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Abstract: Glazed systems in buildings can account for a significant part of overall energy consump-
tion. The unfavorable relationship between energy savings and the increased cost of energy-efficient
windows is often the main drawback cited by customers to justify its non-acquisition. of glazed
windows. This study addresses the relationship between the investment costs in windows and their
energy performance and associated costs. Seventeen window manufacturers were contacted. This
survey studied the state-of-the-art and the most-used windows in terms of energy efficiency and cost.
Calumen and Guardian Configurator software were used to perform this assessment. Additionally,
SEnergEd software was used to simulate the energy performance and compute the equivalent annual
cost for the entire life cycle of buildings. Besides the economic benefits, the impact of the energy
performance of the windows on the energy performance of the building was also studied. In terms of
energy, the most efficient glazing system was two windows per span, resulting in a combined solar
factor of 0.43 and a 0.55 W/(m2·K) heat-transfer coefficient. On the other hand, one window per
span, with a solar factor of 0.79 and a 3.05 W/(m2 K) heat-transfer coefficient is the most cost-efficient
to be used in Portugal.

Keywords: glazed systems; windows; energy performance; life cycle cost; equivalent annual cost;
nZEB; energy needs; building’s dynamic simulation

1. Introduction

Environmental sustainability and energy efficiency are now well-anchored criteria
in the building sector. Over the past few years, there has been an awareness of the theme
of sustainable construction and rationalization of energy consumption by designers and
architects, as well as by the society in general.

With the signing of the Kyoto Protocol (1997), each signatory state pledged to take
all necessary measures to reduce the production of the gases responsible for the increase
in the greenhouse effect that contributes to global warming. In order to comply with the
assumptions enshrined in this Protocol, the European Union, whose buildings are responsi-
ble for spending more than 40% of total energy [1], decided to, as one of its main objectives,
improve the energy efficiency of buildings. To this end, it imposed environmental protec-
tion requirements on its Member States in its policies and actions (Directive 2002/91/EC),
updated in 2018 Energy Performance of Buildings Directive (2018/844/EU) [2]. Recently,
in 2020, a wave of renovations [3] of public and private buildings, as part of the European
Green Deal [4] that included new rules on the smart readiness of buildings (published
alongside the renovation wave strategy in October 2020), was also announced.

In compliance with such energy performance policies, Portugal has transposed this
commitment into national legislation through the publication of two Decree-Laws, DL
79/2006 and DL 80/2006, updated in 2013 by DL 118/2013 of 20 August [5]. This diploma
revised the regulations on the thermal and energy performance of buildings. Herein, in
a single diploma was embodied the Energy Certification System for Buildings (SCE) [5],

Energies 2021, 14, 3720. https://doi.org/10.3390/en14133720 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0715-7847
https://orcid.org/0000-0002-7805-002X
https://orcid.org/0000-0003-1312-8137
https://doi.org/10.3390/en14133720
https://doi.org/10.3390/en14133720
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14133720
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14133720?type=check_update&version=2


Energies 2021, 14, 3720 2 of 19

the Energy Performance Regulation for Residential Buildings (REH) [6] and the Energy
Performance Regulation for Commercial and Service Buildings (RECS) [7]. These diplomas
also included the concept of nZEB (near-zero energy building), which was supposed to
become the standard for the new buildings in 2020.

As a means to comply with the legislation, the improvement of the overall energy
performance of a new or existing building starts with the adoption of measures, including
a great number of variables. In the case of energy retrofitting, for example, the building
envelope requires constructive solutions for the opaque and transparent elements. While
the opaque envelope may change its composition (“layer order” and thickness [8]), glazing
surfaces are often an obstacle when it comes to minimizing thermal transfers. These ele-
ments are the most vulnerable points on façades with the greatest heat losses during the
winter (between 25 and 30%) and greatest solar gains in the summer. In wintertime, heat
losses can be compensated with solar gains during the daytime, depending on the avail-
ability of sun and on the glazing systems (optical characteristics, geometry and orientation,
and existence or not of shading devices) [9].

As a corollary choice of glazed openings and performance, the concept of nearly-
zero energy building (nZEB) is based on the principles of space comfort associated with
energy-saving and the sustainability of buildings. A poorly designed thermal envelope
affects heating and cooling needs, and an increase in energy consumption is inevitable to
achieve the desired thermal-comfort conditions. Therefore, it is essential to know how the
transparent elements of the envelope contribute to the overall performance of buildings.

Each building opening can be composed of one or more glazed windows, internal
protection (curtain, blackouts, etc.), and exterior solar protection (roller blinds, shutters,
etc.). As suggested by Steen Englund et al. [10], in their field and simulation study in a
Swedish school, in case of building renovation, windows can also be part of the solution.
But the significance of such elements has even more importance in the case of constructive
elements of poor quality, e.g., poor-quality windows.

