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Concept Creation with Regulated Activation Networks

by Rahul Sharma

Concepts are of great value to humans because they are one of the building blocks of our

cognitive processes. They are involved in cognitive functions that are fundamental in decision

making such as classification and also capacitate us for contextual comprehension. By definition,

a concept refers to an idea or a combination of several ideas. In a computational context, a

concept can be a feature or a set of features. An individual concept is referred to as a concrete

concept, whereas a generalized form of a set of concepts can be perceived as an abstract concept.

Computational concepts can be characterized in three broad categories; i.e. symbolic (e.g.

Adaptive Control of Thought based approach), distributed (e.g. Neural Networks) and spatial

(e.g. Conceptual Space) representations. CLARION, a cognitive architecture, is an example

of a hybrid computational framework that combines symbolic and distributed representations.

Moreover, the symbolic, distributed, spatial and hybrid representations are mostly used on

representing concrete concepts, whereas the notion of an abstract concept is rarely explored.

In this thesis, we propose a computational cognitive model, named Regulated Activation Net-

work (RAN), capable of dynamically forming the abstract representations of concepts and to

unify the qualities of spatial, symbolic and distributed computational approaches. Our model

aims to simulate the cognitive processes of concept learning, creation and recall. In particular,

the RAN’s modeling has three learning mechanisms where two perform inter-layer learning that

helps in propagating activations from an input-to-output layer and vice versa. The third pro-

vides an intra-layer learning that is used to emulate regulation mechanism, which is inspired by

biological Axoaxonic synapse where one node in a layer induces excitatory, neutral or inhibitory

activation to other nodes in the layer. In this research, two different types of abstract con-

cepts are modeled: first, the convex abstract concepts where the geometrical convexity among

the concrete concepts was exploited to create the abstract concept; second, the non-convex ab-

stract concepts where the similarity relationships among the convex abstract concepts were used

to capture non-convexity and model it. The RAN uniquely unifies the qualities of symbolic,

distributed and spatial conceptual representation, where the model has a dynamic topology,

simulates cognitive process like learning and concept creation and performs machine learning

operations.
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Experiments with 11 benchmarks demonstrated the classification capability of RAN’s modeling

and provided a proof-of-concept of convex and non-convex abstract concept modeling. In these

experiments, the study has shown that RAN performed satisfactorily when compared with five

different classifiers. One of the datasets was used to model the active and inactive states of

three students. Further, the results of this model of students were analyzed statistically to

infer students’ psychological and physiological conditions. The recall experiments with RAN

demonstrated the cued recall blend retrieval of abstract concepts. Besides cognitive function

simulation and machine learning, the RAN’s model was also useful in the data analysis task.

In one of the experiments, a RAN’s model was developed to have 7 layers showing dimension

reduction and expansion operations. Additionally, the data visualization of the 1st, 3rd, and

5th layers displayed how deep data analysis with the RAN model unearth the complexities in

the data.

The research work involved the study of topics from the fields of Mathematics, Computational

Modeling, Psychology, Cognition, and Neurology. Based upon the results of all the experiments

and analogical reasoning of RAN’s modeling processes, the hypotheses of the research work

were demonstrated. The abstract concept modeling was substantiated through classification

experiments, whereas the simulations of concept creation, learning, activation propagation, and

recall were justified through analogy and empirical outcomes. The research work also helped in

discovering new challenges, such as temporal learning and simulation of the cognitive process

of forgetting, which will be taken as research projects in the future.
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Criação de Conceitos com Redes de Activação Regulada

by Rahul Sharma

Os conceitos são de grande valor para os seres humanos, já que são blocos constituintes dos

processos cognitivos. Eles estão envolvidos em funções cognitivas que são fundamentais na

tomada de decisões, como a classificação, e também nos capacitam para a compreensão con-

textual. Por definição, um conceito refere-se a uma ideia ou a uma combinação de várias

ideias. Num contexto computacional, um conceito pode ser um recurso ou um conjunto de

recursos. Um conceito individual é referido como um conceito concreto, enquanto uma forma

generalizada de um conjunto de conceitos pode ser percebida como um conceito abstrato. Os

conceitos computacionais podem ser caracterizados em três grandes categorias segundo a forma

como se representam; representações simbólicas (por exemplo, abordagem baseada no Controle

Adaptativo do Pensamento), distribúıdas (por exemplo, Redes Neuronais) e espaciais (por ex-

emplo, Espaço Conceitual). A arquitetura cognitiva CLARION é um exemplo de uma estrutura

computacional h́ıbrida que combina representações simbólicas e distribúıdas. Além disso, as rep-

resentações simbólica, distribúıda, espacial e h́ıbrida são usadas principalmente para representar

conceitos concretos, enquanto a noção de um conceito abstrato raramente é explorada.

Nesta tese, propomos um modelo cognitivo computacional, denominado Regulated Activation

Network (RAN), capaz de formar dinamicamente as representações de conceitos abstratos e de

unificar as qualidades de abordagens computacionais espacial, simbólica e distribúıda. O nosso

modelo visa simular os processos cognitivos de aprendizagem, criação e recall de conceitos. Em

particular, a modelação da RAN possui três mecanismos de aprendizagem, nos quais dois real-

izam aprendizagem entre camadas, que ajuda a propagar ativações de uma camada de entrada

para sáıda e vice-versa. O terceiro fornece uma aprendizagem intra-camada que é usada para

emular o mecanismo de regulação, que é inspirado pela sinapse axoaxónica biológica, em que um

nó de uma camada induz ativação excitatória, neutra ou inibitória sobre outros nós da camada.

Neste trabalho, são modelados dois tipos diferentes de conceitos abstratos: primeiro, os conceitos

abstratos convexos, em que a convexidade geométrica entre os conceitos concretos é explorada

para criar o conceito abstrato; segundo, os conceitos abstratos não convexos, onde as relações

de similaridade entre os conceitos abstratos convexos foram usadas para capturar e modelar

a não-convexidade. A RAN unifica exclusivamente as qualidades de representação conceptual



simbólica, distribúıda e espacial, onde o modelo tem uma topologia dinâmica, simula processos

cognitivos como aprendizagem e criação de conceitos, e executa operações de aprendizagem pela

máquina.

Experiências com 11 benchmarks demonstraram a capacidade de classificação do modelo da

RAN e a constituem prova de conceito da modelação de conceito abstrato convexo e não convexo.

Nestas experiências, a RAN demonstrou um desempenho satisfatório quando comparado com

cinco classificadores diferentes. Um dos conjuntos de dados foi usado para modelar os estados

ativo e inativo de três estudantes. Além disso, os resultados desse modelo de estudantes foram

analisados estatisticamente para inferir as condições psicológicas e fisiológicas dos alunos. As

experiências de recall com RAN demonstraram a recuperação combinada de recall de conceitos

abstratos. Além da simulação da função cognitiva e de aprendizagem automática, o modelo

da RAN também foi útil na tarefa de análise de dados. Numa das experiências, o modelo de

uma RAN desenvolvido tem 7 camadas, que comportam operações de redução e expansão de

dimensão. Além disso, a visualização de dados da 1ª, 3ª e 5ª camadas mostra como uma análise

profunda dos dados com o modelo RAN pode revelar as complexidades destes.

Este trabalho de investigação envolveu o estudo de tópicos das áreas de Matemática, Modelação

Computacional, Psicologia, Cognição e Neurologia. Com base nos resultados de toda a ex-

periência e racioćınio analógico dos processos de modelação da RAN, foi posśıvel demonstrar a

hipótese do trabalho de investigação. A modelação de conceito abstrato foi substanciada através

de experiências de classificação, enquanto as simulações de criação de conceito, aprendizagem,

propagação de ativação e recall foram justificadas por analogia e resultados emṕıricos. Este tra-

balho ajudou também a descobrir novos desafios, como a aprendizagem temporal e a simulação

do processo cognitivo do esquecimento, que serão objeto de investigação futura.
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Chapter 1

Introduction

The area of this research work falls under the scope of Mathematics, Computational modeling,

Psychology, Cognition and Neurology domains. The conceived research problem of this thesis

has its motivations from the field of Computational Psychology and Neurobiology. However, the

problem was addressed through a Computational and Mathematical approach. The following

sections of this chapter detail the inspirations of this work, the formulated problem and hypoth-

esis for the solution. This chapter also lists the contributions of this research and description of

the Research Methods adopted to carry out the research and development activities.

1.1 Motivation

Learning is an ongoing process among all living beings, we perceive our surroundings, observe

all the events happening around and build an understanding of all the things as concepts. We

also develop internal representations (Goldstone et al., 2013) of these concepts which eventu-

ally becomes an important part of our recognition process. By dictionary, the term concept

refers to an “idea” (Dictionary.com, 2015b). However, concepts are also described as mental

categories (Goldstone et al., 2013) that equip us with the abilities such as relative recognition

of objects. Concepts are an important part of investigations in cognitive and psychological

research. Usually, process-oriented, symbolic or distributed, and knowledge-based conceptual

representations describe concepts (Kiefer and Pulvermüller, 2012), where researchers use for-

mal, theoretical, or computational approaches to realize the conceptual representations (Bechtel

et al., 1998).

There are several computational modeling techniques (or tools) that simulate cognitive states

and represent concepts at symbolic and connectionist levels. At the symbolic level, informa-

tion is represented by symbols. Rules are defined to manipulate symbols. Within a symbolic

representation, the meaning is internal to the representation itself; symbols have meaning only

1
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in terms of other symbols, and not in terms of any real-world objects or phenomena they

may represent. Symbolic representations are often associated with Classical AI (Russell and

Norvig, 2016), yet symbolic representation in itself does not entail classic AI methodology. An

underlying assumption of AI research is that human thinking can be understood in terms of

symbolic computation, in particular, computation based on formal principles of logic. However,

symbolic systems have proved less successful in modeling aspects of human cognition beyond

those closely related to logical thinking, such as perception. At the connectionist level, infor-

mation is represented by the dynamics over densely connected networks of primitive units. A

particular strength of connectionist networks is their ability to adapt their behavior according

to observed data. Nevertheless, since the learned behavior is represented as weights between

units in the network, they offer limited explanatory insights into the process being modeled.

Peter Gärdenfors (Gärdenfors, 2004) proposed a third inter-mediate approach – the Concep-

tual Spaces theory – whereby concepts are represented as regions within a multi-dimensional

space, with the data features representing the dimensions of the space. Under this setting, one

particular data instance would correspond to a single point in the space. This approach allows

geometric operations over data points and across sub-regions – e.g., to measure the similarity

(typically via distance-based measures) between data instances and concepts.

The term concept automatically coins the need to understand the representations of concepts.

There are several conceptual representation theories (Kiefer and Pulvermüller, 2012) that not

only enable us to understand the various cognitive processes in humans but also psychological

ones, like creativity (Kyaga et al., 2013). Each theory has a way to represent concrete concepts

through perception, action, emotion, and introspection, but the notion of abstract concepts is

debatable (Kiefer and Pulvermüller, 2012). In general, a hierarchical structure defines an orga-

nization of concepts where the concrete concepts are placed in the lower level, and the Abstract

Concepts occupy the relatively higher levels. Therefore, abstract concepts are seen as the gen-

eralization of concrete concepts (Rosch et al., 1976, Tversky and Hemenway, 1984). Abstract

concepts are studied mathematically (Saitta and Zucker, 1998), and theoretically (Borghi et al.,

2018, 2017). However, they are less investigated computationally (Kiefer and Pulvermüller,

2012). The first aspect of this research project was to investigate concepts, understand how

they are perceived and study how they can be computationally represented.

Computational models are useful in understanding the psychological and cognitive phenomena,

validate the existing cognitive theories, and helps to formulate fresh ideas related to cogni-

tion (Rolls et al., 2008, Kyaga et al., 2013, Braver et al., 1999, O’Reilly, 2006). The representa-

tions produced by computational approaches are amodal (symbolic), multimodal (distributed),

or hybrid (Hayes and Kraemer, 2017). Adaptive Control of Thought-Rational (ACT-R) (An-

derson et al., 1997) is a symbolic architecture where the researcher have attempted to model

memory (Lovett et al., 2000), simulate attention (Anderson et al., 2004, 1997, 2004), deci-

sion making (Marewski and Mehlhorn, 2011), recognition (Schooler and Hertwig, 2005), and
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forgetting (Schooler and Hertwig, 2005). Multimodal approaches such as artificial neural net-

works (ANN) including Restricted-Boltzmann Machine (RBM) (Hinton, 2012), Deep Neural

Networks (Collobert and Weston, 2008) stacked auto-encoders (Vincent et al., 2010) and Con-

volution Neural Networks (CNN) (Krizhevsky et al., 2017) have significant contribution in

feature extraction and distributed memory representation. Besides, hybrid cognitive architec-

tures like CLARION (Sun and Peterson, 1996) simulated scenarios related to cognitive and

social psychology. Another motivation of this research was to computationally investigate the

dynamic cognitive states in humans and understand concept creation processes. Additionally,

studying the association learning among the concepts, how recall of concepts occur and how the

concept(s) induce(s) regulatory effect during the retrieval operation were also object of interest.

1.2 Research Goals

The aim of this research was to develop a computational cognitive model capable of dynam-

ically forming the abstract representations of concepts and to unify the qualities of symbolic,

distributed and spatial computational approaches. It is also assumed that the model simu-

lates the cognitive processes such as learning, concept creation and recall operations. Besides

these qualities, the model should also perform machine learning tasks like classification. This

part of the thesis puts forward the problem conceived from the aforementioned motivations.

Additionally, the research hypotheses are described along with its research questions.

1.2.1 Problem Statement

There are numerous ways to represent concepts computationally, which are broadly categorized

into three classes spatial, symbolic and distributed. The spatial representations of the theory of

conceptual space (Gärdenfors, 2004) enable us to view concepts in multi-dimensions, therefore

serves as a natural way of contextual learning. Ontologies are a good example of symbolic

representations and ANNs belong to a family of distributed representation. Individually, both

symbolic and distributed representation have been very beneficial in understanding cognitive

functions (such as recognition) and performing machine learning operations (like classification).

However, the brain requires both symbolic and distributed representations (Roy, 2011) for

contextual reasoning because similarity among concepts plays an important role in deducing

context. Separately, all the three approaches are very efficient, although it’s not clear how to

harmonize the virtues of these distinct approaches for concept representation.

Besides the gap of a unified view of concept representation, the distributed representation of

ANNs simulates the Axodendritic synapses behavior of learning and activation propagation.

The neuronal behavior responsible for regulating the activations of neurons through Axoaxonic
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synapses (Garrett, 2014) is not addressed by ANNs, and leads to an opportunity to emulate

these synapses.

1.2.2 Research Hypothesis

Based upon the two aforestated problems and motivation of this work, the objective of this re-

search is to develop a computational approach. To fulfill the objective a hypothesis is developed

consisting the following two postulates:

� A computational network where every node symbolically represents a concept (abstract

of concrete) and geometry among the concepts is considered in modeling, such a network

can be considered a hybrid of symbolic, distributed and spatial representation. A hierar-

chical network of concepts (nodes) can address the representation of abstract and concrete

concepts computationally. If the hierarchy generation is dynamic, the cognitive processes

such as concept creation, learning and activation propagation can be simulated.

� The regulation behavior of Axoaxonic synapses can be simulated if the concepts at the

same level are able to impact each other’s activation. In the process of regulating activation

of other concepts, a dynamic state of concepts can be captured similar to dynamic state

when recalling a concept.

The research hypothesis has the potential to solve the two research problems of this thesis. To

realize the two aspects of the hypothesis following research questions (RQ) are formulated:

� RQ-1: Model Architecture and Learning

Which technique can be useful in viewing concepts as data points in n-dimensional feature

hyperspace? How to build a hierarchy of concepts where higher level concepts abstractly

represent concepts at lower levels? How to learn the relation between concepts at the

same level, and different levels in the hierarchy?

� RQ-2: Activation Propagation

How to propagate activation (signals) from the input-to-abstract level using both types of

learning? How to strew activation from abstract-to-input level using the learning? How

use learning to have a regulatory effect of activation of one concept over other?

