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Resumo

Os dispositivos móveis substituíram os computadores pessoais e portáteis em
muitos aspectos da rotina diária das pessoas. Na practica, eles transformaram-
se em impressões digitais que carregam uma quantidade crítica de informações
pessoais, que variam desde conteúdo multimedia e registos de comunicação,
a geolocalização e dados de transações eletrônicas. No entanto, o uso de
dispositivos móveis não se limita às interacções pessoais de um indivíduo.
Os dispositivos móveis podem constituir partes de redes de comunicação
corporativas ou dedicadas.

As redes corporativas e da emergência como os sistemas de Proteção Pública
e Mitigação de Desastres (PPDR), exigem o estabelecimento de um ambiente
altamente seguro, para proteger vários bens críticos. Além disso, organizações
como a Polícia Judiciária acedem dados de dispositivos móveis de terceiras
entidades como provas para investigações criminais.

A aquisição e análise forense móvel têm um papel crucial tanto na proteção de
um ambiente PPDR contra ataques intencionais ou uso indevido dos utilizadores,
como na condução de uma investigação criminal robusta. Esta tese estuda
o papel da aquisição e análise forense para sistemas PPDR, introduzindo
uma metodologia para perfis digitais automatizados e identificação de padrões
suspeitos a partir de dados e metadados de dispositivos móveis.

Três técnicas de computação inteligente, nomeadamente Fuzzy Systems, Redes
Neuronais (RNs) e Adaptive Neuro-Fuzzy Inference System (ANFIS) são usadas
para construir perfis criminais e identificar padrões suspeitos em dados e
metadados provenientes de chamadas e SMS para três cenários de casos de uso
diferentes. Mais especificamente, os Sistemas Fuzzy servíram como prova de
conceito para detectar a deserção de agentes PPDR realizada por SMS. Um
cenário mais complexo envolveu o uso de RNs e ANFIS, que foram empregados
como meio de identificação de padrões suspeitos de chamadas e SMS para casos
de cyberbullying e de tráfico de droga.

Os resultados que foram produzidos durante todas as fases experimentais foram
bastante satisfatórios e foram comparados para definir a técnica mais apropriada
para a identificação de padrões suspeitos.

Palavras-chave: Segurança de Informação; Proteção Pública e Mitigação
de Desastres; Forense Móvel; Análise Forense de Dados Móveis; Redes Neuronais;
Sistemas Fuzzy; Perfil Criminal Digital



Abstract

Mobile devices have substituted desktop and portable computers in many
aspects of people’s everyday routine. Practically, they have become digital
fingerprints that carry a critical amount of personal information, varying from
multimedia and communication logs to geolocation and electronic transaction
data. Moreover, the usage of mobile devices is not limited to an individual’s
personal interactions. The aforementioned devices may also constitute parts of
corporate or dedicated communication networks.

Enterprise and first-responder communication networks, such as Public
Protection and Disaster Relief (PPDR) systems require the establishment of a
highly secured environment, in order to protect various critical assets. Moreover,
services such as law enforcement may need to access third-party mobile device
data as evidence for criminal investigations.

Mobile forensic acquisition and analysis play a crucial role towards both the
protection of a PPDR environment against intentional attacks or potential user
misuse and the conduction of a robust criminal investigation. The current thesis
studies the role of forensic analysis in use cases related to law enforcement
investigations by introducing a methodology for automated digital profiling and
suspicious pattern identification from mobile device data and metadata.

Three intelligent computation techniques, namely Fuzzy Systems, Neural
Networks (NNs) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are
used for constructing criminal profiles and identifying suspicious patterns in
calls and SMS evidence data and metadata for three different use case scenarios.
More specifically, Fuzzy Systems served as proof-of-concept for detecting PPDR
officers’ defection performed by SMS. A more complex scenario for call and
SMS suspicious pattern identification of cyberbullying and low-level drug dealing
cases was documented with the use of NNs and ANFIS.

Keywords: Information Security; Public Protection and Disaster Relief;
Mobile Forensics; Mobile Forensic Data Analysis; Neural Networks; Fuzzy
Systems; Digital Criminal Profiling
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Chapter 1
Introduction

Does the walker choose the
path, or the path the walker?

(Garth Nix)

The current thesis aims to describe the role of mobile forensic analysis within
the environment of mobile communication systems, as applied in criminal
investigation and law enforcement. The application and evolution of the
aforementioned fields is researched and the digital profiling and suspicious
pattern identification issues are presented and addressed. In the rest of the
chapter, the motivation and objectives of the thesis are presented and its outline
is provided.

1.1 Motivation and Problem Statement

During the last decade, smartphones have shown increased computational
and networking capabilities. End-users are enjoying improved quality of
communications, especially concerning data transfer services [Pande, 2013] in
commercial, enterprise and dedicated, PPDR systems. PPDR infrastructures
“are used by agencies and organizations dealing with the maintenance of law
and order, the protection of life and property and with emergencies” [Jamieson,
2004].

Law enforcement agencies are a subcategory of PPDR systems that is more
affected by the evolution of mobile devices in several levels. Firstly, mobile
devices are more prone to various types of malicious activity against the
participating devices and the networks themselves. The aforementioned types
of malicious activity may derive either from external offenders or from internal
intentional or unintentional misuse of mobile devices.

Apart from threats against their infrastructures, law enforcement agencies have
to investigate crimes that involve the use of mobile devices and vary from
malware propagation and fraud to classic crime types where mobile devices
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are involved as the perpetrators’ means of communication and their digital
fingerprint can provide evidence useful for their framing.

Mobile Forensic Data Analysis (MFDA) may play an important role among those
security solutions, assisting on the detection and profiling of malicious attacks
against law enforcement systems, the gathering of legal evidence and their
investigation in search of suspicious data and metadata patterns. The current
thesis presents the contribution of MFDA in criminal investigation within
the context of a law enforcement system, while focusing more on suspicious
behaviour identification from mobile evidence. The choice upon the thesis’ scope
was made after the following research question was raised.

Why is behaviour-based criminal investigation in such a need of scientific
contributions, when similar disciplines relying on software-based investigation,
such as malware identification or intrusion detection have advanced in such a
high pace?

The answer lies in the fact that software- or machine-based activity, such as
malware or botnet propagation has a more easily defined and therefore more
predictable fingerprint. On the contrary, when actions performed on a device
are related to human behaviour, the number of combinations and subsequent
outcomes increases significantly. As a result, the creation of a behavioural model
is a rather complex task. Moreover, human behaviour is mainly a qualitative
variable. Matching and pointing qualitative characteristics to quantitative
representations is not a straightforward, but a rather intuitive process and
requires lots of trial-and-error attempts.

This is also one of the reasons why Mobile Forensic (MF) research has “fallen into
the trap of focusing almost exclusively on the collection of data and has paid
very little attention to the examination and analysis phases” [Rogers, 2016].
As a result, the need for the implementation of intelligent solutions that will
cast off the burden of manual investigations is immediate and crucial [Rogers,
2003], [Kasiaras et al., 2014], [Ntantogian et al., 2014], [Barmpatsalou et al.,
2018a].

The role of data and metadata forensic investigation is double. Firstly, it
is a failsafe mechanism in case direct access to evidence does not succeed
in producing a concrete outcome due to anti-forensic scenarios, such as data
cascading or deliberate data alteration, such as encoded verbal communication
between criminals. Secondly, it can become a means of off-loading investigators’
tasks, serving as a triage mechanism for potentially suspicious user behavioural
patterns before or after a hands-on investigation.

The conclusions reached in the previous paragraphs lead to a research-question
follow-up:

How to perform suspicious pattern identification based on user behavioural data
from mobile devices?

The answer is derived from the observation of the differences between software-
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and human-generated activity. Solutions for software-based threats use a binary
classification methodology so as to define if a set of attributes is either culpable
of an accusation or not. However, in traditional criminal cases that involve the
use of mobile devices as means of communication, binary classification is not an
efficient approach.

There is a probability that binary classification may lead to excessive false
positive or false negative production, states that reduce the overall quality of the
mechanism. However, this side effect can be avoided if the model’s output has
a higher number of output states, that determine different scales of belonging
to a particular condition (true or false). A multiclass output space allows for
better observation and understanding of intermediate values and thus, it is able
to result in a more accurate decision making procedure.

Intelligent Computation methods, such as Fuzzy Systems, Neural Networks
(NNs) and Neuro-Fuzzy Systems specialize in producing results within a
multiclass output space. This fact renders them the most appropriate candidates
for resolving issues in an uncertain universe, such as the suspicious pattern
identification of mobile forensic evidence for pre-identified crime types, based
on the observation of the criminals’ behaviour and interaction with the
devices.

1.2 Objectives and Contributions

The objectives of the current thesis are the contextualization of mobile forensic
acquisition and analysis in PPDR systems and the provision of a methodology
that addresses an important research gap, the lack of automatic digital criminal
profiling and suspicious pattern identification of forensic evidence.

More precisely, the thesis presents a methodology that performs forensic analysis
on mobile call and SMS data and metadata series of attributes, aiming to identify
suspicious patterns that constitute a criminal Modus Operandi (MO). Three
types of intelligent computation techniques, namely Fuzzy Systems, Neural
Networks (NNs) and the Adaptive Neuro-Fuzzy Inference System (ANFIS)are
used as evaluation mechanisms in a hybrid dataset consisting of actual and
simulated mobile device evidence. Different configurations for each technique
are tested in a series of experiments and the best performing technique is
selected.

The specific goals of this thesis are the following:

Goal 1 - To highlight the importance of MFDA within a dedicated environment;

Goal 2 - To create a methodology that combines automatic criminal profiling
and pattern identification from evidence data and metadata;

Goal 3 - To provide substantial proof of concept for the aforementioned
methodology by applying it to different types of intelligent systems and
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evaluating them accordingly.

The aforementioned goals are the springboard to the following
contributions:

Contribution 1 - A Methodology for Suspicious Pattern Identification
Based on an extensive research on the relevant MFDA literature,
we propose a new digital criminal profiling and suspicious pattern
identification methodology that retains the evolutionary characteristics of
its predecessors, such as the continuous interaction between the profiling
characteristics and the new input data, but is also capable of assigning
suspiciousness values to different data and metadata patterns.

Contribution 2 - Suspicious Pattern Identification with Fuzzy Systems
A proof of concept for the proposed methodology for a small use case
scenario, aiming to profile the MO of PPDR officers defecting to the rioters’
side by examining their sent SMS and to identify the respective suspicious
patterns. Mamdani Fuzzy Systems with different configurations are used
for the identification procedure and their performance is evaluated.

Contribution 3 - Suspicious Pattern Identification with NNs and ANFIS
Two complex use case scenarios, involving the profiling and identification
of call and SMS patterns for cyberbullies and low-lever drug dealers are
examined with the proposed methodology. NNs and ANFIS are configured
and employed as evaluation tools. The performance of different setup
is then measured, the prevailing solution is selected and tested anew on
previously unknown data for the system.

The following subsection presents the structure of the current thesis

1.3 Outline of the Thesis

The rest of the thesis is organized in the following manner.

Chapter 2 – General Background and Methodology
The chapter performs a State-of-the-Art (SoA) analysis of the MF
discipline, contextualizes its role within the PPDR ecosystem and identifies
the potential research gaps. It also performs a bibliographic analysis on
the concepts of MFDA and digital criminal profiling. Once the related
work in the field is presented, the methodology used in the current thesis
is elaborated.

Chapter 3 – Fuzzy Systems for Suspicious Pattern Identification
The chapter presents the first part of the methodology application, that
involved the use of Fuzzy Systems and served as a proof of concept
for suspicious pattern identification in mobile forensic evidence. An
introduction on the basic Fuzzy Systems concepts is performed and the

— 4 —



CHAPTER 1. INTRODUCTION

rest of the chapter is concerned with applying and adapting the proposed
methodology to the PPDR officers’ infiltration-by-SMS use case.

Chapter 4 – Neural Networks and ANFIS for Suspicious Pattern Identification

The current chapter is split in two parts. The first performs an
introduction to fundamental concepts of NNs and the ANFIS, whereas
the second applies and adapts the methodology to the cyberbullying and
drug dealing use cases.

Chapter 5 – Results
Provides the results from the experiments performed both with Fuzzy
Systems, NNs and ANFIS and presents the performance ratings per use
case and technique variation utilized.

Chapter 6 – Conclusions and Future Work
Enumerates the conclusions that emerged from the current research,
summarizes the thesis and proposes future contributions for the evolution
of the proposed methodology.
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Chapter 2
General Background and
Methodology

Science gave us forensics.
Law gave us crime.

(Mokokoma Mokhonoana)

The current chapter aims to provide an in-depth analysis on how the discipline
of Mobile Forensics (MF) has evolved overtime. Once the analysis of the
research background and the enumeration of potential challenges are completed,
the chapter covers the advances of Mobile Forensic Data Analysis (MFDA),
while focusing on behavior-based suspicious pattern identification principles. A
considerable part of this chapter has already been published in the form of a
paper [Barmpatsalou et al., 2018a].

2.1 Introduction

The increased involvement of electronic devices in criminal actions “has led to the
development of Digital Forensics (DF)” [Palmer, 2001], a discipline concerning
collection, investigation, and presentation of evidence in an accepted manner
upon court. However, the term digital incorporates many categories that cannot
be regarded as a whole, and therefore, they require further classification. Some
of the DF sub-disciplines encountered throughout literature encompass aspects
such as Computer (CF), Network (NF), Database (DBF), Audio (AF), Video
(VF) and Mobile Forensics (MF) [Shanableh, 2013].

Despite the similar functionalities of mobile devices and computers, they cannot
be handled in the same way during a criminal investigation. Substantial
differences in terms of hardware, software, power consumption and overall
mobility make them unsuitable for classification under the CF category. As
a result, the MF discipline was formulated so as to incorporate the criminal
investigation of different types of mobile devices (handsets, tablets and more
recently wearable devices). Fundamentally, MF “is the process of gathering
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evidence of some type of incident or crime that has involved mobile devices”
[D’ Orazio et al., 2014]. More precisely, it is in charge of the whole routine of
“gathering, retrieving, identifying, storing and documenting” [Marturana et al.,
2011] evidence from mobile communication devices.

Mobile device operation has its own specific constraints, constituting
a compromise between processing power usage, storage capabilities and
portability/autonomy. The progressive balancing and/or offload of computing
resources to external entities has provided a solution to cope with device
shortcomings, thus creating an intersection between the mobility concept and
the Cloud. While this strategy provides a solution for dealing with device energy,
storage and processing power trade-offs, it also brings new challenges, as Cloud
Systems can potentially host relevant evidence.

For many, Cloud Computing is the future of mobility. In a recent survey by the
Right Scale company [RightScale, 2016], 95% of the surveyed organizations have
adopted a private, public or hybrid Cloud strategy. In the same survey, security
on the Cloud is ranked second in the list of the most precarious issues in need of
improvement. Such a concern is rather realistic: since Cloud Services cope with
increased amounts of sensitive data, they are expected to become a preferred
target of criminal activity. This creates a whole new perspective for DF, beyond
the self-contained device approach. Moreover, it generates new requirements for
the performance of robust investigations.

MF is based on the premise that mobile devices contain important information
about an individual’s personal or professional activities, which are crucial pieces
of evidence during an investigation. As the amount of valuable data stored
in Cloud Services increases, traditional MF techniques cannot solely focus on
mobile devices. Cloud Forensics addresses this gap, expanding the scope of the
investigation process to the Cloud environment and encompassing Computer,
Network and Mobile Forensics concepts.

The next section aims to contextualize the role of MF in infrastructures where
mobile devices are interconnected in order to serve purposes varying from
everyday to extended scenarios involving enterprise, law enforcement and first
responders’ usage.

2.2 Mobile Forensics Contextualization

Despite being tools for simplifying daily tasks, mobile devices can also be
abused for criminal purposes. In this perspective, Internet-connected devices
are particularly vulnerable, as they can easily become targets or even active
participants, by performing attacks and spreading cyber threats. The need to
investigate these events has prompted for the adoption of guidelines similar
to those used for traditional forensics, in the form of DF. DF is the science
of retrieving evidence out of digital devices with legally and scientifically
acceptable methodologies for “preservation, collection, validation, identification,
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analysis, interpretation, documentation and presentation of digital evidence”
[Palmer, 2001]. The aim of the aforementioned chain of actions is to provide
substantial aid to forensic specialists in terms of reconstructing events and
generating reports associated to the crime scene. However, the technological
differences among the existing digital media led to the creation of different DF
subcategories, varying from CF and NF, to AF, VF, DBF and MF. Fig. 2.1
depicts the contextualization of MF within a contemporary digital environment,
which is also described in the following paragraphs.

Figure 2.1: MF contextualization

MF is concerned with several aspects which are orthogonal to the mobile
device ecosystem, such as usage profiles or managed asset requirements. This
is a direct consequence of the pervasive role mobile devices have acquired
as personal and business tools in our daily lives. A smartphone will likely
reveal more details about the user’s habits and behavior than a desktop or
a notebook computer. Moreover, MF needs to transcend the device boundaries,
encompassing the aforementioned public and private Cloud Service domains.
This adds complexity and expands the boundaries of forensic investigation
beyond the traditional post-mortem examination, which takes place on destroyed
or powered-off devices. In such a volatile environment as the Cloud, more recent
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live techniques, that occur on a powered-on device or system, have proven highly
efficient [Barmpatsalou et al., 2018b]. Furthermore, mobile devices often act
as mediators for Personal Area Networks (PANs) (wearables), Wireless Sensor
Networks (WSNs) or Internet of Things (IoT) devices. Data flows between these
devices are also of potential interest for forensic purposes.

Until recently, the perception of mutual exclusivity between personal and
business usage profiles deemed the need for separate devices, as it was
inconceivable to use the same equipment for both roles. It was assumed
that companies had no other choice than to provide their workforce with the
mobile equipment required for professional usage – in order to ensure adequate
control over costs, management and security. Lately, several organizations have
started encouraging employees to use their own devices within the corporate
environment, in an effort to reduce the Total Cost of Ownership (TCO) for
mobile assets. This Bring Your Own Device (BYOD) principle implies that
enterprise networks no longer consist exclusively of corporate devices. As
such, Information Technology (IT) staff is prompted to “adopt more flexible
and creative solutions in order to maintain a satisfactory security level, while
enabling access to collaborative technologies” [Thomson, 2012].

Enterprise environments are in greater need of protection than individuals. The
amount of assets to be protected and the sensitive nature of information stored
and transmitted makes them a more attractive target to any sort of illegal
activity. Within such environments, “Mobile Device Management (MDM)”
[Souppaya and Scarfone, 2013] platforms provide organizations with the means
to establish and enforce managed device policies via a dedicated platform. After
enrolling in the platform and installing a MDM client application, devices start
being monitored and the platform policy starts being enforced (e.g., restricting
usage to corporate applications). MDM monitoring is a prerequisite, especially
for BYOD users that already have a certain level of unknown interaction with
the device before enrolling. This avoids exposure to untrusted content or
applications that may cause irreversible damage. In this perspective, MDM
helps to establish the basic security principles to fit the requirements of each
organization.

Additionally, organizations that act as first responders, such as law enforcement
agencies or emergency services make use of Public Protection and Disaster Relief
(PPDR) systems so as to carry out a variety of tasks ensuring their robust
operation. PPDR systems are critical infrastructures in great need of protection
from attacks against their integrity and availability and also require secure and
non-disrupted end-to-end communications. MF act as auditing mechanisms
that allow for the further comprehension of actions that constitute threats
to the PPDR systems and provide insights for the implementation of efficient
countermeasures [Barbatsalou et al., 2015]. Particularly for law enforcement
agencies, the contribution of MF is bidirectional. Not only do they fulfill the
aforementioned roles, but they also serve as means of investigation for criminal
cases involving mobile devices as active participants or digital fingerprints.
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Considering the fact that contemporary mobile devices are becoming apt at
replacing desktop and notebook computers for a variety of tasks, it could
be deducted that CF-like techniques might be applied during their forensic
investigation. This reasoning proves wrong, as the similarities between the two
device categories are only superficial. In fact, hardware and software components
have substantial differences between computers and mobile devices. As a result,
different techniques have to be implemented so as to carry out a successful
investigation. Nonetheless, specific smartphone components such as external
SD cards can be examined effectively by classic CF methods [Hoog, 2011], but
this is not enough to cover more critical parts of mobile devices, such as the flash
memory. The next subsection analytically explains the principles that influence
and regulate MF investigations.

2.2.1 Mobile Forensics Principles

All the aforementioned factors resulted in the birth of a separate discipline for
MF, a field dedicated solely to forensic investigation in mobile devices, and
which will be presented analytically in the next sections. The aspects of the
investigation procedure, acquisition methods and data types will be covered in
detail in the following paragraphs.

2.2.1.1 Investigation Phases in Mobile Forensics

Figure 2.2: Mobile Forensics investigative process model, extended from Ayers
et al. 2014 [Ayers et al., 2014]

The process model for conducting forensic investigations on mobile devices
includes the following stages: “preservation, acquisition, examination/analysis
and reporting of digital evidence” [Ayers et al., 2014] (see Fig. 2.2). It is a
structured procedure that investigators need to follow upon device seizure. It
provides guidance and recommendations for secure preservation and storage,
device handling, as well as user, application and network activity tracing.

Preservation includes all the tasks first responders are responsible for.
Particularly for MF, it consists of seizing and securing the mobile devices,
tracking their state and ensuring that no intentional or unintentional alteration
will occur to them or their contents [Raghav and Saxena, 2009]. Afterwards,
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during the acquisition phase, a bitwise replication or parts of the internal device
memory and peripherals are extracted so as to provide the investigation material
for the examination and analysis phase. Its purpose is to extract conclusions
about the criminal actions by “applying established scientifically based methods
to acquired evidence. Meanwhile, the examination and analysis phase should
describe the content and state of the data, including the source and the potential
significance” [Chen et al., 2011]. Finally, during reporting, every relevant detail
or incident observed in the previous phases is completely documented, preferably
in a correct chronological order.

Marturana et al. [Marturana et al., 2011] proposed enhancements for the process
model, such as quantitative approaches or the inclusion of a triage stage [Rogers
et al., 2006] between the acquisition and examination/analysis phases. Recently
acquired data are normalized before analysis, so as to be kept relevant to the
investigation needs and avoid delays caused by big amounts of raw information.
However, this latter proposal is still undergoing preliminary research and is
yet to be incorporated into the aforementioned MF standards as a standalone
stage.

Despite the recognized significance of all the investigation process model phases,
the amount of research dedicated to each part is uneven. This is due to the fact
that not every stage is equally important for all fields. For example, even though
data preservation is critical for the investigation itself, most of its procedures are
fixed and concern notions such as chain of custody and physical security, which
have already been extensively researched in the past. Moreover, the majority of
preservation techniques, such as the use of Faraday cages for device isolation,
require the involvement of disciplines other than Computer Science. Overall, the
fields of acquisition and examination/analysis show increased research activity
when compared to the other two.

The two aforementioned phases are the most related to the current thesis as well.
Acquisition is fundamental for the evidence validity and thus for the failsafe
conduction of the examination and analysis process. The following subsection
constitutes a preamble to the acquisition phase principles, by introducing the
data types that can be acquired during a MF investigation.

2.2.1.2 Acquired Data Types

Before proceeding to the MF acquisition methods presentation, it is important
to allude to the evidence data types that are retrieved during an investigation,
according to their types and the entity accesses them. Table 2.1 presents
a taxonomy of the acquired data, as it was presented in a survey paper by
Barmpatsalou et al. [Barmpatsalou et al., 2013].

The first group consists of data handled and altered strictly by Operating
Systems (OSs), such as connection handlers (Global Positioning System (GPS),
WiFi) and OS defaults and structural elements (IMEI, IMSI). The second group
concerns data imported and edited by users, such as text messages, contact lists,
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Data Category Data Type

OS GPS, Compass and Accelerometer Handlers, Connectivity
Properties, Network Data, Installed Application Packages, OS
Metadata

User Call Logs, SMS, Instant Messages (Chat), Contacts,
Multimedia Files, Browsing Data, Photographs, Videos, Office
Documents, Calendar Entries, Notes, User File Metadata

Native and Cloud Application Timestamps, Installation Data, Saved Settings, Trash,
Permissions (Android), Credentials, Mobility Data,
Application Metadata

Table 2.1: Acquired data types, extended from Barmpatsalou et al.
[Barmpatsalou et al., 2013]

pictures and all sorts of customized application data. Data used by native and
Cloud applications as background procedures, such as timestamps, installation
data, mobility data and saved settings form the third category. OS, user and
application metadata are also present in each of the aforementioned categories,
given the importance they add to an investigation, since they provide additional
information and enhance the quality of the potential findings [Ho et al., 2018].
The following subsection describes the most important concepts of the mobile
forensic data acquisition process.

2.2.1.3 Mobile Forensic Acquisition Methods

Data acquisition is a popular research area within the MF discipline, mainly
because its proper execution is crucial for a successful investigation. Without a
successfully extracted and validated memory image or part of the file system,
performed with respect to the rules of forensic soundness [Vomel, 2013], it is
impossible for the rest of the procedure to take place. Figure 2.3 presents the
main areas of MF acquisition from a technical point of view, as they appeared
in various research papers throughout literature.

Figure 2.3: Detailed acquisition phase, introduced by Barmpatsalou et al.
[Barmpatsalou et al., 2018a]

The basic acquisition methods comprise the post-mortem, live and non-intrusive
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forensics categories. Post-mortem, also known as dead forensics, includes
physical and logical acquisition methods and takes place upon the seizure of
damaged, destroyed or powered down devices, requiring a bit-by-bit copy of their
memory. Acquisition takes place with devices in off-line mode (i.e., without any
kind of network connectivity), so as to avoid minimal modification of its contents
[Jansen and Ayers, 2007]. However, recent research [Barmpatsalou et al., 2013]
reveals a trend towards alternative directions, such as the usage of boot loader
modifications, which ensure the forensic soundness of the data partition, and
the real-time acquisition of volatile memory contents, which are able to collect
crucial evidence [Dezfouli et al., 2012].

Physical acquisition methods interact directly with the device hardware, being
able to retrieve unallocated (deleted) data, at the cost of using more invasive
procedures. Additionally, there is a high probability of a target device being
rendered useless after their execution. Among physical acquisition techniques,
the Hex Dumping and Joint Test Action Group (JTAG) methods provide
investigators with an easier way to access the raw information stored in the
flash memory. Hex Dumping is conducted with the use of special devices,
known as flasher boxes, which are responsible for creating a hexadecimal RAM
copy [Luttenberger and Creutzburg, 2011]. The JTAG method derives from the
standard which bears the same name (Joint Action Test Group), a universal,
manufacturer-independent interface with semiconductor chip support. This
particular method requires the attachment of a cable or a wiring harness to a
JTAG header or connector on the mobile device, being significantly more invasive
than Hex Dumping. There are plenty of commercial and open-source forensic
tools with physical acquisition features, such as Cellebrite Universal Forensic
Extraction Device (UFED) [Cellebrite, 2018], EnCase Forensics [Guidance
Software, 2018], NowSecure (formerly ViaExtract) [NowSecure, 2016] and
CDMA Workshop [CDMA Software, 2018].

