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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT 

• Nonalcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease in 

developed countries and puts the populations at risk of evolution towards liver fibrosis, 

cirrhosis and hepatocellular carcinoma 

• Mitochondrial dysfunction is involved in the onset of nonalcoholic fatty liver disease 

(NAFLD) and contributes to the progression from NAFLD to nonalcoholic 

steatohepatitis (NASH) 

• Mitochondria could be a target to improve liver function in NAFLD  

 

WHAT THIS STUDY ADDS 

• A description of complex mechanisms involved in mitochondrial dysfunction in NAFLD 

and steatohepatitis 

• Identification of potential therapeutic interventions, either in use or experimental, able 

to improve mitochondrial function in NAFLD 
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ABSTRACT 

Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the excessive 

accumulation of triglycerides in hepatocytes. NAFLD is the most frequent chronic liver disease 

in developed countries, and is often associated with metabolic disorders such as obesity and 

type 2 diabetes. NAFLD definition encompasses a spectrum of chronic liver abnormalities, 

ranging from simple steatosis (NAFL), to steatohepatitis (NASH), significant liver fibrosis, 

cirrhosis, and hepatocellular carcinoma. NAFLD, therefore, represents a global public health 

issue. Mitochondrial dysfunction occurs in NAFLD, and contributes to the progression to the 

necro-inflammatory and fibrotic form (NASH). Disrupted mitochondrial function is associated 

with a decrease in the energy levels and impaired redox balance, and negatively affects cell 

survival by altering overall metabolism and subcellular trafficking. Such events reduce the 

tolerance of hepatocytes towards damaging hits, and favour the injurious effects of extra-

cellular factors. Here, we discuss the role of mitochondria in NAFLD and focus on potential 

therapeutic approaches aimed at preserving mitochondrial function. 
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1. INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of disorders ranging from the 

simple liver steatosis to nonalcoholic steatohepatitis (NASH) with increasing inflammation and 

fibrosis (Figure 1), to cirrhosis and its complications, including the potential evolution to the 

hepatocellular carcinoma. NAFLD develops in the absence of other known causes of 

secondary accumulation of fat (i.e. relevant alcohol consumption, viruses). The prevalence of 

NAFLD is growing alarmingly worldwide with a clear association with metabolic diseases such 

as obesity, insulin resistance, type 2 diabetes, and dyslipidemia [1, 2]. The existence of a bi-

directional relationship between NAFLD and various components of the metabolic syndrome 

points to a strong association between NAFLD and cardiovascular disease (CVD) morbidity 

and mortality. In fact, NAFLD may strongly contribute to the development of hypertension, 

diabetes and cardiovascular disease [3]. 

The processes leading to NAFLD are multifactorial. Overnutrition and fat accumulation in 

hepatocytes in the presence of insulin resistance in genetically predisposed individuals are 

major factors leading to the onset and progression to NASH. Among the genetic factors, 

polymorphisms in genes like PNPLA3 (which encodes patatin-like phospholipase domain-

containing protein 3) and TM6SF2 (which encodes transmembrane 6 superfamily member 2) 

could govern the severity of steatosis/steatohepatitis [4, 5] even in lean subjects [6]. 

Hepatocytes are cells intensively specialized in a variety of metabolic and detoxification 

processes. Therefore, mitochondria in hepatocytes are not only particularly prone to the effects 

of altered substrate influx but also trigger signalling pathways which may lead to cell injury (e.g. 

cytochrome c release) or cell protection (e.g. increased ATP generation). Mitochondrial 

dysfunction has an inevitably negative impact on energy generation as well as on the 

maintenance of ionic and redox gradients, thus being determinant for the progression of 

NAFLD toward NASH [7, 8]. Furthermore, morphological alterations in mitochondria 

(crystalline inclusions, disruption of cristae) are associated with their functional impairment [9, 
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10]. This review discusses the critical role of mitochondria in the development and progression 

of NAFLD and points out to potential therapeutic interventions. 

 

2.  MECHANISMS OF HEPATOCYTE TOXIC FAT ACCUMULATION IN NAFLD 

The mitochondrial damage that occurs in NAFLD is the consequence of a complex and 

multifactorial cascade of events involving long-chain fatty acids (LCFA) and triglycerides (TGs). 

The steps modulate the onset, and progression of liver steatosis. TGs form by the combination 

of one molecule of glycerol connected to three molecules of LCFA. LCFA are essential 

components of diets and are involved in a number of vital processes including energy 

production, energy storage, synthesis of plasma membrane, and anchorage of proteins. 

