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Abstract

Safe Collaborative Robotic Manipulators

by

Mohammad Safeea

Doctorate in Mechanical Engineering

University of Coimbra and École Nationale Supérieure d'Arts et Métiers

Collaborative robotic manipulators are new type of industrial manipulators, that
allow the coexistence of humans in the same working area around the robot. Conse-
quently, a human can work safely beside a collaborative manipulator, without having
physical barriers or safety fences separating between them. In light of this, we can see
that the main features of collaborative robots are centred around two main aspects,
safety and collaboration, which are the main topics of this thesis.

On the subject of safe interaction with the robot, we revisit the problem of real-
time collision avoidance for robotic manipulators in unstructured and dynamic en-
vironments, where humans are working side-by-side with the robot. We propose a
method for endowing the manipulator with sensing capabilities, so it can detect the
proximity of humans around it. Also, we propose a control algorithm, based on the
potential �elds method, for providing the robot with human like re�exes, which allows
it to avoid collision with people nearby. Afterwards, we propose a method for imple-
menting the collision avoidance controller to modify o�-line generated paths (necessary
for performing industrial tasks). For testing, we implement the proposed method in
a real industrial robotic cell, utilising an industry standard collaborative manipulator
(KUKA iiwa) in human centred environment, where a human worker (coworker) and
the robot are sharing the same working area.

On the subject of collaboration we study the topic of precise positioning of the end-
e�ector of the robot in an intuitive manner. We present the precision hand-guiding
technique, and we present a lightweight algorithm for performing motion in the null
space of redundant manipulators while preserving the accuracy of end-e�ector's pose.
Afterwards, we exploit the redundancy for performing secondary tasks, where using the
torque feedback at the joints of sensitive robots and the force/torque measurements
from an external Force/Torque (FT) sensor at the �ange of the robot we were able to
perform precise hand-guiding at the end-e�ector level while exploiting redundancy to
perform in-contact obstacle navigation.
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For developing the aforementioned applications, and for achieving real-time perfor-
mance, we implemented various light weight numerical methods. Consequently, several
e�cient algorithms for performing the calculations and the control have been realized
in software packages, most of which are provided as open source libraries in public
repositories.

Throughout this work, the proposed algorithms were implemented in various pro-
gramming languages, while the real-time virtual-reality simulations were carried out us-
ing the program V-REP (Virtual Robot Experimentation Platform). Using these tools
several controllers, algorithms, techniques and simulations were applied and the results
achieved were discussed throughout this document. Experimental tests were carried
out using industrial-grade hardware, the collaborative manipulator KUKA iiwa7R800,
laser scanner, IMUs, force torque sensor and magnetic trackers.
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Résumé

Des robots manipulateurs collaboratifs sûrs

par

Mohammad Safeea

Doctorat Génie Mécanique

Université de Coimbra et École Nationale Supérieure d'Arts et Métiers

Les robots manipulateurs collaboratifs sont de nouveaux types de manipulateurs
dans l'industrie, qui permettent la coexistence homme-robot en partageant le même
espace de travail. Par principe, un humain peut travailler au côté d'un robot col-
laboratif en toute sécurité sans devoir utiliser une barrière physique ou une clôture
de sécurité pour les séparer. Actuellement, le développement de ces moyens est en-
core limité par le niveau de collaboration homme-machine qui se résume générale-
ment à du partage d'espace en mode dégradé. Ainsi, nous proposons dans cette étude
plusieurs contributions concernant la sécurité et la collaboration a�n d'étendre le champ
d'interaction entre l'humain et le robot, et par conséquent la viabilité économique de
ce type d'application, dans un contexte industriel.

Concernant l'aspect de l'interaction sécurisée avec le robot, on revisite le problème
d'évitement de collisions en temps réel pour des robots manipulateurs dans des en-
vironnements dynamiques et non structurés, où des humains et le robot travaillent
côte-à-côte. On propose une méthode pour doter le robot manipulateur de capacités
de détection, dans le but de repérer les humains autour de lui. On propose également
un algorithme de contrôle basé sur la méthode des champs potentiels pour équiper
le robot de ré�exes comme les humains, qui lui permettrait d'éviter la collision avec
les gens aux alentours. Après cela, on présente une méthode d'implantation pratique
du contrôle d'évitement de collision permettant la modi�cation hors ligne des chemins
générés (nécessaire pour e�ectuer des tâches industrielles). La méthode proposée est
validée experimentalement en exploitant une cellule robotique industrielle, constituée
d'un manipulateur collaboratif de type KUKA iiwa dans un environnement principale-
ment humain, où un travailleur humain (collaborateur) et le robot partagent le même
espace de travail et potentiellement la même tâche.

Concernant l'aspect de la collaboration homme-robot, nous proposons une première
contribution portant sur la thématique du positionnement précis de l'e�ecteur du robot
et ceci de manière intuitive pour l'humain. Ainsi, une nouvelle méthodologie de guidage
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manuel (hand-guiding) permettant la maitrise de la précision du guidage à la main est
développée et validée expérimentalement. D'autres fonctionnalités innovantes basées
sur l'exploitation de la redondance cinématique du robot utilisé sont développées dans
ce travail. Une méthode basée sur un algorithme de faible complexité (temps de calcul)
est développée a�n d'e�ectuer un mouvement dans le noyau de l'espace redondant des
robots tout en préservant la précision de la pose de l'e�ecteur. Ensuite, la redondance
est exploitée pour e�ectuer des tâches secondaires autorisant un guidage manuel précis
de l'e�ecteur tout en exploitant la redondance, par exemple dans le cas d'un guidage
en environnement contraint. Cette dernière méthode utilise les informations de couple
de rétroaction au niveau des articulations des robots , ainsi que la mesure de la force
et du couple exercée au niveau de l'e�ecteur par le biais d'un capteur d'e�ort/couple
(F/T) externe.

Le développement des applications précédemment mentionnées a été réalisé en inté-
grant la contrainte de la faisabilité de calcul temps réel sur un moyen robotisé industriel.
Pour ce faire, plusieurs méthodes numériques à faible complexité algorithmique ont été
développées est évaluées. Les logiciels et algorithmes exploités proviennent de librairies
open source et les développements proposés ont été rendu également accessibles à tous
publics.

Tout au long de ce travail, les algorithmes développés ont été codés dans di�érents
langages de programmation, tandis que les simulations de réalité virtuel en temps
réel sont réalisée en utilisant le programme V-REP (Virtual Robot Experimentation
Platform). Une contribution transverse à cette étude réside dans le fait que tous les
algorithmes, techniques et simulations développés sont appliqués expérimentalement
sur des moyens industriels (robot manipulateur collaboratif KUKA iiwa7R800, laser
scanner, IMUs, capteur d'e�ort force/couple 6 composantes et traqueurs magnétiques
de géolocalisation) et qu'une analyse pratique des contraintes d'implantations est con-
duite pour chacune des nouvelles fonctionnalités.
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Resumo

Manipuladores robóticos colaborativos seguros

por

Mohammad Safeea

Doutoramento em Engenharia Mecânica

Universidade de Coimbra e École Nationale Supérieure d'Arts et Métiers

Os manipuladores robóticos colaborativos são um novo tipo de manipulador indus-
trial que permite a coexistência de seres humanos na área de trabalho em redor do
robô. Consequentemente, um humano pode trabalhar com segurança ao lado de um
manipulador colaborativo, partilhando o mesmo espaço e sem barreiras físicas entre
eles. As principais características dos robôs colaborativos centram-se em dois aspetos
principais, segurança e colaboração, sendo estes os tópicos principais desta tese.

Relativamente à interação segura com manipuladores robóticos colaborativos, re-
visitamos o problema da prevenção de colisões em tempo real em ambientes não es-
truturados e dinâmicos, onde humanos e robôs trabalham lado a lado. É proposto um
método para dotar o manipulador de recursos de deteção de humanos/obstáculos em
seu redor. Além disso, é proposto um algoritmo de controlo baseado no método de cam-
pos potenciais que permite ao robô colaborativo evitar colisões com humanos/obstáculos.
Posteriormente, propomos um método para o controlador de prevenção de colisões de
forma a alterar as trajetórias nominais do robô de�nidas o�-line (necessário para exe-
cutar tarefas industriais). As metodologias propostas foram implementadas e testadas
numa célula robótica real, utilizando um manipulador colaborativo industrial (KUKA
iiwa) em tarefas onde robô e humano partilham a mesma área de trabalho.

O tópico da colaboração homem-robô foi estudado considerando o posicionamento
preciso do robô de forma intuitiva. É proposto um método de guiamento manual de
precisão, assente num algoritmo que permite o movimento do robô no espaço nulo de
manipuladores redundantes enquanto preserva a precisão posicional. A redundância é
também explorada recorrendo ao uso de medições de torque a partir das articulações do
robô e medições de força/torque de um sensor externo de Força/Torque (FT) acoplado
à �ange do robô. Desta forma conseguimos realizar o guiamento manual do robô
ao nível do end-e�ector enquanto tiramos vantagem da redundância na navegação de
obstáculos por contato.

As metodologias acima mencionadas foram implementadas em robôs reais, recor-
rendo a algoritmos que pela sua natureza de aplicação devem ser computacionalmente
leves e e�cientes, permitindo assim desempenho em tempo real por parte do sistema
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robótico. Neste contexto, vários algoritmos relacionados com a implementação dos
métodos, cálculos matemáticos e controlo foram desenvolvidos e agrupados em pacotes
de software, a maioria dos quais são fornecidos como bibliotecas de código aberto em
repositórios públicos.

Os algoritmos propostos foram implementados em várias linguagens de progra-
mação, enquanto as que simulações em tempo real foram realizadas usando o programa
V-REP (Virtual Robot Experimentation Platform). Usando essas ferramentas vários
controladores e algoritmos foram aplicados, sendo os seus resultados discutidos neste
documento. Testes experimentais foram realizados usando hardware de nível industrial,
nomeadamente o manipulador colaborativo KUKA iiwa7R800, scanner laser, unidades
de medição inerciais (IMUs), sensores de força/torque e rastreadores magnéticos.

12



Palavras-chave

Prevenção de colisões, segurança, campos potenciais, método de Newton, Hessian,
robôs colaborativos, guiamento manual, redundância, cinemática, dinâmica, algoritmos
recursivos, matriz de massa, símbolos de Christo�el.

13



ACKNOWLEDGEMENT

I would like to thank my supervisors Professor Pedro Neto, and Professor Richard
Bearee for their friendliness, patience, important notes, and the useful guidance that
they kindly o�ered throughout this work. They provided encouragement, and unwa-
vering enthusiasm with my research, their advice and leadership were unequivocally
fundamental in the progress of this work. Besides to my supervisors, I would like to
thank Dr. Antonio Mourão for his mentorship and advice.

I also express my appreciation to the administrations of both Universities Coimbra
and Arts et Métiers, for o�ering the suitable and rich environment to work in, they
provided the required resources which facilitated my work, especially the unrestricted
access to the robotics laboratories, with all of their resources, and materials, among
others.

A special sense of gratitude to my loving family, particularly my mother, for her
faith in me, encouragement and moral support, which provided the needed motivation
during times of di�culty.

My most special thanks to the Culture and Communication o�ce of the university
of Coimbra, especially to Dr. Teresa Baptista, also to the o�ce of president Jorge
Sampaio for their continuous support particularly the president's advisor Dr. Helena
Barroco.

Many thanks to my friends and colleagues in the collaborative robotics labs in both
Universities.

This thesis was possible thanks to the support of the Foundation for Science and
Technology (FCT), through grant SFRH/BD/131091/2017.

14



Acronyms List

EEF End-E�ector

DoF Degrees of Freedom

HG Hand-Guiding

DH Denavit-Hartenberg

APF Arti�cial Potential Fields

DLS Damped Least Squares

IMU Inertial Measurement Unit

LPF Low-Pass Filter

MVA Moving Average

3D 3 Dimensional

PRM Probabilistic RoadMaps

CAD Computer Aided Design

HRI Human Robot Interaction

PbD Programming by Demonstration

CA Collision Avoidance

TCP Tool Centre Point

KST KUKA Sunrise Toolbox

KCT KUKA Control Toolbox

ROS Robot Operating System

TCP/IP Transmission Control Protocol/Internet Protocol

PTP Point To Point

COM Centre of Mass

FT Force & Torque

JSIM Joint Space Inertia Matrix

CRBA Composite Rigid Body Algorithm

GDAHJ Geometric Dynamics Algorithm for High number of Joints

HDoF High Degrees of Freedom
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Nomenclature

The mathematical notation used throughout this study is the same notation used in
[1], and is described below:

1. Bold capital letters are used to denote matrices, J for the Jacobian matrix.

2. Bold and Italic small letters are used to denote vectors, q for the joints positions
vector.

3. Italic small letters are used to denote scalars, qj is the angular position of joint
j.

4. Dot operators are used to denote time derivatives q̇ = dq/dt.

5. Transpose of a matrix A is denoted by AT.

6. The inverse of a matrix A is denoted by A−1.

7. The pseudo inverse of a matrix A is denoted by A†.

8. Vector cross product is denoted by ×.

9. The skew symmetric operator of a vector p is notated by p̂. Where p̂ is used as
the matrix representation of the cross product p×.

10. The gradient of a scalar function u is denoted using the Nabla operator by ∇u.
In this case, as reported in [2] P196.

11. The Hessian of a scalar function u is denoted using the Nabla operator by ∇2u.
In this case, as reported in [2] P196.
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Chapter 1

Introduction

Nowadays, industrial robots are cornerstones in modern factories. Their involvement in
workspace contributes to higher production capabilities, �exibility and accuracy. They
are used extensively in manufacturing for pick and place applications, painting, welding,
metal processing, and even in food industry. Owing to their accuracy, they are also
becoming valuable tools for performing precise operations in aerospace industry. In the
framework of Industry 4.0, the presence of robots in human centred environments is of
vital importance, as it brings to the factory �oor the best of both, the cognitive capacity
of humans and the special qualities of robots, including their precision, strength and
repetitiveness. Such approach will render production lines more productive and �exible.
But, industrial robots are currently separated from humans behind fences for safety
reasons. In addition, they are still hard to program, even for experienced users. Those
drawbacks form a barrier to e�ective achievement of human-robot cooperation and
interaction on the factory �oor.

In such a case, it is required to have safer robots with better collaborative capa-
bilities, that are easier to program without requiring high technical knowledge. Which
have the ability to avert danger and ensure safety of the human coworker during mutual
interaction.

1.1 Context and Motivation

In the light of the previous introduction, the proposed research study addresses the
issues of safety and collaboration for industrial manipulators. On safety, the study
delves into the subject of collision avoidance for robotic manipulators in a human-
robot shared workspace. On collaboration, the study explores the subject of precision
hand-guiding for robotic manipulators. In both cases, the aim of the study is to
apply the acquired results in industry. The following two subsections elaborate on the
importance of both collision avoidance and hand-guiding functionalities, and lay down
the arguments on the necessity of researching those subjects.
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Figure 1.1: KUKA iiwa robot working side-by-side with a human coworker in Aerospace
industry, courtesy of ColRobot project [3].

1.1.1 Collision Avoidance

Providing robots with advanced motor skills and human like re�exes will allow them to
circumvent obstacles and avoid collisions with the dynamic environment around them.
This is extremely important in order to give robots more autonomy and minimum need
for human intervention, especially when robots are operating in changing workspace
and dynamic environments.

When it comes to the new industrial revolution, industry 4.0, collision avoidance is
vitally important, where it is expected to have humans and robots working with each
others, and collaborating together, a quest that can not be achieved without providing
the robot with collision avoidance capacities. Usually, the structure of industrial robots
is made of metals (retain immense inertia). Due to productivity reasons, they are also
required to move with high speeds, conditions that make it unsafe for humans to work
side-by-side with a robot moving blindly on a pre-programmed path. Consequently, it
has been the norm to have boundaries and safety fences that stand between humans
and industrial robots. When it comes to the factories of the future, the idea is to
eliminate these boundaries and have humans and robots sharing the same workspace,
Figure 1.1. In such scenario robot's control system shall ensure the safety of the human
coworker under all circumstances.

Another example on the importance of collision avoidance algorithms is robots
required to work in dangerous environments. For example, when performing (robot
operated) repairs inside nuclear reactors, or when working in potentially explosive
environments. Figure 1.2 demonstrates such concept, where a robotic arm is actuating
a valve in an oil infrastructure while being surrounded by gas pipes. This type of
research is motivated by the fact that robots are required if humans want to tap into
oil and gas reserves in remote regions where extremely harsh environments prevail,
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Figure 1.2: A robot operating in potentially ex-
plosive environment, among pipes carrying gas
[4].

Figure 1.3: Morphin map
of Curiosity Mars rover,
courtesy of Mars autonomy
project.

Figure 1.4: The Curiosity rover on Mars (NASA).

for example the reservoirs in the Barents Sea where temperatures can reach as low as
−50◦C. In such places working conditions for humans are unfeasible. A study focused
on such situation was proposed in [7], where the author's work has focused on collision
avoidance for industrial robots in gas and oil industry.

Apart from safety, collision avoidance capabilities endow robots with more auton-
omy. This is especially important when they are operating in remote places and in
unknown environments. An example on this is the Curiosity Mars rover, Figure 1.4.
The rover works far away from earth, this makes it impossible to control the asset
in real time. As a matter of fact, the distance between the two planets is immense,
such that the time required for sending a signal to Mars and then receiving it back
on earth could be in between 4 to 24 minutes (depending on the relative position of
the two planets while they are rotating around the sun). So to keep the robotic rover
away from obstacles, a collision avoidance algorithm called Morphin was developed,
and is used to guide the rover through the terrains of Mars. This algorithm maintains
a map of the environment, Figure 1.3, and based on this map Morphin recommends
safe steering commands to the rover.

In robotics literature, the problem of collision avoidance is handled at one of two
levels: global level, addressed through planning, or local level treated at the low level
control. The global solutions are high-level solutions that guarantee to �nd a collision-
free path from the initial con�guration to the �nal con�guration, if such a path exists.
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These algorithms treat the problem in con�guration space. In such case the manipula-
tor and the environment need to be remapped to con�guration space and a collision-free
path is searched in the unoccupied portion of the con�guration space. However, these
algorithms are very costly in terms of computation, thus their use is not feasible for real-
time dynamic applications. On the other hand, the local reactive control is suitable for
real-time implementation, since that its mathematical formulation is computationally
e�cient, so it can be embedded directly into the low level control.

1.1.2 Hand-guiding

Hand-guiding is a representative functionality of collaborative robots. It allows un-
skilled users to interact and program a robot rapidly in an intuitive manner. Many
industrial applications require precise positioning of the end-e�ector (EEF) during
the teaching process. Normally, the teach pendant is used for performing this task.
However, utilizing the teach pendant is not always convenient due to the following
drawbacks:

1. When using the teach pendant to position the end-e�ector in Cartesian space,
the user has to keep a track of the orientation of the base frame of the robot,
this could become confusing even for experienced users. Not to mention that in
some cases, the manipulator is mounted on a mobile platform, which makes the
task of keeping a track of robot's base frame even harder.

2. Unlike the hand-guiding, when using the teach pendant the user does not have a
feel of the force applied between the end-e�ector and its surrounding in case of
contact. Accidents could happen and the user might over press the end-e�ector
against the surrounding (which might include sensitive instruments) without
noticing.

3. The teach pendant convention in describing the orientation is the Euler rotation
angles. While it is well suited for computers, this way for describing orientation
is not intuitive for humans. Even the experienced roboticist agrees that, in the
general case, it is hard for a human to imagine the orientation of an object based
on three numbers (Euler angles).

Due to the previous drawbacks, this thesis proposes a more intuitive method for per-
forming precise positioning operation of the end-e�ector through hand-guiding.

1.2 Key Contributions

The thesis contributes into the �eld of collaborative robotics in various aspects, in-
cluding the subjects of collision avoidance for collaborative industrial manipulators,
hand-guiding, and mathematical formulation of robot dynamics, Figure 1.5. In the
following, the main contributions are listed according to each subject.
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Safety                                               HRC                   
    Collision detection                                                                       Hand guiding (HG)                  
    Collision avoidance                                                                          Joints level HG                    
        Minimum distance calculation                                                    EEF level HG         
        Human pose estimation                                                               HG near obstacles              
        Reactive motion  generation                                         
        Collision avoidance in HDoF robots                                                            

Collaborative robotic manipulators

Robot Dynamics
Symbolic methods
Recursive methods
    Foward dynamics
    Inverse dynamics
        Mass matrix calculation
        Christoffel symbols calculation

Chap3-Sec1
Chap3-Sec2
Chap3-Sec3
Chap3-Sec4

Chap4-Sec1
Chap4-Sec2

Chap5-Sec1
Chap5-Sec2

[12]
[13]
[10]
[8]

[16]
[17]

[14]
[9]

Figure 1.5: Graphical representation of thesis contributions into the �eld, the contri-
butions are highlighted in blue.

Key contributions in collision avoidance:

1. Development of an algorithm for capturing the con�guration of the human coworker
using laser scanner and IMU sensors. The developed algorithm is implemented
in the context of human-robot collision avoidance.

2. Development of an e�cient algorithm, based on optimization and QR factorisa-
tion, for fast calculation of minimum distances among a set of capsules (hemi-
sphere capped cylinders).

3. Development of a real-time, potential �elds based, collision avoidance algorithm.
This novel algorithm is suitable for application in industrial robotic cells, al-
lowing the robot to adjust the o�-line generated paths of the industrial task.
The proposed method also introduces a novel solution that allows the robot to
switch between collision avoidance reactive motion and the task in hand while
maintaining continuous and smooth movement.

4. Development of a new algorithm for generating reactive collision avoidance mo-
tion (for robotic manipulators), where the Newton method (from optimization) is
applied on the potential �eld function for calculating the minimization direction.
For achieving e�cient execution, the relationship between the Hessian (of the
potential function) described in joint space and the Hessian in Cartesian space
is also deduced.
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Key contributions in hand-guiding:

1. Introducing the precision hand guiding method. An intuitive substitute for the
teach pendant of the robot for performing precise positioning of the end-e�ector.

2. Introducing a novel solution for performing precision hand guiding of sensitive re-
dundant manipulators, at the end-e�ector level, while navigating obstacles during
contact.

Key contributions in robot dynamics:

1. Development of an algorithm with a minimal O(n2) cost1 for e�ciently calculat-
ing the joint space inertia matrix for serially linked robots with high degrees of
freedom.

2. Development of a light weight recursive (non-symbolic) algorithm for calculating
Christo�el symbols of robotic manipulators.

1.3 Thesis Outline

The thesis is divided into various chapters and sections. Chapter two gives the back-
ground, it also lists the basic principles required for the mathematical modelling of
robots, all of which will be used throughout this document.

Chapter three is dedicated to the subject of collision avoidance between humans
and industrial manipulators. We start this chapter by listing out the various methods
in literature for representing the human and the robot. For this thesis, we choose
the geometric primitive representation using capsules. Then, we derive an e�cient
algorithm for calculating the minimum distance between these capsules. Afterwards,
a method based on sensor fusion is presented for capturing the con�guration of the
human around the robot. This method is then implemented in a collision avoidance
algorithm derived from the potential �elds method and tested on a real industrial
robotic cell, where a human coworker and an industrial robot (KUKA iiwa) are sharing
the same work space and tasks. In such a case, the robot is able to sense the presence
of the human around it, and reacts on-the-�y to avoid collisions while keeping the task
target as possible. Finally, we propose coupling Newton method with potential �elds
collision avoidance algorithm in a second order optimisation framework. A symbolic
mathematical formula is deduced for calculating the Hessian and the gradient of the
potential �eld e�ciently in the joint space of the robot. The advantages of using such
solution for performing collision avoidance is demonstrated through various tests.

Chapter four explores the subject of hand-guiding while preserving the precision at
the end-e�ector level. First, the main method for performing precision hand-guiding is
introduced, the method is deduced mathematically and tested on KUKA iiwa robot.
Then the precision hand-guiding (at the EEF level) and the hand-guiding at joints level
are compared in terms of precision and level of vibrations. Finally, by applying sensor
fusion on force/torque measurements from an external force/torque sensor attached

1Where n is the number of degrees of freedom of the robot.
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at the end-e�ector and the torque measurements from integrated joint torque sensors,
we propose a method that allows the user to hand guide the robot precisely, at the
end-e�ector level, while navigating obstacles in the null space during a contact.

Chapter �ve deals with the formulation of robot dynamics equations. Two e�cient
algorithms are proposed. The �rst algorithm is for calculating the joint space iner-
tia matrix of serially linked rigid bodies. It is an e�cient algorithm with a minimal
second order cost. The second algorithm describes a recursive method for calculating
Christo�el symbols of robotic manipulators e�ciently. The proposed algorithms were
tested against state of the art methods. Results were reported in terms of number of
operations, execution time and numerical error.

1.4 Publications and Technical Contributions

The �ndings and the intermediate results achieved during the research period were the
subject for various publications in (international) peer reviewed journals and confer-
ences, including some of the main robotic congresses. Table 1.1 lists the main publi-
cations conducted in the scope of this thesis. Table 1.2 lists coauthored publications
that have been conducted in cooperation with colleagues during the research period.
Moreover, implementing the proposed approach led to the development of a set of open
source software packages/toolboxes (listed in Table 1.3), some of which, the Kuka Sun-
rise Toolbox (KST), gained popularity and is being used in various laboratories around
the world.
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Table 1.1: List of main publications
Reference Description

Journal

[8]

M. Safeea, R. Béarée and P. Neto: Collision avoidance of redundant robotic

manipulators using Newton's method. Journal of Intelligent & Robotic

Systems.

Journal

[9]

M. Safeea, P. Neto and R. Béarée: Robot dynamics: A recursive algorithm

for e�cient calculation of Christo�el symbols. Mechanism and Machine

Theory .

Journal

[10]

M. Safeea, P. Neto and R. Béarée: On-line collision avoidance for

collaborative robot manipulators by adjusting o�-line generated paths: An

industrial use case. Robotics and Autonomous Systems.

Journal

[11]

M. Safeea and P. Neto: KUKA Sunrise Toolbox: Interfacing collaborative

robots with MATLAB. IEEE Robotics & Automation Magazine.

Journal

[12]

M. Safeea, P. Neto and R. Béarée: E�cient Calculation of Minimum

Distance Between Capsules and its use in Robotics. IEEE Access.

Journal

[13]

M. Safeea and P. Neto: Minimum distance calculation using laser scanner

and IMUs for safe human-robot interaction. Robotics and

Computer-Integrated Manufacturing .

Conference

[14]

M. Safeea, R. Béarée and P. Neto: Reducing the computational complexity

of mass-matrix calculation for high DOF robots. IROS 2018 .

Conference

[15]

M. Safeea and P. Neto: Human-robot Collision Avoidance for Industrial

Robots: A V-REP based Solution. In Proc. of the 25th International

Conference on Transdisciplinary Engineering .

Conference

[16]

M. Safeea, R. Béarée and P. Neto: End-E�ector Precise Hand-Guiding for

Collaborative Robots. In Proc. of the third Iberian Robotics Conference.

Conference

[17]

M. Safeea, R. Béarée and P. Neto: Precise hand-guiding of redundant

manipulators with null space control for in-contact obstacle navigation. In

Proc. of the 45th Annual Conference of the IEEE Industrial Electronics.

Book chapter

(accepted)

M. Safeea, P. Neto and R. Béarée: Task execution combined with in-contact

obstacle navigation by exploiting torque feedback of sensitive robots. Procedia

Manufacturing .

Book chapter

(accepted)

M. Safeea, P. Neto and R. Béarée: Model-based hardware in the loop control

of collaborative robots. Procedia Manufacturing .

Book chapter

[18]

M. Safeea, N. Mendes, and P. Neto: Minimum distance calculation for safe

human robot interaction. Procedia Manufacturing .

Book chapter

[19]

M. Safeea, P. Neto and R. Béarée: A Geometric Dynamics Algorithm for

Serially Linked Robots. Part of the Lecture Notes in Computer Science book

series (LNCS, volume 11649).

Book chapter

[20]

M. Safeea, P. Neto and R. Béarée: The Third Hand, Cobots Assisted Precise

Assembly. Part of the Lecture Notes in Computer Science book series (LNCS,

volume 11650).

Book chapter

[21]

M. Safeea, P. Neto and R. Béarée: A Quest Towards Safe Human Robot

Collaboration. Part of the Lecture Notes in Computer Science book series

(LNCS, volume 11650).
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Table 1.2: List of coauthored publications
Reference Description

Journal

[22]

P. Neto, M. Simão, N. Mendes and M. Safeea: Gesture-based

human-robot interaction for human assistance in manufacturing.

International Journal of Advanced Manufacturing Technology .

Conference

[23]

N. Mendes, M. Safeea and P. Neto: Flexible programming and

orchestration of collaborative robotic manufacturing systems. In Proc. of

the 16th International Conference on Industrial Informatics.

Book chapter

[24]

J. Lopes, M. Simão, N. Mendes, M. Safeea, J. Afonso, and P. Neto.

Hand/arm gesture segmentation by motion using IMU and EMG sensors.

Procedia Manufacturing .

Book chapter

[25]

N. Mendes, J. Ferrer, J. Vitorino, M. Safeea and P. Neto: Human

behavior and hand gesture classi�cation for smart human-robot

interaction. Procedia Manufacturing .

