
viduals are sorted according to their fitness values in line 19 and only a given
number of individuals (i.e., pop_size) with better (i.e., higher) fitness value will
survive and be passed on to the next generation. At the end of the evolutionary
process, when all generations were processed, the individual with the highest
fitness value (line 22), i.e., the best solution, is returned in line 23. The compu-
tation of the objective functions for the fitness used in this work is described in
the following subsection.

— 70 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

5.2.1 Combining Node Availability, Disjointedness, and Tiered Infra-
structure in the Fitness Function

Different objective functions are combined in the WSGA and are defined in this
section, the notation and variables from Table 5.1 are used. The first objective
function is related to maximizing the availability of the SCs, to achieve this
the availability vector F is used. The availability of node n ∈ N that holds
instance r ∈ R of the VF v ∈ V that belongs to the SC s ∈ S is added up
in Equation (5.12). Since the fitness function maximizes the results from the
objective functions, higher availability values are prioritized.

∑
s∈S

∑
v∈V

∑
r∈R

∑
n∈N

Fn (5.12)

The next objective function encourages the embedding of different instances of
the same VF v ∈ V in different nodes n ∈ N . Equation (5.13) shows the
calculation. If the instance r ∈ R from the VF v ∈ V is embedded in a different
node for the same SC s ∈ S, the availability factor of node (i.e., n2 ∈ N) where
the second instance (i.e., replica) of the VF is embedded is added, on the other
hand, if different instances of the same VF are stored in the same node, zero (0)
is added.

disjointedness =

∑

s∈S

∑
v∈V

∑
r1,r2∈R

∑
n1,n2∈N

Fn2 if r16=r2; n1 6=n2

0 otherwise
(5.13)

Upper tiers of the network infrastructure have nodes with higher availability than
those in the lower tiers. Thus, nodes closer to the edge have a lower availability
factor than nodes closer to the core. This reflects the fact that nodes in the
IoT have a higher probability of failure while the nodes in the Cloud are less
prone to failure, and an availability uptime of 99.999% of the times is required,
following the five nines principle [Bauer and Adams, 2012]. For this reason, the
previous objective functions will lead the embedding towards the upper tiers,
potentially affecting the response times of the SCs. The final objective function
seeks to mitigate this side effect by prioritizing embedding in the lower tiers.
Equation (5.14) reflects this objective function. Tier vector T has the following
values for the different tiers: Cloud (0.6), Fog (0.8), Mist (0.9), and IoT (1).
On the other hand, Ψ denotes a constant that allows normalizing each value
between 0 and 100. Thus, higher values would lead the embedding to lower
tiers, improving response times.

∑
s∈S

∑
v∈V

∑
r∈R

∑
n∈N

Ψ× Tn (5.14)

— 71 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

The combination of the different objective functions via Equation (5.11) will
lead to a spread embedding throughout the different tiers of the network infra-
structure, in a vertical search space.

Unfeasible solutions where the embedding of the VFs v ∈ V surpasses the phys-
ical capacities of the node n ∈ N are assigned a fitness value of −1, so that they
are discarded for the following generation, since the algorithm seeks to maximize
the fitness value of the solutions.

Genetic Algorithms have successfully been used before for embedding solu-
tions [Pham et al., 2020; Carpio et al., 2017; Ma et al., 2017; Chen et al., 2020].
Among different genetic approaches, WSGA has proven to have short conver-
gence times to find optimal solutions in placement problems [Guerrero et al.,
2019].

According to the conditions of the scenario (e.g., size of the topology, traffic load)
the number of generations needed to reach a near-optimal solution increases,
impacting the computation resource and execution time needed. An alternative
heuristic for more complex scenarios is presented in the following section.

5.3 A Fluid Community Heuristic for Virtual Function Em-
bedding

For online and more complex scenarios, optimal or near-optimal solutions usually
are not an option given the number of resources and time that has to be invested
in finding it. Additionally, after the design and implementation of the mechanism
described in Section 5.1, it was noticed that some nodes were saturated. On
the other hand, for the GA described in Section 5.2, sometimes the VFs were
too spread in the infrastructure, impacting the response time of the SCs. To
overcome these issues, an additional mechanism able to address the embedding
problem in a practical way, leading to satisfactory results, was designed and
proposed.

Fluid Communities by Tiers is a heuristic-based mechanism to enhance the resi-
lience of SCs based on graph partition. Graph theory is frequently used to tackle
problems in a vast range of engineering and computer science applications. A
graph usually allows representing almost any physical situation involving dis-
crete objects and a relationship between them (e.g., a communication network
infrastructure) [Deo, 2017]. A relevant feature of performing graph representa-
tion is the partition or community structure that allows the study of edges and
vertices that belong to a cluster with common interests and/or metrics [Bichot
and Siarry, 2011].

An approach that has proven to be helpful to deal with the saturation issues
found with the ILP model is building communities in the communication network
topology to achieve load balancing [Velasquez et al., 2020; Skarlat et al., 2017a;
Lera et al., 2019a]. Furthermore, exploring the entire topology, taking advantage
of its multi-tier nature, could help overcome the issue detected with the genetic
approach.

— 72 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

Lera et al. [Lera et al., 2019a] proposed a service placement policy focused on
enhancing the availability and QoS of applications using graph partition. The
community detection used for the placement mechanisms was the method pro-
posed by Newman and Girvan [Newman and Girvan, 2004], which progress-
ively removes edges from the original graph to identify the communities on it.
The method removes the most valuable edge, usually the edge with the highest
betweenness centrality, at each step. Thus, the graph breaks down into pieces,
and the tightly knit community structure is exposed. This research adopted a
different approach to build more reliable and balanced communities using the
Fluid Communities (FluidC) method.

5.3.1 Building Fluid Communities
The Fluid Communities approach is based on a Community Detection (CD)
algorithm that could be applied to any graph to create groups called communities
as sets of vertices densely interconnected that at the same time are sparsely
connected with the rest of the graph [Parés et al., 2018]. Particularly, the FluidC
algorithm creates the communities by mimicking the behavior of several fluids,
expanding and pushing one another in the graph until an equilibrium is found.
The algorithm receives an input parameter K, which indicates the number of
fluids, i.e., communities, that are going to be created.

Given a graph G = (N, L) with N the set of vertices and L the set of edges, the
algorithm will initialize K fluid communities C = {c1, ... , cK} with 0 < K ≤ |N |.
Each community c ∈ C is initialized with a distinct and randomly selected vertex
in N . The density d of a community c ∈ C is defined according to (5.15), as the
inverse of the number of nodes in the community c.

d(c) = 1
|c|

(5.15)

For a vertex n, the update rule returns the community or communities with
maximum aggregated density d within the ego network 1 of n. This rule is
formally defined by (5.16) and (5.17), where n is the vertex being updated, C

′
n

is the set of candidate communities, each of which could be the new community
for n, B(n) are the neighbors of n, d(c) is the density of community c, c(z) is
the community to which vertex z belongs to, and δ(c(z), c) is the Kronecker
delta.

C
′

n = arg max
c∈C

∑
z∈{n}∪B(n)

d(c)× δ(c(z), c) (5.16)

1Ego networks consist of a main node (“ego”) and the nodes directly connected to it.

— 73 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

δ(c(z), c) =

0 if c(z) 6= c

1 otherwise
(5.17)

Figure 5.2, adapted from Parés et al. [Parés et al., 2018], describes the process
of building the communities. Assume it selects the red node and the green node
shown in the topology in Figure 5.2. After the first iteration, the density of both
communities is 1, the maximum possible value for density. The node highlighted
in blue represents the vertex where the update rule will be evaluated. For the
following iterations, the algorithm will randomly select a node from the neighbors
of the communities, which will be assigned to the community with the highest
density value. In the case that there are several communities with the same
density value, it will randomly select one of those communities. For the example
depicted in Figure 5.2 the FluidC converges after one complete superstep 2. The
last stage depicted in Figure 5.2 shows the final two communities in a tiered
environment with two tiers. The tiered communities approach is used for the
embedding mechanism described in the next subsection.

0.33 0.5

0.5

1.0 1.0 0.5 0.5 1.0 0.5 0.5 0.5

0.5

0.33 0.33

0.5 0.5 0.33 0.33

0.33

0.33 0.33 0.33 0.33

0.330.33

0.25 0.25

0.25 0.25

0.33 0.33

0.33

Tier 1

Tier 0

0.25 0.25 0.33 0.33

0.25 0.25 0.33

Figure 5.2: Workflow of FluidC for K = 2 communities and tiers = 2 (Adapted
from [Parés et al., 2018]).

The FluidC algorithm allows the definition of the desired amount of communities
and also that there will not be a monster community 3, in comparison with
the rest of communities in the graph. An adaptation from the original Fluid
Communitiess algorithm is used in this work to partition the topology graph.
Algorithm 5.2 describes the process to build the communities.

The algorithm begins by collecting the network topology information, in line
1, to organize the nodes by communities. The Cloud node is an independent
community, handled differently considering the model assumption described in
Chapter 4 (i.e., infinite resources and absence of failures), which is why it is not
taken into consideration for this process (line 2).

The highest modularity value for the topology given is used to specify the value of
k (see line 3), required as an input value for the FluidC algorithm, following the
approach used by Pares et al. [Parés et al., 2018]. The modularity is a metric that

2An iteration over all the vertices of the graph.
3A community significantly larger than the rest.

— 74 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

Algorithm 5.2: Build Communities.
Result: k communities for a given network infrastructure

1 topology ← get_topology()
2 remove_node(topology, Cloud_node)
3 k ← highest_modularity(topology)
4 for i = 1 to k do
5 communities[i] ← FluidC(topology,k)
6 end
7 fcommunities ← highest_performance(communities)
8 return fcommunities

measures the strength of the division of a graph, often used in optimization to
detect community structure in a network. As the modularity grows, the groups
inside the topology have denser connections between the nodes inside the groups
and sparser with the nodes in other groups, enabling a resilient communication
between the nodes inside a community or group [Fortunato, 2010].

Considering that the FluidC algorithm evaluates the update rule using a random
approach, the results of invoking this algorithm are not deterministic. Thus, the
algorithm is invoked k times (lines 4 to 6) before choosing the final community
set that will be used for the embedding process.

The resulting communities set will be the one with the highest performance,
in line 7, where the performance measures the ratio of the number of intra-
community edges plus inter-community non-edges with the total number of po-
tential edges [Bichot and Siarry, 2011]. Line 8 returns the final set of communit-
ies.

The communities created are balanced in the sense that they all have a sim-
ilar amount of nodes (i.e., the standard deviation of the average community
size is smaller than other community-building processes), which is a desired
characteristic for an embedding process that takes into account resilience and
load balancing. The characteristics of the communities created are discussed in
Chapter 6.

5.3.2 Embedding Service Chains in the Fluid Communities
The Service Chains have to be embedded in the computing and communication
infrastructure considering the set of communities selected after invoking Al-
gorithm 5.2. This corresponds to the second challenge described in Section 4.1.
Each sc will be embedded in a single community, respecting the resource con-
straints of the nodes and avoiding placing replicas of the same vf in a single
node (except in the case of embedding in the Cloud node). The nodes in the
community are also sorted according to the tier to which they belong (i.e., Fog,
Mist, IoT); the Cloud node has its own community (see the last stage depicted
on Figure 5.2).

— 75 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

The embedding process, named Fluid Communities by Tiers (FCT), and de-
picted in Algorithm 5.3, begins by getting the information about the topology
and its tiered hierarchical structure, as seen in lines 1 and 2, respectively. This
information is provided via a catalog of the network updated continuously by
the MANO module of the Cloud to IoT infrastructure manager. With this in-
formation, the communities are built by invoking Algorithm 5.2 in line 3. Line
4 obtains the values that correspond to the SCs and their constituent VFs, such
as response time, resource consumption, hardware and software specific require-
ments. The tiered communities tcomm, initialized in line 5, contains the list of
nodes that belong to the communities sorted by tiers.

The actual embedding process takes place between lines 6 and line 34, for each
sc requested and their VFs. The first step of the embedding is to initialize
the community pointer, commp, denoting the community where the vf is to be
embedded (line 7). For each vf, a flag variable (vf_deployed) controls if the vf
was successfully embedded in a substrate node of a given community. The tiered
communities are sorted by their amount of free computational resources, from
highest to lowest, in line 10. The tiered communities ordered, tselect, is an array
of three elements that represents the nodes inside the community that belong
to the Fog, Mist, and IoT.

From line 11 to line 15, the algorithm verifies if the given vf can be hosted
by the node with the highest available resources in the previously selected tier
(line 11). If the embedding process is successful (line 12), which means that the
vf instance was deployed in a disjoint node from its replicas, the flag variable
vf_deployed is updated to True in line 13. If the embedding process was not
successful, two new attempts are launched for the following two tiers with more
available resources, as seen in the blocks from line 16 to 22 and from line 23 to
29. If all previous attempts fail, the embedding will take place in the Cloud, as
depicted in lines 30 and 31. The result from the embedding process is returned
in line 35.

In summary, the embedding process deploys a vf and their replicas in disjoint
nodes, prioritizing the tiers with more available resources in order to balance
the load between the Fog, Mist, and IoT, and just considering the Cloud if all
previous attempts failed. Thus, the mechanism also promotes the embedding of
the VF in nodes with high availability but also closer to the end-users in order
to enhance the response time of services and applications.