� RQ-3: Model Evaluation

What use cases are suitable for RANs modeling? Which methods are suitable to validate

the machine learning capability of the methodology? How to simulate and verify the

cognitive behaviors exhibited by the approach and substantiate the processes like recall

and blend retrieval of concepts?
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1.3 Research Outcome

The research work proposes a novel computational modeling technique, Regulated Activation

Networks. In RANs modeling, every data instance is considered as a spatial point in an n-

dimension feature hyperspace. Topologically, RANs modeling is connectionist and symbolically

represents every node in the network as a concept. Therefore, RANs modeling unifies the virtues

of all the representations of computational modeling, i.e. symbolic, distributed and spatial. The

RANs modeling is also able to simulate the cognitive functions such as learning, concept creation

and recall operations. In this section, an overview of contributions of RANs modeling is given

together with its restrictions. Later, research methods are described that were adopted to

achieve the research goals of this work.

1.3.1 Contributions

There are three significant contributions proposed by this research work. First, the RANs

modeling technique, which has an evolving topology, learns representations of abstract concepts.

The model symbolically identifies every node in the network as a concept and its activation

(signal value) as its Degree of Confidence (DoC) of representation. The RANs modeling can

build both convex and non-convex representations of abstract concepts. Second, RANs approach

is suitable to perform classification operations without supervision. Besides, the data analytics

can be performed with RANs modeling by transforming the dimension of data, i.e., dimension

reduction and expansion and further visualizing this data for analysis. Third, the emulation

to study cognitive and neurobiology process such as dynamic creation of a representation of

concepts, learning. RANs modeling can also simulate the inhibitory or excitatory and regulatory

neurological impact of concepts during cued recall operations.

Besides these core contributions, the RANs approach has been used to model the Active and

Inactive abstract behavior of a group of students. Further, the generated model of students was

used to infer the physiological and psychological conditions of a group of students. With RANs

modeling there is a liberty of choice in selecting a concept identifier (i.e., clustering algorithm),

therefore the basic architecture also becomes flexible. The RANs’ convex abstract concept

modeling has two types of activation propagation operation: first, upward propagation, from

input-to-abstract level, and second, downward propagation from abstract-to-input level. The

significance of downward propagation operation is not only simulating recall operation but also

retrieving blends of abstract concepts at the input level. This blending operation can be used

to retrieve intuitive or non-intuitive combinations of abstract concepts.
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Figure 1.1: Research Methodology

1.3.2 Limitations

There are a few restrictions with RANs modeling. First, the training efficiency of the RANs

model is linked to the complexity of the concept identifier. For instance, if the Affinity Propa-

gation algorithm is used instead of K-mean for clustering, the training time increases with the

size and dimension of the data. Second, RANs modeling accepts only numbers in the range [0,

1] as input. Third, the current versions of RAN is not suitable for image classification tasks.

Forth, the present version of RAN works with spatial data only and does not capture temporal

characteristics while learning. At last, the Similarity Threshold constants for RANs non-convex

Abstract Concept modeling is to be determined empirically.

1.3.3 Research Methodology

The work performed in this research consisted of four major components, Model, Model Pro-

totype, Data and Model’s Application, as shown in Figure 1.1. The Model is the mathemati-

cal formulation and an iterative process between Mathematical, Computational, Psychological,

Cognitive and Neurological theories, in order to conceive and develop RANs modeling tech-

nique. The data format acceptable to RANs model was also decided while formulating the

RANs model. The Model component was essential to seek answers to the research question

RQ-1 and RQ-2 (see Section 1.2.2) and to develop theoretical grounds for RANs modeling. The
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Model Prototype is another important component where the theoretical aspects of the research

questions RQ-1 and RQ-2 were realized computationally. The research question RQ-3 was col-

lectively addressed by the three components Model, Model Prototype, and Data, and test the

computational capability of RANs modeling with different use cases.

Experimental Setup

The Model Prototype was developed using the Python scripting language. To train the RAN’s

model, fourteen1 datasets were identified, understood and pre-processed, and further supplied

to the training process of the RANs modeling. Five evaluation metrics (Precision, Recall, F1-

Score, Accuracy and ROC-AUC curve analysis) were considered to validate the classifications

capability of RANs modeling. The classification operation was also suitable to provide the proof-

of-concept of abstract concept modeling. The analogical reasoning made through the RAN’s

simulations were used to establish the cognitive behavior exhibited by the RAN’s Methodology.

Further, the Data and Model Prototype was conjointly used to demonstrate the applications of

RANs modeling such as recall process simulation, classification and dimensionality reduction

along with data visualization.

1.4 Outline of the Thesis

This research dissertation is organized into six chapters and five supporting appendices. Chap-

ter 1 provides the motivation of this research, proposes a set of research questions and presents

the research methodology adopted to solve the problem. Chapter 2 puts forward the state

of the art related to this research. Chapter 3 provides the RAN’s convex abstract concept

modeling, along with the limitations of RANs modeling and its biological justification, it also

details the data pre-processing method needed for the RANs modeling. Section 3.3 details the

RAN’s methodology using a Toy-data problem (Toy-data1). Section 3.4 shows the experiments

with two datasets acquired from UCI machine learning repository to exhibit (1) flexibility in

choosing a suitable concept identifier, (2) building a deep hierarchy of abstract concepts, (3)

automatic association of input-labels to their respective abstract concept nodes. Section 3.5

provides RAN’s comparisons with five classifiers and a proof of concept with eight benchmark

datasets. At last, Section 3.6 summarizes and concludes the chapter.

Chapter 4 extends Chapter 3 with RAN’s non-convex abstract concept modeling. In Section 4.2,

the entire RAN’s methodology is explained with a Toy-data problem (Toy-data2). Experiments

and outcomes with Toy-data, Human Activity Recognition data, Sleep Detection data and four

datasets UCI Machine Learning Repository are reported in Section 4.3. Section 4.4 puts forward

the conclusions. Chapter 5 also extends Chapter 3 with the induction of back-propagation

mechanism in order to exhibit cognitive behavior modeling with RAN. Section 5.2 puts forward

1Nine datasets from UCI Machine Learning Repository, one dataset from ISABELLA App of project SO-
CIALITE, and three artificially generated datasets.
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the state of the art related to recall operations. The RANs modeling, the Intra-Layer Regulation

algorithm, and Geometric Back-propagation algorithm are detailed in Section 5.3 using a Toy-

data problem (Toy-data3). The cued recall demonstration with MNIST dataset is reported in

Section 5.8. Section 5.9 concludes the Chapter. Chapter 6 concludes this thesis summarizing

the outcome of the research work along with a reflection on future work.

This thesis is complemented with a set of Appendices to help readers understand the founding

concepts, to support results for the experiments, and describe Machine Learning application

of the work. Appendix A briefly describes the theories that were the building blocks of RANs

modeling. Appendix B details the utilities that are used in evaluation process, this appendix

also provides the configurations of models used in different experiments in this research. Ap-

pendices C and D detail the observations of classification performance for experiments carried

out in Chapter 3 and Chapter 4, respectively. Appendix E describes the application of RANs

modeling in data manipulation, dimension transformation and data visualization.



Chapter 2

Related Work

This chapter puts forward the State of The Art related to the RANs modeling technique, and
is based upon the following International Conferences and part of under review Journal article.
Following is the list of articles:

� Ping Xiao, Stuart Battersby, Marko Bohanec, Amilcar Cardoso, Joao Correia, Alberto Dıaz, Jamie Forth, Virginia

Francisco, Pablo Gervas, Oskar Gross, Raquel Hervas, Nada Lavrac, Carlos Leon, Penousal Machado, Dragana

Miljkovic, Hugo Goncalo Oliveira, Alexandre Pinto, Vid Podpecan, Senja Pollak, Matthew Purver, Rahul Sharma,

Tanja Urbancic, Frank van der Velde, Geraint A. Wiggins, Martin Znidarsic, Hannu Toivonen. “Conceptual Rep-

resentations for Computational Concept Creation” ACM Computing Survey, 2019. (Xiao et al., 2019)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Exploring Geometric Feature

Hyper-Space in Data to Learn Representations of Abstract Concepts. Applied Sciences, 2020. (Sharma et al., 2020a)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Learning Non-Convex Abstract

Concepts with Regulated Activation Networks, Journal of Annals of Mathematics and Artificial Intelligence, Springer,

2020. (Sharma et al., 2020b)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Modeling Abstract Concepts

For Internet of Everything: A Cognitive Artificial System. 13th APCA International Conference on Control and

Soft Computing (CONTROLO), Azores, Portugal, 2018. (Sharma et al., 2018b)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Perceiving Abstract Concepts

Via Evolving Computational Cognitive Modeling, International Joint Conference on Neural Networks (IJCNN),

IEEE World Congress on Computational Intelligence (IEEE WCCI), Rio de Janeiro, Brazil, 2018. (Sharma et al.,

2018a)
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A plethora of computational approaches exist in the area of Artificial Intelligence (AI). These

models address a large section of problems of Machine Learning such as clustering, classifica-

tion, prediction, pattern recognition, deep learning and computational creativity. This Ph.D.

dissertation also contributes a computational cognitive model to the AI and Machine Learning

domain. In this chapter, the symbolic, distributed, and spatial representations are surveyed

to understand how they represent concepts and how their virtues can be unified. This work

proposes a modeling technique to represent abstract concepts, therefore the computational and

conceptual research related abstract concept modeling is also reviewed. Since the model pro-

posed by this Ph.D. work is hybrid and dynamic, a literature survey over recent advancements

is also conducted for augmenting and hybrid models.

2.1 Representation of Concepts

Concepts are very important to lives because they are linked to the cognitive functions of relative

thinking, reasoning, recognition and comprehension. In psychology, the concepts are referred to

“an abstract idea” that is useful to develop understanding about things, objects and processes.

Besides perceiving the ideas, knowledge about concepts is also essential for the generation of new

or creative ideas (Boden, 1990). On the other hand, in cognitive science concepts are referred

to by their representations. Therefore, the principal difference of these two senses of concepts

is that, in psychology concept is an “idea” whereas in cognitive science “representation of an

idea” is a concept.

In symbolic approaches, the symbols are not only used to represent concepts but also depicts

their association. In distributed techniques, a concept is represented by the densely connected

network of primitive units. Both techniques have their merits and demerits, and are applied

based upon the requirement of the problem being solved. The spatial methods represent concepts

at a conceptual level which lies between symbolic level and distributed levels. At the spatial level,

the concepts are seen as points in geometric space and their associations are established based

upon the distance among the concepts. The purpose of this review is to determine the advances

in all three type of representations and unify the virtues of these methods in RANs modeling.

2.1.1 Symbolic Representations

Symbol plays a significant role in recognizing concepts and establishing relationships among

them. Symbols are used to associate meaning to things, objects or processes such as words

makes a language meaningful. This section reviews the computational methods that enable us

to represent concepts symbolically.

Associations
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Figure 2.1: Koestler’s cross-domain association (Koestler, 1964)

Association is “the connection or relation of ideas, feelings, sensations, etc.; correlation of

elements of perception, reasoning, or the like” (Dictionary.com, 2015a). If two concepts (C1

and C2) are related to one another then, in an association, it is assumed that there exists a

connection between them without imposing any condition on the concepts. Understanding of

associations among concepts is important and has been used to define creative thinking as a

process of combining distant associative element (Mednick, 1962).

Arthur Koestler proposed a model of creative thinking as bisociation (Koestler, 1964). Bisoci-

ation can be seen as an act of mixing unrelated (often conflicting) information in an innovative

manner. This act can also be viewed as the ability to think simultaneously over different dimen-

sions or domain, as shown by Figure 2.1, which depicts two matrices of thought M1 and M2, as

orthogonal planes. M1 and M2 represent two matrices that belong to different domains. Any

event which is perceived simultaneously (shown by the red line in the Figure 2.1) is bisociation

of two context M1 and M2. Figure 2.1 also shows six concepts C1, ....,C6. The concepts C1,

C2 and C3 are bisociative as they are able to view the problem in two domains. Bisociations

generally identify a set of concepts that belong to closely related domains (Berthold, 2012).

Graphs are used to represent bisociations (Dubitzky et al., 2012). The bisociations not only can

bridge between concepts but also links graphs and structures (Juršič et al., 2012). It has also

been shown that bisociation discovery can be tackled using literature mining methods (Swanson,

1990) by finding hypotheses spanning over previously disjoint sets of literature. This can be

viewed as determining whether phenomenon x is linked to phenomenon z in an article. However,

there is no proof of this association and to associate concepts Cx and Cz an intermediate concepts

Cy is identified. This concept Cy connects with Cx in some articles, and with Cx in some others.

Putting these connections together and looking at their meaning may provide new insights about

Cx and Cz.

Semantic Relations
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Semantic relation is termed as any relationship established among two or more concepts based

upon their meaning. Equation 2.1 shows the formal representation of a semantic relation R

among two concepts C1 and C2. There are several types of semantic relations in the lexi-

cal domain such as synonymy, homonymy, antonymy, association, causal relation, hyponymy-

hypernymy, instance of relation, locative relation, meronymy-holonymy and temporal relation (San-

tos et al., 2016). In linguistics, the words and their meaning conjointly represent concepts and

associations among these words are recognized by semantic relations.

C1 →
R
C2 (2.1)

Semantic relations have been used in text corpora including the electronic dictionaries (Amsler,

1981, Calzolari et al., 1973). However, a large amount of language-related research (Chen and

Sharp, 2004, Krallinger et al., 2009, Miljkovic et al., 2012, Ono et al., 2001, Rzhetsky et al.,

2004) is based upon the method of discovering discriminating lexical-syntactic patterns (Hearst,

1992). This approach also aids in determining the sequences of words (concepts) from a set of

relations (as starting points) which are learned from previous related arguments. There are

several Machine Learning approaches that were used to extract semantic relations in text such

as the use of classifiers (Girju et al., 2006), clustering (Hasegawa et al., 2004) and Natural

Language Processing (NLP) (Craven and Kumlien, 1999).

Symbolically, the semantic relations among the concepts are represented using logic, ontologies

and semantic networks. In all these techniques the symbols, graphs or tuples not only represents

the concepts but also their relations. There are different types of notations like the conjunction,

disjunction, negation, implication, etc., to represent logic. A concept in logic can be one symbol

or a composition of several symbols. Consider the logic relation expressed by Equation 2.2, it

says “All professors are people”, “∀” symbol has its own meaning, “is prof()” is a relation and

“→” is an implication symbol.

∀x(is prof(x)→ is person(x)) (2.2)

With logic symbols, we not only can represent spatial concepts but also temporal concepts (Bouzid

et al., 2006). Logic-based computational techniques, such as the logic program of Prolog, have

also been used to represent concepts and their procedural relations (Hou et al., 2010).

Another symbolic approach that represents concepts are ontologies, by definition, an ontology is

a the study of state of being (Dictionary.com, 2015c), here the state of being can be interpreted

as a concept (or category). Ontologies are not only used to studying concepts but also their

relations (Poli, 1996). Ontology is also termed as knowledge base representing a hierarchical

taxonomy of concepts, relations, functions, Axioms and instances (Slimani, 2015). In informa-

tion science, Ontologies are defined as “a set of representational primitives with which to model
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Figure 2.2: An example semantic network

a domain of knowledge or discourse. The representational primitives are typically classes (or

sets), attributes (properties) and relationships (or relations among the class members)” (Gruber,

2008).

There are three types of ontologies found in information science, upper, domain and hybrid (or

middle). The upper and domain ontologies can be compared based upon what they represent.

For instance, the upper identifies non-lexical concepts such as objects, entities or situation,

whereas, the domain ontology contains concepts that are directly expressed through text or lex-

icon. The SUMO (Pease and Niles, 2002), DOLCE (Gangemi et al., 2002) and Cyc (Lenat, 1995)

are examples of upper-level ontologies. The domain ontologies that are developed specifically

to represent a field such as workflow of an assembly line. Besides upper and domain ontologies,

the hybrid ontologies represent generic concepts, WordNet (Miller, 1998) is an example of this

type of ontology.

The representations of ontologies itself can be differentiated into three types formal, prototype-

based and terminological (Biemann, 2005, Sowa, 2015). The formal ontologies are denoted

by symbols of first-order logic, as depicted by Equation 2.2, SUMO is an example of formal

ontologies. The prototype-based ontologies are a form of terminological ontologies whose classes

are discriminated based upon the instance or prototype and are identified based upon the

semantic similarity among the concepts. This type of ontology is realized using clustering

mechanisms and are easy to construct, however they do not have a label associated with concepts

and don’t allow interference. The terminological ontologies are hierarchical representations

of concepts where taxonomy have concept labels and associations are specified by sub-type

or super-type (is a or part of) relations. The graph-based terminological ontologies are often

referred to as semantic networks. The ontologies provide generic information about the concepts

and their relations in a knowledge base, whereas the semantic networks are seen as knowledge

bases.