Also considered as a physical acquisition method, chip-off techniques involve
direct data retrieval from non-volatile memory chips of the target device. Data
are extracted as an adjoining file in binary format, by reverse-engineering the
wear-leveling flash algorithms. This method is also considered invasive, incurring
in a higher risk of causing irreversible damage to the device. Some of the
forensic tools supporting chip-off are Soft-Center NAND Flash Reader [Soft
Center, 2018], BeeProg2 [ELNEC, 2018] and NFI Memory Toolkit [Netherlands
Forensic Institute, 2018].

Micro Read is the latest addition to the existing methods [Murphy, 2013]. It
involves the use of an electron microscope in order to observe the gates on a
NAND or a NOR flash memory chip. Its usage is not publicly disclosed and it
is currently limited to the extreme cases of national and international security
crisis.

Logical acquisition is performed by establishing a connection between the device
and a forensic workstation via a wired or wireless link; the appropriate security
precautions are also taken. Such methods interact with the mobile device file
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system [Casey, 2011] to extract bitwise copies or memory segments. Contrary to
physical acquisition methods, they are incapable of retrieving deleted files, being
less invasive. Many forensic tools with physical acquisition features also support
logical acquisition (Cellebrite UFED [Cellebrite, 2018], NowSecure ViaExtract
[NowSecure, 2016]), while others have solely logical acquisition features, such
as Autopsy [Autopsy, 2016] and Nyuki Forensic Investigator [Silensec, 2016].
Pseudo-physical acquisition is performed with the use of a bootloader, which
alters only the protected area of the device (e.g. RAM) where it is uploaded
[Klaver, 2010]. File system access is performed either by a logical dump on the
phone’s memory partitions [Hoog, 2011] or by access to the OS’s databases.

Live acquisition deals with near real-time content extraction. It allows dumping
parts of the runtime mobile device execution environment, such as the kernel
process list, the kernel hash table [Hanaysha et al., 2014] and logs, so as to
acquire evidence that would otherwise be lost after a potential device shut-down.
It is divided into the network-based and volatile memory subcategories.

Live acquisition procedures take place between the two prevailing non-persistent
elements of the mobile device, i.e. the volatile memory and network data. For
the first case, the most common approach employs a modified bootable kernel
[Volatile Systems, 2011], albeit a less invasive technique is also used by the
Nyuki Android Process Dumper (AProcDump) [Silensec, 2016]. This particular
implementation consists of an executable running on Advanced RISC Machine
(ARM) Android devices [Nguli et al., 2014], which performs a dump of all
running applications. The tuples of the dumped applications and their process
ids are then saved in a file for future association to events and other activities
of forensic interest. For the network data case, live forensics can also be applied
and acquisition takes place either by direct access to the network interface and
the packet buffers, or indirectly, via an application. Linux Memory Extractor
(LiME) [504ensics Labs, 2013] is claimed to have this particular functionality
[Heriyanto, 2013].

The non-intrusive forensics category encompasses the simplest forms of retrieval,
classified between the observation and interaction categories. Observation
techniques include “whatever an individual is capable of acquiring from a device
via direct interaction with the installed applications” [Mokhonoana and Olivier,
2007] and their manual registration or via third party recording [Grispos et al.,
2011] with a digital camera. This approach has three major drawbacks: it can
become extremely time-consuming when the amount of data to be extracted is
relatively big; it is totally ineffective when the device screen is destroyed; and
finally, the acquisition accuracy is neglected, due to the probability of human
error. The interaction category makes use of physical or biological traces on a
device, such as fingerprints and DNA or other damage types that may be used
as evidence upon court.

Due to several factors, the forensic acquisition method landscape is constantly
expanding towards new directions and changing over time. The increased
popularity of live forensic techniques is such an example, as they provide a way
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to overcome the limitations of post-mortem forensics, enabling the acquisition of
volatile elements. Live forensic techniques are also significant for the conduction
of investigations in the Cloud environment, which will be thoroughly examined
in the next subsection.

2.2.2 Cloud Computing and Mobile Forensics

As a result of the increasing need for flexible computing power and storage
capabilities while reducing infrastructure costs, organizations are migrating
to remote, virtualized and on-demand services [Grispos et al., 2012], known
as Cloud Services. They offer “virtually unlimited dynamic resources for
computation, storage and service provision” [Khan et al., 2014].

The Cloud Computing paradigm is defined as “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable
computing resources that can be rapidly provisioned and released with
minimal management efforts or service provider interaction” [Mell and Grance,
2011]. Cloud Services provide the means for organizations to scale their IT
infrastructure with a level of efficiency, agility and flexibility which is difficult
to meet solely with in-house resources.

Currently, the prevailing models related to Cloud Services are: “Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-Service
(IaaS)” [Ninawe and Ardhapurkar, 2014], often referred together as the Cloud
Stack. SaaS applies to the cases where Cloud Service Providers (CSPs) offer
applications to the clients, often accessible via a web browser, thus dispensing
the need for software distribution or deployment. In the PaaS model, users’
flexibility and control levels are relatively higher, since they are able to create
and distribute their applications using an Application Programming Interface
(API) and even manage their own databases. Lastly, in the IaaS model, clients
can lease virtualized servers, where they can setup whichever type of virtual
machine suits their needs. They also may have partial control over network
infrastructure, such as firewalls and other solutions. There also exist other
service models, such as Database-as-a-Service (DBaaS), where users “store their
data in a key-value pair” [Motahari-Nezhad et al., 2009] or even STorage-as-a-
Service (STaaS), which is exclusively dedicated to users’ data handling, allowing
them to store, download and share their data [Shariati et al., 2015]. Some of the
most popular STaaS solutions are Dropbox, Box, Microsoft OneDrive, Google
Drive, SugarSync and Ubuntu One.

From a cyber-security perspective, Cloud Computing also has its own
downsides. Cloud Services can be used to support criminal activity, by
spreading different malware types, or even by providing Crimeware-as-a-Service.
Moreover, the multi-tenancy capabilities used to support concurrent virtual
infrastructure management also contribute for hampering tracing procedures,
and subsequently, promoting Cloud-based crime [Zawoad and Hasan, 2013].
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Despite being the future of Internet services, Cloud Computing is also the future
of electronic crime.

Beyond desktop or notebook computers, Cloud Services are increasingly involved
in providing infrastructure, resource and complementary service needs for the
mobile device consumption. An estimation for the next two years (2017-2019),
predicts that the average market share of Cloud applications worldwide will
reach 13,7% [Pang, 2015]. This poses a challenge for MF investigators, who have
to account for the usage of Cloud Services in the investigation process.

The adoption of Cloud Services has led to the creation of a specific forensic
discipline, defined as “the application of digital forensic science in Cloud
Computing environments” [Badger et al., 2012]. This discipline can be defined
from several different perspectives. “Technically, it consists of a hybrid forensic
approach geared towards the generation of digital evidence” [Samet et al., 2014].
From an organizational aspect, “it involves interactions among Cloud actors for
the purpose of facilitating both internal and external investigations” [Farina
et al., 2015]. From a legal standpoint, it often involves “dealing with multi-
jurisdictional and multi-tenant situations” [Ruan et al., 2013].

Cloud investigation involves forensic operations both in the Cloud and the
equipment sides, requiring the use of CF, MF and NF techniques. Even
though investigation in mobile devices can be accomplished by applying already
existing forensic methods or tools, the same cannot be said about Cloud
resources. Most post-mortem forensic tools have limited capabilities over
Cloud-hosted data. This constitutes a challenge for the DF discipline, since
users are increasingly relying on Cloud Services, decreasing the amount of
forensically relevant data hosted on mobile devices. This situation is leading
researchers towards alternative approaches, based on the use of live acquisition
and interaction techniques. However, these features are not yet referenced by
the existing standards [Ayers et al., 2014], as Cloud Forensics is a developing
discipline, yet in its early stages.

The impossibility of gaining physical access to the Cloud infrastructure
constitutes an impediment to the investigators’ work [Marturana et al., 2012],
aggravated by the fact that Cloud data are frequently spread among various
locations on different countries – often with different legal jurisdictions. The
high volatility of virtual infrastructure logs creates an additional problem, as this
information is vital for non-repudiation purposes. Finally, another dilemma in
the field of mobile Cloud Forensics relates to the need to ensure network device
connectivity during an investigation process, without risking a remote wipe or
data alteration from a potentially compromised CSP.

Overall, the Cloud Forensics discipline requires new procedures to be developed
for evidence acquisition, while avoiding data loss or corruption. For instance,
Cheng [Cheng, 2011], proposes a Cloud-based engine, responsible for monitoring
information flows and network traffic via interaction with various Cloud nodes.
The mechanism aims to collect evidence from volatile (data related to the virtual
infrastructure of the CSPs) or non-volatile data. Additionally, Chung et al.
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[Chung et al., 2012] describe an investigation procedure for cases involving the
use of Cloud storage services. It begins with the acquisition of an OS image from
the target device, according to platform-specific procedures, which is later parsed
for Cloud-storage application-related artifacts. If such artifacts are present,
legal procedures (such as requesting search and seizure warrants or international
judicial assistance) are taken, in order to proceed with further data analysis and
reporting.

However, the Cloud is not only a source of challenges for digital investigation; it
can also provide several benefits. When designing forensic solutions for mobile
devices, aspects concerning computational and energy trade-offs have to be taken
into consideration, because they are responsible for limiting the incorporation
of specific functionality. Cloud technologies can be used to support and improve
the efficiency of forensic tools, providing the required computing resources (such
as data processing or storage) in a flexible and on-demand fashion [Lee and
Hong, 2011]. Furthermore, “current forensic investigation requires correlative
analysis of multiple devices and previous cases” [Lee and Hong, 2011]. This
procedure is rather time- and resource- consuming and can be streamlined by
taking advantage of Cloud Computing resources.

Also, Cloud-based forensic tools could eventually help to alleviate the problem of
heterogeneous mobile OS platforms. Such platforms are substantially different
among them, requiring different approaches for developing forensic tools. For
this reason, most developers prefer to target popular device ecosystems (such as
Android and iOS), for whom a plethora of tools exist. A Cloud-based tool could
provide a potential platform-agnostic solution to this particular issue, enabling
data acquisition and analysis even from devices that belong to less representative
platforms (i.e., with a smaller market share).

Despite the fact that Cloud Computing is becoming a mature and widely used
discipline, Cloud Security and Forensics need substantial improvement. In the
next subsection, surveys related to CF, NF, MF and their equivalent Cloud
Computing contributions are presented.

2.2.3 Mobile Forensic Practices

The current section provides a literature review of publications about forensic
practices that are directly related or relevant to the MF field. The key for
developing effective MF tools and methods is a deep and detailed understanding
of the field, with a particular focus on two factors. First, technical knowledge,
acquired either theoretically through research, or by actual practical involvement
with the subject. Second, the use of logical or mathematical languages, aiming
to model the field’s basic elements. Despite the specific characteristics of each
domain, there are several different approaches covered in surveys on CF and NF
techniques that can be transposed to the MF scope, thus remaining relevant to
the latter context.
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One of the most exhaustive surveys on forensic techniques was presented by Kohn
et al. [Kohn et al., 2013]. The authors gathered and formalized into pseudo-
code the existing scattered process models for digital forensic investigation and
provided their comparative summary. Moreover, they introduced a process
model of their own, called Integrated Digital Forensic Process Model (IDFPM),
which addresses some of the more persistent investigation issues by schematically
organizing the most critical steps in a timeline. IDFPM and forensic process
models in general can serve as a base for new formal models involving additional
concepts, such as Cloud Computing.

In the field of NF, the survey by Pilli et al. [Pilli et al., 2010] provides a complete
view of the evolution of this discipline, the existing Network Forensic Analysis
Tools (NFATs) and related research challenges. Moreover, the authors introduce
a novel generic process model for NF.

Specifically for MF, Barmpatsalou et al. [Barmpatsalou et al., 2013] provide
a state-of-the-art study on forensic techniques, updated for smartphone-era
devices. Besides describing MF standardization efforts, they also classify existing
research, which is presented in a timeline according to the acquisition type,
mobile OS, low level modifications (root-jailbreak) and acquired data types. The
aim of such a representation is to aid future researchers to locate research trends
within a time context and to observe the evolution of MF through time.

Martini and Choo [Martini and Choo, 2014] conducted a literature survey on
cases involving Cloud Services as sources of evidence. The survey examines
technical or conceptual Cloud-aware solutions for collection of forensic evidence.
It also includes works related to analysis of specific Cloud-based products and
services (Dropbox, OneDrive). The authors analyze the data types that can be
acquired directly from a Cloud Service and focus on what can be retrieved from
a device after interacting with Cloud applications.

An overview of the current research trends in the intersection of the fields of
MF and the Mobile Cloud was provided by Samet et al. [Samet et al., 2014].
The authors enumerated the most significant mobile Cloud Forensics challenges,
such as limitations of post-mortem and live forensic tools or limited investigator
control over the device and legal issues. Since mobile Cloud Forensics is
a relatively new discipline without much dedicated research, they included
references related to computer Cloud Forensics, with a potential application
to the mobile domain.

A survey on the trends and future challenges of MF concerning the fourth
quarter of 2014 was published by Cellebrite Predictions [Cellebrite Predictions,
2015]. Despite not being a purely academic work, it provides useful metrics
concerning the state of forensic investigations. Among others, it is mentioned
that the most significant data sources are (by descending order of relevance): the
mobile devices themselves, third party applications, wireless, cellular providers
and CSPs. Moreover, device and application encryption, data stored in CSPs
and big data manipulation are considered as the most prominent emerging
challenges.
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In their survey, Ardagna et al. [Ardagna et al., 2015] expand the concept
of Cloud Security towards Cloud Assurance. They claim that assurance as a
notion is the expectation that security measures taken will be as effective as
initially planned. While security consists of the implemented solutions for system
protection and threat prevention, assurance incorporates techniques concerning
evidence collection and analysis. Moreover, they present various Cloud Security
solutions and their Cloud Assurance equivalents.

Kechadi et al. [Kechadi et al., 2015] conducted a survey on forensic investigations
in the Cloud Computing ecosystem. Initially, the authors identify the resource
and computational trade-offs in contemporary mobile devices and highlight
the significance of the mobile cloud computing discipline. Additionally, they
enumerate the potential challenges that may arise during a forensic investigation
in the Cloud environment. They also present the differences between traditional
and cloud-based mobile forensic techniques within the investigation process.
The paper concludes with a presentation of some state-of-the-art milestones
about application of forensic methodologies in Cloud storage services with mobile
device involvement.

The current part of the background work analysis observes how the MF discipline
evolves over time. It covers a wide span of areas of expertise that are considered
MF sub-disciplines and includes them in a special taxonomy scheme which
integrates older and contemporary research papers in a flexible manner. A more
detailed overview is presented in the following section.

2.3 Recent Advances in Mobile Forensics

The field of research in MF has shown an admirable amount of growth over the
last seven years. Ntantogian et al. [Ntantogian et al., 2014] already proposed
a preliminary classification regarding research directions. Also in this line,
Kaart and Laraghy [Kaart and Laraghy, 2014] provide additional insights about
expanding the research of MF further from acquisition methodologies. Beyond
data acquisition or analysis, other emergent MF concepts and methodologies are
beginning to appear in related literature. The subject of these papers falls along
five main categories, namely:

1. File acquisition and data integrity

2. Identification of malicious activity and malware analysis

3. Evidence reconstruction and presentation

4. Evidence parsing

5. Automated classification and analysis of user and application behaviour

File acquisition has been one of the very first concerns among MF researchers,
since the acquisition phase is a critical part of the investigation process
model, constituting the initial information gathering procedure. During this
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phase, investigators also have to maintain data integrity so as to preserve
evidence admissibility upon court. No further actions can be taken during an
investigation if acquisition is not properly performed and retrieved content is
not validated.

Beyond forensic purposes, evidence retrieved from mobile devices can also
be useful for cyber-security analysis. When target devices are attacked,
compromised by malware or forced into becoming part of a botnet, data acquired
from them can provide useful insights to security professionals concerning
behavioral patterns and signatures of malicious software. Post-mortem device
analysis or live examination can be performed so as to achieve identification of
malicious activity and further malware analysis [Casey, 2013].

Evidence reconstruction and presentation is another rising concern in the MF
research world, since evidence presentation modeling aids the investigation
procedure. Interestingly, Kasiaras et al. [Kasiaras et al., 2014] noted the
existence of an unbalanced distribution between the amount of research papers
corresponding to data acquisition and integrity preservation and the number
of papers concerning presentation of evidence and further facilitation of the
investigators’ role.

Evidence parsing is mainly related to the parsing and decoding of acquired data.
Due to the wealth of available tools and resources for this purpose, this area
has been lagging behind in terms of available research. Moreover, even though
current solutions are not exactly suitable for every purpose, it is not difficult for
an individual to create a customized script for file parsing.

Despite the fact that the need for such methods has been highlighted relatively
early [Marturana et al., 2011], few research papers have been published towards
that direction. However, the use of automated procedures, based on technologies
such as Machine Learning algorithms, Fuzzy Systems and Neural Networks
would not only facilitate investigations, but also automate many procedures
without the need for continuous experts’ supervision. The following subsections
elaborate the advances in each one of the aforementioned categories.

2.3.1 File Acquisition and Data Integrity

This subsection comprises two different families of techniques: conventional
(or classic) techniques, that acquire information from standalone devices and
Cloud-aware techniques, which are oriented towards the incorporation of Cloud
Service awareness.

2.3.1.1 Conventional Techniques

Thing et al. [Thing et al., 2010] presented an automated mechanism for
retrieving volatile memory parts from Android devices. The authors developed
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memgrab, a memory acquisition tool, which tracks process IDs and memory
addresses “from the procfs virtual file system provided by the kernel” [Thing
et al., 2010]. Once elements related to the processes are extracted, a Perl-
based script, named memory dump analyzer, searches for the needed evidence
elements.

Dezfouli et al. [Dezfouli et al., 2012] proposed an acquisition method of volatile
memory contents in Android devices, which claims minimal data modification
when compared to existing alternatives. A part of the non-volatile memory
of the device is reserved for storing the information deriving from the process
acquisition mechanism. The technique involves updating the initial dump by
using the deltas (i.e., the different parts) from consecutive captures.

Aiming to extend the research horizon of iOS acquisition methods, Gomez-
Miralles and Arnedo-Moreno [Gomez-Miralles and Arnedo-Moreno, 2012]
proposed a technique for iPads based on the Camera Connection Kit. The
authors claim that this method, equally to the one proposed by Zdziarski
[Zdziarski, 2008], is less invasive in terms of device data alteration. They
also highlight the need for data acquisition techniques that are more complete
than their predecessors, such as the iTunes backup, which is not capable of
retrieving unallocated data. Their pseudo-physical acquisition method consists
of the following steps: jailbreaking the device in order to gain administrative
rights; installing openssh (Secure Shell (SSH) Server) and coreutils libraries;
deactivating the network auto-lock feature; connecting the device to a Hard
Disk Drive (HDD) by the Camera Connection Kit; and finally performing a disk
duplicate (dd) command. One of the advantages of the proposed method is that
despite the existence of device encryption (in iOS 4), most of the acquired files
can be decrypted since the key stored in the device is acquired as well. The
authors conclude by evaluating the solution and expressing their concern about
the next generation encryption layers and the private user encryption keys that
could not be acquired.

Kotsopoulos and Stamatiou [Kotsopoulos and Stamatiou, 2012] discuss
the problem of forensic data acquisition in the simultaneous presence of
countermeasures. Their existence may become an impediment for the
investigators, since data obfuscation, alteration and detection of forensic tools
are able to hamper their work. The authors suggest a consolidation of open
source tools for acquisition of volatile content and encryption key detection,
that aims to reveal potentially malicious content hidden in encrypted files.

Data encryption and its effectiveness against potential eavesdroppers is discussed
by Al Barghouthy and Said [Al Barghouthy and Said, 2013]. The authors
performed logical forensic acquisition in an Android device after using Instant
Messaging (IM) applications, private browser sessions or social media over the
latter. They attempted to examine the actual readability of artifacts from
messaging applications with and without applied encryption. While additional
encryption is proved effective in the majority of social media message exchange,
it can also hamper DF procedures for the same reasons.
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Votipka et al. [Votipka et al., 2013] introduced a modified boot image for
Android devices in order to balance between the potential data loss arising
from logical acquisition methods and the invasive tactics of physical acquisition
strategies. As a result, an alternative, device-agnostic version of an Android
boot mode was proposed. More precisely, before proceeding to acquisition via
recovery mode, the presented methodology incorporates a software collection
package, which gathers the essential elements for booting the specific target
device.

Cold-boot attacks in Android smartphones were introduced by Muller and
Spreitzenbarth [Müller and Spreitzenbarth, 2013], when the authors proved that
data in smartphone RAM chips fade in a slower pace once the device remains
frozen for a certain period of time. They also introduced Forensic Recovery
Of Scrambled Telephones (FROST) recovery image, a custom bootloader which
was flashed on the device after the cold-boot attack and provided the potential
investigators with the options of acquiring encryption keys, brute-force attacking
weak user passwords and unlocking and accessing the user data partition.

Most of the classic acquisition techniques introduced during the last seven years
are experiments in novel fields, an encouraging fact for the future of MF. In
the following subsection, more details about techniques which are destined for
a cloud environment can be encountered.

2.3.1.2 Cloud-aware Techniques

Apart from describing the current trends concerning DF in the presence of
Cloud Services, Marturana et al. [Marturana et al., 2012] created a case study
of forensic acquisition from Cloud Service Providers (CSPs) in a Windows 7
environment, with the use of already existing methods. The described use case
consisted of a forensic acquisition procedure performed at the client side after
interacting with various CSPs. Despite the fact that the research is not purely
related to mobile devices, the described methodology has potential for future
use in such an environment.

One of the main risks present in the Cloud is associated to information volatility.
If information is not acquired within a specific time window, its integrity can
be compromised, since it is often impossible to be aware of which entities have
accessed, altered or deleted the cloud data by the time the investigation began.
As a solution to this issue, Zawoad et al. [Zawoad et al., 2013] introduced
a method that stores “virtual machines’ logs and provides access to forensic
investigators, ensuring the cloud users’ confidentiality, named Secure Logging as
a Service” [Zawoad et al., 2013].

The probability of mobile devices serving as proxies for data leaks from Cloud
Services was addressed by Grispos et al. [Grispos et al., 2013]. Dropbox, Box
and SugarSync Cloud storage services were used as testbeds. After conducting
physical acquisition on various Android and iOS devices, with different usage
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scenarios, the obtained images were examined for artifacts related to the Cloud
Services.

One of the approaches to cope with Cloud Services in a forensic context favors
the introduction of continuous monitoring techniques to gather information for
DF purposes. In this line of reasoning, Grover [Grover, 2013] implemented
Droidwatch, a prototype monitoring system for Android devices. Droidwatch
consists of an on-phone application and a remote enterprise server. The
application tracks the occurrence of incidents in the device and reports them
back to the server. The system is also equipped with a mobile database, which
gets unloaded upon information syncing with the remote instance. The collection
of datasets makes the tool an interesting aspect for security auditing, forensic
investigations and MDM, especially in BYOD scenarios.

Baggili et al. [Baggili et al., 2015] performed a forensic retrieval procedure in
two smartwatches. The authors used a variety of proprietary and open source
forensic tools, popular in the MF community. Their preliminary research showed
that information of critical forensic interest that does not usually reside in mobile
handsets, such as data from heart rate monitors and pedometers, can be acquired
through a relatively easy process. Wearable devices upload data concerning the
users to the Cloud for monitoring and processing purposes and their acquisition
provides the investigators with potentially high quality evidence.

Daryabar et al. [Daryabar et al., 2015] experimented with the MEGA Cloud
storage mobile client application. Their research key points included detection
of alterations in files and metadata used by the application and discovery of
forensic evidence in target devices running iOS and Android. The authors used
an adapted version of the investigation framework proposed by Martini and
Choo [Martini and Choo, 2012]. Afterwards, they retrieved a bitwise copy of the
Android Jellybean 4.2 internal memory and extracted an iTunes backup from the
iOS 7.1.2 handset. TCPDump and Wireshark were used for capturing sent and
received network packets. Additionally, they created an experimental scenario
which included the following interactions with the MEGA mobile application:
logging in with a set of custom credentials, uploading, downloading and deleting
different files and sharing a file to a custom e-mail address. MD5 hashes and
timestamp comparisons were applied in order to detect changes occurring to
the uploaded and downloaded files. While “MD5 values of the original and
downloaded files matched” [Daryabar et al., 2015], timestamps showed a certain
level of instability and they were always dependent to the date and time settings
of the target devices. Installation activity and usernames from the logging in
activities were encountered in both devices. Moreover, the authors were able
to detect a non-encrypted file version of the password used in the Android
device. Data corresponding to upload activity was only tracked in the iOS
device, whereas download activity data was present in both devices. The name
of the deleted file was present in both devices as well. Lastly, no elements
concerning the sharing activity were present in any device.

Adversary models are a known practice in the field of Information Security
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and Cryptography, with little or no expression in terms of DF- or MF-related
research activity. In a novel approach, Do et al. [Do et al., 2015] created
an adversary model aiming to collect and analyze data from six widely used
Cloud applications. With respect to the principles of forensic soundness, such
as keeping any device modification to a bare minimum to avoid interference
with the forensic process, the authors developed an acquisition and analysis
methodology based on this model. Its main innovative characteristic results
from combined factors: using a live OS; avoiding modification of the boot or
recovery partitions to securely acquire evidence; and providing data analysis
capabilities.

A complex study on evidence acquisition of Cloud storage applications in mobile
devices was performed by Grispos et al. [Grispos et al., 2015]. The authors
used practitioner accepted forensic tools, such as the Cellebrite UFED or the
Forensic Toolkit (FTK) Imager and FTK Toolkit, in devices running iOS and
Android. Their concerns went beyond the data recovery process and how it
can be affected by the usage of Cloud Services. They also encompassed aspects
such as: how different application versions alter the acquisition outcome; what
acquired metadata reveal about remote storage at the provider’s side; and if
the evidence retrieved from two different versions of Cloud application sources
provides a more detailed dataset of results. One of their most useful findings is
that data acquired from a mobile device can serve as a snapshot of the CSP-
hosted data.

Even though changes such as file deletions may occur in the future, an
acquisition prior to that precise moment constitutes proof that the file existed
beforehand. Moreover, the way in which the device is used is able to affect
the acquisition outcome. For example, fewer files are recovered if the user had
previously performed a cache cleaning. It was discovered that different Cloud
storage application versions lead to a variation in the number of acquired files.
Additionally, information stored in metadata could be used to hint at the storage
state in the CSP side, or even to give access to download files that did not exist
in the acquisition data. The methods adopted by this study could be easily used
with contemporary OS versions, different Cloud storage application versions, as
well as with applications simultaneously hosting and monitoring multiple Cloud
storage accounts.