Table 1 presents a summary of an intensive literature review of studies focused on
measures to improve the performance of glazing systems. As evidenced, different authors
adopted different methods to perform such studies, namely: life-cycle cost (LCC), life-cycle
assessment (LCA), energy analysis or thermal comfort. The most common case studies are
of the residential typology, including apartments and dwellings. This review considered
also the type of parameters that were varied in each study (type of parametric analysis):
type of window, window-to-wall ratio (WWR) and shading. As shown, a significant
majority focused on window type. In this study, authors characterize this market in the
Portuguese context.
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Table 1. Studies about measures to improve the performance of glazing systems.

References

Buildings Methodology Measures

Location/ClimateResidential Service
LCC LCA Energy Analysis Thermal Comfort Window Type WWR Shading

Apartment Dwelling Commercial School Office Healthcare

[11] • • • • • Naples, Italy
[12] • • • Lecce, Italy
[13] • • • • • • Naples, Italy
[14] • • • • • 4 zones, Mediterranean
[15] • • • • Helsinki, Finland
[16] • • • • • Helsinki, Finland
[17] • • • Singapore
[18] • • • • 3 zones, Mediterranean
[19] • • • • • • Xanthi, Greece
[20] • • • • 14 zones, Europe
[21] • • • Albuquerque, USA
[22] • • • Italy
[23] • • • 2 zones, Italy
[24] • • • • • Netherlands
[25] • • • • • Turin, Italy
[26] • • • • 2 zones, Greece
[27] • • • • • Greece

[28] • • • • • 227 zones, IWEC
3012 zones, IWEC2

Studies for the climate of Portugal

[29] • • • • • 3 zones
[30] • • • • Porto
[31] • • • Lisbon
[32] • • • • • • Coimbra
[33] • • • • Porto
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In Portugal, more than 70% of the residential building stock still incorporates simple
glass windows, as shown in Table 2. This data was assessed in 2011 in a survey about the
energy consumption in the domestic sector [34], shows the type of windows that are most
applicable to the different facades of residential buildings in Portugal. However, nowadays
glazing systems may be composed of two windows or even three and are used to reduce
environmental noise and improve the thermal performance of the building.

Table 2. Typology of glazed windows by facade orientation—Portugal, 2010, adapted from [34]. Area—average area per
household orientation [m2].

Type of Windows
South-Oriented East-Oriented West-Oriented

Households Area Households Area Households Area

Simple glazed 74.4% 4.5 71.5% 4.5 71.4 4.3
Double glazed without

thermal cut 18.6% 6.3 22.5% 6.5 22.6 6.0

Double glazed with
thermal cut 7.0% 7.2 6.0% 5.5 6.0 5.3

Within this context, authors assumed the importance of systematizing the type of
windows used in Portugal used in the construction of energy-efficient buildings (or even
nZEBs). It is noteworthy that in Portugal, there are still no nZEBs [35], therefore, this study
focused on the most common building stock, for which opaque construction solutions of
very good thermal quality were assumed.

The updated version of the SCE [5], DL 194/2015 [36], and Ordinance 379-A/2015 [37],
led to a revision of the window requirements in Portugal, briefly synthesized in Table 3.

Table 3. Prescriptive window requirements defined by Ordinance 379-A/2015 [37], (since 15 Decem-
ber 2015). Maximum value of thermal transmission coefficient (Uw,max) and of solar factor (g⊥,max)
of glazed spans.

Uw,max [W/(m2.◦C)] (Winter) Climate Zone

I1 I2 I3

Glazed spans (doors
and windows) (Uw) 2.80 2.40 2.20

g⊥,max (Summer) Climate Zone

(class of thermal
inertia) V1 V2 V3

weak 0.15 0.10 0.10
average 0.56 0.56 0.50
strong 0.56 0.56 0.50

In summary, the objective of this study is twofold: (i) to characterize the windows
usually installed in the Portuguese building stock, both in terms of energy quality and cost
of acquisition; (ii) and to evaluate the relationship between these two parameters.

Therefore, the present study is divided into two parts. The first part addresses the char-
acterization of the Portuguese market for windows. A wide range of manufacturers was
inquired concerning windows’ price and characteristics typically used in the Portuguese
market. The standardization of windows’ characteristics led to eight categories of windows.
The second part focuses on researching the best performance windows for buildings in
terms of economics and energy. The concept of optimal cost considers the lowest expenses
related to the windows during the entire life of a building (initial investment, maintenance,
heating ventilation and air-conditioning (HVAC) systems’ energy consumed due to the
existence of glazing, and end-of-life costs). While for energy aspects, minimal energy
consumption through the useful life of a building with a specific window type suggests
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the optimal energy solution. All these aspects used software and calculation methods to
perform such analysis as presented in Section 2: Methods. Then, case studies are presented,
contextualized and characterized in Section 3. This section is followed by Section 4: Results,
wherein the relation between the cost of acquisition of the windows with the reduction in
energy costs allowed the identification of the optimum point of economic profitability for
windows. The main results are then summarized in Section 5.