Semantic networks (Berners-Lee et al., 2001, Hendler and van Harmelen, 2008) are also a way

to symbolically represent concepts and their semantic relations. It is a graph-based approach
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(directed or undirected) where the vertices (or nodes) represents concepts and the semantic

relation is represented by the edges. The Figure 2.2 shows the relations “is a”, “has”, “is an”,

“lives in” along with their respective concepts Animal, Mammal, Fish, Water, Whale, Bear,

Fur, Cat and Vertebra. An example of a semantic network is WordNet, a lexical database of

English. It groups English words into sets of synonyms called synsets, provides short, general

definitions, and records the various semantic relations between these synonym sets. Some of the

most common semantic relations defined are meronymy (A is part of B, i.e. B has A as a part of

itself), holonymy (B is part of A, i.e. A has B as a part of itself), hyponymy (or troponymy) (A

is subordinate of B; A is kind of B), hypernymy (A is superordinate of B), synonymy (A denotes

the same as B) and antonymy (A denotes the opposite of B). ConceptNet (Liu and Singh, 2004)

is another example of a semantic network representing a knowledge base of common sense.

Semantic networks are very useful in knowledge representation of databases (Gutierrez et al.,

2011), cyber-security (Iannacone et al., 2015) and object serialization in software (Hebeler et al.,

2011). Besides, in the World Wide Web (WWW) a massive collection of linked web documents

is created through a network of semantic information also known as the semantic web. Semantic

Web incorporates ontologies as part of W3C standard stack. An ontology describes formally a

domain of discourse. Typically, an ontology consists of a finite list of terms and the relation-

ships between these terms. The terms denote important concepts (classes of objects) of the

domain. For example, in a university setting, staff members, students, courses, lecture theaters,

and disciplines are some important concepts. The relationships typically include hierarchies of

classes. A hierarchy specifies a class C to be a subclass of another class C’ if every object in C

is also included in C’ (for instance, all faculty is staff members). Apart from subclass relation-

ships, ontologies may include information such as properties (X teaches Y), value restrictions

(only faculty members can teach courses), disjointness statements (faculty and general staff

are disjoint), the specification of logical relationships between objects (every department must

include at least ten faculty members). In the context of the Web, ontologies provide a shared

understanding of a domain. In a broad context, the ontologies in semantic web are used to

specify standard conceptual vocabularies in which to exchange data among systems, provide

services for answering queries, publish reusable knowledge bases, and offer services to facilitate

interoperability across multiple, heterogeneous systems and databases.

Several ontology languages conform to semantic web such as Resource Description Framework

(RDF) (Lassila and Swick, 1999), RDF Schema (RDFS) (Brickley, 2004), Web Ontology Lan-

guage (OWL) (McGuinness and van Harmelen, 2004), Terse RDF Triple Language (Beckett

et al., 2014) (Turtle) which is a format for expressing data in the Resource Description Frame-

work (RDF) data model. RDF represents information ”triples”, each of which consists of a

subject, a predicate, and an object. The tools for implementing the Semantic Web are designed

for encoding data and sharing data from many different sources. The RDF is used to encode

information and the RDFS language defines properties and classes and also facilitates using



Chapter 2. Related Work 15

data with different RDF encoding without the need to convert data to use a different schema.

Furthermore, one can make ad hoc RDF statements about any resource without the need to

update global schemas.

2.1.2 Distributed Representations

Human intelligence is exceptional because it builds unique combinatorial structures and uses

them to perform its cognitive functions (Anderson, 1983a, Newell, 1990, Pinker, 2003, 1999).

Therefore, to study cognition it essential to understand the complex structures of neurons and

how they function. These intricate network of neurons are studied computationally through dis-

tributed (or connectionist) representations of interconnected units. Moreover, these distributed

representations of units conjointly depict concepts because the concepts are represented by neu-

ral assemblies in the brain (Hebb, 1949). Topologically the distributed models are identical

to the graph based approaches like semantic networks and ontologies. However, the operat-

ing behavior of the distributer approaches are completely different from graph-based symbolic

approaches. In this section, a survey is conducted to determine how concepts are represented

through a network of nodes. The review covers three types of distributed representations, i.e.,

Neural Assembly and Blackboard, Artificial Neural Networks and Deep Representations.

Neural Assembly

In the human brain, a neural assembly represents concepts and the neuronal structure expands

or shrinks while carrying out learning operation, e.g., Hebbian form of learning (Hebb, 1949).

The neuron assembly formation process can be expressed as “neuron that fire together wire

together” (McCulloch and Pitts, 1943, Hebb, 1949). Therefore, the neurons involved in recog-

nizing an object get interconnected, like a set of networked neurons is a representative of words

used to recognize an animal (van der Velde, 2015, Ramachandran et al., 1998). Moreover, the

whole assembly gets activated upon perceiving that object again and the activation pattern in

the network depicts a conceptual representation (Quiroga, 2012). Besides, the neural assemblies

can represent concepts grounded in action or emotion (Pulvermüller et al., 2001).

Figure 2.3 shows a neural sentence structure of “The Cat chases the Mouse” in a Neural Black-

board architecture (Van der Velde and De Kamps, 2006). A blackboard architecture is a system

of interconnected processors (or demons (Selfridge, 1985)) where they communicate with one

another through the blackboard (or workbench or bulletin board). Every processor has the

ability to performs certain operations such as executing or modifying the information stored

on the blackboard (Van der Velde and De Kamps, 2006). The Neural Blackboard consists of

network and sub-network of concepts to form conceptual representations of neural assemblies

for sentences.
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Figure 2.3: Illustration of the neural sentence structure of “The Cat chases the Mouse” in the
Neural Blackboard architecture.

The neural blackboard in Figure 2.3 shows an assembly that binds the familiar concepts in

a combinatorial structure, i.e., links concepts “Cats”, “chases” and “Mouse”. The words are

encoded with the word assemblies. Sentence structure is encoded with “structure assemblies”

for noun-phrases (NP assemblies) and verb-phrases (VP assemblies). A structure assembly

consists of a main assembly and a number of sub-assemblies, connected to the main assembly

by means of gating circuits. The labeled sub-assemblies represent the thematic roles of an agent

(a), and theme (t). Binding between assemblies is achieved with active memory circuits. Here,

the assembly for the cat is bound to the NP assembly N1, the assembly for chases is bound to

the VP assembly V1 , and the assembly for the mouse is bound to the NP assembly N1. N1

and V1 are bound by means of their agent sub-assemblies and V1 and N2 are bound by means

of their theme sub-assemblies. In linguistics, such kind of binding among the concepts provides

information about the sentences (Pinker, 2003, Calvin and Bickerton, 2001).

The Neural Blackboard also represents the words (concepts) of the sentence in their temporal

form by interconnecting the words assemblies with the sentence structure (Van Der Velde and

De Kamps, 2010, Van der Velde and De Kamps, 2006). The Neural Blackboard highlights

three aspects of neural assembly structure w.r.t communication (van der Velde, 2015). First,

the interconnections between the word assemblies are relational, not associative. Second, the

word assemblies are an integral part of the sentence structure to which they are temporarily

connected. Third, the construction of the sentence structure proceeds as a “phase sequence” of

assemblies. The network structure shown in Figure 2.3 illustrates how combinatorial structures

in higher level cognition are learned as conceptual representations, as learned by Hebbian neural

assemblies (Hebb, 1949).

Artificial Neural Networks (ANNs)

The ANNs are bio-inspired models developed to behave like the neuron and solve complex

problems computationally (Sun, 2008, Fasel, 2003). The computational units (or nodes) and

their interconnections can be compared to biological neurons and the neural network. Moreover,

the connections of units define the functions of the network. The ANNs can be viewed as a
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Figure 2.4: Different artificial neural networks.

weighted directed graph in which the nodes are artificial neurons and the edges are connections

between these neurons. Figure 2.4 shows a few artificial neural networks developed over decades,

all originated from simple perceptron based neural network (Rosenblatt, 1958, 1961, 1962).

Unlike symbolic approaches, the ANNs don’t represent concepts explicitly. At input layer, the

nodes represent the features of the data and at the output layer, the nodes depict the class of the

data. Furthermore, The concepts are implied by ANNs through the assembly of interconnected

nodes, i.e., the nodes and their weights together represent the concepts. The intermediate nodes

in a neural network are meaningless individually, although there have been efforts to determine

what do these hidden nodes mean (Yosinski et al., 2015, Mahendran and Vedaldi, 2015, Liu

et al., 2017).

Under the paradigm of supervised learning the neural networks can be classified into two broad

categories, feed-forward and recurrent, based upon their architectural orientation. The most

common form of feed-forward neural network is multilayer perceptron (MLP). In MLPs the

network is organized into three types of layers the input, hidden and output layers and has

a unidirectional connection among them (Haykin, 1994). Besides MLP, the Adaptive Linear

Neuron (ADALINE) (Widrow and Hoff, 1960), Adaptive Resonance Theory (ART) (Grossberg,

1987) and Self Organizing Feature Maps (SOFM) (Kohonen, 1982) also belong to the family of

feed-forward neural networks. The feed-forward models are static, i.e., an only single output

is obtained for an input. They are generally used as classifiers determining classes of inputs

features as concepts. The recurrent (or feedback) neural networks are dynamic systems (Sun,

2008) because of the interconnection of output nodes to input layer nodes acting as a response

loop. The Elman Networks (Cruse, 1996), Hopfield Network (Gurney, 2014) and Boltzmann

Machine (Ackley et al., 1985, Hinton et al., 1984) are a good example of a recurrent type of

networks.
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Learning is an essential part of intelligence. In ANNs learning is a process of updating the

connection weights between the nodes to carry out the tasks effectively. To understand or

design a learning process, one must first have a model of the environment in which a neural

network operates, that is, one must know what information is available to the network. We refer

to this model as a learning paradigm. There are three main learning paradigms: supervised,

unsupervised, and hybrid. In supervised learning there exist input to output pairs that can be

used for training. In unsupervised learning there are no outputs available and in hybrid there

are some input-output pairs available for training. Second, we must understand how network

weights are updated, that is, which learning rules govern the updating process. A learning

algorithm refers to a procedure in which learning rules are used for adjusting the weights.

There are two basic types of learning rules: Error-Driven, and Hebbian.

Error-Driven Learning In the supervised learning paradigm, the network is given a desired

output for each input pattern. During the learning process, the actual output y generated by

the network may not equal the desired output d. The basic principle of error-correction learning

rules is to use the error signal (d− y) to modify the connection weights to gradually reduce this

error. The Back-propagation (Goodfellow et al., 2016, Amari, 1967), Gradient Descents (Barzilai

and Borwein, 1988) and Reinforcement Learning (Van Hasselt et al., 2016, Sutton and Barto,

2018) algorithms are based on Error-correction.

Hebbian Learning The oldest learning rule is Hebb’s (Hebb, 1949) postulate of learning.

Hebbian learning is based upon the following observation from neurobiological experiments: if

two neurons on both sides of a synapse are activated synchronously and repeatedly, the synapses

strength is selectively increased. Mathematically, the Hebbian rule can be described as

wij(t+ 1) = wij(t) + ηyj(t)xi(t)

where x and y are the output values of neurons i and j, respectively, which are connected

by the synapse with weight wij , and η is the learning rate. Note that xi, is the input to the

synapse. An important property of this rule is that learning is done locally, that is, the change

in synapse weight depends only on the activities of the two neurons connected by it. Hopfield

Networks (Gurney, 2014) are an example of a particular ANN model using Hebbian Learning.

Autoencoder is another variant of ANNs learning efficient data coding in an unsupervised man-

ner (Liou et al., 2008, 2014). With autoencoders, it is possible to regenerate a feature (concept)

at the output that represents the input feature (Kingma and Welling, 2013). ANNs have been

used for concepts generation such as musical melody (Todd, 1992, Eck and Schmidhuber, 2002)

and their improvisation (Bown and Lexer, 2006, Smith and Garnett, 2012). ANNs are also

helpful in the evaluation of concepts in music (Tokui et al., 2000, Monteith et al., 2010) and im-

ages (Baluja et al., 1994, Machado et al., 2008, Norton et al., 2010). Recurrent neural networks

was also used to generate concepts such as metaphors (Terai and Nakagawa, 2009b).
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Figure 2.5: Levels of abstraction in an image. Inspired and adopted from (Bengio and etal.,
2009).

Deep Representations

Deep representations are the most recent member of connectionist computational modeling.

Deep representations are based upon the Deep-learning (LeCun et al., 2015) methods. The

Deep-learning approaches attempt to model high-level concepts (abstract features) in data using

deep architectures that are composed of multiple non-linear transformations (Bengio et al.,

2013). The human brain is organized in a deep architecture (Serre et al., 2007) with a given

input percept being represented at multiple levels of abstraction, each level corresponding to a

different area of cortex. Humans often describe such concepts in hierarchical ways, with multiple

levels of abstraction. The brain also appears to process information through multiple stages of

transformation and representation. This is particularly clear in the primate visual system (Serre

et al., 2007), with its sequence of processing stages: detection of edges, primitive shapes, and

moving up to gradually more complex visual shapes.

Deep architectures are made up of an intricate structures having multiple layers and performing

complex operations, such as in neural nets with many hidden layers (Bengio and etal., 2009).

The depth of architecture refers to the number of compositions levels of non-linear operations,

in the learned functions. Figure 2.5 exemplifies the core objective of deep architectures for

visualizing different concept (feature) at different abstraction levels. In Figure 2.5, at the basic

or lowest level of the image, each pixel can be considered as concrete concepts (features). At

the intermediate levels concepts like edges, object, shadow, ground etc., can be learned. At the

highest level features like man and posture are learned to infer the concept of man sitting (Bengio

and etal., 2009).
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The focus of Deep-learning technique is to discover multiple abstraction levels, from lowest level

features to highest level concepts. Majority of the Deep-learning techniques are supervised using

two popular approaches back-propagations (Goodfellow et al., 2016, Amari, 1967) and stochastic

gradient descent (SGD) (Zhang, 2004a). Deep convolutional neural networks (ConvNet) (Le-

Cun et al., 1990) that uses back-propagation and has achieved landmarks in image processing.

ConvNet produced exceptional results in concept (object) recognition (Vaillant et al., 1994,

Tompson et al., 2015) such as traffic sign recognition (CireşAn et al., 2012), identification of

faces (Garcia and Delakis, 2004, Osadchy et al., 2007), pedestrians (Sermanet et al., 2013) and

human bodies (Nowlan and Platt, 1994) in natural images. On the other hand, Deep Belief Net-

work (DBN) (Hinton, 2009, Hinton et al., 2006) is an unsupervised Deep-learning methodology

where several Restricted Boltzmann Machines (RBM) (Hinton, 2007) stacked over one another.

For image reconstruction operations RBM was also used to build Deep autoencoder (Hinton and

Salakhutdinov, 2006). Besides image analysis, deep representations have been used in modeling

several domains such as language translation (Jean et al., 2014, Sutskever et al., 2014) and gen-

eration (Socher et al., 2013), producing jazz melodies (Bickerman et al., 2010). Deep-learning

has also been beneficial in drug discovery (Ma et al., 2015), genomics (Leung et al., 2014) and

sentiment analysis (Bordes et al., 2014).

2.1.3 Spatial Representations

The spatial representations are perceived based upon the feature-value (or attribute-activation)

pairs of concepts. In spatial representations, concepts are viewed as a point in multi-dimensional

feature hyperspace (Tversky, 1977, Marr and Nishihara, 1978). The quality dimension (features)

of the spatial representations determines the characteristics of the features and the values (ac-

tivation) of these quality dimensions depicts the coordinates of the concepts. The distance

between n-dimensional concepts determines the similarity among them. The similarity relation

among the concepts not only plays an important role in categorizing concepts (Goldstone, 1994)

but also in modeling cognitive function such as recognition (Tulving, 1981). This review is car-

ried out to understand the importance of viewing concepts in n-dimensional feature space and

how the similarity relations are useful in concept learning and concept creation process. The

survey covers two state of the art in computational spatial representation related Conceptual

Spaces and Vector Space Models (VSM).