Table 1.3: List of developed software packages
Package Description

KST

[26]

A Toolbox used to control KUKA iiwa robots, the 7R800 and the 14R820,

from an external computer using MATLAB.

SimulinkIIWA

[27]

A graphical programming interface that allows controlling KUKA iiwa

robots, the 7R800 and the 14R820, using Simulink block diagrams.

iiwaPy

[28]

A library that allows controlling KUKA iiwa robots, the 7R800 and the

14R820, using Python 2.7.

GDA

[29]

A collection of MATLAB functions used for calculating robot dynamics

(including Joint Space Inertia Matrix (JSIM), Coriolis matrix, centrifugal

matrix, time derivative of JSIM), the algorithms implemented for

preforming the calculations are derived from the Geometric Dynamic

Algorithm (GDA).

GDAHJ

[30]

C++ implementation of GDAHJ algorithm for calculating mass matrix of

robots with a minimal second order cost

Christo�el

recursively[31]

Recursive algorithm for calculating Christo�el symbols e�ciently

implemented in MATLAB
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Chapter 2

Background

This chapter reviews the basics which are important for the implementation of the
methodologies proposed in this thesis. Section 2.1 gives a review on the kinematics of
robotic manipulators, the transformation matrices and the formula for the Jacobian.
Section 2.2 gives a review on the pseudo inverse of the Jacobian and the Damped Least
Squares (DLS) method. Section 2.3 gives a review on the null space projection matrix
for redundant manipulators. Section 2.4 gives a brief introduction into the arti�cial
potential �elds.

2.1 Kinematics of Robotic Manipulators

Most of industrial manipulators consist of rigid links coupled serially together by rev-
olute joints. In such a case, robot's con�guration is described by its joints angular
position vector q ∈ <n, where n is the number of degrees of freedom of the robot. On
the other hand robots are required to perform tasks in the Cartesian space, speci�ed by
the position and orientation of the robot's end-e�ector (vector x ∈ <m). The forward
kinematics function [32] introduces a mapping from the robot's con�guration q to the
end-e�ector's position/orientation x:

x = f(q) (2.1)

Where f is the manipulator's forward kinematics, a highly non-linear vector function,
that gives the position and orientation of the end-e�ector as a function of joints an-
gles. This function can be calculated using the homogeneous transformation matrices,
following Denavit-Hartenberg (DH) convention (�rst introduced in [33]). From [32] a
transformation matrix (using the modi�ed DH parameters) of link i is given by:

Ti−1
i =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1
sθicαi−1 cθicαi−1 cαi−1 dicαi−1

0 0 0 1

 (2.2)

Where i is the joint index, θi is the rotation angle of joint i around the axis zi, and
(di, αi−1, ai−1) are the modi�ed DH parameters of the link i. Di�erentiating (2.1) gives
the equation of di�erential kinematics [1],[34]:
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ẋ = Jq̇ (2.3)

Where q̇ is the joints velocities vector, ẋ is the end-e�ector's velocity and J is the
manipulator's analytic Jacobian matrix, each element of which:

Jij =
δfi
δqj

(2.4)

However, the analytic Jacobian can also be calculated from the geometric Jacobian
by pre-multiplication with a matrix whose value depends on the choice of orientation
representation [1].

2.2 Pseudo Inverse

For non-redundant manipulators the inverse mapping, from a particular velocity of
EEF to joints velocity is given by:

q̇ = J−1ẋ (2.5)

In the case of redundant manipulators, J is not square (has more columns than rows)
and the matrix J−1 does not exist. In such a case, the least norm solution of the inverse
mapping is given by the pseudo inverse:

q̇ = J†ẋ (2.6)

Where J† is the Moore-Penrose or pseudo inverse of the Jacobian:

J† = JT(JJT)−1 (2.7)

In some con�gurations the previous equation su�ers from singularity problem. This
happens when the matrix product JJT losses rank. In such a case the Damped Least
Squares [35] can be used:

q̇ ≈ JT(JJT + λ2I)−1ẋ (2.8)

Where I is the identity matrix (m ×m) and λ is a damping factor. For choosing an
optimised value of the damping factor the method in [36] can be used.

2.3 Null Space Projection

Redundant manipulators possess more degrees of freedom than it is needed to execute
a given task. In such a case, the inverse mapping (joints angular velocities that give
a particular velocity of EEF) involves in�nite number of solutions, those solutions are
given by the equation:

q̇ = J†ẋ+ Nq̇c (2.9)
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Where N is the null space projection matrix and q̇c is an angular velocity command.
q̇c is commonly used to optimize some criteria. From [37], the basic formula of N is
given by:

N = I− JT(JJT)−1J (2.10)

Where I is the identity matrix (n × n). From (2.9) it can be noticed that redundant
manipulators allow internal motion where the pose (position/orientation) of EEF is
kept �xed, in such a case ẋ = 0, and (2.9) becomes:

q̇null = Nq̇c (2.11)

Where q̇null is the vector of the angular velocities in the null space of the robot.

2.4 Arti�cial Potential Field

The Arti�cial Potential Field (APF) method introduced by the pioneering work of
Khatib [38] is one of the most popular methods for performing real-time reactive col-
lision avoidance (according to the number of citations). This method was applied
successfully for both manipulators and mobile robots. In this method the robot is sub-
jected to two types of potential �elds. One represents the attraction forces that pull
the robot toward the goal position, while the other represents the repulsion forces that
push the robot away from obstacles in the environment. Those forces are de�ned by
the gradient of the potential �eld. As a result the robot moves toward the goal while
avoiding collisions with obstacles. Owing to its additive property, the total potential
�eld is the sum of the attraction and the repulsion potentials:

Utotal = Uatt + Urep (2.12)

Figure 2.1 demonstrates the arti�cial potential �elds concept and illustrates their ad-
ditive property. The total �eld (Figure 2.1 right) is the sum of the attraction �eld
(Figure 2.1 left), with forces pulling towards the goal, and the repulsion �eld (Figure
2.1 middle), with forces pointing away from obstacles. Owing to its computational
e�ciency the method can be implemented in real-time, and can be deployed easily into
the low-level control system of the robot. The use of this method had been extended
successfully to o�ine global path planning problems. However, in the context of this
study we limit the discussion to real-time collision avoidance implementation.

Figure 2.1: Arti�cial potential �eld concept.
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Chapter 3

Collision Avoidance

Modern factories are becoming more automated. Greater number of robots are be-
ing installed on production lines for performing various industrial operations including
welding, manipulation and assembly. This is particularly advantageous in repetitive
tasks that require precision. However, the presence of humans on the factory �oor is
still essential for performing complex and cognitive tasks. For safety concerns, robots
are separated from humans, where they work behind fences. This physical separa-
tion limits the productivity and the �exibility of the production lines. Currently, lots
of attention and e�orts are being directed for removing the barriers between humans
and robots on the factory �oor. This will bring better productivity by combining the
precision and repetitiveness of robots with the cognitive ability of humans. In the
framework of Industry 4.0, collision avoidance plays an important role for achieving
safety criteria while having humans and machines working side by side. Consequently,
there is a requirement for adapting the research results on robot collision avoidance
into the factory �oor. This study introduces the subject of manipulator's on-line col-
lision avoidance into a real industrial application implementing typical sensors and a
commonly used collaborative industrial manipulator (KUKA iiwa). In the proposed
method, the human coworker and the robot are represented by capsules, the con�g-
uration of those capsules are acquired using external sensors, the minimum distance
between the capsules is calculated, when human/obstacles are nearby the concept of
hypothetical repulsion and attraction vectors is used. By coupling this concept with
a mathematical representation of robot's kinematics we achieved a task level control
with collision avoidance capability, where the o�-line generated nominal path of the
industrial task is modi�ed on�the-�y so the robot is able to avoid collision with the
coworker safely while being able to ful�l the industrial operation. Tests were carried
out successfully on an industrial robotic cell performing typical assembly operations in
automotive industry. Results show that the robot moves smoothly and avoids collisions
successfully by adjusting the o�-line generated nominal paths.

Chapter's breakdown

This chapter is organised into various sections:

• Section 3.1: lists the various methods applied in the literature for representing
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the geometry of humans and the robots. Due to its computational e�ciency we
opted to represent geometries by capsules, where we present an e�cient algorithm
for calculating the minimum distance between capsules using QR factorization.

• Section 3.2: describes the method used for capturing the con�guration of the
capsules representing the human using data acquired from laser scanner and a
group of Inertial Measurement Unit sensors (IMUs).

• Section 3.3: describes an implementation of a custom-made collision avoidance
algorithm based on the potential �eld method. The algorithm is applied on
a robotic cell containing a collaborative industrial manipulator (KUKA iiwa),
where the robot has to perform an industrial task while avoiding collisions with
a human coworker around it, sharing the same work space and tasks.

• Section 3.4: describes the application of Newton's method on the potential �elds
for collision avoidance, and discusses the advantages of such implementation.

• Section 3.5: describes a software package developed by the author which allows
controlling KUKA iiwa robots from external computer using MATLAB.

Given that the chapter discusses di�erent subjects, each in its own section, then for
the sake of clarity, the author has opted to list the related work (state of the art) of
each subject in the beginning of its respective section. In such a case, each section
(of the previously listed) starts by a small introduction, followed by a review of the
related work, afterwards the developed methodology is presented. Each of the proposed
methods is validated by testing or simulation (sometimes both), the acquired results
are reported in the experiments subsection. Finally each section is concluded with a
summary.
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3.1 Geometrical Representation

To implement a collision avoidance algorithm it is of vital importance to have a geo-
metrical representation of the robot and the human/obstacles. Several methods had
been proposed in literature for this purpose. In [39] convex polyhedrons are utilized
to represent two PUMA 560 manipulators. In [40] the authors opted for ellipses to
represent the links of the robot, while obstacles were represented by spheres. An-
other technique that is computationally e�cient represents the robot and obstacles by
primitive shapes, as segments of lines with spheres swept onto them, [41] and [42]. A
similar convention was implemented in [43], where obstacles and robot are represented
by spheres and cylinders. Also, in [44] the authors represented a humanoid robot by
cylindrical shapes. While in [45] the authors opted to represent the robot and the
coworker by a collection of spheres for e�cient calculation of the minimum distance.

Another technique, which is more precise for representing the robot and the envi-
ronment around it, utilizes mesh representation [4]. This type of representation has
the disadvantage of being extremely costly in terms of computations while performing
minimum distance calculations between the robot and the obstacle. To speed up the
computation, researchers have utilized the power of parallel processing, using GPU, to
carry out the calculations [4]. Nevertheless, programming a GPU is not an easy task, it
requires considerable amount of time and special skills, so it had been avoided for the
sake of this study. Thus, the primitive geometry method was our choice, the coworker
and the robot are represented by hemisphere capped cylinders (capsules).

E F

A

G

B C D

Figure 3.1: (A) L'Uomo Vitruviano from Leonardo da Vinci and its representation by
10 capsules, (B) human represented by 1 capsule, (C) human represented by 3 capsules,
(D) human represented by 5 capsules, (E) robot represented by 2 capsules, (F) robot
represented by 3 capsules and (G) human hand and forearm are represented by 21
capsules.
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3.1.1 Minimum Distance Calculation

The subject of minimum distance calculation is important in many areas, for exam-
ple in CAD design, computer graphics/games and in simulation. In such situations,
minimum distance calculations are used to detect any overlap or collision between el-
ements. This subject is also important in robotics for the problem of path planning
and safety in human-robot interaction, where the minimum distance is used as a mea-
sure of collision imminence. In this scenario, calculating the minimum distance online
is required for time critical applications such as human-robot collision avoidance and
the path planning of robots navigating obstacles towards a goal. A novel approach to
approximate the minimum distance between robot links and obstacles is proposed in
[46]. Obstacles are represented by a bounding box, modelled as cylinders and boxes.
Each part of the robot arm is subdivided into an optimal number of spheres that
encompass its volume. The minimum distance between the robot and the objects is
approximated by the minimum distance between the obstacle bounding box and the
spheres. In [47] a method is proposed to determine the minimum distance between
multiple known objects (geometry, position, orientation and con�guration for exam-
ple a robot) and multiple unknown objects within a camera image. The distance is
estimated by searching for the largest expansion radius where the projected model
does not intersect the object areas classi�ed as unknown. An algorithm for computing
the minimum translational distance based on the Gilbert-Johnson-Keerthi algorithm
between two spherically extended polytopes is introduced in [48].

In our study, the implemented collision avoidance algorithm requires the calculation
of the minimum distance between robot and surrounding environment (including hu-
mans), which are represented by capsules. By using higher number of geometric prim-
itives the accuracy of representation increases. The human body can be represented
roughly by a single capsule, Figure 3.1 (B). In this scenario the arms can extend out of
the capsule volume for some con�gurations. Figure 3.1 (C) shows a human represented
by 3 capsules. In Figure 3.1 (D) the human is represented by 5 capsules, 2 capsules in
each arm and 1 single capsule for the torso and head. A relatively precise representa-
tion of the human hand and forearm by 21 capsules is shown in Figure 3.1 (G). A robot
can roughly be represented by 2 capsules, Figure 3.1 (E), or by 3 capsules represent-
ing the main robot links (KUKA iiwa with 7 DoF), Figure 3.1 (F). The position and
orientation of the capsules covering the robot are obtained from forward kinematics
calculation at the measured robot joint angles. In literature, various methods were
proposed for calculating the minimum distance between capsules/line-segments. In
[49], it is proposed an algebraic method for minimum distance computation between
two capsules. Other methods were proposed in [50, 51]. A solution for computing
the minimum distance between cylinders with �at ends was proposed in [52]. A well
known methodology for computing the segment to segment (capsules) distance which
is considered the most e�cient method in literature (concerning computation time) is
detailed in [5], pages 417-418.
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Figure 3.2: Minimum distance between two capsules.

3.1.2 Mathematical Formulation and QR Factorization

In this section the problem of calculating the minimum distance between two capsules is
expressed mathematically as an optimization problem. Then the optimization function
is reformulated using QR factorization and a geometrical solution is proposed.

3.1.2.1 Formulation

Owing to their geometry, calculating the minimum distance between two capsules can
be reduced to the calculation of the minimum distance between two line-segments at
the capsules axes. In Figure 3.2 it is shown two line-segments representing the axes of
two capsules and their associated common normal. Each capsule can be de�ned by two
vectors (at the beginning and end of the capsule's axis-segment) and a radius. Let's
designate the position vectors de�ning the end points of the axis-segment of a capsule
by p1 and u1 (capsule 1), and p2 and u2 (capsule 2). Then, we can de�ne two vectors
s1 = u1 − p1 and s2 = u2 − p2. Two points of interest, one in each axis segment of
a capsule, are considered. Those points are represented relative to the base frame by
two vectors, r1 and r2:

r1 = p1 + s1λ1 (3.1)

r2 = p2 + s2λ2 (3.2)

Where λ1 and λ2 are scalar parameters. Each parameter has a value in the range from
zero to one when the point it represents is con�ned in between the two ends of the axis
segment of the capsule. The problem of calculating the minimum distance between the
two capsules renders to a minimization problem:
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Figure 3.3: Region of feasible solutions and level sets of optimization problem (3.5).

min(φ) = min(| p2 + s2λ2 − (p1 + s1λ1) | −ρ1 − ρ2) (3.3)

Where ρ1 and ρ2 are the radii of the capsules. Giving that ρ1 and ρ2 are constants,
then the minimization problem can be reformulated:

min(| ∆r |) = min(| p2 + s2λ2 − (p1 + s1λ1) |) (3.4)

Where ∆r = r2 − r1. We can rewrite the optimization function in the following
equivalent quadratic form:

min(f) = min((Ax+ y)T(Ax+ y)) (3.5)

Where matrix A =
[
s2 −s1

]
and vector y = p2 − p1. The problem can be viewed

as minimizing (3.5), subject to the constrains 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1 (x1 and x2
are the components of the vector x - also they are equal to parameters λ1 and λ2).
Figure 3.3 shows the level sets and the region of feasible solutions of the optimization
problem (3.5).

3.1.2.2 QR Factorization

The function f can be reformulated by performing QR factorization on matrix A and
�xing. Then, the optimization problem in (3.5) is equivalent to:

min(f1) = (Rx+ QTy)T(Rx+ QTy) (3.6)

Where Q is a 3x2 matrix whose column vectors are of unit length and mutually or-
thogonal, and matrix R is a 2x2 upper triangular. By performing a variable change
the optimization problem becomes:

min(f1) = min(uTu) (3.7)

Where u is given by:
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Figure 3.4: Region of feasible solutions and level sets of modi�ed optimization problem
(3.7).

u=Rx+ QTy (3.8)

We want to mention here that the optimization problems, original (before applying
QR factorization) and modi�ed (after performing the QR factorization) are equivalent
(both problems result in the same minimizing solution xmin) but the functions f and
f1 are not equal (they have di�erent values at the minima). The modi�ed optimiza-
tion problem (3.7) is represented in Figure 3.4. We notice that after performing the
transformation described in (3.8) the elliptical level sets of the cost function are trans-
formed into circles and the rectangular region of feasible solutions is transformed into
a parallelogram. The solution to the modi�ed optimization problem (3.7) is reduced
to �nding the point of the parallelogram region closest to the origin, umin, e�ciently
calculated in 2D space (Algorithm 3.1). Finally, the minimum distance between two
capsules is calculated from:

dmin =

√
uT

minumin + yTy − yTQQTy − ρ1 − ρ2 (3.9)

For a set of k line-segments/capsules it can be noticed that:

1. Minimum distance calculations shall be performed mutually between any two
capsules of the set, resulting in O(k2) complexity.

2. QR factorization of matrix Ai associated with a subset i of two capsules can be
enhanced for e�ciency since di�erent Ai have shared columns in their structure.

3. The vector umin is being calculated in two dimensional space, while other algo-
rithms calculate xmin in the three dimensional space.

4. Vectors operations in two dimensional space are less costly than operations in
three dimensional space.
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Algorithm 3.1 Minimum distance calculation.
Input : R region of feasible solutions

(Q,R) facorization matrices of A
Output : umin vector of coefficients

01 : Transform R using the function f(x) = (Rx + QTy)
02 : If Origin is inside R then
03 : umin ← [0, 0]T

04 : else
05 : for each boundary segment of R do
06 : c← point of segment closest to origin
07 : If first iteration then
08 : umin ← c
09 : else
10 : If norm(umin) > norm(c) then
11 : umin ← c
12 : end if
13 : end if
14 : end for
15 : end if

5. We propose calculating umin (in <2) while taking advantage of the fact that the
area of feasible solutions is a parallelogram.

By taking the aforementioned observations into account, the described algorithm can
be applied e�ciently for calculating minimum distance for a set of capsules1.

3.1.3 Experiments

The performance was evaluated by comparing the proposed QR method with the
method in [5] to compute the segment to segment minimum distance. Three com-
parison criteria were considered: (1) computational complexity, (2) execution time
using C++ and (3) numerical precision. The results for the computational complexity
of the algorithms (number of �oating point operations � addition, multiplication, divi-
sion and square root for QR) are in Table 3.1. For the second comparison criteria, a
set of line-segments was randomly generated and the minimum distance (squared) be-
tween each two line segments of the set was calculated using the proposed QR method
and the method in [5]. By implementing the algorithms in C++, results indicate that
in terms of execution time the proposed QR method performed up to 25% faster than
the method in [5], Figure 3.5 and Figure 3.6.

We noticed that method [5] can be modi�ed by promoting some of the operations
from O(n2) to O(n). The results of those operations can be stored in memory and
used later in the O(n2) part of the algorithm. In such a case, the O(n2) computational
complexity of method [5] is reduced as shown in Table 3.1. Nevertheless, the proposed
QR method is still more e�cient in terms of execution time as shown in Figure 3.5 and
Figure 3.6. The modi�ed method in [5] is detailed in the Media materials (attachments)
of [12], which includes C++ code in Appendix I (page 22) and a detailed breakdown

1A complete elaboration (including C++ implementation) on applying the proposed method e�-
ciently for a set of capsules is available in the �le attached to the Media materials of [12].
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Figure 3.5: Execution time comparison for the proposed QR method, the method in
[5] and the modi�ed method in [5] as a function of number of line-segments/capsules
of the set. Algorithms implemented in C++.

Figure 3.6: Execution time ratio (Method [5]/QR in red), (Modi�ed method [5]/QR
in blue) and (Method [5]/Modi�ed method [5] in green) as a function of number of
line-segments/capsules of the set. Algorithms implemented in C++.
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Table 3.1: Computational complexity for the method in [5], the modi�ed method in
[5] and the proposed QR method.

Method Route Computational complexity

Method in [5] Least expensive 56
2 n

2 − 56
2 n

Method in [5] Most expensive 66
2 n

2 − 66
2 n

Proposed QR method Least expensive 29
2 n

2 − 5
2n

Proposed QR method Most expensive 52
2 n

2 − 28
2 n

Method in [5] modi�ed Least expensive 40
2 n

2 − 24
2 n

Method in [5] modi�ed Most expensive 50
2 n

2 − 34
2 n

of the operation count in Appendix II (page 36). Considering the third comparison
criteria, numerical precision, a group of 5000 line-segments/capsules has been generated
randomly in 3D space. The (x, y, z) coordinates of the start and end point of each
segment are in the range [−100, 100]. The proposed QR method and the method in
[5] are used to calculate the minimum distance between each couple of segments from
the set. For each couple of segments, the relative error is de�ned as the ratio of the
absolute value of di�erence between calculations using the two methods:

e =
2|dqrmin − dsmin|
dqrmin + dsmin

(3.10)

Where dqrmin is the minimum distance calculated using the proposed QR method and
dsmin is the minimum distance calculated using the method in [5]. Experimental tests
resulted in a maximum value of the relative error of 1.059e−8, a minimum value of the
relative error of 1.11e−16 and an average error of 4.87e−10. These values demonstrate
that the error is negligible. The same test has been repeated for di�erent groups of
line-segments/capsules with di�erent number of elements, Figure 3.7.

3.1.4 Summary

In this section, a novel method based on QR factorization for performing minimum
distance calculations for a set of line-segments/capsules is proposed. Capsules demon-
strated to be good solution to represent humans and objects in real environment hav-
ing data from real sensors as input. Experimental results indicate that the proposed
solution is more e�cient than the existing most e�cient method in literature. Such
e�ciency was measured in computational complexity (reduced number of �oating point
operations), execution time (up to 25% better) and numerical precision (the error is
negligible).
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Figure 3.7: Average relative error between the method in [5] and the proposed QR
method as a function of the number of line-segments/capsules of the set.
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3.2 Human Pose Estimation

The avoidance motion carried out by a manipulator to prevent collisions with a human
nearby relies heavily on his/her pose estimates. In this study, we opted to use Inertial
Measurement Units (IMUs), shown in Figure 3.8 (a), coupled with a Sick laser scanner,
shown in Figure 3.8 (b), for locating the human, and his/her con�guration, around the
robot. A total of �ve IMUs are used. One is attached to the human's chest, the other
four are attached to the arms. This is suitable for our choice of representing the upper
part of the human body by �ve capsules, one covering the torso and four covering the
arms, Figure 3.8 (b). Given that in our robotic cell the robot is mounted on a table, as
shown in Figure 3.9, with its motion restricted to a one meter level above the factory
�oor, there is no danger of collision between the robotic arm and the lower part of the
human body, hence our negligence of representing the legs is justi�ed. On the other
hand, the robot (KUKA iiwa with 7 DoF) is described by three capsules representing
the main links of the robot, Figure 3.8 (c). The con�guration of the capsules covering
the robot is obtained after calculating forward kinematics applied on the measured joint
angles (acquired from the controller of the robot). After capturing the con�guration
of the capsules covering the human and the robot, the minimum distance is calculated
using the method introduced in the previous section. In the following subsections, the
methodology used to capture the con�guration of the capsules covering the human
body is described.

Figure 3.8: (a) IMUs attached to the upper body, (b) a human (represented by 5
capsules) standing in the scanning �eld of a laser scanner and (c) robot represented by
3 capsules.

3.2.1 Laser Scanner (Torso Position)

Data from the laser scanner mounted at the level of the coworker's legs, Figure 3.9, are
utilized to de�ne the relative position of the capsule representing the torso. Through
TCP/IP connection, the sensor (SICK TiM5xx) provides the radius measurements
along a scan-angle spanning 270 degrees, an angular precision of one degree and a
maximum measurement radius of 8 meters. The methodology behind the proposed
algorithm for calculating the torso position is divided into two stages:
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Figure 3.9: Laser scanner mounted at the level of the coworker's legs in the base of
the table holding the robot. If the robotic arm is installed on a mobile platform the
solution is similar.

1. Data acquisition and �ltering;

2. Calculating the minima and the position of the torso.

3.2.1.1 Data Acquisition and Filtering

A TCP/IP server is implemented in MATLAB. It acquires the measurements from
the laser scanner by decoding TCP/IP messages coming from the sensor. The result
is stored in a two dimensional array, which relates the radius measurements with the
corresponding scan-angle. Figure 3.10 shows the radius measurements along the scan-
angle as acquired from the laser sensor corresponding to a scene where a human is
standing in the scan �eld of the sensor. The radius measurements are clipped to 1400
mm away from the sensor. The contour of the legs appears in the plot as two minimas.
It is noticed that the raw data (represented by a blue continuous line in Figure 3.10)
are not smooth. To smooth out the curves two �ltering methods are proposed: (1)
temporal �ltering and (2) spatial �ltering (along the scan-angle).

3.2.1.2 Temporal Filtering

To �lter out the noise in radius measurements from the laser scanner a low-pass �lter
(LPF) is utilized:

r(θ,t) = αrm(θ,t) + (1− α)r(θ,t−dt) (3.11)

Where r(θ,t) is the �ltered value of the radius at angle θ and time t, and rm(θ,t) is the
measurement value of the radius at angle θ and time t, α is a scalar from zero to one
(adjusted during experiment for better response), and dt is an update time interval
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Figure 3.10: Raw data and LPF �ltered of radius measurement with scan-angle, close
ups show �ltered data are smoother in the critical parts of the curves.

between two consecutive scans. The results of the application of the LPF �lter are
shown in dashed red line in Figure 3.10.

3.2.1.3 Spatial Filtering

To smooth out short term �uctuations of the radius measurements along the scan-angle,
a moving average (MVA) �lter is used:

rf(θ,t) = rf(θ−dθ,t) −
r(θ−ndθ,t)

n
+
r(θ,t)

n
(3.12)

Where rf(θ,t) is the value of the MVA at angle θ and time t, dθ is the angular resolution

of the scanner, rf(θ−dθ,t) the value of the MVA at angle θ − dθ and time t, and n is the
number of averaging steps.

3.2.1.4 Minimas and the Position of the Torso

Considering the plane of the �oor, the xy position of the capsule representing the
torso is calculated based on the position of the legs. The polar coordinates of the
legs correspond to the minimas in the plot, as shown in Figure 3.11. To calculate the
minimas, �rst we perform a mirror transform, on plot in Figure 3.11, with respect to
the axis of the scan-angle θ. In such a case, the minimas become peaks, which can
be calculated by performing a peak analysis on the resulting curve. Consequently, the
angle and the radius associated with the �rst leg (θ1, r1) and the second leg (θ2, r2) are
acquired. Afterwards, the position vector of the �rst leg x1 in the Cartesian space is
calculated:

x1 =

[
cos(θ1)
sin(θ1)

]
(r1 + ρl) (3.13)
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Figure 3.11: Filtered radius measurement with scan-angle. Minimas are marked with
green and red dots representing the human legs.

Where ρl is the radius of the leg. The vector of the Cartesian position for the second
leg x2 is calculated in the same manner. The position of the torso capsule xt can be
approximately considered at the middle distance between the two legs:

xt =
(x1 + x2)

2
(3.14)

Figure 3.12 shows a laser scan with a human in the scan �eld of the sensor. The
scan �eld span of 270 degrees is satisfactory given that the sensor is mounted at the
corner of the table holding the robot. Using the proposed algorithm, the position of
the legs is detected, red and green dots. Using the legs coordinates the position of the
capsule covering the torso is approximated, black circle in Figure 3.12.

3.2.2 IMU Sensors (Con�guration of the Upper Body)

To capture the con�guration of the capsules representing the human upper body �ve
IMU sensors are used. One is attached to the chest (IMU 1) and the other four sensors
are attached to the arms and the forearms (IMU 2, IMU 3, IMU 4 and IMU 5), Figure
3.13. Each capsule is described by two vectors and a radius. The vectors represent the
position of the beginning and end of each capsule.

The quaternion measurements provided by the IMU sensors coupled with the ge-
ometric information from the human coworker's body (its dimensions) are used to
estimate the position of the capsules covering the coworker's limbs in relation to robot
base. The procedure for performing the calculations is divided into the following steps:

1. Calibration phase;

2. Calculating rotations of limbs with respect to base frame of the robot;

3. Calculating the position of the limbs' capsules with respect to the base frame of
the robot.
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Figure 3.12: Human legs detected in the laser scan �eld. Red and green dots represent
the legs and the black circle represents the projection of the capsule covering the torso.