Hormone-like properties of LCFA include nuclear receptor-mediated (HNF4, PPAR) gene 

expression, activation of the G-protein-coupled receptor (GPCR) GPR40 and insulin release 

by β-cells. In addition, LCFA activate the innate immune response by modulating cellular toll-

like receptor (TLR) signalling, and suppress food intake by acting in a subpopulation of 

hypothalamic neurons (with inhibition of the release of neuropeptide Y (NPY) and Agouti-

related protein (AgRP)).  

TGs are physiologically stored within the adipocytes in the postprandial period and released 

intermittently during lipolysis, when needed. Small lipid droplets are found normally in 

hepatocytes [11, 12] and cardiomyocytes [13] but with the ongoing expansion of visceral 

adiposity, insulin resistance, de-repression of adipocyte lipases, and lipolysis (“obesogenic 

scenario”), a massive release of LCFA occurs into the splanchnic circulation towards the liver, 

striated muscle, cardiomyocytes, and pancreas. In these tissues, both the excess of LCFA and 

TG contribute to lipotoxicity, leading to clinical consequences such as NAFLD, and obesity 

cardiomyopathy [14, 15] (Figure 2). Mathematical algorithms model LCFA uptake according 

to protein-mediated transport of LCFA anions (saturable transport ≈95%) and passive 

transmembrane diffusion of protonated LCFA (unsaturable transport) [16, 17]. In the 

obesogenic scenario, the uptake of LCFA is upregulated in the liver [12], cardiomyocytes [18], 
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and adipose tissues [19]. Uptake of LCFA is up-regulated before weight gain [20], while it is 

down-regulated after weight loss [21]. In addition, Vmax of LCFA intake progressively 

increases from non-obese to obese to super-obese patients [17] in both omental [17, 22] and 

subcutaneous [19] fat. We could speculate that events governing LCFA intake, work 

simultaneously at different tissue levels. 

As depicted in Figure 3A, increased visceral adiposity is associated with local and 

inflammatory changes due to macrophagic-mediated inflammation, upregulated 

adipocytokines and change in the of levels of adipocyte-derived hormones. In the liver, LCFA 

influx is regulated by protein transporters: fatty acid translocase (FAT) or class B scavenger 

receptor (CD36) [23], and fatty acid transporting polypeptide (FATP) family [24-28], as well as 

others [29, 30], including plasma membrane fatty acid binding protein (FABPpm) [31-34], 

caveolin-1 (CAV1) [30, 35]. Dietary fat contributes to the hepatic uptake of LCFA and of 

triglycerides via low-density lipoprotein (LDL) receptor. Dietary and/or serum sugars enhances 

de novo lipogenesis [36] while insulin and glucose induce up-regulation of the carbohydrate-

responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein 1 

(SREBP1) which will further increase intrahepatic lipid supply by about 25% [37, 38]. Insulin-

dependent pathways might involve endoplasmic reticulum stress to activate SREBP1 [39]. The 

intestinal microbiota can also contribute to NAFLD (i.e. dysbiosis [40], over-extraction of dietary 

nutrients [41], increased intestinal permeability [42], intestinal degradation of choline with 

negative effect on lipid homeostasis [36, 43-48], and bacteria and/or bacterial product 

translocation of endotoxins and endogenous ethanol via the portal circulation [49]). Fat 

accumulation is facilitated upon the ongoing decrease of very low-density lipoprotein (VLDL) 

assembly and secretion, decreased mobilization of triglycerides, diminished β-oxidation of 

LCFA, and decreased synthesis of ApoB100 [15]. Under such conditions, intrahepatic lipids 

are synthesized by expanded de novo lipogenesis plus dietary fat influx (40%) and adipose 
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tissue lipolysis (60%) [50]. LCFA conversion to triglycerides might initially limit the ongoing 

damage leading to hepatic cytotoxicity and steatohepatitis. 

Indeed, simple steatosis is an early and largely reversible form of NAFLD, while NASH 

represents the manifestation of hepatocyte injury/death and the resultant wound-healing 

process. The histologic picture resembles that of alcoholic hepatitis and evolution towards 

more severe forms of fibrosis, cryptogenic cirrhosis and hepatocellular carcinoma is possible 

[50]. Figure 3B depicts the steps involving hepatic lipid-induced insulin resistance. Few key 

events occur in the context of overnutrition, increased expression of hepatic suppressor of 

cytokine signaling-3 (SOCS3) and increased insulin resistance [51]. The increased portal flow 

of intra-abdominal fat-derived LCFA is associated with increased hepatic uptake and 

intracellular accumulation of LCFA, increase of lipotoxic substances such as ceramides, 

diacylglycerols (DAG) [52], and activation of the epsilon isoform of protein kinase C (PKCε) 

[53]. Hepatocellular DAG increased if the rates of DAG synthesis due to re-esterification of 

fatty acids and de novo lipogenesis are greater than the rates of mitochondrial long-chain CoA 