Conceptual Spaces

Conceptual Spaces theory (Gärdenfors, 2004) is one of the cognitive approaches that form the

basis of RANs modeling. This theory views the concepts as regions within a multi-dimensional

space, with the data features representing the dimensions. The similarity among the concepts

can be identified based upon the geometrical distance between the objects. The Conceptual

Spaces, thus, serves as a natural way or tool to capture the similarity relationships among
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Table 2.1: Notations used in Conceptual Space explanation

Notation Description

D Quality dimensions.
v Vector.
d Dimension value of vector v.
x A point in n-dimensional space.

concepts, or objects. Under this setting, one data instance corresponds to a single point in

the space. Formally we can say, the Quality Dimensions, i.e., a set of D1, .....,Dn, forms the

Conceptual Space S. A point in S is represented by a vector v= 〈d1, ....., dn〉, where {1,....n}
are the indexes of the dimensions. Atomic concepts are convex regions –a convex region C

having point x that falls between points x1 ∈ C and x2 ∈ C also belongs to C. The quality

dimension is the basic requirement for Conceptual Spaces (Gärdenfors, 2004). An example is

a color space with the dimensions Hue, Saturation, and Brightness. Each quality dimension

has a geometrical structure. For example, Hue is circular, whereas brightness and saturation

correspond with finite linear scales (see Figure 2.6).

Figure 2.6: The color space (Sivik and Taft, 1994)

The theory of Conceptual Spaces also addresses the prototype theory of categorization (Rosch,

1975, Mervis and Rosch, 1981, Rosch, 1983). The main idea of prototype theory is that within

a category of objects, like those instantiating a concept, certain members are judged to be

more representative of the group than others. For example, robins are judged to be more

representative of the category “bird” than are ravens, penguins, and emus. If convex regions of

Conceptual Spaces describes concepts, then the prototype effect is, indeed, expected, i.e., the

most likely central position of a convex region describes an abstract concept. For example, if

color concepts in a convex region identified as subsets of the color space, then the central points

of these regions would be the most prototypical examples of the color.

Clustering is a suitable way of identifying and learning atomic convex concepts in concep-

tual spaces. There are several clustering techniques, like hierarchical clustering, subspace clus-

tering (Parsons, 2004), partitioning relocation clustering, density-based clustering, grid-based

clustering and many more. Many are frequently used in the statistical and scientific analysis of
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Table 2.2: Notations used in Vector Space explanation

Notation Description

D Document vector.
t Term vector.
q Query vector.

Figure 2.7: Components of a 2-dimensional vector space.

data (Livingstone, 2009, Yoon et al., 2001), and in machine learning for the identification of con-

cepts/features (Van Deursen and Kuipers, 1999). On the other hand, the creation of a hierarchy

of sub/super-concepts is a way to represent more abstract concepts and their taxonomic-like

relations.

Vector Space Model (VSM)

A vector space model is an algebraic approach where concepts (or objects) are modeled as a

vector of identifiers. The VSMs are appropriate for computing geometric representations because

they provide a framework for similarity related calculations (Gärdenfors, 2004). The SMART

information retrieval system (Salton, 1971) is one of the approaches that used VSM to model

text documents in three steps namely document indexing, term weighing and relevance ranking.

In document indexing, the terms related to content are retrieved from the document (Salton and

McGill, 1986). Indexing of term can be done based upon their low or high frequency (Luhn, 1958,

Rijsbergen, 1979). The term weighing was performed to assign weights to the indexed term of

the document based upon the co-occurrence relation of the frequency of the index terms (Luhn,

1958). The last step of relevance ranking is carried out to rank the documents with respect to

the query according to similarity measures. Normally, the similarity is obtained as a coefficient

of the cosine of document vector and query vector (Salton, 1971, Salton and McGill, 1986),

although, similarity can also be measured using Jaccard and Dice coefficients (Salton, 1988).

D1 = a11t1 + a12t2 (2.3)

D2 = a22t1 + a21t2 (2.4)
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Figure 2.7 shows as 2-dimensional vector space for document vectors D1 and D2 that are ex-

pressed as a linear combination of term vectors t1 and t2, see Equation 2.3 and 2.4. The a11

and a12 are components of D1 along vector t1 and t2 respectively, whereas, the a22 and a21 are

components of D2 along vector t1 and t2 respectively.

Dr =
n∑
i=1

airti, (r = 1, 2, .., n) (2.5)

q =
n∑
i=1

qiti (2.6)

Dr · q =
n∑

j,i=1

airqiti · tj (2.7)

In general, the document vector can be expressed as Equation 2.5. For relevance ranking op-

eration a keyword search can be calculated by comparison of document and query vectors.

Equation 2.6 shows the expression of a query vector where the qi are the components and ti

are the terms related to the keyword being searched. The scalar product of Dr and q, see

Equation 2.7, aids in determining the similarity between the query and document vectors. Each

term ti in a document Dr has their importance and they are also known as term weights of the

document vector. Term Frequency - Inverse Document Frequency (TF-IDF) is a common weight

schema which considers a term of lesser value if it appears in several documents (Salton et al.,

1975). In large documents there are more distinct terms having a higher frequency, therefore,

the document vectors are normalized to a unit length (Salton and Buckley, 1988).

In VSM a pairwise orthogonality is assumed between the term vector and the correlation among

the terms tends to contradict this relation. However, for this issue of orthogonality, the gen-

eralized Vector Space Model (GSVM) provides a solution (Raghavan and Wong, 1986, Wong

et al., 1985, 1987). The Latent Similarity Analysis (LSA) uses the VSMs technique to measure

the similarity of words or text passages (Landauer et al., 1998). To create a new latent se-

mantic space and discover high order co-occurrences LSA utilizes singular value decomposition

(SVD) to a word-context matrix. Probabilistic Latent Semantic Analysis (PLSA) (Hofmann,

1999) is a variant of LSA that uses the statistical theory of model selection and complexity

control to determine the dimensions in the new space. LSA a have been applied to build a

space from Wikipedia in order to generate pictorial metaphors (Xiao and Blat, 2013). Besides

word-context matrix, pair-pattern matrix has also been used to calculate the semantic relations

among a word pair (Lin and Pantel, 2001, Turney and Littman, 2003). The similarity relations

determined using VSMs have been beneficial in the construction of topic vectors for conceptual

blending (Veale, 2012), finding bridging terms of two literature (Juršič et al., 2012) and gener-

ating advertising messages (Strapparava et al., 2007). Besides linguistics, VSMs methodology

was used in the generation of audio metaphors via audio features (Thorogood and Pasquier,

2013), expressing emotions in virtual humans using RGB vectors (de Melo and Gratch, 2010).
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Table 2.3: Summary of review of Conceptual Representations

Approach Representation Description Concepts repre-
sentative

Tools or Example

Bisociation Association
Bisociation (Koestler, 1964) can be seen as an
act of mixing unrelated (often conflicting) infor-
mation in an innovative manner.

Graphs
based (Dubitzky
et al., 2012)

BISOCIATION (Toi.expert,
2019)

Ontologies Semantic Re-
lations (Santos
et al., 2016)

Ontology is a study of the state of being (Dic-
tionary.com, 2015c) of concepts and their rela-
tions (Poli, 1996).

Formal,
prototype-based
and terminolog-
ical (Biemann,
2005, Sowa, 2015)

WordNet (Miller,
1998), SUMO (Pease
and Niles, 2002),
DOLCE (Gangemi
et al., 2002) and
Cyc (Lenat, 1995)

Semantic
Networks

Semantic Re-
lations (Santos
et al., 2016)

A semantic network (Berners-Lee et al., 2001,
Hendler and van Harmelen, 2008) also repre-
sents concepts and their semantic relations sym-
bolically.

Graph and RDF
triples (Lassila
and Swick, 1999,
Brickley, 2004,
McGuinness and
van Harmelen,
2004, Beckett
et al., 2014)

ConceptNet (Liu and
Singh, 2004)

Neural
Blackboard

Connectionist The Neural Blackboard consists of network and
sub-network of concepts to form conceptual
representations of neural assemblies for sen-
tences (Van der Velde and De Kamps, 2006).

Blackboard archi-
tecture (Van der
Velde and
De Kamps,
2006)

Neural Black-
board (Van der Velde
and De Kamps, 2006)

Artificial
Neural
Networks
(ANNs)

Connectionist The ANNs are bio-inspired models developed to
behave like the neuron and solve complex prob-
lems computationally (Sun, 2008, Fasel, 2003)

Weighted di-
rected graph

MLP (Rosenblatt,
1958, 1961, 1962),
ADALINE (Widrow
and Hoff, 1960),
ART (Grossberg,
1987), SOFM (Koho-
nen, 1982), Boltzmann
Machine (Ackley et al.,
1985, Hinton et al.,
1984)

Deep learn-
ing

Connectionist The Deep-learning approaches attempts to
model high-level concepts (abstract features) in
data using deep architectures that are composed
of multiple non-linear transformations (Bengio
et al., 2013)

Weighted di-
rected graphs

ConvNet (LeCun et al.,
1990, Vaillant et al.,
1994, Tompson et al.,
2015), DBN (Hinton,
2009, Hinton et al.,
2006), Deep autoen-
coder (Hinton and
Salakhutdinov, 2006)

Conceptual
Spaces

Spatial Conceptual Spaces theory (Gärdenfors, 2004)
theory views the concepts as regions within a
multi-dimensional space and captures the simi-
larity relationships among concepts.

Vector of Feature
& Value pairs

An example is a color
space with the dimen-
sions Hue, Saturation
and Brightness (see Fig-
ure 2.6)

Vector
Space
Model
(VSM)

Spatial A vector space model is an algebraic approach
where concepts (or objects) are modeled as a
vector of identifiers. The VSMs are appro-
priate for computing geometric representations
and similarity related calculations (Gärdenfors,
2004)

Feature vectors SMART (Salton, 1971),
GSVM (Raghavan and
Wong, 1986, Wong
et al., 1985, 1987),
LSA (Landauer et al.,
1998), PLSA (Hof-
mann, 1999)
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2.2 Abstract Concept Modeling

Abstract concepts are of immense value in our lives, they enable us in attaining abilities such

as relative comprehension and effective decision making (Binder, 2016). abstract concepts are

complex when compared with concrete concepts, therefore, they are puzzling and difficult to

understand (Schwanenflugel, 1991). This section surveys the research and development work in

conceptual and computational domains related to modeling of abstract concepts.

2.2.1 Conceptual Approaches

Investigations related to concepts is an essential domain in cognitive and psychological research.

Theoretically, concepts pertain to process-oriented, symbolic or distributed, and knowledge-

based conceptual representations (Kiefer and Pulvermüller, 2012). Usually, these conceptual

representations are actualized via mathematical, theoretical (conceptual), or computational

cognitive modeling approaches (Bechtel et al., 1998). In general, concepts are a hierarchy, where,

at a higher level abstract concepts are placed, and concrete concepts are situated at, relatively,

lower levels, thus, it is evident to infer the abstract concepts as the congregation of concrete

concepts (Rosch et al., 1976, Tversky and Hemenway, 1984). There have been efforts to study

abstract concepts mathematically (Saitta and Zucker, 1998), and theoretically (Borghi et al.,

2018, 2017). In medical science, there have been significant efforts to study abstract concepts

with the help of technology. One such example is MRI1, which is being used to inspect the

sections of the brain involved in abstract concept identification (Binder et al., 2005). Research

in psychology has also reported investigations over abstract concepts, like probing the role of

emotional content in processing and representing abstract concepts (Kousta et al., 2011).

There has been a notable contribution from cognitive, and psycholinguists in studying languages

through abstract concept modeling and representations. Internally representing abstract con-

cepts via amodal symbols like a feature list, and frames (Barsalou and Wiemer-Hastings, 2005)

is among the preliminary research work in linguistics. The association and context were also

established, relating abstract and concrete words (Barsalou and Wiemer-Hastings, 2005). Some

research reveals that we internally recognize metaphors as abstract concepts (Gibbs Jr, 1996).

An interesting work uses Distributional semantic models to study the role of linguistic and ef-

fective information while representing abstract words (Lenci et al., 2018). Moreover, abstract

words might just be an indirect byproduct of co-occurrence statistics of words, which is con-

sistent with a version of representational pluralism of abstract concepts or words (Dove, 2009,

2014). Embodied multiple representation views (Scorolli et al., 2011) (the second view of repre-

sentational pluralism) of concepts states that the difference between the concrete and abstract

words relies on their relative importance of exemplified and linguistic information. The Lan-

guage and Situated Simulation (LASS) theory (Barsalou et al., 2008) and the Word as social

1Magnetic Resonance Imaging
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tools (WAT) theory (Borghi and Binkofski, 2014) proposes a similar view of embodied multiple

representations of concrete and abstract concepts.

2.2.2 Computational Approaches

As mentioned earlier, abstract concepts are complex and hence are difficult to understand when

compared with concrete concepts. Therefore, in computational modeling realm, the concrete

concepts and their representations are mainly addressed as feature recognizer (Ji et al., 2013,

Ripley, 2007, LeCun et al., 2015, Anderson, 1996) and the notion of abstract concepts is mostly

debated (Kiefer and Pulvermüller, 2012). However, in the field of computational linguistics,

some approaches attempted to model abstract concepts in languages. Since, language is also

being processed, understood, and comprehended by software through Natural Language Pro-

cessing (NLP), and attempts are made to build architectures to study abstract representations

of spoken language (Hill and Korhonen, 2014). Semantic similarity of nouns with the abstract

concept was also investigated using semantic networks and network-based Distributed Seman-

tic Model (Iosif et al., 2013, Iosif, 2013b). An interesting NLP research used Self-organizing

Maps (SOM) to automatically extract word taxonomy from corpora (Kanzaki et al., 2004),

and by constructing hierarchy by extracting semantic relation between the abstract nouns and

adjectives.

Metaphors are internally recognized as abstract concepts (Gibbs Jr, 1996) and there have been

efforts in NLP to study and represent metaphors in a text (Shutova, 2010). One interest-

ing research reported the generation of metaphors computationally using recurrent neural net-

works (Terai and Nakagawa, 2009a) based on statistical language analysis (Kameya and Sato,

2005). In that research the metaphor generation takes place in two stages; First, knowledge

structures are estimated as the latent classes of nouns and adjectives (or verbs) using a statistical

language analysis. Second, the model of metaphor generation is constructed using a recurrent

neural network based on the results of the statistical language analysis. Further, upon providing

input sets of expressions consisting of a feature and a target to the model, the model produces

the outputs which represent the input expression in the form of “A (target) like B (vehicle)”.

Meta4meaning (Xiao et al., 2016) is a metaphor interpretation method that derives word as-

sociations, by applying co-occurrence counts of words from a large text corpus and obtaining

a concept’s properties and their salience. A computational modeling approach used Latent Se-

mantic Analysis (LSA) knowledge source for nominal metaphor interpretation (Kintsch, 2000).

Text classification using maximum entropy (Nigam et al., 1999) is also used discriminate between

literal and metamorphic use of lexical items (Gedigian et al., 2006).

Besides linguistics, attempts are made to study abstract concepts as generic or abstract fea-

tures, such as automatic beat classification on ECG signals (Teijeiro et al., 2018) where a set

of signals are obtained using QRS clustering (Castro et al., 2015) as abstract features. A
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computational modeling approach is applied to identify abstract concepts as abstract features

while processing images via deeply stacked autoencoder (Le, 2013), which is a variation of

stacked autoencoder (Bengio and etal., 2009). Fuzzy C-means (Bezdek, 2013, Dunn, 1973) al-

gorithm was used in a work to extract generic features for knowledge discovery and data mining

process (Srinivasa et al., 2005). A research studied two main feature-selection measures the

CFS measure (Hall, 1999) and the mRMR measure (Peng et al., 2005) and fused them into a

generic-feature-selection (GeFS) measure (Nguyen et al., 2010). PCA-derived feature vectors of

NORB (Huang and LeCun, 2004) dataset was also used to determine the five abstract features

(four-legged animals, human figures, airplanes, trucks, and cars) in NORB data. K Nearest

Neighbor (K-NN) and Support Vector Machine (SVM) algorithms were used to perform the

classification tasks to identify the abstract features.

2.3 Architectural Orientation of Computational Models

Majority of the computational modeling approaches either have a pre-defined topology (i.e.,

number of nodes, weight connections etc.) or are symbolic, distributed or spatial representa-

tions. However, the biological neural system does not have a static configuration of neurons

and synapses (Kappel et al., 2015, Holtmaat et al., 2005, Chambers and Rumpel, 2017), and

uses symbolic and distributed representations conjointly (Roy, 2011). This section surveys the

computational approaches based upon their architectural characteristics such as networks with

dynamic properties and evolving structures, and models that are hybrid.

2.3.1 Dynamic and Evolving Topologies

Architectural variation is mainly related to connectionist computational approaches because

their systems are learned as a distributed network of nodes that are connected by weights. As

aforestated, a large population of computational techniques preforms modeling with a fixed

structure and configurations. However, efforts have been made to develop methodologies evolve

while learning and in this part, such methodologies are reviewed.

