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Abstract—As telecommunication networks are a critical infras-
tructure of our society, they must evolve to provide high end-
to-end availability and high resilience to large-scale disasters.
Path protection mechanisms can improve end-to-end availability
but, in general, might not be enough to reach the availability
required by critical services. Moreover, adding geodiversity to the
routing paths (i.e., selecting path pairs with higher geographical
distance between them) enhances the network disaster resilience
but also makes it more challenging to reach a high end-to-
end availability as the resulting paths tend to be longer. So,
for a network where each link is characterized by its current
availability and by the cost of upgrading its availability to a new
value, this paper proposes some strategies aiming to determine a
set of links to be upgraded at a minimum cost ensuring a desired
level of availability and geodiversity. The problem is defined as
an integer non-linear programming model, a solving algorithm
based on different greedy strategies is proposed and the relative
performance of the different strategies is evaluated on a set of
problem instances.

Index Terms—availability; path geodiversity; resilience; disas-
ter.

I. INTRODUCTION

It is well known that telecommunication networks are cur-
rently one of the critical infrastructures upon which our society
depends and services are expected to be always-on. Moreover,
disaster-based failures are becoming more frequent in time and
wider in scope, degrading drastically the services supported by
telecommunication networks [1] (a survey of strategies to pro-
tect networks against large-scale natural disasters is presented
in [2]). Thus, it is imperative that telecommunication networks
become both highly available and resilient to disasters.

Networks need to guarantee that all node pairs of interest
(i.e., node pairs involved in critical services such as emergency
calls, smart grid communications, financial transactions, etc.)
have a high end-to-end availability [3], [4], [5]. Moreover,
when a disaster-based failure occurs, it is important not only
to quickly recover the network in the disaster area but also
to minimize the disaster impact for node pairs outside the
disaster area. Here, we explore the idea of path geodiversity,
i.e., how to take into consideration the geographical diversity
of the network topology when making routing decisions. Path
geodiversity has been used to improve services availability [6]
and disaster resilience [7].

Consider a network topology such that the geographical
distance between any two network elements (nodes or links)
is known. Like in [8], [9], we consider a path geodiversity
strategy where the routing between two network nodes is based
on two paths geographically separated by at least a minimum
distance D, so that, if a disaster with a geographical coverage
whose diameter is lower than D affecting one intermediate
element of one path cannot affect the other path. Here, we
follow [9] which considers intermediate elements both as
nodes and links, while [8] considers only intermediate nodes.
Note that the larger the value D is, the more resilient the
network is to disasters but the more difficult it becomes to
reach high end-to-end availability since the resulting paths tend
to be longer.

In this work, we consider jointly the end-to-end availability
and the disaster resilience of a given network topology. We
address the network availability upgrade problem where the
availability of some links must be upgraded to provide the
required end-to-end availability and disaster resilience for a
set of node pairs of interest. In [10], the authors also select
a set of links to be upgraded (shielded, so that they become
invulnerable). However only end-to-end connectivity against
geographic based attacks is ensured, without considering avail-
ability requirements.

The upgraded network must guarantee that each node pair
of interest is provided with at least one path pair fulfilling
two requirements. Concerning end-to-end availability, at least
one path pair with a minimum target availability of Λ must
be provided to each node pair. As pointed out in [9], the
maximum geodiversity value that can be provided by a path
pair to a given node pair is constrained by the geographical
locations of the nodes and the geographical paths of the links.
Hence, concerning disaster resilience, a target geodiversity
value D with a soft requirement is used: at least one path pair
with a minimum geodiversity of D must be provided to each
node pair whose maximum geodiversity value is at least D;
for node pairs such that the network topology cannot provide
D, the maximum possible geodiversity value is used.

The paper is organized as follows. In section II, the network
availability upgrade problem is described. In section III, a solv-
ing algorithm based on different greedy strategies is proposed.
Section IV presents the computational results comparing the
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efficiency of the different greedy strategies. Finally, section V
presents the main conclusions, along with some further work.