(fat) oxidation and rates of incorporation of DAG into triacylglycerides, or both combined 

events. Activated PKCε binds and inhibits the insulin receptor (IR-1) tyrosine kinase with 

decreased phosphorylation of the glycogen synthase kinase 3 (GSK3) ultimately leading to 

decreased glycogen synthesis. The decreased phosphorylation of forkhead box subgroup O 

(FOXO) will drive the FOXO translocation to the nucleus, and increased gene transcription of 

the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEP-CK) and glucose-6-

phosphate (G6P) resulting in decreased insulin-mediated suppression of hepatic 

gluconeogenesis. The increase of IRS-1 and the downstream targets PI3K/Akt and sterol 

regulatory element-binding protein 1c (SREBP-1c) will further contribute to lipid accumulation 

and steatohepatitis [54]. Impaired mitochondrial and extra-mitochondrial oxidation [15] and 

production of reactive oxygen species (ROS) metabolites [55-57] also contribute to 

hepatocellular injury. 
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Further events leading to hepatocyte death, liver fibrosis, and NASH are depicted in Figure 4 

[15, 58]. Excessive influx of LCFA in the liver upregulates several death receptors, i.e. DR5, 

FAS, TRAIL-R2, TNFRSF1A (see legend) [59-61]. Excess intracellular FAs can result in 

intrinsic endoplasmic reticulum stress, and mitochondrial dysfunction. Generation of ROS, 

activation of JNK [62], caspase-2 pathway [63-65], and increased β-oxidation represent the 

principal toxic pathways. Hepatocyte death follows the release of extracellular DAMPs and is 

predisposing to inflammation and fibrosis upon accumulation of LCFA, intestinal endotoxins 

and effect of DAMP on the TLR [66] of recruited macrophages (involving activation of 

inflammasomes, pro-inflammatory cytokines, chemokines and inflammation [67, 68]). 

Activated stellate cells are sensitive to the ongoing oxidative stress and cholesterol 

accumulation [66], and will promote myofibroblasts, collagen production and fibrosis [69-71]. 

T cells might also be involved in the progression of liver disease [50]. Endotoxins can originate 

from gut microbiota and bacterial products of Gram- species[72] 

Under such conditions, the balance between the extent of injurious events and the capacity 

to repair is highly impaired [73]. T-cells might also be involved in the progression of liver 

disease [50]. The involvement of the innate immune system suggests a role for toll-like 

receptors (TLRs) and the nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) 

inflammasome, a cytosolic receptor. TLR4, in turn, leads to the activation of NF-κB, 

macrophage-derived chemokines, and activation of Kupffer cells. Injured hepatocytes release 

micro particles containing mtDNA, which will activate TLR9 pathways, due to their circular, 

prokaryote nature [74-76]. The recruitment of monocytes and macrophages to the liver will 

initiate the inflammatory cascades. The NLRP3 inflammasome responds to various noxious 

signals [DAMPs and pathogen-activated molecular patterns (PAMPs)] with recruitment of an 

apoptosis-associated speck-like protein (ASC) and activation of pro-caspase 1. The ongoing 

mitochondrial dysfunction, lysosomal damage, and oxidative stress occurring during NASH 

could also activate the NLRP3 inflammasome. In addition, NF-κB regulates NLRP3 and pro-

interleukin-1β [54]. Fibrosis is the consequence of the ongoing liver damage, inflammatory cell 
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death and reparative effort which involves activated transforming growth factor β (TGF-β)-

mediated activation of hepatic stellate cells with production of fibrous matrix [77]. Liver cancer 

is the ultimate consequence of such intense regenerative efforts.  

The nuclear liver X receptor (LXR) also contributes to fat accumulation as transcriptional 

activator for lipogenesis via modulation of SREBP-1c and expression of fatty acid synthase, 

carbohydrate-responsive element-binding protein (ChREBP) and stearoyl-CoA desaturase-1 

(SCD-1), all components of de-novo fatty acid biosynthesis. The intestinal farnesoid X nuclear 

receptor (FXR) upregulates SREBP-1c by enhancing ceramide synthesis, increasing de-novo 

lipogenesis and promoting the appearance of NAFLD [78]. Increased apoptosis occurs in 

NAFLD [54] while impaired autophagy contributes to accumulation of damaged cellular 

products in hepatocytes, inflammation and endoplasmic reticulum stress [79]. Finally, the 

prolonged disruption of physiological circadian rhythm in mice with fatty livers leads to the 

development of NASH by dysregulating the cross-talk between two nuclear hormone 

receptors, FXR and constitutive androstane receptor (CAR), resulting in suppression of FXR, 

accumulation of bile acids, bile acid–induced overactivation of CAR, liver injury, fibrosis, and 

even cancer. [80] 