Figure 3.13: Minimum distance between two capsules.
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3.2.2.1 Calibration

Each IMU measurement gives its orientation, in quaternion wref
imu, with respect to

a pre-de�ned reference frame2. For the collision avoidance algorithm the rotations
shall be described in relation to the robot base frame using the quaternion wb

imu. To
calculate wb

imu, the rotation quaternion from the reference frame to the robot base
frame wb

ref shall be calculated. This is achieved by performing an initial calibration
phase. Consequently, the IMUs are placed in a prede�ned orientation with respect
to the robot base before the system is initiated. In such a case, the initial rotation
quaternion wimu,init

b of the IMU frame with respect to robot base is already known.
By reading the initial IMU measurement wref

imu,init, the quaternion w
ref
b is calculated:

wref
b = wref

imu,initw
imu,init
b (3.15)

As a result of the calibration phase, the rotation quaternion from the reference frame
of the IMU to the base of the robot wb

ref is calculated as the inverse of the quaternion

wref
b .

3.2.2.2 Orientation of the Limbs

After calculating the orientation of the reference frame with respect to robot base
wb
ref , the quaternion measurements describing the IMU orientation with respect to

base frame of the robot wb
imu is calculated from the orientation measurement of the

IMU wref
imu, as the following:

wb
imu = wb

refw
ref
imu (3.16)

3.2.2.3 Position of the Limbs

Five vectors on the coworker's body are considered, Figure 3.13. Due to the symmetry
of the human body, the following elaboration and equations are given for the left half
of the coworker's body. For the other half, an identical methodology is applied. For
the left half of the body three vectors are considered:

1. Vector v1: a vector that spans from the chest up to the left shoulder;

2. Vector v2: a vector that spans the left arm of the coworker, from the shoulder
up to the elbow;

3. Vector v3: a vector that spans the length of the left forearm, from the elbow up
to the wrist.

The IMUs are mounted �rmly on the body of the coworker according to:

• The chest's IMU (IMU 1 in Figure 3.13) is mounted such that the x axis of the
IMU is pointing vertically down when the coworker is standing straight up. The

2In wref
imu the superscript ref stands for reference frame, and the subscript imu stands for the

frame of the IMU.
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z axis of the sensor is in the Sagittal plane, coming out of the chest. The y axis of
the sensor is horizontally positioned in the Coronal (Frontal) plane. In such case
the coordinates of the vector vimu11 as described in upper chest's IMU frame are
[ −d1 d2 0 ] for the left shoulder and [ −d1 −d2 0 ] for the right shoulder.
Where d1 is the length on coworker's body taken vertically from the chest up to
the shoulder and d2 is the width of the coworker's shoulders divided by two.

• The upper arm's IMU is mounted such that the x axis of the IMU is aligned
with the upper arm's length, in such case the coordinates of the vector vimu22

as described in upper arm's IMU frame are [ d3 0 0 ]. d3 is the length of the
upper arm measured from the shoulder to the elbow.

• The forearm's IMU is mounted such that the x axis of the IMU is aligned with the
forearm's length. In such case the coordinates of the vector vimu33 as described in
forearm's IMU frame are [ d4 0 0 ]. d4 is the length of the forearm measured
from the elbow to the wrist.

The previous vectors are rotated back to the base frame of the robot using:

vbi = wb
imuiv

imui
i

(
wb
imui

)−1
(3.17)

Where vimuii , i = 1, 2, ...5, is the vector of human part described in the ith−imu frame.
wb
imui

is the quaternion describing the rotation of ith − imu in relation to base frame

of the robot Eq (3.16) and
(
wb
imui

)−1 is the complex conjugate of wb
imui

.
The position vector of the shoulder point in the base frame of the robot pb1 is

calculated:

pb1 = vb1 + pb0 (3.18)

Where pb0 is the position of the chest point with respect to the base frame of the robot,
given that the coworker is standing up all the time the xy position of the coworker's
chest point is the same as the position of the torso acquired from the laser scanner. If
we denoted l to the height of the coworker's chest point from the xy plane of the base
frame of the robot, then pb0 is calculated:

pb0 =

[
xbt
l

]
(3.19)

Where xbt is the xy position of the torso of the coworker with respect to the base frame
of the robot, calculated by transforming the estimation of the torso position (acquired
from laser scanner measurement) xt into the base frame of the robot. Given that the
frame of the laser scanner is parallel to the base frame of the robot then the vector xbt
is given by:

xbt = xt +

[
c1
c2

]
(3.20)
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Where c1 is the x coordinate of the origin Ol of the scanner's-measurement-frame in
the base frame of the robot, and c2 is the y coordinate of the origin Ol of the scanner's-
measurement-frame in the base frame of the robot. The origin Ol and the dimensions
(c1, c2) are shown in Figure 3.13.

The position vector of the elbow point in the base frame of the robot pb2 is given
by:

pb2 = vb2 + pb1 (3.21)

Accordingly, the position vector of the wrist point in the base frame of the robot pb3 is:

pb3 = vb3 + pb2 (3.22)

3.2.3 Summary

In this section a method for capturing the con�guration of the human upper body is
presented. Laser scanner and IMU sensors are used for this purpose. The position
of the human torso (approximated by an upright capsule) is acquired by processing
measurements from the laser scanner. The con�guration of the capsules covering the
human arms are acquired by processing the measurements from the IMU sensors. In
addition, a method for calibrating the IMU reference frame with respect to robot
base frame is presented. The method proposed in this section is important for the
application of our collision avoidance algorithm (in the next section).
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3.3 Collision Avoidance Algorithm

This section introduces the subject of manipulator's on-line collision avoidance into a
real industrial application implementing typical sensors and a commonly used collabo-
rative industrial manipulator, KUKA iiwa. In the proposed methodology, the minimum
distance and relative velocity between the human and the robot is calculated, when
human/obstacles are nearby the concept of hypothetical repulsion and attraction vec-
tors is used. By coupling this concept with a mathematical representation of robot's
kinematics, a task level control with collision avoidance capability is achieved. Conse-
quently, the o�-line generated nominal path of the industrial task is modi�ed on�the-�y
so the robot is able to avoid collision with the coworker safely while being able to ful-
�ll the industrial operation. To guarantee motion continuity when switching between
di�erent tasks, the notion of repulsion-vector-reshaping is introduced. Tests on an as-
sembly robotic cell in automotive industry show that the robot moves smoothly and
avoids collisions successfully by adjusting the o�-line generated nominal paths.

3.3.1 A Review on Collision Avoidance Algorithms

Collision avoidance is a major topic in robotics research, especially in the new context
of collaborative robotics. Owing to its importance, numerous studies approaching
collision avoidance had been presented. In the following we tried to list the major
studies about the subject. In potential �eld (PF)-based methods the robot is in a
hypothetical vector �eld in�uenced by two types of forces. Forces of attraction that
guide the robot towards the goal, and repulsion forces that repel it away from obstacles.
Subjected to these forces the robot �nds its way to the goal while avoiding collisions.
Unlike its predecessors the arti�cial potential �eld [38] was the �rst of its kind that
treated the problem of collision avoidance at the low-level control, which is best suited
for achieving real-time response. Another method that is based on a similar principle
is the 3 Dimensional (3D) force �eld method [53]. In this method each link of the robot
is surrounded by a virtual elliptical volume. When the obstacle penetrates into the
ellipsoid, a hypothetical repulsive force is generated, repelling the robot away from it
and avoiding collision.

Based on the PF principle, an approach to collision avoidance and trajectory plan-
ning was proposed in [54]. This method requires as an input a preliminary trajectory,
generated with another method, repulsion poles are used for representing obstacles and
an attraction pole is utilized for guiding the robot toward the goal. The attraction pole
moves along the preliminary trajectory and the robot will follow it while being repelled
away from obstacles. This method is suitable for generating collision free paths that
are as close as possible to a prede�ned trajectory. Recently, in [55], a depth space
approach for collision avoidance between a robot and coworker was presented. The
study describes an improved implementation of the arti�cial potential �eld method in
which an estimation of obstacle's velocity was taken into consideration when comput-
ing the repulsion vector. This is an advancement to the original arti�cial potential �eld
that utilizes only information about minimum distances for calculating the repulsion
vectors. Also, the paper proposed a novel approach for estimating obstacle's velocity.

In [50] the authors presented the skeleton algorithm, a framework for self-collision
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avoidance for humanoid robots. In this algorithm a skeletal representation of the robot
is proposed, based on this representation the points of the robot closest to collision
are obtained through minimum distance calculations between di�erent segments of
the skeletal structure, then repulsion forces are calculated and converted to control
commands used to control the robot.

In [56] the authors proposed a control architecture for a collaborative robotic cell
that performs assembly works, the cell is provided with collision avoidance module, the
robot and the workspace are represented in a virtual environment where the minimum
distance is computed and control commands are generated.

While the arti�cial potential �eld is inspired by electric �eld phenomena, other
approaches, inspired by other types of �elds, were proposed. The circular �elds method,
inspired by electromagnetism, was investigated in [57, 58]. One of the advantages
o�ered by this method over the arti�cial potential �eld is that it is immune to getting
stuck in local minima, a drawback that might appear in the arti�cial potential �eld.

Other researchers drew inspiration from �uid mechanics. In this context, [59] uti-
lized the stream lines of potential �ow for attaining collision free paths. The Circular
Theorem from �uid dynamics was implemented for computing the stream lines of the
potential �ow. Similarly, in [60] collision free paths are attained by superimposing ele-
mentary �ows. Doublets are used to model cylindrical obstacles inserted in a uniform
�ow. In such a way, collision free paths are attained after calculating the stream lines
of the �ow. Analogous to circular �elds, the methods based on �uid dynamics are also
immune to dead-lock (getting stuck in local minima). Nevertheless, almost all studies
based on �uid mechanics techniques are dedicated to applications of collision avoidance
for mobile robots.

In [61] the authors proposed the application of biharmonic potential functions for
collision free path calculation, inspired by the phenomena of stress distribution in
materials. In this method, the navigation zone is considered to be a continuous solid
with elasticity properties, obstacles are voids inside the solid, and the goal is modelled
by a pressurized cavity. The distribution of stresses inside the material is calculated
and from this distribution a collision free path is established.

Other researchers have approached robot collision avoidance as an optimization
problem. In [41] the authors utilized the square of a norm of an error vector as objective
function. This error was de�ned from the di�erence between the end-e�ector's velocity
and the desired velocity. The constraints are formulated from limits on (1) joints angles,
(2) joints velocities and (3) the likelihood of collision. The optimization problem is
solved in real-time using the logarithmic barrier method, and the computed velocity is
used to command the robot.

A motion planner that takes into consideration obstacle avoidance is presented
in [62]. This planner employs both the potential �eld and a genetic optimization
algorithm. In this method the planning process is divided into two procedures. In the
�rst the arti�cial potential �elds method was employed to �nd a collision free path for
the end-e�ector. In the second procedure, collision free con�gurations were calculated
using Genetic Optimization techniques. The method was validated by performing
simulations on a virtual robot with twelve DoF.

In [63] the authors described an algorithm for collision avoidance for redundant
manipulators. The algorithm operates at the kinematics (joint-velocities) level. At
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�rst, the minimum distance between the robot and the obstacle is calculated, if closer
than a prede�ned safety distance, a motion component is assigned to the part of the
robot closest to the obstacle, repelling the robot away from collision. The novelty
in their approach was in the way the repulsion motion was de�ned, or what they
call �one dimensional operational space� approach. In such approach, the repulsion
component is projected on the direction aligned with the closest distance between the
robot and the obstacle. This way of de�ning the repulsion motion gave their algorithm
better immunity against singularities. Nonetheless, the proposed method was built
around the fact that the end-e�ector's task is the primary task, or the task with the
highest-level priority, while collision avoidance was treated in the null space of the
Jacobian associated with the end-e�ector. This will cause the manipulator to fail in
avoiding collision with the obstacle in some situations. For example, when there is a
contradiction between the end-e�ector's task, assigned the highest-level priority, and
the collision avoidance task, assigned a lower-level of priority. For solving this drawback
the authors proposed to re-invoke a high-level path planning algorithm, so that a new
collision free path can be calculated. Another solution for this problem, more e�cient
and not requiring re-planning, is proposed in [64]. In this solution a coe�cient is
introduced into the control equation, and by changing the value of this coe�cient the
priority level between tasks can be switched smoothly.

In [65] the authors proposed an inverse kinematics solver that takes into consider-
ation joint limits and collision avoidance. The inverse kinematics problem was formu-
lated as a minimization of the square of the error between the goal position and the
end-e�ector position. The minimization is subjected to (1) constraints due to joints
limits, and (2) constraints due to restrictions on minimum distance between the obsta-
cle and the robot. Fiacco and McCormick algorithm was used to solve the optimization
problem. The method was tested on a 5 DoF robotic manipulator.

Probabilistic RoadMaps (PRM), [66] is a powerful method for generating collision
free paths for robots with high degrees of freedom in non-dynamic environments. This
method is composed of two phases. The �rst phase is called the learning phase, it
is performed o�ine, and used for stochastic generation of a roadmap of the scene.
The second phase is called the query phase. In this phase, paths are queried, and
the roadmap is searched for a feasible path. While PRM is a powerful method, it
su�ers two major problems. The �rst of which is that it is unsuitable for real-time
implementation. This is due to the high computational cost of the method, particularly
for robots with high degrees of freedom. The second drawback comes from the fact
that the resulting trajectories generated by this planner are not dynamically optimized
for direct implementation on the robot. So much so, PRM is more suited for the o�ine
global planning over real-time collision avoidance implementation. Nevertheless, due
to the advancement in processing power of contemporary computers, and despite the
high computational cost of PRM, a recent study [67] reported success in implementing
PRM for real-time collision free path planning in dynamic environments. Based on
PRM, in [68] the authors proposed the dynamic roadmaps, a high level algorithm
for planning dynamic paths in changing environment, and more suitable for real-time
collision avoidance applications. This method was used successfully in [69], where
the authors presented a collaborative human-robot system with integrated collision
avoidance capability.

59



In [45] the authors presented a collision avoidance system in which the control
strategy proposed searches for a motion-direction of the end-e�ector that guarantees a
collision free path between the robot and the coworker. In case this direction exists, the
end-e�ector is commanded to move in that direction. Otherwise the robot is stopped,
while waiting for the coworker to move from its way.

Other researchers took alternate approach towards solving collision avoidance, this
approach requires a complete knowledge of obstacle's trajectory. Though restrictive,
these methods are appealing when performing collision avoidance between di�erent
robotic manipulators. For example, in multi-robot cells or for dual-arm manipulators,
where the trajectories of the manipulators are known a priori. A study that utilizes this
knowledge for achieving collision avoidance between two end-e�ectors is presented in
[70]. In this study the end-e�ectors are modelled as spheres, using their pre-calculated
trajectories, a collision map is constructed. Afterwards, an iterative time shifting algo-
rithm is applied and the time delay required to achieve collision avoidance is calculated.
In other words, collision free operation is achieved by performing time-rescheduling on
motion commands before sending them to controllers. This approach was developed
further in [71], where an Advanced Collision Map is introduced, the method can be ap-
plied for collision avoidance between two manipulators rather than their end-e�ectors
only. In [72] the method was generalized to perform collision avoidance between any
number of manipulators.

A study dedicated to collision avoidance between two manipulators for industrial
applications is in [73]. The problem was addressed by dividing the work space of the
manipulators into a shared work area, accessible to both manipulators, and an external
work area accessible to only one manipulator. The authors added a processing layer
into the control structure, in which point-to-point control commands are processed
before being sent to the controllers. As consequence, the manipulators are allowed to
operate in their own external work area at any time. However, the presence of one of
the manipulators inside the shared work area will deny access to the other manipulator,
causing it to wait until the shared work area is free from the other manipulator.

For redundant manipulators self induced collisions could occur. This problem is
treated in [74], where RoBE (Representation of Body by Elastic Elements) is presented
as a method for preventing robot self collisions. In this method each link is covered
by a �ctitious elastic element, whenever the elements touch, a force is generated and
collision avoidance is achieved.

3.3.2 Collision Avoidance for Industrial Manipulators

Industrial robots are traditionally working inside fences, isolated from humans. The
ability to have robots sharing the workspace and working side-by-side with human
coworkers is a key factor for the materialization of the Industry 4.0 concept. The
paradigm for robot usage has changed in the last few years, from an idea in which
robots work with complete autonomy to a scenario where robots cognitively collaborate
with human beings. This brings together the best of each partner, robot and human,
by combining coordination, dexterity and cognitive capabilities of humans with the
robots' accuracy, agility and ability to produce repetitive work. For example, robots
can help humans in carrying and manipulating sensitive/heavy objects safely [75] and
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positioning them precisely by hand-guiding [16]. In this scenario the robot can play
the role of a force magni�er while moving compliantly according to the haptic feedback
from the human.

Reaching the goal of developing/creating safe collaborative robots will allow a
greater presence of robots in our society, with a positive impact in several domains,
including industry [22]. Nowadays, industrial collaborative robots, which are not oper-
ating inside fences, do not have autonomy to perceive its unstructured and time-varying
surrounding environment, nor the ability to avoid collisions with human coworkers in
real-time while keeping the task target de�ned by the o�-line generated paths. On
the contrary, they stop when a prede�ned minimum separation distance is reached.
Due to this issue, the full potentialities of collaborative robots in industrial environ-
ment are not totally explored. The increasing demand by industry for collaborative
robot-based solutions makes the need for advanced collision avoidance strategies more
visible. To have them working safely alongside humans, robots need to be provided
with biological-like re�exes, allowing them to circumvent obstacles and avoid collisions.
This is extremely important in order to give robots more autonomy and minimum need
for human intervention, especially when robots are operating in dynamic environment
and interacting/collaborating with human coworkers [76]. The requirements for safe
collaborative robots, including physical human-robot interaction (HRI), are detailed in
[77], where collision avoidance is listed as a factor, among others, which is important for
human-robot safety. The new standard ISO 10218 and the technical speci�cation TS
15066 de�ne the safety requirements for collaborative robots [78]. Apart from industrial
domain and human-robot collaboration, collision avoidance is also being investigated
for aerospace applications, including robotic arms mounted on space maneuverable
platforms [79] and aerial manipulators mounted on drones [80].

The subject of collision avoidance for robotic manipulators has captured the interest
of researchers for decades. In the pioneering work of Khatib [38], a real-time obstacle
avoidance approach based on the classical arti�cial potential �eld (PF) concept is
introduced. In PF-based methods, the robot is in a hypothetical vector �eld, and its
motion is in�uenced by forces of attraction that guide the robot towards the goal and
forces of repulsion that repel it away from obstacles. Subjected to these forces the robot
�nds its way to the goal while avoiding collisions. An improved implementation of the
PF method in which an estimation of obstacle's velocity is taken into consideration
when computing the repulsion vector is proposed in [81]. PF-based robot self-collision
avoidance has been studied, as well as the development of collision avoidance techniques
for redundant robots [82]. A distributed real-time approach to collision avoidance
considering not only the robot tool centre point over the objects in the cell, but also
the body of the tool mounted on the robot �ange is in [83]. A passivity-based control
scheme for human-robot safe cooperation is proposed in [84]. A collision free trajectory
generating method for a robot operating in a shared workspace in which a neural
network is applied to create the way points required for dynamic obstacles avoidance
is proposed in [85]. In [86], the authors presented a method for calculating collision
free optimal trajectories for robotic manipulators with static obstacles. The proposed
algorithm takes into consideration the maximum limits of jerk, torques, and power for
each actuator. Tests have been carried out in simulation in a PUMA 560 robot. In [87],
it is presented a collision avoidance algorithm between robotic manipulators and mobile
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Figure 3.14: Proposed framework for on-line human-robot collision avoidance.

obstacles validated in simulation environment. Using the variation principle, it is
proposed a path planner for serial manipulators with high degrees of freedom operating
in constrained work spaces where the planner produces monotonically optimal collision
free paths [88]. Based on fuzzy rules [89], the authors presented a method for resolving
internal joint angles in redundant manipulators. The method allows the EEF to follow
the desired path, while the internal motion manifold is used to perform other objectives
including collision avoidance with surrounding obstacles.

However, the number of existing studies dedicated to on-line human-robot collision
avoidance for manipulators in industrial setups is very limited, and when existing,
results are presented in simulation environment. Some of these studies, especially the
ones with more direct industrial application, approach collision avoidance by stopping
the robot or reducing its velocity when a human reaches a given distance threshold
[90]. An interesting work de�nes four safety strategies for workspace monitoring and
collision detection: the system alerts the operator, stops the robot, moves the robot
away, or modi�es the robot's trajectory from an approaching operator [91].

3.3.3 Proposed Approach

In this thesis, an industrial task is de�ned by the o�-line generated robot paths (task
primitives), which can be programmed by a Computer-Aided Design (CAD) software,
or by using more sophisticated methods including Programming by Demonstration
(PbD) [92]. Consequently, a safe human robot interaction is achieved through real-
time modi�cation of the o�-line generated paths, Figure 3.14. In this scenario of shared
workspace, the human coworker focuses on the collaborative task he/she is perform-
ing rather than the potential danger from the robot. Using external sensors (IMUs,
a magnetic tracker and a laser scanner) the pose of the human body is captured and
approximated by capsules. The robot is represented by three capsules. The analytical
minimum distance between capsules representing the robot and the human(s) is calcu-
lated using the method in section 3.1. The human-robot minimum distance and relative
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velocity are used as inputs for the proposed collision avoidance controller, where hy-
pothetical attraction and repulsion vectors attract the robot towards the goal/target
while repelling it away from obstacles. We also introduce the notion of repulsion-
vector-reshaping to avoid control discontinuity. By coupling these concepts with a
mathematical representation of robot's kinematics we can achieve a task level control
with smooth collision avoidance capability. The proposed framework is tested in three
di�erent experiments, including a real use case for assembly in automotive industry
using real sensors and a collaborative industrial manipulator. Results indicate that the
robot reacts smoothly by modifying its o�-line generated paths to avoid collision with
the human coworker. Consequently, our study is the �rst of its kind (according to our
knowledge) that satis�es all the following points combined:

1. In our study a real industrial robot (not experimental) is used for performing a
typical industrial task;

2. The proposed method for performing the collision avoidance is tailored for in-
dustrial use, by combining an o�-line path of the EEF (important for industrial
applications) with an on-line reactive collision avoidance (required for dynamic
collision avoidance);

3. In our method a human coworker is moving freely around the robot, the whole
con�guration of his/her upper body is captured using real sensors. In this regard,
our study di�ers from the previously presented studies, which mainly based on
simulations, while the remaining few (that approached human-robot collision
avoidance) utilized an experimental robot, and mostly vision systems which su�er
from occlusion, in addition other studies focused on the collision avoidance itself,
without showing results in a real industrial operation;

4. Unlike other studies, we realized that in a real industrial scenario, the control
shall switch between di�erent operation modes (as shown later in Figure 3.22 and
Algorithm 3.4), this can lead to repulsion action discontinuity, we resolved this
issue by proposing the repulsion-vector-reshaping (described in Algorithm 3.2).

3.3.4 Problem Speci�cations

Two major problems in on-line human-robot collision avoidance are related with the re-
liable acquisition of the human pose in unstructured environments and the di�culty in
achieving smooth continuous robot motion while generating collision avoidance paths.
For capturing the con�guration of the human, the method in the previous (Human
Pose Estimation) section is implemented. Concerning the di�culty in achieving colli-
sion free and smooth continuous robot motion, this problem is particularly visible in
an industrial setup where the control algorithm switches between di�erent controllers
depending on the task-in-hand. In summary, several challenges can be pointed out:

1. Accurate de�nition of humans/obstacles and robot pose in space using geometric
primitives, and calculation of the minimum distance between them;

2. Achieving reliable autonomous human-robot collision avoidance in which the
robot adapts the o�-line generated nominal paths while keeping the task goal/target.

63



In such a case, instead of stopping or reducing robot's velocity when humans are
nearby, the robot has to continue its motion while avoiding the humans/obstacles;

3. The control strategy shall produce continuous motion of robot's reaction when
it adjusts the path to avoid collision. This continuity shall be guaranteed even
when switching between di�erent controllers;

4. Industrial applications require high-performance control in terms of motion ac-
curacy and agility;

5. Collision free robot motion should be possible and reliable in the entire working
volume of the robot.

Experiments demonstrated the ability of the proposed solution to achieve on-line
human-robot collision avoidance materialized in the following contributions:

1. Reliable and smooth human-robot collision avoidance in which the robot adapts
the o�-line generated nominal paths (de�ned in the initial robot program) while
keeping the task target. The robot �nds a way to get around the human(s)/obstacles
when they are nearby. Human-robot minimum distance and relative velocity are
used as inputs to the implemented collision avoidance algorithm;

2. Successfully applying on-line collision avoidance on a real industrial collabora-
tive robot performing industrial assembly tasks in collaboration with a human
coworker.

3.3.5 Collision Avoidance Strategy

Hypothetical attraction and repulsion vectors attract the robot towards the goal/target
(de�ned by the o�-line generated nominal paths) while repelling it away from hu-
man(s)/obstacles. By coupling this concept with a mathematical representation of
robot's kinematics we can achieve a task level control with collision avoidance capabil-
ity.

3.3.5.1 Repulsion

A vector vcp.rep acts on the point of the robot closest to the obstacle (CP) repelling it
away from collision. This vector is de�ned considering a magnitude vrep.mod (calculated
from a base repulsion amplitude vrep) and a direction s:

vcp.rep = vrep.mods (3.23)

The direction of the repulsion vector s is taken to be aligned with the line segment
associated with the minimum distance:

s =
r1 − r2
|r1 − r2|

(3.24)

Where r1 is the position vector of the point of the robot closest to the obstacle and r2
is the position vector of the point of the obstacle closest to the robot. For calculating
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the base repulsion amplitude vrep we propose to superimpose the repulsion due to
the minimum distance (vrep1) and the repulsion due to the relative velocity between
human and robot (vrep2), so that vrep = vrep1 + vrep2. Here, vrep1 is calculated from
the minimum distance dmin:

vrep1 =

{
k1

(
d0

dmin−dcr − 1
)
, if dmin − dcr < d0

0 if dmin − dcr ≥ d0
(3.25)

Where k1 is a constant, d0 is an o�set distance around the obstacle's capsule, it speci�es
the area around the obstacle where the repulsion vector is activated, and dcr is a critical
distance below which the robot is not allowed to be near the human. To enhance the
responsiveness of the robot, we propose a dynamical reshaping of the size of the area of
in�uence around the obstacle d0, such that the value of d0 increases when the relative
velocity between the robot and the obstacle increases:

d0 =

{
d1 − cvvrel vrel < 0

d1 vrel ≥ 0
(3.26)

Where vrel is the human-robot relative velocity, cv is a constant and d1 is the minimum
value of the area of in�uence around the obstacle. For vrep2 we have:

vrep2 =

{
−c k2 vrel vrel < 0

0 vrel ≥ 0
(3.27)

Where k2 is a damping constant and c is a coe�cient that takes into consideration the
proximity of the obstacle from the robot:

c =


1 dmin ≤ l1
1+cos(π

dmin−l1
l2−l1

)

2 l1 < dmin < l2

0 l2 ≤ dmin

(3.28)

Where l1 and l2 are constant distances that de�ne the range around the robot where
the damping force is activated. The intuition of using c is that obstacles far away
from the robot shall not a�ect robot's motion since that they do not pose any risk of
collision.

The modi�ed repulsion magnitude vrep.mod is calculated from vrep according to
Algorithm 3.2. For complex industrial collaborative operations, the collision avoidance
controller is typically embedded in a state machine, where the collision avoidance
functionality is activated/deactivated according to the tasks being performed. In such a
case, discontinuity could appear when calculating the repulsion action. As an example,
if the controller is switched (from the collision avoidance deactivation to the collision
avoidance activation) while the coworker is near the robot, discontinuity appears. In
such a case, a high magnitude of the repulsion vector will act on the robot suddenly.
To solve this problem, the repulsion action is proposed to be time dependent, by
introducing the concept of repulsion-vector-reshaping coe�cient γ, such that when the
control scheme is switched the repulsion magnitude is allowed to increase monotonically
starting from zero up to its stable value. In the Algorithm, now is a function returning
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Algorithm 3.2 Modi�ed repulsion vector (magnitude).Algorithm Modified repulsion vector
1: for each time step △t do
2: if controller switched then
3: t0 = now
4: end if
5: t = now − t0
6: γ = 1− exp(−t/τ)
7: vrep.mod = γvrep
8: end for

1

+

+

min
d

rel
v

eq (3)

eq (5)

rep1
v

rep2
v

Algorithm: 
Modified repulsion 
vector

γ

rep
v rep.mod

v

eq (3.25)

eq (3.27)eq (3.27)

Figure 3.15: Block diagram showing the proposed method for calculating the magni-
tude of the modi�ed repulsion vector.

the current time, τ is a time constant that can be calculated from vmax/(5amax), where
vmax and amax are the maximum curvilinear velocity and acceleration of the EEF used
during collision avoidance, respectively.

Figure 3.15 shows a block diagram illustrating the proposed method for calculating
the modi�ed repulsion vrep.mod and its relationship to vrep.1 and vrep.2.