Martini et al. proposed “a device-agnostic evidence collection and analysis
methodology for mobile devices” [Martini et al., 2015a]. The authors use a
custom bootloader and a live OS to perform a physical dump of the device
partitions – a sound approach from a DF perspective, also adopted by others.
Afterwards, all the available applications are obtained and different locations are
explored for data of forensic interest. Practical use cases involved acquisition and
analysis of seven popular Android applications for Cloud-storage, password sync
and notes (Dropbox, OneDrive, Box, ownCloud, Universal Password Manager,
EverNote and OneNote [Martini et al., 2015b]) to retrieve evidence of forensic
interest (including sensitive data such as credentials and authentication tokens)
in private and public application storage locations.
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Shariati et al. [Shariati et al., 2015] investigated the effectiveness of forensic
acquisition for artifacts of the Ubuntu One Cloud storage service in devices
running Windows 8.1, MacOSX 10.9 and iOS 7.0.4. The explored use cases
covered the acquisition of artifacts after accessing a Cloud Service via its own
application and by browser access. Volatile content and network artifacts were
examined separately. While traces of application usage were present in every
platform, the same cannot be claimed for sensitive data, such as credentials
and authentication tokens, whose vestiges varied among different platforms.
Recently, Shariati et al. [Shariati et al., 2016] conducted a similar study
concerning the SugarSync service and included Android in the list of the test
platforms, obtaining similar results.

A comparative study concerning the acquisition and discovery of forensic
artifacts between Android and Windows Phone devices was conducted by
Cahyani et al. The authors distinguish three different use cases of “Cloud storage
and communication applications, namely information propagation, information
concealment and communications” [Cahyani et al., 2016b]. The first case is
related to signing in, accessing and downloading files saved in Cloud storage
services. The second case corresponds to exchange of files modified by a
steganography technique via e-mail, communication (Skype, WhatsApp, Viber)
and Cloud storage applications. Lastly, communication applications are used as
means of information exchange and activity (friend addition, chat) tracking. The
authors used physical, logical and manual acquisition techniques, depending on
each method’s applicability on the different target devices. Logical acquisition
of Android devices resulted in successful retrieval of user credentials, actions
and downloaded data. On the contrary, only the latter pieces of evidence were
available in devices running the Windows Phone operating system. The authors
concluded that only physical acquisition is capable of retrieving a significant
amount of artifacts from Windows Phone smartphones, thus cross-validating the
assumption made in one of their previous papers [Cahyani et al., 2016a].

In the last few years, an explosion in the use (and misuse) of mobile
services, -with and without Cloud contribution- was observed. One of the
fields strongly correlated to criminal activities that is also in need of new,
adaptable mechanisms and continuous surveillance is the one of malicious
activity identification, which is presented in the next subsection.

2.3.2 Identification of Malicious Activity and Malware Analysis

This subsection analyzes live methods, which occur in real-time, and classic
methods, which take place upon malware infection.

2.3.2.1 Live Methods

Taking into account the energy and processing trade-offs that occur when a
continuous monitoring application is running, Houmansadr et al. [Houmansadr
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et al., 2011] introduced a high level architecture of a Cloud-based Intrusion
Detection System (IDS). This IDS uses a Cloud proxy server in order to perform
off-loaded forensic analysis and malware recognition on the extracted data from
the device. However, the practical feasibility of such a method is debatable and
requires further research and experimentation, mainly due to the large amount
of exchanged data.

The Volatility Framework is a multi-platform memory forensics solution.
Whether the extracted memory product is in “raw format, a Microsoft crash
dump, a hibernation file, or a virtual machine snapshot” [Volatile Systems,
2011], it provides the investigators with a complete view of the examined system.
Identification of malicious activity was one of its initial concerns, but nowadays
its functionality has expanded. Since the release of version 2.3.1 in October
2013, support for Android kernels was also added, expanding the potential of
Android forensics to a new level.

A fake, intentionally set up GSM/GPRS network was created by Schutz et al.
for intercepting network traffic to and from a potentially compromised mobile
device [Schutz et al., 2013]. This way, network traces get trapped and are further
processed by the Wiretrap application.

Frequently, criminal actions are directly associated to device compromising from
malware or third party attacks. Analysis of audit data from forensic associations
can help investigators to create behavioral patterns of several mobile device
threats. This can be achieved by exploring “hidden processes, their structure,
suspicious executed code and other entities” [Hanaysha et al., 2014]. The
creation of an open source Android memory forensic investigation environment
was the main subject of the solution proposed by Hanaysha et al. [Hanaysha
et al., 2014]. Focusing on live acquisition, the authors used a combination of
the Volatility Framework with LiME, aiming to identify and trace the assets
compromised by malware. They simulated use cases by installing common
Android malware, such as the O Bada Trojan and ZitMo in the target device.
By accessing hidden processes and gathering information about their structure
from the kernel process list, the kernel hash table and the kmem_cache, they
were able to trace them back to the malware activity. However, an automated
version of this procedure is yet to be researched.

Borges et al. [Borges et al., 2017] introduced HyIDS, an Android hybrid IDS,
that aims to provide a solution for the BYOD principle in PPDR scenarios.
HyIDS consists of a host and a remote module. The host module is installed on a
target device, where it performs data collection from the Android logging services
and securely forwards this information to the remote module, the Command and
Control Centre (CCC). The CCC performs static and dynamic malware analysis
and uses a correlation engine so as to trace events that do not comply with the
concerned PPDR organization’s policy.

Even though live methods are indisputably the future of the race against
malware, classic methods – presented in the next subsection – can still produce
meaningful contributions.
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2.3.2.2 Classic Methods

Di Cerbo et al. [Di Cerbo et al., 2011] presented the functionality of a forensic
tool (AppAware), especially designed for detecting Android malware based on
permission abuse. As soon as the developed application is executed on the
device side, it generates an eXtensible Markup Language (XML) file containing
the permissions requested for the selected application. Then, the investigators
are prompted to manually compare the results to a classified list of potential
malware. Despite the fact that the particular forensic tool is relatively useful,
automated comparison and classification of the malware would be a considerable
evolution.

A typical guideline for recognizing mobile malware via a forensic procedure
consists of the following steps: identification of suspicious programs,
neutralization of any anti-forensics code, code extraction from the malware body,
and deduction of malicious functions [Li et al., 2012]. In this paper, the authors
propose a method of identifying mobile malware via reverse engineering, analysis
and reconstruction of events related to their functionality.

Eradicating malicious activity at the highest possible scale can be rather
characterized as an achievement. Nevertheless, mobile criminology is not
solely dedicated to the malware identification and taken countermeasures, but
to the potential crime scene as a whole. The next subsection introduces
the subdiscipline of evidence reconstruction and presentation as a means of
facilitating the investigators’ duty.

2.3.3 Evidence Reconstruction and Presentation

This subsection enumerates and analyzes research papers concerning the
reconstruction of evidence deriving from forensic data. It presents two different
groups of approaches: event presentation as a whole and reconstruction of
specific elements.

2.3.3.1 Event Presentation

While aiming to enrich the chronological evidence presentation for forensic
tools, Kasiaras et al. [Kasiaras et al., 2014] created the Android Forensic Data
Analyzer (AFDA). Its operation is summarized in two phases. During the first
phase, the tool executes common forensic investigation tasks, such as image
mounting, evidence retrieval, hash creation and report generation. The second
phase consists of a timeline where the events associated to the acquired evidence
and their correlated assets are presented in a chronological order. Moreover, it
provides the investigator with the option of tracing the exact location history of
the device by parsing geodata used by many different applications.
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Zawoad and Hasan [Zawoad and Hasan, 2015] created a conceptual model of
a mechanism responsible for preserving (in a secure database) and presenting
(via GET requests to a “Representational State Transfer (REST) API” [Fielding,
2000]) data acquired from mobile Cloud investigations. The model was designed
after enumerating the challenges the field of mobile Cloud Forensics is facing and
highlighting the requirements for secure mobile Cloud transactions.

The presentation of events that occurred during the conduction of a crime
is undoubtedly a useful element. Its effectiveness is complemented by the
reconstruction of evidence and other elements, which is elaborated below.

2.3.3.2 Reconstruction of Specific Elements

IM applications contain significant data for the outcome of an investigation.
Reconstructing the information from various points of an Android device
memory image has been the primary concern mentioned by Anglano [Anglano,
2014]. Apart from the reassembly task, the author attempts to correlate various
different events and timestamps related to the forensic artifacts.

Law enforcement agents, judges and prosecutors need to have detailed answers
to the questions rising when a series of incidents takes place. Kaart and Laraghy
[Kaart and Laraghy, 2014] highlight this importance and perform a case study
on detecting the intentional clock skewing in an Android device, by accessing
the mmssms.db database.

The paper by Saltaformaggio et al. [Saltaformaggio et al., 2015] introduces
GUITAR, an application-independent method capable of reconstructing Android
application Graphical User Interfaces (GUIs) from their memory heaps, which
reside in a forensically acquired memory image. The method uses a “depth-
first topology recovery algorithm” in order to sort the fragmented application
hierarchy. Afterwards, the application graphical pieces are united in the correct
order with the aid of a “bipartite graph weighted assignment solver and a
drawing content-based fitness function” [Saltaformaggio et al., 2015]. In the
end, a windowing system binary is used so as to create the final form of the
redrawn application.

The next subsection discusses the recent advances in evidence parsing, one of
the most fundamental concepts in the field of MF.

2.3.4 Evidence Parsing

The research works discussed in this subsection have two different objects
of study. The first category contains data from social media and messaging
applications, while the second category concerns various data and focuses on
personal and hybrid information from various sources.
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2.3.4.1 Messaging Data Parsing

Investigation for Skype artifacts in the NAND and RAM memory of mobile
devices running the Android OS was performed by Al-Saleh and Forihat [Al-
Saleh and Forihat, 2013]. Live process dumping and logical acquisition methods
were used and experiments took place with different Skype usage scenarios.
Evidence parsing for Skype usage traces was performed manually and by utilities
such as the grep tool and the Eclipse Memory Analyzer. The research pointed
out that elements concerning Skype activities remain in both memory types and
can be traced even after deletion.

In a mobile device forensic investigation, all acquired evidence should be
taken into consideration, handled and combined so as to reach a satisfactory
conclusion. Data deriving from Social Networks (SNs) and their equivalent
messaging applications are evidence sources that can facilitate an investigation
process. Dezfouli et al. [Dezfouli et al., 2015] investigated SN applications
in Android (4.2) and iOS (7.1.2) devices for elements of forensic interest.
Examination of Facebook, Twitter, LinkedIn and Google+ applications revealed
that the majority of the user-related data (such as usernames, profile pictures,
posts and messages) other than passwords could be retrieved.

The next section describes the research conducted in a more diverse data type
environment.

2.3.4.2 Personal/Hybrid Data Parsing

Data deriving from anonymizing services had also been a concern in the MF
community. A case of forensic investigation of Orweb browser data in rooted
and non-rooted Android devices was examined by Al Barghouthy et al. [Al
Barghouthy et al., 2013]. Acquisition was performed by the general purpose
Titanium Backup application instead of a dedicated forensic tool. The use of
the latter might have different effects on the amount of collected information.
Moreover, the use of a backup tool created an unnecessary impediment, since
the backup utility only functions properly in rooted devices. As a result, an
image of the non-rooted device could not be retrieved, a fact that could have
been avoided if a forensic tool was used. On the other end, data acquisition from
a rooted device was successful: databases were parsed with the SQLite Database
Browser and artifacts such as URLs, Facebook IDs and chat conversations were
identified.

The FROST recovery image mentioned in Subsection 2.3.1 was further improved
by Hilgers et al. [Hilgers et al., 2014], by including the Volatility Framework
[Volatile Systems, 2011] and the LiME plug-in [504ensics Labs, 2013]. With this
addition, the authors were still able to access the device RAM in case the user
data partition was wiped due to manufacturer security measures. They also
managed to successfully parse the RAM for call logs, information typed by the
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user in a short timeframe before the cold-boot attack, Personal Identification
Numbers (PINs), passwords and photo metadata.

Ntantogian et al. [Ntantogian et al., 2014] conducted experiments concerning the
discovery of user credentials in different usage scenarios of various applications
and use cases. The examination took place after live memory dumping of the
target devices. The authors verified that as long as a mobile device remains
powered-on, it is highly likely that some user credentials will remain in its
memory. Findings from the specific research also unveiled the incapability of
task-killers and password protection applications to safeguard sensitive personal
information (or to wipe it, if necessary). The research also revealed many
application vulnerabilities and simultaneously opened new future perspectives
in data protection and prevention of anti-forensic techniques.

Immanuel et al. [Immanuel et al., 2015] highlighted the importance of searching
various sources of information within a smartphone acquired memory image
that may contain data of forensic interest. They created an Android caches
taxonomy out of eleven installed applications of different kinds and modeled the
classification process. Each cache type (WebView, SQLite, Volley, Serialized
Java Objects, Network File and Custom) has different parsing methods. The
authors developed a unified cache viewer application so as to facilitate the
investigation procedure.

Evidence parsing is a structural element for automating various procedures
related to forensic data analysis. However, a fully or partially automated solution
requires more than simple parsing. The next subsection covers the advances in
topics related to the automation of investigation processes.

2.3.5 Automated Classification and Analysis of User and Application
Behaviour

The current subsection addresses research in the field of automation for digital
investigation. It is organized in two categories: research works dedicated
specifically to the discipline of MF, and general-purpose forensic methodologies,
which can be applied to the MF field with some modifications.

2.3.5.1 Methodologies Related to MF

In an effort to optimize the investigation process during triage, Walls et al. [Walls
et al., 2011] proposed DEC0DE, a library of Probabilistic Finite State Machines
(PFSMs) based on successfully imaged devices. The tool operation includes two
steps. First, the byte stream of an acquired physical image is inserted into a
filtering mechanism of hashes belonging to previously examined devices in order
to exclude a load of insignificant information. Second, the remaining data enter
a multi-step inference component, based on a set of PFSMs so as to conclude
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the automatic recognition of critical data sequences, such as phone numbers,
names, messages, photographs, videos, documents and audio clips.

Marturana et al. [Marturana et al., 2011] introduced a triaging method based on
self-knowledge algorithms to predict user behavior and to classify mobile devices
between suspects of content abusing or not. Their experiment consisted of tests
with 21 different Android devices, applying three different Machine Learning
techniques (Bayesian Networks, Decision Trees, Locally Weighted Learning) and
validating the method that was initially used.

During their operation, mobile applications produce volatile and non-volatile
traces that can be associated to the users’ activities. Michalas and Murray
[Michalas and Murray, 2016] introduced MemTri, a memory forensics tool based
on the principles of the Volatility Framework [Volatile Systems, 2011]. MemTri
uses regular expressions in order to identify illegal activity patterns from a
seized memory image. Afterwards, a Bayesian Network is used to calculate
the device owner’s probability of criminal involvement. The specific tool is still
being tested and the results of the experimental procedure were disseminated in
late 2017.

2.3.5.2 General Purpose Forensic Methodologies

This section discusses some research papers with general purpose forensic
methodologies which, nonetheless, may be relevant to MF.

Text mining and content clustering from documents were addressed by Nassif
and Hruschka [Nassif and Hruschka, 2011]. The authors applied six clustering
algorithms on text documents acquired from actual CF investigations and
discovered verbal patterns that could aid future examinations conducted by
experts.

Upon adoption of the Cloud as a forensic platform, Lee and Hong [Lee and
Hong, 2011] propose a service named Forensic Cloud, which applies a logic-
centered approach to the way a digital investigation is conducted – replacing
the prevailing technology-centered approaches. The authors applied a model of
index search on forensically acquired data, supported by a distributed system on
cloud servers. Even though the indexing process is rather slow, the final result
compensates the time spent. Moreover, their framework uses data abstraction
techniques in order to provide a more realistic data representation to the
investigator on the client side. Instead of bulk evidence listing, relevant data are
grouped, thus facilitating decision-making and association procedures.

Platzer et al. [Platzer et al., 2014] introduced Skin-Sheriff, a method which
uses Machine Learning techniques for detecting nude skin among acquired data.
Despite not being dedicated to MF, this is applicable to every sub-discipline of
DF where photographs are retrieved as evidence.

After the conclusion of the background analysis, the claim that automation
in MF is a field in need of more contributions, is verified. Meanwhile, many
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authors are concerned with the lack of automated methods during the analysis
phase of the investigative process model. Data analysis and classification are still
performed mostly manually, leading to the need for further research towards the
automation of such procedures. The investigation parts that are in need of
automation have to be clarified and formalized. There are five main categories
for which automation and application of hard and soft computing methods would
be feasible:

• Data and artifacts classification

• User behavioural patterns and their adaptation

• Application and system related process categorization for potential
discovery of malicious activity

• Correlation between incidents after data analysis from different sources

• Creation of logical rules and criminal profiles deriving from data patterns
and respective profiling and Behavioural Evidence Analysis (BEA) so as
to pinpoint towards specific crime types

The next section of this chapter is exclusively related to the concept of
Mobile Forensic Data Analysis (MFDA) for digital criminal profiling and
investigation.

2.4 Mobile Forensic Data Analysis and Digital Criminal
Profiling

Mobile Forensic Data Analysis (MFDA) is a broad term that corresponds to
the examination of evidence deriving from mobile devices with the final aim
of reaching appropriate conclusions for different scenarios. MFDA can be
performed for a considerable number of reasons, varying from plain observation
to identification of malicious activity. In this thesis, we use a combination of
MFDA with various criminal profiling principles, so as to encounter relationships
and actions that constitute a digital criminal profile and later identify them
in a dataset with the aid of Fuzzy Systems, Neural Networks (NNs) and
the Adaptive Neuro-Fuzzy Inference System (ANFIS). Before elaborating the
present Methodology, it is essential to introduce the digital criminal profiling
principles that lead to its formulation.

2.4.1 Digital Criminal Profiling Principles

Criminal profiling is one of the techniques law enforcement organizations
worldwide employ in order to solve traditional crimes. More precisely, it is “a
technique whereby the probable characteristics of a criminal offender or offenders
are predicted based on the behaviors exhibited in the commission of a crime”
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[Kocsis, 2006]. However, with the rise of digital crime, new challenges and
requirements for the law enforcement organizations appear as well. The following
paragraphs present the digital criminal profiling methodologies that served as a
springboard for the methodology used in this thesis.

Behavioural Evidence Analysis

BEA is the process of “deducing the psychobehavioral portrait of the offender
based on professional training and previous investigations” [Ferrari et al.,
2008] by a group of experts. It comprises four discrete steps, namely
“equivocal forensic analysis, victimology, crime scene characteristics, and
offender characteristics” [Mutawa et al., 2016]. Equivocal forensic analysis
comprises the careful expert review of the case under investigation and requires
the most objective reasoning in order to prevent the deduction of mistaken
conclusions. Victimology analyses the victim’s characteristics in order to infer
what led to their choice. The characteristics of the crime scene concern every
piece of digital evidence that can facilitate extracting conclusions for the case and
finally, the offenders’ characteristics are all the psychosocial, behavioural and
physical characteristics that lead to the construction of a profile and match the
criminals to crimes. Despite the objectivity requirement, this approach tended
to be highly subjective, so a more consistent solution was needed.

Inductive Analysis

Inductive analysis has a more solid scientific base. The methodology aims to
use previously committed crimes and data associated to them, so as to create
a profile, the patterns of which are a match to yet to be discovered potential
offenders. In inductive analysis, reasoning flows from the general to the specific.
Data encountered in the crime scene are combined with the already existing
theory for the production of hypotheses. The latter ones are then analyzed
according to past investigations and expert knowledge in the field. Assumptions
lead to the validation or alteration of the hypotheses and the scheme continues
evolving according to the newer additions that influence the decisions taken.
Fig. 2.4 presents the inductive analysis procedure.

Deductive Analysis

Contrary to inductive anlysis, the logical flow in deductive analysis moves from
the specific to the general. Evidence deriving from the case under investigation
is analyzed and a profile specifically dedicated to the actor of the case is
constructed [Turvey, 2011]. Deductive analysis is not particularly efficient
as a culprit identification methodology, but it serves more as an eliminating
mechanism for groups of potential suspects.
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Figure 2.4: Inductive analysis, adapted from Godwin [Godwin, 2012]

CRISP-DM

CRoss-Industry Standard Process-Data Mining (CRISP-DM) includes the
following steps: defining the problem and structuring a solution strategy;
accumulating information from seized media and forming the datasets;
performing feature selection; “matching of data in order to identify deficiencies,
discrepancies or similarities” [Mena, 2003]; applying the knowledge retrieved
from the data so as to construct a cybercriminal profile and evaluating the
validity of the new profile.

The Intelligence Cycle

In 2011, the United Nations Office on Drugs and Crime (UNODC) published
a guide on generic criminal intelligence analysis, applicable to a variety of
cases. One of the basic models introduced in the publication was “The
Intelligence Cycle”, a circular scheme consisting of seven phases. The first
phase, Tasking, is related to the crime under examination, the motivations
that led to its conduction and the offenders‘ motivation. The Collection
phase is a “formally defined approach to describing the information needed and
the means of acquiring it” [UNODC, 2011], whereas the Evaluation phase is
responsible for reassuring if the aforementioned information is reliable and in an
appropriate state so as to constitute sufficient evidence. Collation is responsible
for organizing and converting the information to an editable data format. The
data are thoroughly examined and important features are highlighted during
the Analysis phase. The Inference Development phase contains all the different
types of assumptions that can be produced after the Analysis phase. They
may be hypothetical, they may concern current or future outcomes, but they
can also be concrete and conclusive. Lastly, the Dissemination phase concerns
the publication of the investigators‘ findings in electronic or other type of
sources.
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Rogers’ Behavioural Evidence Analysis Model

M. K. Rogers [Rogers, 2016] introduced a BEA model accustomed to digital
investigations. Despite the fact that the model has a linear representation,
swapping between phases is applicable. It consists of six phases, namely:
Classification, Context Analysis, Collection, Statistical Analysis, Visualization
and Decision/Opinion. Classification corresponds to the criminal case selection
and the definition of its attributes. Context Analysis provides a better
understanding of the system under investigation, potential evidence locations
and raises the investigator‘s awareness for the existence of anti–forensic
techniques. Similarly to aforementioned models, the Collection phase is related
to “evidence collection and storage in a format that can be analyzed for patterns,
linkages, and timeline analyses” [Rogers, 2016]. Statistical Analysis comprises
the methods used in order to detect potentially abnormal occurrences among
the evidence. One of the most common techniques used is frequency analysis,
but that does not prohibit the investigators from using a broader spectrum
of methodologies. Visualization is responsible for presenting the key findings
in a timeline manner, whereas Decision/Opinion produces a final report that
contains the conclusions of the evidence analysis.

The Digital Forensic Intelligence Analysis Cycle (DFIAC)

Quick and Choo [Quick and Choo, 2017] created a model inspired by the
UNODC [UNODC, 2011] guidelines. DFIAC is rather similar to The Intelligence
Cycle. It contains an additional Prepare phase, that is responsible for the
contextualization of the crime case, a Collect, Preserve and Collate phase, which
is a variant of the UNODC‘s equivalent Collection with additional pre-processing
and its last phase, Identification of Future Tasks, an extended version of the
Dissemination process, including concerns that are yet to be resolved.

It is noticeable that the more concurrent models do not follow a static
representation, but have a rather dynamic character. They support internal
loops whenever the investigation reveals a new or recurring unresolved concept.
Thus, they are rendered more flexible and they provide a higher degree of liberty.
The next subsection presents some significant related work in the field of digital
criminal profiling, inspired by the aforementioned models.

2.4.2 Related Work

There is a considerable amount of research papers that employ intelligent
computing in order to use digital criminal profiling techniques. The great
majority of them makes use of demographic data and qualitative basis in order to
proceed to inference. Additionally, their main goal is the creation or the validity
acknowledgement of an already existing knowledge base. However, contrary to
the current work, they are limited to the profile definition and validation and
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only a few proceed to suspicious behaviour identification. This section presents
the related work contributions in the area and the methodology they adopt.

Rogers [Rogers, 2003] made an introduction to the association between criminal
profiling and Computer Forensics (CF) by matching cybercriminal Modus
Operandi (MO) to activities involving digital assets in a theoretical level.
However, the proposal lacked an implementation methodology and results.

One of the first more evolved attempts towards intelligent criminal profiling
was the NNPCP project [Strano, 2004], which comprised the creation of a NN
capable of performing criminal profiling among different crime types. Its data
pool of inputs were official criminal records from the Italian police force. Despite
the relatively impressive description for the time the paper was written, the
description of the NN architecture and functionalities is rather abstract and no
further details on produced results are provided.

Ferrari et al. used Bayesian and Feed-Forward NNs so as to “model criminal
behaviour from post-mortem databases of single-victim homicides” [Ferrari
et al., 2008] and compared the results of both solutions. The systems used
as inputs different psychosocial factors concerning the offenders’ character, as
well as the way each crime was conducted and classified different criminal actions
to different outputs.

Kwan et al. [Kwan et al., 2008] implemented a Hybrid Intrusion Detection
System (HIDS) based on honeypots, with additional cybercriminal-cybercrime
association and profiling capabilities. The identification mechanism was
based on four metrics; host and network breadth, host and service depth,
vulnerabilities and tools. Host breadth is defined by the observation of the
connections that derive from the offender and target various ports of the victim
system, whereas network breadth is related to the analysis of connections that
also come from the offender, but target various network hosts instead. Host
depth measures the amount of the offender’s infiltration to the host, while service
depth refers exclusively to a particular service every time. Vulnerabilities are the
weak points of every system and they can be used so as to identify an attacker’s
MO and level of sophistication. Finally, tools are different malicious entities
that an offender may employ. All the aforementioned metrics combined define
a cybercriminal profile. Once an attack is identified, its metrics are compared
to already existing cybercriminal profiles by a similarity index and if no former
correlation exists, the attack is categorized as a new profile. Despite the fact that
the description of both the system and the experimental setup was complete, no
concrete results were presented.

Enache et al. [Enache et al., 2010] designed a multilayer NN that aimed to
create a demographical and activity-based cybercriminal profile according to
an input set of crime types and their associated activities. The authors claim
that some successful associations were made; however, complete results were not
presented.

The paper by Islam and Verma [Islam and Verma, 2012] used Fuzzy Logic
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concepts in order to perform a risk assessment on messages exchanged by
various entities in a 3G network, depending on their identity and motives. The
system inputs comprised the variable combination of the SMS senders’ degree of
acquaintance to the device owner and the type of device they have been using.
The system output was the overall risk per input combination, measured in a
scale from zero to five. Zero represented the lowest degree of risk per SMS,
whereas five represented the highest. However, the authors did not present any
experiments on actual or simulated data.

Lai et al. introduced “a conceptual framework for profiling internet pirates”
[Lai et al., 2013], according to their behavioural traits on technology use.
The authors constructed the internet pirate‘ s profile based on three pillars:
“the facts, the behavioural characteristics and the personality particulars” [Lai
et al., 2013]. The facts category referred to an amount of various observations
inferred by the existing data, such as timestamps and exchanged file types.
The behavioural characteristics group incorporated traits concerning a pirate‘s
Internet usage, whereas the personality particulars category comprised more
abstract notions, such as personality characteristics, reasons that led to piracy
and influences that formed the potential pirate’s profile. Afterwards, they
created and distributed a questionnaire consisting of content related to the three
aforementioned categories. They used the Multidimensional Scaling (MDS)
[Borg and Groenen, 2005] methodology, so as to form clusters with correlated
characteristics and create the respective piracy profiles.

A methodology schema for cyberstalkers’ profiling was suggested by Silde
and Angelopulou [Silde and Angelopoulou, 2014]. The authors constructed a
culprit’s digital profile digital profile, according to various MO characteristics
encounter in sociology, law and psychology sources. Moreover, they simulated
a cyberstalking scenario between two Virtual Machines (VMs) acting as the
victim’s and the offender’s Windows 7 Personal Computers (PCs). After
performing forensic acquisition in both computers, they enumerated the artefacts
that could pinpoint to illegal activity, such as e-mail messages, chat segments,
etc. and their respective location in the systems. One of the downsides of
the methodology was that the artefacts’ identification procedure was conducted
manually. However, it provided some useful insights for future implementation
of mechanisms able to parse files in the aforementioned locations and conduct
the essential evidence analysis.

