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Abstract—Telecommunication services are pervasive in today’s
human activity and are required to offer reliable and quality-of-
service(QoS)-aware guaranteed services. In global path protec-
tion, the working path between a source and a destination can be
protected by a backup path, which ensures data transfer in the
event of a failure that makes the working path to be unavailable.
Multipath and disjoint routing may require the calculation of
disjoint paths maximizing the total bandwidth of the path pair (or
set of paths) or the calculation of maximum-bandwidth disjoint
paths.

In this paper, a lexicographic optimization problem for obtain-
ing maximum-bandwidth disjoint paths, and then maximizing
the bandwidth of the widest path in the pair, is formalized. An
effective heuristic for addressing this problem is presented.

Index Terms—widest path; disjoint routing; lexicographic
optimization

I. INTRODUCTION

Telecommunication services are pervasive in today’s human
activities and are required to offer reliable and quality-of-
service-aware guaranteed services. In global path protection,
the working path between a source and a destination can be
protected by a backup path, which ensures data transfer in
the event of a failure that makes the working path to be
unavailable. This can be accomplished by finding a pair of
edge-disjoint paths if the nodes are considered not to fail or a
pair of node-disjoint paths if node failures are to be taken into
account. Our work here focuses on finding a pair of widest
edge-disjoint paths lexicographically.

The literature on shortest path and related problems such as
disjoint paths is extensive. The calculation of a set k (k ≥ 2) of
edge-disjoint paths with a minimum total additive cost (min-
sum cost) was proposed by Suurballe [13]. The calculation of
edge-disjoint path pairs from a source node to every other node
such that each pair has a minimum additive cost was proposed
in [14]. Bhandari [4] discussed possible implementations of
Suurballe’s algorithm for calculating an edge-disjoint path pair
of min-sum cost. The underlying algorithm in this approach
was based on Dijkstra’s shortest paths algorithm [5] or a
Breadth First Search (BFS). Moreover, the author proposed
an alternative algorithm (Bhandari’s algorithm), which can be
more efficient than Suurballe’s algorithm for calculating a min-
sum edge-disjoint path pair. These problems can be solved in

polynomial time; however, if additional restrictions are added,
the problem may become NP-Complete. In [3], the authors
examined the complexity of different variants of the min-sum
edge-disjoint paths problem and proposed heuristics to address
them.

For certain telecommunication services, the path with the
most available capacity, known as the widest path, is of
importance to ensure quality of service (QoS). The bandwidth
(or capacity) of a path is defined by the bandwidth of the
bottleneck arc of the path, i.e., the arc with the minimum
bandwidth in the path. Pollack [11] first made the astute ob-
servation that several shortest path algorithms can be adapted
for the calculation of the widest path. An algorithm for the
calculation of paths with maximum capacity for all node pairs
was proposed in [6].

Wang and Crowcroft [16] proposed an algorithm for the
calculation of the shortest path among all paths of maximum
bandwidth; this was designated as the shortest-widest path
in [15]. An algorithm for finding the shortest path with
bandwidth guarantee can be found in [8, Algorithm 17.1, page
592]; this is sometimes referred to as the constrained shortest
path problem.

For network protection, multi-path and disjoint routing may
require the determination of a set of edge-disjoint paths that
maximize the sum of the bandwidth of a set of edge-disjoint
paths. Shen et. al. [12] tackled two inter-related problems: 1)
the calculation of a disjoint path pair such that the sum of the
bandwidth in the path pair is larger than a bandwidth guarantee
b0, and 2) the calculation of two disjoint path pairs such that
each of the paths in the pair satisfy (different) specific band-
width guarantees. The authors proved that the two problems
are NP-Complete and proposed an integer linear programming
(ILP) formulation for solving them; additionally they also
proposed two heuristics. An interesting related problem is
considered in [7]: given a network, a source-destination pair
s and t, and a bandwidth guaranteed value b0, how to find
a pair of disjoint paths such that the sum of the bandwidth
in the path pair is larger than b0 while minimizing the total
additive cost of the path pair. They designated this problem
as finding the shortest pair of disjoint paths with bandwidth
guarantee (SPDP-BG). This problem was shown to be NP-
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Complete and a heuristic for solving it was also proposed [7].
A maximum-bandwidth disjoint path pair is obtained that

maximizes the minimum bandwidth of the paths that define
the pair. In [9] and [15], the authors propose algorithm
MADSWIP, which solves exactly and lexicographically the
problem of calculating maximum-bandwidth maximally dis-
joint paths, and minimizes delay (or cost) as a secondary
objective, from a source node to every other node.