NeuroEvolution of Augmenting Topologies (NEAT) is a method of evolving the structure and

weights of a neural network using genetically encoding technique (Stanley and Miikkulainen,

2002). NEAT was developed to circumvent the problem of competing conventions (Schaffer

et al., 1992) also known as the problem of permutations (Radcliffe, 1993) in evolutionary com-

putation. NEAT produces a complex network evolving from a simpler version of the neural

network by allowing meaningful crossovers between the individuals having the distinct genetic

characteristic. NEAT commences with a minimal population of genotype representing a sim-

ple neural network. All the genes having similar origins form the population of alike functions.
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Figure 2.8: Structural mutation of in NEAT, inspired by (Stanley and Miikkulainen, 2002).

Every newly created gene is provided a marker (innovation number) that determines the chrono-

logical order of the created genes from its evolutionary population. The innovation number helps

in finding genes having different lengths, counter competing for convention crossovers and create

a sub-population genetic similar genes.

Figure 2.8 shows two types of structural mutation in NEAT. The network begins with three

Node-Genes and two Connection-Genes. Creation of a new Node-Gene (i.e., hidden Node-4 ) is

the first type of mutation, and the creation of new Connection-Gene (i.e., connection weights

are shown with orange color in Figure 2.8) is the second type of mutation. As we can see in

Figure 2.8, the selective reproductions take place between the individuals (Nodes) of the same

subpopulation, i.e., Node-1 and Node-2 has marker number 2 and reproduces Node-4. This is

how the genetic operators modify the genotypes by introducing the new genes and evolve the

topology. If the evolved structure is beneficial it is retained and utilized further to augment the

network. NEAT has been used in automobile crash warning system (Stanley et al., 2005b), pole

balancing (Stanley and Miikkulainen, 2002), computer games (Stanley et al., 2005a, Reisinger

et al., 2007) and robot control (Stanley and Miikkulainen, 2004).

A Model of Phenotypic Plasticity for Developing Neural Networks used a growing encoding

mechanism to evolve the structure and weights of a neural network (Nolfi et al., 1994) and control

a mobile robot (individual) operations. In the experiment, the brain (controller) of the individual

consists of 32 neurons forming a genotype. Each neuron had a few properties (expression

threshold, physical position, branching angle, weight, bias and neuron type) that manipulated

while performing the model development operations. The left-most part of Figure 2.9 shows

the neural network arrangements when the robot started exploring the space and growing the

axons to other neurons. The middle part of Figure 2.9 depicts the network when the axon

reaches a neuron. The functional part of the same network is shown by the right-most part

of the Figure 2.9. While evolving the organism, its fitness is increased if it reaches the target
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Figure 2.9: Neural network development while evolving an organism (robot). The left side of
the figure shows the arbitrary growing and branching of axons. The middle part of the figure
shows the network after removing the unconnected branches (weights). The right part depicts

the functional network. The Figure is inspired by (Nolfi et al., 1994)

area, although the fitness is inversely proportional to the number of steps involved to reach the

target.

Cellular encoding (cellular encoding and differentiation process) was also used to genetically en-

code neural networks (Gruau, 1994b). Here an entire neural network is evolved from a genotype-

phenotype mapping of a single cell. In this approach also the genotype is the collection of cells

that govern the cell division and transformation process, i.e. the creation of nodes and their

connection weights. This technique was applied in the pole balancing problem (Gruau et al.,

1996) and controlling robots (Gruau, 1994a). Cascaded-correlation neural networks (Fahlman

and Lebiere, 1990) is another kind of evolving supervised neural network where the network is

initialized with input and output layer and the nodes in the hidden nodes are added dynami-

cally while learning the network. An interesting undergraduate work (Ringdahl, 2020) tried to

improve the performance of the cascaded-correlation neural networks by reducing the depth of

the networks and decrease in the over fitting of large networks.

Markov Brain (MB) (Edlund et al., 2011, Gruau, 1994a) is another variant of neural networks

with an evolving topology. Figure 2.10 shows the components of the controller making up a

Markov Brain. The controller is a type of stochastic Markov network (Koller et al., 2009) where

the edges of the networks are formed by simple logic gates or complex computational units.

Like ANNs the number of nodes (sensors) and connections (gates) in MB are fixed. However,

the feedback mechanism is carried out by the evolved controller that is generated internally as

part of MB.

The information stored in the hidden nodes of the MB resembles a working memory or short

term memory because they have to be actively maintained to store information. One can view

Markov Brain as an ANN that has a dynamic structure using a boolean logic function. The

links, feedback operation, and control mechanisms evolve with time in MB. MBs have been

used in decision-making processes (Kvam et al., 2015, Kvam and Hintze, 2018), studying the
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Figure 2.10: Components of Markov Brain with feedback gates. Inspired by (Hintze et al.,
2017).

behavior of animals (Olson et al., 2013) and performing machine learning prediction (Chapman

et al., 2017) and recognition (Olague et al., 2014) tasks.

2.3.2 Hybrid Computational Architectures

Computational architectures (or computational cognitive architectures) are an important part

of Artificial General Intelligence (AGI) that aims in modeling human minds and intelligence and

apply it to solve real-world problems. In Section 2.1 the symbolic and connectionist representa-

tions are explored, and this part reviews the architectures that are hybrid, i.e., they incorporate

both symbolic and connectionist representations.

Adaptive Components of Thought-Rational (ACT-R) (Anderson et al., 1997, Anderson and

Lebiere, 2003) is a hybrid computational architecture to simulate human cognitive functions

and understand the intrinsic mechanisms such as perception, thinking and action. The memory

modules, buffers, pattern matchers and perceptual-motors are the main components of ACT-R.

There are two memory modules in ACT-R (declarative and procedural memories) realized by

both symbolic and connectionist representations. The buffers serve as a volatile memory for

inter-module interactions. The pattern matchers perform the comparison between the contents

of procedural memory and current buffer state. The perceptual-motor acts an input and output

to ACT-R architecture. In ACT-R symbolic constructs (i.e., production of the chunk) are

created for each complex operations. When a task is received at input the connectionist processes

determine a single rule to map the input to the chunk that handled a similar task. In ACT-R

declarative, procedural (Corbett and Bhatnagar, 1997), and associative (Borst and Anderson,

2015) learning are performed. The human-like reasoning behavior is carried out in ACT-R

through inherent knowledge and production rules (Nyamsuren and Taatgen, 2014). Besides,

ACT-R has been used in modeling memory (Anderson et al., 1998), NLP (Lewis and Vasishth,

2005), games (Sanner et al., 2000) and psychological experiments (Anderson and Douglass,

2001).
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The Connectionist Learning Adaptive Rule Induction On-line (CLARION) is a cognitive ar-

chitecture that has been developed to simulate and understand processes related to cognitive

psychology (such as attention, language use, memory, perception, problem solving, creativ-

ity, and thinking) and social psychology (Sun and Peterson, 1996). CLARION has a separate

symbolic (explicit) and connectionist (implicit) processes and the hybrid nature of the system

captures the interactions among the two processes (Sun and Alexandre, 2013, Sun and Zhang,

2004, Sun et al., 2001). CLARION has four modules of memory where each module is made

up of a symbolic-connectionist pair of representations. The memory module action-centered

subsystem processes the regulation of the agent’s actions, whereas, the non-action-centered

subsystem module maintains the generic system of knowledge. The motivational subsystem

module provides a function to perform operations such as action, cognition and perception.

The memory module metacognitive subsystem acts as manager to monitor the functioning of

the other three modules. The learning in CLARION is declarative when chunking knowledge in

declarative memory (Sun et al., 1999) and procedural through inductive inference of explicit rule

extraction (Sun et al., 2011). Associative learning is performed using reinforcement methods

such as Q-learning (Sun et al., 2001) or supervised methods like back-propagation (Sun, 2006).

CLARION have been used to investigate psychological phenomena related to problem-solving

and skill learning (Sun and Zhang, 2004) and reasoning (Hélie and Sun, 2014)

The Learning Intelligent Distribution Agent (LIDA) is a hybrid cognitive architecture (Franklin

et al., 2014) inspired by IDA (Franklin et al., 1998) system that was designed to automate the

human resource personnel called detailers (Franklin and McCauley, 2003). LIDA architecture

is capable of modeling a large number of cognitive functions such as perception, memory, ac-

tion selection, metacognition, and conscious type behavior (Franklin and Patterson Jr, 2006).

In LIDA architecture the operations take place in three phases; first input phase where the

system receives information; second, the attention phase where the information is consciously

addressed; third, the action phase where the appropriate response is selected to respond to

input stimuli, in this phase learning also takes place. LIDA consists of seven memory modules

sensory, sensory motor, perceptual associative, spatial, transient episodic, declarative and pro-

cedural memory (Franklin et al., 2014). LIDA has six learning mechanisms, i.e., sensory motor,

perceptual, spatial, episodic, procedural and attentional types of learning (Franklin et al., 2014).

LIDA has been used to realize many cognitive and neuro-psychological theories such as percep-

tual symbol system (Franklin and Patterson Jr, 2006) and Global Workspace Theory (Franklin

et al., 2007).

Besides the aforementioned architectures, The DUAL (Kokinov, 1994), Polyscheme (Trafton

et al., 2005, Cassimatis et al., 2004, Cassimatis, 2001), SOAR (Laird, 2012), Novamente (Go-

ertzel et al., 2008), Copycat/Metacat (Hofstadter, 1984, Marshall, 2006) are a few popular hybrid

cognitive architectures. All these computational architectures present a kind of blueprint for

general intelligence, or try to represent several mental or cognitive functions in order to study
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intelligent behavior (Kotseruba and Tsotsos, 2018). All these architecture are hybrid in the

sense that they consist of models of agents that are either connectionist or symbolic in nature.

2.4 Machine Learning for Concept Identification

Whenever there is a requirement of identifying groups (of objects, features etc.) based upon

the similarity of the elements, we make use of clustering techniques to fulfill the requirements.

There exist several clustering techniques, like hierarchical clustering, partitioning relocation

clustering, density-based clustering, grid-based clustering and so on, many are frequently used

in statistical analysis of data (Yoon et al., 2001). Besides, clustering also finds a significant

place in scientific data analysis (Livingstone, 2009), knowledge and information retrieval from

databases and big data, analysis of WWW, in biological data analysis, in medical diagnosis etc.

Clustering plays a vital role in reducing dimensions (Kaski, 1998) (the curse of dimensionality)

of data, though, it introduces sought of loss in the data but reduces the complexity of the

data significantly. In this thesis clustering plays an important role because in machine learning

clustering aids in identifying the concepts (features or data-points) (Van Deursen and Kuipers,

1999). This chapter surveys three clustering techniques in order to understand their usability

as concept identifiers for RANs modeling.

2.4.1 Hierarchical Clustering

The Hierarchical clustering, as the name depicts, is a cluster analytics approach where a hierar-

chy of clusters are build to perform the clustering operations. There are two broad approaches

in Hierarchical clustering, i.e., Top-down, and bottom-up. In this section, both type of clus-

tering is surveyed for concept identification. Agglomerative clustering is one of the hierarchical

cluster analysis technique (HierarchicalClusteringWiki, 2015). It uses a bottom-up approach

to construct the hierarchy, here, at the lowest level each node represents a cluster of its own,

for each new layer these nodes group together pair-wise to form a new node. The grouping

operation stops when a single node is left representing the highest level. To decide upon which

nodes (or clusters) should be combined, a measure of dissimilarity (usually Euclidean distance)

is applied, and a linkage criterion (like Centroid link, average link, single link, complete link

(Olson, 1995, Murtagh, 1984)) is used to determine the pair-wise linkage between two set of

observations. The Figure 2.11 shows a dendrogram of a sentence “HOW ARE YOU” at the

basic level each letter is a cluster itself and at each level above the pairs are formed either by

the pair of the two words, or by the pair of word and linkage of another pair of word, or between

the pair of linkage of letters. At the highest level, the whole sentence is represented by a cluster.

The example depicted by Figure 2.11 can be seen as a hierarchical representation of concepts

(or features), where the at the lowest level features are the alphabets, and the above level
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represents the abstract representation of the lower level concepts (or features), the top-most

level represents the most abstract form of the concept (or feature). The agglomerative clus-

tering is widely used with spatial data to detect features, a system to recognize faces (Barbu,

2013) uses the technique for detecting faces via Scale-invariant feature transformation (SIFT)

characteristics and agglomerative clustering. An algorithm named CURE (Cluster Using REp-

resentatives) (Guha et al., 1998) is compatible with numeric feature values of low dimension

spatial data. This agglomeration algorithms has distinctive features like the novelty in deal-

ing with outliers through a separate label assignment stage. The linkage among the cluster

pair is established using the centroids of the clusters. ROCK (Robust Clustering Algorithm

for Categorical Data) proposed by (Guha et al., 1999) was capable of working with categorical

data. The hierarchical agglomerative clustering approach named CHAMELEON was proposed

by (Karypis et al., 1999b). It consists of two phases: in the first, small clusters of closely related

nodes (concepts or features) are formed; in the second, phase the agglomerative clustering takes

place. The dynamism in the model is brought-up by using the relative inter-connectivity and

closeness of the centers of the clusters. The level of hierarchy is to be provided by the user

as threshold. Agglomerative clustering not only helps in feature detection for spatial data but

also can be used to identify temporal patterns (sequences). A temporal model (Karypis et al.,

1999a) for learning and recognition uses agglomerative clustering along with Hidden Markov

Models (HMMs) (George, 2008) to detect sequences. Agglomerative clustering in an essence is

a prominent tool of machine learning and is very useful in achieving objectives like knowledge

discovery, feature recognition (or detection), classification (or categorization), concept learning

and so on.

Similar to agglomerative clustering (bottom-up approach) there exists a top-down clustering

approach named Divisive Clustering (HierarchicalClusteringWiki, 2015). In this clustering tech-

nique, the process starts with a set of data, then the data is split to form clusters representing

specific (or concrete) features (or data), this process continues until a stopping criterion. Top-

down clustering is conceptually more complex than bottom-up clustering since we need a second,

flat clustering algorithm as a “subroutine”. It has the advantage of being more efficient if we do

not generate a complete hierarchy all the way down to individual document leaves. For a fixed

number of top levels, using an efficient flat algorithm like K-means, top-down algorithms are

linear in the number of documents and clusters. So they run much faster than HAC algorithms,

which are at least quadratic.

There are evidences that divisive algorithms produce more accurate hierarchies than bottom-

up algorithms in some circumstances (HMMWiki, 2015). Bottom-up methods make clustering

decisions based on local patterns without initially taking into account global distribution. These

early decisions cannot be undone. Top-down clustering benefits from complete information

about global distribution when making top-level partitioning decisions.
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Figure 2.11: Dendrogram showing bottom-up Agglomerative clustering

2.4.2 K-means Clustering

Suppose there are n data points xi, i=1...n that have to be partitioned in k clusters. The goal

is to assign a cluster to each data point. K-means is a clustering method that aims to define k

centroids of k cluster that minimizes the distance of centroids and data points of every cluster.

K-means clustering solves:

arg mincΣ
k
i=1Σx∈ci d(x, µi) = arg mincΣ

k
i=1Σx∈ci ‖ x− µi ‖2

2

where ci is the set of points that belong to cluster i, k is number of clusters, and µ is the cluster

mean. The K-means clustering uses the square of the Euclidean distance d(x, µi) =‖ x− µi ‖22
This problem is not trivial, so the K-means algorithm only tends to find the global minimum,

with a possibility of getting stuck into local optimum.