2. Methods
2.1. Framework

The present study looked for the best window solution for a representative building
stock. Four main building typologies were considered: (i) residential buildings (an apart-
ment and a detached house), (ii) service buildings with permanent occupancy (a private
clinic with hospitalization), (iii) service buildings with intermittent occupancy (a private
high school and a bank branch) and (iv) commercial buildings (a medium-sized supermar-
ket). The considered buildings were then simulated in three distinct sites, representative of
the Portuguese climate.

2.2. Windows in the Portuguese Market

For the purpose of identifying the optimum point of economic profitability for win-
dows in Portugal, authors started by asking information regarding a wide range of win-
dows manufacturers, including: (i) the most frequently installed size of windows (ii) price
and (iii) energy class categories, from very bad to excellent. Besides the identification of the
typically commercialized windows’ characteristics and prices, companies were also asked
to provide windows datasheets and group them into a six-point energy-quality-scale, in
detail: very poor, poor, medium, good, very good and excellent. All datasheets referred
to the same type of windows, a double layer with 1.30 m and 1.10 m of width and height,
respectively, which corresponds to an area of 1.43 m2 (the current window size most used
in Portugal).

From the collected datasheets, 17 companies provided, in total, 81 quotations. However,
some of the manufacturers did not provide all of the requested window-scale qualities; oth-
erwise, the total windows evaluated would have been 108. From the 81 windows solutions,
70 are made of aluminum (with and without thermal cut), 8 of PVC, and 3 of wood. The
window opening types surveyed included 72 casement windows and 9 sliding windows.

The analyzed datasheets allowed the characterization of windows’ properties, namely,
the solar factor (g⊥) and the heat-transfer coefficient of the window (Uw). These values were
calculated using Calumen and Guardian Configurator. Both software adopted EN 410 [38]
and EN 673 [39] to calculate the windows’ technical characteristics: light transmission,
solar factor or the heat transfer coefficient for any type of glass.

As stated, not only the characteristics of the windows were surveyed but also their
prices—the datasheets also included the installation cost of the glazing systems. However,
prices on datasheets were relative to the area of 1.43 m2, as previously mentioned. If a
window has an area of less than 0.5 m2, its cost is the same as if it were 0.5 m2.

As the suggested classification for each type of window differed substantially from
manufacturer to manufacturer, it was necessary to revise the energy classification according
to the components assembled to shape each window. The categorization process required
weighting two parameters, the window heat-transfer coefficient (UW) and the solar factor
(g), in the single indicator expressed by Equation (1).

R = 0.6 RUw + 0.4 Rg (1)

R—window energy rating [-], RUW —rating of the window heat-transfer coefficient [-] and
Rg—Rating of the window solar factor [-].
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Both ratings, RUW and Rg , are normalized against reference values of the Portuguese
regulation: Uw,max = 2.2 W/(m2·K) and g⊥ ,max = 0.5, using Equation (2).

RUw =
UW

UW,max
, Rg =

g
g,max

(2)

UW—heat transfer coefficient of the window [W/(m2·K)] and g—solar factor of the win-
dow [-].

The window energy rating (R) was then used to reclassify all the windows’ energy
ratings, as presented in Table 4.

Table 4. Windows’ energy ratings.

Window Energy Ratings Parameter R

Class H R > 1.75
Class G 1.50 < R ≤ 1.75
Class F 1.25 < R ≤ 1.50
Class E 1.00 < R ≤ 1.25
Class D 0.75 < R ≤ 1.00
Class C 0.50 < R ≤ 0.75
Class B 0.25 < R ≤ 0.50
Class A R ≤ 0.25

2.3. Window Energy Performance and Equivalent Annual Cost

To obtain the most efficient type of window in terms of energy needs for climatization
and for economic value, the SEnergEd software was used [40,41]. For this, different
buildings with changes in their glazed windows solutions were simulated.

SEnergEd was developed to combine the dynamic simulation of a building with an eco-
nomic analysis of its entire life, considering all the associated costs. Thermal performance
is calculated based on the ISO 13790 [42] dynamic model, 5R1C (5 thermal resistances and
a thermal capacitance). Dynamic hourly calculations were used to compute other energy
needs. It was previously validated by Claro [43], who compared simulation results with
the measured energy consumption of a high school over an entire year. Further details can
be found in the studies of Raimundo [8,41].