3.3.5.2 Attraction

An attraction velocity vector ve.att attached to the EEF guides the robot towards
the goal/target, Figure 3.16. This vector is a function of the error e between EEF's
position pe and the goal position pg (de�ned in the o�-line generated nominal paths):

e = pe − pg (3.29)

The attraction velocity is calculated from a proportional term (ψp) and a quasi-integral
term (ψi):

ve.att = β(ψp +ψi) (3.30)

Where ψp is a pure proportional term:

ψp = −Kpe (3.31)

In which Kp is the proportional coe�cient. The quasi-integral term ψi, Algorithm
3.3, prevents the quasi-integral from accumulating when the human-robot distance is
less than a prede�ned safety distance d0. In the Algorithm, dmin is the human-robot
minimum distance and the integral term is calculated numerically using a simple Euler
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Figure 3.16: The nominal path curve de�ned o�-line, the attraction pole, and the error
vector.

Algorithm 3.3 Integral term of the attraction vector.Algorithm Integral term of the attraction vector
1: for each time step △t do
2: if dmin-dcr>d0 then
3: ψi = ψi − Ki

∫ t+△t

t
edt

4: else
5: ψi = ψi

6: end if
7: end for

1

scheme (more sophisticated Runge-Kutta methods could also be used). The term β
is used to reduce the magnitude of the attraction vector. This term has the e�ect of
detaching the EEF gradually from the goal when the human coworker is closer to the
robot:

β =

 2

1 + e
−
(

dmin−dcr
d0

)2 − 1

 (3.32)

Figure 3.17 shows a block diagram illustrating the proposed method for calculating
the attraction vector.

3.3.5.3 Controller

The robot is controlled at the joint velocity level. The repulsion and attraction vectors
are considered velocity vectors in which the repulsion velocity is calculated from (3.23),
and the attraction velocity at the EEF ve.att is calculated from (3.30). Calculating
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Figure 3.17: Block diagram showing the proposed method for calculating the attraction
vector. Term ψi is calculated using the Algorithm 3.3, which is used to avoid windup
problem.

the overall angular velocities of the joints requires superimposing the angular velocities
due to repulsion and attraction. Thus, the angular velocities due to vcp.rep that acts
at CP is calculated using the Damped Least Squares (DLS) [35]:

q̇rep = JT
cp(JcpJT

cp + λ2I)−1vcp.rep (3.33)

Where q̇rep is the joint velocities vector due to the repulsion action, Jcp is the partial
Jacobian associated with CP on the robot, λ is a damping constant, and I is the
identity matrix.
The angular velocities due to ve.att that act at the EEF are calculated from:

q̇att = JT
e (JeJ

T
e + λ2I)−1ve.att (3.34)

Where q̇att is the joint velocities vector due to the attraction action and Je is the
Jacobian associated with the EEF. Thus, the total angular velocities of the joints sent
to the robot:

q̇total = q̇att + q̇rep (3.35)

3.3.6 Experiments

Experiments are conducted in three main tests:

1. Test 1: Detailed in 3.3.6.1, in this test the human arm acts as an obstacle for the
robot that is performing a straight line path (o�-line generated nominal path);

2. Test 2: Detailed in 3.3.6.2, in this test the human approaches the robot from the
side while the robot is stopped at a prede�ned home position;

3. Test 3: Detailed in 3.3.6.3, representing an industrial collaborative assembly
operation for automotive industry in which the human coworker approaches the
robot to place a sticker in a car door card while the robot is inserting trim clips
in the same door card.
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Figure 3.18: Robot (A) and human (B) represented by capsules.

Setup and Data Acquisition

The three experimental tests were performed using di�erent sensors for capturing the
human pose in space. In test 1 and test 2, the proposed solution was performed with
Polhemus Liberty magnetic tracking sensors attached to the human upper body (arm,
forearm and chest) to acquire 6 DoF pose (position and orientation) of each body
part in space. In test 3, the method proposed in the previous section (Human Pose
Estimation) is used for capturing the human body pose from �ve IMUs (Technaid MCS)
attached to the arms/forearms and the chest, and a laser scanner (SICK TiM5xx)
at the level of the legs. An external computer Intel Core i7 with 32 GB of RAM
running MATLAB R© was used for performing the required computations: sensor data
acquisition, capsules con�guration calculation, minimum-distance and relative-velocity
calculation, collision avoidance algorithms, and robot control using the KUKA Sunrise
Toolbox (KST) detailed in section 3.5.

Human and Robot Representation

The human is represented by �ve capsules, Figure 3.18, four capsules used to cover the
right/left upper arm and forearm, while the �fth capsule is used to cover the torso up to
the head. The robot (KUKA iiwa with 7 DoF) is represented by three capsules, Figure
3.18. Capsule R3 also incorporates the tool attached to the robot. The pose of the
capsules are de�ned by applying the forward kinematics on the joint angles acquired
from the controller of the robot.

3.3.6.1 Test 1

Figure 3.19 shows the results for test 1. The human forearm, represented by a capsule,
is extended and acts as an obstacle. The robot is moving on a straight line path
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Figure 3.19: Test 1 results. Minimum distance, EEF velocity and position along y axis
(top). Snapshot of collision avoidance testing and collision avoidance path in 3D and
2D space (middle and bottom).
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Figure 3.20: Test 2 results. Minimum distance, EEF velocity and position along y axis
(top). Snapshot of collision avoidance testing (bottom).

(nominal path de�ned o�-line) along the y direction of its base frame. While moving
along the straight line, the minimum distance between the human-arm and the robot
decreases. Consequently, the robot adapts the nominal path smoothly circumventing
the human arm. At the top of Figure 3.19, the graph shows the minimum distance,
the velocity of the EEF and its position in Cartesian coordinates along y axis. These
quantities are reported as function of time. We can notice from the plot that at the
beginning the human arm is in a resting position and the robot is moving with a
constant velocity of about 0.26 m/sec, along y direction, towards the human arm.
When the robot EEF approaches the human arm the minimum distance decreases to
a minimum of about 5 centimeters. The EEF velocity is constant until a threshold
minimum distance is reached. In such scenario the EEF velocity decreases to start
circumventing the obstacle and then accelerates to reach a velocity close to the nominal
velocity of 0.26 m/s. It can be concluded that the robot manages to avoid collision
with the coworker successfully and the collision avoidance controller smoothly reacts
to avoid collision while reaching the task target.
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3.3.6.2 Test 2

In test 2 the human approaches the robot from the side while the robot is stopped
at a pre-de�ned home position. As the human approaches the robot the human-robot
minimum distance decreases and the robot reacts in an agile-smooth behaviour to
avoid collision. At the top of Figure 3.20, the same quantities presented for test 1 show
that at the beginning the human starts walking towards the robot, when the minimum
distance reaches 0.5 meters, the robot reacts to avoid collision. When the human goes
away the robot returns to the initial home position. The robot successfully avoided
collision as in the snapshots at the bottom of Figure 3.20 and in the video segment in
[93].

3.3.6.3 Test 3

Flexible manufacturing, and industrial assembly processes in particular, present several
challenges due to the unstructured nature of an industrial environment. Some tasks are
more suited to be executed by humans, others by robots, and others by the collaborative
work between human and robot. The ability to have humans and robots working side-
by-side will bring enormous e�ciency bene�ts to �exible manufacturing. However, this
scenario is challenging, due to the requirement of having the robot avoiding collisions
with the coworker in real-time, allowing him/her to focus on the manufacturing tasks
and not on the potential danger from the robot side. In this context, we tested the
proposed system, in test 3, in a collaborative robotic cell for automotive industry where
a human coworker approaches the robot to place a sticker in a car door card while the
robot is inserting trim clips in the same door card, Figure 3.21 (a video segment showing
the experiment is available in [6]). This �exible collaborative task allows the coworker
to manage his/her working time and sequencing of operations since he/she is free to
place the sticker in the door card at any time and devotes attention to other tasks
that he/she has to take care of. Meanwhile the robot continues inserting the trim
clips in the door card by using its force feedback to compensate for deviations in the
door card positioning. When the human coworker approaches the robot it adapts the
nominal path to avoid collisions in a smooth way while keeping its task. For this test,
the pre-established nominal path is divided in 3 sub-path segments, Figure 3.22 (A).
In segment 1 and 3 (green line) the collision avoidance control is activated (collision
avoidance (CA) paths) while in segment 2 (red and blue line) is deactivated. This is
because this path is de�ned to be the working path where the robot is inserting the
trim clips at relative reduced velocity. Starting from a given home position coincident
with the beginning of segment 1 and the tool centre point (TCP) the system behaves
as in Algorithm 3.4. In Figure 3.22 (B) the robot and goal point move along segment
1 so that an error vector is established. If the human is detected in the safety zone
the collision avoidance is activated and the goal point stops moving, Figure 3.22 (C).
When the human is not in the safety zone the robot returns back to the goal point
that starts moving with the robot, Figure 3.22 (D). When the robot reaches segment 2
the collision avoidance is deactivated, Figure 3.22 (E). All the users indicate that the
system does not appear to be dangerous virtue to the collision avoidance motion which
is perceived as smooth and natural.
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Algorithm 3.4 Collision avoidance - collaborative robotic cell in automotive industry
(reads together with Figure 3.22)Algorithm Collision avoidance - automotive sample case

1: for each time step do
2: if human is not detected in the safety zone then
3: if CA path then
4: Goal point moves along path segment
5: Error vector generated between TCP and the goal point, sub-

figure (B)
6: Attraction velocity generated from the error vector
7: if goal point reaches the segment end then
8: Goal point stops moving
9: The robot TCP reaches the goal point

10: end if
11: else
12: Collision avoidance controller is deactivated
13: Controller to insert trim clip is activated
14: end if
15: else human is detected in the safety zone
16: if CA path then
17: Goal point stops moving
18: Integral term stops accumulating
19: A repulsion velocity vrep acts in the robot, sub-figure (C)
20: else
21: Collision avoidance controller is deactivated
22: Controller to insert trim clip is activated, sub-figure (E)
23: end if
24: end if
25: end for

1
Figure 3.21: Test 3. Collaborative robotic cell for car door card assembly (video
segment showing the experiment is in [6]).
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Figure 3.22: Pre-established sub-path segments for test 3. This process is detailed in
the algorithm 3.4.

3.3.7 Summary

This section presented a novel method for human-robot collision avoidance for collab-
orative robotics tailored for industrial applications. The collision avoidance controller
demonstrated on-line capabilities to avoid collisions while the robot continues work-
ing by keeping the task target. The concept of repulsion-vector-reshaping was intro-
duced to guarantee the continuity of the generated motion when switching between
controllers. Experiments indicated that the robot reaction to avoid collisions is well
perceived by the coworker, smooth, natural and e�ective.
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3.4 Collision Avoidance Algorithm Using Newton's Method

In this section the application of Newton method for the problems of collision avoid-
ance and path planning for robotic manipulators is investigated, especially for robots
with high Degrees of Freedom (DoF). The proposed algorithm applies on the potential
�elds method, where the Newton technique is used for performing the optimization.
Furthermore, a computationally e�cient symbolic formula for calculating the Hessian
with respect to joint angles is deduced, which is essential for achieving real-time per-
formance of the algorithm in high DoF con�guration spaces. As compared to classical
gradient descent method (with repulsion and attraction vectors) this implementation
of Newton's method o�ers various advantages: it is mathematically elegant, enhances
the performance of motion generation, eliminates oscillations, does not require tedious
gains tuning, and gives faster convergence to the solution. Finally the method is vali-
dated successfully in simulation for 15 DoF planar manipulator.

3.4.1 Introduction

Redundancy is a term used for referring to robots that have more degrees of freedom
than necessary to complete a task. Extra degrees of freedom o�er better �exibil-
ity and can be used to achieve multiple objectives besides to the required task [94],
as such several studies have been dedicated to the problem of controlling redundant
robots [95, 82]. In cluttered environments with obstacles, redundancy plays an im-
portant role, allowing the robot to reach the goal while avoiding obstacles. Yet, for
achieving real-time path planning capacity for high DoF manipulators in unstructured
environments, it is required to merge the redundancy control frameworks with some
notion of attraction/repulsion vector �eld [55, 96]. In such a case, task-level prior-
ities are achieved through projections on the null space of the Jacobian [64], or by
using more sophisticated projection criteria [97]. This method for formulating colli-
sion avoidance is proved to be computationally e�cient. Nevertheless, in many cases
this implementation requires a prede�ned trajectory of the end-e�ector (EEF) and the
repulsion/attraction vectors are custom engineered with many parameters to tune, as
shown in the previous section. Moreover, this method su�ers from oscillation prob-
lems, which become more evident for increasing number of obstacles and for higher
DoF robots, this was noticed in our implementation in the previous section, yet a sim-
ple (but not very elegant) solution is implemented by �ltering. A method with better
immunity to local minima problem is the Probabilistic RoadMaps (PRM) proposed in
[66]. This method is composed of two phases. The �rst phase is called the learning
phase, it is performed for stochastic generation of a roadmap of the scene (robot and
its surroundings). The second phase is called the query phase. In this phase, paths are
queried, and the roadmap is searched for a feasible path. While PRM is a powerful
method, it su�ers two major problems. The �rst of which is due to computational cost,
where according to the times reported in [66] it can be concluded that for high DoF
robots PRM is unsuitable for implementation in control loops with fast update rates.
The second drawback comes from the fact that the resulting trajectories generated by
this planner are not smooth and require processing before implementation on the robot
[98].

75



In this section, the application of Newton method on the problem of collision avoid-
ance for hyper redundant robotic manipulators is investigate. In such a case, the prob-
lem is reformulated as a second order optimization problem. The Newton method
is utilized for performing the optimization, as a result generating collision-free and
smooth paths. The application of Newton method in robotics o�ers various advan-
tages. As reported in the optimization literature [99] using the Newton method for
optimization o�ers: (1) better numerical stability, (2) faster convergence and (3) elim-
inates numerical oscillations that might be induced during �rst order optimization. In
robotics this translates into generating smoother paths and faster execution, as re-
ported in [100, 101], where the modi�ed Newton method is applied for the problem of
mobile robot navigation, where the robot is approximated by a point in a plane and
the potential �eld is an explicit function of the con�guration variables, in such a case
calculating the Hessian analytically is possible as noted in [102]. While the Newton
method has been described in literature for the problem of mobile robot navigation,
this method has not been investigated yet for the problem of collision avoidance in
robotic manipulators. This comes from the fact that the resulting potential �elds,
which are functions of Cartesian space variables, are implicit functions of con�guration
space variables, with high non-linearity due to the nature of the complex transform
function between the spaces [103]. This makes �nding a closed form solution for the
Hessian in joint space a challenging task. In this section, a systematic method for
applying Newton technique for robotic manipulators, at kinematic level, is addressed.
We present a formula for e�cient calculation of the Hessian matrix, by deducing a
relationship between the Hessian in Cartesian space and the resulting Hessian in joint
space. This allows to speed up the algorithm and makes it applicable for real-time
implementation. In addition to the aforementioned advantages the proposed solution
contributes in the following:

• Bigger optimization steps: In Newton method bigger optimization steps can be
used, resulting in faster execution rates, as compared with the gradient method;

• Faster convergence: Newton method o�ers better performance in terms of con-
vergence rate than the gradient descent [104];

• Elegant formulation: The proposed method is mathematically elegant, eliminates
the need for tedious tuning of control parameters, and can be applied on hyper
redundant manipulators. The method does not require pre-planned trajectory
and keeps the number of control parameters to a minimum.

The proposed method can be used either for real-time control of the manipulator
to avoid collisions with obstacles, or it can be used for o�-line path planning. The
application of the presented method extends easily to computer animations and to
motion generation for kinematic chains in virtual environments with obstacles.

3.4.2 Mathematical Formulation

For achieving a robot motion that drives the EEF towards the goal, while avoiding
collision with obstacles, the potential �elds method by Khatib [38] is considered. In
this method an attraction potential �eld uatt attracts the EEF towards the goal. This
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potential is expressed in Cartesian space as a function of EEF position. In addition,
repulsion potential �elds repel the robot away from obstacles. As a result the robot is
subjected to a total potential �eld utotal, given by:

utotal = uatt +
∑

urep(i,j) (3.36)

Where urep(i,j) is a repulsion potential �eld that repels link i from colliding with obstacle
j. The potential urep(i,j) is expressed in Cartesian space as a function of the minimum
distance between link i of the robot and obstacle j. Given that the control algorithm of
the robot is running in a loop, each iteration the robot shall move in a way to minimize
the total potential function, as a result the robot moves towards the goal while avoiding
collisions with obstacles. Traditionally, the notion of attraction and repulsion vectors is
used for performing the collision avoidance. This traditional method can be interpreted
as minimizing the potential function using the gradient descent technique, where the
gradients represent the repulsion and attraction vectors. In contrast, we propose to
use Newton method for minimizing the potential function. As shown in Appendix
A, taking the second order approximation of the potential function yields the update
equation for the joint angles:

qm+1 = qm − α(H + λI)−1g (3.37)

Where qm, qm+1 are the resulting vectors of the angular positions calculated at time-
steps m,m + 1. In real world scenario qm represents the angular positions of the
joint angles as acquired from the encoder measurements, α is a scalar representing the
minimization step, H is the Hessian of the potential �eld with respect to joint angles, g
is the gradient of the potential �eld with respect to joint angles, I is the identity matrix,
and λ is a damping factor. By adopting a similar approach to the already developed
techniques in di�erential inverse kinematics, the damping factor can be calculated as a
function of the minimum singular value [105], but unlike inverse kinematics methods, in
our method the minimum singular value pertains to the singular value decomposition
of the Hessian matrix H. For fast execution of the proposed algorithm the Hessian shall
be calculated analytically. By taking a second order approximation of the potential
function, equation (3.36), it is proven (in Appendix A) that for robotic manipulator
the Hessian is given by:

H =
∑

JT
k∇2ukJk (3.38)

Where ∇2uk is the Hessian matrix of uk with respect to Cartesian coordinates. Given
that uk is an explicit function of Cartesian coordinates for both the attraction and
repulsion �elds, then it is possible to derive a closed form solution for the matrix
∇2uk, either by hand or using symbolic math software. Jk is the partial Jacobian
associated with the potential �eld uk. In case of the attraction potential uatt, then
Jatt is the Jacobian associated with the EEF. In case of a repulsion potential urep(i,j)
due to the e�ect of obstacle j on link i, then J(i,j) is the partial Jacobian associated
with control point cp(i,j), where cp(i,j) is the point of link i closest to obstacle j. The
gradient (as shown in Appendix A) is given by:
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g =
∑

JT
k∇uk (3.39)

Where ∇uk is the gradient of potential function uk in Cartesian space. For achieving
better numerical robustness and by analogy to di�erential kinematics approaches, the
alternate Jacobian described in [106] can be utilized for calculating the partial Jaco-
bians. As a result, it can be concluded that the presented mathematical formulation
forms a systematic way to integrate several potential �elds:

• Attraction potential �eld attracting the EEF to the goal position;

• Repulsion potential �eld repelling the robot away from obstacles;

• Repulsion potential �eld repelling the robot away from self-collision and joint
limits.

3.4.3 Experiments

To evaluate the performance of the proposed method, real-time simulations using
MATLAB are implemented, where the attraction potential �eld uatt is chosen to be a
quadratic function with a minima at the goal position. In such a case this potential
�eld drives the EEF towards the goal:

uatt =
1

2
katt(xef − xg)T(xef − xg) (3.40)

Where katt is the attraction constant, xef is the position of the EEF and xg is the
position of the goal point. On the other hand, the repulsion potential �eld chosen for
the simulations is identical to the one in [38], where according to the proximity between
obstacle j and link i the repulsion potential urep(i,j) is given by:

urep(i,j) =

{
0 ρ(i,j) > ρ1
krep

ρ(i,j)−ρ0
− krep

ρ1−ρ0 ρ(i,j) ≤ ρ1
(3.41)

Where krep is a repulsion constant, ρ(i,j) is the minimum distance between obstacle j
and link i of the robot, ρ1 is the distance at which the repulsion potential starts acting
on the robot, ρ0 de�nes the forbidden area around the obstacle where the robot can
not evolve. Similar repulsion �elds could be added for joints limits avoidance and for
self collision avoidance.

Under the previous potential functions a planar hyper redundant manipulator, with
15 DoF, is navigating through 10 obstacles towards the goal. The goal is marked by
a green circle and obstacles are marked by red circles, as shown in Figure 3.23, where
the Newton method is applied to perform the collision avoidance and the motion gen-
eration. The �gure shows a sequence of con�gurations taken by the robot during its
motion towards the goal. In the beginning of the simulation, the robot is in an initial
con�guration where it is vertically straight, links are fully stretched. Afterwards the
robot starts bending and reaching towards the goal while navigating through the ob-
stacles. In the simulation, the Hessian matrix was calculated e�ciently using equation
(3.38), as such an update time lower than 5 milliseconds was achieved on dual core
laptop without code optimization.
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Figure 3.23: Sequence in time of collision avoidance simulation for hyper redundant
planar manipulator using Newton method.
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Figure 3.24: Test 1: comparison between con�gurations of the two manipulators after
a period time from the beginning of the simulation.

For comparing the proposed implementation of the Newton method as opposed to
the traditional gradient descent based method, two di�erent tests are performed:

• Test 1: In this test a comparison between Newton method and gradient descent is
performed. The comparison criteria is in terms of the generated path quality, and
the minimum reach distance between last link of the manipulator and obstacles
position, a video segment showing the simulation of Test 1 is in [107];

• Test 2: In this test a comparison between three di�erent methods for performing
the optimization is performed. Those methods are (1) Newton method, (2) �xed
step gradient descent and (3) gradient descent with momentum. The comparison
criteria is in terms of convergence rate, a video segment showing the simulation
of Test 2 is in [108].

3.4.3.1 Test 1

In this test the Newton method applied to the problem of collision avoidance and path
planning for high DoF manipulators is compared with the gradient descent method.
For this purpose the following MATLAB simulation is proposed. Two identical pla-
nar robots with 15 DoF are navigating towards the same goal point, while avoiding
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collision with 10 circle-shaped obstacles. In the beginning of the simulation, the two
manipulators are coincident with each other, dashed line in Figure 3.24. The blue ma-
nipulator is controlled using the Newton method and the red manipulator is controlled
using the gradient descent method. For performing the comparison the same goal,
obstacles, potential �elds are used for both manipulators. The only di�erence is in the
optimization method used, where for the red robot the gradient method was used to
calculate the optimization direction, while for the blue robot the Newton method was
used to calculate the optimization direction. For both robots the magnitude of the
optimization step α is identical, in other words the update equation for both robots is:

qm+1 = qm − αs (3.42)

Where s is the optimization direction. In the case of the Newton method s is given
by:

s =
(H + λI)−1g

‖(H + λI)−1g‖
(3.43)

In case of the gradient method:

s =
g

‖g‖
(3.44)

Figure 3.24 shows the �nal con�gurations taken by the two manipulators. Figure
3.25 shows joints angles for this simulation as recorded in the Newton method (left)
and the gradient descent method (right). After performing the simulation the two
methods are compared in terms of:

• Quality of the path: The Newton method generated an oscillation free path. On
the other hand, the gradient method su�ered intermittent oscillations. This is
evident in Figure 3.26, where the angular position of the �rst joint is plotted
during the Newton method (left) and during the gradient method (right). It is
worth mentioning that the oscillations, or the zig-zag phenomena as known in
the optimization community, happens in the gradient method when one compo-
nent of the gradient keeps �ipping direction during the minimization, as such the
minimization point keeps overshooting in the vicinity of a cleavage on the opti-
mization surface [99], this phenomena does not appear in the Newton method.

• Distance between robot and obstacles: In Newton method the robot keeps bigger
minimum distance away from obstacles than in the gradient method where the
robot reaches closer to obstacles, despite the fact that identical potential �elds,
geometries, and optimization steps are used. This is demonstrated in Figure
3.27, where the distances ρ(15,j) − ρ0 between the last link of the robot (link 15)
and the obstacles, j = 1, 2..10, are plotted for Newton method (left), and for
the gradient method (right). Numerical values of the minimum distance reached
during the simulations are listed in Table 3.2.
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Figure 3.25: Test 1: joint angles, Newton method (left), gradient method (right).
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Figure 3.26: Test 1: �rst joint angle, Newton method (left), gradient method (right).
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Figure 3.27: Test 1: minimum distance between last link and obstacles, Newton method
(left), gradient method (right).

Table 3.2: Test 1: Minimum reach-distance between last link of the manipulator and
obstacles.

Method Minimum distance (m)

Gradient descent 0.0102
Newton 0.0480

81



Iteration: 0 Iteration: 550 Iteration: 1500 Iteration: 4200 Iteration: 7928

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Iteration: 0 Iteration: 2000 Iteration: 6000 Iteration: 12000 Iteration: 18073

Goal reached

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal reached

Fixed step gradient descent

Gradient descent with momentum

Iteration: 0 Iteration: 6 Iteration: 16 Iteration: 28 Iteration: 55

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal
Obstacle

Goal reached

Newton

Figure 3.28: Test 2: time line during simulations of 15 DoF planar manipulator for
three di�erent optimization methods.

3.4.3.2 Test 2

Test 2 is performed to asses the convergence rate for Newton method against the �xed
step gradient descent and the gradient descent with momentum [109] as applied to the
problem of collision avoidance and path planning. The three methods are applied in
simulation environment, in all cases the simulation scenes are identical. The distance
between the EEF and the goal position is used as the convergence criteria, when the
EEF is closer than 0.02 meter from the goal position, the algorithm is terminated and
the iterations number is reported. In all three methods the step size α is taken as big
as possible, given that the algorithm does not cause the robot to overshoot through any
of the obstacles. From the tests the Newton method achieved the best convergence per
iteration, followed by the momentum and lastly the �xed step gradient method. The
convergence rates achieved are as shown in Table 3.3. The di�erences in the resulting
con�guration are also evident as demonstrated in Figure 3.28.
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Table 3.3: Test 2: Convergence rate for three di�erent optimization methods as applied
to collision avoidance and path planning problems for robotic manipulators.

Method Iterations

Newton 55
Fixed step gradient descent 18073

gradient descent with momentum 7928

3.4.4 Summary

This section addressed the application of Newton method to collision avoidance and
path planning problems for high DoF manipulators. The standard arti�cial potential
�elds is used. The collision avoidance problem is viewed mathematically as an opti-
mization problem. The Newton method is utilized for performing the optimization.
As such, �lling a gap in the robotics literature, where the Newton method has been
described for application on collision avoidance of mobile robots only owing to the sim-
plicity in calculating its Hessian matrix. For robotic manipulators the Hessian matrix
is more complex and computationally expensive, consequently, an e�cient formula for
speeding up its calculation is presented. To compare the performance of the Newton
method against gradient based methods, two tests using simulation were performed. In
test 1 the Newton method and the gradient method are compared in terms of quality
of the path generated, oscillations, and the minimum distance to obstacles. In test
2 three di�erent methods (1) Newton (2) �xed step gradient descent (3) gradient de-
scent with momentum are compared in terms of the convergence rate. Qualitatively,
the Newton method generates oscillation free paths and resulted in an interesting,
snake like, behavior of the robot. Quantitatively the Newton method is superior in
terms of convergence rate, 55 iteration for the Newton method, 18073 iterations for
the �xed step gradient descent and 7928 iterations for the gradient descent with mo-
mentum method. Future work will be dedicated to applying the proposed technique for
controlling industrial robotic manipulator in human centered environments to achieve
real-time collision avoidance with dynamic obstacles.
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3.5 KUKA Sunrise Toolbox

During the author's work on the collision avoidance system, a software-library (Tool-
box) for controlling KUKA iiwa collaborative robots from an external computer using
MATLAB is created, this was motivated by various reasons (discussed in the following
subsection).

For the purpose of readability, this section is organised into various subsections.
After the Motivation, the Introduction subsection gives a survey on the most popu-
lar robotic software packages available in the research community. The Architecture
subsection gives details on the building blocks of the proposed Toolbox. Finally, the
Modus Operandi subsection lists with examples the various methods o�ered by the
Toolbox and their use.

3.5.1 Motivation

Given that one of the objectives of this thesis is to implement the collision avoidance
algorithm on a real collaborative robot (KUKA iiwa), extensive time and e�ort was
dedicated for studying the Sunrise.OS3. Consequently, various operation modes were
tested. During these tests, the author faced various challanges, including:

1. Sensors integration: while the sensors used in the collision avoidance system are
easily integrated into personal computers, they are not easily integrated into the
robot's controller.

2. Simulation integration: to write programs for KUKA iiwa robots, the Sun-
rise.Workbench IDE (Integrated Development Environment) is used. Unfortu-
nately, the Sunrise.Workbench does not include 3D simulation capability, which
is very important during the development process of the control algorithm (as
explained later).

3. Implementing advanced mathematical operations: the Sunrise.Workbench sup-
ports Java programming language, which is a powerful language. But the collision
avoidance algorithm includes lots of advanced mathematical operations (matrix
operations, �ltering, integration among others). Consequently, developing the
algorithm in Java will require considerable amount of time.

4. Hardware limitations: due to the limitation of the performance of the robot
controller, the complexity of the developed algorithms and their performance is
limited by the robot's hardware capacity.

Faced with the previous limitations, the author opted to develop the collision avoidance
control algorithm on an external computer using MATLAB, which o�ers the following
advantages:

1. MATLAB is suitable for developing the collision avoidance algorithm (mathemat-
ically demanding), given its support of advanced mathematics and the existence
of powerful toolboxes including the control toolbox and the signal processing
toolbox.