5.4 Summary
To cope with the embedding challenge of SCs in the Cloud to IoT continuum
achieving a high level of resilience, three mechanisms for the mapping of VFs
and their replicas in the substrate service provider infrastructure are proposed
in this chapter; one based on ILP, one based on GAs, and a heuristic based on
graph partition. The bi-level ILP model aims to maximize the acceptance ratio
of SCs embedding them in the nodes with higher availability; the GA solution
uses a fitness function that mixes the node availability with placing replicas in

— 76 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

Algorithm 5.3: Fluid Communities by Tiers - FCT.
Result: Embedding of SCs and their VFs

1 topology ← get_topology()
2 ttiers ← get_tiers(topology)
3 communities ← build_communities()
4 SCs, VFs ← get_service_chains()
5 tcomm ← sort_communities(communities,ttiers)
6 foreach sc in SCs do
7 commp ← commp mod size(communities)
8 foreach vf in VFs do
9 vf_deployed ← False

10 tselect ← highest_resource(tcomm,commp)
11 if get_resource(vf) ≤ max(tselect[0]) then
12 if embedded(vf,tselect[0]) then
13 vf_deployed ← True
14 end
15 end
16 if vf_deployed = False then
17 if get_resource(vf) ≤ max(tselect[1]) then
18 if embedded(vf,tselect[1]) then
19 vf_deployed ← True
20 end
21 end
22 end
23 if vf_deployed = False then
24 if get_resource(vf) ≤ max(tselect[2]) then
25 if embedded(vf,tselect[2]) then
26 vf_deployed ← True
27 end
28 end
29 end
30 if vf_deployed = False then
31 embedded(vf,Cloud)
32 end
33 end
34 end
35 return final_embedding

disjoint nodes, and the tier to which the selected node belongs to; finally, the
heuristic called FCT creates communities to perform a vertical search of the
node to embed the VFs, trying to bring them closer to the edge of the network
thus improving the response time of the SCs.

The three mechanisms described were sequentially developed and evaluated via
simulation. In order to avoid repetition and to improve their understanding,

— 77 —

CHAPTER 5. RESILIENT SERVICE CHAINS THROUGH SMART
REPLICATION

these mechanisms were discussed in this chapter, and their evaluation is presen-
ted separately in the next chapter.

The contributions from this chapter are the three embedding mechanisms that
use replication of VF as a means to maximize the availability of the Service
Chains. In detail, these contributions are the following:

• A formal mathematical model, based on ILP, for the embedding of VFs.
The model aims at maximizing the acceptance rate of the SCs while also
maximizing their survivability by selecting the nodes with higher availab-
ility for the embedding;

• A genetic algorithm for VFs embedding that uses three objective func-
tions, namely maximizing the availability of the embedding nodes, using
disjoint nodes for the embedding of the replicas, and distributing the VFs
throughout the Cloud-Fog-Mist-IoT landscape different tiers; and

• A heuristic based in the Fluid Communitiess approach for graph partitions.
The VFs are to be embedded by communities performing a vertical search
in the Cloud to IoT continuum to find the most suitable node considering
its availability, to enhance response times for the SCs.

To validate the mechanisms introduced in this chapter, a simulation approach
was selected since it has proven to be a standard solution to evaluate mechan-
isms for the complex environment offered by the Cloud to IoT continuum, as
seen in the evaluation of the State of the Art in Chapter 2. To move forward
to the assessment, the first step is identifying the proper simulation tool that
allows the design and implementation of the experiments. The next chapter
provides a conceptual and technical analysis of simulation tools, the description
of the experimental setup used, and the experiments designed to validate the
mechanisms, as well as the discussion of the results obtained.

— 78 —

Chapter 6
Assessing the Service Chain
Embedding Mechanisms

Contents
6.1 An Analysis of Cloud to IoT Simulation Tools 80
6.2 Describing the Evaluation Setup 84
6.3 Results and Analysis 89

6.3.1 Failure Ratio . 91
6.3.2 Node Utilization 95
6.3.3 Response Time 97
6.3.4 Discussion . 102

6.4 Summary . 103

— 79 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

To model the Cloud to IoT continuum, evaluation tools such as simulators
must include some characteristics that would lead to more realistic
results in such a complex environment. For instance, it must be possible

to model features such as location awareness and low-latency, mobility support,
as well as interoperability and scalability mechanisms. A proper Cloud to IoT
simulator should include support for these features. An analysis of six different
Cloud/Fog simulators was conducted to ultimately select the simulator used for
the validation of the embedding mechanisms.

In this chapter, the experimental evaluation characteristics are also detailed,
including descriptions of the load, replication methods, and topology used. Fi-
nally, results from the experiments are presented and analyzed. The experiments
assess the embedding mechanisms on their failure ratio, node utilization, and
response time of the Service Chains.

6.1 An Analysis of Cloud to IoT Simulation Tools
Simulation has proven to be a standard tool for early validation before testing
solutions for complex scenarios in real testbeds (see Chapter 2). However, se-
lecting the appropriate simulation tool can be complex in itself. This section
presents a conceptual review on six Cloud/Fog Simulation tools (i.e., iFogSim,
CloudSimSDN, Yet Another Fog Simulator (YAFS), EmuFog, FogTorchπ, and
EdgeCloudSim), describing their main characteristics and what they allow to
experiment. The final output of this section will lead to the selection of the
simulation tool to use for the validation of the embedding mechanisms proposed
in Chapter 5.

The selection of the simulation tool was based on the fulfillment of the Cloud-
Fog-Mist-IoT features previously mentioned (see Chapter 2), as well as regarding
their acceptance (measured by the citation number) and the support provided
by the community (measured by the availability of tutorials, documentation,
examples, and/or discussion groups). The acceptance and community support
help in the selection by allowing to discard tools that have not been adopted by
the community.

The simulators selected are compared among each other regarding their features.
The descriptions presented in this section come from the information provided
by their authors in the respective papers, but also from experience working with
them. Table 6.1 summarizes the non-technical features used in the comparison,
and Table 6.2 comprises the technical features.

In Table 6.1, Latest release refers to the year in which the latest release of the
tool was published; First release corresponds to the year of the launch of the first
version of the tool (as listed on its GitHub repository), in order to have an idea
on its maturity; Date of publication indicates the year on which the paper that
introduces the tool was published; Community support measures the backing of

— 80 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the creators of the tool and the research community in terms of availability of
examples, tutorials/documentation, and/or existence of community groups. The
Community support is measured in High (all three factors are present), Moderate
(two factors present), and Low (only one-factor present); and Citations accounts
for the number of hits obtained in Google Scholar when searching the name of
each tool. Citations and Latest Release are accounted as to July 2019, when the
research was performed.

Table 6.1: Non-technical Comparison of Cloud/Fog Simulators.

Characteristics iFogSim CloudSimSDN YAFS EmuFog FogTorchπ EdgeCloudsim
Latest Release 2017 2018 2019 2018 2017 2018
First Release 2016 2015 2018 2017 2016 2017
Date of publication 2017 2015 2019 2017 2017 2017
Community support Low Moderate Moderate Low Low Moderate
Citations 334 65 34 20 29 56

From Table 6.1, it is noticeable that CloudSimSDN, YAFS, EmuFog, and Edge-
CloudSim are the most recently updated projects, while FogTorchπ and iFogSim
are not so far behind. The most mature tools (according to the Release Date and
Date of Publication) are iFogSim, CloudSimSDN, and FogTorchπ; with YAFS
being the most recent. This is also reflected in the Citation category, where
EmuFog and YAFS have significantly fewer citations; this could be highly influ-
enced by the lack of maturity of the tools and their recent creation.

Regarding the Community support, there is no official discussion group for any of
the simulators. However, there are a couple of groups related to CloudSim [Re-
searchGate, 2019; Groups, 2019], which is the base simulator from where iFog-
Sim, CloudSimSDN, and EdgeCloudSim build up, and some threads in these
groups are dedicated to these simulators. Respecting the examples, almost all
the simulators include them in their source code, except for EmuFog. Finally,
about the tutorials or documentation, iFogSim and FogTorchπ do not offer any
documentation; for iFogSim just a couple of examples are provided with the
source code. On the other hand, CloudSimSDN, YAFS, EmuFog, and Edge-
CloudSim include in their repositories a guide for installation and examples on
how to use them; furthermore, YAFS also has a more detailed document covering
the basic concepts related to the simulator [Lera and Guerrero, 2019].

As for the number of hits in Google Scholar, iFogSim shows the highest numbers
(in the hundreds), which leads to thinking that it is the most used tool (more
referenced). This could be because iFogSim has been available for longer (more
mature), which will also explain the lower numbers of YAFS and EmuFog. On
the other hand, FogTorchπ is at the bottom of the citations category, while being
one of the most mature tools being under evaluation, which might lead to think
it is not too popular among researchers.

The next evaluation is focused on the technical features. Since all evaluated
tools include support for Cloud/Fog environments, and all use Discrete-Event
Simulation (DES) (except EmuFog, which uses emulation), these two features
are not included in the table. In Table 6.2, the row Language means the pro-
gramming language used to code the experiments; the Topologies category refers

— 81 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

to the types of network topologies that are supported by the tool; the presence
of the feature Fault Injection indicates if the tool is able to simulate random fail-
ures in the topology or if dynamic topologies are supported; Application Model
refers to the representation of an application in the context of the tool; Mobility
indicates whether the simulator has support for this feature; the category Cost
and Energy Model indicates if there is already a model (for cost and/or energy)
implemented or the possibility for it to be added by the user via built-in fea-
tures; and the row named Federation and Scalability shows if there is support
to define federations and scale upwards or downwards the resources used by
the Virtual Machines (VMs) or building clusters (i.e., grouping or ungrouping
computational nodes) in the Cloud/Fog environment.

Table 6.2: Technical Comparison of Cloud/Fog Simulators.

Characteristics iFogSim CloudSimSDN YAFS EmuFog FogTorchπ EdgeCloudSim
Language Java Java Python Java Java Java
Topologies Tree Arbitrary Arbitrary Arbitrary Arbitrary Arbitrary
Fault Injection No No Yes Yes No No
Application Model Modular Service-chain Modular Docker-based Modular Modular
Mobility No No Yes No No Yes
Cost and Energy Model Yes Yes Yes Partial Yes Partial
Federation and Scalability Yes Yes Yes Partial No Partial

From Table 6.2 it is noteworthy that the most used programming language is
Java, but newer tools (i.e., YAFS) use Python. About the topologies, the most
useful is to have support for an arbitrary design, which will enable to recre-
ate different simulation scenarios; iFogSim has a disadvantage by only allowing
tree topologies. With iFogSim, the communication is only possible within the
same branch of the tree, thus if a user wants to try, for instance, a customized
placement policy, it would not be possible with iFogSim, since by placing ap-
plication modules in different branches, the communication will not be carried
out correctly (i.e., will not be included in the simulation’s results).

Other essential features are the support for fault injection as well as adding
or removing nodes and links arbitrarily. These features will allow to portrait
more complex experiments and test out a wider variety of mechanisms to handle
resilience and fault tolerance in more realistic environments. From the selected
tools, only YAFS and EmuFog offer fault injection support.

Regarding application modeling, different approaches are taken. A common way
that is close to real environments is using a modular approach where the applic-
ation is defined as a set of modules (or microservices) that constitute the whole.
This method is used by iFogSim, YAFS, FogTorchπ, and EdgeCloudSim. On the
other hand, CloudSimSDN uses a service-chain model for applications. Cloud-
SimSDN is more oriented to infrastructure, while the other tools are oriented to
applications. Finally, EmuFog allows using real-life Docker-based applications
in their emulation environment.

Mobility support is a key feature requirement for Cloud/Fog applications and
services, considering they are usually attached to users that are moving between
different access points at the Edge of the communication infrastructure. Out of
the six simulators analyzed, only two offer native mobility support, YAFS and

— 82 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

EdgeCloudSim. A fork from iFogSim, called MyiFogSim, supports mobility and
VM migration. This is one of the aspects with more room for improvement in
the Cloud/Fog simulation field since the support is not only scarce, but it is also
basic.

The cost of deploying services and applications is a critical feature for end-users
and stakeholders. For this reason, the possibility to define a model or behavior
regarding monetary or energy consumption during the simulation process has
been incorporated into a variety of simulators. From the simulators under study,
Emufog and EdgeCloudSim are the only ones with partial support of this char-
acteristic. Particularly, in EmuFog only experiments considering the monetary
cost have been carried out; on the other hand, EdgeCloudSim authors’ men-
tioned the support of energy consumption models for mobile and Edge devices,
as well as the Cloud datacenters, as a needed feature for the simulator.

Fog environments are dynamic by nature. This feature requires adaptive func-
tions to enable asking for more resources or release them on-demand, as well as
to deal with variations on the service infrastructure (e.g., data bursts, commu-
nication failures). Simulators as iFogSim, CloudSimSDN, and YAFS support
the dynamism and on-demand requirements of Fog services/applications via
VM elasticity and migration, federation polices, and clustering of computational
nodes. Emufog has scalability support regarding the communication and topo-
logy infrastructure; nevertheless, it lacks of strategies to deal with on-demand
requirements of services/applications inside computational nodes. Finally, Edge-
CloudSim only supports Federation and Scalability between nodes of the same
tier (only Cloud or only Fog), which means that it is not possible to achieve a
proper orchestration along the Cloud to Fog continuum.

The reports obtained are also a technical feature under analysis. Table 6.3 lists
the metrics reported by each simulator. The presence of a checkmark (X) indic-
ates that the simulator reports that metric, while a dash (–) says otherwise. It is
noticeable that iFogSim, CloudSimSDN, and YAFS offer a more detailed report
of the simulation, while EmuFog has the poorest. The metrics that are more
often reported are those related to resource consumption (i.e., CPU, memory,
bandwidth, and energy), while the metrics with the least support are those
related to fault tolerance (i.e., failed tasks, waiting time, availability).

Table 6.3: Metrics reported by the Cloud/Fog Simulators.

Metrics iFogSim CloudSimSDN YAFS EmuFog FogTorchπ EdgeCloudsim
CPU consumption X X X X X X
Memory consumption X X X X X X
Bandwidth consumption X X X X X –
Energy consumption X X X – – –
Deployment cost X X X – X –
Latency X – X – X X
Execution time X X – – – –
CPU time X X X – – –
Network time X X X – – –
Failed tasks X X – – – X
Waiting time – – X – – –
Link availability – X – – – –
Node availability – – X – – –

— 83 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

With these findings in mind, it was time to move forward with the selection of
the simulation tool. Both technical and non-technical features are considered in
this process.