Buildings are predesigned according to the typology of use (residential, commercial
and services) that may have a great impact on energy needs. On the one hand, energy
needs depend on use (time and intensity), which, in turn, differs very much from typology
to typology. On the other hand, a building’s physical characteristics associated with such
typologies, the geometry and orientation of the building, its location and constructive
solutions (opaque and transparent) are also key aspects of the calculation of energy needs.
Considering the building envelope, windows contribute to such differences, and the present
work evaluates the impact of using different classes of windows. In other words, the need
for a change in window solution was assessed, excluding the type of energy systems (which
was constant in all simulations). All values were standardized by dividing this value per
window area. The energy needs of climatization due to windows were used to achieve the
optimal window solution for each building.

SEnergEd software predicts building energy needs by function (heating, cooling, venti-
lation, lighting) and not by construction elements. Then, the energy needs for climatization
due to the existence of glazing are obtained using the expression (3).

QW =
QWG −QNG

AG
(3)

QW—energy needs due to the existence of windows [kWh/(m2·year)]; AG—glazing area
[m2]; QWG—building energy needs [kWh/year]; QNG—energy needs of the same building
but without glazing [kWh/year].
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To identify the optimal point of economic profitability of windows, the equivalent
annual cost (EAC) of the building was used. This indicator represents the effective economic
effort that the holder has to support each year for the use of the building, being equivalent
to all expenses, revenues and tax savings related to it [8]. The expenses include initial
investment, end-of-life costs, major repairs, annual tax due to building ownership and the
annual costs of maintenance, energy consumption and other costs. The solution with lower
EAC corresponded to the optimum situation from an economic point-of-view in the climate
of Portugal.

In the present study, SEnergEd software was used to compute the EAC of each building
under several Portuguese climates. This tool performs an economic assessment of the total
expenditures of a building through its life cycle given its thermal and energy performance.
The total expenses in the initial investment, energy consumption and residual value led to
the estimation of the building EAC throughout its entire life cycle. This economic analysis
is based on the concept of EAC, which is calculated using Equation (4).

EAC = −NPV · r (1 + r)n

(1 + r)n − 1
(4)

EAC—building equivalent annual cost [€/year]; NPV—building net present value [€];
r—real interest rate [1/year]; n—lifetime [years].

The NPV is calculated following the approach defined in the European Regulation of
2012 [44], in EN 15459:2007 [45], and presented in the study of Raimundo et al. [8]. NPV
considers the investments, the residual value of the building and the cash flow each year.
Therefore, any revenue from selling energy or renting space, any paying and saving of
taxes and any costs are considered.

The Portuguese fiscal context has significant taxing discounts that are critical for
the economic analysis of the study. The application of taxes depends strongly on the
building’s use and the tax-framework of the holder, which must be included in the building
expenditures. For an economic assessment, some assumptions must be done. Summarily,
taxes included in the methodology of this study were: (i) annual taxes for owning the
buildings (0.4%/year), (ii) value-added taxes (VATs), 23%, for any transaction and (iii) tax
savings for professional activities according to revenues (individuals are not included).
The annual taxes due to holder/ownership depend on the type of use and building, and
not the owner, while VAT recovery depends on the type of holder/owner.

The adopted period for an economic analysis depends on the lifetime (n) of buildings,
which for a Portuguese scenario can be considered 50 years. During this period, interest
rates were assumed to be constant. Even though, in similar studies, these rates ranged
between 0 to 15%, depending on the type of commodity (average prices, energy tariffs,
or discount rates), for the present work, the interest rate considered was 3%/year [8,32],
which is in concordance with the European Union economic context.

Maintenance costs were also considered in the analysis: 1%/year was assumed relative
to the initial construction cost, and 4%/year of the total costs on heating, ventilation and
air-conditioning (HVAC); domestic hot water; renewables; lighting; and other appliances).
Replacement of the energy systems was considered after 25 years.

Finally, given the performance of the HVAC equipment, the annual energy consump-
tion for the building was calculated according to thermal needs. Considering the energy
tariffs (electricity and natural gas) according to the consumer type (domestic or commercial
and services), the energy consumption was converted into annual expenditure.

Given the economic aspects of the analysis, the value of EACW (equivalent annual
cost of windows per glazing area) was used to determine the most economic window,
which corresponds to the minimum value estimated. Since this EAC value is related to
all expenditures throughout the lifetime of the building, including the initial investments
on the building envelope, maintenance and energy costs, EAC for the building without
windows (EACNG—equivalent annual cost of the building without glazing) was removed
from the total EACWG (equivalent annual cost of the building with glazing), which includes
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the total cost of the building with glazing, giving the analysis indicator only the costs
concerning windows. This value was divided by the glazing area of the building in order
to standardize results and compare values from different buildings, EACW. In this way, any
economic cost or saving from the building envelope is removed from the analysis, allowing
comparable results.

Since this software allows the estimation of the building EAC and not one specifically
for the windows, further calculations are required, as suggested in Equation (5), which
defines the economic indicator that was used to determine the most economic window.