Andro-AutoPsy is a recently introduced antimalware tool with an innovating
attribute. Apart from the information about the malware technical
characteristics, the tool uses “similarity matching in malware creator-centric
information” [Jang et al., 2015], so as to construct the respective criminal
profiles. Information concerning the creator‘s behaviour is usually encountered
in “.smali opcodes, metadata in the AndroidManifest.xml file, as well as in serial
numbers of various certificates” [Jang et al., 2015]. Andro-AutoPsy is actually a
hybrid detection engine, consisting of a rule-based, behavioural detection module
and a classification engine that performs comparisons among already existing
malware activities and decides upon the suspicion of a sample.
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Al Mutawa et al. [Mutawa et al., 2016] suggested a cyberstalking profiling
methodology, based on BEA conducted upon forensically acquired computer
data. The authors performed statistical analysis on the datasets and were
able to identify different groups of characteristics that built certain cyberstalker
profiles.

Quick and Choo [Quick and Choo, 2017] introduced an extensive process model
for intelligent MF, named Digital Forensics Analysis Cycle (DFIAC). The model
was then applied to a procedure of retrieving information from various mobile
devices confiscated by the South Australian Police for the time period between
2000 and 2015. The authors were able to successfully establish association links
among different criminal entities.

Table 2.2: Digital criminal profiling papers’ characteristics

Author(s) Approach Platform Data Type Profiling Susp. Res.

[Rogers, 2003] Theoretical Computer N/A Behav. Manual No No
[Strano, 2004] Implement. Computer Demographic Behav. Auto No No
[Ferrari et al., 2008] Implement. N/A Demographic Behav. Auto No Yes
[Kwan et al., 2008] Implement. Computer Simulation Machine Auto Yes No
[Enache et al., 2010] Implement. Computer Demographic Behav. Auto No No
[Islam and Verma, 2012] Theoretical Mobile Undefined Behav. Auto No No
[Lai et al., 2013] Implement. Computer Demographic Behav. Auto Yes Yes
[Silde and Angelopoulou, 2014] Theoretical Computer Simulation Behav. Manual No No
[Jang et al., 2015] Implement. Mobile Real Hybrid Auto Yes Yes
[Mutawa et al., 2016] Theoretical Computer Demographic Behav. Manual No No
[Quick and Choo, 2017] Implement. Mobile Real Behav. Auto No Yes

It is rather noticeable that the criminal profiling research has matured overtime.
Recent works are more sophisticated and concrete. Moreover, they contain a
higher amount of experiments and results, thus providing stronger proof. While
older research papers in the field used novel methodologies for classification and
profiling of data stored on physical means, their successors show a trend towards
interaction of electronically generated user data. Table 2.2 summarizes the
research conducted in the field of digital criminal profiling. A rather paradoxical
observation is that even though most of the research papers presented an
implementation, only few of them provided actual results. A reason for this
controversy is the fact that despite the existence of data sources, most of the
authors only use them in a qualitative manner. Since no unsupervised techniques
such as clustering are used, it is difficult to provide a quantitative body of
results.

The research papers concerning purely mobile criminal profiling started to
appear only after 2012, with the work by Islam and Verma [Islam and Verma,
2012] constituting a theoretical attempt. Data provided by law enforcement
organizations were merely used for demographic purposes -i.e. approximating
the offenders’ age group, gender and motivation- and manual profiling, fact
that reveals the weakness of interconnection between the forensic evidence and
the behavioural fingerprint. Most of the implementations or the theoretical
approaches promise automatic profiling, but such a claim is rather weak when it
cannot be argumented by the respective results. Only few of the research papers
perform simultaneous suspicious entity identification and they are mainly related
to machine-generated activity, such as threat and attack propagation detection.
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Table 2.3: Methodology Compilation

Current Methodology Related Literature

Induction Phase

Use Case Selection Problem Definition [Mena, 2003], Classification [Rogers, 2016],
Tasking [UNODC, 2011], [Quick and Choo, 2017]

MO Definition Theory [Godwin, 2012], Context Analysis [Rogers, 2016], Prepare [Quick and Choo, 2017]
Dataset Formation Collection [Mena, 2003], [UNODC, 2011], [Rogers, 2016],

Crime Scene Data [Godwin, 2012], Collect, Preserve, Collate [Quick and Choo, 2017]
Variable Definition Feature Selection [Mena, 2003], Evaluation [UNODC, 2011], [Quick and Choo, 2017]
Pre–processing Information Matching [Mena, 2003], Collation [UNODC, 2011],

Collect, Preserve, Collate [Quick and Choo, 2017]
Ground Truth Building Digital Profile [Mena, 2003], Inference
Generation Development [UNODC, 2011], Hypotheses [Godwin, 2012]

Investigation Phase

Application Building Digital Profile [Mena, 2003],
Empirical Analysis [Godwin, 2012], Statistical Analysis [Rogers, 2016]

Evaluation Evaluate New Profile Validity [Mena, 2003], Visualization[Rogers, 2016]
Testing on Evaluate New Profile Validity [Mena, 2003]
Unknown Data
Selection Decision/Opinion [Rogers, 2016], Future Tasks Identified[Quick and Choo, 2017]

In terms of applied digital criminal profiling methodologies, the authors do
not hesitate to combine more than one methodologies and use interdisciplinary
notions, so as to achieve better results.

Table 2.3 shows the association between the work presented in the current thesis
and the aforementioned research papers. The left column comprises the steps
of the current methodology, whereas its right equivalent is a part of the already
existing models. While the similarity level between the components of the
Induction phase and the related literature is considerably high, the Identification
phase equivalents cover broader and different scopes, but have similar high level
representation.

The following section presents the digital criminal profiling and suspicious
pattern identification methodology of this thesis. Inspired by the methodology
compound trend, we present a concatenation of the most important digital
criminal profiling phases and fill the research gap by performing suspicious
pattern identification for evidence related to offenders’ behaviour.

2.5 Proposed Methodology

As already mentioned in the previous sections, research papers on digital
criminal profiling and behavioural analysis, in addition to their multi–
disciplinary nature, they also tend to adopt and adapt elements from many
different methodologies in order to improve the overall quality levels of
their outcomes. The methodology presented in this section combines the
digital criminal profiling techniques with newly introduced suspicious pattern
identification capabilities. It comprises two main phases, Induction and
Identification. The Induction phase is related to the construction of a culpable
profile and the respective data management. The Identification phase consists
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Table 2.4: Methodology Phases

Induction Identification

Use Case Definition Application
Dataset Selection Evaluation
Pre-processing Testing on Unknown Data
Ground Truth Generation Selection

of the Fuzzy Systems, NN (plain and pattern recognition perceptrons) and
ANFIS training and validation, their evaluation and their behaviour testing on
previously unknown data. Table 2.4 depicts the content of the two phases.

The methodology presented in this thesis is a concatenation of previously
adopted criminal profiling models, enhanced by a suspicious pattern
identification routine. The next paragraphs explain each phase in detail.

Use Case Definition

Before any profiling or identification activity takes place, the object of
investigation has to be properly defined. The Use case definition phase comprises
the selection of a criminal activity, the study of the digital fingerprint the
offender leaves behind according to insight from previous cases, and the defi-
nition of a MO which can be later modeled into relationships between various
data and metadata attributes.

Dataset Selection

Different use cases have different dataset requirements. Usually, criminal
profiling methodologies mainly target user generated data and metadata (See
Subsection 2.2.1.2). However, application and OS generated data can also have
significant value. A requirement for the conduction of a successful identification
process is the sufficient quantity of patterns in the candidate datasets, which
can be met with samples of prolonged mobile usage or simulation.

Pre-processing

Even though datasets can be rich in content, not every piece of information
suits the investigation needs. Pre-processing is responsible for defining the most
crucial attributes and giving them the appropriate format for the application of
quantitative methodologies.

Ground Truth Generation

Suspicious pattern identification techniques require an evaluation phase, where
the calculated results have to be compared to an initial target value, known
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as the ground truth in order to assess the methods’ efficiency. In the Ground
truth generation phase, each pattern receives a designated value of suspiciousness
between five discrete values, according to its resemblance to the criminal MO
characteristics.

Application

Once the Pre-processing and Ground truth generation phases are complete, the
suspicious pattern identification techniques can be applied. For the current
thesis, this phase includes the configuration of Fuzzy Systems and the training of
two NN perceptrons and ANFIS. Once the results are generated, the evaluation
phase is ready to begin.

Evaluation

During this phase, the generated results from the Application phase are
compared to the ground truth and performance metrics such as accuracy,
precision and recall are calculated for each suspiciousness category. The next
phase, namely Testing on unknown data is applicable only for the NNs and
ANFIS, since Fuzzy Systems have no memory or learning capabilities.

Testing on Unknown Data

The particular phase is optional and can only be applied to techniques that
support learning features, such as NNs. The techniques are applied anew to
a set of previously unknown data to the system, that can either be parts of
the initial dataset or acquired directly from test devices. Once it is complete,
its evaluation results are compared to the evaluation results of the application
phase and previous assumptions are either verified or rejected.

Selection

The Selection phase can either occur directly after the evaluation phase, or after
the Testing on unknown data phase. In the first case, the results generated
during the application phase are observed and the most appropriate alternative
is selected. In the second case, the performance of the system is cross-evaluated
and if the performance declining is considerable, the experiments are repeated.
The phase ends with the selection of the best performing setup.

The proposed methodology will be applied, evaluated and tested in the next two
chapters, with the use of Fuzzy Systems, NNs and ANFIS. The chapter related
to Fuzzy Systems will examine the case of intentionally illegal usage conducted
by PPDR agents, whereas the chapter related to NNs and ANFIS will examine
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traditional criminal investigation cases, specifically the digital fingerprints of
cyberbullies and low-level drug dealers.

2.6 Summary of the Chapter

The current chapter served a double scope. Firstly, it provided a general
background of the MF field, its basic principles and research directions,
while identifying promising research directions that among others included
methodologies related to MFDA and more specifically to digital criminal
profiling. Secondly, a State-of-the-Art (SoA) analysis of the existing digital
criminal profiling methodologies was performed. The study of the field led to the
discovery of research gaps for a concrete methodology incorporating both digital
criminal profiling and suspicious activity identification. The chapter concluded
with the presentation of the proposed methodology, which will be elaborated in
the rest of the thesis.

The outcome of this chapter comprises the following publication:

• Konstantia Barmpatsalou, Tiago Cruz, Edmundo Monteiro, and Paulo
Simoes. 2018. Current and Future Trends in Mobile Device Forensics: A
Survey. ACM Computing Surveys 51, 3, 1–31. Impact factor: 6.74
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Chapter 3
Fuzzy Systems for Suspicious
Pattern Identification

My crystal ball is fuzzy.

(Lotfi A. Zadeh)

Evidence associated to human behaviour show high levels of uncertainty [Gegov,
2010] and thus methods such as Fuzzy Systems, that offer the variety of
multiple outcomes are considered a suitable approach. This chapter constitutes a
preliminary proof of concept, which aims to show that Fuzzy Logic can efficiently
classify SMS patterns from mobile devices into different groups of suspiciousness.
The related background and methodology steps are elaborated in detail within
the following sections.

3.1 Fuzzy Systems

Fuzzy Systems can “model human reasoning from imprecise and incomplete
information by giving definitions to vague terms and allowing construction of a
rule base” [Zadeh, 1965]. L. A. Zadeh introduced the concept of Fuzzy Logic by
claiming that that bivariate logic is not sufficient for solving complex problems.
Moreover, he asserted that “as the complexity of a system increases, the ability
to make precise and significant statements about its behaviour diminishes until
a threshold is reached, beyond which precision and significance become almost
mutually exclusive characteristics” [Zadeh, 1973]. Contrary to Traditional Logic
approaches, where a statement can be declared as either true (0) or false
(1), Fuzzy Logic can theoretically support infinite intermediate conditions, i.e.
approximations.

Some of the examples of Fuzzy states include but are not limited to variables such
as temperature (high-medium-low), height (tall-average-short), performance
(excellent-very good-fair-fail) and others, that can simultaneously receive
quantitative (numerical) and qualitative (linguistic) characteristics. Moreover,
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“Fuzzy Logic can be seen as a reasoning formalism of humans where all truths
are partial or approximate and any falseness is represented by partial truth”
[Siddique and Adeli, 2013]. The following subsections dive deeper into the
concept of Fuzzy Logic, Systems and their principles.

3.1.1 Fuzzy Membership Functions

A membership function µF (x) of a fuzzy set F in a universe of discourse X

matches every x to any real number within the [0,1] interval. F is formally
depicted as a pair of the variable x and its representation via µF (x).

F = {x, µF (x)|x ∈ X} (3.1)

In Traditional Logic, the membership function receives strictly two values, either
µF (x) = 0 or µF (x) = 1 The most widespread membership function types are
the Triangular, Trapezoidal, Bell, Gauss and Gauss2. However, other custom
functions can be used without particular limitations.

Triangular Membership Function

The Triangular membership function is the three-point set {α, β, γ} with α <

β < γ. Its definition is provided in Equation 3.2 and its diagram in Figure
3.1.

µF (x) =



0 , x < α
x − α

β − α
, α ≤ x ≤ β

γ − x

γ − β
, β ≤ x ≤ γ

0 , γ ≤ x

(3.2)

The aforementioned points are the coordinates that form the triangular shape
of the function. More precisely, β is the peak point of the triangle, whereas α

and γ create its base.

Trapezoidal Membership Function

The parameter set of points {α, β, γ, δ} with α < β < γ < δ creates the trapeze
of the homonym membership function. The top side incorporates the points β
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Figure 3.1: Triangular membership function

Figure 3.2: Trapezoidal membership function

and γ, while the base consists of the points α and δ. Equation 3.3 and Figure
3.2 show its mathematical and spatial definition.

µF (x) =



0 , x < α
x − α

β − α
, α ≤ x ≤ β

1 , β ≤ x ≤ γ
δ − x

δ − γ
, γ ≤ x ≤ δ

0 , δ ≤ x

(3.3)
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Figure 3.3: Bell membership function

Bell Membership Function

The format of the Bell membership function is presented in Equation 3.4. The
parameter γ defines the center of the Bell curve, α defines its width whereas β

defines its slope and is usually a number greater than zero. A representation of
the Bell membership function is provided in Figure 3.3.

µF (x) = 1

1 +
∣∣∣∣x − γ

a

∣∣∣∣2β (3.4)

Gauss Membership Function

Equation 3.5 shows the formula of the Gauss membership function. The
parameter γ controls the center of the curve, whereas σ2 is the respective
variance, a means of defining the curve width. Figure 3.4 depicts the Gaussian
curve.

µF (x) = e

−(x − γ)2

2σ2 (3.5)

— 46 —



CHAPTER 3. FUZZY SYSTEMS FOR SUSPICIOUS PATTERN
IDENTIFICATION

Figure 3.4: Gauss membership function

Gauss2 Membership Function

The Gauss2 membership function is a composite Gaussian function, consisting of
two parameter sets, {σ1, γ1} and {σ2, γ2}. The function represented by Equation
3.6 is responsible for defining the shape of the leftmost curve, whereas the
respective function in Equation 3.7 controls the shape of the rightmost one.

µF 1(x) =

e

−(x − γ1)2

2σ2
1 , x ≤ γ1

1 , otherwise

(3.6)

µF 2(x) =


1 , x ≤ γ2

e

−(x − γ2)2

2σ2
2 , otherwise

(3.7)

Figure 3.5 presents two Gauss2 membership functions with the same σ1 and σ2
parameters, but with different γ combinations. For the upper curve the γ1 value
is less than γ2, with {γ1, γ2} = {4, 8}, while the parameter values are inverse for
the bottom curve, with {γ1, γ2} = {8, 4}. Generally, when γ1 is less than γ2, the
maximum value of the function spikes up to 1. Otherwise, it is always less than
the aforementioned value.

Other membership function types, such as the Π-shaped,the Z-shaped and the
Sigmoidal are also widely used. However, their elaboration is omitted because
they were not used in the current thesis.
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Figure 3.5: Gauss2 membership function

Figure 3.6: Fuzzy System architecture, adapted from Kumar and Verma [Kumar
and Verma, 2015] and Abraham [Abraham, 2005]
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xxi

1

µA3(x)

µA2(x)
µA1(x)

µA(x)

Figure 3.7: Fuzzification for different membership function types, adapted from
Siddique and Adeli [Siddique and Adeli, 2013]

3.1.2 The Fuzzy Inference Mechanism

Figure 3.6 depicts the generic form of a Fuzzy System architecture. The system
consists of the following parts: the Rule Base, which contains antecedents and
consequents and is responsible for forming the IF-THEN rules that define the
scope and functionality of the system; the Fuzzification procedure, that converts
the crisp inputs into fuzzy with the aid of the membership functions; the
Inference that “is responsible for the decision-making procedure” [Abraham,
2005]; and the Defuzzification, which converts the fuzzy outputs to their crisp
equivalents.

Fuzzification

As mentioned in the beginning of this subsection, the fuzzification procedure uses
the membership functions presented in Subsection 3.1.1, so as to map a certain
crisp input xi to its fuzzy format, µAn(xi). A fuzzification example is provided in
Figure 3.7, where µA1(xi), µA2(xi) and µA3(xi) are fuzzified inputs corresponding
to a trapezoidal, a triangular and a Gauss membership function.

Defuzzification

Defuzzification is the inverse of the fuzzification process, where the fuzzy output,
calculated by the Inference module, is transformed anew into its crisp format.
The next paragraphs describe the various defuzzification methods encountered
in literature. There are no standardizations or specific guidelines towards the
selection of an appropriate defuzzification method and the whole procedure is
rather problem-centric.
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x

µ(x)
p1 p2

h1 h2

x∗

Figure 3.8: Max-membership defuzzification, adapted from Siddique and Adeli
[Siddique and Adeli, 2013]

Max-Membership

Alternatively known as the height method, max-membership constructs the
weighted sum of the peak values pn of all the fuzzy sets existing in the universe
of discourse. Its calculation is provided in Equation 3.8, where hn is the fuzzy
sets height.

x∗ =
∑m

n=1 pnhn∑m
n=1 hn

(3.8)

Centre of Gravity

The centre of gravity method is also known as centre of area or centroid
method and it is the most common defuzzification approach in the relative
literature [Siddique and Adeli, 2013]. The method calculates the centroid of
the membership function µ(x) curve. For a continuous universe, the calculation
manner is provided in Equation 3.9.

x∗ =
∫

xµ(x)dx∫
µ(x)dx

(3.9)

For a discrete universe, the Equation above is transformed in the following
manner:
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x

µ(x)

x∗

Figure 3.9: Centre of gravity defuzzification, adapted from Siddique and Adeli
[Siddique and Adeli, 2013]

x∗ =
∑m

n=1 µ(x)xn∑m
n=1 µ(x)

(3.10)

Weighted Average

The weighted average method is mostly appropriate for symmetric membership
functions and its expression is presented in Equation 3.11.

x∗ =
∑

µ(x)x‘∑
µ(x)

(3.11)

Mean-Max Membership

This method is often reported as the middle of maxima and is calculated as “the
mean of all the local maxima” [Siddique and Adeli, 2013].

x∗ =
∑m

n=1 µmax(xn)
m

(3.12)

There are many different forms of defuzzification and certain Fuzzy System types
use specific variations. For example, the Takagi-Sugeno Fuzzy Systems use the
weighted average method, whereas Mamdani Fuzzy Systems use the centre of
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xa b

µ(x)

x∗

Figure 3.10: Weighted average defuzzification, adapted from Siddique and Adeli
[Siddique and Adeli, 2013]

xa b

µ(x)

x∗

Figure 3.11: Mean-max membership defuzzification, adapted from Siddique and
Adeli [Siddique and Adeli, 2013]
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gravity technique. More details about each system type can be encountered in
the following section.

3.1.3 Fuzzy System Types

This subsection presents the two more widespread Fuzzy System types, Mamdani
and Takagi Sugeno, which will be used in the current thesis. While the former
will be used as standalone mechanisms, the latter constitute a structural part
of the Adaptive Neuro-Fuzzy Inference System (ANFIS).

3.1.3.1 Mamdani Fuzzy Systems

A Mamdani prototype was initially introduced as “an attempt to control a
steam engine and boiler using a set of linguistic control rules obtained from an
experienced human operator” [Mamdani, 1974]. The simplest form comprises
two inputs (x1, x2) of M and N value range, and one output y of O value
range. Consequently, the input x1 consists of k=1...P membership functions,
whereas the input x2 and the output y consist of l=1...Q and i=1...S membership
functions. The relationship that forms a rule Rn is given by Equation 3.13.

Rn: IF x1 == Mk AND x2 == Nl THEN y == Oi (3.13)

“The rules connect the input variables with the output variables and are based
on the fuzzy state description that is obtained by the definition of the linguistic
variables” [Zimmermann, 1996]. The upper bound for the number of rules is
provided by the relationship Rn ⊂ P × Q. The most common method of the
rules’ firing strength calculation for Mamdani Fuzzy Systems is max/min. More
precisely, the minimum firing strength is selected as the preferred output in a
fuzzy set format. Another, less common approach is max/product, where the
output is defined by the algebraic product of the input membership functions
upon modification.

Mamdani Fuzzy systems follow intuitive variable configuration and output
inference, fact that renders them more comprehensive for users with no previous
experience in the field, because they do not have to be aware of the dynamic
equation that describes the system [Kumar and Verma, 2015]. As a result, they
are mostly suitable for decision support problems [Blej and Azizi, 2016]. The
membership function tweaking procedure is rather linear and straightforward.
Moreover, due to their ease-of-use, they are suitable for both Multi-Input Multi-
Output (MIMO) and Multi-Input Single-Output (MISO) models [Lilly, 2010].
Lastly, the output of Mamdani systems is also a fuzzy set, with a respective
membership function.
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3.1.3.2 Takagi-Sugeno Fuzzy Systems

Takagi-Sugeno systems were introduced by Takagi, Sugeno and Kang as a means
of “generating fuzzy rules from a given input/output data set” [Takagi and
Sugeno, 1993]. The simplest representation form consists of two inputs (x1, x2)
and one output y. The input format is the same as in Mamdani Fuzzy Systems,
where the input x1 comprises k=1...P membership functions, whereas the input
x2 comprises l=1...Q membership functions. The output has an entirely different
format and is a crisp and usually polynomial function y = f(x1, x2). There are
no restrictions to the potential output function if the relationships entirely cover
the span of the model to be examined. The relationship that forms a rule Rn is
provided by Equation 3.14.

Rn: IF x1 == Mk AND x2 == Nl THEN y == f(x1, x2) (3.14)

Given the Equation 3.14, the output function format for a random rule will be
the following: yk = mkx1 + nkx2.

Contrary to the Mamdani equivalent, the Takagi-Sugeno output is a continuous
linear function, thus offering higher levels of “accuracy and overall computational
efficiency and making its model an appropriate candidate for functional analysis”
[Kumar and Verma, 2015]. In Takagi-Sugeno models, the defuzzification
procedure is performed by the weighted average method and the computational
duration is significantly lower [Siddique and Adeli, 2013]. Takagi-Sugeno systems
are also more flexible and “they are more easily integrated into adaptive
techniques, such as Neuro-Fuzzy Systems” [Lilly, 2010]. Lastly, Takagi-Sugeno
systems are more suitable for solving “dynamic and non-linear” problems [Blej
and Azizi, 2016].

Evidence associated to human behaviour shows high levels of uncertainty [Gegov,
2010] and thus intelligent computation methods are considered a suitable
approach. This chapter constitutes a preliminary proof of concept, which aims
to show that Fuzzy Logic can efficiently classify SMS patterns from mobile
devices into different groups of suspiciousness. The steps of the respective
methodology include the acquisition of expert knowledge, rule inference, def-
inition of datasets and variables, membership function selection and evaluation.
They are elaborated in detail within the following sections.

3.2 Use Case Definition

Conducting a research correlated to actual criminal investigation would be
impossible without prior expert knowledge available. The knowledge required
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for the construction of the fuzzy rule base is a hybrid compilation of incidents the
use cases provided in the SALUS FP7 Project deliverables [SALUS, 2014] and of
on-field investigation practices provided by an officer of the Greek Police Escort
Teams Department (GPETD) [Barmpatsalou et al., 2018b]. After collecting
all the essential insights, the rules of each Fuzzy System were structured and
presented. The use case of PPDR officers infiltrating a protesters’ group will be
examined by the investigation of SMS from three different devices.

Another challenge that was faced concerned the lack or unavailability of actual
evidence retrieved from devices involved in criminal activities. As a result,
delinquent actions had to be simulated and injected in the datasets as standalone
patterns. The a-priori expert knowledge served as a solid background for the
rule generation, which is analyzed in the following subsection.

3.2.1 Rule Inference

With the use of the expert knowledge mentioned in the previous section,
respective rules concerning the data categories were created for the use case. The
rules were formed from a combination of the available data and the investigation
directives for the use case. If the use case changes, the rules are as well altered.
For the scenario of the infiltration by PPDR officers, the following setup was
created.

Sent SMS texts retrieved from a device of a potential infiltrator may have the
following attributes:

• If officers are infiltrators, they will use their devices to communicate with
their accomplices only in cases of extreme necessity. As a result, the rate
with which a sent message will appear is going to be very low.

• Most of the accomplices may use one-time payphones, which are equipped
with Subscriber Identity Modules (SIMs) from the same country the
incidents occur. Recipients with local numbers are considered more
suspicious.

• According to the GPETD experts, messages exchanged during rioting or
right before similar incidents are very short in length.

• As a result, the sent SMS pattern with the combination (very low
appearance frequency–very short length-local country code source) is
considered the most suspicious.

Nonetheless, the rule inference procedure needs a functioning dataset that is able
to fulfill the research requirements in size and content. The following subsection
covers in detail the challenges in the quest for a suitable data source.
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3.3 Dataset Selection

It is a generally accepted truth that “data are barely shared among the Digital
Forensics community” [Grajeda et al., 2017]. Law enforcement agencies have
adopted a strict policy about sharing on-field acquired data with the scientific
community, so the majority of the publicly available datasets are results
of human or computer generated simulations. Digital Forensic datasets are
scattered and derive from a variety of sources. Disk images and network dumps
are significantly higher in quantity than mobile device images or parts of the
device storage. Most of the existing datasets related to mobile devices, such
as Computer Forensic Reference Data Sets (CFReDS) [National Institute of
Standards and Technology (NIST), 2016] and Digital Corpora [Digital Corpora,
2017] correspond either to devices with older mobile Operating System (OS)
versions or the available data are not enough in quantity so as to adhere to
scenarios that demand repetition of experiments over time. Moreover, datasets
relevant to actual criminal investigations are not made publicly available to the
community and are under strict authorities’ jurisdiction.