Based on the previous discussion and the outcomes of Tables 6.1, 6.2, and 6.3,
three tools stand out: iFogSim, a Fog simulation tool with strong acceptance
of the community (measured by its citations); CloudSimSDN, which not only
includes the Fog features but also has a strong citation number; and YAFS,
which although being relatively recent (low citation number), it includes the
Fog characteristics and has a detailed documentation and metrics report.

FogTorchπ was discarded because of its low popularity (low number of cita-
tions while being available for a long time), and also because it is considered
as a prototype tool by its authors [Brogi et al., 2017]. EdgeCloudSim lacks
some critical requirements in the Cloud to IoT continuum, such as, execution
of tasks on Fog/Mist devices and task migration between Cloud and Fog/Mist
tiers; additionally, EdgeCloudSim has limited support of application perform-
ance metrics, which restricts the amount of information that can be gathered
from experiments performed with this tool to resource consumption (e.g., CPU,
memory), latency, and failed tasks. This issue drastically narrows its scope for
experimental work. EmuFog was discarded since it is an emulation tool and not
for simulation, and also for its even more limited metrics support.

CloudSimSDN is more suited for experiments aimed at evaluating the network
infrastructure; particularly, the possibility to define the physical topology, the
VN, and the workloads separately, making it useful to perform experiments re-
lated to SDN environments. iFogSim and YAFS are more inclined to experiments
designed to assess the performance of an application in Cloud to IoT environ-
ments; however, iFogSim has reportedly shown starvation issues for complex and
high resource demanding use cases [Perez Abreu et al., 2020]. iFogSim has bet-
ter support regarding the simulation of algorithms and mechanisms that require
measurements of resource consumption inside VMs; on the other hand, YAFS fo-
cuses on appraising the impact of load and placement of application modules in a
communication infrastructure, which is enhanced by the possibility of including
complex network theory and dynamic topologies in the simulations.

YAFS [Lera et al., 2019b] was ultimately selected as the simulation tool because
of its strong support for Fog critical features and its capacity to introduce failures
during the simulation [Perez Abreu et al., 2020], which allows evaluating the
survivability of the Service Chains. The next section describes the characteristics
of the experiments performed to validate the embedding mechanisms discussed
in Chapter 5.

6.2 Describing the Evaluation Setup
The experiments were conducted on a PC with 32GB 2400MHz DDR4 RAM
and 2.80GHz Intel Core i7-7700HQ with 4 cores and 8 threads (2 threads per
core) processor. The PC was running Microsoft Windows 10 Pro (Build 18363)
operating system. The IBM CPLEX Optimizer version 12.9 [IBM, 2019] was

— 84 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

used for the ILP model, and Python 2.7.16 was used for YAFS.

Figure 6.1 summarizes the evaluation procedure. Requests are generated auto-
matically and randomly. The requested chains are evaluated according to the
grammar presented in Chapter 4 to create the corresponding graphs that result
as valid alternative chains that satisfy the user requirement.

REQUEST

GENERATOR

REQUEST

PARSER

1
2

3
PARETO

ANALYSIS

EXPERIMENT

CONFIGURATION

USER
CHAINSTOPOLOGY

CATALOG

EMBEDDING

YAFS

SIMULATIONS

RANDOM

FAILS

PLOT

RESULTS

Figure 6.1: Experiment Setup Workflow.

Out of the different alternatives, the best ones are chosen (i.e., based on data
rate, number of instances, and resources) using a Pareto analysis. The selected
Service Chains, the topology and the information about the users (i.e., requests)
are combined in the catalog that is used by the embedding mechanisms. Once the
embedding process is carried out, the simulation is performed. During the simu-
lation, random failures are introduced to measure the behavior of the embedding
mechanisms under failing conditions. The plots resulting from the analysis of

— 85 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the raw results reported by YAFS are presented in the following section.

For this work, two partition graph methods (i.e., Fluid Communities and
Newman-Girvan) were initially considered for the heuristic proposed for em-
bedding SCs. The main idea was selecting the graph partition method that
provides the best results regarding load balancing and resilience for the com-
munities building process. Both partition methods were evaluated over different
synthetic random network topologies (i.e., Barabasi-Albert, Complete, Lobster,
PowerLaw, Star, and Tree), each with 50 nodes. The validation process con-
sisted of a batch of experiments to compare metrics including performance 1

(higher values are better), communities length, average and standard deviation
of the communities size; the number of communities for both methods was 5.
The target was building communities similar in size so there were no tiny or
monster communities as an outcome.

The results from this previous evaluation step are listed in Table 6.4 and a visual
representation is displayed in Figure 6.2. Although the values are similar, FluidC
shows a lower standard deviation for the communities length. It is also noticeable
from the boxplots in Figure 6.2 that overall FluidC creates communities more
balanced regarding their size. These observations led to the selection of FluidC
for creating the communities. The final topology selection was the Barabasi-
Albert to create a scale-free infrastructure. This decision was inspired by the fact
of several natural and human-made system, such as the Internet, the World Wide
Web, and Social Networks can be models using a scale-free network [Latora et al.,
2017], besides this approach, it has been used before in similar studies [Velasquez
et al., 2020; Lera et al., 2019a].

Table 6.4: Graph Partition Evaluation.

Method Topology Perf Comm. Size Mean SD

FluidC

Tree 0.83 [7, 13, 7, 13, 10] 10.00 2.68
Barabasi 0.82 [10, 10, 10, 10, 10] 10.00 0.00
Lobster 0.83 [7, 8, 12, 14, 9] 10.00 2.60
PowerLaw 0.82 [11, 10, 11, 10, 8] 10.00 1.09
Star 0.18 [1, 1, 47, 1, 1] 10.20 18.40
Complete 0.19 [9, 8, 11, 14, 8] 10.00 2.28

Girvan

Tree 0.83 [11, 11, 9, 13, 6] 10.00 2.36
Barabasi 0.78 [16, 12, 7, 13, 2] 10.00 4.93
Lobster 0.83 [12, 13, 6, 7, 12] 10.00 2.89
PowerLaw 0.79 [19, 6, 7, 11, 7] 10.00 4.81
Star 0.18 [47, 1, 1, 1, 1] 10.20 18.39
Complete 0.84 [46, 1, 1, 1, 1] 10.00 18.00

After this analysis, a graph to model the substrate service provider infrastructure
was generated following a random Barabasi-Albert method, according to the
complex network theory [Jalili and Perc, 2017]. Forty-nine (49) nodes are spread
between the IoT, Mist, and Fog, and an additional node (for a total of 50 nodes)
represents the Cloud. The Cloud node is the node connected to the Fog nodes

1Ratio of the number of intra-community edges plus inter-community non-edges with the
total number of potential edges.

— 86 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

with the highest betweenness centrality 2 in the graph; on the other hand, the
nodes with the lower betweenness centrality correspond to the gateways in the
IoT. The nodes directly connected to the gateways belong to the Mist, and the
rest of the nodes constitute the Fog. In respect of the failures, the simulation
time was set to 50000 time units, and there is a random failure set for each 2500
time unit. Thus, there are 20 failures during the simulation. This represents
40% of the nodes in the topology.

Tree Barabasi Lobster PowerLaw Star Complete

2.5

5.0

7.5

10.0

12.5

15.0

C
om

m
un

ity
 S

iz
e

FluidC GirvanNewman

Figure 6.2: Nodes per Community for the FluidC and Girvan-Newman Methods.

The survivability factor for each node is assigned randomly according to some
ranges that correspond to the layer to which the node belongs to. Thus, nodes
closer to the edge have a lower survivability factor than nodes closer to the core.
This reflects the fact that nodes in the IoT have a higher probability of failure
while the nodes in the Cloud are less prone to failure, and an availability uptime
of 99.999% of the times is required, following the five nines principle [Bauer and
Adams, 2012].

Simulation parameters are listed in Table 6.5. The tier weight parameter guides
the selection of the nodes in the embedding process so that the search space
is explored vertically (see Tier vector in Section 5.1). YAFS’ resource unit is
used to specify VFs demands. This unit is defined as a vector that contains
the capacity of different computational resources to be used by the VFs (e.g.,
number of cores for CPU, GB for memory, or TB for the hard disk). Regarding
the node resources, the amount is randomly selected between 10 and 25 resource
units for the Fog, Mist, and IoT tiers; however, this value is weighted so that
the IoT nodes are closer to 10 resource units and the Fog nodes are closer to 25
resource units.

For the Service Chains, five different examples were used based on typical Smart
Cities and IoT services. These chains are: (1) Web services, (2) Video streaming,

2Betweenness centrality quantifies the number of times a node acts as a bridge along the
shortest path between two other nodes.

— 87 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

Table 6.5: Simulation Parameters.

Component Parameter Value

Cloud
Tier weight 0.6
Availability (%) 99.999
Resources (units) 8

Fog
Tier weight 0.8
Availability (%) 88 - 98
Resources (units) 10 - 25

Mist
Tier weight 0.9
Availability (%) 77 - 87
Resources (units) 10 - 25

IoT
Tier weight 1
Availability (%) 66 - 76
Resources (units) 10 - 25

VFs
Requirements (units) 1 - 5
Execution (instr/req) 20000 - 60000
Message size (bytes) 1500000 - 4500000

Failures Time between failures (time units) 2500

(3) Voice-over-IP, (4) Online gaming, and (5) Generic IoT application. These
chains can be used as the foundation of more complex Smart City-based applic-
ations, such as smart surveillance (which could be based on video streaming) or
smart lighting (that can be based on a generic IoT for sensing and actuating
chain). The Service Chains used, and their belonging Virtual Functions, are
listed in Table 6.6. Similar base service chains were used in other works [ETSI
GS NFV, 2013; Hmaity et al., 2017; Ahmed et al., 2019].

Table 6.6: Service Chains.

Service Chain Chained VFs
Web services NAT-FW-TM-WOC-IDPS
Video streaming NAT-FW-TM-VOC-IDPS
Voice-over-IP NAT-FW-TM-FW-NAT
Online gaming NAT-FW-VOC-WOC-IDPS
Generic IoT application GENSEN-DAGG-DACOM-DANA-DB

Three different redundancy models are used for the Service Chains [ETSI GS
NFV-REL, 2016]: End2End, one replica for each VF in the chain; vsReplicas,
some of the VFs in the chain have replicas; and NoReplicas, where no replica
is used for any VF in the chain.

Four scenarios were defined by varying the network load with regards of the Ser-
vice Chains: (1) tiny: 5 SCs, (2) small: 10 SCs, (3) medium: 15 SCs, and (4)
large: 20 SCs. Similar loads were used in experimental cases before [Velasquez
et al., 2020].

With respect of the parameters used for the GA, the weight used for each object-
ive function was 0.33 since we considered the three objectives equally important.
Regarding the size of the population and the number of generations, a study was
made with the different workloads previously defined. Similar values were also
used in previous work [Guerrero et al., 2019]. Figure 6.3 shows the evolution of

— 88 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the fitness value for the tiny, small, medium, and large scenarios when using the
End2End replication method. It is noticeable that the fitness value improves as
the generations augment, as expected, but the improvement is not as significant
from generation 250, which indicates that the solution converged. The trend ob-
served here is resemblant to the ones obtained for the other replication methods
as depicted in Appendix A.

0 50 100 150 200 250 300 350 400
Generations

3225

3250

3275

3300

3325

3350

3375

3400

3425

Fi
tn

es
s

Max Avg

(a) Tiny Scenario.

0 50 100 150 200 250 300 350 400
Generations

6750

6800

6850

6900

6950

7000

7050

7100

Fi
tn

es
s

Max Avg

(b) Small Scenario.

0 50 100 150 200 250 300 350 400
Generations

10300

10400

10500

10600

10700

Fi
tn

es
s

Max Avg

(c) Medium Scenario.

0 50 100 150 200 250 300 350 400
Generations

13700

13800

13900

14000

14100

14200

Fi
tn

es
s

Max Avg

(d) Large Scenario.

Figure 6.3: Fitness Function Values by Generations for SCs using End2End Rep-
lication in the Scenarios Evaluated.

For comparison purposes, the ILP model, the GA approach, and the FCT heur-
istic are validated against the well-known First Fit (FF), as it is done in other
works [Skarlat et al., 2017a,b; Velasquez et al., 2020]. All the scenario setup, as
well as the source code, is available via a GitLab repository [Perez Abreu et al.,
2020].

6.3 Results and Analysis
This section presents the results obtained from the simulations. The failures in
the nodes were randomly generated before running the simulations to maintain
the same scenario between repeated simulations. Correspondingly, the selection
of the embedding locations is statically executed before the simulations; hence
the VFs are placed in the same nodes during the different simulations. This way,

— 89 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the reports presented in this section are the average of 30 repeated simulations
where the conditions are kept the same to minimize any statistical error. All the
data and plots are available for download via the GitLab repository [Perez Abreu
et al., 2020].

The three replication strategies used follow the models of redundancy discussed
in Section 6.2: (1) noReplicas, where no replicas are used for all the SCs; (2)
vsReplicas, where some of the VFs inside the SC have replicas (the replication
ratio is two (2) VF replicas per chain); and (3) End2End, where all the VFs in
the SC have replicas.

An important factor to take into consideration is the additional load added to
the infrastructure with the different replication strategies (i.e., noReplicas, vs-
Replicas, End2End). As more replicas are added, the resources of the nodes are
depleted sooner, thus forcing the embedding of the VFs in different nodes (i.e.,
more nodes in the topology are used), even though the embedding mechanism
remains the same. The fact that the embedding mechanisms try to find disjoint
nodes for different instances of a given VF magnifies this behavior.