3The operating system of the KUKA iiwa.
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2. MATLAB supports various debugging and data visualisation tools, which facili-
tate the process of debugging advanced control algorithms including the collision
avoidance algorithm.

3. MATLAB allows interfacing with Vrep (3D simulation environment). This allows
simulating and experimenting the collision avoidance algorithm in a virtual en-
vironment before implementation on the real robot. This is extremely important
for verifying the control algorithm, and o�ers two main advantages, (1) reducing
testing and validation time, (2) reducing the risk of equipment loss and injuries.

4. The used sensors are easily integrated into external computers. Hardware manu-
facturers o�er drivers and Application Programming Interfaces (APIs) for using
their sensors on personal computers.

5. MATLAB compatible APIs already exist for interfacing with the used senors.

6. Unlike the robot hardware, upgrading an external computer with better hardware
is easily done. Thus allowing the implementation of more complex algorithms
without compromising the real-time performance.

7. Using an external computer allows the experimentation with various types of
sensors easily.

Given the powerful advantages of using MATLAB, it was decided to bundle the de-
veloped interfaces, mostly during the development of the collision avoidance system,
in a MATLAB toolbox that allows users to control the robot more easily. The devel-
oped toolbox was named the KUKA Sunrise Toolbox (KST). It was published in the
IEEE Robotics & Automation Magazine in [11] including proper documentation and
tutorials.

3.5.2 Introduction

Robotics is a multidisciplinary subject. It involves various engineering specialities, in-
cluding: electrical engineering, mechanical engineering, control engineering, computer
science and software engineering. Consequently, to develop a robust robotic applica-
tion, all previous disciplines work hand in hand. To avoid reinventing the wheel and to
facilitate the way robots are programmed, various researches have developed robotics
libraries and made them available for use. The robotics toolbox for MATLAB [110, 111]
is a MATLAB library that implements various robotics algorithms important for cal-
culating the forward/inverse kinematics, Jacobian, robot dynamics and others. The
Machine Vision Toolbox [112] is another MATLAB toolbox that is used to integrate
vision into robotics applications. Those packages are used for robot simulation and for
developing control algorithms, yet they do not interface directly with the robot. Due to
the advantages of using an external computer for controlling industrial robots, various
software packages have been proposed. Those packages di�er in the type of robots they
support, the programming languages they implement, in addition to the di�erent func-
tionalities they o�er. Using the KUKA Control Toolbox (KCT) [113] the user is able
to control KUKA industrial robots equipped with the KUKA Robot Controller (KRC)
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from an external computer using MATLAB. JOpenShowVar [114, 115] is another li-
brary that allows interfacing KRC controllers from external PC using Java. For KUKA
iiwa collaborative robots (equipped with the Sunrise Controller) various packages also
exist. From the Robot Operating System (ROS) [116] the user is able to interface with
KUKA iiwa using the iiwa_stack [117] and KUKA-IIWA-API [118]. The iiwa_stack
is a library that allows controlling iiwa robots from ROS. For communication purposes
it implements the ROSJava nodes (third party libraries). In addition, its motion func-
tions are built on top of the Smart.Servo library (from KUKA) and does not implement
the robot's native point-to-point motion functions. The KUKA-IIWA-API provides a
ROS interface for controlling KUKA iiwa from an external PC, similar to iiwa_stack
the interface provides various topics, the user can subscribe or publish to these topics,
but in the case of KUKA-IIWA-API the update rate for data feedback is low (10 Hz).
To control the robot using iiwa_stack or KUKA-IIWA-API a familiarity with ROS is
required. On the other hand, the KUKA Sunrise Toolbox (KST) allows controlling
KUKA iiwa robots from an external computer using MATLAB, such that any person
with basic knowledge on MATLAB can start using KUKA collaborative robots without
requiring advanced knowledge on how to program industrial manipulators. With more
than a hundred di�erent functions, KST supports various operation modes including
soft-real time control, point-to-point motion calls and non-blocking motion calls, those
functions are divided into seven categories detailed in subsection 3.5.6.

The toolbox was designed to be user friendly, so that anyone with basic knowledge
about MATLAB can start using KUKA iiwa collaborative manipulators in a minimal
amount of time. KST is provided under MIT license, and is freely available in the
GitHub repository [26]. The repository also includes a detailed documentation, video
tutorials, code snippets and tutorial MATLAB scripts.

3.5.3 Architecture

The KST has a client server architecture, Figure 3.29. For achieving a robust data
transmission the toolbox utilises the Transmission Control Protocol/Internet Proto-
col (TCP/IP). The server, represented by KUKA Sunrise Cabinet in Figure 3.29, is a
multi-threaded Java application that runs inside the robot controller. The main thread
of the Java application, KST Main in Figure 3.29, is mainly used to run the motion
commands. The second thread, KST Server in Figure 3.29, is mainly used for com-
munication layer and also data acquisition using robot's own sensors including: the
integrated joints torque sensors, the encoders and the inputs integrated in the �ange.
Before starting to utilize the toolbox the user shall synchronize the server application
into the robot controller, after being synchronized the user shall run the server, once
is running, the toolbox can be used to connect to the robot from MATLAB.

On the other hand, the client part is written using MATLAB scripting language, the
various functions o�ered by the toolbox are wrapped inside the KST.m class. Therefore
the user is able to control the robot from MATLAB through this class.
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Figure 3.29: Architecture of the toolbox.

3.5.4 Modus Operandi

The KUKA Sunrise Toolbox implements object oriented programming. The main pro-
gramming class of the toolbox is KST, a wrapper class which includes the various
properties and functions (methods) required to control the manipulator from MAT-
LAB. To get an access to the controller of the robot, the user shall �rst instantiate an
object from the KST class by calling its constructor:

>�> iiwa = KST(ip,rT,fT,Tef_fl);

Where iiwa is an instance of the KST class, ip is a string variable which contains
the IP of the robot, rT is a constant referring to robot type 7R800 or 14R820, fT is
a constant referring to type of the �ange attached to the robot, and Tef_fl is 4x4
matrix representing the transformation matrix from the end-e�ector to the frame of
the �ange (Tef_fl is an optional argument if omitted the KST uses the identity matrix
by default).

In the following example an instance of the KST class associated with LBR7R800
robot is created.

>�> ip='172.31.1.147';

>�> rT=KST.LBR7R800;

>�> fT=KST.Medien_Flansch_elektrisch;

>�> Tef_fl=eye(4);

>�> iiwa = KST(ip,rT,fT,Tef_fl);

3.5.5 Properties of the KST class

The KST class implements several properties. Those properties are used to store
various variables and values that are important for the proper operation of the toolbox.
Some of those properties are used for communication purposes, for example to store
the IP of the robot or to store the TCP/IP communication object used by the class.
Others are used to store the various parameters de�ning the robot, like the type of
the robot, the type of the �ange attached to the robot, the Denavit-Hartenberg (DH)
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parameters of the robot and the inertial data of the robot. These inertial parameters
include: the mass of each link, the inertial tensor of each link and the position vector
of center of mass of each link. As an example, to access the link-twist angles [32] of
DH parameters, the user can access the dh_data property as the following:

>�> alfa=iiwa.dh_data.alfa

alfa=

{[0]} {[-1.57]} {[1.57]} {[1.57]} {[-1.57]} {[-1.57]} {[1.57]}

3.5.6 Methods of the KST class

The KST class implements various methods (Appendix B), according to their func-
tionality those methods are grouped into seven di�erent categories:

1. Networking;

2. Soft real-time control;

3. Point-to-point (PTP) motion;

4. Setters;

5. Getters;

6. General purpose;

7. Physical interaction.

In the following subsections each category is presented along with illustrative snippet
code examples.

Networking

The KST provides methods to establish and terminate the connection with the robot
controller (Table 6.1 of Appendix B). The TCP/IP connection is initialized by typing:

>�> iiwa.net_establishConnection();

The TCP/IP connection is terminated by typing:

>�> iiwa.net_turnOffServer();

Soft real-time control

The soft real-time motion control is required when performing online motion gener-
ation, where the trajectory is generated/adjusted online, for example from external
sensor data (see Test 3 in subsection 3.3.6.3). KST allows soft real-time control of the
robot. The control modes supported are joints velocity mode and joints/end-e�ector
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position control mode. The soft real-time motion in joints position mode is activated
by typing the command:

>�> iiwa.realTime_startDirectServoJoints()

Once started, the target angular positions of the joints can be sent to the robot using:

>�> jPos={pi/3,0,0,-pi/2,0,pi/6,pi/2};

>�> iiwa.sendJointsPositions(jPos);

Where jPos is a cell array of dimension 1x7 containing the values of the target joints
angles in radians (KUKA LBR iiwa is a 7 DoF manipulator). A loop can be imple-
mented for sending a stream of joint angles to the robot, so that the robot will perform
the motion between the points on-the-�y.

To stop the soft real-time motion control the following method is used:

>�> iiwa.realTime_stopDirectServoJoints();

The impedance control is activated by:

>�> iiwa.realTime_startImpedanceJoints(

massOfTool,cOMx,cOMy,cOMz,

cStifness,rStifness,nStifness);

Where massOfTool is the mass of the tool (in kg), cOMx, cOMy, cOMz are the coordi-
nates of the centre of mass of the tool in the reference frame of the �ange (in mm),
and cStifness, rStifness, nStifness are the sti�ness values for Cartesian transla-
tion, Cartesian orientation and null space, respectively. The robot joint positions are
updated online using:

>�> iiwa.sendJointsPositions(jPos);

To stop the impedance functionality:

>�> iiwa.realTime_stopImpedanceJoints();

The KST simultaneous control-feedback methods allow to control the robot while
simultaneously receiving feedback about the robot's internal state, namely torques,
joint positions and end-e�ector position. These functions are possible due to the mul-
tithreaded nature of the KST server.

Point-to-point motion

The KST point-to-point (PTP) motion methods allow the robot to move from the cur-
rent con�guration/end-e�ector pose (position and orientation) to a de�ned target con-
�guration/pose. The user is not required to implement the path planning algorithms
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since they are implemented directly by the software. The robot can be controlled in
Cartesian space and also in joint space. For example, to move the robot in joint space:

>�> jPos={pi/3,0,0,-pi/2,0,pi/6,pi/2};

>�> relVel=0.25;

>�> iiwa.movePTPJointSpace(jPos,relVel);

Where relVel represents the override velocity assuming a value from zero to one. The
robot can also be controlled in Cartesian space. For example, to move the end-e�ector
along a straight line:

>�> pos={400,0,580,-pi,0,-pi};

>�> vel=50;

>�> iiwa.movePTPLineEEF(pos,vel);

Where pos is the target end-e�ector pose in Cartesian space, a 1x6 cell array in which
the �rst three cells are the end-e�ector x,y and z coordinates (relative to robot base)
and the last three cells are the X-Y-Z �xed rotation angles representing the orientation
of the end-e�ector in the space. The variable vel represents the linear velocity of the
end-e�ector in mm/sec. The KST also includes methods for arc and ellipse motion.

The aforementioned code snippet utilizes a blocking call. However, the KST also
supports non-blocking PTP motion methods (listed in Table 6.4 of Appendix B). This
gives the possibility to perform other computations, like path planning or input sam-
pling, while the robot is moving. Examples of these methods are the nonBlocking_isG-
oalReached and the nonBlocking_movePTPArcXY_AC.

In some applications the ability to interrupt robot motion upon the occurrence of
some condition is required, for instance if a given torque threshold is reached. The KST
allows such operations using the conditional motion functions. An example on using
those functions is in the tutorial script KSTclass_Tutorial_ptpConditionalTorques.m.

Setters

KST provides methods for updating robot parameters, including the state of the out-
puts and the LED light of the �ange. For example, the LED light is useful to alert the
human about the state of the robot and can be associated to the beginning and end of
a given robot task. To turn on the blue LED the following method is used:

>�> iiwa.setBlueOn();

To turn o� the blue led:

>�> iiwa.setBlueOff();

90



Getters

The KST provides functionalities to acquire various internal parameters of the robot
such as joint angles, end-e�ector pose, force/moment acting on the end-e�ector, joints
torques and the values of the IO connector inputs. For example, to acquire the joint
angles of the robot, the following method is utilized:

>�> jPos = iiwa.getJointsPos()

jPos =

{[1.017]} {[1.919]} {[0.513]} {[0.621]} {[0.698]} {[0.341]} {[0.175]}

The variable jPos is a 1x7 cell array with the robot joint angles in radians.

General purpose

The KST integrates several methods to calculate forward kinematics, inverse kine-
matics, partial Jacobian, forward dynamics, inverse dynamics, among others. As an
example, to calculate the transform matrix of the end-e�ector and the Jacobian asso-
ciated with the end-e�ector:

>�> [eef_transform,J] = iiwa.gen_DirectKinematics(q)

eef_Transform =

-0.8162 -0.2795 0.5056 0.6229

0.5210 0.0220 0.8532 0.8155

-0.2496 0.9599 0.1277 0.3434

0.0000 0.0000 0.0000 1.0000

J =

-0.815 0.001 0.281 0.148 -0.039 -0.211 0.00

0.622 0.002 -0.214 -0.297 0.010 0.142 0.00

0.000 -1.017 -0.123 0.578 0.086 -0.115 0.00

0.000 -0.866 0.469 0.664 0.733 -0.417 0.50

0.000 0.500 0.813 -0.581 0.627 0.112 0.85

1.000 0.000 -0.342 -0.469 0.261 0.902 0.12

Where eef_transform is the end-e�ector transform matrix, J is the Jacobian associ-
ated with the end-e�ecor, and the variable q is a 7x1 vector of the robot joint angles
in radians.

To calculate the partial Jacobian associated to a given point in a given robot link:

>�> J = iiwa.gen_partialJacobean(q,ln,Pos);

Where ln is the number of the link for which the partial Jacobian is calculated (an
integer number from 1 to 7), Pos is a 3x1 vector representing the position of the point
at which the partial Jacobian is calculated (this vector is described in the reference
frame of the link speci�ed by ln), and J is the partial Jacobian at the described point.
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Physical interaction

KST provides several physical interaction functionalities, some of which are the hand-
guiding mode and the touch detection. The hand-guiding is activated using:

>�> iiwa.startHandGuiding();

Once called the hand-guiding functionality is initiated. To perform hand-guiding op-
eration, the user shall press the �ange's white button to deactivate the brakes and
move the robot. When the white button is released the robot stops in its current con-
�guration. To terminate the hand-guiding mode, the green button should be pressed
continuously for more than 1.5 seconds (after 1.5 seconds of pressing the green button
the blue LED light starts to �icker), release the green button and the hand-guiding
mode is terminated.

3.5.7 Summary

According to users' feedback (students, researchers, and industry engineers), the pro-
posed toolbox is a useful and intuitive tool to interface with KUKA Sunrise.OS and,
in particular, to speed up the development and implementation of robot applications.
KST functionalities are advantageous for the implementation of advanced robot ap-
plications. KST also facilitates integration of external hardware, data processing, and
implementation of complex algorithms using existing toolboxes.
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Chapter 4

Hand-guiding

The hand-guiding functionality represents an intuitive human-robot interface which
allows human coworkers to move and teach the robot easily, without requiring advanced
technical skills on how to program industrial manipulators. This functionality also
allows to use the robot as an assistive third hand, which is appealing for tedious
assembly tasks. Consequently, a robot can be hand-guided to lift and hold parts in
place, while giving the human coworker an opportunity to apply the �xtures (perform
the assembly task). Such functionality reduces the risk to workers and properties
(falling components), provides precision, allows lifting heavier parts, and increases
productivity by keeping less workers occupied in manual tasks on the factory �oor.

Chapter's breakdown

This chapter of the document is organised in two main sections:

• Section 4.1 describes the proposed algorithm for performing precise hand-guiding
at the EEF level. This method is evaluated on 7 DoF KUKA iiwa robot.

• Section 4.2 builds upon the ideas presented in section 4.1, where a method is
developed that allows hand-guiding sensitive redundant manipulators (at EEF
level) in cluttered environments with obstacles. In such a case, the redundancy
of the robot is used to navigate obstacles during the contact while preserving the
precision of the motion at the EEF in Cartesian space.
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4.1 Precision Hand-Guiding

In the hand-guiding mode the robot moves compliantly according to the force applied
by the user. While it is a good tool for rough positioning, end-e�ector (EEF) pre-
cision positioning is still di�cult to achieve by hand-guiding. This section presents
a novel method for precisely hand-guiding a robot at the EEF level. Using the EEF
force/torque measurements the hand-guiding force/moment is calculated after compen-
sating for the weight/inertia of the EEF. The proposed control solution is inspired by
the motion properties of a passive mechanical system subjected to Coulomb/viscous
friction. As a result, the human can control the linear/angular motion of the de-
coupled EEF. To ensure that the robot does not exceed its joints limits during the
hand-guiding process, a solution to scale down the linear/angular velocity of the EEF
near the joints limits is incorporated into the control strategy. Several experimental
tests were conducted in an assembly task using a KUKA iiwa manipulator. Perfor-
mance was evaluated considering the precision in positioning, ability to avoid joint
limits and vibrations during hand-guiding. A qualitative and quantitative comparison
of the proposed control strategy against the o�-the-shelf KUKA iiwa hand-guiding is
also presented.

4.1.1 Introduction

Physical human-robot interaction has been studied extensively in the last decade. Re-
search in this �eld focused on the ability to interact with a robot physically while
preserving safety. This includes hand-guiding, which is a representative functional-
ity of collaborative robots that allows the unskilled user to interact and to program
robots in a more intuitive way than using the traditional teach pendant. Existing col-
laborative robots include hand-guiding functionality with limitations in terms of the
precision and accuracy required for many tasks. When precision positioning (position
and orientation of the EEF) is required, the teach pendant is still widely used, where
it remains the main option for most of robots in operation [119]. However, the use
of the teach pendant limits the intuitiveness of the teaching process, also it is time
consuming (an important parameter on the factory �oor) [120]. In addition, the use of
the teach pendant requires a mental visualisation of the di�erent reference axes of the
robot, which lacks intuitiveness and becomes cumbersome as the human moves around
the robot [121]. In some scenarios, using the teach pendant for robot positioning can
lead to undesirable collisions, which may cause damage to sensitive equipment.

Owing to its importance, hand-guiding has been addressed in several studies, where
di�erent terminologies have been used by researchers for describing the hand-guiding
process: manual-guidance [122], force guidance [123], lead-through programming [124],
or walk-through programming [125]. Due to its advantages, the hand-guiding func-
tionality is gaining popularity in the robotics community, allowing to program a robot
in an intuitive manner by moving it compliantly with the applied force.

In this section it is presented a novel method for hand-guiding while preserving the
precision at EEF level, an important requirement for plenty of robotized manufacturing
operations. By analogy to the motion properties of a passive mechanical system, mass
subjected to Coulomb/viscous friction, a control scheme is proposed, which governs
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the linear/angular motion of the decoupled EEF. To avoid violating the physical limits
of the joints, a scaling factor is introduced, it is used to scale down the linear/angular
velocity of the EEF near the joints limits. To test the proposed approach, experiments
were conducted in robot assisted assembly tasks requiring precision, where a KUKA
iiwa robot is used. Performance was evaluated considering the precision in positioning,
ability to avoid joints limits and the smoothness of the motion during hand-guiding.
In addition, a qualitative and quantitative comparison of the proposed control strategy
against the o�-the-shelf KUKA iiwa hand-guiding is presented. Results indicate that
the proposed solution allows smooth Cartesian hand-guiding motion, with low level of
vibrations, while having the ability to react for avoiding the joints limits.

4.1.2 State of the art

The importance of hand-guiding as a functionality to teach collaborative robots is well
known in the robotics community. At the same time, it is still a challenge to have
robots and humans sharing the same space and performing collaborative tasks with
the required safety levels to minimise the risk of injuries [77]. Humans can interact
physically with a robotic arm by hand-guiding the robot into the desired grasping
poses while the robot's con�guration is recorded [126]. Robot assistance through hand-
guiding is also used to assist humans in the transport of heavy parts [75]. In [127] the
integration of a human-robot cooperative system (implementing hand-guiding) in a
production line was studied including safety, operability and the level of assistance to
humans. The assisted gravity compensation method is presented in [128]. This method
facilitates the hand-guiding process, making it more intuitive for unskilled users. A
virtual tool method for kinesthetic teaching of robotic manipulators is proposed in [129].
The method builds on an admittance controller that utilizes the feedback from a FT
sensor attached at the EEF. In a recent study an operator guides a collaborative robot
along a prede�ned geometric path while taking required joint constraints into account
and thus implicitly considering the actuator dynamics [130]. Kinesthetic teaching
and learning have been combined to enable non-experts to con�gure and program a
redundant robot in the presence of constraints such as con�ned spaces [131].

Concerning the use of conventional industrial robots, hand-guiding is normally
sensor based. However, sensorless hand-guiding methods have been proposed. In [132],
the dynamic model of a robot along with the motor current and friction model is used
to determine the user's intention to move the EEF of a robot instead of directly sensing
the external force by the user. By gaining access to motors currents measurements,
hand-guiding can be achieved without the need to install an external FT sensor on the
manipulator [133]. In [124] the authors presented a sensorless method for hand-guiding
the EEF in a structured surrounding.

The problem of Cartesian impedance control of a redundant robot executing a co-
operative task with a human has been addressed in [134]. Redundancy was used to
keep robot's natural behaviour as close as possible to the desired impedance behaviour,
by decoupling the EEF equivalent inertia. The authors claim that this allows to easily
�nd a region in the impedance parameter space where stability is preserved. An im-
portant study in the �eld uses impedance control of multiple robots to aid a human
moving an object [135]. Experiments were conducted considering motion along 1 DoF.
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Figure 4.1: Robot motion groups for precision hand-guiding.

In medical domain, robot assisted surgery demands high precision and consequently
hand-guiding accuracy. In this scenario, an approach that enables an operator to
guide a robot along a prede�ned geometric path while considering joint constraints
and implicitly the actuator dynamics is proposed in [130].

However, the subject of precision in hand-guiding for robot assisted assembly oper-
ations was not fully covered in the literature. In this section it is presented a solution
for precisely hand-guiding a robot at the EEF level applicable for precise assembly
operations.

4.1.3 Work principle

Assuming force feedback at the robot EEF (the robot may have joint torque sensors
or a force/torque sensor attached to the �ange of the robot), three groups of robot
hand-guiding motion are considered, Figure 4.1:

1. The �rst motion-group used to control the positioning (linear displacements) of
the EEF along the x, y and z axes of the robot base;

2. The second motion-group used to control the orientation of the EEF axis in
Cartesian space;

3. The third motion group represents the rotation of the EEF around its axis.

Those motion groups are selected because they cover the 6-DoF translation and rotation
in Cartesian space, also because they are very intuitive for workers (just imagine how
humans insert a key into a keyhole). A video showing the proposed concept is in [136].

The robot moves in one of the three motion groups when a force/moment is applied
at the EEF. Two terms will be introduced to specify the input force/moment. The �rst
term is the hand-guiding force for linear positioning, de�ned as the force applied by the
operator at the EEF. The second term is the hand-guiding moment for angular posi-
tioning, de�ned as the moment applied by the operator at the EEF. The hand-guiding
force/moment shall be calculated from the force/moment measurements (directly ac-
quired from FT sensor, or indirectly calculated from integrated joint torque sensors).
Those measurements represent the forces/moments due to (1) the EEF weight, (2)
the inertial force/moment due to the acceleration of the EEF, and (3) the external
hand-guiding force/moment applied by the operator. To simplify the calculations, we
omit the inertial force/moment due to the acceleration of the EEF because in precise
hand-guiding they are relatively small compared to EEF's weight and to the external
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force/moment. In this context, the force/moment measurements are approximated
to be due to the EEF weight and the external hand-guiding force/moment applied
by the operator. The components of the hand-guiding force described relative to the
robot base frame are used as inputs for the proposed linear motion controller, i.e., for
positioning the EEF according to the robot base frame (�rst motion group). The com-
ponents of the hand-guiding moment are used as inputs for the orientation controller
(second and third motion groups).

Throughout this section, the following notation is used to describe a vector in a
reference frame:

• The superscript b is used for vectors described in base frame of the robot;

• The superscript e is used for vectors described in end-e�ector frame. It is con-
sidered that the origin of the EEF frame is coincident with the point where the
hand-guiding force/moment acts. Consequently, the human operator applies the
hand-guiding force/moment at the handle, which is coincident with the origin of
the EEF reference frame;

• The superscript s is used for vectors described in sensor measurement frame. This
frame is de�ned by the manufacturer of the FT sensor (in case an external sensor
is used). However, if a sensitive robot is used, then the sensor measurement
frame is virtual, at which the equivalent values of the external forces/moments
are calculated from the torque readings at the integrated torque sensors. In our
experiment with KUKA iiwa robot, the sensor measurement frame is considered
at the frame of the �ange;

• The little hat above a vector (ˆ) is used to denote the skew symmetric matrix of
that vector.

4.1.4 Hand guiding force

The measured hand-guiding force described in robot base frame is f b = (fx, fy, fz).
This force f b serves as the input for calculating the 1st motion group command. The
maximum of the components (fx, fy, fz) is used as the control command to move the
end-e�ector along one axis at a time. The hand-guiding force (fex, f

e
y , f

e
z ) described in

the EEF reference frame is calculated from: fex
fey
fez

 = Re
s

 usx
usy
usz

−Rs
bw

 (4.1)

Where (usx, u
s
y, u

s
z) are components of force measurements in sensor frame, Re

s is a
constant rotation matrix that describes the orientation of the sensor measurement
frame in relation to the EEF frame, and the vector w is de�ned by w = [ 0 0 −w ]T

for base mounted robots in the upright position, in which w is the weight of the EEF.
Rs
b is the rotation matrix describing the orientation of robot base frame in relation to

sensor frame:
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Table 4.1: Values and conditions to obtain (a, b, c).
a b c Condition

1 0 0 |fx| > |fy|&& |fx| > |fz|
0 1 0 |fy| > |fx|&& |fy| > |fz|
0 0 1 |fz| > |fx|&& |fz| > |fy|

Rs
b = Rs

e

(
Rb
e

)T
(4.2)

Where Rb
e is the rotation matrix of EEF frame in relation to robot's base frame,

obtained from the forward kinematics.
The hand-guiding force f b described in base frame is calculated from:

f b = Rb
e

 fex
fey
fez

 (4.3)

The force command f cmd sent to the control algorithm is:

f cmd =

 a 0 0
0 b 0
0 0 c

f b (4.4)

Where (a, b, c) values are de�ned according to the force conditions detailed in Table 4.1.
In addition, to achieve smooth transitioning between di�erent directions/conditions,
switching from one motion direction to another is only allowed when the velocity of
the EEF is zero.

4.1.5 Hand guiding moment

The end-e�ector orientation (2nd and 3rd motion groups) is calculated from the hand-
guiding moment. In this scenario, the hand-guiding moment me in the EEF reference
frame is calculated:

me = Re
s

 τ sx
τ sy
τ sz

− p̂seRs
ef

e − p̂scRs
bw

 (4.5)

Where
(
τ sx, τ

s
y , τ

s
z

)
are the three torques measurements from the force/torque sensor,

pse is the vector describing the position of the EEF in sensor's reference frame, psc is the
vector describing the position of the center-of-mass (COM) of the EEF in the sensor's
reference frame.

In the 2nd motion group, the end-e�ector axis zeef is oriented in space, Figure
4.1. For this type of motion the input to the controller, vectormxy, is calculated from
the hand-guiding moment me. The component of the hand-guiding moment in the xy
plane of the end-e�ector frame, me

xy, is shown in Figure 4.2 where it is calculated:
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Figure 4.2: Hand-guiding moment in EEF reference frame for 2nd motion group (left)
and for the 3rd motion group (right).

me
xy =

 1 0 0
0 1 0
0 0 0

me (4.6)

The controller command for 2nd motion group is calculated by transforming me
xy to

the robot base frame:

mxy = Rb
em

e
xy (4.7)

For the 3rd motion group, the end-e�ector is allowed to rotate around its axis zeef .
The input command to the controller is the vector mz. To calculate this vector, the
vector me

z, Figure 4.2, shall be calculated �rst:

me
z = me −me

xy (4.8)

The controller command for the 3rd motion group is calculated by transforming me
z

to the robot base frame:

mz = Rb
em

e
z (4.9)

Only one motion group (2nd or 3rd motion group) is allowed to be performed once
at a time. Depending on the magnitude ofmxy andmz, the moment commandmcmd

sent to the control algorithm is:

mcmd =

{
mxy if ‖mxy‖ > ‖mz‖
mz if ‖mz‖ ≥ ‖mxy‖

(4.10)
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Figure 4.3: Damper-mass mechanical system.

4.1.6 Controller

The robot is controlled at the EEF level, considering the decoupled end-e�ector as a
mass moving under the e�ect of Coulomb and viscous friction, Figure 4.3. The motion
equation of center of mass (COM) is de�ned by:

mẍ+ bẋ+ f r = f (4.11)

Where ẍ is the linear acceleration of the COM, ẋ is the linear velocity of the COM, m
is the mass, b is the damping coe�cient, fr is Coulomb friction and f is the external
force acting on the mass. The equation of angular rotation around an axis passing
through the COM is:

Iθ̈ + βθ̇ + τ r = τ (4.12)

Where θ̈ is the angular acceleration around rotation axis, θ̇ is the angular velocity, I
is the moment of inertia around the rotation axis, β is the damping coe�cient, τ r is
the torque due to Coulomb friction and τ is the external torque.