Lipotoxicity encompasses the dysregulation of the intracellular lipid composition with 

accumulation of harmful lipids resulting in subcellular organelle dysfunction, including 

mitochondria, and leading to cell injury and even death. Generation of ceramides increases 

with proinflammatory cytokines, including IL-1 and IL-6, and contributes to inflammation via 

interaction with TNFa. In NASH, the increased expression of SREBP-2 leads to upregulation 

of HMG-CoA reductase, the rate limiting step of cholesterol synthesis, with a final accumulation 

of free cholesterol in mitochondria. Indeed, mitochondria are a well-established target of 

lipotoxicity and participate in the process of apoptosis and in generation of oxidative stress-

related products. In fact, in NASH hepatocytes, signals from death receptors converge on 

mitochondrial pathways of cell death, whereby caspase 8 cleaves Bid, resulting in release of 

citochrome c. In steatotic cells, FXR activation induced by bile acids alters different pathways 
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involved in fatty acid metabolism: activation of peroxisome proliferator-activated receptor alpha 

(PPARα) with increased fatty acids oxidation, SREBP-1c inhibition and modulation of VLDL 

production. 

 

3. MITOCHONDRIAL DYSFUNCTION IN NAFLD/NASH 

Mitochondrial activities in hepatocytes encompass both metabolic pathways and signalling 

networks [81] with a viability depending on several factors including the integrity of 

mitochondrial DNA (mtDNA), membrane constituents, lipoprotein trafficking, pro- and anti-

oxidant balance and metabolic demand and supply [82]. Mitochondria are the most important 

sites for β-oxidation of fatty acids (FAs), whose main regulation depends on carnitine 

palmitoyltransferase 1 (CPT-1), the enzyme required for intra-mitochondrial transport of long-

chain FAs [83]. The progression of NAFLD to its more deleterious NASH form has been 

indicated as a type of mitochondrial disease [13, 84], a possibility occurring at an early stage 

in humans [85]. Mitochondrial defects stimulate ROS production, oxidative stress, and lead to 

impaired FA oxidation processes [86]. Activation of intracellular stress cascades or death 

receptor pathways in liver diseases can result in mitochondrial damage, by means of inner 

membrane permeabilization. Loss of impermeability of the inner mitochondrial membrane can 

lead to mitochondrial depolarization and disruption of the capacity to synthesize ATP, besides 

leading to the loss of antioxidant capacity [87-89].  

On the other hand, an excessive production of ROS in mitochondria can be manifested by 

morphological changes, including cristae swelling [90], decreased ATP synthesis, and 

production of lipid peroxidation products malondialdehyde (MDA) and hydroxynonenal (HNE) 

[48]. Oxidative stress and inflammation are closely associated with elevated oxidative 

metabolism in obese individuals and this link may be exaggerated by increased work through 

anabolic pathways in fatty livers [91]. Disruptions of intracellular homeostatic processes and 

mitochondrial function activate both apoptotic signalling and necroptotic events [92]. Apoptosis 

is associated with changes in mitochondrial cardiolipin and phosphatidylcholine redox state 
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and distribution. Apoptosis is also associated with increased probability of mitochondrial 

permeability transition pore (MPTP) opening as well as release of pro-apoptotic proteins from 

mitochondrial intermembrane space [93]. The final MPTP structure is still a matter of research. 

More recently, research has focused on the involvement of ATP synthase in pore formation i 

[94-97]. Beyond the release of cytochrome c and other pro-apoptotic factors into the cytosolic 

compartment, lysosomal damage, oxidative stress and MPTP opening seem to be involved in 

the activation of NLRP3 inflammasome and of the executioner caspase 3 which interacts with 

pro-caspases 6, 7 and 2 [98, 99]. Necroptosis appears to be a key event in NASH [100]. In this 

scenario, excessive production of ROS is responsible for the oxidative stress, lipid and protein 

oxidation and damage to mtDNA [101]. 

Nitrosative stress also acts as an additional mechanism for cell damage in NAFLD. Locally 

produced nitric oxide (NO) derivatives bind to proteins and thiols, resulting in enzyme 

inactivation and conformational changes in different membrane transporters [99]. NO exerts a 

controller activity on mitochondrial respiration and biogenesis [102]. Both ROS and NO may 

disrupt mitochondrial function by post-translational changes of the mitochondrial proteome 

which result in mitochondrial dysfunction. Indeed, mitochondrial proteomics points to defects 

in the assembly of multi-protein complexes, and resolution of highly hydrophobic proteins of 

the inner mitochondrial membrane [103]. A progressive deterioration of mitochondrial function, 

with decreased respiratory rates and ATP synthesis occurs in NAFLD. Simoes et al. [104] have 

reviewed the role of mitochondria in the development of NAFLD and its progression to NASH. 