II. PROBLEM DEFINITION

Consider two given parameters: a minimum availability pa-
rameter Λ and a minimum geodiversity parameter D. Consider
a given biconnected network defined by an undirected graph
G = (N,E) where N is the set of nodes and E is the set of
edges representing node pairs connected by a direct link. Each
edge e ∈ E is characterized by its current availability ae, its
upgraded availability aue and the cost ce required to upgrade
its availability from ae to aue . The aim is to determine a set
of edges to be upgraded at a minimum cost. For a given set
of node pairs of interest K, the upgraded availability solution
must guarantee the existence of at least one pair of paths for
each node pair (s, t) ∈ K with (i) a minimum availability of
Λ and (ii) a minimum geodiversity of D, if the topology of G
allows it, or the maximum possible geodiversity value if it is
lower than D.

For each node pair (s, t) ∈ K, consider the set of all pairs
of paths available in G defined by Rst where each path pair
r ∈ Rst is defined by two sets of edges: Sr1 (the edge set of
the first path of r) and Sr2 (the edge set of the second path
of r). Then, consider the following binary variables:
xe is equal to 1 if edge e ∈ E is upgraded; 0 otherwise.
ystr is equal to 1 if node pair (s, t) ∈ K may be provided

with path pair r ∈ Rst; 0 otherwise.
Using these variables, the availability of a path pair r ∈ Rst,

represented by Λr, is given by:

Λr = 1−

(
1 −

∏
e∈Sr1

((1− xe) ae + xea
u
e )

)
×(

1 −
∏

e∈Sr2

((1− xe) ae + xea
u
e )

)
(1)

Following [9], the geodiversity of a path pair is the mini-
mum distance between any intermediate node or edge of one
path and any node or edge of the other path. In [9], it is
shown that the geodiversity of a path pair can be modelled
based only on geographical distances between edges provided
that these distances are defined as follows. For each r ∈ Rst

between s and t, the geographical distance between one edge
ei ∈ Sr1 and one edge ej ∈ Sr2, represented by δ(ei, ej), is
defined as (i) the minimum distance between any point in the
geographical path of ei and any point in the geographical path
of ej if they do not share s or t or (ii) the minimum distance
between one edge and the non-common end node of the other
edge if they share either s or t. Fig. 1 shows part of a network
with the source node s, five other nodes (2 to 6) and five edges
(a to e) illustrating the geographical distances between edges
in the different cases. Examples of case (i) are the distances
δ(a, e) and δ(b, e). Note that the zero distances δ(a, b), δ(c, d)
and δ(d, e) also illustrate this case, because each pair of edges
shares a node, which is neither s nor t. As for case (ii), the
distance δ(a, c) between edges a and c, since they share the

Fig. 1: Geographical distances between edges (adapted from
[9])

source node s, is the minimum between the distance between
node 2 (the non-common end node of a) and edge c and the
distance between node 3 (the non-common end node of c) and
edge a. In this work, it will be considered that links follow
the shortest path over a sphere that represents Earth.

Then, the geodiversity value of r ∈ Rst, represented by Dr,
is given by:

Dr = min
ei∈Sr1,ej∈Sr2

δ(ei, ej) (2)

Note that the geodiversity value of a path pair only depends
on the geographical path of each edge. Moreover, for each
node pair (s, t) ∈ K, there is a maximum geographical
distance, which we represent by DMax

st , above which a pair
of paths is infeasible (these values can be computed in
advance using [9]). Therefore, we consider the geodiversity
requirement using Dst = min(D,DMax

st ), i.e., we require D
if DMax

st ≥ D or we require DMax
st , if DMax

st < D.
The network upgrade problem is, then, defined by the

following integer non-linear programming model:

Minimize
∑
e∈E

cexe (3)

Subject to:∑
r∈Rst

ystr ≥ 1 (s, t) ∈ K (4)