The K-mean (Hartigan and Wong, 1979) algorithm (also known as Lloyd’s algorithm (Lloyd,

1982)) partitions the data into k mutually exclusive clusters. K-means treats each observation

in the data as a feature (or object) having a location in space. It intends to find a partition in

which feature within each cluster such that they are closest to other feature in the same cluster

and far from the objects from other clusters. Further K-means determine the centroid of each

cluster and uses an iterative procedure to minimize the sum of distances between each object

with its cluster. The centroids can also be identified using Forgy’s algorithm (Forgy, 1965), in

this, initially all the points are assigned to nearest centroid then re-compute the centroid for the

newly formed cluster. Figure 2.12 shows K-means cluster convergence (RbloggersKmeansplots,

2015) for an iris data set, it also shows the centroids. Though K-means is an efficient approach

there is a drawback to this approach, the count of clusters is to be provided as input to the

algorithm, this may produce inappropriate results with a wrong assumption for the cluster

count, several approaches (Bardley and U, 1998, Babu and Murty, 1993, Chiu et al., 2001)

suggest some measures that help to make proper assumptions for the cluster counts.
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K-means algorithm work with numerical data (Jain and Dubes, 1988) as it minimizes the cost

function of the means of the clusters. This limits the usage of the K-means algorithm for

categorical values, but an approach (Ralambondrainy, 1995) used binary values to depict the

presence of category with K-means, apart from this HUANG (Huang, 1998a) proposed an

algorithm using K-means paradigm to cluster categorical data. Usually k-means algorithm is

used to cluster real-valued data and not considered suitable for binary data as they consider

distance as a metric to form clusters. A technique to cluster binary data streams with K-means

is proposed in (Ordonez, 2003) where: first, a sparse distance computation takes place by pre-

computing the distance of the null transaction (i.e., zero’s on all dimensions) with the centroids;

and afterward the computed distance is used to identify the clusters.

K-means algorithm is not only easy to implement but also can be applied to large data sets.

It finds its application in market analysis, geostatistics, signal processing, computer vision,

etc. Apart from this, it is very helpful in performing machine leaning task such as feature (or

concept) learning (Coates and Ng, 2012) and entity recognition (Lin and Wu, 2009). In case

of object identification K-means is found competent to other feature learning techniques like

Restricted Boltzmann Machines.

A variation of K-means algorithm is K-mode (Huang, 1997) and K-prototype (Huang, 1998b)

algorithm. K-mode extends K-mean in essence that it aims to cluster categorical data. It uses

modes instead of mean and frequency-based approach to updating modes. K-prototype is an

integration of K-means and K-mode in an attempt to cluster data based upon both numeric

and categorical values. A similar approach in clustering related to K-means is the K-medoids

algorithm. Both K-means and K-medoids attempts to minimize the distance between cluster

members (points or features) and the centroid. K-medoids differs from k-mean because K-

medoids chooses data-points as centers (medoids or exemplars) and works with an arbitrary

matrix of distances between data-points. It is more robust to noise and outliers as compared to

K-means because it minimizes a sum of pairwise dissimilarities instead of a sum of squared Eu-

clidean distances. Mainly used variation of K-mediods are PAM (Partitioning Around Mediods)

and CLARA (Clustring LARge Applications) (Kaufman and Rousseeuw, 1990). PAM operates

iteratively to optimize the mediods as a combination of the relocation of points between the

perspective clusters. CLARA is a combination of a sampling procedure and PAM.

2.4.3 Fuzzy Clustering

Several clustering techniques have been introduced until now, a few have been discussed in the

previous sections, and these techniques can be broadly classified into two categories i.e. soft

(or fuzzy) and hard (or crisp). Hard Clustering techniques mostly correspond to classical set

theory satisfying the property of disjoint sets, i.e. the clusters should be a mutually exclusive

set, satisfying the property A ∩ B = ∅, (A & B are some arbitrary sets). Fuzzy clustering
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Figure 2.12: K-means convergence (KmeanClusterImage, 2015)

techniques are based upon fuzzy set theory (Zadeh, 1965) and make use of fuzzy set proper-

ties (Mitsuishi et al., 2001) allowing an element (of the set) to have a membership of different

clusters. This technique is very suitable for real-world applications because the outliers and the

boundary elements of a cluster can attain membership of more than one clusters. The fuzzy

clustering requires a fuzzy type partitioning mechanism to form clusters. The fuzzy partitioning

space for a data set is:

Mfc= { U ∈ IRc×N | µik ∈ [0, 1],∀k; Σc
i=1µik = 1,∀k; 0 < ΣN

k=1µik < N,∀i}

U is the partition matrix, c is number of clusters (assumed, c to be known in advance), µ

is the membership function that decides the existence of each node (feature or element), N is

set of observations, i⇒ 1 ≤ i ≤ c; and k ⇒ 1 ≤ k ≤ N . For example, consider the Figure 2.13

showing six points x1.....x6 and data set z1={1.0, 1.0, 1.0, 0.5, 1.0, 1.0} and z2={1.0, 1.0, 1.0,

0.5, 1.0, 1.0}, the data point x4 has membership in both the clusters with the value 0.5. The

work proposed in (Bellman et al., 1966, Ruspini, 1969) introduced the application of fuzzy sets

in performing classification and cluster analysis. Fuzzy clustering can be based upon fuzzy

relations as well as fuzzy objective functions (Yang, 1993).

Fuzzy clustering is very helpful extracting features and representing patterns (Mernberger et al.,

2011), apart from this, the inclusion of fuzzy partition or membership functions of the elements

(feature or concepts) makes the machine learning techniques to deal with ambiguity in choosing
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elements while forming clusters. The most popular algorithm for fuzzy clustering is Fuzzy c-

means (Bezdek, 2013, Dunn, 1973) algorithm. It has been successfully applied in the field

of pattern analysis (Pham et al., 1997, Bezdek et al., 1992) and analyzing geographic-specific

data (Rignot et al., 1992, Chumsamrong et al., 2000). The main objective of fuzzy c-mean is to

minimize the objective function:

Jm(Z;U, V ) = Σc
i=1ΣN

k=1µ
m
ik ‖ zi − vk ‖2

A

where

U = [µik ∈] Mfc

is a fuzzy partition matrix of Z,

V= [v1, v2, ......, vc], vi ∈ IRn

is a vector of cluster prototypes(centers), which have to be determined,

D2
ikA = ‖ zk − vi ‖2

A=(zk − vi)TA(zk − vi)

is a squared inner-product distance norm (A is a norm-inducing matrix), and

1 ≤ m ≤ ∞ is a parameter which determines the fuzziness of the resulting clusters.

The fuzzy c-means algorithm minimizes the previously mentioned objective function making

use of a Lagrange multiplier, and obtain the updated membership µ for the elements and their

mean using a fuzzy c-mean algorithm (Bezdek, 2013, Yang, 1993, Dunn, 1973). To use the fuzzy

c-means algorithm, a few parameters must be taken care of, like specifying number of clusters

initially, the fuzziness exponent, initialization of fuzzy partition matrix, termination criterion,

and a norm-inducing matrix for distance calculation. Fuzzy c-means algorithm has been applied

to cluster objects based upon the biased-observations of the observer (Fazendeiro and Valente de

Oliveira, 2015) to deduce meaningful clusters. A clustering architecture (Pedrycz, 2002) also

makes use of fuzzy c-means algorithm as inspiration to find common structures, for a given

subset of patterns. A fuzzy clustering algorithm named DifFUZZY (Cominetti et al., 2010) is

an efficient clustering algorithm to handle larger datasets that are curved, elongated or clusters

having different dispersion, this technique utilizes the technique diffusion process in graphs.
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Figure 2.13: Fuzzy partitioning of data



Chapter 3

Convex Abstract Concept Modeling

with Regulated Activation Networks

This chapter describes the RAN’s convex concept modeling technique and is based upon the
following International Conferences and Technical report, and part of under review Journal
article. Following is the list of articles and the Technical reports:

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Exploring Geometric Feature

Hyper-Space in Data to Learn Representations of Abstract Concepts. Applied Sciences, 2020. (Sharma et al., 2020a)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Modeling Abstract Concepts

For Internet of Everything: A Cognitive Artificial System. 13th APCA International Conference on Control and

Soft Computing (CONTROLO), Azores, Portugal, June 2018. (Sharma et al., 2018b)

� Rahul Sharma, Alexandre Miguel Pinto, Vivek Kumar Singh. Energy and Resource Usage-Aware Building Via

Cognitive Internet of Things Agents. 3rd Energy For Sustainability (EFS) Conference Madeira, Portugal, 2017.

(Sharma et al., 2017a)

� Rahul Sharma, B. Ribeiro, Alexandre Miguel Pinto, and A. F. Cardoso, Computational concept modeling for student

centric lifestyle analysis: A technical report on socialite case study, (Sharma et al., 2017b)

� Alexandre Miguel Pinto, Rahul Sharma, Regulated Activation Network, deliverable D2.4 Project Concept Creation

Technology (ConCreTe), Small or Medium-Scale Research Project ICT- Future and Emerging Technology (FET)

http://conceptcreationtechnology.eu/?q=node/43. Technical Report, 2016.
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Table 3.1: Notations

Notation Description

W Inter-Layer weight matrix.
A Output Activation vector.
a Input Activation vector.
n Size of a vector.
na Number of elements in input vector at Layer l.
nA Number of elements in output vector at Layer l + 1.
l l’th Layer representative.
d Normalized Euclidean distance
C Cluster center or Centroids.
i, j, k Variables to represent node index for input-level, abstract-level, and

arbitrary node index in either of the levels, respectively.
t Iterator variable.
f(x) Transfer function to obtain similarity relation.
D-n nth dimension value of an input data instance.
H-n nth dimension value of an input data header vector.
N Abstract node label.
S Input node label.

3.1 Assumptions, Limitations and Data Pre-Processing

The boundary related to input data is, data value should be between “0” and “1” (both inclu-

sive), this limitation has its inspiration from biological neurons. A value “0” indicates neuron

(or node) is inactive, whereas “1” shows the neuron is highly active. The model is, by design,

applicable only to multidimensional data sets where each feature takes a real value between 0

and 1 – it works as well for discrete data sets where the variables take either 0 or 1. If the user

data is in a different format, the user must define the transformation and inverse transforma-

tion of the data. The following are a few possibilities of such alterations for some of the most

common kinds of data:

� If a variable in the input data is categorical, e.g., blue; green; red, transform the data

using One Hot Coding technique. For example, transform blue into (1 0 0), green into (0

1 0), and red into (0 0 1);

� If a variable in the input data is numerical, bounded within a minimum and a maximum

value it can be normalized into [0, 1], e.g., via value−min
max−min ;

The user must implement these transformations and their inverse transformation functions to

interpret the results obtained from RAN’s model. Since RANs modeling technique is designed

to work with multivariate datasets, where each data value is a point in Conceptual Space, it is

assumed that the data, being used, is compatible with the requirements. Though images are a

form of multivariate data, pictures are not ideal candidates to be interpreted as points in concep-

tual spaces, (discussed in Section 2.1.3). For this reason, RANs modeling will, most probably,
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Table 3.2: Input Data Format for implemented RANs Modeling

Header H-1 H-2 .............. H-n

D-1 D-2 .............. D-n
D-1 D-2 ............... D-n

D
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ta

In
st
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n

c
e
s

.

.

.

.

.

.

..............
...............
...............

.

.

.
D-1 D-2 .............. D-n

underperform on image processing tasks against other models that are, individually, designed

for this kind of data, such as deep representations built with Convolutional Networks (Eigen

et al., 2014, Kavukcuoglu et al., 2010, Sermanet et al., 2014); RANs modeling technique is

preferably suitable for understanding and simulating cognitive processes like abstract concept

Identification.

The implemented RANs modeling tool in python takes input data in a specific format (shown

in Table 3.2). Besides the n-dimensional sample data (D-1, D-2, ...., D-n), the inputs require

a header as the first row stacked over the original data. Each header element, [H − 1, H − 2,

......., H−n], is the Maximum value possible for their respective column (feature, or dimension).

The objective of adding a header is to use it in normalizing the data between 0 and 1 while

preprocessing. It is assumed that the minimum value of the column is zero, if it is not the data

must be transformed between zero and the maximum positive.

3.2 Introduction

The term concept itself has a lot to say about itself. Anything can be seen as a concept,

whether it is a living being, or a thing, or an idea. The appellation concept automatically

coins the need to understand their representations. There are several conceptual representation

theories (Kiefer and Pulvermüller, 2012) like modality-specific, localist-distributed, experience-

dependent (Xiao et al., 2019). Such representations not only enable us to understand the various

cognitive processes in humans but also the psychological ones, like creativity. Each theory has

a way to represent concrete concepts through perception, action, emotion, and introspection,

but the notion of abstract concepts is debatable (Kiefer and Pulvermüller, 2012). In RAN’s

modeling, this issue is addressed computationally by simulating and studying the formation of

convex abstract concepts.

Computational models provide us algorithmic specificity, conceptual clarity, precision. Besides,

they empower us to perform simulations that can either be useful to test and validate psycho-

logical theories or to generate new hypotheses about how the mind works – this has turned

them into an indispensable tool to study the human brain. The literature (Braver et al., 1999,
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O’Reilly, 2006, Rolls et al., 2008) shows that this ambitious goal is not out of reach of compu-

tational cognitive modeling. Furthermore, this type of computational tools with the ability to

capture cognitive phenomena has also the potential to simulate and study some mental states

and processes such as those linked to creativity (Kyaga et al., 2013). Several computational

Figure 3.1: The universe of concepts in six-dimensional feature hyperspace. The ovals in the
diagram depict an individual concept. Each individual concept is described by their defining
6-dimensions. The cluster of concepts shows the groups formed by similar concepts represented
by convex cluster of concepts, and the cluster centers depict the most generic concept of the

cluster.

modeling techniques (or tools) simulate cognitive states and represent concepts at symbolic

and connectionist levels. Symbols represent information at a symbolic level. Rules are de-

fined to manipulate symbols. Within a symbolic representation, the meaning is internal to

the description itself; symbols have sense only regarding other symbols, and not regarding any

real-world objects or phenomena they may represent. Adaptive Control of Thought-Rational

(ACT-R) (Anderson et al., 1997) is an example of symbolic approaches, with contributions in,

almost, all field of AI (such as language processing, perception, and attention, decision mak-

ing, etc.). At the connectionist level, information is represented by the dynamics over densely

connected networks of primitive units. A particular strength of connectionist networks is their

ability to adapt their behavior according to observed data.

The weights among the units of a distributed network represent the learned behavior, they

offer limited explanatory insights into the process, being modeled. Bioinspired Artificial Neu-

ral Networks (ANN) such as Restricted Boltzmann Machine (RBM) (Hinton, 2012), Autoen-

coders (Vincent et al., 2010), Deep Neural Networks (Collobert and Weston, 2008) are some

excellent such examples with a significant contribution toward classification and perception (or

recognition). A third way constitutes a hybrid view of connectionist, and symbolic methods.

Connectionist Learning with Adaptive Rule Induction Online (CLARION) (Sun and Peterson,

1996) is a methodology that is hybrid, and capable of simulating scenarios related to cognitive

and social psychology. All these methodologies either require a predefined structure or have a
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fixed topology that imposes a limitation of having supervision, and inflexibility while modeling

the concepts.

This chapter proposes a computational method named Regulated Activation Network (RAN)

which unifies the virtues of symbolic, distributed and spatial representations to represent con-

cepts (both concrete and abstract). RAN has a graph-based topology hence it is distributed,

every node in the graph (network) identifies an entity, therefore, it’s symbolic, and every node

(or entity) is viewed in an n-dimensional feature space, hence, it’s also spatial. The spatial

view of concepts as points in multidimensional geometric feature space (see Figure 3.1 for 6-

dimensional View of Concepts) is inspired by the theory of conceptual spaces (Gärdenfors,

2004). The RAN’s modeling has an evolving topology that enables it to build a model depicting

a hierarchy of concepts. The geometrical associations among concepts aid in determining the

convex abstract concepts. Further, the representatives (nodes) of the abstract concepts form a

new layer dynamically, where each node acts as a convex abstract concept representative for the

underlying category. Symbolically, the concepts at (relatively) lower level in the hierarchy are

identified as concrete concepts and the concepts at (relatively) higher level are seen as abstract

concepts.

The first experiment in this chapter, demonstrates the RAN’s methodology with the help of

an artificial dataset (Toy-data1) and describe how the three cognitive function (i.e. concept

creation, learning and activation propagation) are simulated. The second experiment in the

chapter, shows the two distinct aspects of RANs modeling: first, flexibility in choosing a clus-

tering algorithm as concept identifier; second, deep model generation. The third experiment of

the chapter shows how RANs modeling can instinctively identify of generic concepts in data and

build a representation for it. The proof of concept of RANs classification capability is provided

by testing RAN’s approach with eight UCI benchmark datasets. The generated models were

evaluated using metrics precision, recall, F1-score, accuracy and Receiver Operating Character-

istic (ROC) curve analysis. The RAN’s classification performance was also compared with five

machine learning techniques, Multilayer Perceptron (MLP) (Rumelhart et al., 1986), Logistic

Regression (LR) (Freedman, 2009), K Nearest Neighbors (K-NN) (Altman, 1992), Stochas-

tic Gradient Descent (SGD) (Zhang, 2004b) and Restrict Boltzmann Machine (Hinton, 2012)

pipelined with Logistic Regression (RBM+).