EACW =
EACWG − EACNG

AG
(5)

EACW—equivalent annual cost of windows per glazing area [€/(m2·year)]; AG—glazing
area [m2]; EACWG—equivalent annual cost of the building with glazing [€/year]; EACNG—
equivalent annual cost of the building without glazing [€/year].

The above-mentioned approach was repeated for several buildings in three Portuguese
climates for each window class, presented in the next section.

3. Buildings, Windows, Climate, and Air-Conditioning Systems
3.1. Buildings

This study included four main building typologies, covering a broader and representa-
tive building stock of the Portuguese national context: residential, service with permanent
occupancy, service with intermittent occupancy and commercial buildings. As different
operations could induce changes in buildings of the same category, six different building
types were considered in total, namely:

1. Residential:

• A second-floor apartment in a residential block,
• An individual three-story house with a private garden,

2. Services with permanent occupancy:

• A private clinic in a two-story building with permanent occupancy,

3. Services with intermittent occupancy:

• A private high school as a set of seven buildings with intermittent occupancy
(only daytime),

• A bank branch (only daytime occupancy),

4. Commercial:

• A medium-sized supermarket (daytime and part of night occupancy).

Further details of the building types can be found in Raimundo et al. [8]. A summary
of the main characteristics of each building is presented in Table 5, and a synthesis of each
building operation scheduling is presented in Table 6.

Regard the thermal properties of the envelope, a homemade spreadsheet was used
to calculate those parameters following the methodology proposed in ISO 6946 [46], with
the database of the Portuguese system of building energy certification [5]. To determine
the prices of the different construction solutions, an online tool was used, Cype Price
Generator [47]. It is an online database that allows the obtention of the real construction
prices adjusted to the Portuguese market.
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Table 5. Summary of the characteristics of the six buildings considered.

Building Apartment Detached House Private Clinic Private High School Bank Branch Supermarket

Occupancy
[person] 4 4 151 1100 12 194

Floors
[–] 1 3 2 4 1 1

Acl
[m2] 109.4 167.1 926.7 11,246.0 111.4 1035.3

Vol
[m3] 286.6 494.6 3447.3 43,184.6 289.5 3727.1

Aopc

[m2]
58.6 343.4 743.4 22,703.8 181.0 2507.0

Aglz

[m2]
21.3 49.7 192.8 2975.3 37.20 96.6

AR
[m−1] 0.28 0.79 0.27 0.59 0.75 0.70

WWR
[-] 0.27 0.13 0.21 0.12 0.17 0.04

Occupancy—maximum number of occupants, Nf—number of floors, Acl—air-conditioned area, Vol—air-conditioned volume, Aopc—opaque
area of the building envelope, Aglz—glazed area, AR—aspect ratio = (Aopc + Aglz)/Vol, WWR—window-to-wall ratio = Aglz/(Aopc + Aglz).

Table 6. Synthesis of operation and occupancy schedule for each building.

Building Typology Occupancy Schedule Notes

Residential buildings Apartment Daily (1 person), From 18 h to 8 h (4 people);
Weekends, full occupancy

Unoccupied during the first 15 days
of AugustDetached house

Services
Private clinic Continuous

All year long, more intense occupancy
during the daytime on weekdays
and Saturdays

Private high school Weekdays,
9 a.m. to 7 p.m.

Scholar calendar:
100% during school periods
50% during the 1st period of exams
(15–30 June)
25% during the 2nd period of exams
(1–15 July)
25% during the admission phase
(16–31 July).
Closed on school holidays (the first
15 days of April,
1–31 August, and the last 15 days
in December)

Bank branch Weekdays
9 a.m. to 5 p.m. All year long

Commercial Supermarket Daily, 8 a.m. to 10 p.m. More intense occupancy on weekends

3.2. Windows

A complete description of the most commercialized windows in Portugal and their
energy classification, developed by the authors, is in Table 7.

According to the proposed classification in this study, from the 81 budget windows,
6 belong in class H, 4 in G, 19 in F, 23 in E, 16 in D and 13 in C, which leads to the conclusion
that none of the manufacturers’ windows were of classes A or B, thus requiring a solution to
have windows of classes A and B. Combining two windows, one interior and one exterior,
instead of only one, classes A and B were composed of two windows selected from the
previous classes (Table 7).

It is important to note that this study considered that glazed elements did not have
internal protection. Only external shutters with 45 mm horizontal plastic rulers were
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considered. This is a frequently used external occlusion solution in Portugal. Their costs
were added to the price of each glazed element throughout the simulations.

Table 7. Commercialized windows in Portugal.