We consider that the Coulomb and viscous friction e�ects are much bigger than
the e�ect of the inertial forces due to acceleration/deceleration of the mass. In this
context, the inertial terms in the previous equations are omitted and equation (4.11)
becomes: {

bẋ+ f r = f |f | > |fr|
ẋ = 0 otherwise

(4.13)

Where |f | is the absolute value of the external force. By applying the same reasoning
for the angular motion equation (4.12) becomes:{

βθ̇ + τ r = τ |τ | > |τ r|
θ̇ = 0 otherwise

(4.14)

Where |τ | is the absolute value of the external torque.

4.1.7 Robot control

The linear motion of the end-e�ector is controlled by:
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{
v = fcmd(‖fcmd‖−|fr|)

b′ ‖fcmd‖
‖f cmd‖ > |fr|

v = 0 otherwise
(4.15)

Where v is the linear velocity vector of the end-e�ector, f cmd is the force vector
command issued to the controller, its magnitude is ‖f cmd‖. |fr| is the sensitivity
threshold magnitude (motion is only executed when the force command reaches a value
above this threshold), and b′ is the motion constant that de�nes the rate of conversion
from force measurement to velocity.

The angular motion of the end-e�ector is controlled by:{
$ = mcmd(‖mcmd‖−|τr|)

β′ ‖mcmd‖ ‖mcmd‖ > |τ r|
$ = 0 otherwise

(4.16)

Where $ is the angular velocity vector of the end-e�ector, mcmd is the moment com-
mand issued to the controller, its magnitude is ‖mcmd‖. |τ r| is the sensitivity threshold
(the motion is only valid when the input command value is higher than this thresh-
old), and β′ is a motion constant that de�nes the rate of conversion from moment
measurement to velocity.

Finally, from equation (4.15) and (4.16), the linear and angular velocity of the
end-e�ector ẋ is given by:

ẋ =

[
v
$

]
(4.17)

The robot joint velocities q̇hg, that satisfy the proposed hand-guiding motion, are
calculated using the pseudo inverse of the Jacobian:

q̇hg = J†ẋ (4.18)

Where J† is calculated using the singular value decomposition of the Jacobian matrix:

J = UΣVT (4.19)

Where matrices U, Σ and V are the result of the singular value decomposition of the
Jacobian. Thus, the pseudo inverse is given by:

J† =

n∑
i=1

1

σi
viu

T
i (4.20)

Where n is the number of non-zero diagonal elements of matrix Σ, σi is the ith non-
zero diagonal element of matrix Σ, vi is the ith column of matrix V, and ui is the ith

column of matrix U. To achieve better numerical stability, and according to [106], the
alternate Jacobian is used.

The robot can be controlled at joint level using the calculated angular velocities of
the joints q̇. Nevertheless, many robots does not support real-time control at the joint
velocity level, namely industrial robots, however they are normally provided with real-
time position control loop at joint level. In this study for example, we demonstrated the
proposed method in a sensitive industrial robot (KUKA LBR iiwa) using its internal
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Algorithm 4.1 Precision hand-guiding - control algorithm.
Input : qini joints positions feedback from robot

ẋ calculated EEF velocity (4.17)
α scaling factor for joints limits avoidance
4t time interval for loop update cycle
ε vector of acceptable Cartesian errors

Output : qgoal joitns goal positions

01 : xini = f(qini) %Forward kinematics
02 : xg = xini + αẋ4t
03 : x = xini

04 : q = qini

05 : e = (xg − x) %Calculate error
06 : while (norm(e) > ε) %Loop until error is small enough
07 : J† = φ(q) %Pseudo inverse of the Jacobian
08 : q = q + J†e % Joints positions update
09 : x = f(q) %Forward kinematics
10 : e = (xg − x) %Calculate error
11 : Loop
12 : qgoal = q

joint position servo control feature. In this scenario, from equation (4.20), we can
deduce a joint level position control according to the following procedure:

1. For each update cycle of the control loop the joint positions qini are acquired
from the robot encoders;

2. At each update cycle, a feedback from the FT sensor is also obtained, from which
the command velocity ẋ of the EEF is calculated as described previously;

3. Using the above information the desired joint positions are calculated and after-
wards updated to the position control loop of the robot controller. In this study,
the Algorithm 4.1 is used to calculate the destination joint positions, which will
be updated to the position control loop, provided by the robot manufacturer.
Such update is performed at each control cycle.

Algorithm 4.1 details the methodology to achieve a high level of numerical precision,
although the �nal precision of robot motion will depend on the precision performance
of the real-time position control loop of the robot being used.

4.1.8 Referencing motion to the EEF

Using the presented framework the operator can only translate the EEF along the x,
y or z axis of the base frame of the robot, one at a time. But in some situations the
operator may require to perform an inclined linear motion of the EEF, to solve this,
another operation mode is proposed, in this operation mode the operator can reference
the motion to the EEF frame, the operator can enter this operation mode by pressing
an external button on the robot while the EEF is static.

In this operation mode, the force command is referenced to the end-e�ector, as
such the robot moves in the direction of the maximum component of the hand-guiding

102



Table 4.2: Values of ae,be and ce

ae be ce Condition

1 0 0 |fex| >
∣∣fey ∣∣&& |fex| > |fez |

0 1 0
∣∣fey ∣∣ > |fex|&&

∣∣fey ∣∣ > |fez |
0 0 1 |fez | > |fex|&& |fez | >

∣∣fey ∣∣
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Figure 4.4: Scaling factor for joint limits avoidance.

force described in EEF frame. Where the hand-guiding force command is calculated
from:

f cmd = Rb
e

 ae 0 0
0 be 0
0 0 ce

 fex
fey
fez

 (4.21)

Where (ae,be,ce) values are calculated as described in Table 4.2.

4.1.9 Joints limits

During the precise hand-guiding, the operator might drive the robot near the joint
limit. In the case of KUKA iiwa robot, this results in an error causing the manipulator
to stop in place. To solve this problem we propose to utilize a scaling factor αmin, this
scaling factor is used to scale down the linear/angular velocity of the end-e�ector near
the limit. For each joint i a scaling factor is calculated:
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αi =



1−cos
(
π

qi−qi,ll
4qi

)
2 , (qi,ll +4qi > qi > qi,ll)

&& (q̇i < 0)

1−cos
(
π

qi−qi,ul
4qi

)
2 , (qi,ul > qi > qi,ul −4qi)

&& (q̇i > 0)

1 otherwise

(4.22)

Figure 4.4 shows a plot of αi with joint angle qi. The value of the scaling factors
αmin is calculated as the product of the elements αi:

αmin =
∏

αi (4.23)

For robots controlled at joint angular velocities level, the angular velocity command of
the joints q̇cmd is calculated:

q̇cmd = αminq̇hg (4.24)

For industrial robotic manipulators that support real-time control functionality, a
stream of joint angular positions is used to command the robot (not the angular ve-
locities, this applies for the KUKA iiwa robot), in such case the previous strategy for
scaling down the angular velocities does not apply, and the previous method needs to
be modi�ed to suit the control strategy of such robots. In the following the method for
joints limits avoidance applied for the precise hand-guiding for the KUKA iiwa robot
is explained: in the beginning αmin is considered to be one, consequently, the angular
positions q1 = q are calculated using Algorithm 4.1 (previously presented in 4.1.7),
the subscript 1 in q1 is used to denote the �rst execution of the Algorithm 4.1. After-
wards, using q1 the value of αmin is calculated using equations (4.22, 4.23). Now in
case αmin at q1 is equal to one, then the calculated angular positions q1 are updated to
the controller of the robot. Otherwise if (αmin < 1), then the angular positions q1 are
discarded, and the value of αmin is used to scale down the velocity of the end-e�ector
ẋ into αminẋ. Afterwards, the inverse kinematics resolution is re-initiated using the
Cartesian velocity αminẋ instead of ẋ (in such way the user feels that the motion is
becoming harder when pushing towards the limit of the joints). Then after the recalcu-
lation the resulting positions of the joints q2 are applied to the internal control loop of
the robot (resulting in a scaled down velocity at the EEF). Now in case the coworker
kept pushing against the limit, the scaling factor value reaches zero, and the robot
stops in place (does not exceed its physical limit). In case the user moved the robot in
the opposite direction, away from the limit, the robot moves freely, this is guaranteed
due to the angular velocity inequality (after the && operator of expression 4.22). The
proposed method should apply for any industrial robot with realtime position control
functionalities, in the case of the KUKA iiwa example an alert light, yellow, is turned
on once αmin is less than one Figures 4.5 and 4.6, this helps giving a visual feedback
to the worker, at the same time markers are added on the joints Figures 4.7 and 4.8,
by looking at it the coworker is able to realize which joint is nearing the limit.
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Figure 4.5: Light alert (yellow) turns on
when joint �ve is near the limit.

Figure 4.6: Light alert turns on, when
pushing joint four near its limit.

Figure 4.7: Joint two near the zero,
white markers are near each others.

Figure 4.8: Joint four near the limit, yel-
low and white markers are nearing each
others.

4.1.10 Experiments

The experiments were performed using KUKA iiwa 7 R800 robotic manipulator, the
proposed algorithm could be implemented in Java using Sunrise.Workbench (the stan-
dard development environment for KUKA iiwa robot), in such case the computations
run directly inside the controller of the robot. Otherwise, the algorithm could be im-
plemented remotely (run on outside computer). In such a case, client-sever software
[11] shall be used to acquire feedback and to stream motion commands to the robot.
In the following experiments a qualitative/quantitative assessment of the performance
of the proposed method is reported.

In the �rst test an assembly operation requiring precision positioning and �ne tun-
ing is demonstrated, where a qualitative assessment of the performance of the proposed
algorithm is discussed. In the second test, the performance of the proposed method
is measured quantitatively. In the third test a comparison between o�-the-shelf hand-
guiding functionality provided by KUKA and the proposed method is presented. Fi-
nally, the precision hand-guiding is implemented in a programming by demonstration
application, consequently, any user can program the robot easily and with precision,
in a time e�cient manner and without the need to write any code.
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Figure 4.9: Test 1: Precision hand-guiding for assembly operation.

4.1.10.1 Test 1

The test is shown in Figure 4.9. The robot is used as an assistive third hand for
precise assembly operations1. Using the hand-guiding application it is required to move
parts/instruments (attached at the EEF of the robot) precisely into the �xing location.
Afterwards, the instruments are held in place by the robot, allowing the coworker to
apply the �xtures. Such approach makes less workers occupied in manual tasks on the
factory �oor, also in hard-to-access locations the proposed method o�ers better safety
by reducing the risk of fallen parts, which might happen if humans are involved. For
mounting heavier parts, the proposed method works as a force magni�er, where the
weight of the instrument is balanced by the force from the robot, reducing the e�ort
required from the coworker. In this test, the precision hand-guiding algorithm was
implemented inside the robot controller, in a single thread program, with an update
rate of 118 Hz. The control algorithm compensates automatically for the part weight
such that when no force is applied by the user, the part is held in place by the robot.
Di�erent tests demonstrated that in the 1st motion group the robot position along x,
y and z can be precisely adjusted, in the 2nd motion group the axis of the end-e�ector
is oriented smoothly in 3D space, while in the 3rd motion group we can rotate around
the end-e�ector axis with accuracy, Figure 4.9.

4.1.10.2 Test 2

The precise hand-guiding algorithm was implemented in a multi-threaded program
inside the KUKA iiwa 7 R800 controller. The main thread is used to run the proposed
control algorithm, the second thread is used to (1) connect to an external computer
using a TCP/IP network, (2) acquire the measurements of the force and the position
at the end-e�ector, which are streamed over the network to an external computer using
TCP/IP protocol.

In this test the user starts the proposed hand-guiding application on the KUKA
iiwa controller, then he/she hand-guides the robot in the x, y and z directions. The
force and the Cartesian position measurements were acquired from the robot, then sent
to an external computer, where they were recorded along with their corresponding time
stamps.

Figure 4.10 shows end-e�ector position data recorded during the test. It is noticed
that when the hand-guiding force along one of the axes reaches the prede�ned limit,

1This application was developed during the European project Colrbot [3] (Horizon 2020) for the
use in satellite assembly operations.
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Figure 4.10: Test 2: End-e�ector position along y and z axes according to applied
force.

the controller is activated, and the robot moves in the corresponding direction, in the
time interval [33;37] seconds, the operator applies a force bigger than the limit on the
positive y direction, this causes the robot to move in the positive y direction. According
to the force, the robot moves with an average velocity of 99.7 mm/second. While the
coordinates in the x and z direction are almost �xed. From the acquired data we see
that the average position in the x direction is 624.16 mm, and the average position in
the z direction is 307.47 mm (note that the z coordinate values shown in Figure 4.10
are displaced by -300mm), also we �nd that the maximum deviation from the average
in the x direction is 0.091 mm Figure 4.11, while the maximum deviation from the
average in the z direction is 0.092 mm Figure 4.12.

4.1.10.3 Test 3

To test the performance of the proposed method against the hand-guiding at the joints
level, we compare with KUKA iiwa o�-the-shelf hand-guiding, where the following test
is proposed. The manipulator KUKA iiwa 7 R 800 is used for positioning operation of
a tool (using precise hand-guiding and KUKA hand-guiding), during each positioning
operation the following data were recorded:

• x, y, z position and orientation of the end-e�ector;

• Vibrations level at the end-e�ector (measured using IMU);

• Joint angles.

Experimental setup

The experimental setup proposed is demonstrated in Figure 4.13. In this setup a tool is
attached to the end-e�ector, and the objective is to insert the tool in a tool holder using

107



0 50 100 150 200

y coordinates (mm)

624.06

624.08

624.1

624.12

624.14

624.16

624.18

624.2

624.22

624.24

x 
co

or
di

na
te

s 
(m

m
)

Figure 4.11: Test 2: Nominal end-e�ector path against the real robot end-e�ector path
in plane xy.
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Figure 4.12: Test 2: Nominal end-e�ector path against the real robot end-e�ector path
in plane zy.
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Figure 4.13: Test 3: Experimental setup.

the hand-guiding functionality. To measure the level of vibrations at the end-e�ector
an accelerometer is �xed �rmly to it Figure 4.13, the acceleration data are acquired
by an external computer connected to the accelerometer hub using USB cable, at the
same time the data of joints/end-e�ector positions are acquired by the same computer
from the robot using a TCP/IP connection. A video segment showing Test 3 while
using the proposed method is in [137]. Another video segment showing Test 3 while
using KUKA o�-the-shelf hand guiding is in [138].

Positioning results

During the placement operation of the tool, the x, y and z positions of the EEF were
recorded. The test was performed two times, in the �rst the precise hand-guiding was
used, in the second the o�-the-shelf hand-guiding of KUKA iiwa was utilized, position
data were collected from robot controller and relayed over a TCP/IP connection to
the computer. Figure 4.14 presents the coordinates of end-e�ector during the pre-
scribed task using the precise hand-guiding function. While Figure 4.15 presents the
coordinates of end-e�ector during the prescribed task using the KUKA o�-the-shelf
hand-guiding function. From the results we notice that the precise hand-guiding o�ers
smoother motion. An expected result, since that in the precise hand-guiding the robot
is controlled at EEF level, so no e�ort is required by the operator for constraining end-
e�ector's orientation during the motion, unlike the KUKA o�-the-shelf hand-guiding
which operates at joints level.

At the same time the orientation of the end-e�ector was acquired and relayed over
the TCP/IP connection to an external computer. Figure 4.16 represents the orientation
results of the end-e�ector (represented by a unit quaternion) for the prescribed task
using the precise hand-guiding function. Figure 4.17 represents the orientation results
of the end-e�ector during the positioning task using the KUKA o�-the-shelf hand-
guiding function. In the precise hand-guiding the robot is able to keep the same
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Figure 4.14: Test 3: Coordinates of the end-e�ector during the positioning task using
the precise hand-guiding function.
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Figure 4.15: Test 3: Coordinates of the end-e�ector during the prescribed task using
the KUKA o�-the-shelf hand-guiding.
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Figure 4.16: Test 3: Orientation of the end-e�ector in the precise hand-guiding func-
tion.

orientation during displacement (x,y,z) motion, while it is almost impossible to achieve
the same while using the KUKA o�-the-shelf hand-guiding, giving that KUKA o�-
the-shelf hand-guiding is controlled in joint space, the orientation is as precise as the
coworker can be.

Joint angles

Figure 4.18 and Figure 4.19 show the joints angles for the positioning during the precise
and the KUKA hand-guiding respectively. From the �gures we �nd that the precise
hand-guiding results in smoother angles of the joints over KUKA o�-the-shelf hand-
guiding.

Vibrations level at the end-e�ector

For measuring the vibrations level at the EEF, an accelerometer was �rmly attached
to it, Figure 4.20. Then, a gravity acceleration compensation was applied as described
in Appendix C.

During the hand-guiding positioning operation of the tool (using KUKA and precise
hand-guiding), acceleration data were acquired from the accelerometer, and the results
were plotted against time during the manipulation operation.

From Figure 4.21, we notice that the acceleration levels at the end-e�ector in the
case of the precise hand-guiding are less than those of the KUKA hand-guiding, where
the maximum magnitude of acceleration in case of KUKA hand-guiding reached 2.38
m/sec2, while in case of the precise hand-guiding 1.2 m/sec2.
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Figure 4.17: Test 3: Orientation of the end-e�ector during the KUKA o�-the-shelf
hand-guiding function.
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Figure 4.18: Test 3: Joint angles during positioning operation for the precise hand-
guiding.
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Figure 4.19: Test 3: Joint angles during positioning operation for the KUKA o�-the-
shelf hand-guiding.

Figure 4.20: Test 3: Accelerometer attached at the end-e�ector.
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Figure 4.21: Test 3: Acceleration magnitude (after gravity compensation) at end-
e�ector during precise/KUKA hand-guiding.

4.1.10.4 Test 4

To demonstrate the intuitiveness of the precision hand-guiding developed in this study,
and to show its importance for facilitating robot teaching, a programming by demon-
stration application is developed Figure 4.22 (a video segment showing the application
is also in [139]).

Figure 4.22: Programming by demonstration system based on the precision hand-
guiding method, (left) real robot, (middle) real-time simulation of the robot/gripper,
the black lines inside the simulation represent the taught path, (right) HMI interface
for easy control of the teaching process.

This application includes a friendly interface written using C# (right of Figure
4.22). This interface allows the user to activate the precision hand-guiding application,
to open/close the gripper attached to the robot, and to save the exact coordinates of
the EEF for constructing the taught path. The application also implements a Vrep
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.23: Teaching an operation to KUKA iiwa using a programming by demon-
stration application based on the precision hand-guiding. A virtual reality simulation
of the robotic cell in Vrep is used to show the coworker a feedback of the programmed
path during the teaching process, allowing the user to visualise, modify and verify the
taught path while performing the operation.

simulation used to visualise the taught path during the programming by demonstration
process. In such a case, the user is able to verify/modify the taught path intuitively.

Sub-�gures (a to j) in Figure 4.23 show the developed application in Test 4. Upper
sub-�gures correspond to the real robot being programmed by demonstration using the
precision hand-guiding method (precision hand-guiding algorithm is running inside the
robot controller), lower sub-�gures show a real-time simulation of the real robot pro-
grammed in Vrep, the simulation is updated in real-time according to sockets received
from the robot representing its state (joint angles, gripper state), the simulation also
shows the path taught in black lines. The precision hand-guiding is used to teach the
robot the exact coordinates to pick an object (box) in sub-�gures (a,b), then to perform
an operation (empty the contents of the box into a cup) in sub-�gures (c,d,e), �nally
to put the box back on a speci�c location on the table sub-�gures (f,g,h,i,j). It took
the user less than 3 minutes to teach the robot the whole operation. After the teaching
process, the robot can perform the taught path by clicking on the corresponding button
from the HMI interface.
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4.1.11 Summary

A novel precision hand-guiding method at the end-e�ector level for collaborative robots
is proposed. Experimental tests demonstrated that with the proposed method it is
possible to hand-guide the robot with accuracy, with lower level of vibrations, and
in a natural way by taking advantage of the proposed three motion groups. It was
also demonstrated that the system is intuitive and compares favourably with KUKA
o�-the-shelf hand-guiding.
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4.2 Redundancy Resolution & Precision Hand-Guiding

In the previous section, the precision hand-guiding is presented as a tool that allows
unskilled users to interact and position the EEF intuitively and precisely. However,
the least norm solution was used in generating the motion, such that the redundancy
resolution of redundant manipulators was not fully explored. Many industrial ap-
plications require precise positioning at the end-e�ector (EEF) level inside cluttered
environments, where manipulator's redundancy is required. This section addresses
the subject of precision in hand-guiding at EEF level while using the redundancy for
in-contact obstacle navigation. In the presence of a contact with an obstacle, the
proposed null space control method actuates in a way that the manipulator slides com-
pliantly with its structure on the body of the obstacle while preserving the precision
of the hand-guiding motion at EEF level. Force/torque (FT) data from a FT sensor
mounted at the robot �ange are the input for EEF precision hand-guiding while the
torque data from the joints of the manipulator are used to calculate the contact be-
tween robot structure and obstacles. Experimental tests were carried out successfully
using a KUKA iiwa industrial manipulator with 7 degrees of freedom (DoF). Where,
the EEF is hand-guided on a straight line while the robot is sliding on the obstacle
with its structure, results indicate the precision of the proposed method.

4.2.1 Proposed method

The method is described in Figure 4.24. Where using the force and torque measure-
ments from an external FT sensor attached to the �ange, and based on the precision
hand-guiding algorithm (in the previous section), the user is able to hand-guide a
sensitive redundant manipulator precisely at the EEF level. At the same time, using
the torques feedback from the integrated torque sensors at the joints of the sensitive
manipulator, it is possible to perform automatic redundancy resolution, where upon
a contact with an external obstacle (wooden box in Figure 4.24), the robot is able to
adjust the internal motion manifold to avoid the obstacle. As a result, the robot slides
with its structure on the body of the obstacle while keeping the precision at the EEF
level according to the hand-guiding motion.

4.2.2 Control strategy

The inputs to the proposed controller are:

• Force and torque measurements from an external FT sensor attached at the �ange
of the robot;

• Torque measurements from the integrated torque sensors at the joints of the
robot.

Most industrial robots, including the KUKA iiwa 7R800 and 14R820, are controlled at
the kinematic level, by streaming the joints reference positions or velocities to the robot.
As such, the proposed control strategy operates at the kinematic level, it includes
superimposing the angular velocities q̇hg, in equation 4.18, that satisfy hand-guiding
motion, with the angular velocities in the null space q̇n that satisfy the in-contact
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Figure 4.24: Precision hand-guiding on a straight line (along y axis) of a redundant
robot subject to a contact with obstacle. An external FT sensor is attached at the
robot �ange.

obstacle navigation. The mathematical formulas presented hereafter are kept generic.
Thereby, the method is applicable for any sensitive robot possessing redundancy with
respect to its required task.

4.2.2.1 Joint torques

Once a contact is initiated with the obstacle, extra torques due to contact forces τ ex
start to appear in the joints:

τ ex = τ r − τ dyn
Where τ ex is the vector of external torque due to external forces, τ r is the raw torque
measurements from the sensors at robot joints, and τ dyn are the torques due to robot's
own motion and gravity. The latter includes the torques due to (1) joints angular
acceleration, (2) Coriolis/centrifugal e�ect, (3) friction at joints and (4) torques due to
gravity, it is given by the equation:

τ dyn = Aq̈ + Cq̇ + f(q, q̇) + g (4.25)

Where A is the mass matrix of the robot, q̈ is the vector of joints angular acceleration,
C is Coriolis matrix of the robot, q̇ is the vector of joints angular velocities, f(q, q̇)
are the torques due to friction in the joints, and g are the torques due to gravitational
e�ect. In such a case, the accuracy in calculating τ dyn depends mainly on the precision
of the dynamical model used to describe the manipulator's dynamics.

When it comes to KUKA iiwa robots, the Sunrise Controller calculates internally
the vector of the external torques, allowing the user to acquire the numerical value of
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vector τ ex. In this study, we opted to use the KUKA Sunrise Toolbox [11], where we are
able to retrieve the components of τ ex using a TCP/IP communication in MATLAB.

4.2.2.2 Joint torques compensation

In addition to the joint torques due to the external contact forces with the obstacles,
the toque vector τ ex includes some extra components caused by the forces/moments
due to the (1) hand-guiding, (2) weight of the tool mounted at FT sensor, and (3) the
weight of the FT sensor. The e�ect of those forces/moments on joints torques shall
be accounted for. This procedure is referred to as the torques compensation, in which
two main factors are recognized:

1. Compensation for the torques due to sensor's weight, which also includes the
weight of the adaptor �ange used to mount the FT sensor on the robot. The
weight of the sensor and its Center-Of-Mass (COM) are previously known. Con-
sequently, the torque compensation is applied directly after calculating the Jaco-
bian associated with COM as described later in the Sensor weight compen-
sation;

2. Compensation for the torques due to external force/moment acting at the FT
sensor. This force/moment is measured by the FT sensor, it includes the weight
of the tool mounted at the FT sensor and the hand-guiding force/moment applied
by the human, as described later in the Hand-guiding-wrench/tool-weight
compensation.

Sensor weight compensation: For robot motions with relatively small accel-
erations, which is the case in precision hand-guiding, the forces/moments due to the
inertia of the FT sensor and the mounting �ange can be neglected in comparison to
their weight. Thus, to compensate the torques generated due to the weight of the
sensor and the mounting �ange τws, the Jacobian Jws associated with their COM is
utilized:

τws = JT
ws

[
0 0 −ws 0 0 0

]T (4.26)

Where ws is the weight of the sensor (including mounting �ange). The previous equa-
tion is valid for base mounted robots, where the base is mounted horizontally and the
z axis is pointing up, otherwise the orientation of the base frame shall be considered.

Hand-guiding-wrench/tool-weight compensation: The torques generated
due to external forces/moments acting on the FT sensor shall be compensated for.
Those forces/moments include the hand-guiding wrench (force/moment), the attached
tool's weight and the inertial forces due to its acceleration. For calculating the torques
τ fs due to external forces/moments, the Jacobian Js associated with the origin of the
measurement frame of the FT sensor is considered:

τ fs = JT
s

[
Rb
s 0

0 Rb
s

] [
ffs
mfs

]
(4.27)
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Where ffs andmfs are the force and the moment measured at the FT sensor, respec-
tively. Those force and moment quantities are due to the hand-guiding force/moment
plus the weight/inertial force/moment of the tool. The joint torques vector τ fs is due
to ffs and mfs, and Rb

s is the rotation matrix from the measurement frame of the
sensor to the base frame of the robot.

4.2.2.3 Joint torques due to contact with obstacles

After calculating the compensation torques τws and τ fs, the torques due to contact
with the obstacle τ c can be calculated:

τ c = τ ex − τ fs − τws (4.28)

Finally, the torques vector τ c due to external contact forces with an obstacle is
used to calculate the motion in the null space, as described in sub-section 4.2.2.4.

4.2.2.4 Contact controller

Considering that a human user hand-guides the EEF precisely using the measurements
from FT sensor, the least squares solution is used for calculating the joints angular ve-
locities vector q̇hg. This control command generates the required hand-guiding motion
for the EEF (with precision).

In the presence of obstacles, and due to contact forces between the structure of the
robot and the obstacles, extra torques start to appear at the joints. Those torques, τ c,
are calculated after acquiring measurements from torque sensors at the joints of the
robot and FT sensor measurements at the EEF, as described in the previous section.
The torques vector τ c is then used as an input to the contact controller. The output
of the contact controller is the null space angular velocities q̇n:

q̇n = NKτ c (4.29)

Where, N is the null space projection matrix of the robot, and K is a diagonal matrix
with constant coe�cients.

4.2.2.5 Control command

The total command used to control the robot is the sum of (1) the angular velocity
vector for hand-guiding q̇hg, and (2) the null space angular velocity vector q̇n, which
allows the robot to slide on the obstacle:

q̇ = q̇hg + q̇n (4.30)

4.2.2.6 Robot control

Industrial robots are provided with internal servo control loop at the joint position
level, for example the KUKA iiwa robot [140]. Consequently, the industrial robot
can be controlled by streaming the reference joint angles, which can be calculated by
integrating the joints angular velocities of equation (4.30). However, with time, the
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Figure 4.25: Experimental setup. The robot is hand-guided to perform a straight line
motion and compliantly avoids the obstacle taking advantage of the redundant axis.

integration causes numerical errors to accumulate which might a�ect the accuracy in
the resulting Cartesian motion. To solve this problem we propose the following novel
solution, after calculating the angular velocities in the null space q̇n, the following
integration is calculated:

qini = qf +

t+4tˆ

t

q̇ndt (4.31)

Where, qf is the joints angles feedback from the robot controller and 4t is the update
time interval of the control loop. Then the result qini is used as an initial value for
the precision hand-guiding algorithm in section 4.1. Which allows the robot to move
precisely in the Cartesian space while avoiding the obstacle in the null space.