The CDA [Wagner et al., 2014] dataset is a collection of Android data and
metadata items from various users worldwide, who voluntarily provide them
by installing an application-agent. Access to the full dataset is provided after
signing a mutual agreement, where one of the ends is either an academic entity
or an organization. The data are sorted by the device they were acquired
from and each part contains information collected over a period of six months.
Additionally, they are stored in a Comma Separated Value (.csv) file and are
formatted according to a scheme containing a unique numeric identifier, a
timestamp, a label of the data type and a string field of the corresponding
attributes. A more detailed representation of a data tuple can be found
below:

tuple = {id., timestamp, type, [attr.1, attr.2, .., attr.n]} (3.15)

The dataset used comprises data from three separate devices. The data tuple
in Equation 3.15 is split in such a way that each column represents a unique
attribute. Not every piece of information is useful for the research, so data are
filtered and redundancies are removed. The data type used is SMS and it has
the following three respective attributes, which are described analytically in the
next section.

SMS(name, length, location) (3.16)
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Table 3.1: Fuzzy variable ranges

Input Variable Fuzzy Approximation Numerical Range

Length VERY SHORT, SHORT, MEDIUM, 1-600 characters
LONG, VERY LONG

Appearance Frequency VERY LOW, LOW, MEDIUM, 1-1100 appearances
HIGH, VERY HIGH

Country Code FOREIGN, UNDEFINED, LOCAL 0, 1 and 2

3.4 Pre-Processing

Not all of the data inputs of Equation 3.15 in their raw format constitute Fuzzy-
Logic ready material. Therefore, some quantification pre-processing has to take
place for the data to constitute valid fuzzy inputs.

Name:

In the CDA Dataset, the Name attribute corresponds to series of anonymized
entities that are represented by an alphanumeric string. The feature by itself
does not have a significant research value for the current thesis, but if the number
of encounters per name are enumerated, the Appearance Frequency variable is
created. Appearance Frequency signifies the number a certain name appeared as
an SMS interaction with the device owner over a specific period of time.

Length:

Length is the attribute that remained intact, without any need for additional
preprocessing. It is a continuous positive integer that corresponds to the total
number of characters a SMS text consists of.

Location:

The Location attribute is represented by linguistic terms in the CDA dataset and
refers to whether the phone number of an entity that interacted with the device
owner is foreign, local and unknown or undefined, due to parsing errors. The
generated Country Code variable has three discrete values that are presented in
Table 3.1.

Afterwards, during the system design phase, the criteria for “readability and
interpretability of the variables and the rules that are deriving from them” [Lima
and Camargo, 2014], as they were presented in the papers by Guillaume and
Charnomordic [Guillaume and Charnomordic, 2012] and Gacto et al. [Gacto
et al., 2011] were reviewed and verified.
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• While aiming to maintain a high degree of semantic cohesion, every fuzzy
set should represent a well-defined and non-vague concept. The fuzzy sets
and the value range of each variable participating in the current research
have specific meanings; fact that can be proven by consulting Table 3.1.

• Each fuzzy variable should neither exceed 9, nor deceed 5 range fields,
which is defined as the threshold for human perception capabilities [Lima
and Camargo, 2014]. In the current experiment, the maximum number of
different value ranges is 5, number that falls between the aforementioned
limit.

• There is no point within the system’s universe of discourse that does not
belong to at least one fuzzy set.

• A fuzzy set should be normal; in a fuzzy system F , there should always
exist at least one χ, the membership degree (height) of which should be
equal to 1.

• It is obligatory that “all fuzzy sets should overlap in a certain degree” [Lima
and Camargo, 2014].

Once all the requirements for the variables are met and before the system
evaluation begins, the ground truth is generated according to the existing expert
knowledge.

3.5 Ground Truth Generation

In an earlier paper [Barmpatsalou et al., 2018b] concerning the work included in
the current chapter, we introduced an alternative representation of the output
suspiciousness. Instead of using the classic binary format (0: not suspicious -
1: suspicious), the output is a fuzzy variable, receiving values within the [0,1]
interval. Values closer to zero are considered innocent, whereas values closer to
one are regarded as more suspicious. Despite the fact that the output can receive
any number within the aforementioned interval, five representative values (0.15,
0.25, 0.5, 0.75, 1) were indicated as thresholds for each suspiciousness category.
Table 3.2 demonstrates the assignment and the respective linguistic values.
Moreover, each fuzzy rule deriving from every variable combination was given a
suspicious linguistic value. Table 3.3 presents the generated suspiciousness per
rule.

Lastly, manual assignment of ground truth labels was employed per pattern in
the dataset, according to the principles generated by Tables 3.1, 3.2 and 3.3.
Once the process was completed, the evaluation phase was ready to begin.
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Table 3.2: Fuzzy suspiciousness values, adapted from Barmpatsalou et al.
[Barmpatsalou et al., 2018b]

Value Suspiciousness Level
0.15 Very Low
0.25 Low
0.5 Medium
0.75 High

1 Very High

3.6 Evaluation

The Fuzzy System evaluation and simultaneous membership function selection
was a rather complicated procedure. In order to select the appropriate
setup for each dataset assigned to the respective Fuzzy System, an evaluation
methodology based on the comparison of the Fuzzy Systems’ output and the
ground truth values was employed. With the ground truth considered the target
and the fuzzy output being the feature variable, the fuzzy output values of
five fuzzy systems configured with different membership functions (Triangular,
Trapezoidal, Bell, Gauss and Gauss2) were classified into five different groups
of suspiciousness, according to the Ground truth generation section.

Five machine learning algorithms, namely k-Nearest Neighbour (kNN), Support
Vector Machine (SVM), Random Forest Classification (RFC), Naive Bayes (NB)
and AdaBoost (Ada) are employed in order to classify the fuzzy datasets’
outputs in comparison to the ground truth targets and produce results about
the performance of each membership function. The sampling technique applied
is 10-fold cross-validation.

The aforementioned procedure produces a 5x5 confusion matrix and
classification metrics (Accuracy, Precision, Recall, Area Under Curve (AUC) and
False Positive Rate (FPR)) are calculated for each category and then presented
as an average score. More precisely, Accuracy refers to the ratio of the correctly
classified patterns per category and the total number of patterns.

Accuracy =
⟨

TPc + TNc

TPc + FPc + FNc + TNc

⟩
,

c ∈ SG (3.17)

Precision is the amount of True Positive (TP) patterns over the sum of TP and
False Positive (FP) values.

Precision =
⟨

TPc

TPc + FPc

⟩
, c ∈ SG (3.18)
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Table 3.3: Ground truth generation per rule

Appearance Frequency Length Country Code Suspiciousness Level

Very Low Very Short Foreign Medium
Very Low Very Short Undefined High
Very Low Very Short Local Very High

Low Very Short Foreign Medium
Low Very Short Undefined High
Low Very Short Local Very High

Medium Very Short Foreign Low
Medium Very Short Undefined Medium
Medium Very Short Local Medium

High Very Short Foreign Very Low
High Very Short Undefined Low
High Very Short Local Low

Very High Very Short Foreign Very Low
Very High Very Short Undefined Very Low
Very High Very Short Local Low
Very Low Short Foreign Medium
Very Low Short Undefined Medium
Very Low Short Local Very High

Low Short Foreign Low
Low Short Undefined Medium
Low Short Local High

Medium Short Foreign Low
Medium Short Undefined Low
Medium Short Local Medium

High Short Foreign Very Low
High Short Undefined Low
High Short Local Medium

Very High Short Foreign Very Low
Very High Short Undefined Very Low
Very High Short Local Low
Very Low Medium Foreign Medium
Very Low Medium Undefined High
Very Low Medium Local Very High

Low Medium Foreign Low
Low Medium Undefined Medium
Low Medium Local High

Medium Medium Foreign Low
Medium Medium Undefined Low
Medium Medium Local Medium

High Medium Foreign Very Low
High Medium Undefined Low
High Medium Local Low

Very High Medium Foreign Very Low
Very High Medium Undefined Very Low
Very High Medium Local Very Low
Very Low Long Foreign Low
Very Low Long Undefined Low
Very Low Long Local Medium

Low Long Foreign Very Low
Low Long Undefined Low
Low Long Local Low

Medium Long Foreign Very Low
Medium Long Undefined Low
Medium Long Local Low

High Long Foreign Very Low
High Long Undefined Very Low
High Long Local Low

Very High Long Foreign Very Low
Very High Long Undefined Very Low
Very High Long Local Very Low
Very Low Very Long Foreign Low
Very Low Very Long Undefined Medium
Very Low Very Long Local Medium

Low Very Long Foreign Low
Low Very Long Undefined Low
Low Very Long Local Medium

Medium Very Long Foreign Very Low
Medium Very Long Undefined Low
Medium Very Long Local Low

High Very Long Foreign Very Low
High Very Long Undefined Very Low
High Very Long Local Low

Very High Very Long Foreign Very Low
Very High Very Long Undefined Very Low
Very High Very Long Local Very Low
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Recall is the number that results from the division of the TPs with the total of
TP and False Negative (FN) patterns.

Recall =
⟨

TPc

TPc + FNc

⟩
, c ∈ SG (3.19)

FPR is the ratio of the True Negative (TN) patterns over the total number of
negatives.

FPR =
⟨

TNc

FPc + TNc

⟩
, c ∈ SG (3.20)

Equations 3.17, 3.18, 3.19 and 3.20 describe how each metric is calculated for
every class c that belongs to the SG set of suspiciousness values. Finally, the
AUC metric refers to “the higher positive-over-negative value ranking capability
of a classifier” [Barmpatsalou et al., 2018b].

3.7 Summary of the Chapter

This chapter presented the basic concepts of the Fuzzy Systems theory, focusing
on the concepts used in the current research. Afterwards, the methodology
presented in Chapter 2 was applied and each of its steps was further analyzed.
Initially, the PPDR agents’ riot infiltration use case was presented and their
MO concerning the SMS fingerprint was defined. It was then represented in the
format of fuzzy rules, so as to be inserted into the fuzzy rule base. The essential
data were extracted from the CDA dataset and modified appropriately during
the Pre-processing phase. Finally, each MO pattern combination was given a
ground truth value and the Evaluation phase was described. The results of the
respective Evaluation procedure will be presented in Chapter 5.

The outcomes of this chapter include the following publications:

• Barmpatsalou, K., Cruz, T., Monteiro, E. and Simoes, P. (2017). From
fuzziness to criminal investigation: An inference system for Mobile
Forensics, in Kambourakis, G., Shabtai, A., Kolias, K. and Damopoulos,
D., Intrusion Detection and Prevention for Mobile Ecosystems, pages 117-
132, CRC Press.

• Barmpatsalou, K., Cruz, T., Monteiro, E. and Simoes, P. (2018). Fuzzy
system-based suspicious pattern detection in mobile forensic evidence, in
Matousek, P. and Schmiedecker, M., editors, Digital Forensics and Cyber
Crime, 9th International Conference ICDF2C 2017, pages 106-114, Cham,
Springer International Publishing.
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Chapter 4
Neural Networks and ANFIS for
Suspicious Pattern Identification

‘Tis to create, and in
creating live.

(Lord Byron)

The previous chapter described the adaptation of the proposed methodology for
a scenario that employed the use of Fuzzy Systems. However, their use has some
shortcomings, that the current chapter is going to attempt to address. Due to
their nature, Fuzzy Systems are incapable of maintaining a memory of previous
states and, consequently, learning from the data they have already used. This
creates a rather big impediment when new datasets are introduced.

Fuzzy Logic is a satisfactory solution for a relatively small number of inputs
and is able to handle a small to average number of membership functions per
input variable. However, when the number of inputs increases, the number of
generated Fuzzy rules expands considerably, thus “increasing the computational
complexity of the system and decreasing its overall comprehensibility and
interpretability” [Jin, 2012].

On the contrary, NNs and ANFIS are faster and more scalable than the Fuzzy
Systems. While Fuzzy Systems are mainly tools for knowledge representation,
NNs and NFSs retain knowledge and use it for learning purposes of future input
features. In NNs there is no need for manual rule inference, parameters are
automatically learnt through the provided data and the rule substitutes that are
eventually produced by the data norms are “encoded in the network structure”
[Siddique and Adeli, 2013]. Despite the rule incorporation, rule extraction is
impossible in a NN. “While NNs are good at recognizing patterns, they are not
good at explaining how they reach their decisions” [Fullér, 1995]. Moreover,
such infrastructures are prone to data over- and under-fitting, thing that can be
avoided by an analytic training process and a careful definition of components,
such as hidden neurons and layers.

NN operation is almost straightforward, with basic prerequisites, such as
ensuring the format of the input and output data matrices. Configuring ANFIS
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can be a slightly more complicated procedure, because a Takagi-Sugeno system
has to be predefined for the learning procedure to begin. This procedure is
relatively easily completed in cases of small input spaces, but when the number
of fuzzy inputs increases, generation has to occur either from the data grid or
via fuzzy clustering.

The current chapter is responsible for adapting the methodology presented in
Chapter 2 to the requirements of NNs and ANFIS for the cyberbullying and low
level drug dealing use cases, after a background presentation for each system
type.

4.1 Neural Networks

NNs were created while aiming to approximate the structure and functionality
of actual biological neurons and “mimic the human ability to adapt to changing
circumstances and the current environment” [Sivanandam and Deepa, 2006].
In NNs, the human body neuron equivalents, named nodes, act as information
processing units. Every node has a theoretically infinite number of inputs and
one output. The connections between inputs, nodes and outputs are known by
the term “weights” and they represent their strength. During the initialization
phase, each input xn is multiplied by its attributed weight Wn and all the
products are summed together, as shown in the following Equation:

neuralnet = x1 · W1 + x2 · W2 + ... + xn · Wn =
n∑

i=1
(xi · Wi) (4.1)

Some NN nodes require the presence of an extra parameter value, which allows
for function shifting and its role is similar to the parameter b in the linear
equation y = ax + b. The specific parameter is called bias and the respective
Equation 4.1 is transformed in the following manner:

neuralnet =
n∑

i=1
(xi · Wi) + b (4.2)

A schematic representation of a neural node can be found in Figure 4.1. A
measure so as to prevent output calculation from falling within non-acceptable
ranges is the addition of an activation function fact. The activation function is
specifically responsible for strengthening rather weak or small input signals. As
a result, the NN output is expressed as y = fact(neuralnet).

The most common activation functions encountered in different NN types are
the following:
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Figure 4.1: Neural node sample, adapted from Siddique and Adeli [Siddique and
Adeli, 2013]

Linear

A linear activation function is the product of the output and a constant
parameter, i.e.: y = fact(neuralnet) = C · neuralnet.

Step

The step activation function receives only two output values, ±1, according to
the respective output sign.

y = fact(neuralnet) =
{

+1 , neuralnet > 0
−1 , neuralnet < 0 (4.3)

Ramp

The ramp activation function is a hybrid linear and step function. Firstly,
a lower and an upper output value bounds are set. The function takes the
linear format within the upper and lower bounds, whereas it behaves as a
step function everywhere else. More precisely, it receives a maximum value
for outputs greater than the upper bound and a minimum value for outputs less
than the lower bound. The aforementioned relationship is best described in the
following Equation.

y = fact(neuralnet) =


max , neuralnet > u.b.
C · neuralnet , l.b. < neuralnet < u.b.
min , neuralnet < l.b.

(4.4)
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Tansigmoid

A tansigmoid function has the shape of the letter S, “is relatively easy to
differentiate and can be formed by a variety of mathematical expressions”
[Siddique and Adeli, 2013]. One of the most frequently encountered formats
is the following:

y = fact(neuralnet) = 1 − eneuralnet

1 + eneuralnet
(4.5)

4.1.1 Neural Networks Architecture

A node functionality and its respective activation function are structural
elements of various NN architectures. Before proceeding to their analysis, it
is wise to present the main components that are omnipresent in every NN
architecture. A NN consists of three main parts: the input, the hidden
(intermediate or invisible) and the output layers.

Input layer

The input layer interacts with the environment related to the phenomena under
investigation. It consists of a theoretically infinite number of nodes, each one of
which represents a value, feature or signal related to the problem to be solved.
Input values often undergo a normalization procedure, so as to comply with the
upper and lower bounds defined by the activation functions.

Hidden layers

The hidden layers are regulating the main computational activity of the NN and
create the patterns which constitute the problem solution.

Output layer

This layer consists of the system outputs, which utilize the processing load of
the previous layers in order to calculate the final results.

The most common NN architecture types encountered throughout the respective
literature are single-layer feedforward NNs, multi-layer feedforward NNs,
recurrent NNs and mesh NNs.
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Figure 4.2: Single-layer feedforward NN, adapted from da Silva et al. [da Silva
et al., 2017]

Figure 4.3: Multi-layer feedforward NN, adapted from da Silva et al. [da Silva
et al., 2017]

4.1.1.1 Single-layer feedforward Neural Networks

A single-layer feedforward NN comprises an input and an output layer, with the
latter also being responsible for any computational process occurring. In the
particular NN type, “forward neuron connectivity is the only available option”
[Siddique and Adeli, 2013]. Figure 4.2 depicts a NN with i input and j output
nodes. As it can easily be inferred by the figure, in such an architecture the
number of neurons will always be equal to the number of outputs. “These
networks are usually employed in pattern classification and linear filtering
problems” [da Silva et al., 2017]. Adaptive Linear Neuron (ADALINE) [Widrow
and Hoff, 1960] is a sample case of a single-layer feedforward NN.

4.1.1.2 Multi-layer Feedforward Neural Networks

Similarly to their aforementioned simplified alternative, multi-layer feedforward
NNs also use unidirectional neuron connectivity. However, multi-layer
feedforward networks consist of one-to-many hidden layers with different number
of nodes. They are used for more complex and non-linear problems, such
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Figure 4.4: Recurrent NN, adapted from da Silva et al. [da Silva et al., 2017]

Figure 4.5: Kohonen (mesh) NN, adapted from da Silva et al. [da Silva et al.,
2017]

as feature classification and pattern recognition and they are rather scalable.
Moreover, the number of hidden layers and nodes depends on the problem
complexity and the size of the data sample for examination. Figure 4.3 presents
such a NN architecture.

4.1.1.3 Recurrent Neural Networks

Recurrent NNs adopt a different operational model than the previous two
categories. The network operates in a controlled but continuous loop manner,
where the outputs serve as the new round of inputs for the system, thus
enhancing its learning potential. This fact makes the particular architecture
ideal for “time series prediction, system identification and optimization, process
control, and so forth” [da Silva et al., 2017]. Figure 4.4 represents a Recurrent
NN.

4.1.1.4 Mesh Neural Networks

Mesh NNs also have their own unique approach. More precisely, “the spatial
localization of the neurons is directly related to the process of adjusting their
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synaptic weights and thresholds” [da Silva et al., 2017]. A noteworthy example
of a Mesh NN architecture is the Kohonen NN [Kohonen, 1982]. Due to the
fact that it uses unsupervised learning, a competitive algorithm is applied so
as to define the neuron with the best performance, in other words the smaller
Euclidean distance between the weight and the node. Figure 4.5 depicts an
instance of a Kohonen NN, where all input signals are accessible by every NN
node.

4.1.2 Neural Network training

The role of a NN is summarized into apprehending the behavioural fingerprint
of a system by establishing relations between its inputs and outputs and by
optimizing potential solutions by generalization. In the same line of reasoning,
this is achieved by tweaking the weights, biases and node thresholds in a step-
alike manner that leads to production of better results by correction of the
previous values and continuous learning. The aforementioned procedure is also
known as NN training.

The first step of the training process is the dataset division into two subsets.
The training subset occupies 60-90% of the initial dataset, whereas the testing
dataset occupies 10-40%. Some other approaches adopt the use of an additional
validation dataset, which usually occurs by splitting the test data in half. A
validation dataset is “an unbiased estimate of the results produced during the
training procedure” [Brownlee, 2017]. Extra precautions need to be taken during
the creation of all the aforementioned datasets, so as to ensure their statistical
integrity [da Silva et al., 2017]. In the current thesis, we use an approach
consisting of 70% of the initial data sample for training, 15% for testing and
the remaining 15% for validation purposes, whenever necessary.

NN training comprises three main categories of learning rules; supervised,
reinforcement and unsupervised learning.

4.1.2.1 Supervised Learning

In supervised learning, the NN is introduced to a model of correct behaviour,
represented by the following set of tuples, where xi are the inputs and ti are the
desired (target) output values. Equation 4.6 presents such a set of tuples. “As
the inputs are applied to the network, the network outputs are compared to the
targets” [Demuth et al., 2014]. The learning rule is responsible for performing
the appropriate parameter adjustments so as to produce outputs that achieve
the highest possible level of approximation to the target values. In other words,
supervised learning constitutes an error reduction methodology. Some classic
examples of supervised learning rules are the “Widrow–Hoff rule, Gradient
descent, the Delta rule, the Backpropagation rule, the Cohen–Grossberg learning
rule, and the Adaptive conjugate gradient model of Adeli and Hung” [Siddique
and Adeli, 2013].
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{x1, t1}, {x2, t2}, ..., {xi, ti} (4.6)

4.1.2.2 Reinforcement Learning

Reinforcement learning is a rule that operates by the supervised learning
principles. The difference between the two methods is the fact that instead
of using targets, the reinforcement learning rules compute a score as a means
of comparison. “The network learning process is usually done by trial and
error because the only available response for a given input is whether it was
satisfactory or unsatisfactory in comparison to the calculated score” [da Silva
et al., 2017]. If the outcome is positive, the NN rewards (reinforces) the specific
approach. Reinforcement learning applications are not as widespread as their
supervised learning equivalents. However, they target control systems with
noteworthy results in agent behaviour replication [Saikia et al., 2011], [Mnih
et al., 2015].

4.1.2.3 Unsupervised Learning

In unsupervised learning methods, the NN parameters are only affected by
the respective inputs. No target outputs exist. The NN “needs to organize
itself when there are existing particularities between the elements that compose
the entire sample set, identifying subsets presenting similarities” [da Silva
et al., 2017]. As a result, unsupervised learning is more efficiently applied to
circumstances where the potential outcome is not known a-priori and most of
the conclusions are extracted after observation, taking into consideration that
the majority of the existing perceptrons “mainly perform clustering operations”
[Demuth et al., 2014]. The next section presents the backpropagation algorithm,
that is used for the experimental part of this thesis.

4.1.3 Backpropagation Algorithms

Backpropagation is the most frequently used method for gradient calculation
of NN weights. “The computed gradient is employed so as to determine the
weights that minimize the error” [Garcia and Zhou, 2010], as it is defined by the
Delta rule in Equation 4.7, where ti are the targets and yi the actual outputs of
the NN.

E = 1
2

(ti − yi)2 = 1
2

e2 (4.7)

Let the NN in Figure 4.3 be a sample multi-layer perceptron. The first phase
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of the backpropagation algorithm, i.e. forward propagation, begins when the
xi input values are introduced into the perceptron. Propagation begins with
randomly initiated parameters (biases and weights) until the last layer, where
the actual outputs yl are calculated. Afterwards, they are compared to the
targets and the error is computed. The second phase, i.e. backward propagation
follows the opposite layer-by-layer direction and the NN parameters are adjusted
accordingly.

The following subsections describe in detail the different variations of
backpropagation algorithms.

4.1.3.1 Levenberg-Marquardt Backpropagation

The Levenberg-Marquardt backpropagation algorithm is a hybrid of the steepest
descent method and the Gauss-Newton algorithm. Its main goal is the optimized
minimization of the global error function E(x, w) depicted in Equation 4.8, where
x and w are the input and weight vectors, m and n are the total numbers of
patterns p and outputs y and e2

p,y is the squared value of the error.

E(x, w) = 1
2

m∑
p=1

n∑
y=1

e2
p,y = 1

2

m∑
p=1

n∑
y=1

(tp,y − op,y)2 (4.8)

The steepest descent method utilizes the first-order derivative of the global error
function, so as to determine the minima within the error space, a characteristic
that renders it “optimal for areas with complex curvature” [Wilamowski and Yu,
2010]. When the aforementioned curvature allows for quadratic approximation,
the respective error minimization algorithm selected is Gauss-Newton. In the
Gauss-Newton algorithm, the weights vector is represented as a set of linearly
independent gradient functions that are all set to zero for the estimation of
the global error minima. Contrary to the steepest descent method, the second-
order derivatives of the global error function, known as Hessian matrix H are
calculated. In order to avoid complications caused by the calculation complexity
of H driven by the second-order derivatives, the Jacobian matrix J is introduced
instead, since, for the specific circumstances, H can be approximated as shown
in Equation 4.9 [Bui et al., 2012].

H ≈ JT J (4.9)

The combination coefficient µ, a positive value multiplied by the identity matrix
I is added to Equation 4.9, so as to ensure that H remains always invertible. As
a result, the Levenberg-Marquardt algorithm uses the following Equation.

— 70 —



CHAPTER 4. NEURAL NETWORKS AND ANFIS FOR SUSPICIOUS
PATTERN IDENTIFICATION

H ≈ JT J + µI (4.10)

The weights of a perceptron trained with the Levenberg-Marquardt algorithm
are calculated by the following Equation, where wℓ and eℓ are the weight and
error value of the ℓ-th node.

wℓ+1 = wℓ − (JT
ℓ Jℓ + µℓI)−1Jℓeℓ (4.11)

When µ approaches values close to zero, the Gauss–Newton algorithm is used;
when µ obtains a large value, the training algorithm swaps to the steepest
descent method.

4.1.3.2 Bayesian Regularization Backpropagation

The Bayesian backpropagation algorithm is claimed to enhance the protection
mechanism against perceptrons‘ overfitting and overtraining issues [Ticknor,
2013]. It “combines the conventional sum of the least squares error function
with an additional term called regularization” [Bui et al., 2012]. This term,
when added to the sum squared error equation, prevents the function from
getting trapped into local minima [Burden and Winkler, 2009] and the following
cost function S(w) is created, where α and β are the hyperparameters, Ep is
the sum of squared errors and Ew “is the penalty term, which penalizes large
values of the weights” [Bui et al., 2012], with n being the maximum number of
weights.

S(w) = βEp + αEw = β
n∑

p=1
(tp − op)2 + α

n∑
q=1

w2
i (4.12)

The perceptron weights are regarded as random variables within the context of
a Bayesian network [Foresee and Hagan, 1997]. As a result, the Bayes‘ theorem
can be applied for the presentation of their density function.

P (w|X, α, β, N) = P (X|w, β, N)P (w|α, N)
P (X|α, β, N)

(4.13)

In Equation 4.13, X is the input data vector, w refers to the perceptron weights‘
vector, while N is the perceptron model utilized.
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4.1.3.3 BFGS Quasi-Newton Backpropagation

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm belongs to the quasi-
Newton family of algorithms, which, contrary to Newton algorithms do not
demand the calculation of a Hessian matrix due to potential lack of positive
definite results or plain inefficiency [Xia et al., 2010]. They instead use a
“symmetric positive definite approximation matrix An based on a rank-two
correlation method” [Ghosh and Chakraborty, 2012]. The inexact search scheme
utilized “improves the computational scheme and allows the algorithm to have a
global convergence property” [Fletcher, 1987]. The first step of the configuration
includes the definition of a search direction Sn, where gn is the gradient vector
for each iteration.

sn = −A−1
n gn (4.14)

Once the direction is encountered, the search continues alongside so as to
discover a step length σn that satisfies the following criterion.

f(wn + σnsn) = min
σ≥0

(f(wn + σnsn)) (4.15)

Under the current circumstances, the weight vector wn for the following step is
formed as shown in Equation 4.16.

wn+1 = wn + σnsn (4.16)

Afterwards, An gets updated to An+1 with the rank-two correction provided
below, where βn = wn+1 − wn and γn = gn+1 − gn.