The contribution of our work is different from the pre-
vious works; specifically, we present the formulation of a
lexicographic optimization problem for obtaining maximum-
bandwidth edge-disjoint paths and then maximize the band-
width of the widest path in the pair. We also present an
effective heuristic, with complexity identical to Dijkstra’s
algorithm, for solving this problem.

This paper is organized as follows. In Section II, we present
the preliminaries for the model formulation presented in
Section III. In Section IV, the resolution method is presented,
followed by the algorithm description in Section IV-A and
by an example illustrating the algorithm in Section IV-B. The
performance of the heuristic is evaluated in Section V. The
paper ends in Section VI.

II. DEFINITIONS AND NOTATION

Let (N ,A) denote the graph G defining a network topology,
where N = {v1, v2, . . . , vn} is the finite set of nodes and
A = {a1, a2, . . . , am} is the finite set of arcs, such that each
arc is a pair of different nodes. No parallel arcs are considered.
If all the pairs are ordered (unordered), the graph is said to be
directed (undirected). Hereafter, and unless something explicit
is said, the graph is supposed to be directed. Nevertheless, we
will seek to obtain edge-disjoint paths, where edge refers to a
pair of symmetrical pair of arcs in G.

A path p from s to t (s, t ∈ N ) is defined by an alternating
sequence of nodes and arcs, 〈s = v′1, a

′
1, v
′
2, . . . , a

′
r−1, v

′
r = t〉,

where: a′k ∈ A for any k = 1, . . . , r − 1 and v′k ∈ N for any
k = 1, . . . , r; a′k = (v′k, v

′
k+1) for any k = 1, . . . , r − 1. The

sub-path of p from node i to node j will be designated by pij .
A path from s to t in (N ,A) is a loopless path if and

only if all its nodes are different. A cycle is a path from a
node to itself such that all nodes are different except the first
which is identical to the last one. Let Pst designate the set
of (loopless) paths from s to t. The set of edges of path p
(p ∈ Pst) is represented by Ap. The set of edge-disjoint path
pairs from s to t is designated by P̄st = {(p, q) : Ap ∩ Aq =
∅, p 6= q, p, q ∈ Pst}.

Let pij be a path from node i to j; the concatenation of
paths pij and pjl is the path, pij � pjl, from i to l, which
coincides with pij from i to j and with pjl from j to l.

The bandwidth of path p is:

b(p) = min
(i,j)∈p

bij (1)

where bij is the bandwidth of of arc (i, j).
The widest path from s to t is:

p∗ = arg max
p∈Pst

b(p) (2)

The bandwidth of an edge-disjoint path pair (p, q), for a
specific node pair s-t, can be defined as:

bm(p, q) = min[b(p), b(q)] (3)

Defining
(p∗, q∗) = arg max

(p,q)∈P̄st

bm(p, q) (4)

bm(p∗, q∗) corresponds to the maximum capacity of a path
from s to t, for which a node disjoint protection path can
be obtained. This path pair will be designated as maximum-
bandwidth path pair.

The maximum bandwidth of the widest path of an edge-
disjoint path pair (p, q), for a specific node pair s-t, can be
defined as:

bM (p, q) = max[b(p), b(q)], with bm(p, q) > 0 (5)

III. PROBLEM FORMALIZATION

Finding the path pair of maximum bm(p, q), while maxi-
mizing the bandwidth of the widest path in the pair (from s
to t), can be achieved by solving the problem that will be
formalized next. Let f1 = 1/bm(p, q) and f2 = 1/bM (p, q),
with (p, q) ∈ P̄st.

The problem addressed in this work is the lexicographic
optimization of fi, i = 1, 2:

(p∗, q∗) = arg min
(p,q)∈P̄st

fi, i = 1, 2 (6)

The minimization of f1 and f2 correspond to the maximization
of bm(p, q) and bM (p, q), respectively.