Table 6.7: Execution Time (in seconds).

Replication Scenario Mechanism
ILP GA FCT FF

NoReplicas

Tiny 22.253 19.750 0.094 0.014
Small 38.135 29.192 0.008 0.011
Medium 50.369 36.349 0.009 0.013
Large 66.535 52.759 0.007 0.011

vsReplicas

Tiny 27.468 23.488 0.007 0.009
Small 51.582 42.603 0.007 0.014
Medium 69.921 49.608 0.008 0.016
Large 97.516 64.779 0.009 0.011

End2End

Tiny 38.041 35.058 0.008 0.009
Small 67.793 58.726 0.009 0.009
Medium 97.511 77.939 0.012 0.019
Large 139.09 106.37 0.014 0.019

Table 6.7 shows the execution times, in seconds, for each mechanism, scenario,
and replication strategy. As the load from the replicas and more SCs increases,
so do the execution times. FCT showed the shortest times followed closely by
FF. ILP showed times significantly larger, and GA showed times that might
not be suitable for online scenarios. The execution times obtained for the mech-
anisms were as expected; at the top, the ILP requires more time to find the
optimal solution to place the VFs. On the other hand, at the bottom, the FCT
mechanism was able to find an acceptable placement solution on a negligible
portion of time compared to the other two proposed mechanisms.

The execution time results of the proposed mechanisms allow concluding that
FCT could be adopted by the Resilience Manager module (see Chapter 3) to
improve the availability of SCs in the Cloud to IoT continuum. Results for
experiments on failure ratio, node utilization, and response time are presented
in the following subsections.

— 90 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

6.3.1 Failure Ratio
The first experiment is aimed at evaluating the resilience of the Service Chains
embedded in the network infrastructure. Three outcomes are possible: NoFail
(no VFs from that SC are affected by the node failures), Recovered (some VFs
are affected but their replicas could be activated), and Failed (one or more
VFs are affected but there is no replica or the replica(s) is also stricken by the
failures). Figures 6.4 and 6.5 show the results regarding the failure ratio, where
the rows represent the embedding mechanisms and the columns the replication
methods.

The failure ratio refers to a node failure that affected a SC, preventing a success-
ful communication among its VFs; because a VF was embedded in the failing
node, or because the failing node was a critical part of the communication path.
Figure 6.4a depicts the results for the tiny scenario, Figure 6.4b for the small
scenario, Figure 6.5a for the medium scenario, and Figure 6.5b for the large
scenario. As explained before, the load changes as more replicas are added to
the infrastructure, influencing the embedding process.

In the tiny scenario (see Figure 6.4a), the presence of failures affects fewer SC,
since their VF are more spread in the infrastructure. ILP was the only mechan-
ism without any failures for all the replication methods. When using noReplicas,
FCT suffered from 5% of SC failures, and the same amount of recovery for the
vsReplicas. GA was not able to recover failures in the noReplicas and vsReplicas
methods. Both FCT and GA did not suffer any failures when using the End2End
method. FF was the mechanism that showed more failures, with 25% of failing
SCs in the noReplicas and vsReplicas. FF was also the only mechanism with
failing SCs when using the End2End method in the tiny scenario, with 10% of
recovering failures and 10% of the SCs being able to recover.

For the small scenario (see Figure 6.4b), as the load grows (i.e., more replicas)
so does the number of failing SCs; since there are more VFs deployed in the
nodes. Thus the probability of being deployed in a failing node is higher. ILP
was the only mechanism with no unrecovered failing SCs, suffering from failures
only when using the End2End method, but being able to recover. FCT suffered
from failures when using the three different replication methods, being able to
recover half of the affected SCs when using vsReplicas, and all of the failing SCs
when using End2End. GA suffered from more failures than ILP and FCT for all
the replication methods, being able to recover only for End2End. FF had the
highest failure ratio of all the embedding mechanisms in the small scenario for
all the replication methods. Specifically, FF was only able to recover when using
the End2End replication method but still suffered from failures from which it
could not recover (25%).

For the medium scenario (see Figure 6.5a), once again ILP was the only mechan-
ism that did not suffer from irrecoverable failures, being able to activate replicas
for the End2End method. FCT suffered irrecoverable failures for all the replica-
tion methods, being able to recover from some failures for the vsReplicas (10%)
and End2End (15%). GA experienced more failures than ILP and FCT, having

— 91 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

noReplicas
IL

P

100%

vsReplicas

100%

End2End

100%

noReplicas

FC
T

95%

5%

vsReplicas

95%

5%

End2End

100%

noReplicas

G
A

95%

5%

vsReplicas

95%

5%

End2End

100%

noReplicas

FF 75%

25%

vsReplicas

75%

25%

End2End

80%

10%10%

NoFail Recovered Failed

(a) Tiny Scenario.

noReplicas

IL
P

100%

vsReplicas

100%

End2End

95%

5%

noReplicas

FC
T

85%

15%

vsReplicas

80%

10%10%

End2End

95%

5%

noReplicas

G
A

75%

25%

vsReplicas

80%

20%

End2End

80%

20%

noReplicas

FF 60%
40%

vsReplicas

65%
35%

End2End

60% 15%

25%

NoFail Recovered Failed

(b) Small Scenario.

Figure 6.4: Service Chains Failure Ratio - Tiny and Small Scenarios.

— 92 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the capacity to recover for the vsReplicas (15%) and End2End (35%) but being
unable to recover for the vsReplicas (45%) and End2End (10%). FF was the
only mechanism incapable of recovering from failures for vsReplicas, showing
the highest failure rate among all the mechanisms.

With the heaviest load in the large scenario (see Figure 6.5b), higher failure rates
are reported by each embedding mechanism, since more VFs are deployed in the
substrate infrastructure increasing the failure probability. ILP suffered from
irrecoverable failures in all the replication methods, unlike previous scenarios,
but it was able to recover from some failures (25%) for End2End. The ratio
of failures that could not be recover increased for FCT for all the replication
methods, while the ratio of recovered failures remained relatively stable. GA
suffered from failures of around 70% of the SCs for all the replication methods,
but was able to recover from most failures (60% out of 80%) for End2End. Once
again, FF was the only mechanism incapable of recovering from any failure from
vsReplicas, showing the highest failure rate between the embedding mechanisms
for all the replication methods.

In general, the behavior observed in the assessment of the mechanisms regarding
the failure ratio was as expected. The noReplicas method, for all mechanisms,
could not recover from failures since there were no replicas to activate. It is also
noticeable the trend that ILP showed the lowest number of failures, followed by
FCT, then GA, and finally FF.

For the vsReplicas, FF could not recover from failures in any scenarios. For
the large scenario, the ILP mechanism was also unable to recover from some
failures, but the number of failing SCs was significantly lower than with the other
mechanisms. FCT was able to recover from some failures in all the scenarios,
as well as GA. Particularly, for the large scenario using ILP (see Figure 6.5b)
the amount of failing SCs is lower for vsReplicas than noReplicas. This is due
to some replicas taking place in nodes with higher availability factor, but that
ultimately failed, and being placed in nodes with less availability that turned
out not failing during the simulation.

With End2End, since there are replicas for all the VF, all the mechanisms were
able to recover some SCs affected by the failures. For ILP in the medium scen-
ario, although all the SCs were able to complete (i.e., recovered after node
failures), it is noticeable that for the End2End method, 15% of the SCs were
affected by failures. This is caused by the extra load included by the replicas.
Using this method, more load is added to the nodes, forcing the embedding of
some VFs in different nodes that were affected by failures. Nonetheless, the
failing SCs were able to activate the replicas for the corresponding VFs. Using
End2End, the amount of SC affected by failures is more significant for all the
mechanisms, given the higher number of VF instances (i.e., primary and backup
ones) that are embedded. GA was the mechanisms that recovered more SCs in
End2End for all the scenarios. However, ILP and FCT did not need to activate
as many replicas since these mechanisms were more effective selecting nodes that
did not fail during the simulation (i.e., less affected SCs).

In Figures 6.4 and 6.5, ILP was always the most effective mechanism regarding

— 93 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

noReplicas
IL

P

100%

vsReplicas

100%

End2End

85%

15%

noReplicas

FC
T

70%

30%

vsReplicas

65% 10%

25%

End2End

75%

15%
10%

noReplicas

G
A

70%

30%

vsReplicas

40%

15%

45%

End2End

55% 35%

10%

noReplicas

FF 50% 50%

vsReplicas

50% 50%

End2End

40%

20%

40%

NoFail Recovered Failed

(a) Medium scenario.

noReplicas

IL
P

75%

25%

vsReplicas

85%

15%

End2End

70%

25%
5%

noReplicas

FC
T

55% 45%

vsReplicas

45%

10%

45%

End2End

55% 25%

20%

noReplicas

G
A 40%

60%

vsReplicas

25%

10% 65%

End2End

20%

60%

20%

noReplicas

FF

35%
65%

vsReplicas

35%
65%

End2End

25%

35%

40%

NoFail Recovered Failed

(b) Large scenario.

Figure 6.5: Service Chains Failure Ratio - Medium and Large Scenarios.

— 94 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

the failures, having a higher success rate for all the scenarios. In the case of
FCT, it is noticeable that there are fewer SCs affected when using the End2End
method. For this case, it is important to remember that FCT bases its embed-
ding decision on the available resources by tier. Thus, by changing the load on
the network, the embedding decision process is affected, thus changing the nodes
selected for the embedding. For GA also the amount of affected SCs is lower
when using the End2End method since GA also combines the encouragement of
utilizing lower tiers, as well as, nodes with high availability (higher tiers); thus
compromising the embedding of the VFs throughout the entire Cloud to IoT
landscape. In any case, FCT showed a behavior close to ILP followed by GA.
As the load grows, the rate of affected SCs with GA also increases, being closer
to FF although still slightly more efficient in failure recovery. This suggests that
GA would require a larger number of generations to converge to a better solution
when using heavy loads.

For all the methods and scenarios, FF was the mechanism that showed more
failures and less capacity to recover; ILP was the mechanism with better results.
It is noteworthy that as the load grows, the number of failing Service Chains
increase; and the load also affects the embedding process. Thus the same VF
instance can be embedded in different nodes even though the same mechanism
is used.

6.3.2 Node Utilization
The next experiment had the objective of evaluating the load balancing of the
different mechanisms. Figures 6.6 shows the results for the noReplicas, Fig-
ure 6.7 for vsReplicas, and 6.8 for End2End methods. For each replication
method, the top plot shows the number of nodes used, while the bottom plot
depicts the amount of VFs embedded on the busiest node; this is, the node with
more VFs.

Since ILP seeks the optimal node, it will saturate it, thus using fewer nodes
overall, in spite of the replication method. As the scenarios grow, the number
of nodes used also grows, showing an increasing trend for all the mechanisms;
and maintaining the fact that ILP uses the lowest number of nodes between
all. However, for ILP the results regarding the VFs on the busiest nodes are
the highest among all the mechanisms, suggesting a saturation on the nodes.
This might lead to more failures, both in the node as in the communication
links.

With regards to the nodes with the highest load, there are different trends among
the mechanisms. In the case of FF, all the nodes are treated equally (i.e., no
node is prioritized). The VFs are embedded in any case when there are enough
resources for it. On average, for these simulation parameters, 8 VFs will fill a
node; thus, this is the value observed for the busiest node in all the scenarios.
GA also showed a static trend on the number of VFs on the busiest node, but
a higher number of nodes are used among all the mechanisms. This means a
disparity in the mapping of VFs to nodes, embedding around 10 VFs on the
busiest node, but less VFs in other nodes. GA also showed the highest number

— 95 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

tiny small medium large
Scenario

0
5

10
15
20
25
30
35
40
45

N
od

es
 u

se
d

tiny small medium large
Scenario

0

5

10

15

20

25

V
Fs

 o
n

bu
si

es
t n

od
e

ILP FCT GA FF

Figure 6.6: Node Utilization - noReplicas.

tiny small medium large
Scenario

0
5

10
15
20
25
30
35
40
45

N
od

es
 u

se
d

tiny small medium large
Scenario

0

5

10

15

20

25

V
Fs

 o
n

bu
si

es
t n

od
e

ILP FCT GA FF

Figure 6.7: Node Utilization - vsReplica.

— 96 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

tiny small medium large
Scenario

0
5

10
15
20
25
30
35
40
45

N
od

es
 u

se
d

tiny small medium large
Scenario

0

5

10

15

20

25

V
Fs

 o
n

bu
si

es
t n

od
e

ILP FCT GA FF

Figure 6.8: Node Utilization - End2End.

of nodes used among all the mechanisms, impacting the response time of the SCs,
since more inter-node transmissions are needed to complete the communication
of the VFs that are embedded in different and sometimes distant nodes.

ILP and FCT prioritize the nodes according to their availability factor and the
tier to where they belong. Furthermore, the acceptance rate is also considered in
the embedding process. Thus, smaller VFs are prioritized, favoring them during
the embedding, resulting in smaller VFs grouped in the same node, with the
additional advantage of lower internal fragmentation in the nodes. This behavior
leads to an increasing trend for ILP, with more VFs in the busiest node. FCT
had a hybrid behavior by selecting a subset of candidates (i.e., communities) and
balancing the load amongst them. Hence, it shows a stable amount of VFs on the
busiest node in all the scenarios, getting to balance the load, but also using more
nodes than ILP to achieve this. This also reinforces the hypothesis of using a
mechanism for load balancing during the embedding process, for instance, using
communities; particularly communities similar in size, while also considering the
intra-community and inter-community connectivity.