An+1 = An + γnγT
n

γT
n βn

− AnβnAnβT
n

βT
n Anβn

(4.17)

The iteration comes to an end when a provided value λ is marginally greater or
equal to the gradient of the objective function.

√
gT

n gn ≤ λ (4.18)
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4.1.3.4 One-Step Secant Backpropagation

The One-Step Secant (OSS) backpropagation algorithm was created as a means
of “bridging the gap between the quasi-Newton and the Conjugate Gradient
families of algorithms” [Kuruvilla and Gunavathi, 2014]. In order to avoid
storage issues, it omits storing the entire Hessian matrix and another approach
is adopted instead. OSS is actually a memory-less BFGS variation. Instead of
requiring an O(N2)20 amount of calculations order, its storage needs are reduced
to O(N). This is achieved “by obtaining the positive definite secant update for
the inverse matrix A−1

n+1” [Battiti, 1992] from Equation 4.18.

A−1
n+1 = A−1

n + (βn − A−1
n γn)βT

n + βn(βn − A−1
n γT

n )
γn

T βn

−< βn − A−1
n , γn > βT

n βn

(γT
n βn)2

(4.19)

Once each iteration ends, it is automatically inferred that the Hessian matrix of
the previous step was the identity matrix I [Singh et al., 2006]. If Equation 4.19
is multiplied by the error gradient gn = ∇(E(x, w)), the next search direction
(sw) will be:

sw = −gn + Cnβn + Dnγn = −gn

+[(−1 − γT
n γn

βT
n γn

)βT
n gn

βT
n γn

+ γT
n gn

βT
n γn

]βn + (βT
n gn

βT
n γn

)γn (4.20)

4.1.3.5 Resilient Backpropagation

The main scope of Resilient backpropagation is to diminish the “adverse effects
magnitudes of partial derivatives” [Chabaa et al., 2010] may cause to the weight
update process, and consequently to the minimization of the error function.
Thus, only the gradient signs are taken into consideration. The process is
depicted in Equation 4.21.

wn − wn−1 = −sign(gn−1)∆n (4.21)

The same initial ∆0 is assigned to every update value. If the product of the
current and the previous step is a positive number, i.e. if the vectors have
the same direction, then a value η+, greater than 1, is multiplied by the update
value. Otherwise, the product of η−, a negative value less than 1, and the update
value is calculated. The aforementioned relationship is depicted in Equation
4.22.
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∆n =
{

η+∆n − 1 , gn−1gn > 0
η−∆n − 1 , gn−1gn < 0 (4.22)

4.1.3.6 Conjugate Gradient Backpropagation Family

Contrary to the steepest descent backpropagation algorithms, which use the
negative gradient direction so as to achieve a faster reduction of the error
function rates, the conjugate gradient family of backpropagation algorithms
shares another common principle. Their basic aim is the production of more
rapid convergence rates, so search is performed in the span of conjugate
directions [Shaharin et al., 2014] and “the step size is adjusted at each iteration”
[Kuruvilla and Gunavathi, 2014].

The very first iteration in all the members of the Conjugate Gradient family
of algorithms sets the search direction towards the negative gradient. Equation
4.23 shows the particular relationship, with s0 indicating the search gradient
and g0 the initial gradient.

s0 = −g0 (4.23)

Afterwards, linear search is employed so as to encounter the most appropriate
moving distance. Equation 4.24 shows the status of the next weight wn+1, which
is the sum of the actual weight wn and the product of the learning rate λ and
the current search gradient sn.

wn+1 = wn + λnsn (4.24)

A prerequisite for the selection of the next search direction is to remain
conjugate to the previous ones. The search direction is then defined anew
as the combination of “the new steepest descent direction with the previous
search direction” [Kuruvilla and Gunavathi, 2014]. More details are provided in
Equation 4.25, where sn−1 is the last search direction and βn is a constant value
that may vary from algorithm to algorithm.

sn = −gn + βnsn−1 (4.25)
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Fletcher-Reeves Updates

For the Fletcher-Reeves updates variation, the search direction is defined by
Equation 4.25 and the aforementioned constant βn is defined as ratio of the
squared norm of the current gradient and the squared norm of the last one.

βn = ||gn||2

||gn−1||2
(4.26)

Polak-Ribière Updates

Similarly to the Fletcher Reeves variation, the Polak-Ribière updates use
Equation 4.25 for the calculation of the search direction. However, βn is defined
as the division of “the inner product of the previous change in the gradient with
the current gradient divided by the square of the previous gradient” [Kuruvilla
and Gunavathi, 2014].

βn = ∆gT
n gn

gT
n−1gn−1

(4.27)

This method, as a four-vector algorithm, requires a bit higher amount of storage
resources that the three-vector Fletcher-Reeves equivalent.

Powell-Beale Restarts

All members of the Conjugate Gradient family require a certain, periodic amount
of resets to the original negative gradient value. Each restart takes place as
soon as the number of iterations performed reaches the total number of the
perceptron‘s biases and weights. However, restarts are not exclusively obligatory,
but can rather occur at any given moment during the training phase, so as to
improve its overall performance. The Powell-Beale restarts take place whenever
the absolute value of the product gT

n gn is greater than or equal of 0.2 times the
squared norm of the current gradient. In terms of storage, the six-vector Powell-
Beale restarts require more space than the two aforementioned variations.

|gT
n−1gn| ≥ 0.2||gn||2 (4.28)
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Scaled Conjugate Gradient

Contrary to the rest Conjugate Gradient algorithms, the Scaled Conjugate
Gradient variation avoids performing searches per-line iteration and “uses a step-
sized scaling mechanism instead” [Shaharin et al., 2014]. Due to computational
complexity, the Hessian matrix H is approximated as shown in Equation 4.29,
where wn is the n-th weight, pn is the n-th search direction, E‘ is the error
gradient and σn and λn are scaling factors predefined by the user [Baghirli,
2015].

Hn = E‘(wn + σnpn) − E‘(wn)
σn

+ λnpn,

σ ∈ (0, 10−4), λ ∈ (0, 10−6) (4.29)

Additionally, the constant βn is defined as follows:

βn =
|gn+1|2 − gT

n+1gn

gT
n gn

(4.30)

4.1.3.7 Gradient Descent Backpropagation Family

The Gradient Descent family of algorithms contains some of the simplest
backpropagation implementations. In this thesis, the plain Gradient Descent
and its variations (Gradient Descent with Momentum and Gradient Descent
with Momentum and Adaptive Learning Rate) are examined.

Gradient Descent

Gradient Descent constitutes one of the plainest forms of error minimization
techniques. The weight update is introduced as the product of the learning rate
λ and the negative error gradient.

∆w(n) = −λ∇E(w) (4.31)

Deciding on an appropriate learning rate is a rather difficult task and depends
highly on the shape of the error function. Moreover, too high or too low values
may lead to poor performance. One of the most known issues that the Gradient
Descent algorithm faces is the local minima trap, that does not allow for further
(global) minimization of the error function.
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Figure 4.6: Cooperative NFS, adapted from Vieira et al. [Vieira et al., 2004]

Gradient Descent with Momentum

A simple variation of the Gradient Descent algorithm is the addition of a
momentum term. In other words, “the parameter µ scales the influence of the
previous weight-step on the current one”[Riedmiller, 1994].

∆w(n) = −λ∇E(w) + µ∆w(n − 1) (4.32)

Gradient Descent with Momentum and Adaptive Learning Rate

Momentum by itself is not enough to avoid complications deriving from rather
poor choice of learning rate values. For this purpose, the algorithm is enhanced
by the adaptive learning rate, which “attempts to maintain the learning step size
as large as possible while, keeping learning stable” [Mohanty et al., 2010].

∆w(n) = −λµ∇E(w) + µ∆w(n − 1) (4.33)

The following section presents the basic concepts of Neuro-Fuzzy Systems
(NFSs) and elaborates the characteristics of the Adaptive Neuro-Fuzzy Inference
System (ANFIS), which is going to be used in this thesis.

4.2 Neuro-Fuzzy Systems

NFSs are a hybrid concatenation of Fuzzy Systems and NNs, so as to profit
from all the characteristics of both techniques and avoid the impediments each
method poses separately. A NFS is defined as “a NN that uses a fuzzy approach
to enhance learning capabilities and improve performance” [Siddique and Adeli,
2013]. There are three different types of NFSs encountered in the respective
literature, namely cooperative, concurrent and hybrid NFSs.

In a cooperative NFS, the existing Fuzzy System and NN are two independent
entities. Each one contributes in the configuration of the other‘s parameters,
according to the initial setup provided. This divides the cooperative NFSs
into two different categories: the Fuzzy-NN cooperative system, where all the
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Figure 4.7: Concurrent NFS, adapted from Vieira et al. [Vieira et al., 2004]

parameters that constitute the problem base are provided by the fuzzy system
settings and the NN performs the learning and configuration procedure and the
NN-Fuzzy cooperative system, where the fuzzy parameters are defined by the NN
operation. Simultaneous and bidirectional flow is feasible, but its computational
efficiency is debatable [Vieira et al., 2004]. Figure 4.6 represents a cooperative
NFS.

In a concurrent NFS, both the NN and the Fuzzy System operate in a parallel
independent manner, without influencing eachother and they both contribute
to the optimization of the final problem outcome. An instance of a concurrent
NFS is shown in Figure 4.7. Lastly, in a hybrid NFS the Fuzzy System is
incorporated in a NN architecture. For simplification purposes, the fuzzy rule
base is substituted by a NN and the fuzzy parameters are inferred via the
learning procedure of the network.

NFSs presented substantial evolution during the late 1990s. Some noteworthy
examples include Neuro-Fuzzy Control (NEFCON) [Nauck and Kruse, 1994],
Fuzzy Adaptive Learning Control Network (FALCON) [Lin and Lee, 1991],
Generalized Approximate Reasoning-based Intelligence Control (GARIC)
[Berenji and Khedkar, 1992], Adaptive Network-based Fuzzy Inference System
(ANFIS) [Jang, 1993], Fuzzy Inference and Neural Network in Fuzzy Inference
Software (FINEST) [Tano et al., 1996], Fuzzy Net (FUN) [Sulzberger et al.,
1993], Self Constructing Neural Fuzzy Inference Network (SONFIN) [Juang
and Lin, 1998], Fuzzy Neural Network (NFN) [Figueiredo and Gomide, 1999]
and Dynamic Evolving Neural-Fuzzy Inference System (DENFIS) [Kasabov and
Song, 2002]. Despite the diversity the discipline showed until the early 2000s,
current research is almost entirely focused on ANFIS and its applications [Kar
et al., 2014], new models are produced in a lower pace and they are usually
modifications of their predecessors [Viharos and Kis, 2015].

It is a certainty that there is a plethora of already developed and evaluated
NFSs. However, their availability and documentation for academic use are rather
limited. In this perspective, ANFIS was selected as the more appropriate tool
for the current research. An introduction to its operation is provided in the
following section.

4.2.1 ANFIS

ANFIS was first introduced by Jang [Jang, 1993] and combines the precision
of Fuzzy Logic calculations with the adaptability of NNs. It eradicates the
learning incapability of Fuzzy Systems, while it simultaneously makes use of
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Figure 4.8: ANFIS, adapted from Jang [Jang, 1993] and Suparta and Alhasa
[Suparta and Alhasa, 2016]

the NN learning methods so as to efficiently tune fuzzy parameters, such as
membership functions and their positioning. The learning algorithm present in
ANFIS is inspired by the structure of a Takagi-Sugeno Fuzzy System. A plain
form, comprising two inputs, one output and a base of two rules is adopted for
demonstration purposes.

Rule 1: if x = A1 and y = B1, then f1 = k1x + l1y + m1

Rule 2: if x = A2 and y = B2, then f2 = k2x + l2y + m2

While x and y are the inputs, A1, A2, B1 and B2 are the membership functions
corresponding to parts of the linguistic variables. The values k1, k2, l1, l2, m1
and m2 constitute linear parameters.

A simplified representation of ANFIS is provided in Figure 4.8. The first layer
comprises the system inputs. Contrary to the aforementioned perceptrons, each
input does not correspond to the full range of a variable, but rather to separate
partial fuzzy membership of it. From the previous claim, it can easily be inferred
that the ANFIS input space is more complicated and fragmented than the one
belonging to a plain or pattern recognition perceptron. The output produced by
the first layer is provided by the following Equation, where µ is the membership
function per input partition, usually Gaussian or Bell and i ∈ Z∗

+ .

1,i =
{

µAi
(x)

µBi
(y) (4.34)

The second layer consists of fixed Π nodes and corresponds to rule formulation
by combining the appropriate membership values. Their output is calculated
after the addition of a “T-norm operator to the existing membership value and
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represents the firing strength of each rule” [Suparta and Alhasa, 2016]. Its
format is shown in Equation 4.35.

2,i = wi = µAi
(x) · µBi

(y) (4.35)

The third layer also comprises non-adaptive N nodes and performs normalization
of each rule‘s firing strength. This is achieved by dividing the current strength
of the rule by the total strength of every rule encountered in the system.

3,i = wi = wi∑n
i=1 wi

(4.36)

The fourth layer produces node functions as outputs, the structure of which is
provided below. The set of {ki, li, mi} is known as a consequent parameters
set.

4,i = wifi = wi(kix + liy + mi) (4.37)

Finally, the fifth layer is responsible for the global output calculation. The global
output is defined as “the summation of all incoming signals” [Jang, 1993].

5,i =
n∑

i=1
wifi (4.38)

In order to avoid the local minima trap issue deriving from the use of
traditional backpropagation algorithms, such as Gradient Descent, a hybrid
version, consisting of two opposite direction paths, was proposed. During the
forward path, signals reach the fourth layer and a Least Square Estimate (LSE)
algorithm is employed so as to determine the set of consequent parameters.
Once this step is complete, the new data are deployed as inputs, and then
the respective outputs are calculated and compared to the target outputs.
“The consequent parameters remain in a steady state for the backward path”
[Suparta and Alhasa, 2016], as a reference point. The error resulting from the
aforementioned comparison is forwarded anew to the first layer and Gradient
Descent or other backpropagation algorithms are used for further optimization
and final convergence.

Before proceeding to the utilization of the three different perceptrons, it is
advisable to normalize the respective inputs and outputs. Normalization is
the procedure of “rescaling the input and output variables independently by
the minimum and range of the vector, to make all the elements lie in the set
of [0,1]” [Iglewicz, 1983]. This procedure can either take place manually, or
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automatically by the features of the Matlab Neural Network Toolbox.

After the presentation of the intelligent computation methods of this chapter,
the following section elaborates the methodology adaptation to them.

4.3 Methodology

This section presents the adaptation of the methodology presented in Chapter
2 to the needs of both NNs and ANFIS. Most of the methodology steps
corresponding to the data preparation are common for all the techniques and
only the application and evaluation procedures show some differences, which are
presented analytically for each one of them.

4.3.1 Use Case Definition

The discipline of Mobile Forensic Data Analysis (MFDA) handles acquired
artifacts from devices that are either compromised by malicious entities (malware
propagation, bitcoin miners, botnet zombies) or serve as means to facilitate
the conduction of a crime [Barmpatsalou et al., 2013]. The current thesis
focuses on the latter category, which is the one more strongly correlated
to human behaviour. More precisely, it aims to pinpoint different criminal
activities to specific metadata patterns. We selected two offender types for
the current examination. The selection was performed according to the public
availability of information concerning the offenders’ involvement with mobile
devices. We queried content related to different criminal digital profiles in
Psychology, Sociology, Law and IT journals and the cases that allowed for a
higher level of analysis due to their availability and abundance of information
were cyberbullying and low-level drug dealing.

In order to proceed to the detection and correlation procedure, each offender’s
Modus Operandi (MO) has to be defined. Once the characteristics are outlined,
rules related to the suspiciousness of data patterns can be inferred and the
ground truth can be generated. Law enforcement has long held to the belief
that understanding the methods and techniques criminals use to commit crime is
the best way to “investigate, identify, and ultimately apprehend them” [Turvey,
2011]. The following paragraphs analyze the MO of the two aforementioned
offender types.

4.3.1.1 Cyberbullying

Bullying by mobile devices seems to be a growing trend and “was perceived to
have a rather negative impact” [Smith, 2008]. One of the main characteristics of
cyberbullies is the very frequent use of their mobile devices, especially for texting
via the native or other downloaded applications [J. T. Fish, L. S. Miller, M. C.
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Braswell, and E. W. Wallace Jr., 2014], [Lievens, 2014], [Roberto et al., 2014],
[Goodboy and Martin, 2015]. However, this fact by itself cannot be considered
a framing factor, since teenagers are classified as heavy mobile device users.
Cyberbullies tend to send massive text messages [Smith, 2008], [D. T. Sacco and
Tallon, 2010], [Roberto et al., 2014] and they prefer to “attack” their victims
after school, especially at night, when their activity is usually not monitored by
parental controls [Gorzig and Olafsson, 2013], [Openet, 2013], [J. T. Fish, L. S.
Miller, M. C. Braswell, and E. W. Wallace Jr., 2014]. The messages they send are
not long; however, they just tend to be annoying by sending small to medium-
sized, but insulting texts [Openet, 2013], [Roberto et al., 2014]. Moreover, they
also perform many missed or low duration calls to the victims, in order to bother
them more or to even provoke them to reply in case they decided to ignore them
[Smith, 2008], [Roberto et al., 2014].

A cyberbully’s MO shows relatively intense device usage and thus facilitates the
inference of a digital fingerprint. The next paragraph highlights a low-level drug
dealer’s MO.

4.3.1.2 Low Level Drug Dealing

Low level drug dealing targets dealers of small quantities, who interact more with
potential buyers and less with cartel leaders or other providers. As a result,
the majority of their call and message exchanges takes place among entities
within the same country [Natarajan, 2006], [McEwen, 2011], [Fleetwood, 2014].
Dealers prefer using mobile devices because they prevent them from increased
physical interaction with the clients, which increases the probabilities of being
arrested [May and Hough, 2004], [Casey, 2011]. Drug dealers are highly active
in terms of message exchange [Natarajan, 2006], [Edwards, 2013], [Fleetwood,
2014] and call performance [McEwen, 2011], [Edwards, 2013], [Fleetwood, 2014].
They also interact frequently with specific people, their clientèle, mainly during
evenings and nights. Their calls have small duration and they are usually the
ones performing than receiving them, based on their convenience. The text
messages they send have medium to relatively long length [Natarajan, 2006],
[Barmpatsalou et al., 2017] and contain information about the products they
are selling, often mixed with irrelevant phrases.

4.3.2 Datasets

As described analytically in Section 3.3, where the data source issue was
discussed, the CDA dataset served as the main investigation material for the
current research. We used the tuple encountered in Equation 3.16 as a template
for a more complex input setup. The is split in such a way that each column
belongs to a unique attribute.

Similarly to the data in Chapter 3, their format is not in the appropriate state
to be properly interpreted by a NN or ANFIS. This can be achieved by applying
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a pre-processing procedure, which is described analytically in the following
subsection.

4.3.3 Pre-processing

Pre-processing is related to any data modification that can facilitate their
interpretation by the NN perceptrons and ANFIS. Continuous numeric variables
do not need further alteration. Linguistic variables that describe different
states or numeric variables that denote time frames are translated into numeric
discrete values, following the categorization pattern adopted by the authors in
a previous paper [Barmpatsalou et al., 2018b]. Lastly, linguistic or date-related
variables that are not useful for the investigation in their current formatting are
transformed into a summation of their appearance instances. The initial format
for both calls and SMS data types used in this research can be found below and
a more detailed explanation follows in the following paragraphs. Algorithms 4.1
and 4.2 depict the pre-processing procedure.

Call(type, timestamp, name, location, number_type, duration) (4.39)

SMS(type, timestamp, name, location, number_type, length) (4.40)

4.3.4 Common Attributes

Both the calls and the SMS datasets have some equal attributes, the pre-
processing procedure of which is going to be explained in a common space.

Name

The Name attribute corresponds to the name or the phone number of the
individual with whom the owner of the device interacted. All the names and
numbers in the CDA dataset are anonymized and thus, no sensitive information
can be extracted from their raw format. However, the instances of each
number lead to the creation of Appearance Frequency, a variable concerning
the amount of total owner interaction with various other entities by calls or text
messages.

Timestamp

Timestamp is a unified string, comprising the date and the time a call was
performed or an SMS was sent or received. This string is later split into the
Date and Time attributes. Despite the fact that the date itself is a useful
observation in terms of a digital investigation, it does not provide useful insights
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Table 4.1: Time quantification

Time of the day Value

Morning (05:01-12:00) 0
Afternoon (12:01-17:00) 1
Evening (17:01-22:00) 2
Night (22:01-05:00) 3

for the scope of the current research. Thus, it is converted to the Daily Frequency
variable, which is the amount of interactions a user had within a 24-hour period.
The Time variable is converted to four discrete categories, according to Table
4.1.

Location

The Location attribute is represented by linguistic terms in the CDA dataset
and refers to whether the phone number of an entity that interacted with the
device owner is foreign, local and unknown or undefined, due to parsing errors.
The generated Country code variable has three discrete values that are presented
in Table 4.2.

Number type

Similarly to the Location attribute, Number type consists of strings that describe
if the number the user is interacting is mobile, unknown or a fixed line. The
generated Mobility variable is also present in Table 4.2.

Apart from the common data attributes, there are also two more data categories
that correspond exclusively to the calls and SMS types and are described in the
following paragraphs.

4.3.5 Call-exclusive Attributes

The calls data type comprises two attributes that are unique and create two
different variables.

Type

The call Type is a binary variable and receives the value 0 for outgoing and 1
for incoming calls.
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Table 4.2: Country code and mobility quantification

Location Number Type Value

Foreign Fixed Line 0
Unknown/Undefined Unknown/Undefined 1
Local Mobile 2

Duration

Duration is also a call-specific continuous variable, which receives positive integer
values in seconds. For the missed calls, the value –1 is assigned. Zero could also
be an assigned value for a missed call, but after a careful observation of the
original dataset, there were some incoming and outgoing calls with very small
duration that received the same value.

4.3.6 SMS-exclusive Attributes

Similarly to the calls, there are also two variables dedicated to the SMS
texts.

Type

The SMS Type is a binary variable and receives the value 0 for sent and 1 for
received SMS messages.

Length

The last SMS-specific attribute, Length, is a continuous variable, receives
positive integer values and corresponds to the total number of characters in
a text message.

In the end of the pre–processing procedure, both calls and SMS data types
consist of seven variables and are fully quantified. Thus, they are ready to be
used as inputs for the phases of the ground truth generation and the NN and
ANFIS training and testing.

4.3.7 Ground Truth Generation

In an earlier paper [Barmpatsalou et al., 2018b], the authors introduced an
alternative representation of the output suspiciousness. Instead of using the
classic binary format (0: not suspicious - 1: suspicious), the output is a
fuzzy variable, receiving values within the [0,1] interval. Values closer to zero
are considered innocent, whereas values closer to one are regarded as more
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Algorithm 4.1. Calls preprocessing
1: procedure Pre-Processing
2: function splitAttributes(RawDataset) return SplittedDataset[number_of_attributes]
3: end function4: function createCallType(SplittedDataset[type])
5: t← list()
6: for each line in SplittedDataset[type] do
7: if type = incoming then
8: t← 19: else if type = outgoing then
10: t← 011: end if12: end forreturn t13: end function14: function createCallTime(SplittedDataset[time])
15: tm← list()
16: for each line in SplittedDataset[time] do
17: if time ≤ 12:00 and time > 05:00 then
18: tm← 019: else if time ≤ 17:00 and time > 12:00 then
20: tm← 121: else if time ≤ 22:00 and time > 17:00 then
22: tm← 223: else if time ≤ 05:00 or time > 22:00 then
24: tm← 325: end if26: end forreturn tm27: end function28: function createCallDate(SplittedDataset[date])
29: d← list()
30: for each line in SplittedDataset[date] do
31: d← count(date)
32: end forreturn d33: end function34: function createCallAf(SplittedDataset[name])
35: a← list()
36: for each line in SplittedDataset[name] do
37: a← count(name)
38: end forreturn a39: end function40: function createCallCnt(SplittedDataset[place])
41: cc← list()
42: for each line in SplittedDataset[place] do
43: if place = local then
44: cc← 245: else if place = unknown then
46: cc← 147: else if place = foreign then
48: cc← 049: end if50: end forreturn cc51: end function52: function createCallMob(SplittedDataset[mobility])
53: mob← list()
54: for each line in SplittedDataset[mobility] do
55: if mobility = mobile then
56: mob← 257: else if place = unknown then
58: mob← 159: else if place = fixed line then
60: mob← 061: end if62: end forreturn mob63: end function64: function createCallDr(SplittedDataset[duration])
65: dr ← list()
66: for each line in SplittedDataset[duration] do
67: dr ← duration68: end forreturn dr69: end function70: function createNNInp(t, tm, d, a, cc, mob, dr)
71: join(t, tm, d, a, cc, mob, dr) return SMSInputs
72: end function73: end procedure

— 86 —



CHAPTER 4. NEURAL NETWORKS AND ANFIS FOR SUSPICIOUS
PATTERN IDENTIFICATION

Algorithm 4.2. SMS preprocessing
1: procedure Pre-Processing
2: function splitAttributes(RawDataset) return SplittedDataset[number_of_attributes]
3: end function4: function createSMSType(SplittedDataset[type])
5: t← list()
6: for each line in SplittedDataset[type] do
7: if type = received then
8: t← 19: else if type = sent then
10: t← 011: end if12: end forreturn t13: end function14: function createSMSTime(SplittedDataset[time])
15: tm← list()
16: for each line in SplittedDataset[time] do
17: if time ≤ 12:00 and time > 05:00 then
18: tm← 019: else if time ≤ 17:00 and time > 12:00 then
20: tm← 121: else if time ≤ 22:00 and time > 17:00 then
22: tm← 223: else if time ≤ 05:00 or time > 22:00 then
24: tm← 325: end if26: end forreturn tm27: end function28: function createSMSDate(SplittedDataset[date])
29: d← list()
30: for each line in SplittedDataset[date] do
31: d← count(date)
32: end forreturn d33: end function34: function createSMSAf(SplittedDataset[name])
35: a← list()
36: for each line in SplittedDataset[name] do
37: a← count(name)
38: end forreturn a39: end function40: function createSMSCnt(SplittedDataset[place])
41: cc← list()
42: for each line in SplittedDataset[place] do
43: if place = local then
44: cc← 245: else if place = unknown then
46: cc← 147: else if place = foreign then
48: cc← 049: end if50: end forreturn cc51: end function52: function createSMSMob(SplittedDataset[mobility])
53: mob← list()
54: for each line in SplittedDataset[mobility] do
55: if mobility = mobile then
56: mob← 257: else if place = unknown then
58: mob← 159: else if place = fixed line then
60: mob← 061: end if62: end forreturn mob63: end function64: function createSMSLn(SplittedDataset[length])
65: len← list()
66: for each line in SplittedDataset[length] do
67: len← length

68: end forreturn len69: end function70: function createNNInp(t, tm, d, a, cc, mob, len)
71: join(t, tm, d, a, cc, mob, len) return SMSInputs
72: end function73: end procedure
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Table 4.3: Fuzzy Suspiciousness Values, adapted from Barmpatsalou et al.
[Barmpatsalou et al., 2018b]

Value Suspiciousness Level

0.15 Very Low
0.25 Low
0.5 Medium
0.75 High

1 Very High

Table 4.4: Output Transformations for the Pattern Recognition Perceptron

Value Class 1 Class 2 Class 3 Class 4 Class 5

0.15 1 0 0 0 0
0.25 0 1 0 0 0
0.5 0 0 1 0 0
0.75 0 0 0 1 0
1 0 0 0 0 1

suspicious. Despite the fact that the output can receive any number within the
aforementioned interval, five representative values (0.15, 0.25, 0.5, 0.75, 1) were
indicated as thresholds for each suspiciousness category. Table 4.3 demonstrates
the assignment and the respective linguistic values.