Let us assume, without loss of generality, that bm(p, q) =
b(p) and that b(q) ≥ b(p). If more than one edge-disjoint path
with p exists or if more than one path with bandwidth equal to
b(p) exists, problem f1 has multiple optimal solutions (mul-
tiple path pairs that maximize bm(p, q)). Solving the problem
in Equation (6) allows us to obtain the widest possible path q
for the pair of widest bandwidth. This optimization problem—
Widest Edge-disjoint Path Pair Lexicographic Optimization—
will be denoted by WEDLO. This can be of practical interest
in communication networks such as for MPLS-based virtual
private network services
• when using path protection, for ensuring the selected

protection path has spare bandwidth to take into account
traffic fluctuations that take place in the event of failure;

• when using path protection, for ensuring the selected
active path has spare bandwidth, to guarantee the desired
QoS and that there is some extra available capacity to
absorb traffic fluctuations.

IV. PROPOSED RESOLUTION APPROACH

The main idea behind the resolution approach of the prob-
lem in Equation (6) is the use of dual labels at the nodes: each
node will have primary and secondary node labels.

The algorithm first calculates the widest path p̄ from node
s to node t. Then it changes the network into G′ in a way
analogous to the procedure in [9] and [15], which is similar
to the network transformation for edge-disjoint shortest paths



in [4]: the directed arcs in the path from s to t are removed and
the reversed (symmetrical) arcs to the removed arcs are added
with infinite bandwidth (in practical terms, a value larger than
the bandwidth of the widest arc in the network).

To obtain the path pair that maximizes bm, all that is
required is to calculate p̄′, the widest path in the transformed
network G′. The interlacing arcs, that is, the reversed arcs of
p̄ that appear in p̄′ are removed, and the remaining arcs define
the widest edge-disjoint path pair (p, q).

When the calculation of the widest path in the transformed
network G′ begins, the source node has its labels equal to
the bandwidth of the path p̄. In the modified graph, the widest
path is determined using the primary node labels. If interlacing
arcs exist in p̄′, they are removed and the resulting sub-
paths between interlacing chains will belong alternately to the
resulting path pair p and q.

During p̄′ calculation, whenever the non-permanently la-
beled node presently with the largest bandwidth label (in
G′) is selected, let it be node vk, then node vk becomes a
permanently labeled node. Let the predecessor of vk be vk−1.
The secondary label of vk takes the value of the secondary
label of its predecessor, vk−1.

Consider that the new permanently labeled node is vk1
. Let

us assume that the arc (vk1−1, vk1
) belongs to the reversed p̄

path and if the predecessor of vk1−1, let it be vk1−2, is such
that (vk1−2, vk1−1) does not belong to the reversed p̄ path, then
the primary and secondary labels of node vk1 swap, because
arc (vk1−1, vk1

) is the first reversed arc permanently added to
the tree of widest paths, and is a candidate to be part of p̄′.

Consider that this is the first time a reversed arc has
appeared as a possible candidate to be on p̄′. If this is the
case then the sub-path of p̄′ from s to vk1−1, p̄′svk1−1

, is the
candidate sub-path of one of the paths of the path pair (say
p) and the sub-path of p̄ from s to the exit node (vx1

) of the
chain of reversed arcs (in p̄′) starting in node vk1−1, p̄svx1

,
will belong to the other path of the path pair (say q). Note
that vx1 may coincide with vk1 if the chain of reversed arcs
is made of a single arc.

The label swapping ensures that from this point onwards,
the bandwidth of the sub-path starting in vk1

will be calculated
independently from the sub-path that ended in the predecessor
of vk1

. If vx1
is the tail of the sub-path of q, its bandwidth

will initially be the bandwidth of p̄, because the first sub-path
of q will be p̄svx1

. Hence, the first label swapping ensures vx1

is now the primary label b(p̄). The bandwidth of q will be at
most b(p̄), regardless of the bandwidth of the sub-path p̄svx1

.
Hence, this is the correct label for calculating q bandwidth if
the chain from vk1−1 to vx1 does in fact belong to p̄′ – which
implies qsvx1

= p̄svx1
. If the chain from vk1−1 to vx1 is not

part of p̄′, then the fact that we have modified the label of node
vk1

in that chain is irrelevant for the calculation of p̄′. As the
tree of widest paths calculation progresses, the sub-paths with
tail vx1

and vk1−1 will be calculated as widest as possible,
taking into account the bandwidth of p̄svx1

and p̄′svk1−1
.