6.3.3 Response Time
The following experiment was designed to evaluate the performance of the SCs
from an end-user perspective. The results for this experiment are presented
below in Figures 6.9 to 6.14, for the tiny and large scenarios, and all replication
methods. The results for the small and medium scenarios present the same

— 97 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

trends and are shown in Appendix B to ease the readability of this section. The
plots show the average response time (in milliseconds) from successful end-to-end
communications. The lack of a bar indicates that there was a node failure during
the simulation that affected the corresponding SC, preventing any successful
end-to-end communication (i.e., no data was collected). The line on the top of
the plot indicates the deadline for each SC (also in milliseconds).

For the tiny scenario using noReplicas (see Figure 6.9), FCT reported on average
the best response time, with an improvement of around 30% lower time in the
best case against the other mechanisms. FF was the only mechanism that failed
to fulfill a complete end-to-end communication. GA was the mechanism with
the highest response time, followed closely by ILP.

0 1 2 3 4
Service Chain

0

100

200

300

400

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure 6.9: SC Response Time - Tiny Scenario - noReplicas.

For the vsReplica method (see Figure 6.10), once more FF was the only mech-
anism unable to complete end-to-end communication. FCT showed the best
results, with response times of up to 30% lower than GA and ILP. In the case
of the End2End replication method for the tiny scenario (see Figure 6.11), the
worst results were obtained by ILP and GA. However, these mechanisms were
able to complete all their end-to-end communications, unlike FF that showed
lower response times for the SCs capable of completing all their end-to-end com-
munications. All the mechanisms completed the SCs within their deadlines for
all the replication methods in the tiny scenario, for those SCs that achieved
successful end-to-end communications.

For the scenario with the heaviest load (i.e., the large one), the difference in re-

— 98 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

0 1 2 3 4
Service Chain

0

100

200

300

400
R

es
po

ns
e

tim
e

(m
s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure 6.10: SC Response Time - Tiny Scenario - vsReplicas.

0 1 2 3 4
Service Chain

0

100

200

300

400

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure 6.11: SC Response Time - Tiny Scenario - End2End.

— 99 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

sponse time perceived with the different mechanisms are more significant. When
using noReplicas (see Figure 6.12), GA and FF were not capable of successfully
completing end-to-end communications for all the SCs, with 10% of the SCs fail-
ing with GA and 15% with FF. ILP and GA showed times significantly larger
than FCT for most of the Service Chains.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500

D
eadline (m

s)

Figure 6.12: SC Response Time - Large Scenario - noReplicas.

For vsReplicas (see Figure 6.13), FCT was the only mechanism able to show
results for all the SCs, since ILP, GA, and FF had SCs affected by failures at
the beginning of the simulation (5% for ILP, 5% for GA, and 15% for FF),
preventing them from achieving any successful and-to-end communication. On
average, the lowest response times were reported by FCT, and the highest by
ILP. Figure 6.14 shows the results for End2End. For this replication method,
GA and FF were unable to complete successful end-to-end communications for
20% and 10% of the SCs, respectively. The lowest response times on average were
obtained by FCT, with a 57% improvement respecting ILP and GA, and 30%
against FF in the best case (see SC 9 in Figure 6.14). For the SCs that achieved
successful end-to-end communications, all the mechanisms completed the SCs
within their deadlines for all the replication methods in the large scenario.

The results obtained for these experiments allow to point out the mechanisms
that more frequently failed to fulfill a complete successful end-to-end commu-
nication for at least one SC were GA and FF. This is due to them suffering
from more failures than ILP and FCT (node failures that prevented a success-
ful communication, as seen in Figures 6.4 and 6.5). Thus, there is a higher

— 100 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500
D

eadline (m
s)

Figure 6.13: SC Response Time - Large Scenario - vsReplicas.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500

D
eadline (m

s)

Figure 6.14: SC Response Time - Large Scenario - End2End.

— 101 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

probability that the failure that affects the SCs occurs at the beginning of its
workflow. Particularly, in Figure 6.12 is noticeable that with FF 3 SCs were not
able to complete any end-to-end communication (i.e., SCs 3, 4, 10) and 2 with
GA (i.e., SCs 10, 13). For all the scenarios, FF failed to complete a successful
communication for all the SCs, showing at least 1 affected SC.

As the load grows, so does the number of affected SCs for GA, reinforcing the
hypothesis that more generations are needed in heavier scenarios to converge to
a more efficient solution. On average, all the chains were able to complete their
end-to-end communications within their deadline. In most cases, FCT showed
the best response times. FCT distributes the VFs among the different tiers of
the landscape, and by bringing some VFs closer to the user, the response time
is improved. On the other hand, since ILP seeks the node with the highest
availability, and these nodes are on the highest tiers of the infrastructure, the
VFs are embedded farther away from the user, impacting the response time. FF
showed the most stable response times (i.e., having fewer differences among the
SCs). For the scenarios with lower load (i.e., tiny), ILP showed better response
times than GA, but as the load grows (i.e., large scenario) this trend shifts.
This is due to the saturation of the busiest node with heavier loads when using
ILP.

6.3.4 Discussion
Overall, ILP showed the best results regarding the resilience and survivability,
and the number of nodes used. The outcomes on the resilience and survivability
experiment were expected, considering that the model finds an optimal solution
for embedding the VFs and their replicas. However, this embedding mechanism
requires more time to reach a result; thus, it is not suitable for more complex
scenarios that demand quick response times for the embedding. As for the
number of nodes, the fact that the ILP model concentrates the VFs in the
same optimal nodes leads to a bottleneck for these nodes and their respective
links, affecting the performance and response times of the SCs that go through
them.

On the other hand, FCT achieved a better load balancing for the nodes by
spreading the VFs along the different tier nodes of the infrastructure, which
are grouped into communities. Furthermore, by implementing a vertical search
inside the communities considering the amount of resources available by tier, and
exploiting the possibility of embedding the VFs closer to the edge of the network,
FCT obtained better response times, ultimately increasing the QoS for final users
while offering a close to the optimal ratio of recovery from failures.

GA showed a recovery ratio close to FCT especially for scenarios with lower
load; displaying a more significant gap among these mechanisms as the load
grows. GA was also the mechanism with the higher number of nodes used while
maintaining a low number of VFs on the busiest node, leading to a higher service
spread in the underlying network.

FF was the least effective mechanism of the group, showing the lowest recovery

— 102 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

rate from failures. Additionally, some of the Service Chains were not able to
complete a successful end-to-end communication. This proves that even though
this is a simple mechanism, it is not necessarily adequate to be applied in the
Cloud-Fog-Mist-IoT service infrastructure.

Considering the results obtained in the experiments performed and the discus-
sion presented above, it is possible to conclude that FCT exhibits a balance
between recovery from failures and response time of applications, making it
suitable for the Cloud to IoT landscape modeled in this research.

6.4 Summary
The evaluation of the embedding mechanisms designed and implemented was
presented in this chapter. After a detailed analysis of different simulation tools
for Cloud/Fog environments, YAFS was selected for the evaluation because of
its strong support for Fog features and its capacity for fault injection. This last
feature was critical to validate the behavior of the resilient embedding mechan-
isms under failures. Three replication methods were used for the experiments:
no replicas (noReplicas), some VFs had replicas (vsReplicas), and all the VFs
had replicas (End2End).

The ILP resulted in the embedding of VFs in mostly Fog and Mist nodes, and
also in the saturation of nodes that were selected as optimal (based on their
availability factor). This saturation is counterproductive, potentially causing
more failures in both the nodes and their communication links. ILP was the
mechanism with less unrecovered failures and an overall lower failure ratio.

The GA was able to recover from all failures in the scenarios with lower load
(i.e., tiny and small) but had some SCs affected by failures in the scenarios with
heavier load (i.e., medium and large). GA was also the mechanism that used
the larger number of nodes, generating the larger service spread in the network;
however, this did not result in a lower failure ratio.

FCT showed a failure ratio close to ILP without saturating the nodes. Since FCT
performs a vertical search to select the node in which the VF will be embedded,
and by taking into consideration the amount of free resources in each layer, FCT
was able to get lower response times for the SCs.

For all the analyzed scenarios and replication methods FF showed less capacity
to recover from failures, with the highest failure rate among all the mechanisms.
Along with GA, FF was not able to get any successful end-to-end communication
for some of the SCs, although for FF this happened in all the scenarios, for GA
it only happened in the medium and large scenarios.

FCT got to balance the load among the nodes while improving the response
time of the SCs and experiencing fewer failures than FF and GA.

The contributions of this chapter are as follows:

• An evaluation of Cloud to IoT simulation tools, describing their functional
and non-functional characteristics, to help in the selection of the proper

— 103 —

CHAPTER 6. ASSESSING THE SERVICE CHAIN EMBEDDING
MECHANISMS

simulation tool according to the experimental goals; and

• An assessment of the performance of the proposed embedding mechanisms
using simulation. The appraisal included measurements of failure rate,
node utilization, and response time of the Service Chains embedded.

After a successful validation and assessment of the embedding mechanisms de-
signed and implemented in this work, the next chapter recapitulates the work
performed during the PhD, as well as the outcome contributions. Additionally,
a discussion of possible future paths on improving resilience in the Cloud to IoT
continuum is presented.

— 104 —

Chapter 7
Conclusions and Future Work

Contents
7.1 Synthesis of the Thesis 106
7.2 Contributions . 108
7.3 Future Work . 109

— 105 —

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

New solutions to support the daily activities of citizens, like smart traffic
control, health care, public safety, among others, are being incorpor-
ated in the paradigm that intends to interconnect objects in the scope

of a city, also known as a Smart City. Cloud computing, Fog, and IoT seem to
be some of the most critical technologies that are going to constitute the found-
ation for this reality. However, there are still open issues that need to be tackled
to bring flawless interoperability between these paradigms to reality.

One of these open issues is the necessity of maintaining the availability of the
services/functions hosted in the ICT infrastructure that interconnects smart
objects and components within the IoT. Particularly, resilience is a challenge
since it requires keeping track of a highly changing environment from the infra-
structure point of view and also from the requirements of the applications. This
represents the necessity of implementing new mechanisms to enable the dynamic
and distributed management orchestration of the infrastructure supporting the
Cloud to IoT continuum.

7.1 Synthesis of the Thesis
This work is focused on providing solutions to improve the resilience for virtual-
ized services/functions within the context of Smart City applications. The work
is divided as follows.

Chapter 2 presented the research context, defining resilience in the Cloud to
IoT. The chapter also introduced basic concepts on the different technologies
that support the Smart City paradigm, including IoT, Cloud and Fog computing,
and virtualization. Furthermore, the chapter provides a revision about the state
of the art on resilience for virtualized services/functions in the Cloud to IoT
continuum, identifying open issues and research paths to explore in order to
improve the resilience of smart services.

Next, in Chapter 3 a novel architecture with resilience features for the IoT envir-
onments was proposed. The architecture takes into consideration the commu-
nication infrastructure requirements of the IoT, besides it uses the advantages
of the Cloud and Fog paradigms to add ubiquity and scalability to the envir-
onment. The interaction between components in the IoT middleware combined
with the proper technologies allows fulfilling an efficient communication process
between smart objects and final users. Particularly, the proposed architecture
was designed taking into consideration the Smart City scenario, and the require-
ments needed for its computing and communication platform. The architecture
is mainly focused on enhancing the resilience of virtualized smart services.

Additionally, Chapter 3 presented an ontology to describe the IoT infrastructure,
to handle its heterogeneity improving the interoperability of different mechan-
isms working in the architecture. The ontology comprises as main classes the

— 106 —

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

IoT infrastructure, its devices, communication interfaces and links, and the per-
formance metrics related to them. This information will ease the managing of
the infrastructure in order to guarantee its proper work for user services and
applications. The ontology was successfully validated with different procedures,
including consistency evaluation and queries to corroborate its correctness.

After offering a solution for resilient management and administration of the
Cloud to IoT continuum to support Smart City applications, it was identified
that the Resilience Manager from the proposed architecture needed to provide
robustness and survivability to the smart virtualized services, identified as Vir-
tual Functions and organized in a structure called Service Chain. To fulfill this
goal, Chapter 4 presented a framework for the composition and embedding of
Service Chains. The framework is divided into two main modules, one for the
Request Analysis and one for the Request Embedding.

Chapter 4 offers the description of the first module, including a formal grammar
that allows the customized specification of SC requests and the replicas of their
constituent VFs. The grammar allows to specify the tier in which the VF should
be embedded, the number of replicas, and the order of the VFs inside the SC. In
the case that an arbitrary ordering is allowed and multiple SCs equally satisfy the
same request, a Pareto analysis is applied to select the resulting SC to embed,
based on their data rate, resource usage, and the number of VFs instances.
Chapter 4 closes with a discussion about how to deal with embedding from a
general point of view before moving forward to the specific details of the Request
Embedding module.

Chapter 5 handles the second module of the framework, which is in charge
of the embedding of the SCs. Three embedding mechanisms are proposed for
the VFs and their replicas. The first mechanism is based in ILP and aims
at increasing the acceptance rate while also maximizing the availability of the
nodes on which the VFs will be embedded. The model also guarantees that the
replicas of a single VF are embedded in disjoint nodes (if possible), so in the
case of a failure the replica can be activated. The second mechanism is based
on GAs and uses a weighted sum approach to combine multiple objectives in
the same fitness function. The objectives include maximizing the availability of
the nodes selected for the embedding, prioritizing the use of disjoint nodes for
the replicas, and weighting the different tiers of the Cloud to IoT continuum to
distribute the VFs along the entire landscape instead of concentrating them in
the upper tiers of the network, where the nodes with higher availability value
are gathered, and thus improving the response time of the SCs. The third
and final mechanism is a heuristic based on graph partitions to create balanced
communities in which the SCs will be embedded. The heuristic first tries to
select the tier with more available resources and then selects the node with
higher availability from that tier for each community. This way the load is
spread along the network landscape.