Λr ≥ Λ ystr (s, t) ∈ K, r ∈ Rst (5)
Dr ≥ Dst ystr (s, t) ∈ K, r ∈ Rst (6)

xe ∈ {0, 1} e ∈ E (7)
ystr ∈ {0, 1} (s, t) ∈ K, r ∈ Rst (8)

The objective function (3) is the minimization of the total
cost of all upgraded edges. Constraints (4) guarantee that each
(s, t) ∈ K is provided with at least one path pair (i.e., the
paths r ∈ Rst such that the variable ystr is set to 1) and
each of these path pairs has an availability value not lower
than Λ, guaranteed by constraints (5), and a geodiversity value
not lower than Dst, guaranteed by constraints (6). Finally,
constraints (7)-(8) are the variable domain constraints.

Note that, in constraints (5), Λr is given by expression
(1). These constraints relate variables xe with variables ystr
in a non-linear way which turns the proposed formulation
in an integer non-linear programming model. In this case,
standard solution techniques are not valid and appropriate



exact methods (i.e., able to compute the optimal solutions)
must be investigated.

III. SOLVING ALGORITHM

The solving algorithm proposed here, named Minimum
Upgrade Cost with Availability and Geodiversity (MUCAG),
uses an iterative approach based on a greedy strategy. Starting
with the network configuration without any upgraded edge, the
algorithm selects iteratively one edge to be upgraded until the
resulting network configuration provides at least a pair of paths
for each node pair (s, t) ∈ K with a minimum availability of
Λ and a minimum geodiversity of Dst.

We designate a pair of paths with a minimum geodiversity
Dst as a pair of geodiverse paths. As already explained, a
pair of geodiverse paths is always feasible for all (s, t) ∈ K,
as Dst = min(D,DMax

st ). Nevertheless, the existence of
a pair of geodiverse paths with a minimum availability Λ
depends on the set of upgraded edges. So, a nuclear task
of MUCAG is, for a given network configuration and a
given (s, t) ∈ K, to compute a pair of geodiverse paths r
whose availability Λr is at least Λ. This task is implemented
through an algorithm, named Guaranteed Available Pair of
Geodiverse Paths (GAPGP), which is an adaptation of the
algorithm in [11] for calculating the most reliable pair of link
disjoint paths. For reasons that will be explained in the detailed
description of MUCAG, algorithm GAPGP also computes the
pair of geodiverse paths with the highest availability value if
such value is lower than the required Λ.

In the following three subsections, we describe separately
first the GAPGP algorithm, then, the MUCAG algorithm and,
finally, the different greedy strategies tested in practice.

A. GAPGP algorithm description

GAPGP is specified in Algorithm 1. For a given node pair
(s, t) ∈ K, minimum availability value Λ, minimum geodi-
versity value Dst and network configuration (defined by the
values assigned to the binary variables xe), GAPGP computes
a pair of geodiverse paths r ∈ Rst with an availability value
Λr which is either not lower than Λ, if such path pair exists,
or is maximal if maxr∈Rst Λr ≤ Λ.

GAPGP starts by computing an edge cost c′e for all e ∈ E
(lines 1–3) such that enumerating the k shortest paths using
these costs corresponds to the enumeration of the k paths with
the highest availability.

Then, in the main while cycle (lines 6–27), the algorithm
iteratively generates a new first path p with function next-
shortest-path (line 7) by non-increasing order of availability
value (next-shortest-path corresponds to the iterative use of
Yen’s [12] k-shortest path algorithm or of the loopless ver-
sion [13] of the MPS algorithm [14]). For each first path p,
a second path q is computed by function path-geo-distance
(line 16) as the path with the highest availability and a
geodiversity of Dst with p (function path-geo-distance runs
a shortest path algorithm in an auxiliary graph given by G
without the edges of p and the edges with a distance from any
edge of p below Dst). If the second path q exists (q 6= ∅ in

line 17), the availability of path pair r′ = (p, q) is evaluated to
check if the current best solution r must be updated (lines 18–
21).