If, after exiting the first chain of reversed arcs (from vk1−1

to vx1
), a new reversed arc appears in p̄′, that is, if the selected

Fig. 1. Illustration of the label swapping procedure.

node vk2
(and arc (vk2−1, vk2

)) is permanently added to the
tree of widest paths, and it is the first reversed arc of the second
chain of reversed arcs, the primary and secondary labels of vk2

swap. Let vx2
be the exit node of the chain of reversed arcs

(in p̄′) starting in node vk2−1. The candidate path p will be
p̄′svk1−1

� p̄vk1−1vx2
, and the candidate sub-path of q path will

be p̄svx1
� p̄′vx1

vk2−1
. Due to the label swap, the calculation of

the widest sub-paths with tails vx2 and vk2−1 will be made
taking into account the bandwidth of p̄′svk1−1

� p̄vk1−1vx2
and

of p̄svx1
� p̄′vx1

vk2−1
, respectively.

We can now generalize the procedure that has been de-
scribed. Let the first reversed arc of the i-th (i > 2) chain
of reversed arcs in p̄′ be (vki−1, vk); this arc is permanently
added to the tree of widest paths (in construction) when vki

is permanently labeled; because vki
is the head of the first

reversed arc of the i-th chain of reversed arcs in p̄′, the primary
and secondary labels of vki

swap. Let vxi
be the exit node of

the i-th chain of reversed arcs in p̄′ starting in node vki−1. If
i is even, the candidate sub-path of p will be:

p̄′svk1−1
� p̄vk1−1vx2

� · · · � p̄vki−1−1vxi
(7)

and the candidate sub-path of q will be:

p̄svx1
� p̄′vx1

vk2−1
� · · · � p̄′vxi−1

vki−1
(8)

If i is odd, the candidate sub-path of p will be:

p̄′svk1−1
� p̄vk1−1vx2

� · · · � p̄′vxi−1
vki−1

(9)

and the candidate sub-path of q will be:

p̄svx1
� p̄′vx1vk2−1

� · · · � p̄vki−1−1vxi
(10)

Due to the label swap, the calculation of the widest sub-paths
with tails vxi

and vki−1 will be made taking into account the
bandwidth of the candidate paths which end in vxi and vki−1

(according to Equations (7) to (10)), thus ensuring that when
node t is reached, the primary and secondary labels of t will
contain the bandwidth of p and q.

If the number of interlacing chains is even (odd), the pri-
mary label of t will be equal to b(p) (b(q)) and the secondary
label of t will be equal to b(q) (b(p)). If no interlacing between
p̄ and p̄′ takes place, the primary label will be the bandwidth
of p̄′ and the secondary label of t will be the bandwidth of p̄.
We designate this procedure as the Dual Path Label Dijkstra’s
algorithm. In this resolution approach, the paths p and q results
from the union of the arcs in p̄ and p̄′, discarding every arc
whose reversal appears on the other. However, the interlacing
described above (and hence, the final values of the labels) is



only accurate if p and q use all those remaining arcs. To ensure
this, and in the case of a tie, the reversed arcs in G′, should
be preferred to be part of p̄′.

A. The Algorithm
To sum up, the steps required for solving problem Equa-

tion (6) are presented in 1.

Algorithm 1 Widest Edge-disjoint Path Pair Lexicographic
Optimization (WEDLO): heuristic for problem given by Equa-
tion (6)
Require: G = (N ,A), B matrix with arcs bandwidth

(bij , (i, j) ∈ A), nodes source s and target t.
Ensure: Returns a solution (possibly sub-optimal) to problem

Equation (6), or (∅, ∅) if no solution was found.
1: (p, q)← (∅, ∅) . No solution
2: Application of the widest path Dijkstra’s algorithm, cal-

culating path p̄, such that p̄ = arg maxp∈Pst b(p)
3: if p̄ exists then
4: Network is transformed in G′ (the directed arcs in
p̄ from s to t are removed and the reversed arcs to the
removed arcs are added with infinite bandwidth)