Moreover, robust evidence suggests the existence of a relationships between human plasma 

branched-chain amino acids (BCAA) and insulin resistance, which is in line with the hypothesis 

that the mitochondrial modulation of the metabolism by BCAA result in a chronic metabolic 

overload from BCAA. These amino acids are essential to mediate efficient channeling of 

carbon substrates for oxidation through the mitochondrial tricarboxylic acid (TCA) cycle. 

Therefore, impairment of BCAA-mediated upregulation of the TCA cycle may significantly 
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contribute to mitochondrial dysfunction in NAFLD [105]. Indeed, the link between insulin 

resistance and mitochondrial abnormalities has been widely documented [106]. 

Finally, mitochondrial genetics also seem to play a major role in NASH by active modulation 

of oxidative stress and controlling the efficiency of oxidative phosphorylation [107]. 

 

4. THERAPEUTIC INTERVENTIONS ON MITOCHONDRIAL METABOLIC 

PATHWAYS AND FUNCTION 

The presence of obesity and insulin resistance, and the degree of hepatic steatosis 

contribute to the severity of liver inflammation and fibrosis in NAFLD; by counteracting such 

participating factors, both liver histology and mitochondrial function can be improved [108, 

109]. The most efficient treatments include weight loss and exercise [110], but adjunctive 

therapies are actively being investigated [58, 111]. Indeed, initial lifestyle interventions 

contribute to modulate the expression of the disease. Measures include reduction of body 

weight by dietary restriction or, in selected cases, by bariatric surgery (five to ten percent or 

even more of body weight, at a rate of 0.5-1.0 Kg weekly, depending on the presence of 

overweight, obesity, biopsy-proven NASH and increased serum alanine aminotransferase, 

ALT). The program should also include regular physical activity (i.e. 30 min moderate exercise 

five times weekly or increase daily footsteps to 10,000 daily), since aerobic exercise improves 

skeletal muscle insulin sensitivity, a factor contributing to lower insulin resistance and liver 

steatosis [109, 112, 113]. The consumption of fructose-enriched beverages [114-116] and 

alcohol[117] must be limited. Intake of three to five cups of caffeinated coffee daily is 

recommended [118] since regular coffee consumption can significantly reduce the risk for 

hepatic fibrosis and cirrhosis [119] among NASH patients [120]. Because the fatty liver-

associated lipotoxicity drives hepatocyte death and promotes NASH, interventions aiming at 

preventing or treating NASH should firstly counteract the ongoing lipotoxicity. Ideally, the 

therapeutic agents should improve NAFLD/NASH by acting on intracellular metabolic 

pathways and the ongoing process of mitochondrial disruption [121].  
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Few agents may act also by targeting mitochondrial function. Peroxisome proliferator-

activated receptors (PPARs), which are ligand-activated transcription factors, regulate 

intracellular metabolic processes and shift hepatic metabolism toward lipid oxidation [122]. 

Thiazolidinediones are PPARγ agonists and act as antidiabetic drug, and might play a role in 

this respect: pioglitazone improves NASH [123-127], but one of its side effects is weight gain 

[128]. Rosiglitazone is also effective in this regard [129-131]. Pioglitazone prevents the leakage 

of cytochrome c from mitochondria, stabilizes the mitochondrial transmembrane potential, 

inhibits ROS generation and activates the electron transport chain complexes I and III [132]. 

The European Association for the Study of the Liver (EASL) and the American Association for 

the Study of Liver Diseases (AASLD) [133, 134] advise the use of pioglitazone to treat subjects 

with and without type 2 diabetes mellitus with biopsy-demonstrated NASH. Pioglitazone, in 

fact, improved liver histology in these patients [125]. However, it has no indication to treat 

NAFLD without biopsy-based proof of NASH [133, 134]. Other antidiabetic drugs, such as 

liraglutide (glucagon-like peptide 1 analogue) [135] and sitagliptin (dipeptidyl peptidase-4 

inhibitor) [136, 137] may also be effective in NAFLD. In patients treated with elafibranor (an 

agonist of peroxisome proliferator-activated receptors α and δ, involved in mechanisms 

improving insulin sensitivity, glucose homeostasis, lipid metabolism and inflammation), NASH 

resolved without worsening of fibrosis. Liver enzymes, glucose and lipid profiles, and systemic 

inflammatory markers also improved [138] (Figure 5).  

 

Bile acids (BA) are soluble amphiphilic molecules, which represent the major lipid 

components of bile. Primary BA are synthetized from cholesterol in the liver and conjugated to 

glycine or taurine to increase their solubility. Upon secretion into bile, BA are concentrated in 

the gallbladder during fasting, expelled in the intestine in response to dietary fat and bio-

transformed to secondary BAs by the colonic gut microbiota (Figure 6). Both primary and 

secondary BA undergo reabsorption in the ileum and the colon, respectively, and then return 

to the liver, with minimal loss in the feces. Beside their digestive function, more lipophilic BA 
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also play a role as signaling molecules in modulating epithelial cell proliferation, gene 

expression, and lipid and glucose metabolism by activation of the FXR and G-protein-coupled 

bile acid receptor-1 (GPBAR-1) in the liver, intestine, muscle and brown adipose tissue [139]. 