The algorithm stops (line 6) when either the availability
of the current best path pair r is at least Λ or if variable
opt becomes true (which means that the path pair with the
highest availability has been reached). Variable opt becomes
true in one of two cases. The first case (line 25) is when
function next-shortest-path (line 7) returns no path (i.e. p = ∅
in line 8), which means that all possible paths have already
been enumerated. The second case (line 12) is when the
availability of the current best path pair cannot be further
improved (line 11) (condition also used in [11]).

To understand the condition of line 11, let Av(p) represent
the availability of a path p, i.e., Av(p) = e−c

′(p), where
c′(p) =

∑
e∈p c

′
e. Consequently, the availability of a path pair

(p, q) is Av(p) + (1−Av(p))Av(q). Let the current best path
pair be r = (pw, qw) with availability Λr, where w is the order
of generation of the first element of the pair (path p obtained in
line 7) and qw is the second path (path q obtained in line 16).
Finally, let the new first path generated by next-shortest-path
be pi (with i > w). If Av(pi) + (1 − Av(pi))Av(pi) ≤ Λr

(line 11), then r = (pw, qw) is optimal. The verification
of this statement is straightforward. Following [11], notice
first that Av(pi) ≤ Av(pw). Let qi be the path with the
highest availability which guarantees a geodiversity of Dst

with pi. If Av(qi) > Av(pi), this path pair would have
already been obtained when p = qi. On the other hand, if
Av(qi) ≤ Av(pi), this path pair has an availability which
is at most Av(pi) + (1 − Av(pi)))Av(pi) and, by the above
condition, lower than Λr. So, any path pair obtained from this
point onwards has an availability not better than Λr.

B. MUCAG algorithm description

MUCAG is specified in Algorithm 2. At the beginning
(lines 1-3), the algorithm sets all variables xe to 0, representing
the network with no upgraded edges.Then, the algorithm runs
a while cycle (lines 4-19). At the beginning of each cycle, set
K has the node pairs (s, t) for which there is still no pair of
geodiverse paths with the required availability Λ. The while
cycle runs until set K is empty (line 4).

In the first step of each cycle (line 5), the auxiliary sets K ′

and R are first initialized empty (note that at the end of each
cycle, R includes all the best pairs of geodiverse paths, which
still do not attain Λ). Then, for each (s, t) ∈ K (lines 6-12),
algorithm GAPGP (line 7) computes a pair of geodiverse paths
r with an availability Λr (recall the description in the previous
subsection) that, if below the required value Λ (line 8), makes
node pair (s, t) to be added to K ′ (line 9) and path pair r to
be added to R (line 10). Note that when Λr < Λ, r is the
path pair with the highest availability of the current network
configuration for node pair (s, t). So, the edges involved in
such path pairs are likely to be the most promising ones to
be upgraded to reach the required network configuration in
subsequent cycles.



Algorithm 1 GAPGP

Require: G, s, t, Λ, Dst, (ae, a
u
e , xe) : ∀e ∈ E, δ(ei, ej) :

∀ei, ej ∈ E
Ensure: (r,Λr)

1: for all e ∈ E do
2: c′e = − log(ae)(1− xe)− log(aue )xe . New edge cost
3: end for
4: r ← (∅, ∅); Λr ← 0
5: opt← false . r is not yet the most available path pair
6: while Λ > Λr ∧ ¬opt do
7: p← next-shortest-path(s, t,G, c′)
8: if p 6= ∅ then
9: if Λr 6= 0 then

10: g ← e−c
′(p)

11: if g(2− g) ≤ Λr then . Av(p) , Av(q)
12: opt← true . r is the optimal solution
13: end if
14: end if
15: if ¬opt then
16: q ← path-geo-distance(δ,Dst, p,G, c

′)
17: if q 6= ∅ then
18: r′ ← (p, q)
19: if Λr′ > Λr then
20: r ← r′ . Updates solution
21: end if
22: end if
23: end if
24: else
25: opt← true . No more improvement possible
26: end if
27: end while

Then, K is set with K ′ (line 13), i.e., the new set K has
only the node pairs (s, t) for which there is still no pair of
geodiverse paths compliant with the availability requirement.
Finally, if set K is not empty (lines 14-18): (i) function
selectEdge (line 15) selects one edge e (among the non-
upgraded ones belonging to path pairs in R) and calculates the
end nodes K ′ of the path pairs whose availability becomes at
least Λ with the selected edge (this set can be an empty set),
(ii) the selected edge e is upgraded (line 16) and (iii) K ′ is
removed from K (line 17).