5: p̄′ ← DPLD(G′, B, s, t) . Line 29
6: Restores G . Undoes all changes required to obtain

the transformed network (G′).
7: if p̄′ 6= ∅ then
8: (p, q) ← path pair resulting from the removal of

the interlacing arcs of p̄ and p̄′.
9: end if

10: end if
11: return (p, q) . Solution (sub-optimal) to Equation (6) or

(∅, ∅)

Line 5 in Algorithm 1 uses the Dual Path Label Dijkstra’s
algorithm, which is very similar to Dijkstra’s algorithm, and
requires the additional notation:

k Present node
u Candidate successor of the present node
S Set of non-permanent nodes
ψ(j) Node preceding node j
L1(j) Label 1 of node j – primary label
L2(j) Label 2 of node j – secondary label

The algorithm can be implemented using language C++.
To determine k in Line 15 of Line 29, i.e., the node that
leads to the path with the larger bandwidth among all non-
permanent nodes, a multi-map from the C++ Standard Library
can be used. A multi-map is a container whose elements
are the association of keys and values. The key is used to
order the elements according to an order relation. In these
algorithms (widest Dijkstra’s and Line 29), the elements are
ordered solely by bandwidth in a decreasing fashion. Given
two candidate nodes, a and b, if L1(a) > L1(b), then a takes
the top position in the multi-map. If the values are equal, the
element that was first introduced remains on top.

Removal of the top element of the multi-map has a constant
cost. Insertions, removals and searches on the multi-map have

Algorithm 2 Dual Path Label Dijkstra’s (DPLD)
Require: G′ = (N ,A′), modified graph as described in step 4

of Algorithm 1, nodes source s and target t.
Ensure: Calculates p̄′ (if it exits), the widest path in G′,

ensuring that p̄′ and p̄ contain the arcs solving Equation (6)
1: for all i ∈ N do
2: ψ(i)← s
3: L1(i)← 0, L2(i)← 0 . No path
4: end for
5: L1(s)← b(p̄), L2(s)← b(p̄) . Widest path bandwidth
6: k ← s
7: S ← N − {k}
8: repeat
9: for every arc (k, u), u ∈ S do

10: if L1(u) < min[L1(k), b(k, u)] then
11: ψ(u)← k . k becomes the predecessor of u
12: L1(u)← min[L1(k), b(k, u)]
13: end if
14: end for
15: k ← arg maxj∈S L1(j)
16: S ← S − {k} . Permanently labeled node
17: L2(k)← L2(ψ(k)) . Possible bandwidth of the

other path in the pair
18: l← ψ(k) . Arc (ψ(l), l) is followed by (ψ(k), k)
19: if b(ψ(k), k) =∞∧ b(ψ(l), l) 6=∞ then
20: . (ψ(k), k) is the first reversed arc of a chain
21: L1(k) swaps value with L2(k).
22: end if
23: until k = t
24: if L1(t) = 0 then
25: p̄′ ← ∅ . No path from s to t
26: else
27: p̄′ is described by the successive predecessors of t.
28: end if
29: return p̄′.

logarithmic complexity on the number of elements, so the
complexity of this algorithm is O(|A| log2 |N |), identical to
the complexity of Dijkstra’s algorithm using a binary heap [2].

B. Illustrative Example

Consider the example network represented by the graph
in Figure 2(a), where we considered an undirected graph to
simplify the description. The label next to every edge is the
corresponding edge bandwidth. The source node is A and the
target node is Z. The first step is to calculate the widest path
between A and Z, which is path A-B-C-Z (thicker lines in
Figure 2(a)) with bandwidth 100.

The next step is to transform the network and assign labels
to each node, as pictured in Figure 2(b). The nodes belonging
to the widest path, A-B-C-Z, will require two labels in order
to perform label swapping, while the rest of the nodes use
the second label just to carry its value across the tree. In the
figures, the top label represents the primary label, L1, and
bottom label represents the secondary label, L2.



(a) Widest path.

(b) Network transformation.

Fig. 2. Initial steps of the algorithm.

Also, since L2 will be passed on from node to node as the
tree is calculated, the only labels that need to be initialized
are the ones related to the source node, A. L1(A) and L2(A)
receive the bandwidth value of the widest path, 100. The
remaining nodes start with both their labels set as 0.