BA promote insulin sensitivity and decrease gluconeogenesis and circulating triglycerides 

[140]. In a randomized, multicenter double-blind placebo-controlled, parallel group clinical trial 

in USA, the synthetic variant of the natural primary BA chenodeoxycholic acid and potent FXR 

activator 6-ethylchenodeoxycholic acid (obeticholic acid, OCA, Intercept Pharmaceuticals) 25 

mg/day orally for 72 weeks improved liver histology of NASH without worsening of fibrosis 

(Figure 7). In addition, serum alanine aminotransferase and aspartate aminotransferase 

concentrations decreased during OCA treatment [141]. The mechanism of action of OCA might 

imply the activation of FXR, with decreased hepatic lipogenesis because of down-regulation 

of the transcription factor SREBP1c and increased SIRT1 [142, 143]. 

 

Since mitochondrial and peroxisomal oxidation of fatty acids generate ROS, the use of 

antioxidant therapy represents one of the major strategies to counteract liver inflammation in 

NASH [144] (Figure 8). One recent study tested the efficacy of the antioxidant Tempol in 

mitigating liver injury associated to NASH. Tempol acts by selectively modulating the gut 

microbiota composition and metabolism under pro-steatotic conditions. Following the change 

in gut microbiota, liver histology showed a marked reduction in lipid droplets. Tempol also 

decreased liver weight and liver/body mass ratios in mice fed a steatogenic diet by interfering 

with the intestine-specific disruption of FXR [78]. In fact, intestinal FXR influences the 

ceramide/SREBP1C/CIDEA pathway and administration of ceramide attenuates the effects of 

the steatogenic diet that induces steatohepatitis. Therefore, inhibition of intestinal FXR is 

crucial for gut microbiome–mediated progression of NAFLD. The inhibition of intestinal FXR 

signaling also results in an improvement in mitochondrial function, repression of ceramide 

synthesis and reduction of its serum levels and, ultimately, in decreased hepatic steatosis 

[145]. Another antioxidant molecule, resveratrol, a polyphenol extract form red grapes and 
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berries, exerts mitochondrial protectant properties [146] However, although promising, the 

possible health benefits of resveratrol were only demonstrated by an attenuation of liver 

fibrosis via the AKT and NF-κB pathway, but without effects on liver fat accumulation. 

Other agents target antioxidant compounds into mitochondria. Mitoquinone (Mito-Q) and 

Mitovitamin E (MitoVit-E) represent a promising novel class of antioxidants. Both molecules 

contain a covalently attached lipophilic triphenylphosphonium (TPP) cationic moiety able to 

transport and concentrate antioxidant molecules within mitochondria [147-149]. Mito-Q 

improves metabolic syndrome in rats fed a high-fat diet for eight weeks [150] and the effect is 

associated with increased expression of cardiolipin synthase and cardiolipin levels in liver 

mitochondria [151]. In another study, Mito-Q prevented hypercholesterolemia, 

hypertriglyceridemia, mtDNA oxidative damage, hyperglycemia, and hepatic steatosis in 

experimental models of atherosclerosis and metabolic syndrome [152]. Low doses of Mito-Q 

and MitoVit-E protected cells against peroxide-induced oxidative damage and apoptosis, in 

contrast to what occurs with low doses of the untargeted antioxidants (e.g. Vit-E and 

ubiquinone). The protective effects of Mito-Q and MitoVit-E are likely mediated through the 

inhibition of cytochrome c release and caspase-3 activation. Furthermore, Mito-Q and MitoVit-

E reduced ROS-induced transferrin receptor-mediated iron uptake in mitochondria, lipid 

peroxidation, lipid peroxide-induced inactivation of complex I, and aconitase [153]. A phase II 

study in patients with chronic hepatitis C demonstrated that Mito-Q decreased circulating 

aminotransferase levels; this effect may suggest reduced hepatic inflammation and necrosis 

in these patients [154].  

Medicinal plants can be used as dietary supplements [155] and silymarin is extracted from milk 

thistle (Silybum marianum) with silybin as its major active compound. Silybin displays some 

hepatoprotective effects [156] and might improve insulin resistance, liver injury and liver 

enzymes in patients with NAFLD [157, 158]. The silybin-phospholipid complex containing 

vitamin E improved liver steatosis in NAFLD patients [159], and significantly lowered fat 

infiltration in the liver of rats fed a high fat diet, likely by modulating thioredoxin changes and 
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the production of nitric oxide (NO) derivatives and by significantly lowering lipid peroxidation. 