Note that if all the edges in set R (see line 15) have
already been upgraded, the algorithm ends without achieving
the desired end-to-end availability for the demands currently
in set K. For simplicity, this situation is not considered in the
algorithm description.

C. Variants for the greedy algorithm

In line 15 of Algorithm 2, the edge to be upgraded next may
be selected according to different greedy strategies. Consider
first that E(R) represents the set of edges, among the ones
still not upgraded, that belong to at least one of the path pairs
in R. The edge to be upgraded next is one edge of E(R). The

Algorithm 2 MUCAG

Require: G, K, Λ, (ae, a
u
e , ce) : ∀e ∈ E, Dst : ∀(s, t) ∈ K

Ensure: xe : ∀e ∈ E
1: for all e ∈ E do
2: xe ← 0
3: end for
4: while K 6= ∅ do
5: K ′ ← ∅,R ← ∅
6: for all (s, t) ∈ K do
7: (r,Λr)←− GAPGP(s, t,Dst,Λ, xe : e ∈ E)
8: if Λr < Λ then
9: K ′ ← K ′ ∪ {(s, t)}

10: R ← R∪ {r}
11: end if
12: end for
13: K ← K ′

14: if |K| > 0 then
15: (e,K ′)← selectEdge(R,K, xe : e ∈ E)
16: xe ← 1
17: K ← K \K ′
18: end if
19: end while

different strategies described next use one (or a combination)
of the following subsets of E(R):

EM (R) is defined as follows: first, a counter is associated
to each edge in E(R) with the number of times it is
in the path pairs of R; then, EM (R) is composed by
the edges with maximum counter value (i.e. the edges
whose upgrade improves the availability of more path
pairs).

EO(R) is defined as follows: first, a counter is associated
to each edge in E(R) with the number of path pairs
of R whose availability becomes at least Λ if the
edge is upgraded; then, EO(R) is composed by the
edges with maximal counter value or is empty if the
maximal counter value is 0 (i.e. when not empty,
it contains the edges whose upgrade results in the
highest number of path pairs fulfilling the required
availability).

In the following, we describe different greedy strategies,
creating different variants for the greedy algorithm:

• Min-Cost: Select the minimum upgrade cost edge in
E(R).

• Min-Cost–Max-Count: Select the minimum upgrade
cost edge in EM (R).

• Min-Cost–Max-On: Select the minimum upgrade cost
edge in EO(R) if EO(R) is not empty, or in EM (R) if
EO(R) is empty.

• Max-On–Max-Count: Select the edge in EM (R) that,
if upgraded, maximizes the number of path pairs whose
availability becomes at least Λ. If no such edge exists,
select any edge in EM (R).

• Max-Count–Max-On: Select among the edges in



EO(R) the one whose upgrade improves the availability
of more path pairs, or any edge in EM (R) if EO(R) is
empty.

IV. COMPUTATIONAL RESULTS

The computational results presented in this section consider
two network topologies (also used in [9]) representative of
typical telecommunication transport networks: the Germany50
topology (geographical location of nodes available at [15]) and
the CORONET CONUS topology (geographical location of
nodes available at http://www.monarchna.com/topology.html),
referred to as Coronet in this section. Since there is no
available information on the geographical path of each link,
we have considered that links follow the shortest path over
the terrestrial surface assuming that Earth is a sphere, as
already mentioned in section II. For both topologies, the in-
formation concerning edge lengths and geographical distance
between edge-edge pairs and node-edge pairs is available at
http://www.av.it.pt/asou/geodiverse.htm.