To compute the widest path tree in the transformed network,
we run the Dual Path Label Dijkstra’s algorithm. Similarly to
the widest path Dijkstra’s algorithm, the first step is to label
A’s neighbor nodes and pick the one with largest bandwidth to
be part of the tree. Seeing as this is a small network and there
are not many options, we easily reach node C (see Figure 3(a)).
The value of L2 is passed on from A to D and then to C as
these nodes became permanent. C’s non-permanent neighbor,
B, gets labeled with the current path bandwidth, L1(B) ←
L1(C) = 50.

As B becomes part of the tree, L2(B) takes the value of
L2(ψ(B) = C). Since (C,B) is the first (in this case only)
arc in a chain of arcs resulting from the previous graph
transformation, the labels are swapped (see Figure 3(b)). If
there was a node Y between C and B, then the primary and
secondary labels of Y would swap once the node became
permanent, but there would be no swapping when B was made
permanent. Meaning that regardless of the number of reversed
arcs that consecutively become part of the tree, the labels will
swap only once per chain of reversed arcs. It is also worth
noting that since the reversed arcs have bandwidth equal to
the practical equivalent of infinity, the only difference between
the labels at the start and at the end of the chain is that they
were swapped.

Since the labels swapped, the current path bandwidth is now
L1(B) = 100, which means that the next choice between E
and F is not irrelevant, as would happen in the case of the

(a) After node C is permanently labeled

(b) Labels swap

Fig. 3. The Dual Path Label Dijkstra’s algorithm first iterations.

(a) Node F is permanently labeled

(b) Node E is permanently labeled

Fig. 4. Impact of the dual labels.

widest path Dijkstra’s algorithm. Instead, L1(E) < L1(F), so
F is the preferred node and, becoming part of the tree, labels
the target node, Z, with L1(Z) equal min[L1(F), b(F,Z)] = 70
(see Figure 4(a)). Also, L2(F) takes the value of L2(B) = 50.

However, now the best candidate is E with L1(E) > L1(Z).
In Figure 4(b), E becomes part of the tree and labels the
target node Z with a larger value, L1(Z) ← 80, because
min[L1(E), b(E,Z)] > L1(Z). E also gets the secondary label
from B, L2(E)← L2(B) = 50.



(a) Path (and tree) completion.

(b) Path Pair computation.

Fig. 5. Final steps.

The target node is reached in Figure 5(a) and L2(Z) ←
L2(E) = 50. In thick lines, we have the widest paths tree; in
blue, the widest path on the modified network; and in a dashed
line, the edge that will not be part of the widest path pair.

In Figure 5(b), the interlacing edge is removed and the path
pair calculation is finished. Note that L1(Z) has the bandwidth
of the red path, which was the current path when the Dual
Path Label Dijkstra’s algorithm ended, and L2(Z) has the
bandwidth of the blue path. The C-Z edge does not affect
the veracity of the last affirmation because it was part of the
widest path in the original network and no path in the pair
can have bandwidth larger than that.

V. PERFORMANCE EVALUATION

The performance of the heuristic is evaluated using fourteen
networks from the SNDLib [10], where nodes of degree one
were removed (and the corresponding networks have an ’*’
appended to their name in the figures). The bandwidth bij of
each edge (i, j) was defined to be 1000/ log d(vi, vj), where
d(vi, vj) is the distance between nodes vi and vj , based on
the GPS coordinates of vi and vj . For comparison, we use an
integer linear programming formulation Equation (11) of the
WEDLO. For this, we first introduce the following additional
notation:
Parameters:
s source node; s ∈ N
t target node; t ∈ N
Bm is max(p,q)∈P̄st

bm(p, q), with Bm > 0
M a sufficiently large constant

Variables:
xkij 1 if path k is using arc (i, j) ∈ A, 0 otherwise, with

k = 1, 2
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Fig. 6. CPU time in milliseconds per node pair

yk bandwidth of path k.