This approach is also adopted in the current thesis and is the basis of the
ground truth generation process. Tuple combinations result in one out of the five
aforementioned values. However, from the three NN and NFS methods used,
only the plain backpropagation perceptron and ANFIS can make proper use
of this method. The pattern recognition backpropagation perceptron requires
additional output editing, because its format is based on binary states. In
this perspective, five outputs are generated instead of one and one of them
receives 1 as a value, whereas the rest of them remain 0s. Table 4.4 shows the
output transformation for the pattern recognition backpropagation perceptron.
In other words, the ground truth output template for the pattern recognition
backpropagation perceptron is a 5x5 square diagonal matrix.

Subsection 4.3.1 provides a qualitative overview of the device usage MO for
cyberbullying and low-level drug dealing. This information is rather useful
for some first degree inferencing, but it cannot be precise enough without the
appropriate numerical boundaries. These thresholds can be calculated after
taking into consideration the CDA dataset from Subsection 4.3.2, which includes
mobile device usage for period of six months. This way, it is easier to define
which variable ranges are considered high, medium or low. Each variable present
in Equations 4.39 and 4.40 of Subsection 4.3.3 receives a specific value or interval
of values and their combination can be translated into a statement, which is then
assigned to a degree of suspiciousness. For example, a highly suspicious call for
cyberbullying (Suspiciousness == 1) is performed at night, is missed or has a
small duration, the bully‘s appearance frequency is relatively high, is performed
by a mobile device and belongs to a local number. On the contrary, an innocent
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Table 4.5: CDA GT Pattern Distribution

Use Case Cyberbullying Cyberbullying Drug Dealing Drug Dealing
Cat. Calls SMS Calls SMS

0.15 2,268 4,701 1,846 7,010
0.25 156 3,532 623 4,029
0.5 59 3,374 18 351
0.75 61 80 17 74
1 55 302 95 525

Total 2,591 11,989 2,591 11,989

call (Suspiciousness == 0.15) is performed in the morning, has a very high or a
very low duration, belongs to a fixed local line or a mobile line abroad.

Two main challenges were encountered during the ground truth generation
phase. The first challenge was related to the manual labeling of the results,
which was a rather time-consuming procedure, but it ensured their originality.
However, in a future phase, this particular procedure can be replaced by a
similar ground truth generation algorithm. The second challenge concerned the
lack of suspicious patterns. During the manual labeling, there were no patterns
that were classified as 1, i.e. the top suspiciousness scale. As a result, we had
to generate a random number of suspicious patterns per dataset, based on the
characteristics that classified them into the specific category. Once the ground
truth generation phase is complete, the preparation phase is concluded as well
and the data are ready to be processed by the NN perceptrons and ANFIS.

4.4 Neural Networks and ANFIS

Three different neural and neuro-fuzzy network types, a plain backpropagation
perceptron, a back-propagation pattern recognition perceptron and ANFIS are
trained and tested. For every use case, seventy percent of the calls and SMS
datasets is used for training, whereas fifteen percent is used for testing and the
remaining fifteen for validation.

4.4.1 Plain and Pattern Recognition Backpropagation Perceptron
Configuration

The follow-up procedure after the dataset splitting is equal for the plain and
pattern recognition back-propagation perceptrons and different for ANFIS, that
is rather straightforward, guided by the Matlab interface. The respective
configuration settings will be presented in the following subsections.

The plain and pattern recognition perceptrons have a similar architecture. They
consist of three layers, namely input, hidden and output. The input layer
comprises seven inputs, as many as the input variables, whereas the output layer
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Figure 4.9: Generic plain and pattern recognition perceptron architecture

consists of one output for the plain backpropagation perceptron and five for the
pattern recognition backpropagation. The architecture is depicted in Figure 4.9.
The decision-making procedure for the hidden layer is more complicated and is
analytically discussed in the following paragraphs.

A highly-disputed claim that applies to the cases of the plain and pattern
recognition backpropagation perceptrons is the number of hidden layers and
nodes that are going to be used. Concerning the hidden layers issue, more than
one layers are used in high complexity problems with a big number of inputs,
such as image recognition or in case the process being modeled is separable
into multiple stages [Frontline Solvers, 2017], whereas problems with a lower
number of inputs, such as the one the current thesis is trying to address perform
equivalently well with one hidden layer. On the contrary, there are many
different arguments related to the number of hidden nodes scattered along the
corresponding literature.

One of the approaches by Frontline Solvers [Frontline Solvers, 2017] indicates
that there should be an upper bound Nmax to the number of hidden neurons
per layer, which is given by the ratio of the total number of instances in the
training dataset Ns, divided by the sum of the number of inputs Ni and outputs
No, multiplied by an arbitrary scaling factor α that receives values from 2 to 10.
More details are provided in Equation 4.41.

Nmax = Ns

α ∗ (No + Ni)
(4.41)

Other bibliographical sources are more precise in terms of defining the exact
number of hidden nodes in a perceptron‘s hidden layer, but the diversity of the
approaches is relatively big. Some of the referenced claims, broadly known as
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rule-of-thumb methods can be found below:

Figure 4.10: Average MSE per number of neurons - BP calls

Figure 4.11: Average MSE per number of neurons - BP SMS

• “The number of hidden neurons should be between the size of the input
layer and the size of the output layer” [Heaton, 2008].

• “The number of hidden neurons should be 2/3 the size of the input layer,
plus the size of the output layer” [Panchal et al., 2011].

• “The number of hidden neurons should be less than twice the size of the
input layer” [Sheela and Deepa, 2013].

However, many opinions conclude to the fact that there is no perfect rule
to define the optimal number of hidden nodes and proceed to the adoption
of trial-and-error methods starting from the lowest possible number of nodes
and gradually increasing it until the lowest error rate is achieved [Yuan et al.,
2003]. After that point, the error increases anew. Moreover, difference in the
performance between the training, validation and testing results also increases.
While the perceptron achieves an excellent training performance rate, the error
values in the testing or validation datasets are significantly higher (overfitting).
Other authors adopt a pruning approach, following the inverse procedure, i.e.
beginning with a relatively high number of neurons and gradually reducing it
[Heaton, 2008], [Augasta and Kathirvalavakumar, 2013].
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Figure 4.12: Average MSE per number of neurons - BPN SMS

Figure 4.13: Average MSE per number of neurons - BPN calls

MSE = 1
m

m∑
p=1

e2
p = 1

m

m∑
p=1

(tp − op)2 (4.42)

In the current chapter, we began experimenting in both the calls and
SMS datasets with the lowest number of hidden neurons and measured the
performance rate for each step. Mean Square Error (MSE), the mean value of
the squared error e2

p for all the patterns of a dataset p, is the difference between
the expected and the actual outputs the perceptron produces and constitutes
its performance indicator. A formal depiction of the MSE is shown in Equation
4.42, where m is the total number of patterns, t the vector corresponding to
the target values and o the vector indicating the actual values the perceptron
produced.

Once the measurement phase was concluded, the decline in the MSE values
was observed and the point where overfitting effects started appearing was
encountered. Experiments were carried out for both plain backpropagation
and pattern recognition perceptrons for every use case, data type and training
algorithm. However, since the results were equal for all the different setups,
the ones presented in the manuscript represent the whole picture. Figures 4.10
and 4.11 show the average plain backpropagation perceptron MSE values per
number of neurons of the calls and SMS Datasets, whereas Figures 4.13 and 4.12
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depict the average backpropagation pattern recognition perceptron MSE values
per number of neurons of the Calls and SMS Datasets. Both the experimental
setups ran the Levenberg-Marquardt backpropagation algorithm. Despite some
increase exceptions, all the Figures indicate that the MSE rate decreases steeply
after the second to third neuron addition and then decrease gradually until the
twelfth neuron, where the lowest value is observed. From the thirteenth neuron
and above, all the rates increase anew.

As a result of the aforementioned procedure, the plain and pattern recognition
backpropagation perceptrons will carry twelve nodes in their hidden layer and
the experimental phase will be analytically described in the next Chapter.

4.4.2 Evaluation

One of the issues that we faced during this phase was the decision upon
a common evaluation method. The plain backpropagation perceptron and
ANFIS are by default regression models, whereas the backpropagation pattern
recognition perceptron solves classification problems. However, the fact that
the regression model outputs receive approximate values to the ones present
in the ground truth set SG = {0.15, 0.25, 0.5, 0.75, 1} allow for a more detailed
classification, in order to figure out if the produced outcomes match the expected
ones. In this line of reasoning, and in order to maintain uniform results, the
classification algorithms from subsection 3.6 were used as means of comparison
between the perceptrons’ outputs and the ground truth values. The evaluation
procedure is completed with the selection of the most efficient perceptron
type.

4.4.3 Testing on Unknown Data

Once the perceptron with the best overall performance is identified, the following
step is its test run on entirely unknown data. For that purpose, we performed
a series of experiments on a Samsung Galaxy Ace 2 (GT-I8160) device, which
was used for six consecutive months. The device was running the Android 4.4
version. Android Data Acquisition and Examination Tool (ADAET), a Python
script, was implemented so as to extract the appropriate databases, perform the
pre-processing, invoke the Matlab scripts for the NN testing and calculate the
equivalent metrics.

ADAET initially establishes an ADB connection between the target device and
a workstation. After verifying that the device is rooted, the mmssms.db and
calls.db databases are copied and saved at the workstation. However, the data
in their raw form are not in the appropriate format to be processed by the NN.
Afterwards, they are pre-processed by the algorithm presented in Subsection
4.3.3. At a next step, ADAET invokes the Matlab scripts written for the plain
backpropagation perceptron in Section 4.4 and lastly, the regression accuracy
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Figure 4.14: ADAET Functionality, extended from Spreitzenbarth and
Uhrmann [Spreitzenbarth and Uhrmann, 2015]
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and other metrics are calculated. The aforementioned procedure is depicted in
Figure 4.14.

Once the definition of the methodology is complete, the aforementioned steps
are followed towards the results generation, that are presented analytically in
Chapter 5.

4.5 Summary of the Chapter

The current chapter provided a theoretical background to NNs and ANFIS,
where their basic principles were elaborated. Afterwards, the proposed
methodology of Chapter 2 was adapted to the needs of each technique. Taking
into consideration that NNs and ANFIS, contrary to Fuzzy Systems, have
memory and learning capabilities, the phase of Testing on unknown data was
thereby applied and its mechanism was further elaborated. The following
chapter will present the results of the experimental procedures for all the
methods introduced in the current thesis.

The outcomes of this chapter include the following publication:

• Barmpatsalou, K., Cruz, T., Monteiro, E. and Simoes, P. (2018). Mobile
Forensic Data Analysis: Suspicious Pattern Detection in Mobile Evidence,
IEEE Access. Impact factor: 3.55.
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Chapter 5
Results

...but beautiful mosaics are
made of broken pieces.

(Lori J. Nelson)

This chapter presents the results that were generated after the conclusion of
the experimental processes of Chapters 3 and 4. Initially, the results from the
Fuzzy Systems experiments are presented. Afterwards, the results per use case
and perceptron type for the CDA (training) dataset are provided. They are
evaluated and the best performing perceptron and algorithm are selected. Once
the aforementioned procedure is complete, ADAET acquires and processes calls
and SMS data from the experimental mobile device and tests the performance
metrics of the previously trained perceptron.

5.1 Fuzzy Systems Results

The Fuzzy Systems evaluation procedure includes the presentation of the results
for each of the three datasets presented in Chapter 3.

Tables 5.1, 5.2 and 5.3 contain the cumulative results for all the candidate
membership functions and their respective metrics after every classification
type. After evaluating all the three datasets, the following observations were
made:

• Triangular and Trapezoidal membership functions perform worse than the
rest of the other candidates in every dataset and under every classification
algorithm.

• The Bell membership function shows the best performance rates in every
dataset; in the third dataset, its performance is equal to the one of the
Gauss2 membership function.

— 96 —



CHAPTER 5. RESULTS

M.F. Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.583 0.267 0.811 0.267 0.175
SVM 0.578 0.809 0.800 0.809 0.169
Naive Bayes 0.567 0.805 0.649 0.805 0.174
AdaBoost 0.592 0.815 0.842 0.815 0.164
Random Forest 0.592 0.814 0.840 0.814 0.164

Trapezoidal kNN 0.573 0.808 0.799 0.808 0.172
SVM 0.573 0.808 0.799 0.806 0.172
Naive Bayes 0.561 0.802 0.648 0.802 0.176
AdaBoost 0.574 0.808 0.846 0.808 0.171
Random Forest 0.574 0.808 0.846 0.808 0.171

Bell kNN 0.923 0.951 0.951 0.9512 0.029
SVM 0.748 0.824 0.825 0.824 0.102
Naive Bayes 0.904 0.872 0.910 0.872 0.035
AdaBoost 0.974 0.981 0.981 0.981 0.009
Random Forest 0.945 0.963 0.964 0.963 0.021

Gauss kNN 0.908 0.952 0.952 0.952 0.037
SVM 0.858 0.864 0.889 0.864 0.058
Naive Bayes 0.858 0.852 0.880 0.852 0.055
AdaBoost 0.925 0.960 0.961 0.960 0.030
Random Forest 0.915 0.956 0.956 0.956 0.032

Gauss2 kNN 0.924 0.961 0.961 0.961 0.0299
SVM 0.884 0.871 0.903 0.871 0.0481
Naive Bayes 0.882 0.865 0.893 0.865 0.0450
AdaBoost 0.926 0.963 0.963 0.963 0.0305
Random Forest 0.931 0.963 0.963 0.963 0.0276

Table 5.1: Evaluation metrics per membership function for the SMS Dev. 1
dataset

M.F. Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.888 0.864 0.885 0.864 0.045
SVM 0.875 0.822 0.840 0.822 0.052
Naive Bayes 0.791 0.740 0.691 0.740 0.078
AdaBoost 0.897 0.850 0.870 0.850 0.043
Random Forest 0.890 0.867 0.888 0.867 0.045

Trapezoidal kNN 0.801 0.665 0.850 0.665 0.082
SVM 0.587 0.514 0.307 0.514 0.168
Naive Bayes 0.727 0.684 0.606 0.684 0.107
AdaBoost 0.742 0.704 0.647 0.704 0.102
Random Forest 0.741 0.703 0.646 0.703 0.102

Bell kNN 0.984 0.980 0.977 0.980 0.005
SVM 0.976 0.968 0.966 0.968 0.008
Naive Bayes 0.846 0.809 0.743 0.809 0.054
AdaBoost 0.998 0.997 0.997 0.997 0.001
Random Forest 0.991 0.989 0.986 0.989 0.004

Gauss kNN 0.987 0.984 0.982 0.984 0.004
SVM 0.980 0.972 0.9709 0.972 0.007
Naive Bayes 0.850 0.815 0.746 0.815 0.052
AdaBoost 0.995 0.994 0.991 0.994 0.001
Random Forest 0.991 0.989 0.986 0.989 0.002

Gauss2 kNN 0.986 0.983 0.981 0.983 0.004
SVM 0.988 0.984 0.982 0.984 0.003
Naive Bayes 0.880 0.848 0.781 0.848 0.040
AdaBoost 0.989 0.986 0.983 0.986 0.003
Random Forest 0.988 0.984 0.982 0.984 0.003

Table 5.2: Evaluation metrics per membership function for the SMS Dev. 2
dataset
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M.F. Algorithm AUC Accuracy Precision Recall FPR

Triangular kNN 0.619 0.310 0.857 0.310 0.158
SVM 0.611 0.582 0.508 0.582 0.159
Naive Bayes 0.604 0.573 0.365 0.573 0.160
AdaBoost 0.617 0.591 0.651 0.591 0.156
Random Forest 0.617 0.590 0.610 0.590 0.157

Trapezoidal kNN 0.608 0.294 0.571 0.294 0.143
SVM 0.609 0.294 0.571 0.294 0.143
Naive Bayes 0.600 0.571 0.365 0.571 0.162
AdaBoost 0.606 0.579 0.371 0.579 0.160
Random Forest 0.605 0.578 0.371 0.579 0.161

Bell kNN 0.971 0.963 0.963 0.962 0.010
SVM 0.937 0.906 0.922 0.906 0.025
Naive Bayes 0.722 0.682 0.527 0.682 0.102
AdaBoost 0.990 0.986 0.986 0.986 0.004
Random Forest 0.983 0.978 0.978 0.978 0.033

Gauss kNN 0.979 0.971 0.972 0.971 0.008
SVM 0.940 0.909 0.975 0.975 0.025
Naive Bayes 0.713 0.666 0.519 0.666 0.191
AdaBoost 0.990 0.986 0.986 0.986 0.006
Random Forest 0.981 0.975 0.975 0.975 0.006

Gauss2 kNN 0.975 0.967 0.968 0.967 0.009
SVM 0.944 0.915 0.931 0.915 0.023
Naive Bayes 0.716 0.671 0.521 0.671 0.108
AdaBoost 0.949 0.920 0.935 0.920 0.022
Random Forest 0.946 0.917 0.932 0.917 0.022

Table 5.3: Evaluation metrics per membership function for the SMS Dev. 3
dataset

• In the majority of the tests, the AdaBoost and Random Forest
classification algorithms showed the best performance rates. On the
contrary, kNN, SVM and Naive Bayes showed the poorest performance.

• The performance difference among the Bell, Gauss and Gauss2
membership function is very low and they can be considered as efficient
alternatives.

The evaluation procedure proved that Fuzzy Systems can successfully detect
and categorize patterns according to their degree of suspiciousness in small-
scale problems. It constituted a proof-of-concept for the efficiency of intelligent
computation techniques. However, when the input space and subsequently the
complexity of the system itself increase, the particular solution faces scalability
issues. The next section attempts to solve the particular problem, by presenting
the results of the methodology application to Neural Networks and the Adaptive
Neuro-Fuzzy Inference System (ANFIS).

5.2 Neural Networks and ANFIS Results

The first part of the results presentation is associated to the performance
evaluation of three different perceptron types (plain, backpropagation and
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ANFIS) for calls and SMS data, per corresponding use case. Firstly, the results
for the CDA datasets are presented

5.2.1 CDA Dataset Results

This subsection is divided in two separate parts, that present and discuss the
results of the Cyberbullying and Drug Dealing use cases.

5.2.1.1 Cyberbullying

This section is divided in three parts; the first comprises the results for
the plain backpropagation perceptron, the second for the pattern recognition
backpropagation perceptron and the third for ANFIS.

Plain Backpropagation Perceptron

For the calls dataset, the training algorithms showed satisfactory performance,
with accuracy scores varying from 87.5 to 97.4%. The Levenberg-Marquardt
and Bayesian Regularization algorithms outperform the rest, with the latter
achieving the highest Accuracy score. In terms of Precision and Recall, only
Bayesian Regularization scores over 80% and Levenberg-Marquardt follows with
results in the mid-70s range. The rest of the algorithms have rather poor or
unbalanced rates. More details can be found in Table 5.4, whereas Fig. 5.1
depicts the aforementioned metrics per algorithm.

For the SMS dataset, all the training algorithms scored within the 71.3-92.4%
regression accuracy spectrum, that constitutes a fair to very good performance,
but lower than the Calls dataset equivalents. Levenberg-Marquardt, Bayesian
Regularization and BFGS Quasi-Newton backpropagation achieved the higher
Accuracy scores (>80%), whereas the Gradient Descent family of algorithms
showed the poorest performance. Levenberg-Marquardt backpropagation shows
significantly higher Precision scores for each suspiciousness category. The Recall
rates are slightly lower and all the algorithms perform equally. Table 5.5 shows
the performance metrics for the SMS dataset,

Backpropagation Pattern Recognition Neural Network

Performance for the Pattern Recognition perceptron is not as uniform as
the Plain Backpropagation perceptron‘s. Accuracy for the Calls training,
validation and testing datasets varies from a minimum 41.6% to a maximum
99.8%. However, only the validation and testing subsets are taken higher
into consideration. Similarly to the results of the previous subsection, the
Levenberg-Marquardt and Bayesian Regularization outperform the rest of the
algorithms. Nevertheless, Levenberg-Marquardt shows a more balanced profile
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Table 5.4: Plain Backpropagation Perceptron Performance - Cyberbullying:
Calls

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.00179 92.4 77.5 74.4
Bayesian Regularization 0.000341 97.4 80.9 82.6
BFGS Quasi-Newton 0.00461 91.1 68.9 57.2
Scaled Conjugate Gradient 0.00398 91.1 75.4 72.7
One-Step Secant 0.00874 89.2 67.4 57.1
Resilient 0.00504 89.9 59.4 55.4
G. D. 0.0167 90.0 71.4 56.7
G. D. Momentum 0.0306 87.5 49.1 52.3
G. D. Momentum-Adaptive 0.0081 91.3 76.3 66.3
C. G. Powell-Beale 0.00427 90.8 66.3 59.6
C. G. Polak-Ribière 0.00392 91.4 76.6 49.7
C. G. Fletcher-Reeves 0.00428 89.9 69.7 63.7

Table 5.5: Plain Backpropagation Perceptron Performance - Cyberbullying:
SMS

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.00277 92.4 87.7 71.4
Bayesian Regularization 0.00034 83.7 74.3 72.1
BFGS Quasi-Newton 0.00461 81.6 75.9 73.5
Scaled Conjugate Gradient 0.00398 78.5 74.3 71.4
One-Step Secant 0.00874 78.4 72.7 71.3
Resilient 0.00504 79.7 73.5 71.0
G. D. 0.0167 71.3 70.4 67.7
G. D. Momentum 0.0306 72.5 71.3 70.5
G. D. Momentum-Adaptive 0.0081 71.4 62.7 60.9
C. G. Powell-Beale 0.00427 73.5 64.0 61.7
C. G. Polak-Ribière 0.00392 78.3 70.0 67.6
C. G. Fletcher-Reeves 0.00428 79.6 77.0 73.3

Figure 5.1: Performance histogram for the plain backpropagation perceptron -
Cyberbullying: Calls
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Figure 5.2: Performance histogram for the plain backpropagation perceptron -
Cyberbullying: SMS

Table 5.6: Backpropagation Pattern Recognition Perceptron Performance -
Cyberbullying: Calls

Algorithm Perf. Training Validation Testing

Levenberg-Marquardt 0.00998 95.4 93.2 94.9
Bayesian Regularization 0.000442 99.8 - 94.0
BFGS Quasi-Newton 0.0761 86.1 87.6 87.2
Scaled Conjugate Gradient 0.0690 89.4 87.6 87.2
One-Step Secant 0.0933 83.0 81.3 84.4
Resilient 0.0768 87.3 84.4 88.3
Gradient Descent (G.D.) 0.234 45.0 41.6 46.0
G. D. Momentum 0.229 54.9 57.9 56.6
G. D. Momentum-Adaptive 0.0953 83.0 84.4 83.5
C. G. Powell-Beale 0.05846 90.8 87.4 88.3
C. G. Polak-Ribière 0.0738 86.9 84.4 87.4
C. G. Fletcher-Reeves 0.0867 83.0 85.5 82.6

between training, testing and validation, whereas Bayesian Regularization, that
by default lacks a validation dataset, presents a declining of almost six points.
Once again, the Gradient Descent algorithms other than the variation with
momentum and adaptive learning show the worst performance results. A more
detailed overview is provided in Table 5.6.

The declining between the performance rates is smaller for the SMS dataset.
The accuracy range is defined between 81.2% and 96.3%, with the Levenberg-
Marquardt and Bayesian Regularization algorithms scoring the highest numbers
anew. The difference between the rest of the algorithms is insignificant and only
the simple Gradient Descent variation shows the lowest scores. Table 5.7 presents
the respective results.

ANFIS

Due to the big number of inputs and corresponding linguistic variable
subdivisions, it was impossible to create fuzzy systems manually (Type-1) by
generating them from the data (Type-2). As a result, fuzzy clustering was
the only available option in order to create the input space. Modifications in
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Table 5.7: Backpropagation Pattern Recognition Perceptron Performance -
Cyberbullying: SMS

Algorithm Perf. Training Validation Testing

Levenberg-Marquardt 0.0126 96.3 94.8 95.4
Bayesian Regularization 0.0166 95.6 - 92.6
BFGS Quasi-Newton 0.0478 90.1 91.5 90.6
Scaled Conjugate Gradient 0.0445 91.6 88.9 89.7
One-Step Secant 0.0454 91.7 92.3 88.0
Resilient 0.0347 92.7 94.0 88.9
G. D. 0.111 86.1 87.2 81.2
G. D. Momentum 0.145 84.8 88.0 89.7
G. D. Momentum-Adaptive 0.0412 91.9 91.5 92.3
C. G. Powell-Beale 0.0436 89.9 94.0 90.6
C. G. Polak-Ribière 0.0529 89.2 86.3 85.5
C. G. Fletcher-Reeves 0.0346 91.7 90.6 87.2

Table 5.8: ANFIS Performance - Cyberbullying: Calls

Version 1 2 3 4 5

Range of Influence 0.5 0.25 0.75 0.45 0.45
Squash Factor 1.25 1.25 1.25 1.15 1.05
M.F.s 20 30 18 24 27
Error 0.0661 0.0768 0.067 0.0604 0.0549
Accuracy 90.9 91.3 91.4 89.9 90.1
Precision 43.8 51.5 42.3 48.1 30.2
Recall 30.4 37.0 23.9 28.3 28.3

the squash factor and range of influence values resulted in different numbers of
membership functions.

Despite the variations among the number of membership functions per instance,
the difference between the Error and Accuracy rates do not surpass 2% for
the Calls dataset. Moreover, despite the rather satisfactory average Accuracy
percentages scored, the Precision and Recall rates are rather low. The amount
of membership functions was between 18 and 30, whereas the version with the
best overall performance in terms of Accuracy, Precision and Recall is the second
column of Table 5.8.

Similar conclusions can be extracted from the SMS dataset, where the difference
between the highest and the lowest Error and Accuracy values is not greater
than 3.5%. The higger amount of membership functions generated was 57,
whereas the lower was 18. The Accuracy scores are slightly higher than the
ones achieved for the Calls dataset. However, the Precision and Recall metrics
are significantly higher, but yet not within the acceptable rates for a very good
performance. More details about the ANFIS performance of the SMS dataset
can be encountered in Table 5.9. The version with the best performance rates
can be found in the fourth column of the aforementioned table.

The next subsection delves into the results generated by the three different
perceptrons for the Drug Dealing use case and provides more information that
will lead to the appropriate method selection.
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Table 5.9: ANFIS Performance - Cyberbullying: SMS

Version 1 2 3 4 5

Range of Influence 0.5 0.25 0.75 0.4 0.4
Squash Factor 1.25 1.25 1.25 1.15 1.05
M.F.s 22 57 13 30 38
Error 0.075 0.097 0.085 0.072 0.068
Accuracy 90.6 91.8 88.6 91.9 92.0
Precision 58.1 61.5 56.1 62.4 62.5
Recall 59.1 62.7 57.4 63.3 63.3

5.2.1.2 Drug Dealing

The structure of the current section follows the pattern of section 5.2.1.1,
where each part shows the performance evaluation results for each perceptron
type.