Window Description (Glass Sheets from Exterior to Interior) Class

Aluminum frame without thermal cut and with simple colorless glass H

Aluminum frame without thermal cut and with double glass (colorless
+ air + colorless) G

Aluminum frame with thermal cut (or PVC or wood) and double glass
(colorless + air + colorless) F

Aluminum frame with thermal cut (or PVC or wood) and double
glazed (colored + air + colorless) or (colorless with reflective film + air +
colorless) or (colorless reflective + air + colorless)

E

Aluminum frame with thermal cut (or PVC or wood) and double glass
(colored reflective + argon + colorless “thermal”) D

Aluminum frame with thermal cut (or PVC or wood) and triple glass
(colored reflective + argon + colorless “thermal” + argon + colorless) C

Two independent windows per span: (two of class E) or (one of F and
one of D) or (one of G and one of C) B

Two independent windows per span: one of class D and one of class C A

Given the window energy rating, characteristics and prices, the respective average (
−
x)

and standard deviation (σ) values of the windows typically commercialized in Portugal, a
synthesis is presented in Table 8. The prices are based on the received quotations, expressed
per square meter, including the cost of the window and of installation. To obtain the cost
of the glazing, the expenses with acquisition and installation of the occlusion devices
(60.46 €/m2, without VAT) should be added.

Table 8. Characterization of windows typically commercialized in the Portuguese market. Costs
without VAT.

Energy Rating H G F E D C B A

UW
[W/(m2·K)]

x 4.723 3.788 3.053 2.407 1.994 1.225 0.554 0.477
σ 0.064 0.053 0.266 0.409 0.242 0.207 0.094 0.041

g
[-]

x 0.877 0.837 0.786 0.713 0.471 0.440 0.427 0.114
σ 0.005 0.022 0.011 0.124 0.091 0.079 0.017 0.005

Price
[€/m2]

x 101.07 117.58 124.52 172.35 196.23 240.89 333.54 422.70
σ 54.31 25.45 43.57 54.08 40.98 78.27 83.01 87.79

R 1.99 1.70 1.46 1.23 0.92 0.69 0.49 0.22

These parameters were used as input variables in the simulations to study the optimal
solution of windows in Portugal in terms of economics and energy.

3.3. Air-Conditioning Systems

The indoor environment is ensured by an HVAC (heating, ventilation and air condi-
tioning) system, composed of fans with 70% efficiency and a chiller/heat pump using a
compression cycle with an efficiency for heating SCOP = 4.30 and for cooling SEER = 5.85,
class A+ [48].

As for air-conditioning, setpoints for indoor air temperature between 21 ◦C and
24 ◦C were established, and the HVAC system was on whenever the building is occupied.
For the Portuguese climate, a chiller/heat pump system in heating mode has reasonable
efficiencies; however, the same does not apply to colder climates. Other energy systems



Energies 2021, 14, 3720 11 of 19

could be described (as lighting or domestic hot water (DHW)), but as these do not impact
the final results, only the air-conditioning systems are presented.

Both the price of electricity and natural gas, excluding VAT, were based on data from
Eurostat from the second semester of 2020 [49], respectively, for the residential buildings
(0.174 €/kWh and 0.078 €/kWh), and for service and commercial buildings (0.111 €/kWh
and 0.059 €/kWh).

3.4. Portuguese Climate

The Portuguese regulation for building energy certification [5] establishes three winter
climates (I1, I2 and I3) and three summer climates (V1, V2 and V3), according to the
heating degree days (HDD), based on 18 ◦C, and the mean outdoor temperatures (Text),
instead of cooling degree days (CDD), based on 24 ◦C. Though the three winter areas
combined with the three summer zones allowed a combination of nine possible climate
zones [5,8,50], authors opted to represent the Portuguese weather, through the simulation
of the buildings in three climatic zones, namely: (i) mild climates I1–V1 (Funchal at
415 m, HDD = 793 ◦C days/year, Text = 20.2 ◦C, CDD = 16 ◦C days/year); (ii) intermediate
climates I2–V2 (Ansião at 361 m, HDD = 1562 ◦C days/year, Text = 21.2 ◦C, CDD = 112 ◦C
days/year); and (iii) intense climates I3–V3 (Mirandela at 600 m, HDD = 2085 ◦C days/year,
Text = 22.1 ◦C, CDD = 218 ◦C days/year).

4. Results
4.1. Energy Needs for Air-Conditioning Due to Windows

The energy needs for climatization due to windows [kWh m−2 year−1], whose values
are expressed per m2 of glazing, for each of the six building types, according to the eight
window-energy classes previously defined, was simulated for each one of the three climate
zones, as shown in Figure 1.

Figure 1 deserves some observations in particular: (i) when the y axis equals “0”, this
corresponds to the “No windows” scenario (no energy gains, no energy losses by glazing);
(ii) every time a point is below “0”, it means glazing is leading to energy savings; (iii) the
fact that, for each building type, the energy class of windows is presented along with the
climate zone, allows the investigation of where the energy classes of windows could have
a higher or lower influence on building energy consumption.