The ILP formulation is as follows:

max y1

Subject to:
yk ≥ Bm, k ∈ {1, 2} (11a)

∑
(i,j)∈A

xkij −
∑

(j,i)∈A

xkji =


1 if s = i

−1 if t = i

0 otherwise

∀i ∈ N , k ∈ {1, 2} (11b)

x1
ij + x1

ji + x2
ij + x2

ji ≤ 1, ∀(i, j) ∈ A (11c)

yk ≤ bijxkij +M(1− xkij), ∀(i, j) ∈ A, k ∈ {1, 2} (11d)

xkij ∈ {0, 1}, ∀(i, j) ∈ A (11e)

This ILP formulation is modified from [12, Fig. 5] to suit our
need for WEDLO. Note that this formulation does not prevent
the resulting paths from having cycles. In Equation (11) we
maximize the bandwidth of path k = 1, while inequality (11a)
ensures both paths must have at least a bandwidth equal to Bm.
Equation (11b) expresses the standard flow conservation law
for variables xkij . Variables xkij are additionally bounded by
inequality (11c) that ensure no edge (represented by a pair of
symmetrical arcs) can be shared by the paths. Inequality (11d)
identifies the capacity of a bottleneck arc for each path, thus
defining the corresponding bandwidth. Equation (11e) defines
the bounds for decision variables.

Recall, that in the case of a tie, the reversed arcs in
G′, should be preferred by the Dual Path Label Dijkstra’s
algorithm, in order to ensure the correct final labels. If that
is not the case, the algorithm may overestimate the bandwidth
of the calculated paths, and one must recalculate them, after
the paths are obtained. Two versions of Algorithm 1 were
considered: WEDLO f and WEDLO l where, in the case of
a tie, the unlabeled nodes adding a reversed arc (of the widest
path) to the tree of shortest paths under construction, are
ranked first and last, respectively.
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In Figure 6, we present the average CPU time per node
pair for solving WEDLO considering all node pairs for each
network, using Algorithm 1 and CPLEX 12.6 [1] for solving
the ILP formulation of WEDLO, on a Desktop with an Intel(R)
Core(TM) i7 CPU 950 @ 3.07GHz processor and 6GB of
RAM. The error bars represent the minimum and maximum
value observed for each network. Note the different vertical
axis for the heuristics and the solver. The CPU time in all cases
grows with the size of the networks (ordered in the figures by
increasing number of nodes, from 10 to 64), but the CPU
values for the heuristics are about 1% of the corresponding
values obtained by CPLEX. Although the average value of
WEDLO l is slightly less than the corresponding value for
the WEDLO f, the maximum values of the former are not
always less than the maximum values of the latter. Therefore,
regarding the CPU time, the two heuristics may be considered
to have a similar performance.

The percentage of node pairs where Algorithm 1 is able to
find an optimal solution (verified using the solution obtained
by CPLEX) is presented in Figure 7. It can be seen that
WELDO l performs much better than WELDO f regarding
the number of optimal solutions found. WELDO l for six
of the fourteen tested networks found 100% of the optimal
solutions in the remaining eight networks WELDO f obtained
over 90% of the optimal solutions. WELDO f only managed
to obtain 100% of the optimal solutions in two networks, has
six networks with 90%-95%, and the remaining six with 85%-
90% sub-optimal solutions.

Regarding the sub-optimal solutions of Algorithm 1, the
average relative error of BM (p, q) using the y1 value as
reference, was also calculated. In both cases, the relative error
is on average less than 4% and the worst case is less than 7%
and 14%, for WELDO l and WELDO f, respectively.

VI. CONCLUSION

Telecommunication networks need to offer reliable and
QoS-aware guaranteed services. Path protection is a simple
and effective approach to increase network resiliency.

In this work, we formally present a lexicographic optimiza-
tion problem for obtaining maximum-bandwidth disjoint paths

and then maximizing the bandwidth of the widest path in the
pair. We then present an effective heuristic, with complexity
identical to Dijkstra’s algorithm for solving this problem. The
heuristics proved to be effective and return solutions in a time
significantly lower than the time needed by a commercial MIP
solver. The resolution to the formalized optimization problem
is of practical interest in QoS routing with protection such
as for MPLS-based virtual private network services. Having
maximized the extra bandwidth available in the widest path of
the pair, it is possible to ensure that if used as a protection path,
it has spare bandwidth to take into account traffic fluctuations
that take place in the event of failure.
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