The chapter is organized as follows: RAN’s methodology is detailed using a Toy-data problem

in Section 3.3; Section 3.4 shows the experiments with two datasets from UCI machine learning

repository to exhibit: (1) flexibility in choosing a suitable concept identifier, (2) a deep hierarchy

of abstract concepts, and (3) automatic association of input-labels to their respective abstract

concept nodes; Section 3.5 provides RAN’s comparisons with five classifiers and proof of concept

with eight benchmark datasets; Finally, Section 3.6 summarizes and concludes the chapter

advising links for Chapter 4.
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Figure 3.2: Plot of Toy-data, a 2-D artificially generated data. The plot shows five classes
along with their cluster centers

3.3 Abstract Concept Modeling with RANs

The proposed approach models convex abstract concepts through four core steps (i.e., convex

concept identification, convex abstract concept creation, convex concept inter-layer learning and

convex abstract concept upward activation propagation), along with one optional step (i.e., Ab-

stract Concept Labeling). The RAN’s methodology is illustrated using an artificially generated

2-dimensional Toy-data with 1500 instances that are evenly distributed into five categories (see

Figure 3.2). At the end of this section the model evaluation and comparisons are reported,

by performing thirty iterations for each experiment of RANs modeling. Every experiment ap-

plied nine Research Designs (RD) (see Table B.1 in Appendix B), where, in every RD a 10-fold

cross-validation procedure was applied. The main objective of the experiment with Toy-data1

demonstrate RANs modeling process and to simulate the cognitive process of concept creation,

learning, and activation propagation. For this experiment, it was hypothesized that the created

convex abstract concepts symbolically represents the 5 classes in the Toy-data1. To prove the

hypothesis classification operations were performed using RAN’s modeling with Toy-data1 the

results are reported in section 3.3.5.

To use the RAN’s approach the data is provided to the model with an additional header stacked

over the data as already mentioned. The size of the header is the same as the dimension of the

input data vector, and each header element holds the largest value of their corresponding input

data attribute. See Section 3.1 for elaboration.
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Figure 3.3: Steps in the model generation with Regulated Activation Networks

3.3.1 Step 1: Convex Concept Identification (CCI) Process

Concept identification is the first step in RANs modeling. The objective of the CCI procedure

is to appropriately identify each instance within the data as a distinguished member of various

underlying convex groups. This is realized by categorizing the input data based upon their

geometrical relationship, i.e., distance, conforming to the theory of conceptual spaces (see Sec-

tion 2.1.3). Here, we also recognize data points that are the most probable representative of

each identified group, complying with the prototype theory (see Section 2.1.3).

The process of CCI instantiates after preprocessing the input data. Initially, an input layer is

formed, with dimension equal to the size of input data feature vector. Step 1 in Figure 3.3 shows

the Layer-0 with two nodes which is like the magnitude of the input vector of 2-Dimensional

Toy-data. At Layer-0, clustering methods are used to determine geometrical relation among

the several input data instances and identify the underlying categories within the data. Thus,

K-means (Hartigan and Wong, 1979) clustering algorithm is applied to Toy-data to identify five

classes (Class-1, ..., Class-5) by assigning a value 5 to ‘K’ in the K-means clustering algorithm.

Figure 3.2 shows the plot of 2-D data points obtained after performing a concept identification

operation using the K-means algorithm. Figure 3.2 also displays the centroids (C1, ..., C5) of

all the clusters, recognized as Cluster Representative Data Points (CRDP) of all five classes.

Any clustering algorithm can act as a concept identifier in RANs modeling if it suffices two

basic requirements. First, the algorithm is able to determining convex categories based upon

their geometric relationship among the data instances. Second, the algorithm recognizes CRDPs

of all the identified clusters. This flexibility of choosing a suitable method for concept iden-

tification process in RANs modeling is demonstrated by a separate experiment using Affinity

propagation (Frey and Dueck, 2007) clustering algorithm, in Section 3.4.1.
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3.3.2 Step 2: Convex Abstract Concept Creation (CACC) Process

Concept creation is a cognitive process to create representation of a newly identified concept.

In RANs modeling this process is simulated by CACC operation by forming a new layer dy-

namically, where each constituent node in the new layer acts as an abstract representative of

their respective categories identified in the CCI process. The Step-2 in Figure 3.3 shows the

newly created layer (Layer-1), that has five nodes (N1, ..., N5), corresponding to five classes (see

Figure 3.2), identified in CCI operation with Toy-data.

Besides abstract representation of underlying categories, the activation of nodes in newly created

layer discloses the degree of confidence (DoC)1 indicating the certainty of identification of a class

by its representative node in the new layer (for a given input data instance). For example, if a

node (say N1) gets an activation of 0.85, it can be stated that with a confidence of 85% the input

data belongs to the category being represented by node N1. Thus, for all input data instances,

the obtained 〈feature, value〉 pair of 〈abstract-node, Activation-value〉 at new layer adds more

meaning. For instance, in Figure 3.3, Step-2, at Layer-0 input vector is [0.1, 0.21] it means that

the dimensions S1 and S2 have activation 0.1, and 0.21 respectively. For the, aforementioned,

input vector, [0.13, 0.32, 0.89, 0.16, 0.05] vector of activation is observed at all nodes (N1, ...,

N5) respectively, at Layer-1. The observed activation vector itself describes that the input data

belongs to Class-3 with a DoC of 89%.

3.3.3 Step 3: Convex Concept Inter-Layer weight (CCILW) Assignment

Learning is an important cognitive process that create a relationship among the concepts. In

RAN’s convex concept modeling the inter-layer layer learning is the relationship established

between two adjacent layers. After the generation of the new layer dynamically, the next step

in RANs modeling is to establish a relation between these two layers (input-layer and new layer).

As aforestated in Section 3.3.2 that each node in the new layer is an abstract representative of

categories identified in CCI process, thus we learn association among the two-layer such that

it substantiates the abstract representation by the nodes at the new layer. Since discovered

CRDPs (see Section 3.3.1) are the most apparent choice as an abstract representative of a

cluster (and adhere to the inspiration from prototype theory); consequently, the CRDPs are

assigned as an association between the two layers.

Equation 3.1 shows the CRDPs in the form of a matrix, where W is the learned convex concept

inter-layer weight (CCILW) between node j at new layer (i.e., Layer-1 in Figure 3.3) and node

i at input layer (i.e., Layer-0). The set of ILWs, from one node j at new layer to all input

nodes i, are the values of CRDP of jth cluster center (i.e., Cj) identified in the CCI process. For

instance, cluster center C1 (see Figure 3.2) forms the scaler weight vector [W1,1, W1,2] (CCILWs

1Calculating DoC of a node is explained in detail with upward activation propagation operation.
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showed by two yellow lines in Step 3 Figure 3.3) between the node N1 at Layer-1 and both input

nodes S1 and S2 at Layer-0.

W =



W1,1 W1,2 . . . W1,i

. . .

Wk,1 Wk,2 . . . Wk,i

. . .

Wj,1 Wj,2 . . . Wj,i


=



C1

. . .

Ck

. . .

Cj


(3.1)

Weight matrix W for the sake of easy notation input nodes are represented as i, and abstract

concept layer nodes are represented as j. Where i=1, 2, ..., na and j=1, 2, ..., nA.

The distance between the learned weight vector of one node j (at Layer-1) and activation of all

input nodes S1 and S2 (at Layer-0), is used to determine how strongly the input vector represents

the node Nj at the new layer. Thus, enable us to identify the convex abstract concepts for the

input instance (elaborated in Section 3.3.4).

3.3.4 Step 4: Convex Abstract Concept Upward Activation Propagation

(CACUAP) Process

The upward activation propagation is a geometric reasoning operation, i.e., a non-linear pro-

jection of an i-dimensional input data vector ai, into a j-dimensional output vector Aj (see

Step 4 in Figure 3.3). The CACUAP operation is carried out in two stages, in the first stage

the geometric distance operation takes place, and in the second stage, geometric distance is

translated to establish a similarity relation.

Geometric Distance Function (GDF)- Stage 1 In the first phase of the CACUAP mech-

anism we determine the geometrical distance between the learned weight vectors (see Equa-

tion 3.1) and an input instance ai. The numerator of Equation 3.2 shows a function to calculate

the Euclidean distance between the jth weight row vector and input vector a. The denominator

of Equation 3.2 shows the relation that normalizes2 the calculated distance between [0, 1].

dj =

√∑na
i=1(Wj,i − ai)2

√
na

(3.2)

And consequently, j normalized Euclidean distances dj are obtained between all j weight vectors

and input instance ai.

2In RANs modeling the activation values are, by definition, real values in the [0, 1] interval – in an n-dimensional
space the maximal possible Euclidean distance between any two points is

√∑n
i=1(ai − 0)2=

√
n, where ai=1.



Chapter 3. Convex Abstract Concept Modeling with RANs 48

Similarity Translation Function (STF)- Stage 2 In the second phase the calculated nor-

malized distance is transformed to obtain a similarity relation such that the following require-

ments are fulfilled:

� f(d = 0) = 1, i.e. when distance is 0 similarity is 100%.

� f(d = 1) = 0 i.e. when distance is 1 similarity is 0%.

� f(d = x) is continuous, monotonous, and differentiable in the [0, 1] interval.

f(x) = (1− 3
√
x)2 (3.3)

In RANs modeling Equation 3.3 is used as Similarity Translation Function to determine the

similarity relation of the previously calculated distance. The non-linearity of STF is depicted

in Figure 3.4, indicating that the similarity value reduces drastically when the normalized Eu-

clidean distance is larger than 0.05 (or 5% dissimilar).

Algorithm 1: Convex Abstract Concept Upwards Activation Propagation algorithm

Input: Vector [a1, a2, ..., ana ] as input at layer l
Output: New activation vector [A1, A2, ..., AnA ] in layer l + 1
foreach Node Aj in layer l + 1 do

Calculate Normalized Euclidean Distance:

dj =

√∑na
i=1(Wj,i−ai)2√

na

Transform dj through STF Equation 3.3:
Aj = f(d2

j )

Where:
i= [1, 2, ...., na].
j= [1, 2, ...., nA].
Wj,i is ILW see Equation 3.1.

Figure 3.4: Plot of Similarity Translation Function with respect to varying input values in
range [0, 1]
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The first three steps generate the RAN’s model (see Figure 3.3), later, in the fourth step, this

model is used via CACUAP operation by propagating the input activation (ai) upward and

obtaining activation (Aj) at convex abstract concept layer (inspired by the theory of spreading

activation see Appendix A.3). Algorithm 1 describes the convex abstract concept upward ac-

tivation propagation operation, showing how the inputs and interlayer learning weights W are

used to calculate similarity relation to generating output activation at each abstract concept

representative nodes.

3.3.5 RAN’s Performance with Toy-data1

The metrics Precision, Recall, F1-Score, and Accuracy, are used to evaluate the performance

of RAN’s model with Toy-data. To carry out the evaluation operation True-labels, and Test-

labels are determined via abstract concept labeling (ACL) operation of RANs (see Section B.1

for ACL’s description in Appendix B). Further, these labels were used to form a multi-class

confusion matrix for the five classes of Toy-data, upon which, the four evaluation metrics were

calculated.

Figure 3.5: Area Under Curve for five classes of Toy-data for nine Research Designs (RD) of
varying Test and Train data sizes

Receiver Operating Characteristics (ROC) curves for five classes were plotted to determine the

operating characteristic of the RAN’s model with Toy-data. The input True-labels were con-

verted into five vectors of binary labels. Each vector has ‘1’ for the label that maps to an

abstract node the vector represents, and ‘0’ otherwise (see Section B.3 in Appendix B for the

node-wise binary transformation of input True-label). Further confidence-score (see Section B.3

in Appendix B for node-wise confidence-score calculation) is calculated for each abstract node.

These binary-labels, confidence-score are used to plot ROC curves for the five classes and deter-

mine the Area Under Curve (AUC) for each class as well. Figure 3.5 shows AUC retrieved for all

five classes w.r.t. different Research Designs (Refer Appendix B.4 for the definition of Research
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Table 3.3: RAN’s Comparative Study for Toy-data

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RBM+ 90.87 ± 1.26 85.25 ± 2.61 82.34 ± 3.85 85.25 ± 2.61
K-NN 99.96 ± 0.08 99.95 ± 0.11 99.94 ± 0.12 99.95 ± 0.11
LR 99.65 ± 0.07 99.64 ± 0.07 99.64 ± 0.07 99.64 ± 0.07
MLP 95.62 ± 11.18 96.82 ± 7.56 96.02 ± 9.95 96.82 ± 7.56
RANs 99.12 ± 0.09 99.12 ± 0.09 99.12 ± 0.09 99.12 ± 0.09
SGD 96.00 ± 2.81 95.25 ± 2.86 94.57 ± 3.76 95.25 ± 2.86

Design). Table 3.3 shows the RAN’s comparison with five different types of methodologies based

upon their classification capabilities. It is observed that RANs performed satisfactorily.

According to the Table 3.3 the K-NN, LR and RANs performed equally well, although, the

performance of the K-NN algorithm was the best. The model generated with RBM+ displayed

the lowest performance. The models obtained from RBM+, SGD and MLP not only performed

lower than the other three techniques but also displayed higher variance. Moreover, the MLP

showed the highest variance but performed better than RBM+. The results of classification also

proves that the hypothesis the RANs experiment with Toy-data1 which symbolically identifies

the 5 nodes in Layer-1 as convex abstract concepts representative of 5 classes in the Toy-data1.

In RAN’s algorithm the 4 operations has different complexities: (1) the concept identification

process is expressed as O(f(n)) where f(n) is the complexity of the concept identifier (or clus-

tering algorithm); (1) the concept creation has complexity of O(k) where k is the number of

clusters; (3) the inter layer learning also has complexity of O(k) because it is an assignment op-

eration and is equal to number of identified cluster centers; (4) the upward activation operation

has the complexity of O(n) when n is the number of data instances. The overall complexity of

the RANs modeling for creating a single layer is expressed by equation 3.4.

T (n) = O(max {O(f(n)), O(n)}) (3.4)

f(n) = O(n(k+2/p)) (3.5)

where: k is number of clusters; p is number of features

The time complexity of the K-means algorithm is given by equation 3.5 and when K-means is

chosen to be the concept identifier is, therefore, the T(n)=O(n(k+2/p)). Table 3.4 lists the time

complexities of all the algorithms used in this article including the RANs time complexities with

both K-means and Affinity Propagation algorithms. In Table 3.4 the complexities of K-means

and Affinity Propagation algorithms, in fact, are the complexities of the RANs modeling because

their complexities are greater than O(n).
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Table 3.4: Time Complexities of Models used in the Article

Algorithm Time Complexity Description Source

K-means O(nk+2/p) n: n samples; k: n clusters; p:n features Pedregosa et al. (2011)

Affinity Propagation O(n2) n: n samples Pedregosa et al. (2011)

MLP O(n ·m · hk · o · i)
n: n samples; m: features; k: no. of hidden layers;
h: number of hidden neuron
o: output neuron; i: no. of iterations

Pedregosa et al. (2011)

RBM O(d2) d: max(n components, n features) Pedregosa et al. (2011)

KNN O(m · n · i) m: n components; n: n samples; i: min(m, n) Pedregosa et al. (2011)

LR O(n ·m2) n: n samples; m: n features Pedregosa et al. (2011)

SGD O(k · n · p̄)
n: n samples; k: n iterations;
p̄: the average number of non-zero
attributes per sample

Pedregosa et al. (2011)

3.4 Behavioral Demonstration of RANs

This section exhibits two distinct aspects of RANs modeling via experiments with two datasets:

IRIS and UCI’s Human Activity Recognition data. Both investigations present a different view

of RAN’s methodology, highlighting the capabilities of the RAN’s approach.

3.4.1 Experiment with IRIS dataset

There are two objectives of this probe, first is to demonstrate flexibility in choosing an appro-

priate methodology for concept identification operation in RANs modeling (see Section 3.3.1).

Second is to show how RANs modeling can be used to build a deep hierarchy of convex ab-

stract concepts dynamically. This experiment uses Affinity Propagation (Frey and Dueck, 2007)

clustering algorithm as a concept identifier to support the claim of independence in selecting

a suitable clustering method for CI process in RANs modeling. Unlike the K-means algorithm

(used to describe the RANs methodology in Section 3.3), with the Affinity Propagation algo-

rithm, the number of clusters within the data need not to be known beforehand. Furthermore,

Affinity Propagation conforms to the basic requirements (see Section 3.3.1) for being a concept

identifier in RANs modeling.