Another general comment that could be addressed in Figure 1 concerns the fact
that, for some building typologies, having windows may not necessarily contribute to a
reduction in energy needs, as for the buildings with all points above the “No windows”
reference line. Also, as observed in five out of the six pictures that comprise Figure 1, it is
not evident that the best window energy class (A) actually performs the best, i.e., leading
to lower energy needs (including both cooling and heating). In the case of the residential
typology, for example, windows of class B show better performance in all climate zones.
This comes from the balance between the heat gains and losses due to the UW and g. For
class A, the g is so low that it does not compensate for the positive contribution of a low
UW. Nonetheless, the economic difference between class C and class B is only justifiable
in an apartment or detached house in zone I3–V3, the more intense climate. The analysis
of the results also demonstrates that the decision of window solutions in the residential
buildings and in the clinic have a higher impact on energy needs with the increase in intense
weather. This indicates that these buildings may depend more on outdoor conditions, since
differences between the results in several locations are much more noticeable than in the
private high school, bank branch or supermarket.
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Figure 1. Energy needs for air-conditioning due to windows for each building type, varying according to each climate zone
(values per m2 of glazed area of external envelope).

In Figure 2, the energy needs for cooling and heating due to windows, for each
building, in all climate zones and windows type, are shown separately. These results
relate significantly with the building type occupancy (Table 5). For example, both the
apartment, the detached house (Dwelling in Figure 2) and the clinic present more dispersed
data for heating than cooling needs—the residential typology has higher occupancy during
nighttime and assumes an unoccupied vacation period during summertime. Nonetheless,
as appointed by the “x” in the boxplot, the averaged energy needs are practically the
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same for the apartment and for the detached house; both the average and median (middle
horizontal line of the boxplot) values for heating are lower than for cooling.
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Figure 2. Energy needs for heating and for cooling due to windows (values per m2 of glazed area of external envelope).
Values for each building include all climate zones and all windows type.

With the clear exception of the apartment, all other building types show higher cooling
than heating needs. The reason is that the glazing systems are more shaded in the apartment
than in the other buildings (in the apartment, the glazing areas are shaded by outdoor
balconies on the upper floor). Such energy needs are particularly expressive in the case of
the supermarket—because it works continuously during the entire year, as it has significant
internal load gains, e.g., big cold storage equipment/areas that release heat inside this
space. On the other hand, it is important note that such energy needs are expressed in the
same unit: m2 of glazed area of external envelope. This means that, for example, in the
case of supermarkets, the glazed area should be reduced to a minimum, and, in the case of
the private clinic, each m2 of glazing should also be very well thought out at the design
stage of such building type. In the case of the private high school, its utilization profile led
to a certain compromise between the cooling and heating needs due to glazing, hence its
existence has a low impact on energy needs for climatization.

4.2. Windows Equivalent Annual Cost

Just like for the energy needs, in Figure 3 is shown the windows equivalent annual
cost (EACW) (values per m2 of glazed area of external envelope), according to the eight
windows energy classes, for the six buildings and the three climate zones considered.
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Figure 3. Windows equivalent annual cost (EACw), for each building type, varying according to each climate zone (values
per m2 of glazed area of external envelope).

From an economic perspective, the best solution is the one with the lowest EAC,
corresponding to the optimum situation for that climate zone, which is signaled with a
“X” in Figure 3. As clearly evidenced by the majority of the graphs, in any circumstance
windows of class F are the optimum investment.

Some observations are due in Figure 3:

• In the case of the residential buildings, whenever these are located, the best window
solution is “class F”—aluminum frame with thermal cut (or PVC or wood) and double
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glass (colorless + air + colorless), Table 7. The same result was obtained for the
private clinic.

• For residential buildings and the private clinic, a parabolic trend is evident, meaning
that the costs of the optimal window are found in the middle energy classes, as the
“best” and “worst” classes showed significantly increased costs. For the remaining
buildings, this trend is not clear. The trend is more intense with increases in the
severity of the climate.

• In the case of the private high school, the bank branch and the supermarket, the best
window solution changes according to the climate zone where these buildings are
located.

• For the buildings previously mentioned, if these are located in the mild zone, the worst
window—H (aluminum frame without thermal cut and with simple colorless glass,
Table 7)—is, in fact, the best solution in economic terms, even though the differences
compared to class F are very small.

A synthesis of the obtained windows equivalent annual cost (EACW) for each building
type is presented in Figure 4. The “x” presented in each boxplot represents the average
value, while the outliers represent the minimum and the maximum, respectively. As
evidenced in this graphic, the EACW value varies more in the apartment building type,
meaning that windows have higher influence in this building type than in the other five
types (it also presents the higher average and median values, wherever it is located).
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of external envelope). Values for each building include all climate zones and all windows type.