All the mechanisms are appraised via simulations. Chapter 6 begins with an
analysis of different Cloud/Fog simulation tools that presents their different
characteristics so that a researcher can easily select the one more suited for their

— 107 —

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

study. Then the evaluation setup is characterized so the experiments described
in this chapter can be recreated. Finally, the evaluation of the embedding mech-
anisms is presented, including experiments on SCs failure rate, infrastructure
node utilization, and SCs response time. Results show that the ILP mechanism
had the lower failure rate, while also incurring in node saturation. The GA
showed results close to the optimal ILP for lower loads, but the difference got
bigger for larger loads, implying the need to use more generations (and thus more
computing power and execution time) to reach a better solution. The heuristic,
called FCT, got results close to the ILP optimal for all the scenarios, but was
the mechanism with better results for the response time, showing to be able to
improve not only the resilience but also the performance of the SCs.

7.2 Contributions
The research work conducted in the context of this thesis was driven by the
objectives described in Chapter 1. With these objectives in mind, this thesis led
to the contributions described below:

• A resilient architecture for the Cloud to IoT continuum, includ-
ing the characterization of its modules and their interaction. The
proposed architecture takes into consideration the computing and com-
munication requirements of the IoT, besides it uses the advantages of the
Cloud and Fog paradigms to add ubiquity and scalability to the environ-
ment. The interaction between components in the IoT Middleware com-
bined with the proper technologies allows fulfilling an efficient computing
and communication process between the Smart Objects and the end-users.
The architecture is accompanied by an ontology to describe the IoT in-
frastructure, which provides a generic and uniform mechanism to identify
smart objects within the computing and network infrastructure, allowing
the interoperability among modules of the architecture and also of solu-
tions offered by different service providers, enabling the use of a federated
approach;

• A framework for the composition and embedding of Service
Chains. The framework not only defines the actions needed to define
a SC and to embed it but also includes original solutions for both tasks.
Regarding the composition of SCs and their description, a context-free
grammar to characterize and verify the correctness of SCs is provided.
The grammar allows the specification of the number of replicas for each
VF and the tier in which the VF should be embedded. Also, the SCs could
be given a specific order or not, in the case of disordered SCs, a solution
to select the most adequate SC based on a Pareto analysis is also offered;

• A conceptual and technical review of simulation tools for the
Cloud to IoT continuum. From a set of simulators specially designed
to model the particularities of the Cloud, Fog, Mist, and IoT, a revision of
their technical and non-technical characteristics is provided. This analysis
will help the research community in the selection of the proper simulation

— 108 —

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

tool, a critical step in the evaluation process for the design and validation
of novel mechanisms for this landscape; and

• For the embedding of the Service Chains, three different mechan-
isms are also presented. A mathematical model based on ILP to
optimize the embedding of VFs that belong to a Service Chain, using
replicas to increase their availability; an embedding approach based
in a Genetic Algorithm that uses the availability of the nodes
to compare different solutions, as well as information on how disjoint
are the replicas of the VFs; and a heuristic based on the Fluid Com-
munities algorithm, using a multi-tier approach, to maximize the
availability of the Service Chains while improving their performance.

All the embedding mechanisms proposed were evaluated using YAFS and the
source code of the experiment performed is available to the research community
via a GitLab repository [Perez Abreu et al., 2020]. These proposals, as well as
the literature review performed, are published in nine international conference
papers, five journal articles, and one book chapter.

7.3 Future Work
Several options have been defined as future work. For instance, regarding the
architecture proposed, there is the need to design new mechanisms for other
modules including path planning capable of dealing with the dynamism of the
environment (e.g., urban traffic congestion and mobile users) allowing to change
the route of the data paths in real-time without consequences in the QoS re-
quired by the components involved in the communication. Moreover, mech-
anisms to guarantee the continuity of the service have to be provided for the
aforementioned use-cases. Protection strategies based on overlapping topologies
and smart migration of services, as well as recovery approaches to reroute the
data after a failure using virtualization techniques for network devices, includ-
ing the complete view of the system (applications, Cloud, Fog, Mist, and IoT
infrastructure) have to be developed.

Regarding the SC composition framework, it would be interesting to extend it to
have more flexibility in the design of the SCs; for example, having the option to
define parallel VF for load balancing. Additionally, other metrics for the Pareto
analysis could be included, and analyze the impact of the resulting SCs on the
costs for the service providers, and the QoS perceived by the user.

Another future path for research is defining a resilience scale to characterize the
resilience level required by each SC. Using this scale, and for a given SC, a
study could be made to analyze the chain structure to determine its key VFs
and automatically suggest the number of replicas for each VF considering a set
of user requirements. In this context, it would be interesting to apply machine
learning techniques in the study of the request SCs using data collected from
the communication infrastructure provider.

Unquestionably, it would be interesting to add more dynamism to the scenarios

— 109 —

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

to study the repercussions of the changes in the availability of the nodes for
the embedding mechanisms. Additionally, proposing a learning mechanism that
allows taking into consideration previous failures and updating the availability
factor of each node.

Finally, the implementation and performance measure of the proposed resili-
ence mechanisms in the context of a MANO module for Kubernetes or Docker
solutions could be a strong contribution of this research to the industry.

— 110 —

Bibliography

Abade, B. (2018). Context-Aware Improved Experiences in Smart Environment.
Msc thesis, University of Coimbra, DEEC.

Abade, B., Perez Abreu, D., and Curado, M. (2018). A Non-Intrusive Approach
for Indoor Occupancy Detection in Smart Environments. MDPI - Sensors,
18(11):1–18.

Ahmadian, N., Lim, G. J., Cho, J., and Bora, S. (2020). A quantitative approach
for assessment and improvement of network resilience. Reliability Engineering
and System Safety, 200(1):106977.

Ahmed, T., Alleg, A., and Marie-Magdelaine, N. (2019). An architecture frame-
work for virtualization of iot network. In 2019 IEEE Conference on Network
Softwarization (NetSoft), pages 183–187, Paris, France. IEEE.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2007). Compilers:
Principles, Techniques, and Tools. Pearson Education, Inc, 2 edition.

Aidi, S., Zhani, M. F., and Elkhatib, Y. (2018). On improving service chains
survivability through efficient backup provisioning. In 2018 14th International
Conference on Network and Service Management (CNSM), pages 108–115,
Rome, Italy. IEEE.

Akusok, A., Bjork, K. M., Miche, Y., and Lendasse, A. (2015). High-
Performance Extreme Learning Machines: A Complete Toolbox for Big Data
Applications. IEEE Access, 3(1):1011–1025.

Al-Turjman, F. M., Hassanein, H. S., Alsalih, W. M., and Ibnkahla, M. (2011).
Optimized relay placement for wireless sensor networks federation in envir-
onmental applications. Wireless Communications and Mobile Computing,
11(12):1677–1688.

Alam Khan, M. M., Shahriar, N., Ahmed, R., and Boutaba, R. (2016). Multi-
path link embedding for survivability in virtual networks. IEEE Transactions
on Network and Service Management, 13(2):253–266.

Atzori, L., Iera, A., Morabito, G., and Nitti, M. (2012). The Social In-
ternet of Things (SIoT)–when social networks meet the internet of things:
Concept, architecture and network characterization. Computer Networks,
56(16):3594–3608.

— 111 —

Bibliography

Bandyopadhyay, S., Sengupta, M., Maiti, S., and Dutta, S. (2011). A Survey of
Middleware for Internet of Things. In Recent Trends in Wireless and Mobile
Networks, chapter 9, pages 288–296. Springer Berlin Heidelberg.

Barcelo, M., Correa, A., Llorca, J., Tulino, A. M., Vicario, J. L., and Morell, A.
(2016). Iot-cloud service optimization in next generation smart environments.
EEE Journal on Selected Areas in Communications, 34(12):4077–4090.

Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Van Kranenburg, R., Lange, S.,
and Meissner, S. (2013). Enabling things to talk. Springer, 1 edition.

Bauer, E. and Adams, R. (2012). Reliability and availability of cloud computing.
John Wiley & Sons, 1 edition.

Bays, L. R., Gaspary, L. P., Ahmed, R., and Boutaba, R. (2016). Virtual net-
work embedding in software-defined networks. In NOMS 2016 - 2016 IEEE/I-
FIP Network Operations and Management Symposium, pages 10–18, Istanbul,
Turkey. IEEE.

Beck, M. T. and Botero, J. F. (2017). Scalable and coordinated allocation of
service function chains. Computer Communications, 102(1):78–88.

Beheshti, N. and Zhang, Y. (2012). Fast failover for control traffic in Software-
defined Networks. In Global Communications Conference (GLOBECOM),
2012 IEEE, pages 2665–2670, Anaheim, USA. IEEE.

Ben Jemaa, F., Pujolle, G., and Pariente, M. (2016). Cloudlet and NFV-based
carrier Wi-Fi architecture for a wider range of services. Annals of Telecom-
munications, 71(1):617–624.

Bichot, C.-E. and Siarry, P. (2011). Graph partitioning. Wiley, 1 edition.

Brogi, A., Forti, S., and Ibrahim, A. (2017). How to Best Deploy Your Fog
Applications, Probably. In 2017 IEEE 1st International Conference on Fog
and Edge Computing (ICFEC), pages 105–114, Madrid, Spain. IEEE.

Carpio, F., Dhahri, S., and Jukan, A. (2017). Vnf placement with replication
for loac balancing in nfv networks. In 2017 IEEE International Conference
on Communications (ICC), pages 1–6, Paris, France. IEEE.

Chen, J., Liu, H., and Jia, H. (2020). Cross-layer resource allocation in wireless-
enabled nfv. IEEE Wireless Communications Letters, 9(6):879–883.

Chen, M., Hao, Y., Li, Y., Lai, C. F., and Wu, D. (2015). On the compu-
tation offloading at ad hoc cloudlet: architecture and service modes. IEEE
Communications Magazine, 53(6):18–24.

Chiang, M. and Zhang, T. (2016). Fog and iot: An overview of research oppor-
tunities. IEEE Internet of Things Journal, 3(6):854–864.

Cholda, P., Mykkeltveit, A., Helvik, B., Wittner, O., and Jajszczyk, A. (2007).
A survey of resilience differentiation frameworks in communication networks.
IEEE Communications Surveys & Tutorials, 9(4):32–55.

— 112 —

Bibliography

Cholda, P., Tapolcai, J., Cinkler, T., Wajda, K., and Jajszczyk, A. (2009). Qual-
ity of resilience as a network reliability characterization tool. IEEE Network,
23(2):11–19.

Chowdhury, N. M. K. and Boutaba, R. (2010). A survey of network virtualiza-
tion. Computer Networks, 54(5):862–876.

Chowdhury, N. M. M. K., Rahman, M. R., and Boutaba, R. (2009). Virtual
network embedding with coordinated node and link mapping. In IEEE IN-
FOCOM 2009, pages 783–791, Rio de Janeiro, Brazil. IEEE.

Chowdhury, S. R., Salahuddin, M. A., Limam, N., and Boutaba, R. (2019). Re-
architecting nfv ecosystem with microservices: State of the art and research
challenges. IEEE Network, 33(3):168–176.

Curado, M., Madeira, H., da Cunha, P. R., Cabral, B., Perez Abreu, D., Barata,
J., Roque, L., and Immich, R. (2019). Internet of Things. In: Cyber Resilience
of Systems and Networks. In Cyber Resilience of Systems and Networks,
chapter 2, pages 381–401. Springer International Publishing.

da Fonseca, N. L. S. and Boutaba, R. (2015). Cloud Services, Networking, and
Management. Wiley Online Library, 1 edition.

Dastjerdi, A. V. and Buyya, R. (2016). Fog computing: Helping the internet of
things realize its potential. Computer, 49(8):112–116.

Datta, S., Bonnet, C., and Nikaein, N. (2014). An IoT gateway centric architec-
ture to provide novel M2M services. In 2014 IEEE World Forum on Internet
of Things (WF-IoT), pages 514–519, Seoul, South Korea. IEEE.

De Turck, F., Kang, J.-M., Choo, H., Kim, M.-S., Choi, B.-Y., Badonnel, R.,
and Hong, J. W.-K. (2017). Softwarization of networks, clouds, and internet
of things. International Journal of Network Management, 27(2):e1951.

Deo, N. (2017). Graph theory with applications to engineering and computer
science. Courier Dover Publications, 1 edition.

ElDefrawy, K. and Kaczmarek, T. (2016). Byzantine fault tolerant software-
defined networking (sdn) controllers. In 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), pages 208–213, Atlanta,
USA. IEEE.

ETSI GS NFV (2013). Network functions virtualisation (nfv); use cases. Tech-
nical Report ETSI GS NFV 001 v1.1.1, European Telecommunications Stand-
ards Institute.

ETSI GS NFV-REL (2016). Network functions virtualisation (nfv); reliability;
report on models and features for end-to-end reliability. Technical Report
ETSI GS NFV-REL 00. v1.1.1, European Telecommunications Standards In-
stitute.

— 113 —

Bibliography

Fernandes, J., Perez Abreu, D., Velasquez, K., Mateus, M., ao Carrilho, J.,
Silva, M., Monteiro, E., and Martins, A. (2017a). Building a smart city iot
platform - the suscity approach. In 48nd Spanish Congress on Acoustics and
the Iberian Encounter on Acoustics (TECNIACUSTICA), pages 1–9, Coruña,
Spain. Sociedad Española de Acústica (SEA).

Fernandes, J., Perez Abreu, D., Velasquez, K., Monteiro, E., and Martins, A.
(2017b). An architecture to support affordable internet of things applications:
The suscity project case study. In 8th Congresso Luso-Moçambicano de En-
genharia V Congresso de Engenharia de Moçambique (CLME2017 - V CEM),
pages 1055–1056, Maputo, Moçambique. INEGI/FEUP.

Fernandez-Anez, V. (2016). Stakeholders approach to smart cities: A survey
on smart city definitions. In Smart Cities, pages 157–167, Málaga, Spain.
Springer International Publishing.

Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., and Hesselbach, X. (2013).
Virtual network embedding: A survey. IEEE Communications Surveys and
Tutorials, 15(4):1888–1906.

Fortunato, S. (2010). Community detection in graphs. Physics Reports,
486(3):75–174.

Galis, A., Clayman, S., Mamatas, L., Rubio Loyola, J., Manzalini, A., Kuklinski,
S., Serrat, J., and Zahariadis, T. (2014). Softwarization of future networks and
services -programmable enabled networks as next generation software defined
networks. In 2013 IEEE SDN for Future Networks and Services (SDN4FNS),
pages 1–7, Trento, Italy. IEEE.

Gomes, R. L., Bittencourt, L. F., Madeira, E. R., Cerqueira, E., and Gerla,
M. (2016). Bandwidth-aware allocation of resilient Virtual Software Defined
Networks. Computer Networks, 100(5):179–194.

Groups, G. (2019). CloudSim - Google community group. https://groups.
google.com/forum/#!forum/cloudsim. Last visited: 2019-05-10.

Grover, W. D. (2003). Mesh-based Survivable Transport Networks: Options and
Strategies for Optical, MPLS, SONET and ATM Networking. Prentice Hall
PTR, 1 edition.

Guerrero, C., Lera, I., and Juiz, C. (2019). Evaluation and efficiency comparison
of evolutionary algorithms for service placement optimization in fog architec-
tures. Future Generation Computer Systems, 97:131 – 144.

Gupta, A., Habib], M. F., Mandal, U., Chowdhury, P., Tornatore, M., and
Mukherjee, B. (2018). On service-chaining strategies using virtual network
functions in operator networks. Computer Networks, 133:1–16.

Han, X., Cao, X., Lloyd, E. L., and Shen, C. C. (2010). Fault-tolerant relay node
placement in heterogeneous wireless sensor networks. IEEE Transactions on
Mobile Computing, 9(5):643–656.

— 114 —

https://groups.google.com/forum/#!forum/cloudsim
https://groups.google.com/forum/#!forum/cloudsim

Bibliography

Hao, Y., Linke, G., Ruidong, L., Asaeda, H., and Yuguang, F. (2014).
DataClouds: Enabling Community-Based Data-Centric Services Over the In-
ternet of Things. Internet of Things Journal, 1(5):472–482.

He, M., Alba, A. M., Basta, A., Blenk, A., and Kellerer, W. (2019). Flexib-
ility in softwarized networks: Classifications and research challenges. IEEE
Communications Surveys & Tutorials, 21(3):2600–2636.

Hmaity, A., Savi, M., Musumeci, F., Tornatore, M., and Pattavina, A. (2017).
Protection strategies for virtual network functions placement and service
chains provisioning. Networks, 70(4):373–387.

Hou, L., Zhao, S., Xiong, X., Zheng, K., Chatzimisios, P., Hossain, M. S., and
Xiang, W. (2016). Internet of things cloud: Architecture and implementation.
IEEE Communications Magazine, 54(12):32–39.

IBM (2019). CPLEX Optimizer. https://www.ibm.com/analytics/
cplex-optimizer. Last visited: 2019-12-20.

IBM Industry Solutions (2013). IBM Smarter Cities - Creating opportunities
through leadership and innovation. IBM - https://goo.gl/7aLzQM. Last
visited: 2019-05-19.

IETF (2015). Routing Over Low power and Lossy networks Working Group.
http://datatracker.ietf.org/wg/roll/charter. Last visited: 2016-01-
30.

Internet of Things Architecture (2010). IoT-A. http://www.iot-a.eu. Last
visited: 2016-05-10.

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N. S., and Mahmoudi,
C. (2018). Fog computing conceptual model. Technical Report NIST Special
Publication 500-325, National Institute of Standard and Technology.

IoT-Eclipse (2015a). IoT Eclipse - Kura. https://eclipse.org/kura. Last
visited: 2020-04-21.

IoT-Eclipse (2015b). IoT Eclipse - Open Source for IoT. http://iot.eclipse.
org. Last visited: 2017-05-15.

ITU-T (2009). E.800: Definitions of terms related to quality of service. Technical
Report E.800, ITU.

Jalili, M. and Perc, M. (2017). Information cascades in complex networks.
Journal of Complex Networks, 5(5):665–693.

Jin, J., Gubbi, J., Tie, L., and Palaniswami, M. (2012). Network architecture
and QoS issues in the internet of things for a smart city. In 2012 International
Symposium on Communications and Information Technologies (ISCIT), pages
956–961, Gold Coast, Australia. IEEE.

— 115 —

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://goo.gl/7aLzQM
http://datatracker.ietf.org/wg/roll/charter
http://www.iot-a.eu
https://eclipse.org/kura
http://iot.eclipse.org
http://iot.eclipse.org

Bibliography

Jiong, J., Gubbi, J., Marusic, S., and Palaniswami, M. (2014). An Information
Framework for Creating a Smart City Through Internet of Things. Internet
of Things, 1(2):112–121.

Keller, M., Robbert, C., and Karl, H. (2014). Template embedding: Using
application architecture to allocate resources in distributed clouds. In 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing,
pages 187–395, London, UK. IEEE.

Kirkpatrick, K. (2013). Software-Defined Networking. Communications of the
ACM, 56(9):16–19.

Kreutz, D., Ramos, F. M. V., Veríssimo, P. E., Rothenberg, C. E., Azodolmolky,
S., and Uhlig, S. (2015). Software-defined networking: A comprehensive sur-
vey. Proceedings of the IEEE, 103(1):14–76.

Latora, V., Nicosia, V., and Russo, G. (2017). Complex Networks: Principles,
Methods and Applications. Cambridge University Press, 1 edition.

Le, Q., Ngo-Quynh, T., and Magedanz, T. (2014). RPL-based multipath Rout-
ing Protocols for Internet of Things on Wireless Sensor Networks. In 2014 In-
ternational Conference on Advanced Technologies for Communications (ATC
2014), pages 424–429, Hanoi, Vietnam. IEEE.

Lee, G., Jung-Soo, P., Kong, N., Crespi, N., and Chong, I. (2012). The Internet
of Things - Concept and Problem Statement. Technical Report draft-lee-iot-
problem-statement-05, IETF.

Lera, I. and Guerrero, C. (2019). YAFS Documentation - Release 3.0. http:
//bit.do/yafsdoc. Last visited: 2019-03-11.

Lera, I., Guerrero, C., and Juiz, C. (2019a). Availability-aware service placement
policy in fog computing based on graph partitions. IEEE Internet of Things
Journal, 6(2):3641–3651.

Lera, I., Guerrero, C., and Juiz, C. (2019b). YAFS: A simulator for iot scenarios
in fog computing. IEEE Access, 7(1):91745–91758.

LinkSmart (2015). LinkSmart Middleware Platform. http://iot.eclipse.org.
Last visited: 2017-04-15.

Liu, W., Li, H., and Huang, O. (2014). Service function chaining (sfc) general
use cases. Technical Report draft-liu-sfc-use-cases-08, IETF.

Ma, N., Zhang, J., and Huang, T. (2017). A model based on genetic algorithm for
service chain resource allocation in nfv. In 2017 3rd IEEE International Con-
ference on Computer and Communications (ICCC), pages 607–611, Chengdu,
China. IEEE.

Mahmud, R., Ramamohanarao, K., and Buyya, R. (2018). Latency-aware ap-
plication module management for fog computing environments. ACM Trans.
Internet Technol., 19(1):1–21.

— 116 —

http://bit.do/yafsdoc
http://bit.do/yafsdoc
http://iot.eclipse.org

Bibliography

Malik, A., Aziz, B., Adda, M., and Ke, C.-H. (2020). Smart routing: Towards
proactive fault handling of software-defined networks. Computer Networks,
170(1):1389–1286.

Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., and Ghalsasi, A. (2011).
Cloud computing — the business perspective. Decision Support Systems,
51(1):176–189.

Matias, J., Garay, J., Toledo, N., Unzilla, J., and Jacob, E. (2015). Toward an
SDN-enabled NFV architecture. Communications Magazine, 53(4):187–193.

Mehboob, U., Qadir, J., Ali, S., and Vasilakos, A. (2016). Genetic algorithms
in wireless networking: techniques, applications, and issues. Soft Computing,
20(6):2467–2501.

Mehraghdam, S., Keller, M., and Karl, H. (2014). Specifying and placing chains
of virtual network functions. In 2014 IEEE 3rd International Conference on
Cloud Networking (CloudNet), pages 7–13, Luxembourg, Luxembourg. IEEE.

Montori, F., Bedogni, L., and Bononi, L. (2018). A collaborative internet of
things architecture for smart cities and environmental monitoring. IEEE In-
ternet of Things Journal, 5(2):592–605.

Mukherjee, M., Shu, L., and Wang, D. (2018). Survey of fog computing: Funda-
mental, network applications, and research challenges. IEEE Communications
Surveys & Tutorials, 20(3):1826–1857.

Mulligan, G. (2007). The 6lowpan architecture. In Proceedings of the 4th Work-
shop on Embedded Networked Sensors, pages 78–82, New York, USA. ACM.

Nakamura, H. (2016). Network functions virtualisation (nfv); reliability; re-
port on models and features for end-to-end reliability. Technical Report
DGS/NFV-REL003, ETSI Industry Specification Group (ISG).

Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys. Rev. E, 69:1–15.

Noghin, V. D. (2018). Edgeworth-pareto principle. In Reduction of the Pareto
Set: An Axiomatic Approach, chapter 1, pages 1–22. Springer International
Publishing.

OPENIoT (2015). OPENIoT - Open Source Cloud Solution for the Internet of
Things. http://openiot.eu. Last visited: 2017-01-30.

Pahl, C. and Lee, B. (2015). Containers and clusters for edge cloud architectures
– a technology review. In 2015 3rd International Conference on Future Internet
of Things and Cloud, pages 379–386, Rome, Italy. IEEE.

Palattella, M. R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L. A.,
Boggia, G., and Dohler, M. (2013). Standardized protocol stack for the in-
ternet of (important) things. IEEE Communications Surveys & Tutorials,
15(3):1389–1406.

— 117 —

http://openiot.eu

Bibliography

Papadimitriou, D. and Mannie, E. (2006). Analysis of Generalized Multi-
Protocol Label Switching (GMPLS)-based Recovery Mechanisms (including
Protection and Restoration). Technical Report RFC:4428, IETF.

Parés, F., Gasulla, D. G., Vilalta, A., Moreno, J., Ayguadé, E., Labarta, J.,
Cortés, U., and Suzumura, T. (2018). Fluid communities: A competitive,
scalable and diverse community detection algorithm. In Complex Networks &
Their Applications VI, pages 229–240, Lyon, France. Springer.

Pavković, B., Theoleyre, F., and Duda, A. (2011). Multipath opportunistic rpl
routing over ieee 802.15.4. In Proceedings of the 14th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pages 179–186, New York, NY, USA. ACM.

Perez Abreu, D. and Velasquez, K. (2016). SusCity Ontology. https://eden.
dei.uc.pt/~dabreu/ontologies/iot_infrastructure.ttl. Last visited:
2016-04-20.

Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2015). Resilience
in iot infrastructure for smart cities. In 2015 Cloudification of the Internet of
Things (CIoT), pages 1–4, Paris, France. IEEE.

Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2017a). An iot
infrastructure for smart cities: The suscity project use-case. In 3rd Energy for
Sustainability International Conference (EfS), pages 1–5, Madeira, Portugal.
InderScience Publishers.

Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2017b). A
resilient internet of things architecture for smart cities. Annals of Telecom-
munications, 72(1):19–30.

Perez Abreu, D., Velasquez, K., Curado, M., and Monteiro, E. (2020). A com-
parative analysis of simulators for the cloud to fog continuum. Simulation
Modelling Practice and Theory, 101(1):1020291–10202927.

Perez Abreu, D., Velasquez, K., Miranda Assis, M. R., Bittencourt, L. F.,
Curado, M., Monteiro, E., and Madeira, E. (2018). A rank scheduling mech-
anism for fog environments. In 2018 IEEE 6th International Conference on
Future Internet of Things and Cloud (FiCloud), pages 363–369, Barcelona,
Spain. IEEE.

Perez Abreu, D., Velasquez, K., Paquete, L., Curado, M., and Monteiro, E.
(2020). Resilient embedding - GitLab Repository. https://git.dei.uc.pt/
dabreu/ResilientServiceChains.git. Last visited: 2020-07-29.

Perez Abreu, D., Velasquez, K., Paquete, L., Curado, M., and Monteiro, E.
(2020). Resilient service chains through smart replication. IEEE Access,
8(1):187021–187036.

Perez Abreu, D., Velasquez, K., Pinto, A. M., Curado, M., and Monteiro, E.
(2017c). Describing the internet of things with an ontology: The suscity

— 118 —

https://eden.dei.uc.pt/~dabreu/ontologies/iot_infrastructure.ttl
https://eden.dei.uc.pt/~dabreu/ontologies/iot_infrastructure.ttl
https://git.dei.uc.pt/dabreu/ResilientServiceChains.git
https://git.dei.uc.pt/dabreu/ResilientServiceChains.git

Bibliography

project case study. In 2017 20th Conference on Innovations in Clouds, Internet
and Networks (ICIN), pages 294–299, Paris, France. IEEE.

Peter Mell, T. G. (2011). The NIST Definition of Cloud Computing. Technical
Report SP 800-145, National Institute of Standards and Technology - NIST.

Pham, T. A. Q., Sanner, J.-M., Morin, C., and Hadjadj-Aoul, Y. (2020). Vir-
tual network function–forwarding graph embedding: A genetic algorithm ap-
proach. International Journal of Communication Systems, 33(10):e4098.