In both topologies, we have considered the worst case of
set K composed by all node pairs. Then, for each (s, t) ∈ K,
the maximum geodiversity value DMax

st was obtained solving
the Maximum Distance D of Geodiverse Paths (MDDGP)
optimization problem proposed in [9]. Table I shows the
topology characteristics of both networks.

Concerning the edge availability values, we have considered
the current availability ae of e ∈ E based on its length [16]:

ae = 1− MTTR

MTBF e
(9)

with
MTBF e[hrs] =

CC × 365× 24

cable lengthe
(10)

where MTBF and MTTR are the mean time between
failures and mean time to repair in hours, respectively (as in
in [4], we consider MTTR = 24 and CC = 450). CC is the
cable cut metric in km (cable lengths also in km). Moreover,
we have assumed an upgraded availability aue for each edge
e ∈ E equivalent to the addition of a parallel edge of the same
length. i.e., aue = ae (2− ae).

Concerning the upgrade cost values, note first that in the
general case, the upgrade cost ce of each edge e ∈ E should be
composed by a fixed cost and a cost per unit length of the edge.
Since the expression to calculate the actual cost is uncertain
(it depends on many different factors), here, we analyze the
results of the different greedy strategies for the two extreme
cases: (1) the upgrade cost is the number of upgraded edges
(equivalent to consider a cost of 1 per upgraded edge) and (2)

TABLE I: Network characteristics (|N |, |E|, d – average node
degree, max L – maximum edge length, avg L – average edge
length, maxstD

Max
st ) – All lengths are in km.

Network |N | |E| d maxL avg L maxst DMax
st

Germany50 50 88 3.52 252 100.67 166
Coronet 75 99 2.64 1017 329.72 707

the upgrade cost of each edge is given by its length (equivalent
to consider a cost of 1 per length unit of each edge).

In the following two subsections, we present and discuss
separately the computational results obtained to each network
topology.

A. Results for the Germany50 network

Due to its geographical coverage and the considered edge
availability values, Germany50 already provides four nines
(0.9999) availability between all node pairs even in the case
of requiring a geodiversity value DMax

st for all node pairs
(s, t) ∈ K. So, we have considered a minimum availability
Λ = 0.99999. Table II presents the number of upgraded edges,
the upgrade cost (length based) and the CPU time for the
geodiversity values D of 40 km, 80 km, 120 km and 160 km
(solutions providing the minimum number of upgraded edges
and/or the minimum upgrade cost highlighted in bold).

Table II shows that, in terms of number of upgraded edges,
the Min-Cost–Max-On has the best results, on average, but
both Max-On–Max-Count and Max-Count–Max-On are only
slightly worse. On the other hand, in terms of upgrade cost,
Max-On–Max-Count is clearly the best strategy. So, the main
conclusion is that Max-On–Max-Count is the best compromise
strategy for Germany50, as it finds solutions with the lowest
costs and a number of upgraded edges at most 16% above the
minimum values found by any strategy.

Moreover, the simplest Min-Cost strategy is, by far, the
worst strategy both in terms of number of upgraded edges
and upgrade cost, showing that considering the number of
path pairs whose availability is improved by the selected edge
(as exploited by the other strategies) leads to more efficient
algorithms. The Min-Cost strategy was considered because it
is strongly associated with the objective function in equation
(3). As expected, it resulted in a large number of short edges
being selected for upgrade.

Finally, two expected observations are that, in the overall:
(1) higher geodiversity values D impose upgrade solutions
with both higher number of upgraded edges and cost (with
only a few exceptions); (2) the CPU times are also higher
since the number of iterations of MUCAG (see Algorithm 2)
grows with the number of upgraded edges.

Fig. 2 presents the solutions found by the best compromise
Max-On–Max-Count strategy for the four considered values
of D. Besides illustrating that higher values of D impose a
higher number of required upgraded edges, it also shows that
the set of upgraded edges required by a given D is not a subset
of the set of upgraded edges required by a geodiversity value
higher than D. So, in practice, the right choice of parameter
D is of paramount importance since if later on the required
value D becomes larger, the previous upgraded edges might
not be the best choices.