Silybin also attenuated changes in mitochondrial respiratory complexes, with a major 

protective effect on Complex II subunit CII-30 [46]. Recently, we showed additional protective 

effects of silybin on rat hepatoma FaO cells mimicking a progressive model of liver steatosis 

[160]. Of note, silybin reduced excessive TG accumulation, changed the expression of 

transcription factors (PPARs, enzymes for mitochondrial, peroxisomal, and ER oxidations of 

FAs). Silybin also rescued the FA-induced mitochondrial dysfunction (size and function) and 

the apoptotic signals and oxidative stress, which resemble a condition of steatohepatitis [90]. 

Finally, the “mitotherapy”, i.e., the exogenous intravenous injection of functional mitochondria 

from hepatoma cells has recently found to improve successfully the phenotype of liver 

steatosis induced by high-fat diet, by decreasing lipid content and restoring cellular redox 

balance. In brief, exogenous mitochondria were tagged with green-fluorescence protein (GFP) 

and were found in mouse liver, lungs, brain, muscle, and kidneys [161, 162]. This disruptive 

strategy results in attenuation of lipid deposits, prevention of cell injury, improved energy 

production with restored hepatocyte function. However, it is not clear how intact mitochondria 

enter the different cells and restore the cell metabolic activity [13]. Further research is evolving 

in this direction, especially concerning the nature of the administrated mitochondria with 

potential metabolic and proteomic differences vs. mitochondrial isolated from normal, non-

tumour-derived hepatocytes. 

Finally, the role of several other agents is currently being investigated, i.e. Mgl-3196 (Madrigal 

Pharmaceuticals), GS-9674 (Gilead Sciences), NGM282 (NGM Bio), arachidyl amido 

cholanoic acid (Aramchol, Galmed Pharmaceuticals), and tropifexor (Novartis). However, the 

ultimate effect of such molecules on mitochondrial function is not defined and deserves further 

and specific investigations. 

 

5. SUMMARY 
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Impairment of several intracellular metabolic pathways can have a role in the pathogenesis of 

NASH. Lipotoxicity associated with glucotoxicity represent the most recent pathogenic view. 

Several new drugs and molecular targets appear promising; however, the results of recent 

clinical trials indicate that the complex pathogenesis of NASH is still the limiting step to reach 

an optimal pharmacological approach. Treatments may need to target some subcellular 

organelles that are fundamental in the pathogenic process, other than acting on genetic risk 

variants or on metabolic/environmental stressors. Ideally, disease-modifying factors may act 

both on mitochondrial function and energy supply and on regulators of lipid metabolism such 

as peroxisomes. In this view, the future research should focus its attention also by considering 

the potential role of microbiota and intestinal nuclear receptors. 
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Legend to Figures  

 

Figure 1  

Light micrographs of human liver stained with hematoxylin-eosin.  

(A) simple steatosis showing intracellular fat deposition organized as droplets confluent to 

form vacuoles;  

(B) steatohepatitis showing fatty infiltration of hepatocytes, inflammation and fibrotic septa 

determining significant changes of the liver architecture. Magnification: 200×. 

Courtesy of Maria L. Caruso, MD, Dept of Pathology, National Institute of Gastroenterology "S 

de Bellis", Castellana Grotte, Bari, Italy 

 

Figure 2 

Distinct regulatory functions of adipocytes in lean and obese subjects.  

In lean subjects, up regulated uptake of long-chain fatty acids (LCFA) by adipocytes from the 

portal vein occurs i.e. adipocytes import LCFA intermittently post-prandially; LCFA accumulate 

into large droplets mainly of triglycerides (TGs). Lipolysis releases LCFA according to the 

metabolic needs. In the obesogenic scenario, subjects accumulate expanded visceral 

adiposity, without preventing the effect of lipases; this condition causes excessive flux of LCFA 

into portal vein with subsequent lipotoxic deposition into non-adipose cells (cardiac myocytes, 

hepatocytes, pancreatic β-cells and striated muscle cells).  

 

Figure 3.  

Lipid accumulation in NAFLD. 

A) In a condition of expanded visceral adiposity and insulin resistance, events include 

increased flow and uptake of long-chain fatty acids (LCFA) in the liver, increased 

uptake of dietary fats and sugars, intestinal dysbiosis, and decreased export of VLDL.  

B) Events contributing to hepatic lipid-induced insulin resistance in the liver. The 

hepatocyte is overloaded with LCFA leading to activation of diacylglyceride (DAG) and 
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epsilon isoform of protein kinase C (PKCε). Further steps include defective 

mitochondrial function and decreased rates of incorporation of DAG into 

triacylglycerides, defective insulin receptor (IR-1), decreased glycogen synthesis, 

along with increased hepatic gluconeogenesis.  