Pioro, M. and Medhi, D. (2004). Restoration and protection design of resilient
networks. In Routing, Flow, and Capacity Design in Communication and
Computer Networks, chapter 9, pages 353–401. Elsevier.

Pöhls, H. C., Angelakis, V., Suppan, S., Fischer, K., Oikonomou, G., Tragos,
E. Z., Rodriguez, R. D., and Mouroutis, T. (2014). RERUM: Building a
reliable IoT upon privacy- and security- enabled smart objects. In Wireless
Communications and Networking Conference Workshops (WCNCW), pages
122–127, Istanbul, Turkey. IEEE.

Pujolle, G. (2020). Software Networks: Virtualization, SDN, 5G and Security.
Willey, 2 edition.

Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., and Wu, D. O. (2020).
Edge computing in industrial internet of things: Architecture, advances and
challenges. IEEE Communications Surveys & Tutorials, pages 1–28.

Quinn, P. and Nadeau, T. (2015). Problem statement for service function chain-
ing. Technical Report RFC:7498, IETF.

Quittek, J. (2014). Network functions virtualisation (nfv); management and
orchestration. Technical Report DGS/NFV-MAN001, ETSI Industry Spe-
cification Group (ISG).

Rahman, M. R. and Boutaba, R. (2013). Svne: Survivable virtual network em-
bedding algorithms for network virtualization. IEEE Transactions on Network
and Service Management, 10(2):105–118.

Rehman, A. U., Aguiar, R. L., and Barraca, J. P. (2019). Fault-tolerance in
the scope of software-defined networking (sdn). IEEE Access, 7(1):124474 –
124490.

Reitblatt, M., Canini, M., Guha, A., and Foster, N. (2013). FatTire: Declarative
fault tolerance for software-defined networks. In Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
pages 109–114, New York, USA. ACM.

Renner, G. and Ekárt, A. (2003). Genetic algorithms in computer aided design.
Computer-Aided Design, 35(8):709–726.

RERUM (2013). REliable, Resilient and secUre IoT for sMart city applications.
https://ict-rerum.eu. Last visited: 2020-05-18.

— 119 —

https://ict-rerum.eu

Bibliography

ResearchGate (2019). CloudSim - ResearchGate community group. ht-
tps://www.researchgate.net/topic/CloudSim. Accessed: 2019-02-10.

Ros, F. J. and Ruiz, P. M. (2014). Five nines of southbound reliability in
software-defined networks. In Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, pages 31–36, New York, USA. ACM.

Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N. (2009). The case
for vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
8(4):14–23.

Schöller, M. and Khan, N. (2015). Network functions virtualisation (nfv); re-
siliency requirements. Technical Report DGS/NFV-REL001, ETSI Industry
Specification Group (ISG).

Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., and Leitner, P. (2017a).
Optimized iot service placement in the fog. Service Oriented Computing and
Applications, 11(4):427–443.

Skarlat, O., Nardelli, M., Schulte, S., and Dustdar, S. (2017b). Towards qos-
aware fog service placement. In 2017 IEEE 1st International Conference on
Fog and Edge Computing (ICFEC), pages 89–96, Madrid, Spain. IEEE.

Sköldström, P., Sonkoly, B., Gulyás, A., Németh, F., Kind, M., Westphal, F.-J.,
John, W., Garay, J., Jacob, E., Jocha, D., Elek, J., Szabó, R., Tavernier,
W., Agapiou, G., Manzalini, A., Rost, M., Sarrar, N., and Schmid, S. (2014).
Towards Unified Programmability of Cloud and Carrier Infrastructure. In
Software Defined Networks (EWSDN), 2014 Third European Workshop on,
pages 55–60, London, UK. IEEE.

Sousa, B. (2013). Multihomming Aware Optimization Mechanism. PhD Thesis,
University of Coimbra, LCT.

Souza, V. B., Masip-Bruin, X., Marín-Tordera, E., Ramírez, W., and Sánchez-
López, S. (2017). Proactive vs reactive failure recovery assessment in combined
fog-to-cloud (f2c) systems. In 2017 IEEE 22nd International Workshop on
Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), pages 1–5, Lund, Sweden. IEEE.

Souza, V. B. C., Ramírez, W., Masip-Bruin, X., Marín-Tordera, E., Ren, G.,
and Tashakor, G. (2016). Handling service allocation in combined fog-cloud
scenarios. In 2016 IEEE International Conference on Communications (ICC),
pages 1–5, Kuala Lumpur, Malaysia. IEEE.

Stanford University (2015). Protégé. http://protege.stanford.edu. Last
visited: 2016-02-28.

Stephens, B., Cox, A. L., and Rixner, S. (2013). Plinko: Building Provably
Resilient Forwarding Tables. In Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, pages 26:1–26:7, New York, USA. ACM.

— 120 —

http://protege.stanford.edu

Bibliography

Sterbenz, J. P. G., Çetinkaya, E. K., Hameed, M. A., Jabbar, A., Qian, S.,
and Rohrer, J. P. (2013). Evaluation of network resilience, survivability, and
disruption tolerance: analysis, topology generation, simulation, and experi-
mentation. Telecommunication Systems, 52(2):705–736.

Sun, L., Dong, H., and Ashraf, J. (2012). Survey of service description languages
and their issues in cloud computing. In 2012 Eighth International Conference
on Semantics, Knowledge and Grids, pages 128–135, Beijing, China. IEEE.

SusCity-Project (2015). FCT - SusCity Project. http://goo.gl/4WlgpC. Last
visited: 2020-09-19.

TUWIEN. Vienna University of Technology (2015). European Smart Cities.
http://www.smart-cities.eu. Last visited: 2020-03-20.

Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C. M., Anderson,
A. V., Bennett, S. M., Kagi, A., Leung, F. H., and Smith, L. (2005). Intel
virtualization technology. Computer, 38(5):48–56.

University of OXFORD Information Systems Group (2015). HermiT OWL
Reasoner. http://www.hermit-reasoner.com. Last visited: 2016-02-29.

Velasquez, K., Perez Abreu, D., Assis, M. R., Senna, C., Aranha, D. F., Bit-
tencourt, L. F., Laranjeiro, N., Curado, M., Vieira, M., Monteiro, E., et al.
(2018). Fog orchestration for the internet of everything: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 9(1):1–23.

Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro, E. (2015). To-
wards latency mitigation in emergency scenarios. In 2015 Cloudification of
the Internet of Things (CIoT), pages 1–4, Paris, France. IEEE.

Velasquez, K., Perez Abreu, D., Curado, M., and Monteiro, E. (2017). Service
placement for latency reduction in the internet of things. Annals of Telecom-
munications, 72(1):105–115.

Velasquez, K., Perez Abreu, D., Gonçalves, D., Bittencourt, L., Curado, M.,
Monteiro, E., and Madeira, E. (2017). Service orchestration in fog environ-
ments. In 2017 IEEE 5th International Conference on Future Internet of
Things and Cloud (FiCloud), pages 329–336, Prague, Czech Republic. IEEE.

Velasquez, K., Perez Abreu, D., Paquete, L., Curado, M., and Monteiro, E.
(2020). A rank-based mechanism for service placement in the fog. In 2020
IFIP Networking, pages 64–72, Paris, France. IEEE.

Vugrin, E. D., Warren, D. E., Ehlen, M. A., and Camphouse, R. C. (2010).
A Framework for Assessing the Resilience of Infrastructure and Economic
Systems, chapter 5, pages 77–116. Springer, 1 edition.

W3C (2013). SPARQL. https://www.w3.org/TR/rdf-sparql-query. Last
visited: 2016-03-20.

— 121 —

http://goo.gl/4WlgpC
http://www.smart-cities.eu
http://www.hermit-reasoner.com
https://www.w3.org/TR/rdf-sparql-query

Bibliography

Wei, W., De, S., Toenjes, R., Reetz, E., and Moessner, K. (2012). A Compre-
hensive Ontology for Knowledge Representation in the Internet of Things. In
IEEE 11th International Conference on Trust, Security and Privacy in Com-
puting and Communications (TrustCom), pages 1793–1798, Liverpol, Eng-
land. IEEE.

Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K.,
Struik, R., Vasseur, J., and Alexander, R. (2012). RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. Technical Report RFC:6550, IETF.

Wright, S., Hu, Y. C., and Reid, A. (2015). Network functions virtualisation
(nfv); infrastructure overview. Technical Report DGS/NFV-INF001, ETSI
Industry Specification Group (ISG).

Yi, B., Wang, X., Li, K., k. Das, S., and Huang, M. (2018). A comprehensive sur-
vey of network function virtualization. Computer Networks, 133(1):212–262.

— 122 —

Appendixes

A Results - Fitness Function Values
This Appendix presents the evolution of the fitness values for the tiny, small,
medium, and large scenarios when the replication methods noReplicas and vs-
Replicas are used.

0 50 100 150 200 250 300 350 400
Generations

1280

1290

1300

1310

1320

1330

1340

Fi
tn

es
s

Max Avg

(a) Tiny Scenario.

0 50 100 150 200 250 300 350 400
Generations

2700

2720

2740

2760

2780

Fi
tn

es
s

Max Avg

(b) Small Scenario.

0 50 100 150 200 250 300 350 400
Generations

4120

4140

4160

4180

4200

4220

4240

Fi
tn

es
s

Max Avg

(c) Medium Scenario.

0 50 100 150 200 250 300 350 400
Generations

5540

5560

5580

5600

5620

5640

5660

5680

Fi
tn

es
s

Max Avg

(d) Large Scenario.

Figure A.1: Fitness Function Values by Generations for SC using noReplicas
Replication in the Scenarios Evaluated.

— 123 —

Appendixes

0 50 100 150 200 250 300 350 400
Generations

2100

2120

2140

2160

2180

2200

2220

Fi
tn

es
s

Max Avg

(a) Tiny Scenario.

0 50 100 150 200 250 300 350 400
Generations

4375

4400

4425

4450

4475

4500

4525

4550

Fi
tn

es
s

Max Avg

(b) Small Scenario.

0 50 100 150 200 250 300 350 400
Generations

6600

6650

6700

6750

6800

6850

Fi
tn

es
s

Max Avg

(c) Medium Scenario.

0 50 100 150 200 250 300 350 400
Generations

8850

8900

8950

9000

9050

9100

9150

Fi
tn

es
s

Max Avg

(d) Large Scenario.

Figure A.2: Fitness Function Values by Generations for SC using vsReplicas
Replication in the Scenarios Evaluated.

— 124 —

Appendixes

B Results - Response Time
This Appendix presents the results of the response time experiments for the small
and medium scenarios using the three replication methods, namely noReplicas,
vsReplicas, and End2End.

0 1 2 3 4 5 6 7 8 9
Service Chain

0

100

200

300

400

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure B.1: SC Response Time - Small Scenario - noReplicas.

— 125 —

Appendixes

0 1 2 3 4 5 6 7 8 9
Service Chain

0

100

200

300

400

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure B.2: SC Response Time - Small Scenario - vsReplicas.

0 1 2 3 4 5 6 7 8 9
Service Chain

0

100

200

300

400

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

D
eadline (m

s)

Figure B.3: SC Response Time - Small Scenario - End2End.

— 126 —

Appendixes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500
D

eadline (m
s)

Figure B.4: SC Response Time - Medium Scenario - noReplicas.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500

D
eadline (m

s)

Figure B.5: SC Response Time - Medium Scenario - vsReplicas.

— 127 —

Appendixes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Service Chain

0

100

200

300

400

500

R
es

po
ns

e
tim

e
(m

s)

ILP FCT GA FF

0

100

200

300

400

500

D
eadline (m

s)

Figure B.6: SC Response Time - Medium Scenario - End2End.

— 128 —

	Acknowledgments
	Abstract
	Resumo
	Foreword
	List of Figures
	List of Algorithms
	List of Tables
	Acronyms
	Introduction
	Background and Motivation
	Objectives and Contributions
	Outline of the Thesis

	Resilience in the Cloud to Internet of Things Continuum
	Understanding the Cloud to IoT Continuum
	Virtualization for the Cloud to IoT Continuum

	Resilience in Communication Infrastructures
	Resilience Metrics
	Resilience Challenges in the Cloud to IoT Continuum

	Addressing Resilience in the Cloud to IoT Continuum
	Managing the Cloud to IoT Continuum
	Connecting the Cloud to IoT Continuum
	Embedding in the Cloud to IoT Continuum

	Discussion
	Summary

	Improving the Resilience of the Cloud to Internet of Things Continuum
	Understanding Smart City Scenarios
	A Resilience Architecture for the Cloud to IoT Continuum
	IoT Infrastructure
	IoT Middleware
	IoT Services

	Interaction among the Modules of the Architecture
	An Ontology to Describe the IoT Infrastructure
	Evaluating the Ontology

	Summary

	Formalizing Service Chain Composition
	Softwarization in the Cloud to IoT Continuum
	A Framework for the Composition and Embedding of Service Chains
	A Grammar to Specify Service Chains
	A Pareto Analysis for Service Chain Composition
	Dealing with the Embedding of Service Chains
	Summary

	Resilient Service Chains through Smart Replication
	A Formal Model for Virtual Function Embedding
	Maximizing Acceptance Rate
	Maximizing Survivability

	A Genetic Approach for Virtual Function Embedding
	Combining Node Availability, Disjointedness, and Tiered Infrastructure in the Fitness Function

	A Fluid Community Heuristic for Virtual Function Embedding
	Building Fluid Communities
	Embedding Service Chains in the Fluid Communities

	Summary

	Assessing the Service Chain Embedding Mechanisms
	An Analysis of Cloud to IoT Simulation Tools
	Describing the Evaluation Setup
	Results and Analysis
	Failure Ratio
	Node Utilization
	Response Time
	Discussion

	Summary

	Conclusions and Future Work
	Synthesis of the Thesis
	Contributions
	Future Work

	Bibliography
	Appendixes
	Results - Fitness Function Values
	Results - Response Time