Fig. 3 presents the solutions found by the other four
strategies for D = 80 km (the solution of Max-On–Max-Count
is in Fig. 2b). The Min-Cost solution (Fig. 3a) illustrates
the inefficiency of this strategy since it gives preference to
many shorter upgraded edges, some of them with a minor



TABLE II: No. of upgraded edges, cost and CPU time for achieving Λ = 0.99999 between all node pairs in Germany50

Min-Cost Min-Cost–Max-Count Min-Cost–Max-On Max-On–Max-Count Max-Count–Max-On
D Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s)
40 40 2561 77.9 18 1507 13.5 15 1842 12.1 16 1469 12.7 14 1688 11.1
80 52 3684 3731.5 25 2289 139.8 20 2664 153.5 22 2260 137.9 21 2563 155.2
120 52 3684 5261.0 32 2843 447.0 25 3355 324.5 28 2839 428.3 27 3389 358.8
160 55 4046 6730.5 37 3285 648.0 26 3405 353.4 29 2914 573.0 25 3190 358.3

(a) D = 40 km (b) D = 80 km

(c) D = 120 km (d) D = 160 km

Fig. 2: Max-On–Max-Count: upgraded edges for achieving
availability Λ = 0.99999 between all node pairs in Germany50

contribution to the availability improvement of the different
path pairs, which ultimately leads to a higher upgrade cost.

The solutions of the other four strategies highlight two main
characteristics also observable in the results of Table II. First,
strategies that consider the edges in EM (R) (i.e., the most
frequent edges in the path pairs of R), namely, the Max-On–
Max-Count (Fig. 2b) and the Min-Cost–Max-Count (Fig. 3b),
find solutions with lower upgrade costs. Second, strategies that
consider the edges in EO(R) (i.e., edges whose upgrade makes
the availability of more path pairs of R to become at least Λ),
namely, the Min-Cost–Max-On (Fig. 3c) and the Max-Count–
Max-On (Fig. 3d), find solutions with a lower number of short
edges, leading to solutions with a lower number of upgraded
edges.

(a) Min–Cost (b) Min-Cost–Max-Count

(c) Min-Cost–Max-On (d) Max-Count–Max-On

Fig. 3: Upgraded edges for achieving availability Λ = 0.99999
between all node pairs in Germany50, when D = 80 km

B. Results for the Coronet network

The Coronet network has a much wider geographical cov-
erage and cannot provide four nines (0.9999) availability to
many node pairs without upgraded edges. So, in this case, we
have considered two minimum availability values. Table III
(for Λ = 0.9999) and Table IV (for Λ = 0.99999) present the
number of upgraded edges, the upgrade cost and the CPU time
for the geodiversity values D of 100 km, 200 km, 400 km
and 600 km (as before, solutions providing the minimum
number of upgraded edges and/or the minimum upgrade cost
highlighted in bold).

Table III shows that for Λ = 0.9999 the Max-On–Max-
Count and Max-Count–Max-On strategies are the best com-
promise between the number of upgraded edges and the



(a) Min-Cost; D = 200 km

(b) Min-Cost–Max-Count; D = 200 km

(c) Min-Cost–Max-On; D = 200 km

(d) Max-On–Max-Count; D = 200 km

(e) Max-Count–Max-On; D = 200 km

Fig. 4: Upgraded edges for achieving availability Λ = 0.9999
between all node pairs in Coronet, when D = 200 km

upgrade cost: the Max-On–Max-Count obtains the lowest (or
very close to the lowest) upgrade costs with a number of
upgraded edges at most 16% higher than the lowest values
and the Max-Count–Max-On obtains the lowest number of
upgraded edges with an upgrade cost at most 18% higher
than the lowest values. On the other hand, Table IV show
that for Λ = 0.99999, with the exception of Min-Cost, which
is much worse, none of the other strategies represents a better
compromise between the number of upgraded edges and the
upgrade cost.