Plain Backpropagation Perceptron

The results concerning the Calls dataset of the Drug Dealing use case show rather
high Accuracy rates within the 83.7-98.2% spectrum and are also accompanied
by excellent Precision and Recall metrics of the 90s scale, at least for the best
performing algorithms. Similarly to the Cyberbullying use case, Levenberg-
Marquardt and Bayesian Regularization showed the best performance rates in
all the metric categories. Conjugate Gradient with Fletcher-Reeves Updates
and Resilient backpropagation followed with almost equivalently high Accuracy
rates, but relatively lower Precision and Recall scores. The lowest performance
score was achieved by the Gradient Descent and Gradient Descent with
Momentum algorithms. More details about the performance of the algorithms
are depicted in Table 5.10 and in Fig. 5.3.

Similar results were encountered in the SMS dataset, the Accuracy of which,
however, covered a broader area of ranges, varying from 66.6% to 97.8%.
Moreover, the Precision and Recall metrics were the highest out of all the
datasets for the plain backpropagation perceptron experiments. This is the
only dataset where the Levenberg-Marquardt algorithm did not have one of the
two first places in performance, but achieved the third best scores after Bayesian
Regularization and Conjugate Gradient with Polak-Ribière Updates. Gradient
Descent and Gradient Descent with Momentum showed once again poor results.
Table 5.11 and Fig. 5.4 analytically present the perceptron results for the SMS
dataset.

Backpropagation Pattern Recognition Perceptron

The current use case and dataset is an example of a non-successfully concluded
experimental setup. All the algorithms failed to classify almost or more than
half of the patterns of different suspiciousness for the Calls dataset. Both the
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Table 5.10: Plain Backpropagation Perceptron Performance - Drug Dealing:
Calls

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.0275 96.2 89.2 94.3
Bayesian Regularization 0.00230 98.2 96.6 96.6
BFGS Quasi-Newton 0.0111 94.6 84.5 68.2
Scaled Conjugate Gradient 0.00613 92.9 70.9 63.6
One-Step Secant 0.00798 92.0 73.1 77.3
Resilient 0.00875 95.7 78.1 93.2
G. D. 0.0373 89.0 57.3 53.4
G. D. Momentum 0.0440 83.7 49.4 45.5
G. D. Momentum-Adaptive 0.00974 95.6 79.8 89.8
C. G. Powell-Beale 0.00605 92.4 73.8 54.5
C. G. Polak-Ribière 0.0102 93.4 74.4 69.3
C. G. Fletcher-Reeves 0.00538 96.7 88.0 92.0

Table 5.11: Plain Backpropagation Perceptron Performance - Drug Dealing:
SMS

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.00123 96.5 95.3 96.2
Bayesian Regularization 0.000827 97.8 98.4 96.7
BFGS Quasi-Newton 0.0025 96.1 93.6 96.8
Scaled Conjugate Gradient 0.00217 95.6 92.6 96.6
One-Step Secant 0.00265 92.3 87.6 92.8
Resilient 0.00213 94.9 89.9 97.8
G. D. 0.0229 66.6 56.6 56.2
G. D. Momentum 0.0338 74.7 66.1 76.0
G. D. Momentum-Adaptive 0.00467 89.9 84.4 89.4
C. G. Powell-Beale 0.00255 93.3 89.4 92.9
C. G. Polak-Ribière 0.00221 96.6 96.0 95.9
C. G. Fletcher-Reeves 0.00191 97.0 96.8 96.0

Figure 5.3: Performance histogram for the plain backpropagation perceptron -
Drug Dealing: Calls
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Figure 5.4: Performance histogram for the plain backpropagation perceptron -
Drug Dealing: SMS

Table 5.12: Backpropagation Pattern Recognition Perceptron Performance -
Drug Dealing: Calls

Algorithm Perf. Training Validation Testing

Levenberg-Marquardt 0.111 56.2 47.4 51.1
Bayesian Regularization 0.116 54.7 - 57.1
BFGS Quasi-Newton 3.39 52.2 55.6 62.4
Scaled Conjugate Gradient 3.33 52.5 55.6 59.4
One-Step Secant 3.16 54.3 51.9 50.4
Resilient 3.17 54.6 52.6 53.4
G. D. 3.44 43.1 40.6 44.4
G. D. Momentum 3.34 41.7 41.4 47.4
G. D. Momentum-Adaptive 3.36 52.2 53.4 63.2
C. G. Powell-Beale 3.25 53.6 54.9 55.6
C. G. Polak-Ribière 3.27 53.5 57.9 53.4
C. G. Fletcher-Reeves 3.19 54.8 52.6 51.9

training, validation and testing sessions did not provide an Accuracy score
over 65%. The BFGS Quasi-Newton and Gradient Descent with Momentum
and Adaptive Learning Rate performed slightly better than the rest of the
algorithms, but the remaining members of the Gradient Descent family showed
the worst results. More details about the scoring can be found in Table
5.12.

Contrary to the Calls dataset, the SMS dataset showed excellent Accuracy
results that reached up to 99.7% for the training subset and 99.1% for the
validation and testing equivalents. The Levenberg-Marquardt and Bayesian
Regularization algorithms outperformed the rest and the lowest scores were
marked for the Gradient Descent and Gradient Deswcent with Momentum
algorithms. Table 5.13 presents the respective results.

ANFIS

Five different ANFIS versions were produced for each dataset. As far as the
Calls dataset is concerned, the total amount of membership functions generated
varied from 18 to 30. Despite the variety between their numbers, the Accuracy
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Table 5.13: Backpropagation Pattern Recognition Perceptron Performance -
Drug Dealing: SMS

Algorithm Perf. Training Validation Testing

Levenberg-Marquardt 0.000820 99.7 99.1 99.1
Bayesian Regularization 0.000899 99.7 - 98.3
BFGS Quasi-Newton 0.024 96.7 95.5 95.5
Scaled Conjugate Gradient 0.0146 97.3 97.0 96.8
One-Step Secant 0.0241 96.7 97.6 95.9
Resilient 0.0152 97.1 96.3 96.7
G. D. 0.158 72.8 75.7 73.7
G. D. Momentum 0.111 81.7 80.5 80.7
G. D. Momentum-Adaptive 0.0156 97.4 97.0 96.8
C. G. Powell-Beale 0.0161 96.9 97.8 95.7
C. G. Polak-Ribière 0.0146 97.3 97.4 96.8
C. G. Fletcher-Reeves 0.0174 97.2 96.1 97.6

Table 5.14: ANFIS Performance - Drug Dealing: Calls

Version 1 2 3 4 5

Range of Influence 0.5 0.25 0.75 0.45 0.25
Squash Factor 1.25 1.25 1.25 1.25 0.8
M.F.s 19 30 18 24 27
Error 0.098 0.0458 0.0525 0.0453 0.042
Accuracy 95.3 95.7 95.5 96.5 96.5
Precision 81.4 83.9 81.0 86.3 86.4
Recall 89.8 88.6 92.0 93.2 93.5

metrics were all similar and scored in the interval of 95.3 - 96.5%. Contrary
to the cyberbullying use case, the Precision and Recall metrics were relatively
high, over 80%. The best performance level was achieved by the fifth version,
consisting of 27 membership functions. Analytical details are provided in Table
5.14.

Similar, but borderline lower performance was noted for the SMS dataset.
The number of membership functions per version varied from 15 to 51 and
the Accuracy scores from 86.3% to 93.2%. As it can be observed in Table
5.15, despite the considerable increase in the number of membership functions
between the best performing versions 2 and 5, the subsequent increase the
performance score is very low. A fuzzy system with 51 membership functions
is computationally slower than a version equipped with 26 and since the
performance difference is rather low, the version with the lower number
of membership functions can be selected as the most efficient in terms of
performance and computational cost.

The aforementioned subsections showed that a decision upon the best approach
for the identification of suspicious and non-suspicious patterns in mobile
metadata is not a simplified procedure. However, there are some characteristics
that clarify the selection procedure and are analytically presented in the
following paragraphs.

— 106 —



CHAPTER 5. RESULTS

Table 5.15: ANFIS Performance - Drug Dealing: SMS

Version 1 2 3 4 5

Range of Influence 0.5 0.25 0.75 0.45 0.45
Squash Factor 1.25 1.25 1.25 1.15 1.05
M.F.s 15 51 10 22 26
Error 0.0665 0.0521 0.071 0.0622 0.0578
Accuracy 89.8 93.2 86.3 88.1 92.0
Precision 88.0 90.0 87.1 84.3 88.0
Recall 86.0 92.9 76.6 85.3 91.8

5.2.2 Best Performance Perceptron and Algorithm Selection

Defining the most appropriate NN perceptron for the detection and rating of
suspicious patterns is a rather complicated process, especially when the majority
of the produced results are equivalently good. In such a case, the selection
criteria are not limited to the success rates of each method, but focus on deeper
levels of detail.

Generally, all the three perceptron types achieved a relatively high average
performance rate, especially for their top variations. Accuracy rates over 80%
were a common characteristic. Despite its satisfactory performance in three
out of the four dataset and use case combination, the pattern recognition
backpropagation perceptron performed significantly lower than expected for
the Calls dataset of the Drug Dealing use case. On the contrary, the plain
backpropagation perceptron and ANFIS did not face a similar issue. ANFIS
showed an excellent performance profile for the Drug Dealing use case, but
the Precision and Recall rates for the Cyberbullying use case were rather low.
The plain backpropagation perceptron was the most stable method out of the
three. Its results might not have reached the rates generated by the pattern
recognition perceptron, but it was able to maintain a uniform average of results,
especially for the best performing family of algorithms. As a result, the plain
backpropagation perceptron is considered the preferred approach for solving the
suspicious pattern detection problem from mobile forensic data.

Additionally, the observation and selection procedure also resulted in three
noteworthy conclusions. Firstly, ANFIS is highly dependent on the amount
of patterns under examination. Tables 5.8, 5.9, 5.14 and 5.15 indicate that
the upper bound of the produced membership functions is significantly higher
for the SMS than the Calls datasets. This can be justified by the fact that
the amount of patterns in the SMS dataset is almost six times bigger than
the Calls equivalent, as seen in Table 4.5. This observation though brings a
scalability issue to the surface. As already mentioned in the previous section,
ANFIS versions with many membership functions come at a high computational
cost. Consequently, the ANFIS problem solving capability is finite and its
performance versus efficiency ratio drops as the number of the patterns in the
input space increases.

Secondly, the regression approach of the plain backpropagation perceptron
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is more efficient than the classification approach of the pattern recognition
backpropagation network. The difference between the plain backpropagation
and pattern recognition backpropagation perceptrons performance for the Calls
dataset of the Drug Dealing use case is substantially considerable. While the
former was able to detect most of the patterns correctly, the latter failed at
the classification of a little less than 50%. This statement is not useful as a
standalone assumption. However, if Table 4.5 is taken into consideration, it is
noticeable that the specific dataset has a less proportional pattern distribution
than the remaining ones. Moreover, it has a smaller amount of total patterns
when compared to the SMS datasets. The aforementioned results signify that
the plain backpropagation perceptron is more capable of correctly detecting
patterns with uneven distribution, fact that renders it more suitable as a tool
for real-life circumstances.

Lastly, as far as the backpropagation algorithms are concerned, the Levenberg-
Marquardt and Bayesian Regularization methods showed by far the best results.
On the one hand, Bayesian Regularization achieved higher performance rates
but showed a considerable amount of difference between training and testing
datasets. On the other hand, the Levenberg-Marquardt algorithm showed
moderately lower performance rates, but maintained the result uniformity.
The difference between the aforementioned algorithms and the remaining ones
was remarkably observable. Conjugate Gradient with Fletcher-Reeves Updates
and Resilient backpropagation provided satisfactory results, while the Scaled
Conjugate Gradient and BFGS Quasi-Newton backpropagation algorithms
follow with vaguely noticeable performance declining. Two members of the
Gradient Descent family, simple Gradient Descent and its momentum variation
had the worst performance rates for all the experimental setups.

Once the appropriate approach is selected, the research procedure continues
with testing the plain backpropagation perceptron on completely unknown data
that are previously acquired from a mobile device. This scenario is closer to
real circumstances and will test if the perceptron and its respective algorithms‘
efficiency is aligned with the actual test results.

5.2.3 Testing on Unknown Data

The plain backpropagation perceptron showed overall better performance rates
compared to the rest of the employed techniques. This section presents
the behaviour of the previously trained perceptron with the CDA dataset
patterns when entirely unknown data are used as inputs to the system.
However, a limitation considering the pattern distribution needs to be taken
into consideration beforehand.

Table 4.5 presents the occurrences of patterns, classified by their suspiciousness
level, according to the ground truth generation. Since the device operated in
real-life circumstances, the uniformity between the occurrences is significantly
lower than the CDA dataset‘s. The pattern distribution has an effect on
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Table 5.16: Samsung Device GT Pattern Distribution

Use Case Cyberbullying Cyberbullying Drug Dealing Drug Dealing
Cat. Calls SMS Calls SMS

0.15 400 383 238 597
0.25 66 152 246 482
0.5 31 544 8 –
0.75 3 – 7 –
1 – – – –

Total 500 1079 500 1079

Table 5.17: Samsung Device Backpropagation Perceptron Performance -
Cyberbullying: Calls

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.1023 89.0 79.7 79.2
Bayesian Regularization 5.4039 88.8 79.6 80.0
BFGS Quasi-Newton 0.1026 89.0 76.8 84.3
Scaled Conjugate Gradient 0.6159 89.4 74.6 77.9
One-Step Secant 0.0393 89.0 84.2 68.0
Resilient 0.1125 90.0 71.7 78.7
G. D. 0.0850 88.0 81.3 85.7
G. D. Momentum 0.0473 88.4 68.5 76.1
G. D. Momentum-Adaptive 0.3622 89.0 77.5 76.0
C. G. Powell-Beale 0.4134 90.0 75.1 77.2
C. G. Polak-Ribière 0.1254 90.8 77.6 74.5
C. G. Fletcher-Reeves 0.0328 88.0 75.1 73.3

the calculation of the regression accuracy and the other metrics. As already
mentioned in Section 4.4.2, the metrics are calculated by using 10-fold cross
validation. However, when the number of patterns per category is less than
10, the respective metrics are omitted because the number of actual patterns
is lower than the folds and no effective comparison can take place. It is also
expected that the actual device datasets do not contain patterns of the highest
suspiciousness level.

Table 5.17 presents the results for the Calls dataset of the Cyberbullying use case.
The table constitutes an interesting case, because all the algorithms perform
at approximately the same level, despite the differences encountered during
the experimental phase in Section 5.2.1. Since the Accuracy metrics do not
show significant differences, the Precision and Recall results will be examined.
The Levenberg-Marquardt, Bayesian Regularization and BFGS Quasi-Newton
algorithms have the most balanced performance. Surprisingly enough, in the
specific sample, Gradient Descent shows a very efficient profile as well.

The performance of the SMS dataset is depicted in Table 5.18. The
Levenberg-Marquardt algorithms performs significantly better than the rest
of the backpropagation methods, with Bayesian Regularization and BFGS
Quasi-Newton following closely. Bayesian Regularization shows a significant
difference in its performance, when compared to the training and testing
experimental phase. The Gradient Descent family of algorithms shows the
poorest performance once again.
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Table 5.18: Samsung Device Backpropagation Perceptron Performance -
Cyberbullying: SMS

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.0203 92.4 94.6 85.4
Bayesian Regularization 0.0048 83.7 73.3 72.1
BFGS Quasi-Newton 0.0139 81.6 75.9 73.5
Scaled Conjugate Gradient 0.0153 78.5 74.2 71.3
One-Step Secant 0.0158 78.4 72.6 71.2
Resilient 0.0169 78.7 73.5 71.0
G. D. 0.0332 71.3 70.4 67.7
G. D. Momentum 0.0509 72.5 71.2 70.4
G. D. Momentum-Adaptive 0.0211 71.4 62.7 60.9
C. G. Powell-Beale 0.0176 73.5 64.0 61.7
C. G. Polak-Ribière 0.0164 78.3 70.0 67.6
C. G. Fletcher-Reeves 0.0142 79.6 76.6 75.7

Table 5.19: Samsung Device Backpropagation Perceptron Performance - Drug
Dealing: Calls

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 0.383 85.4 82.4 89.4
Bayesian Regularization 0.8458 83.0 81.7 87.4
BFGS Quasi-Newton 0.0408 83.8 82.9 86.6
Scaled Conjugate Gradient 0.0729 83.6 83.8 86.2
One-Step Secant 0.1988 88.2 88.9 87.8
Resilient 0.1528 79.2 78.5 82.9
G. D. 0.1718 79.2 89.6 80.9
G. D. Momentum 0.2832 87.6 84.3 93.9
G. D. Momentum-Adaptive 0.407 81.2 79.1 86.2
C. G. Powell-Beale 0.19 85.8 86.8 85.8
C. G. Polak-Ribière 0.0375 81.4 80.6 82.9
C. G. Fletcher-Reeves 0.0602 80.4 80.6 82.5
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Table 5.20: Samsung Device Backpropagation Perceptron Performance - Drug
Dealing: SMS

Algorithm Perf. Acc. Prec. Rec.

Levenberg-Marquardt 5.084e-04 99.6 99.7 99.6
Bayesian Regularization 0.0116 99.9 99.8 99.8
BFGS Quasi-Newton 7.177e-04 99.9 99.8 99.8
Scaled Conjugate Gradient 1.432e-04 99.9 99.8 99.8
One-Step Secant 1.687e-04 99.8 99.7 99.6
Resilient 8.402e-04 93.2 94.9 89.6
G. D. 0.015 91.9 86.6 96.9
G. D. Momentum 0.0178 82,0 92.2 51.7
G. D. Momentum-Adaptive 0.0211 94.5 85.4 85.6
C. G. Powell-Beale 1.755e-04 99.7 99.6 99.4
C. G. Polak-Ribière 3.072e-04 99.9 99.8 99.8
C. G. Fletcher-Reeves 7.390e-04 99.5 99.5 99.0

The results deriving from the examination of Table 5.19 for the Calls dataset of
the Drug Dealing use case constitute a performance surprise. Firstly, none of the
algorithms does not have an Accuracy score over 90%. Secondly, other than the
rather expected Levenberg-Marquardt best performance, Gradient Descent with
Momentum shows the best results in the category, with its Recall levels reaching
almost 94%. The rest of the results are also uniform, with small variations.

Finally, Table 5.20 shows the performance rates of the SMS dataset. The
produced results are rather impressive, with almost excellent metrics. This
happens partially because of the existence of only two patterns in the dataset
space, as it can be inferred from Table 5.16. Almost all the algorithms, other
than the Gradient Descent and its variation with Momentum performed equally
well.

Figure 5.5 is a performance diagram of all the backpropagation algorithms for
each use case and dataset of the actual device testing case. The last column
of each diagram subsection is the average performance of every algorithm. The
superiority of the Levenberg-Marquardt, Bayesian Regularization and BFGS
Quasi-Newton backpropagation can be inferred directly from the diagram. In
general, the algorithms did not show a different behaviour between the two
different datasets. Levenberg-Marquardt showed the most balanced behaviour,
whereas the performance differences for Bayesian Regularization were a bit more
considerable. As a result, the most appropriate combination for examining
a mobile device for suspicious patterns and classifying the total patterns in
different categories is the use of plain backpropagation perceptrons, trained by
either Levenber-Marquardt or Bayesian Regularization algorithms.

5.3 Summary of the Chapter

This chapter provided the results for the total of experimental processes that
took place during the current research. The first section was dedicated to the
results of the Fuzzy Systems use case scenario, whereas the second concerned
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Figure 5.5: Average performance per training algorithm

the use of NNs and ANFIS for the cyberbullying and low-level drug dealing
use case scenarios. The Fuzzy Systems results showed a higher level of overall
stability and performance, but their scalability and learning incapability issues
render them suitable only for limited-input scenarios. Moreover, the difference
in the performance ratings between Fuzzy Systems, NNs and ANFIS is not an
impediment that can lead to the rejection of the latter two techniques. NNs and
ANFIS showed similar results, with both NN types (plain and backpropagation)
requiring a less complicated configuration procedure than ANFIS. Lastly, the
plain backpropagation perceptron showed a better result stability during all the
experimental phases, when compared to the pattern recognition backpropagation
perceptron. Despite the fact that our methodology was successfully tested on
different scenarios, there are still some aspects that need to be addressed. The
next and final Chapter of the thesis will provide more details on how the existing
work can be expanded and further improved.

The outcomes of this chapter include were parts of the following
submissions:

• Barmpatsalou, K., Cruz, T., Monteiro, E. and Simoes, P. (2018). Mobile
Forensic Data Analysis: Suspicious Pattern Detection in Mobile Evidence,
IEEE Access. Impact factor: 3.55.
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Chapter 6
Conclusions and Future Work

Cliffs are meant to be awe
inspiring, and respected.
Cliffs were also meant to be
scaled and conquered.

( Anthony T. Hincks)

This final chapter provides an overview of the thesis and its contributions.
Moreover it discusses the findings of the current research and enlists future
work potentials.

6.1 Synthesis of the Thesis

Chapter 2 introduced some of the more important principles of Mobile Forensics
(MF), presented the research trends and identified that Mobile Forensic
Data Analysis (MFDA) is one of the concepts in need of further evolution.
Furthermore, it performed a bibliographic analysis on digital criminal profiling
methodologies and introduced the one that consisted the backbone of the current
thesis.

Fuzzy Systems, due to their simple inference mechanism and the relatively
comprehensible functionality, served as a proof of concept for a simple suspicious
pattern identification scenario from SMS data and metadata. In Chapter 3, the
case of Public Protection and Disaster Relief (PPDR) officers infiltrating the
rioting forces was examined and the respective methodology adaptations were
presented.

Chapter 4 examined two more use case scenarios, by making use of Neural
Networks (NNs) and the Adaptive Neuro-Fuzzy Inference System (ANFIS).
After a background presentation to each technology, the Modi Operandi (MO)
for the digital fingerprints of cyberbullying and low-level drug dealing use cases
were elaborated and the methodology was adapted anew, so as to fit the
requirements of an evaluation with the two aforementioned technologies.
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Chapter 5 presented the evaluation results for all the use cases examined in
Chapter 3 and Chapter 4. Moreover, it provided results on unknown data testing
for the use cases of Chapter 4. It was proved that all the techniques used did
not show significant differences in performance and were able to perform pattern
identification without significant issues for the nature of the problems they were
given as inputs. However, the plain backpropagation NN showed the highest
amount of advantages in terms of both performance, configuration and capability
to solve complex problems.

6.2 Contributions

The main contributions of this thesis are as follows.

Contribution 1 - A Methodology for Suspicious Pattern Identification
Based on an extensive research on the relevant Mobile Forensic Data
Analysis (MFDA) literature, we propose a new digital criminal profiling
and suspicious pattern identification methodology that retains the
evolutionary characteristics of its predecessors, such as the continuous
interaction between the profiling characteristics and the new input data,
but is also capable of assigning suspiciousness values to different data and
metadata patterns.

Contribution 2 - Suspicious Pattern Identification with Fuzzy Systems
A proof of concept for the proposed methodology for a small use case
scenario, aiming to profile the MO of PPDR officers defecting to the rioters’
side by examining their sent SMS and to identify the respective suspicious
patterns. Mamdani Fuzzy Systems with different configurations are used
for the identification procedure and their performance is evaluated.

Contribution 3 - Suspicious Pattern Identification with NNs and ANFIS
Two complex use case scenarios, involving the profiling and identification
of call and SMS patterns for cyberbullies and low-lever drug dealers are
examined with the proposed methodology. NNs and ANFIS are configured
and employed as evaluation tools.The performance of different setup is
then measured, the prevailing solution is selected and tested anew on
previously unknown data for the system.

The next section discusses the findings of the current thesis and proposes future
research directions.

6.3 Discussion and Future Work

In this thesis, the performance of intelligent computation techniques for MF
evidence analysis was evaluated. After creating a framework that incorporated
the role of MF in a PPDR ecosystem, criminal investigation based on human
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behaviour of mobile device users in its internal and external environment was
thoroughly researched.

A scenario of agent infiltration was created and a sample of SMS data consisting
of three inputs was examined with the use of Mamdani Fuzzy Systems. Different
fuzzy membership function configurations were used and the final suspiciousness
results were calculated. They were then compared to the ground truth and their
performance metrics were presented anew. The results from the procedure were
satisfactory and the claim that Fuzzy Systems can be used as a means of pattern
identification were verified.

However, as already mentioned in Chapter 4, Fuzzy Systems do not show the
same level of efficiency when the input space consists of a relatively high number
of inputs. Moreover, they have to be reconfigured for any alteration in the input
and output data parameter ranges. Such a shortcoming renders them less useful
for complex scenarios.

NNs and ANFIS were used for the investigation of two scenarios concerning
human behaviour in the external environment of a PPDR system, in other
words traditional criminal investigation. Call and SMS logs were pre-processed
and examined for cyberbullying and low-level drug dealing use cases with a
larger input space. Two types of NNs, a plain backpropagation perceptron
and a pattern recognition backpropagation perceptron with thirteen different
algorithms were tested for the NNs part. While both perceptrons showed
excellent performance results, the plain backpropagation perceptron proved to
be more stable in all the use case examples. Out of all the backpropagation
algorithms, Levenberg-Marquardt and Bayesian Regularization backpropagation
have proven to be more efficient.

ANFIS with different fuzzy clustering settings showed a small performance
metric declining from the plain backpropagation perceptron, but still performed
in a satisfactory manner. Its setup and configuration however are more
complicated and time consuming than the almost plug-and-play equivalents of
NNs. Nevertheless, they can still be used as an alternative methodology without
significant losses in performance.

Lastly, the plain backpropagation configuration with was tested over a previously
unknown dataset, deriving from a device that was used for experimental
purposes. ADAET, a Python script responsible for the acquisition, pre-
processing and evaluation bundle was developed and used with the test device.
The produced results were almost excellent, with a declining of less than
10% percent from the original training and testing dataset. The Levenberg-
Marquardt backpropagation algorithm was proven the more efficient anew.

NNs and ANFIS have proven that they can be used for pattern identification
purposes in mobile forensic evidence. However, there are some key points
that require improvement and can be considered as the current thesis‘future
work.

• Use of data from official sources, such as law enforcement agencies or
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more detailed use-case simulations with actual devices can be used so as
to provide a more stable testing background.

• Call and SMS logs are only a small sample of the data within a mobile
device. New use cases, concerning other data sources, such as SNs logs,
geolocation data, network usage and multimedia can be used so as to
expand the boundaries of the current research.

• The experiments should not be limited strictly to handset evidence.
Contemporary wearable devices are sources of valuable data that can serve
as indicators for criminal investigation, such as heartbeat measurements
and pedometers.

Lastly, an immediate future work concept is the expansion of the experimental
phase of the current thesis with more use cases concerning traditional crimes and
their subsequent evaluation, in order to observe and verify the existing scientific
claims about performance and efficiency.
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