Figure 4 highlights the costs related to windows for the several typologies. The
apartment requires higher costs to have windows, while the bank branch requires the
least. In general, buildings with permanent occupancy (apartment, dwelling and clinic)
have higher costs for having windows. Buildings with intermittent use (school, bank
branch and supermarket) have lower costs due to windows and depend less on the type of
window installed.



Energies 2021, 14, 3720 16 of 19

5. Discussion and Conclusions

The present study addresses two main goals. In the first place, the study aims to
characterize the windows installed in Portugal in terms of thermal behavior and costs.
For this purpose, manufacturers were contacted regarding the most-used windows in the
Portuguese market, where a survey regarding the thermal properties of windows and their
installation cost was performed. Then, given the previous characterization, their perfor-
mance throughout the entire life cycle of the case studies was assessed using SEnergEd
software, in terms of energy and economic perspectives. For this purpose, six building
typologies were simulated in three climatic zones representative of the Portuguese climate.
The methodology adopted included a dynamic simulation of the buildings’ thermal and
energy performances coupled with an economic analysis for the entire life cycle.

From the surveyed datasheets, 17 companies provided, in total, 81 quotations with
several characteristics of glazed windows for six categories of quality. From the results
achieved, it was necessary to standardize such information, since companies had different
criteria. For that, Calumen and Guardian Configurator software were used, in order to
respect a proposed new window rating in compliance with the national regulation. The
characterization of the window market in Portugal was rated into eight window types (see
Tables 7 and 8).

The results from this characterization were used to simulate several case studies in the
three Portuguese climate zones. A summary of the window classes for both approaches are
presented in Table 9, highlighting that different solutions must be adopted depending on
the approach. From an energy-efficiency perspective, classes A and B are the most efficient.
The installation of windows of class B and C in residential buildings promotes energy
savings. In the other situations considered, the glazing system is responsible for an increase
in energy needs for climatization, which grows with the intensity of the climate and with
decreasing window quality. From the economic side, generally, windows of class F have
lower costs throughout the entire life cycle of the building. On the other hand, classes A
and B are the ones with higher costs. Therefore, results achieved from the two perspectives
are significantly different.

Table 9. Summary of the best solution of windows for the Portuguese weather.

Building Apartment Detached House Private Clinic Private High School Bank Branch Supermarket

Climate Zone 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Energy B B B B B B A A A B B B B A A A A A

Economic F F F F F F F F F H G F H G F H G F

Small differences were registered when comparing the best window classes for the
three climate zones. Contrary to the results found in Raimundo et al. [8], wherein climate
has a strong impact on the optimal opaque solutions, the optimal window class for energy
and economic purposes is less significant. However, more intense climates are always
associated with higher costs and energy needs even for a small country like Portugal.

Generally, class F windows [aluminum frame with thermal cut (or PVC or wood) and
double glass (colorless + air + colorless)] should be used for economic purposes, but a class
B [two independent windows per span: (one from class G and one from C) or (one from
class F and one from D) or (two from E)] is the best from an energy perspective. Briefly, it
can be stated that it is not possible to find a compromise solution that takes into account
both criteria together, the energy-efficiency and the economics.

The results showed that the influence of windows is more dependent on the building
type of use and occupation than on geometry and architectural characteristics. No cor-
relation between the most viable window class and the building’s aspect ratio (AR) and
window-to-wall ratio (WWR) was recorded from this global analysis. Detailed research on
the influence of these two parameters will be valuable.

It is important to note that the recommendation of the window class to be applied
in Portuguese buildings is mainly applicable to new buildings. In refurbishment, it is
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applicable to recent buildings (less than 30-years-old—the lifetime considered). For cultural
patrimony, careful analysis must be considered, as several restrictions may be imposed
by architects.
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Nomenclature

AG Glazing area [m2]
AR Building aspect ratio
CDD Cooling Degree Days, based on 24 ◦C [◦C days/year]
COP “Coefficient of performance” of HVAC system
EAC Building equivalent annual cost [€/year]
EACW Windows equivalent annual cost per glazing area [€/(m2 year)]
EACNG Equivalent annual cost of the building without glazing [€/year]
EACWG Equivalent annual cost of the building with glazing [€/year]
g⊥ Solar factor of the glazed surface
HDD Heating Degree days, based on 18 ◦C [◦C days/year]
n Building lifetime [years]
NPV Building net present value [€]
nZEB Near zero energy building
QW Energy needs due to the existence of glazing per glazing area [kWh/(m2 year)]
QNG Energy needs for the building without glazing [kWh/year]
QWG Energy needs for the building with glazing [kWh/year]
r Real interest rate [1/year];
R Window energy rating
RUw Rating of the window heat transfer coefficient
Rg Rating of the window solar factor
UW Heat transfer coefficient of the window [W/(m2 K)]
VAT Value added tax
WWR Window-to-wall ratio
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