The results of both tables reinforce the observations already
made for Germany50, namely, (1) Min-Cost is always the
worst strategy, (2) the Max-Cost–Max-Count and Max-On–
Max-Count strategies (that give preference to the most fre-
quent edges in the path pairs of R) find solutions with lower
upgrade costs and (3) the Min-Cost–Max-On and the Max-
Count–Max-On strategies (that give preference to edges whose
upgrade makes the availability of more path pairs to become at
least Λ) find solutions with a lower number of upgraded edges.
Fig. 4 presents the solutions found by the five strategies for
Λ = 0.9999 and D = 200 km. In this figure, it is possible to
check that the Min-Cost strategy selects a much higher number
of upgraded edges. Due to the larger dimension of this network
(when compared to the dimension of the Germany50 network),
the differences between the lengths of the selected edges are
not so clear. However, it is possible to observe that the Min-
Cost–Max-On (Fig. 4c) and the Max-Count–Max-On (Fig. 4e)
strategies tend to have less short length edges.

V. CONCLUSIONS AND FURTHER WORK

Telecommunication networks must provide high end-to-
end availability and high resilience to large-scale disasters.
Path protection improves end-to-end availability but might be
not enough to reach the availability required by critical ser-
vices. Moreover, adding path geodiversity to enhance disaster-
resilience of networks makes the provision of high end-to-end
availability even more challenging.

Here, we have addressed the problem of selecting a set of
edges to be upgraded at a minimum cost ensuring a required
level of availability and geodiversity. We have proposed a
solving algorithm which uses an iterative approach based on
a greedy strategy: starting with the network configuration
without upgraded edges, the algorithm selects iteratively one
edge to be upgraded until the resulting network configuration
fulfils the required availability and geodiversity levels. Dif-
ferent edge selection strategies were proposed and tested on
a set of problem instances. The computational tests showed
that a simple strategy of edge selection only based on edge
cost is very inefficient, while strategies taking into account the
improvement impact of the selected edge on the end-to-end
availability of node pairs lead to more efficient algorithms.

Regarding future work, an exact resolution approach and/or
lower bounds for the cost of the solutions will be pursued for
small network instances, which will allow to gain some insight
into the quality of the approximate solutions and also to allow
some tuning of the heuristics.



TABLE III: No. of upgraded edges, cost and CPU time for achieving Λ = 0.9999 between all node pairs in Coronet

Min-Cost Min-Cost–Max-Count Min-Cost–Max-On Max-On–Max-Count Max-Count–Max-On
D Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s)

100 84 21758 14491.2 45 13439 425.3 34 14593 297.3 38 13598 385.9 33 13494 472.2
200 88 23877 38019.7 53 15493 616.6 39 17237 600.1 44 15130 580.6 38 17031 603.3
400 91 26084 44959.8 56 18194 1126.6 45 19610 1002.2 46 17860 1036.8 44 19376 955.7
600 92 26718 46632.4 56 18482 1149.4 47 20584 1024.5 47 17865 1082.5 46 21066 984.7

TABLE IV: No. of upgraded edges, cost and CPU time for achieving Λ = 0.99999 between all node pairs in Coronet

Min-Cost Min-Cost–Max-Count Min-Cost–Max-On Max-On–Max-Count Max-Count–Max-On
D Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s) Edges Cost CPU(s)

100 91 26409 72949.7 82 24534 1482.1 66 26499 1775.3 68 23083 1139.6 66 26499 1812.9
200 94 28182 166467.9 86 25966 2125.3 69 26939 13086.8 72 24495 1649.9 67 26949 4101.8
400 97 30679 189654.7 88 27617 6223.4 72 28274 16829.8 79 28045 4218.5 72 28696 15630.1
600 98 31625 197249.8 89 28350 7070.0 71 28786 13718.6 79 28542 4688.7 72 29247 17911.4
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