4.2.3 Experiments

The proposed methodology was tested using a KUKA iiwa 7 R800 robot. This is
an industrial sensitive collaborative robot with 7 DoF provided with torque sensors
integrated into its joints. An external FT sensor, JR3, is attached at the �ange of
the robot. The robot was controlled from an external computer using KUKA Sunrise
Toolbox [11].

Figure 4.25 shows the proposed experimental setup. The robot is hand-guided
by applying a force on the FT sensor in the y direction of the robot base frame. In
consequence, the tool attached to the robot moves along a straight line in that direction.
Meanwhile, during hand-guiding, robot's structure collides with an obstacle, a box in
the way of the robot. The robot adjusts its con�guration, by utilizing its redundancy,
and slides smoothly on the obstacle with its structure. As a result, the robot is able
to keep moving on a straight line along the y direction while navigating the obstacle
during the contact. In contrast, for traditional hand-guiding solutions at EEF level
the robot is blind to its surrounding, such that it keeps pushing with its structure
against the obstacle causing joints-torques/motors-currents to increase triggering an
emergency stop.

A video segment showing the test is available in [141]. During the experimental test,
various data were recorded including (1) robot joints angular positions, Figure 4.26,
(2) external torque measurements at robot joints, Figure 4.27, (3) force measurements
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Figure 4.26: Robot joints angular positions.

Figure 4.27: External torques measurement at the robot joints.

from the FT sensor, Figure 4.28, (these measurements, represented in robot base frame,
are compensated for the weight of the tool), and (4) positional data of the Tool Centre
Point (TCP), Figure 4.29.

From Figure 4.28 it is noticed that at the beginning of the test the operator applies
a hand-guiding force at EEF, mainly along the y direction of the base frame. As a
result the EEF starts moving in the positive y direction, Figure 4.29. From the joints
torques graph, Figure 4.27, it is noticed that at around 2 seconds from the beginning
of the test, a contact between the robot structure and the obstacle is initiated. After
the contact the torques acting on the �rst and the third joints increase. Due to the
proposed null space control, the rate of motion of the �rst and third joints also increase.
This is evident in the joint angles graph, Figure 4.26, where the rate of change of the
angular positions of �rst and third joints increase due to null space motion. This allows
the EEF to move as desired by the operator, without con�ict due to the presence of
the obstacle.
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Figure 4.28: Components of hand-guiding force described in base frame of the robot.

Figure 4.29: Positional data of the EEF.

To show the precision of the motion, the actual path of EEF as recorded from the
robot controller is plotted in the xy plane Figure 4.30, and in the zy plane Figure
4.31. It is shown that the actual path deviates from a straight line. From the plots
the maximum error of the actual path in the x and z directions are 0.52 and 0.51
mm, respectively. As a comparison, we carried out the same test with KUKA o�-the-
shelf hand-guiding, joint level controlled, we tried to move the EEF in a line parallel
to the y direction, the errors were of order of centimeters. Depending on the user,
errors as big as 3 cm and 5 cm of EEF position in the x and the z directions have
occurred, an expected result since that hand-guiding the robot at the joints level does
not guarantee precision at the EEF level (in best case possible the robot can be as
precise as the human operator can be).
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Figure 4.30: Actual path in xy plane.
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Figure 4.31: Actual path in zy plane.

4.2.4 Summary

In this section it is presented a novel method for precision hand-guiding of redundant
manipulators with obstacle avoidance capability. Unlike traditional hand-guiding so-
lutions, we take advantage of robot redundancy to avoid in-contact obstacles between
the manipulator's structure and the surrounding environment while achieving precision
at EEF level. Torque measurements from robot joints are used together with the mea-
surements from an external FT sensor attached at the �ange. The acquired sensory
data are then treated for calculating two essential quantities: (1) the torques due to
contact forces and (2) the hand-guiding force and moment. Using these data a control
scheme is proposed such that the manipulator is able to compliantly slide on obstacles
during the contact while precisely hand-guided at the EEF level. Tests were carried
out successfully on KUKA iiwa robot. From the results it is concluded that the robot
successfully manages to perform the desired hand-guiding path with precision while
avoiding excessive contact forces with the surrounding environment. As compared to
joint level hand-guiding, the proposed method gives superior precision with order of
magnitude.
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Chapter 5

Contribution to Robot Dynamics

Formulation

Dynamics of robots is an important topic since that it is highly involved in their design,
simulation and control. Owing to its importance this subject had been studied exten-
sively in the past decades. Thus, several algorithms and methods had been developed
to calculate robot dynamics [142, 143]. Nevertheless, this subject remains till this day
open for extensive research while every year there are new studies being published,
methods and algorithms being proposed. This chapter introduces two main contribu-
tions into the mathematical formulation of robot dynamics. The �rst pertains to the
e�ciency in calculating the joint space inertia (mass) matrix for robots with High De-
grees of Freedom (HDoF). The second describes a recursive algorithm for calculating
Christo�el symbols e�ciently.

Chapter's breakdown

This chapter of the document is organised into two separate sections:

• Section 5.1: describes an algorithm with a minimal O(n2) cost1 for e�ciently cal-
culating the joint space inertia matrix for robots with HDoF. This algorithm is
obviously important in practice for reducing the execution time required to calcu-
late the mass matrix of HDoF robots. However, it is also important theoretically,
since it gives the limit on the second order e�ciency possible of calculating the
mass matrix for HDoF robots.

• Section 5.2: describes a light weight recursive (non-symbolic) algorithm for cal-
culating Christo�el symbols of robotic manipulators e�ciently.

1Where n is the number of degrees of freedom of the robot.
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5.1 Contribution to Mass Matrix Calculation

Increasingly, robots have more Degrees of Freedom2 (DoF), imposing a need for calcu-
lating more complex dynamics. As a result, better e�ciency in carrying out dynamics
computations is becoming more important. In this section, an e�cient method for
computing the joint space inertia matrix (JSIM) for serially linked robots with high
degrees of freedom is addressed. We call this method the Geometric Dynamics Algo-
rithm for High number of robot Joints (GDAHJ). GDAHJ is non-symbolic, preserves
simple formulation, and is convenient for numerical implementation. Results compare
favorably with existing methods, achieving better performance over state-of-the-art by
Featherstone when applied to robots with more than 13 DoF.

5.1.1 Introduction

Robot dynamics can be described by one of two formulations:

1. Operational space formulation. In this formulation the dynamics equations are
referenced to the manipulator end-e�ector. In a pioneering study this approach
was described and used to control PUMA600 robot [145]. It is also applied for the
combined application of motion and force control [146]. Algorithms for e�cient
robot dynamics calculations based on operational space formulation are presented
in [147] and [148].

2. Joint space formulation. This formulation describes the dynamics of robot in joint
space. This formulation manifests the e�ect of the joints' positions, velocities and
accelerations on the torques and vice-versa.

The mathematical formulation of the inverse dynamics in joint space [1, 32, 34, 149] is
given by:

τ = A(q)q̈ + C(q, q̇)q̇ + g (5.1)

Where τ is the joints' torques vector, q is the joints' positions vector, q̇ is the vector of
joints' angular velocities, q̈ is the vector of joints' angular accelerations, A(q) is joint
space inertia matrix of the robot, C(q, q̇) is the joint space Coriolis matrix of the robot,
and g is the vector of joints' torques due to gravity. As described in [150], equation
(5.1) can be extended to include contact forces, joints elasticity, friction, actuators
inertias and dynamics. A(q) is an n × n matrix, in which n is the number of robot's
joints considering that each joint has one degree of freedom, it is symmetric, positive
de�nite and has the property of being a function of only joints' positions. C(q, q̇) is an
n× n matrix, function of joints' positions and velocities, and describes the centrifugal
and Coriolis e�ects on joints' torques.

One of the earliest methods used to deduce the equations of robot dynamics was the
one based on Lagrangian formulation. This method is well described in the literature.
A methodology for deducing the dynamics of gear-driven serially linked robot by using
Lagrangian formulation is described in [95]. This study took into consideration the

2For example Caltech's 30 DoF snake like robot presented in [144].
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e�ects of the driving motors. The Lagrangian formulation is widely used as the bases
for automatic generation of equations of robot dynamics in symbolic form. Most recent
toolboxes for generating equations of robot dynamics using Lagrangian formulation are
in [151].

The Lagrangian formulation is a straight forward approach that treats the robot
as a whole and utilizes its Lagrangian, a function that describes the energy of the
mechanical system:

L = T − U (5.2)

Where L is the Lagrangian function, T is the kinetic energy and U is the potential
energy. The function described previously is formulated in terms of the generalized
coordinates q, di�erentiating it gives an expression for the associated generalized forces
v:

v =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (5.3)

Even though the Lagrangian formulation can be considered as a straight forward ap-
proach, the method requires partial di�erentiation. Despite the fact that symbolic ma-
nipulation methods have been utilized to perform the di�erentiation [152], the method
still lacks the e�ciency in terms of execution-time. This can be clearly noticed when the
robot presents a relatively high number of DoF as noted in [149] and most remarkably
in [153], where the author performed comparison of execution-times required to run
simulations based on dynamical models derived by Newton-Euler recursive technique
and Euler-Lagrange technique. It was reported execution-times di�erence of order of
magnitude which clearly put the case in favor of the Newton-Euler recursion method.

The formulation of robot-speci�c dynamics using Kane's dynamical equations is in
[154]. In this study the authors argue that using Lagrange method to compute dy-
namics produces huge equations resulting in slow execution and costly computations,
while the Recursive Newton-Euler is a generalized method that might perform un-
necessary calculations on speci�c robot. Thus, a faster execution algorithm with less
computational-cost could be achieved if robot-speci�c equations are carefully deduced.
The study elaborates in step by step manner the methodology for deriving the dy-
namics equations of Stanford manipulator starting from Kane's dynamical equations.
Nevertheless, the method requires a knowledgeable analyst to take on a pencil and
paper in hand and work out the equations of a speci�c robot. A comprehensive review
of Kane's equations and Gibbs-Appell equations is in [155].

A computationally e�cient Newton-Euler recursive method is described in [156].
This method is performed in two phases: the �rst phase (forward propagation) during
which the accelerations and velocities of robot links are calculated, and the second
phase (backward propagation) where torques and forces are calculated. The method
proved to be very e�cient for calculating the inverse dynamics. However, the cal-
culations are carried out implicitly such that the inertia matrix cannot be retrieved
directly. It is shown in [157] that the inertia matrix A(q) can be calculated from the
model of the inverse dynamics by assigning a unit value to one element of the joints'
accelerations vector and assigning a zero value to the remaining elements, including
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the joints' velocities and the gravity term. In such scenario, the associated column
of the inertia matrix is calculated, and by iterating the procedure through all of the
elements of the joints' acceleration vector the inertia matrix is achieved. This method
was later renamed Composite-Rigid-Body Algorithm (CRBA), by Featherstone [158].
Using CRBA to calculate the inertia matrix proved to be computationally e�cient,
especially if the calculations are performed in links-attached local frames. Computer
code of the algorithm based on 6D or spatial vectors algebra is available in [158]. A
comprehensive review of spatial vectors and Plücker basis is in [159] and in chapter 2
of [160].

In this section we propose GDAHJ as a method to calculate JSIM for serially
linked bodies with relatively high number of DoF, GDAHJ achieves better e�ciency
over state-of-the-art method, the famous CRBA. This increase in e�ciency is achieved
through minimizing the number of operations that have O(n2) computational com-
plexity. In GDAHJ the number of computations associated with the quadratic terms
are reduced to the minimum value possible, from 16n2 in the case of CRBA to 5.5n2

for GDAHJ.

5.1.2 Theory and principles

The proposed algorithm builds on what we call the frame injection principle illustrated
in Figure 5.1, where a frame j attached to joint j (according to the modi�ed Denavit
Hartenberg convention [32]) transfers to link k a linear acceleration into its center of
mass and an inertial moment around its center of mass. In this study we notate them
by ΓCkj and µCkj , respectively. This transfer is due to the rotational e�ect of joint j
around its axis of rotation, or the z axis of frame j. This cause and e�ect relationship
between frame j and link k is referred to by the subscript kj in ΓCkj and µCkj , while
the subscript C is used to refer to the center of mass of link k. The same subscript
notation will hold in this chapter for denoting frame-link interaction of cause-and-e�ect
unless stated otherwise.

5.1.2.1 Link's acceleration due to the single-frame e�ect

Each frame j transfers to link k three acceleration vectors tangential acceleration,
normal acceleration and Coriolis acceleration. The �rst of which is shown in Figure
5.2, it is due to the angular acceleration of frame j:

ΓτCkj = εj × pCkj (5.4)

Where ΓτCkj is the tangential acceleration of the center of mass of link k due to the
rotation of frame j, the symbol × is used to denote the cross product and pCkj is the
vector connecting the origin of frame j and the center of mass of link k. εj is the
angular acceleration of joint j:

εj = q̈jkj (5.5)

where kj is the unit vector associated with the z axis of joint j and q̈j is the angular
acceleration of that joint.
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Figure 5.1: Inertial moment µCkj and linear acceleration ΓCkj of center of mass of link
k transferred by frame. j

Figure 5.2: Tangential, normal and Coriolis accelerations of center of mass of link k
transferred by frame j.
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Concerning the normal acceleration, each frame j transfers to link k a normal
acceleration due to its rotation, Figure 5.2:

ΓnCkj = ωj × (ωj × pCkj) (5.6)

Where ωj is the angular velocity of link j due to the rotational e�ect of joint j. It is
given by:

ωj = q̇jkj (5.7)

We can rewrite the equation of the normal acceleration transferred to link k due to
frame j by:

ΓnCkj = kj × (kj × pCkj)q̇2j (5.8)

The third acceleration transferred is Coriolis acceleration, Figure 5.2, in which each
frame j transfers to center of mass of link k Coriolis acceleration ΓcorCkj :

ΓcorCkj = 2ωj × vrCkj (5.9)

Where vrCkj is the velocity transferred to the center of mass of link k from frames j+ 1
up to frame k. The superscript r is used to denote that this is a relative velocity and
C to refer to the center of mass of link k, so that vrCkj can be calculated from:

vrCkj =
k∑

i=j+1

ωi × pCki (5.10)

The total linear acceleration transferred by frame j to the center of mass of link k is
given by:

ΓCkj = ΓτCkj + ΓnCkj + ΓcorCkj (5.11)

5.1.2.2 Link's inertial moment due to single-frame e�ect

Each frame j transfers to link k three inertial moments, the �rst of which is due to
angular acceleration of frame j:

µτCkj = (RkI
k
kR

T
k )εj (5.12)

Where µτCkj is the moment transferred by frame j into link k due to frame's j angular
acceleration, Rk is the rotation matrix of frame k in relation to base frame and Ikk is
3× 3 inertial tensor of link k around its center of mass represented in frame k.

The second inertial moment transferred from frame j to link k is due to centrifugal
e�ect:

µn
Ckj =

1

2
(Lkωj)× ωj (5.13)

Where Lk is a 3× 3 matrix that is calculated from:
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Lk = Rk(tr(I
k
k)13 − 2Ikk)R

T
k (5.14)

The subscript in Lk is to notate that the matrix calculated pertains to link k, tr(Ikk) is
the trace of the inertial tensor and 13 is the identity matrix.

The third inertial moment transferred from frame j to link k is due to Coriolis
e�ect:

µcorCkj = (Lkωj)× ωrkj (5.15)

Where ωrkj can be calculated from:

ωrkj =

k∑
i=j+1

ωi (5.16)

Thus, the total inertial moment transferred to link k around its center of mass due to
the rotational e�ect of frame j is given by:

µCkj = µτCkj + µn
Ckj + µcorCkj (5.17)

5.1.3 Mass Matrix for High DoF Robot

The GDAHJ algorithm calculates the joint space inertia matrix for robots with high
DoF quite e�ciently, this increase in e�ciency is achieved through minimizing the
number of operations that has O(n2) computational complexity to a minimum, ac-
cording to our knowledge GDAHJ is the most e�cient method for high DoF robots
ever proposed till now.

Starting from the basic interpretation of JSIM columns, the mathematical equations
of GDAHJ algorithm can be deduced. Where as described in section 3.2 of [142], each
column j of the JSIM can be interpreted as: the torques acting on the various joints
of the robot, due to the unit acceleration of joint j, giving that the angular velocities
of all of the joints are equal to zero. In Figure 5.3 we show the free body diagram of
one link of the robot, with the inertial moments and inertial forces acting on it.

Following the previous de�nition of column j of JSIM, we can calculate that column
as the following: (1) choose a joint j, and (2) write the balance equation of a link k
from the robot. By referring to Figure 5.3, the balance equation of link k:

µk,j = µk+1,j + (RkI
k
kR

T
k )kj q̈j +mkp̂Ckk(q̈jkj × pCkj)+

l̂k

n∑
i=k+1

mi(q̈jkj × pCij) (5.18)

Where µk,j is the total moment acting on joint k due to the acceleration of joint j
only. lk is the vector connecting the origin of frame k to the proceeding frame's origin,
the little hat notation above the vector is used to denote the skew symmetric operator
associated with that vector. From the de�nition given in the previous section of column
j of the mass matrix, we substitute q̈j by its value q̈j = 1, consequently:
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Figure 5.3: Inertial forces and moments acting on link k due to angular acceleration
of joint j.

µk,j = µk+1,j + (RkI
k
kR

T
k )kj +mkp̂Ckk(kj × pCkj)

+ l̂k

n∑
i=k+1

mi(kj × pCij) (5.19)

While:

pCkj = pCk − pj (5.20)

And:

pCij = pCi − pj (5.21)

We substitute the values of pCkj and pCij into (5.19), and we �x:

µkj = µk+1,j

+

(
RkI

k
kR

T
k −mkp̂Ckkp̂Ck − l̂k

(
n∑

i=k+1

mip̂Ci

))
kj

−

(
mkpCkk + (

n∑
i=k+1

mi)lk

)
× (kj × pj) (5.22)

We de�ne the vector ηk by:

ηk = mkpCkk + (
n∑

i=k+1

mi)lk (5.23)

And we de�ne the matrix operator κk by:
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κk = −mkp̂Ckkp̂Ck − l̂k

(
n∑

i=k+1

mip̂Ci

)
(5.24)

Then we write:

µk,j = µk+1,j +
(
RkI

k
kR

T
k + κk

)
kj − (ηk)× (kj × pj) (5.25)

By performing a recursion on previous equation from link n to link k, and noticing
that µn+1,j = 0 we get:

µk,j =

(
n∑
i=k

(
RiI

i
iR

T
i + κi

))
kj −

(
n∑
i=k

ηi

)
× (kj × pj) (5.26)

To hide the complexity in the previous equation, we denote the terms between paren-
thesis by:

bk =

(
n∑
i=k

ηi

)
(5.27)

And

Dk =

n∑
i=k

(
RiI

i
iR

T
i + κi

)
(5.28)

Substituting (5.27) and (5.28) in (5.26) yields:

µk,j = Dkkj − b̂k(kj × pj) (5.29)

For calculating the (k, j) entry of JSIM, Ak ,j , we project µk,j on the z axis of joint k,
or in other words we multiply (5.29) by the unit vector kTk :

Ak ,j = kTkµk,j = kTkDkkj − kTk b̂k(kj × pj) (5.30)

By noticing that each entry k, j of the JSIM, or kTkµk,j is a scalar, then we can transpose
the previous equation without loss of generality:

Ak ,j = kTj
(
DT
k kk

)
−
(
kj × pj

)T (
b̂
T

k kk

)
= kTj

(
DT
k kk

)
+
(
kj × pj

)T (
b̂kkk

)
(5.31)

In such a way we have decoupled the dependency between indexes k and j. More-
over, we limited the cross-coupling interaction between joint j and bodies k into a
minimum. The previous equation states that the e�ect of acceleration of each joint j
is limited to the terms kTj , and tj =

(
kj × pj

)
. The e�ect of the articulated bodies

from link n to link k is manifested by the terms
(
DT
k kk

)
and

(
b̂
T

k kk

)
. The terms

dk =
(
DT
k kk

)
and yk =

(
b̂
T

k kk

)
can be calculated with an O(n) algorithm using
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Algorithm 5.1 Calculating joint space inertia matrix entries, algorithm is based on
eq (5.31).

01 :For k = 1 : n

02 : For j = 1 : k

03 :% calculating Ak ,j will require two vector inner products and one

04 :% scalar addition with total cost (3n2 + 3n)mul + (2.5n2 + 2.5n)add

05 : Ak ,j = kTj dk + tTj yk

06 : Aj ,k = Ak ,j

07 : End

08 :End

Table 5.1: Operation count for proposed method and other methods, mul stands for
multiplication and add for addition.

Method Matrix Cost Reference

GDAHJ JSIM (3n2 + 88n− 3)mul + (2.5n2 + 95.5n− 18)add

CRBA JSIM (10n2 + 22n− 32)mul + (6n2 + 37n− 43)add [161] and

[160] EQ.

10.3

Symbolic-

Numeric

JSIM-

Coriolis

( 3
2
n3 + 35

2
n2 + 9n− 16)mul + ( 7

6
n3 + 23

2
n2 + 64

3
n− 28)add [162]
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Figure 5.4: Execution time results for GDAHJ vs CRBA.

multiple recursions, while the mass matrix entries can be calculated with minimum
quadratic cost using the nested loop in Algorithm 5.1.

The nested loop in Algorithm 5.1 has the minimal quadratic cost. This cost results
from two vector-inner products and one scalar addition, with a cost (3n2 + 3n)mul +
(2.5n2 + 2.5n)add, where mul stands for multiplication and add stands for addition.
Thus, the O(n2) computational cost is optimized.

5.1.4 Tests

To prove the validity of the proposed method, GDAHJ, and to assess its execution-time
performance, a comparison with well established algorithms was performed, namely
with CRBA method.

Table 5.1 shows the computational complexity of the proposed algorithm against
state-of-the-art algorithm, measured in the number of �oating point operations (ad-
ditions and multiplications) as function of n, the number of DoF of the robot. The
operation count for CRBA reported in Table 5.1 pertains to the most e�cient version
of this algorithm [160]. The results reported in Table 5.1 for GDAHJ do not include
the number of operations required to perform the forward kinematics of O(n), since
that most of robotics applications require forward kinematics calculation, otherwise the
cost of the forward kinematics can be added. It can be inferred that GDAHJ performs
better than CRBA for articulated bodies (serially connected) that have more than 13
DoF.

To con�rm the theoretical results, both algorithms CRBA and GDAHJ were im-
plemented in C++, and a comparison in terms of execution time between the two
algorithms was performed, the C++ code with the operation count tables and the
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results are available online in [30]. Numerical tests were carried out by considering a
manipulator in which the mass of each link was generated randomly in the range [0,1]
kg. The inertial tensors of the links were generated as random positive de�nite matri-
ces in which each element is in the range [0,1] kg.m2. Denavit-Hartenberg parameters
of each link were generated randomly as well as the con�guration of the robot (joint
angles). Afterwards, the JSIM of the manipulator was calculated twice, once using
CRBA method and another time using GDAHJ method. Figure 5.4 shows the results
in terms of execution time and Figure 5.5 shows the results in terms of numerical error
of the calculation between the two methods. From the �gures we notice that GDAHJ
performs better than CRBA in terms of execution time for high DoF robots (more
than 13 DoF).

A metric-value was de�ned to measure the average error, given by:

e =
1

n2

∑
i,j

∣∣ACRBA
i,j −AGAHJ

i,j

∣∣ (5.32)

Where e is the resulting average error, ACRBA
i,j and AGAHJ

i,j are the i, j elements of the
mass matrix calculated using CRBA and GDAHJ algorithms.

5.1.5 Summary

In this section we proposed GDAHJ, a novel algorithm for e�cient calculation of JSIM
for serially linked robots, the algorithm achieves better e�ciency over state-of-the-
art when calculating JSIM for hyper-joint manipulators. This increase in e�ciency
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is achieved through minimizing the number of operations associated with the O(n2).
In such a case, the number of computations associated with the quadratic terms are
reduced to the minimum value possible, from (16n2) in the case of CRBA to (5.5n2)
for the proposed algorithm. At the end comparison between the proposed algorithm
against state of the art CRBA was made, the performance of the proposed algorithm
was discussed in operation count section of this study. On a theoretical level, this study
demonstrates the minimum bound for the O(n2) operations required for calculating
JSIM. Future work will focus on reducing the number of operations associated with
O(n) of the algorithm.
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5.2 Contribution to Christo�el Symbols Calculation

Christo�el symbols of the �rst kind are very important in robot dynamics. They
are used for tuning various proposed robot controllers, for determining the bounds
on Coriolis/Centrifugal matrix, for mathematical formulation of optimal trajectory
calculation, among others. In the literature of robot dynamics, Christo�el symbols
of the �rst kind are calculated from Lagrangian dynamics using an o�ine generated
symbolic formula. In this study we present a novel and e�cient recursive, non-symbolic,
method where Christo�el symbols of the �rst kind are calculated on-the-�y based
on the inertial parameters of robot's links and their transformation matrices. The
proposed method was analyzed in terms of execution time, computational complexity
and numerical error. Results show that the proposed algorithm compares favorably
with existing methods.

5.2.1 Introduction

Christo�el symbols are important tools in applied sciences, engineering, mathematics
and physics. In the latter they appear in rigid body dynamics [95] and general relativity
[163]. In the area of robotics, Christo�el symbols of the �rst kind appear when deducing
the equation of robot dynamics using the Lagrangian:

L = T − U (5.33)

Where L is the Lagrangian function, T is the kinetic energy and U is the potential
energy, all described in terms of the generalised coordinates q. In such a case, the
associated generalised forces τ :

τ =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (5.34)

Consequently, the canonical form of the inverse dynamics derived using the Lagrangian
is:

τk =
∑
j

akj q̈j +
∑
i,j

ckjiq̇j q̇i + gk (5.35)

Where τk is the torque at joint k, akj is the (k, j) element of the mass matrix, q̈j is the
angular acceleration of joint j, q̇j is the angular velocity of joint j, gk is the torque at
joint k due to gravity, and ckji represents Christo�el symbols of the �rst kind (later in
the document referred to by Christo�el symbols). From [164] ckji is given by:

ckji = ckij =
1

2

(
∂akj
∂qi

+
∂aki
∂qj
− ∂aij
∂qk

)
(5.36)

The Lagrangian formulation can be considered as a straight forward approach.
However, the method requires partial di�erentiation, which makes it unpractical to ap-
ply manually for complex systems. Thus, symbolic manipulation methods have been
utilized to perform the di�erentiation by a computer [152]. Nevertheless, the result-
ing equations generated by a computer lack the e�ciency in terms of execution time,
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this fact becomes more noticeable for robots with high number of joints or DoF as
noted in [149] and most remarkably in [153], where the author performed comparison
of execution times required to run dynamics simulations based on models derived by
Newton-Euler recursive technique and Euler-Lagrange technique. Where it was re-
ported execution times di�erence of order of magnitude which put the case in favor of
the Newton-Euler recursive methods.

Due to their e�ciency, researchers developed various recursive algorithms for cal-
culating the inverse dynamics [156], the forward dynamics [165, 166], the joint space
inertia matrix [161, 14]. Nevertheless, we are not aware of any recursive algorithm for
calculating Christo�el symbols numerically. As such, in this study we present a method
for calculating Christo�el symbols recursively. We also analyze the performance of the
proposed algorithm in terms of number of operations, execution time and numerical
error. MATLAB code of the proposed algorithm, including implementation examples,
are available in the web-page [31].

5.2.2 Motivation and Contribution

Calculating Christo�el symbols of the �rst kind is very important in robot dynamics.
Hence, Christo�el symbols have been used for solving various robotics problems. In
[167] they are used for calculating the bounds on the Coriolis/Centrifugal matrix.
These bounds play an important role for designing and tuning various proposed robot
controllers [168, 169, 170, 171, 172, 173]. In addition, Christo�el symbols have been
used in a dynamic neurocontroller of robotic arms [174]. They can also be used to
calculate a special form of Coriolis matrix that preserves the skew symmetry property
[1] (an essential property for various control algorithms). Christo�el symbols are also
important for planning time optimal trajectories and optimal velocity-pro�le generation
[175]. In such a case, the geometric path is parametrized using a vector function of
a scalar parameter θ (t). So that the inverse dynamics equation (which enters the
optimization as di�erential constraint) is reformulated to decouple the con�guration
dependent coe�cients from the time dependent parameter θ (t), as shown in [175]:

τ = m̃ (q)θ̈ + c̃ (q)θ̇2 + d̃ (q) (5.37)

In such a case, Christo�el symbols are utilized for calculating the (con�guration
dependent) coe�cients c̃ (q) in each con�guration on the discretized geometrical path.

In [176] Christo�el symbols are calculated in symbolic form, based on the La-
grangian formulation of the robot dynamics. This method has become the norm and
is presented in standard robotics textbooks [177, 1, 178], including the Handbook of
Robotics [179] in page 44, where the deduction of Christo�el symbols is introduced in
the Dynamics chapter under the subsection �2.3.2 Lagrange Formulation�. Neverthe-
less, symbolic methods for performing the calculations have major drawbacks, namely:

• The symbolic manipulation of the equations is time consuming, so it has to be
performed o�ine.