Abbreviations: ApoB, apolipoprotein B; ChREBP, carbohydrate-responsive element-binding 

protein; DNL, de novo lipogenesis; LCFA, long-chain fatty acids; IL, interleukin; FATP5, fatty 

acid transport protein 5 (bile acyl-CoA synthetase); PKC protein kinase C; SREBP, sterol 

regulatory element-binding protein 1; TNF, tumor necrosis factor; VLDL, very low density 

lipoprotein. Symbols: ↑, increased, ↓.  

Adapted from Portincasa P, Wang DQH. Nonalcoholic fatty liver and gallstone disease. In: 

Wang DQH, Portincasa P, eds. Gallstones. Recent advances in epidemiology, pathogenesis, 

diagnosis and management. New York: Nova Science Publisher Inc., 2017:387-414 [163] and 

Grattagliano I, De Bari O, Di Palo D, Montecucco F, Carbone F, Oliveira P, Wang DQH, 

Portincasa P. Mitochondria in liver diseases. In: Oliveira P, ed. Mitochondrial Biology and 

Experimental Therapeutics. Cham, Switzerland: Springer Nature, 2018:91-126.[82] 

 

Figure 4 

Pathways leading to hepatocyte injury, death, inflammation and fibrosis during NAFLD 

and NASH. 

Increased accumulation of LCFA activate endoplasmic reticulum stress, mitochondrial 

dysfunction, death receptors, macrophagic and stellate cell activation. The role of microbiota-

derived endotoxins might contribute to the inflammatory changes. 

Abbreviations: DAMPs, damage-associated molecular patterns; DR5, death receptor 5; LCFA, 

long-chain fatty acids; ROS, reactive oxygen species; TLRs, Toll-like receptors; TNFRSF1A, 

tumor necroptosis factor receptor superfamily member 1A 

Adapted from Portincasa P, Wang DQH. Nonalcoholic fatty liver and gallstone disease. In: 

Wang DQH, Portincasa P, eds. Gallstones. Recent advances in epidemiology, pathogenesis, 
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diagnosis and management. New York: Nova Science Publisher Inc., 2017:387-414 [50] and 

Grattagliano I, De Bari O, Di Palo D, Montecucco F, Carbone F, Oliveira P, Wang DQH, 

Portincasa P. Mitochondria in liver diseases. In: Oliveira P, ed. Mitochondrial Biology and 

Experimental Therapeutics. Cham, Switzerland: Springer Nature, 2018:91-126.[82] 

 

Figure 5 

Structures of agents targeting the steatotic liver: peroxisome proliferator-activated receptors 

(PPARs) pioglitazone and rosiglitazone; sitagliptin (dipeptidyl peptidase-4 inhibitor). 

Elafibranor is an agonist of peroxisome proliferator-activated receptors α and δ, involved in 

mechanisms improving insulin sensitivity, glucose homeostasis, lipid metabolism and 

inflammation). In particular, pioglitazone possesses protective mitochondrial effects, 

preventing the leakage of cytochrome c from mitochondria, stabilizing the mitochondrial 

transmembrane potential, inhibiting ROS generation and activating the electron transport chain 

complexes III and I. 

 

Figure 6 

Bile acid (BA) biosynthesis in humans. The primary BAs are synthetized in the liver starting 

from cholesterol as trihydroxy cholic acid (CA) and dihydroxy chenodeoxycholic acid (CDCA). 

The biosynthetic pathways include the “classical pathway” where a cytochrome P450 oxidase, 

the cholesterol 7α-hydroxylase (CYP7A1), induces the 7a-hydroxylation of cholesterol. The 

“alternative” pathway occurs with another a cytochrome P450 oxidase, the sterol-27-

hydroxylase (CYP27A1), and produces mainly CA. The two primary BAs account for more than 

75% of total BA production. In the intestine (mainly colon), the microbiota operates by 7α-

dehydroxylation on CA and CDCA to synthesize the «secondary» dihydroxy deoxycholic acid 

(DCA) and the monohydroxy lithocholic acid (LCA). CDCA is also 7α-dehydrogenated to 

dihydroxy 7α-oxo-LCA further metabolized to its 7β-epimer and “tertiary’ bile acid the dihydroxy 

ursodeoxycholic acid (UDCA). [139]. 
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Figure 7 

Structure of the potent farnesoid X receptor (FXR) activator 6-ethylchenodeoxycholic acid 

(obeticholic acid, OCA). The structure of chenodeoxycholic acid appears for comparison. 

 

Figure 8 

Structures of antioxidant compounds used for the treatment of liver steatosis, with results 

showing improvement of mitochondrial function.  
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