• For high DoF, the symbolic equations become very complex resulting in much
slower execution times than recursive methods, a fact reported in literature [149].
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Apart form that, a recursive method for calculating Christo�el symbols has several
advantages over the symbolic:

• Unlike the symbolic methods, recursive methods can be used on-the-�y, and do
not require an o�ine preprocessing. This makes recursive methods essential for
calculating the Christo�el symbols on-the-�y in robots that change its kinematic
chain and dynamic model, for example by adding or subtracting extra bodies
(including Recon�gurable and Self Assembling robots or when attaching objects
to the EEF).

• Since that recursive methods are used on-the-�y, the proposed recursive method
allows updating the dynamical constants (dynamical model) of the robot on-the-
�y. This allows the algorithm to use initial estimates of dynamic constants while
learning and tuning them more accurately during operation. This can not be
done easily in symbolic methods that require o�ine code regeneration.

Moreover, the proposed method calculates Christo�el symbols based on the robot's
transformation matrices and inertial parameters, without requiring partial di�erentia-
tion. Apart from the previously listed computational advantages, the proposed method
o�ers more insight into the nature of Christo�el symbols from the point of view of New-
ton mechanics.

5.2.3 Calculating Christo�el symbols

For articulated rigid bodies in a weightless environment (no gravitational �eld) equation
(5.35) becomes: ∑

j

akj q̈j +
∑
i,j

ckjiq̇j q̇i = τk (5.38)

We propose a scenario where only joints i and j of the articulated rigid bodies are in
motion with constant angular velocities, while the other joints are �xed. Then, the left
hand side of equation (5.38) becomes:∑

i,j

ckjiq̇j q̇i = ckjj q̇
2
j + 2ckjiq̇j q̇i + ckiiq̇

2
i (5.39)

Considering the frame injection principle (described previously in 5.1.2), the right hand
side of equation (5.38) is the torque resulting from the sum of three inertial moments:

τk = τkj + τkji + τki (5.40)

Where:

• τkj is the torque due to the Centrifugal e�ect resulting from motion of joint j.
Thus, it is a function of q̇2j ;

• τkji is the torque due to the Coriolis e�ect resulting from motion of joints j and
i. Thus, it is a function of the product q̇j q̇i;
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Figure 5.6: Backward recursion on moments and forces.

• τki is the torque due to the Centrifugal e�ect resulting from motion of joint i.
Thus, it is a function of q̇2i .

From equations (5.39) and (5.40) we �nd that:

τkj = ckjj q̇
2
j (5.41)

τkji = 2ckjiq̇j q̇i (5.42)

τki = ckiiq̇
2
i (5.43)

In such a case, to calculate ckjj , c
k
ji and ckii we assign a unitary value to the angular

velocities q̇j and q̇i. Then, equations (5.41),(5.42),(5.43) are interpreted as:

• The Christo�el symbol ckji is equal to half of the torque τkji which acts on joint
k due to Coriolis e�ect resulting from the unit angular velocities at joints j and
i;

• The Christo�el symbol ckjj is equal to the torque τkj which acts on joint k due to
Centrifugal e�ect resulting from the unit angular velocity at joint j;

• The same applies for Christo�el symbol ckii which results from ckjj after a change
of index.

To calculate the Christo�el symbols ckji we apply backward recursion on the forces
and moments shown in Figure 5.6, where:

• hkji is half of the inertial moment µ
cor
Ckj at the center of mass of link k. It is due

to Coriolis e�ect resulting from a unit angular velocity at joints j and i. From
equation (5.15) of the frame injection principle, hkji is given by:

hkji =
1

2
µcorCkj =

1

2
(Lkkj)× ki (5.44)
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Table 5.2: Comparison for calculating Christo�el symbols of a 5 DoF serially linked
robot using di�erent methods

Criteria
Lagrangian Lagrangian Proposed

(Optimized) (Not optimized) method

Size of generated �le (bytes) 778 732 67 873 609 4 497

O�-line time for function generation 8 days 897 sec -

On-line execution time (seconds) 4.6e-04 96 9.9e-5

• fkji is half of the inertial force at the center of mass of link k due to ΓcorCkj . It
is due to Coriolis e�ect resulting from a unit angular velocity at joints j and i.
From equation (5.9) of the frame injection principle, fkji is given by:

fkji =
1

2
mkΓ

cor
Ckj = mkkj × (ki × pCki) (5.45)

We calculate the Christo�el symbols ckji recursively, by applying a backward recursion
on Figure 5.6 for the inertial forces fkji and the inertial moments hkji:

Fkji = Fk+1
ji + fkji (5.46)

Hk
ji =Hk+1

ji + hkji + pCkk × fkji + lk ×Fk+1
ji (5.47)

ckji = kTkHk
ji (5.48)

Where Fkji is half of the inertial force calculated recursively at joint k due to the unit
angular velocity at joints j and i. Hk

ji is half of the inertial moment calculated recur-
sively at joint k due to the unit angular velocity at joints j and i, and the superscript T
in kTk is to denote the transpose. By applying a similar approach on normal accelera-
tions we can calculate ckii (ckjj). It is noticed that the resulting equations for calculating
ckii and c

k
jj are exactly similar to the ones in the presented algorithm (for calculating

ckji) only with indices changed.

5.2.4 Tests

To prove the validity of the proposed method for calculating Christo�el symbols and to
assess its performance, a comparison with symbolic Lagrangian based method was per-
formed. The code is provided in the web-page [31]. The robot used to run the test is a 5
DoF serially linked robot, its structure is described in the �le robotStructure_5DOF.mat.
This robot is generated using the �le generateRandomRobot.m in which the mass of
each link was generated randomly in the range [0,1] kg. The inertial tensor of each
link was generated as random positive de�nite matrix in which each element of the
matrix is in the range [0,1] kgm2. Denavit-Hartenberg (DH) parameters of each link
were also generated randomly. Afterwards, using MATLAB, Christo�el symbols of the
robot were calculated using:
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Table 5.3: Computational complexity of the proposed method
Additions Multiplications

12n3 + 19n2 + 40n− 1 21
2 n

3 + 45
2 n

2 + 49n

1. The proposed algorithm, implemented in the �le christoffelNumerically.m

(MATALB function).

2. An o�ine generated MATLAB function which contains the symbolic equations
generated using Lagrangian method, chri_symbGen5DOF.m. In this case, the
optimization option of the code generator was set to true, as to optimize the
generated symbolic equations.

3. Using an o�ine generated MATLAB function which contains the symbolic equa-
tions generated using Lagrangian method chri_symbGen5DOFnoOpt.m. In this
case, the optimization option of the symbolic equation generator was set to false.

The Christo�el symbols of the manipulator were calculated twice, once using symbolic
function and another using the proposed method. Table 5.2 shows a comparison of
achieved results. The proposed recursive method is superior in various aspects, in-
cluding in terms of execution time (4.6X times faster for a 5 DoF robot). The tests
were carried out on a personal computer with Intel(R) Core(TM) i7-6850K CPU @
3.6 GHz, under Windows 10, running MATLAB 2018a. For a 6 DoF robot, the script
has been running for two months without �nishing the symbolic equations generation
(the automatic optimization of the generated equations is extremely time consuming).
On the other hand, using the proposed algorithm to calculate Christo�el symbols for 6
DoF robot requires 13.3e-5 seconds, the �le with the test is a01_timeExecution6DOF.m
found in [31].

Table 5.3 shows a summary of the computational complexity of the proposed algo-
rithm measured in the number of �oating point operations (additions and multiplica-
tions) as function of n, the number of DoF of the robot. A detailed breakdown of the
computational complexity is found in the �le Operation_Count.ods found in [31].

Finally, to measure the numerical accuracy of the calculations, the following metric-
value was de�ned:

e =
2

n3

∑
i,j,k

∣∣∣∣∣ckji − ĉkjickji + ĉkji

∣∣∣∣∣ for each, ckji 6= 0 (5.49)

Where e is the relative error, ckji is Christo�el symbol calculated using the proposed
method and ĉkji is Christo�el symbol calculated using the symbolic method. From
various calculations using randomly generated con�gurations, the maximum (worst)
e value achieved is 2.196e − 14, indicating that the error is so small mainly due to
numerical rounding errors.

5.2.5 Application Example

An important application for the proposed algorithm is in minimum-time trajectory
optimization for industrial manipulators working in �exible manufacturing. In such
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Figure 5.7: Minimum-time trajectory optimization for industrial manipulator perform-
ing palletization in �exible-manufacturing scenario.

a case, calculating Christo�el symbols e�ciently and on-the-�y is of importance. Be-
cause, they enter into the formulation of the minimum-time optimization problem
based on robot dynamics as shown in [180, 181], where the elements of vector c̃ (q) in
equation (5.37) are calculated based on the mass matrix and Christo�el symbols:

c̃k =
∑
j

akjq
′′
j +

∑
ckijq

′
iq
′
j (5.50)

Where c̃k is the kth element of the vector c̃ (q) , q′j is calculated from:

q′j =
dqj
dθ

(5.51)

And q′′j is calculated from:

q′′j =
d2qj
dθ2

(5.52)

A representative scenario is shown in Figure 5.7, where a 7 DoF industrial robot is
used to palletize objects in a �exible-manufacturing production line. Optimizing the
robot motion for achieving minimum-time trajectory is very important for achieving
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high productivity. However, due to the �exible-manufacturing requirements, the robot
is required to manipulate various types of objects, with di�erent inertial data (inertial
tensor, mass, center of mass). Consequently, the inertial data of the object has to
be taken into consideration for optimizing the robot motion while moving the object.
This can be done by considering the last link of the robot and the object as a one body
when the robot is manipulating it on the planned path.

In such a case, a laser sensor is used to read the bar-code sticker (on the object)
which includes the inertial data of the object. When a new object (with di�erent
inertial data) is present, the control algorithm calculates the equivalent inertial data
of the last link coupled with the object. Considering both, the inertia of the last
link of the robot and the object. Afterwards, the optimization problem is invoked,
where Christo�el symbols are calculated e�ciently and on-the-�y using our algorithm.
In comparison, deducing the equations of Christo�el symbols by symbolic manipula-
tion creates a bottleneck in the problem formulation, where generating the symbolic
equations is (extremely) time consuming (requires an o�ine generation phase which is
eliminated by our recursive algorithm). This limits the applicability of the traditional
method for calculating Christo�el symbols for variable inertias in time critical opera-
tions. After formulating the problem, the time required to perform the optimization
is of order of seconds [181].

This application example shows the importance of our algorithm for performing
Christo�el symbols calculation in a practical application, where our algorithm o�ers
two fundamental advantages:

1. Christo�el symbols are calculated on-the-�y (without requiring an extremely time
consuming o�ine phase), even when the inertial data are changing;

2. Christo�el symbols are calculated more e�ciently using our recursive algorithm
than using the traditional method (symbolic equation generation).

5.2.6 Summary

In this section we proposed recursive algorithm for calculating Christo�el symbols
e�ciently for serially linked robots. The algorithm achieves better e�ciency over La-
grangian based symbolic method. This increase in e�ciency is achieved by performing
backward recursion on forces and moments. As compared to symbolic method, com-
putational testing proves that the proposed algorithm is (1) e�cient (faster execution
time), (2) precise (negligible numerical error), and most importantly (3) it does not
require a time consuming o�-line code generation phase.
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Chapter 6

Conclusion and Future Work

In this thesis three main topics related to collaborative robotic manipulators were
discussed, the collision avoidance of collaborative robots, the hand-guiding of sensitive
manipulators in addition to the dynamics of serially linked robots.

The subject of collision avoidance for robotic manipulators has been present in the
robotics literature for quite some time. However, it can be noticed that the majority
of reported studies are implemented in simulation, on the other hand only a few ap-
plied collision avoidance in a real setup (mostly using experimental robot and Kinect
vision based sensor, without industrial application context). Thus, in our proposed
collision avoidance topic we focused on its implementation in real industrial applica-
tions (using collaborative industrial robot KUKA iiwa, and industrial sensors). A laser
scanner and IMU sensors are used to capture the con�guration of the human coworker
around the robot (both are approximated by capsules). An e�cient algorithm based
on QR factorization is used to calculate the minimum distance between the capsules
e�ciently. This minimum distance is used as a collision imminence measure. A re-
pulsion vector based on the minimum distance and the relative velocity between the
human and the robot is used to repel the robot away from collision. However, unlike
other algorithms in robotics literature, we noticed that for industrial applications the
presence of a prede�ned o�ine generated path is important, and the robot shall be able
to switch between di�erent tasks smoothly while moving on the path. Thus, a tradi-
tional implementation of the collision avoidance motion without further modi�cation
might cause discontinuity in the collision avoidance motion, especially when switching
between the tasks that does not allow collision avoidance motion (active assembly) to
tasks that allow collision avoidance motion (free motion in the work space) while the
human is near the robot. To solve this problem we proposed a solution to guarantee
the continuity of the motion. Finally, the proposed algorithm is tested successfully on
an industrial robotic cell in automotive industry (car door assembly task).

Going back to the published studies (in the robotics literature) on manipulator's
collision avoidance, it can be noticed that most potential �elds based algorithms de�ne
the attraction and the repulsion vectors as the gradients of the attraction and repul-
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sion potential �elds. However, moving along the gradient to minimize the potential
function is not the best option and su�ers drawbacks (known fact in the optimization
literature where such implementation is termed as the greedy algorithm), for example
at some critical con�gurations it su�ers from intermittent oscillations. This issue is
also known in mobile robots literature, where a solution was proposed by applying
the Newton method on the potential �elds. This solution is inspired from the opti-
mization literature, where the Newton method is preferred over the gradient when the
Hessian is known. After a long research into the subject, we could not �nd any study
describing the application of the Newton method on PF based collision avoidance for
robotic manipulators. We believe this comes from the fact that for mobile robots the
potential �eld is an explicit function of the con�guration space variables, consequently
the Hessian is easy to deduce. On the other hand, for robotic manipulators it is not
obvious how to calculate its Hessian matrix. In this thesis, a symbolic formula for fast
calculation of the Hessian matrix of robotic manipulators is derived, also a system-
atic method for applying the Newton method to potential �elds collision avoidance of
robotic manipulators is presented. Where, the Newton method is applied for calcu-
lating the direction of the collision avoidance motion in the joint space of the robot.
Simulation tests using hyper-redundant planner manipulator proved the e�ectiveness
of the proposed method.

On the subject of hand-guiding collaborative robotic manipulators we presented
the precision hand-guiding method, an intuitive alternative to the teach pendant for
performing precise positioning operations. It also allows to use the robot as an assis-
tive third hand, which is appealing for tedious assembly tasks. Consequently, a robot
can be hand-guided to lift and hold parts in place, while giving the human coworker
an opportunity to apply the �xtures (perform the assembly task). Such functionality
reduces the risk to workers and properties (falling components), provides precision,
allows lifting heavier parts, and increases productivity by keeping less workers occu-
pied in manual tasks on the factory �oor. By attaching a force/torque sensor at the
�ange of the sensitive redundant manipulator, we demonstrated a method that al-
lows to precisely hand-guide the end-e�ector in the Cartesian space while navigating
around surrounding obstacles (upon a contact). Tests were carried out successfully
using KUKA iiwa collaborative robot.

On robot dynamics formulation, the thesis presented two recursive algorithms with
high computational e�ciency. The �rst is an algorithm with a minimal second order
cost for calculating the joint space inertia matrix of serially linked robots. This is
important for achieving the lowest computational cost when calculating joint space
inertia matrix of hyper-redundant manipulators where the second order term is as-
sociated with the highest computational cost. The second algorithm is a recursive
non-symbolic method for calculating Christo�el symbols of the robotic manipulator.
This method is more e�cient (in order of magnitude) than the traditional symbolic
method (based on Lagrangian formulation). Various tests were carried out for com-
paring the performance of the proposed methods against state of the art methods.
Results (in terms of execution time and computational complexity analysis) indicate
the superior e�ciency of the proposed methods.

Future work will be focused in various aspects. For collision avoidance, the pro-
posed method can be extended for mobile manipulators through the implementation of
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the potential �elds method on both the mobile platform and the robotic manipulator.
In addition, it is noticed that in the proposed collision avoidance method the subject of
redundancy was addressed implicitly by using the pseudo inverse of the Jacobian of the
redundant manipulator when calculating the angular velocities for both the attraction
and repulsion vectors. On the other hand, addressing redundancy explicitly (by per-
forming null space projection) o�ers extra advantages, which for some situations allow
collision avoidance motion while performing the required task successfully. For the
precision hand-guiding method, we noticed that when the redundant axis is not �xed,
a repetitive hand-guiding motion at the EEF does not result in a repetitive motion
in the joint space of the robot. This causes a drift in the robot con�guration (mainly
the redundant axis). While it is easily corrected by readjusting the redundant axis in
the null space when required, this solution is not convenient. Therefore, future work
will focus on solving this issue. On the subject of robot dynamics, future work will be
focused on improving the e�ciency of the proposed method for calculating Christo�el
symbols and on reducing the O(n) operations of GDAHJ method for calculating the
mass matrix.
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Appendix A

Hessian & Gradient in Joints Space

In this section, the formulas for the �rst and second order derivatives, gradient
Equation (3.39) and Hessian Equation (3.38), of the potential �eld with respect to
manipulator's joint angles are deduced. Let uk(x) be a potential �eld, this potential
�eld is described in Cartesian space, it could be an attraction potential, that attracts
the EEF to the goal, or a repulsion potential that repels the robot away from obstacles.
Then the second order approximation of the potential �eld uk(x0) near the current
position x0 is given by:

uk(x) ≈ uk(x0) +4xT∇uk +4xT∇2uk4x (6.1)

Where:

• uk(x) is the approximate value of the potential function at the Cartesian position
x;

• uk(x0) is the value of the potential function at the Cartesian position x0;

• 4x = x− x0;

• ∇uk is the gradient of the potential function uk with respect to x taken at the
point x0;

• ∇2uk is the Hessian of the potential function uk with respect to x taken at the
point x0.

In addition, di�erential kinematics gives the following relationship between elemental
displacements in Cartesian space and elemental displacements in joint space:

4x = J4q (6.2)

Where J is the Jacobian associated with the point of the manipulator x0, and 4q =
q − q0. By substituting (6.2) in (6.1) and �xing:

uk(x) ≈ uk(x0) +4qTJT∇uk +4qTJT∇2ukJ4q (6.3)

From the previous equation, the joint space gradient gk and the joint space Hessian
Hk of an individual potential function uk are deduced. Where the gradient is associated
with the �rst order term of the approximation:

gk = JT∇uk (6.4)

The Hessian is associated with the second order term of the approximation:

Hk = JT∇2ukJ (6.5)
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Finally, in case of a manipulator subjected to several potential �elds simultaneously,
the total potential �eld is the sum of all of the potentials, and the total gradient is the
sum of the individual gradients:

g = Σgk (6.6)

The total Hessian is the sum of the individual Hessians:

H = ΣHk (6.7)
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Appendix B

List of Methods for KST

Table 6.1: List of KST methods for networking.

Method Description

net_establishConnection Connect to KUKA Sunrise.OS

net_turnOffServer Terminate connection to KUKA Sunrise.OS

net_updateDelay Establish a plot of communication delay between computer

and controller

net_pingIIWA Ping the robot controller

Table 6.2: List of KST methods for general purpose functionalities.

Method Description

gen_DirectKinematics Calculates the forward kinematics/Jacobian of the

manipulator

gen_partialJacobean Calculates the partial Jacobian

gen_InverseKinematics Calculates the inverse kinematics

gen_MassMatrix Calculates the mass matrix

gen_CoriolisMatrix Calculates Coriolis matrix

gen_CentrifugalMatrix Calculates centrifugal matrix

gen_GravityVector Calculates the torque vector acting on the joints

due to robot's own weight

gen_InverseDynamics Calculates the inverse dynamics

gen_DirectDynamics Calculates the Forward dynamics

gen_NullSpaceMatrix Calculates the null space matrix of the robot

153



Table 6.3: List of KST methods for soft real-time control.

Method Description

realTime_moveOnPathInJointSpace Moves the robot continuously in joint space

realTime_startDirectServoJoints Start the DirectServo for controlling the robot in joint space,

position mode

realTime_stopDirectServoJoints Stop the DirectServo for controlling the robot in joint space,

position mode

realTime_startImpedanceJoints Start impedance control

realTime_stopImpedanceJoints Stop impedance control

sendJointsPositions Updates joints' destination positions and waits for an

acknowledgment from the server

sendJointsPositionsExTorque Updates the joints' destination positions while returns back the

external torques

sendJointsPositionsMTorque Updates the joints' destination positions while returns back the

measured torques

sendJointsPositionsGetActualJpos Updates the joints' destination positions while returns back the

actual joint position measurements from encoders

realTime_startDirectServoCartesian Start the DirectServo for controlling the robot in Cartesian space

realTime_stopDirectServoCartesian Stop the DirectServo for controlling the robot in Cartesian space

sendEEfPosition Updates the end-e�ector destination position and waits for an

acknowledgment from the server

sendEEfPositionExTorque Updates the end-e�ector destination position while returns back

the external torques

sendEEfPositionMTorque Updates the end-e�ector destination position while returns back

the measured torques

realTime_startVelControlJoints Start joints' velocity control mode

realTime_stopVelControlJoints Stop joints' velocity control mode

sendJointsVelocities Send reference velocities for robot joints

sendJointsVelocitiesExTorques Updates the joints' destination velocities while returns back the

external torques

sendJointsVelocitiesMTorques Updates the joints' destination velocities while returns back the

measured torques

sendJointsVelocitiesGetActualJpos Updates the joints' destination velocities while returns back the

actual joint position measurements from encoders

sendJointsVelocitiesGetActualEEfPos Updates the joints' destination velocities while returns back the

actual end-e�ector position
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Table 6.4: List of KST methods for point-to-point motion.

Method Description

movePTPJointSpace Moves from the current con�guration to a new con�guration in

joint space

movePTPLineEEF Moves the end-e�ector in a straight line from the current pose to

a new pose

movePTPHomeJointSpace Moves the robot to the home con�guration

movePTPTransportPositionJoi... Moves the robot to the transportation con�guration

movePTPLineEefRelBase Moves the end-e�ector in a straight line path relative to base

frame

movePTPLineEefRelEef Moves the end-e�ector in a straight line path relative to

end-e�ector initial frame

movePTPCirc1OrientationInter... Moves the end-e�ector in an arc speci�ed by two frames

movePTPArc_AC Moves the end-e�ector in an arc speci�ed by center, normal, arc's

radius and angle

To move the end-e�ector in an arc in the XY, XZ, YZ plane (movePTPArcXY_AC, movePTPArcXZ_AC, movePTPArcYZ_AC)

To move the end-e�ector in an ellipse in the XY, XZ, YZ plane (movePTPEllipseXY, movePTPEllipseXZ, movePTPEllipseYZ)

Non-blocking methods for PTP motion (nonBlocking_isGoalReached, nonBlocking_movePTPArcXY_AC,

nonBlocking_movePTPArcXZ_AC, nonBlocking_movePTPArcYZ_AC, nonBlocking_movePTPArc_AC,

nonBlocking_movePTPCirc1OrintationInter, nonBlocking_movePTPHomeJointSpace,

nonBlocking_movePTPJointSpace, nonBlocking_movePTPLineEEF,

nonBlocking_movePTPTransportPositionJointSpace)

Interrupt PTP motion according to torque threshold (movePTP_ConditionalTorque_ArcXY_AC,

movePTP_ConditionalTorque_ArcXZ_AC, movePTP_ConditionalTorque_ArcYZ_AC,

movePTP_ConditionalTorque_Circ1OrintationInter, movePTP_ConditionalTorque_HomeJointSpace,

movePTP_ConditionalTorque_JointSpace, movePTP_ConditionalTorque_LineEEF,

movePTP_ConditionalTorque_LineEefRelBase, movePTP_ConditionalTorque_TransportPositionJointSpace)
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Table 6.5: List of KST methods, setters and getters.

Method Description

setBlueOff Turns o� the blue LED of the pneumatic �ange

setBlueOn Turns on the blue LED of the pneumatic �ange

setPin1Off Sets the output of Pin1 to low level

setPin1On Sets the output of Pin1 to high level

To change the state of Pin2, Pin11 and Pin12 (setPin2Off, setPin2On, setPin11Off, setPin11On,

setPin12Off, setPin12On)

getEEF_Force Returns the measured force at the end-e�ector reference frame

getEEF_Moment Returns the measured moments at the end-e�ector reference

frame

getEEFCartesianOrientation Returns the orientation (X-Y-Z �xed rotations angles) in radians

getEEFCartesianPosition Returns the position of the end-e�ector relative to robot base

reference frame

getEEFPos Returns the position and orientation of the end-e�ector relative

to robot base reference frame

getJointsExternalTorques Returns the robot joint torques due to external forces

getJointsMeasuredTorques Returns the robot joint torques measured by the torque sensors

getJointsPos Returns the robot joint angles in radians

getMeasuredTorqueAtJoint Returns the measured torque at a speci�c joint

getExternalTorqueAtJoint Returns the torque at a speci�c joint due to external forces

getEEFOrientationR Returns the orientation of the end-e�ector as a rotation matrix

getEEFOrientationQuat Returns the orientation of the end-e�ector as a quaternion

getPin3State Returns the state of Pin3

Returns the state of Pin4, Pin10, Pin13 and Pin16 (getPin4State, getPin10State, getPin13State,

getPin16State)
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Table 6.6: List of KST methods for physical interaction.

Method Description

startHandGuiding Initializes hand-guiding functionality

startPreciseHandGuiding Initializes precision hand-guiding functionality

performEventFunctionAtDoubleHit Detects double touch

eventFunctionAtDoubleHit Double touch event

moveWaitForDTWhenInterrupted Interruptible linear motion of the end-e�ector with physical

interaction
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Appendix C

Gravity compensation of IMU measurements

To compensate for gravity e�ect in the acceleration measurements of the IMU, �rst
a calibration of the sensor frame in relation to end-e�ector frame shall be established.
This phase is important because the geometry of the sensor's holder (�xture) is not
perfect and also due to the uncertainties in the assembly of the sensor on the end-
e�ector. As such the rotation matrix Rs

ef , from EEF frame to sensor frame, shall be
established. To do this, a calibration phase is proposed. Since that the relationship
between the measured gravity vector gs in the sensor frame, and the gravity vector in
end-e�ector frame gef :

gs = Rs
ef g

ef (6.8)

And since that:

Rs
ef =

[
~X, ~Y , ~Z

]
(6.9)

Where ~X, ~Y and ~Z are the direction vectors along the x, y and z axes (respectively)
of EEF frame described in sensor frame. Based on the previous equations three steps
are proposed to calculate the rotation matrix Rs

ef :
In the �rst step, the x axis of the end-e�ector frame is positioned vertically facing

upwards. Afterwards, the measurement of the gravity vector gs using the IMU is ac-
quired, while the robot is static. The relationship between the gravity vector measured
in sensor frame and the gravity vector in end-e�ector frame:

gs = Rs
ef

 −‖gs‖0
0

 (6.10)

Where ‖gs‖ is the magnitude of the vector gs. By analyzing the previous equation,
the �rst column vector ~X of the matrix Rs

ef can be calculated by:

~X =
gs

−‖gs‖
(6.11)

Figure 6.1 shows con�guration of the robot and the sensor for the �rst calibration
step.

In the second step, the y axis of the end-e�ector is positioned vertically facing
upwards, afterwards the measurement of the gravity vector gs using the accelerometer
is acquired, while the robot is static. The relationship between the gravity vector
measured in sensor frame and the gravity vector in end-e�ector frame:

gs = Rs
ef

 0
−‖gs‖

0

 (6.12)

158



Figure 6.1: Calibration phase �rst step,
x axis of the EEF is positioned verti-
cally facing upwards (front view).

Figure 6.2: Calibration phase second
step, y axis of the EEF is positioned
vertically facing upwards (upper view).

Where ‖gs‖ is the magnitude of the vector gs. By analyzing the previous equation, an
approximation ~Y0 of the second column vector ~Y of the matrix Rs

ef can be calculated:

~Y0 =
gs

−‖gs‖
(6.13)

The unit vectors ~X and ~Y of the matrix Rs
ef shall be perfectly normal to each

others. As such a Gram-Schmidt like procedures shall be applied to guarantee that ~X
and ~Y are orthogonal, this is important to correct for the small errors coming from
(1) the inaccuracy in end-e�ector positioning which depends on the precision of the
robot, (2) the measurement uncertainty which depends on the precision of the inertial
measuring unit and (3) the external noise due to vibrations and other interfering e�ects.

~Y =
~Y0 − (~Y T

0
~X) ~X∥∥∥~Y0 − (~Y T

0
~X) ~X

∥∥∥ (6.14)

Figure 6.2 shows con�guration of the robot and the sensor in the second calibration
step.

For calculating the third column of the rotation matrix ~Z, a similar procedure could
be carried out. Alternatively, the ~Z vector can be calculated from the cross product:

~Z = ~X × ~Y (6.15)

Thus the vibrations Γs are calculated from the raw measurements of the IMU us

after gravity compensation using the following equation:

Γs = us −Rs
ef R

ef
b

 0
0

−‖g‖

 (6.16)

Where Ref
b is the rotation matrix of the robot base frame to EEF frame. Previous

equation applies for upright base mounted robots, as the case in our experiment.
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