The second prospect of this experiment is to illustrate the dynamic topology of RAN’s approach

where the network grows to form several layers representing convex abstract concepts. For this

demonstration, an algorithm is developed, named concept hierarchy creation (CHC) algorithm

(see Algorithm 2). The CHC algorithm streamlines all four steps of RANs modeling (i.e., CCCI,

CACC, CCILW and CACUAP) and uses these steps iteratively to build a hierarchy of convex

abstract concepts as described through Algorithm 2. This experiment was conducted using the

IRIS dataset obtained from the UCI machine learning repository (Lichman, 2013).

IRIS dataset consists of 150 instances, each having four dimensions/attributes corresponding

to features of a flower: petal width, petal length, sepal width, sepal length. The original data

set values are normalized to fall within the interval of [0, 1]. The dataset represents three
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Figure 3.6: Model generated with 90% stratified IRIS data using concept hierarchy creation
Algorithm. Layer-0 is created while initializing the CHC algorithm. The algorithm grew to a
Desired-depth of six Layers (including input Layer-0), and in each iteration of CHC algorithm a
new layer is created dynamically and the Interlayer weights (CCILW) are learned between the

existing layer and a newly created layer above it.

categories of flowers Iris-Setosa, Iris-versicolar, and Iris-verginica. In our concept hierarchy

creation algorithm, we initialize the Affinity Propagation clustering algorithm with the following

parameters: (1) damping factor (DF) = 0.94 for layers below level 3, DF = 0.9679 for the layers

at level 3 and above; (2) convergence iteration=15; (3) max iteration=1000.

Input layer-0 was created, with four nodes (equal to the dimension of IRIS data), and the RAN’s

hierarchy generation is carried out according to Algorithm 2. The model obtained from CHC

process is depicted in Figure 3.6, the model was initialized to grow six layers deep. Therefore,

hierarchy augmentation terminates at Layer-5, with Layer-5 identified as most abstract layer

consisting three nodes acting as abstract representatives of three categories of flowers of IRIS

dataset. To evaluate the obtained RAN’s model, True-labels, and Test-labels were retrieved

using an abstract concept labeling procedure (see Section B.1 in Appendix B). A confusion

matrix (see Figure 3.7) was generated using the True and Test labels. With the aid of the

confusion matrix, Precision, Recall, F1-Score and Accuracy were calculated to evaluate the
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model. The model performed quite decently with an observed accuracy of 93% (ca.), the results

of precision, recall and F1-Score are reported in Table 3.5.

Algorithm 2: Concept Hierarchy Creation Algorithm

Input: Input Multi-variate data with values between [0,1]
Output: OutputSet of layers of Concepts – concept hierarchy
Initialization: Create input layer layer-0 having dimension equal to that of input data
Set Current-layer-size CLS = i, a dimension of input-data vector
Set Layer-count L= 0
Set Desired-depth= 6
Select Clustering algorithm and initialize
Set current-data = input-data
repeat

Run clustering algorithm on current-data to identify set of cluster centers C
Create a new-layer above current-layer, with no nodes
foreach cluster center Cj ∈ C do

Create new node j in new layer l+1
foreach node i in current-layer do

Create a new weighted connection Wcj ,i between cj and i such that Wcj ,i is the
coordinate of c along the i dimension

Set new-data = empty data set
foreach each datum in current-data do

Inject datum in current-layer
Propagate activation from current-layer to new-layer using algorithm 1
Add activation pattern produced in new-layer to new-data

Set L = L + 1
Set CLS = number of clusters in current-layer
Set current-data = new-data
Set current-layer = new-layer

until CLS=1 OR Desired-depth= L;

Figure 3.7: Confusion Matrix gen-
erated to validate RAN’s model with
IRIS data (having 9 : 1 train, and test
data ratio) for Class-0 (Setosa), Class-
1 (Verisicolour), and Class-2 (Vir-

ginica).

Figure 3.8: ROC curve analysis
with IRIS dataset (having 9 : 1
train, and test data ratio), for Class-
0 (Setosa), Class-1 (Verisicolour), and

Class-2 (Virginica)

The ROC curve analysis of the RAN’s model, as shown in Figure 3.8, displays the various

operating characteristic and the observed Area Under Curve for all the classes of IRIS data. In
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Table 3.5: Evaluation of RANs Model generated through IRIS data

Class Precision (%) Recall (%) F-1 Score (%) Support

Setosa 100.0 100.0 100.0 5
Versicolour 83.33 100.0 90.91 5
Virginica 100.0 80 .00 88.89 5

Avg/Total 94.44 93.33 93.26 15

this experiment, it is worth mentioning the application of RANs modeling for data dimension

transformation and data visualization. In Figure 3.6 we can observe that the dimension of

Layer-0 is four, whereas the size of the other layers either expands or reduces when the network

grows. This dimension transformation operation is helpful in addressing the issue of the curse

of dimensionality. Besides, the transformed data can be plotted to extract useful information

from the data (See Appendix E for details of this application of RANs).

3.4.2 Experiment with Human Activity Recognition Data

This experiment aims to show the ability of the RAN’s approach to building the representation

of generic concepts, such as identifying abstract form made up of concrete features, for instance

concrete concepts food ingredients blends to produce an abstract concept a recipe. The ex-

periment uses UCIHAR (Anguita et al., 2013) dataset for home activity recognition using the

smartphone, obtained from the UCI machine learning repository. The data captured six activ-

ities Walking, Walking upstairs, Walking downstairs, Sitting, Standing, and Laying. With this

demonstration, we show how the RAN’s approach can be used to model two abstract concepts,

i.e., characterizing Mobile and Immobile behavior from the six activities as mentioned earlier.

Figure 3.9: Model generated with the RAN’s approach. Nodes N1 and N1 at Layer-1 represent
either of the two abstract concepts, i.e. Moving and Stationary. Each node at Layer-0 represents

individual dimensions of the input data vector

The True-label and Test-label obtained through ACL operation were used to form the confusion

matrix, which is later referred to calculate Precision, Recall, F1-Score, and Accuracy for evalu-

ating the generated model. Node-wise binary labels and confidence scores were determined (as
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Figure 3.10: Area Under Curve observed during ROC curve analysis of UCIHAR data in
order to determine operational points of two abstract concepts (i.e. Motion and Stationary) for

all nine Research Designs (RD)

Table 3.6: RAN’s Comparative Study for UCIHAR dataset

Model Precision (%) Recall (%) F1-Score (%) Accuracy (%)

RBM 99.68 ± 0.14 99.68 ± 0.14 99.68 ± 0.14 99.68 ± 0.14
K-NN 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02
LR 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02 99.97 ± 0.02
MLP 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02
RANs 99.85 ± 0.01 99.85 ± 0.01 99.85 ± 0.01 99.85 ± 0.01
SGD 99.98 ± 0.01 99.98 ± 0.01 99.98 ± 0.01 99.98 ± 0.01

described in Section B.3) for both abstract nodes at Layer-1. Figure 3.10 shows the Area Under

Curve (AUC) observed during the ROC curve analysis of all 10-Folds in different Research De-

signs. With both of these evaluations it is deduced that, apart from building the representation

of abstract concepts, the model generated with RANs performed satisfactorily.

The UCIHAR dataset consists of 563 attributes, where each attribute has data-values from

embedded sensors of a smartphone. Before initiating the modeling procedure, the dataset set

was preprocessed, such that, all data values are normalized in the range [0, 1] (refer Section 3.1

for normalization procedure). Further, the modeling process is carried out with the CHC algo-

rithm (see Algorithm 2). The processed data assigned as input-data, further an input-layer was

created with 563 nodes (equal to the dimension of input-data). In this investigation, we hypoth-

esized that there are two abstract concepts related to motion and addresses them as Mobile and

Immobile behaviors, that pertain to the subject’s movement-related activities. Consequently,

the K-means algorithm is chosen for aoncept identification and configured to identify two clus-

ters. The Desired-depth was also set to ‘1’ such that modeling terminates after growing one layer

above the input layer (Layer-0). Having fulfilled the initialization part of the CHC algorithm

modeling is performed, generating a two-layered model as depicted in Figure 3.9. In Figure 3.9

Layer-0 shows input-layer and Layer-1 corresponds to abstract concept layer where both nodes
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(N1, and N2) represents each of the two abstract concepts (i.e. Motion and Stationary abstract

concepts).

Among captured six activities (Walking, Walking upstairs, Walking downstairs, Sitting, Stand-

ing and Laying), Walking, Walking upstairs, Walking downstairs are the actions of motion,

whereas the three remaining ones represent static states. Based upon these two facts, we expect

that one of the abstract nodes in Layer-1 conjointly represents Walking, Walking upstairs and

Walking downstairs as one class. The other node in Layer-1 takes the other three categories

(i.e., Sitting, Standing and Laying) together. Upon performing the labeling of nodes at Layer-1

through ACL procedure (see Section B.1 for ACL process elaboration), it was observed that

Walking, Walking upstairs, Walking downstairs classes were mapped to one node of Layer-1.

Whereas, the labels Sitting, Standing and Laying was traced to the other node in Layer-1. In-

terestingly, this outcome commensurates with the expectation of this experiment and shows the

RAN’s capability to identify abstract concepts in an unsupervised manner naturally.

The RANs modeling was compared with five different approaches based upon their classification

operation. To carry out the comparative study it was essential to transform the six Labels into

binary Labels. Therefore, the Labels of the dataset were merged to form two groups, i.e.,

Walking, Walking upstairs, Walking downstairs in Class-1, and Sitting, Standing, and Laying

in Class-2. Later, the modeling was performed followed by validation and evaluation. Table 3.6

displays the comparison of all five approaches with RANs modeling. It is observed that RANs

approach is competent to five techniques with one advantage that it is an unsupervised approach,

moreover it demonstrate the ability to build representations of abstract concepts.

3.5 RANs Applicability

This section highlights the scope of RANs modeling as a classifier w.r.t. distinct domains.

To support it’s usability, experimental results are reported using eight datasets concerning

different areas. A comparative study was also carried out using these datasets to match RANs

classification ability with five different classifiers.

Among the eight datasets, the Mice Protein (Higuera et al., 2015), Mammographic Mass (Elter

et al., 2007), Breast Cancer 569 and 669 (Street et al., 1993, Bennett and Mangasarian, 1992)

data pertain to the medical field, Glass Identification (Evett and Spiehler, 1987) data repre-

senting forensic science, Credit Approval (Quinlan, 1999) represents economic data, Iris (Fisher,

1936) is a botanical data, and Wine Recognition (Forina et al., 1988) is a data for chemical com-

position analysis. The experiments performed with these datasets were akin to the investigations

done with Toy-data1 (in Section 3.3), and UCIHAR data (in Section 3.4.2), i.e., K-means al-

gorithm used as concept identifier, where K is the number of class labels of each dataset, the

hierarchy is set to have a depth of two layers (one Input and one abstract concept layer). For
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(a) RAN’s performance with eight different datasets depicting RAN’s appositeness with data belonging
to distinct domains

(b) Observed Area Under Curve (AUC) while performing ROC curve analysis for RAN’s model generated
with eight different datasets. The graph shows the plot of percentage AUC for classes 1 to 8. For
each dataset class labels of the graph is serially mapped as: Mice protein {c-CS-s [Class-1], c-CS-m
[Class-2], c-SC-s [Class-3], c-SC-m [Class-4], t-CS-s [Class-5], t-CS-m [Class-6], t-SC-s [Class-7] and
t-SC-m [Class-8]}; Mammographic Mass {Benign [Class-1] and Malignant [Class-2]}; Credit Approval
{Postitive [Class-1] and Negative [Class-2]}; IRIS) {Setosa [Class-1], Versicolar [Class-2] and Verginica
[Class-3]}; Breast Cancer 569 {Benign [Class-1] and Malignant [Class-2]}; Breast Cancer 669 {Benign
[Class-1] and Malignant [Class-2]}, Wine Recognition {Class-1, Class-2 and Class-3}Glass Identification

{Window Glass [Class-1] and Non-Window Glass [Class-2]}

Figure 3.11: RAN’s performance with eight datasets using Precision, Recall, F1-Score and
Accuracy along with ROC-AUC analysis.
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every dataset, models were generated using thirty iterations in nine Research Designs (RD)

(refer the Table B.1 in Section B.6). In every RD 10-Fold cross-validation was applied to deter-

mine the performance of the models. An aggregate of Precision, Recall, F1-Score, and Accuracy

of all folds in all RDs was calculated for all the datasets, as shown in Figure 3.11. From the

Figure 3.11a it can observed that with Mice Protein data RAN’s scores 99.99%(ca.) for all

evaluation metric, whereas for Iris, Glass Identification, Breast Cancer, and Wine Recognitions

the observations were convincing, i.e., above 89.00% (ca.). In all the folds of nine RD, ROC

curves were also plotted for each class label of the eight datasets, the mean AUC for each class

of the datasets is shown in Figure 3.11b. The evaluation through Precision, Recall, F1-Score,

Accuracy and ROC-AUC analysis ( see Figure 3.11a and 3.11b respectively) displays the RANs

capability in machine learning tasks with different kind of datasets.

The same procedure was applied to obtain average Precision, Recall, F1-Score and Accuracy for

all the datasets with five other classifiers (i.e. RBM+, KNN, LR, MLP, and SGD). Table 3.7

shows the overall comparison (the bold fonts depicts best result and italic font shows the worst

outcome). It is worth noting that being dynamic and unsupervised RANs modeling performed

quite satisfactorily especially with Mice Protein data, where it outperformed SGD and RBM+,

was found competent with LR, KNN and MLP classifiers.

The Table 3.7 not only compares the RAN’s performance with five classifiers but also provide

insight into the behavior of different models w.r.t. to different types of datasets. With Mice

Protein dataset we can observe that, besides RBM+, all the methodologies performed well. One

more thing can be noted that only RANs displayed a low variance whereas other algorithms

observed to have relatively higher variance. In all the experiments, the variance of RANs was

observed to be minimal with the highest observed standard deviation of 1.01% in the experiment

with Wine Recognition dataset. Experiments with the LR algorithm also the observed standard

deviation less than 2% in all the experiments (except the experiment with IRIS data).

The experiments with SGD also showed a consistent and minimal variation with the highest

standard deviation of 6.4%. Besides LR, SGD and RANs, MLP algorithm also displayed a

uniform performance with the worst observed standard deviation of 3.34% for F1-Score of Mice

Protein dataset. The algorithm KNN performed well in all the experiments but it is worth

nothing that it also displayed standard deviation more than 10% in many experiments. The

worst variation of KNN was observed with IRIS dataset showing standard deviations more than

21%. In all the experiments the RBM+ algorithm good performance with Breast Cancer 569

and 669 datasets, but in all the experiments it displayed a very high variation with a maximum

standard deviation of 44.07% observed with Precision of Mice Protein dataset.

Figure 3.12 shows four graphs depicting RANs performance with different benchmark data sets.

These graphs display an important aspect of RANs modeling and it’s performance behavior

when evaluated to different research design. The Precision, Recall, F1-Score, and Accuracy

trajectories of Human Activity Recognition (HAR), Breast Cancer 669 (BC1), Toy-data (TD)
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and Mice Protein (MP) Data is almost straight. The evaluation plots of Glass Identification

(GI), Wine Recognition (WR), Mammographic Mass (MM), Breast cancer 569 (BC2) and Mice

Protein (MP) datasets shows a minimal decline in observations w.r.t RD-1 and RD-9 Research

Design. On the contrary, results from IRIS Data (ID) and Credit Approval (CA) dataset

depicted a higher value while comparing the evaluation of RD-1 with RD-9 Research Designs

of these data sets. Principally, the results of all four metrics of evaluation obtained similar

results (with marginal variation) irrespective of the Test and Train data ratio. This is a notable

observation because it shows that RANs approach obtains a satisfactory result even when trained

with a small amount of data.

3.6 Conclusions

To comprehend and reasoning for emotions, ideas etc., it is evident to understand abstract con-

cepts because they are perceived differently w.r.t concrete concepts. There have been notable

efforts to study concrete concepts (features like walking or ingredients), but progress in inves-

tigating abstract concepts (generic features such as is-moving or recipe) is relatively less. This

chapter proposes an unsupervised computational modeling approach, named Regulated Acti-

vation Network (RAN), that has an evolving topology and learns a representation of abstract

concepts. The RANs methodology was exemplified through a 2-D artificial data, yielding a sat-

isfactory performance evaluation of 99.12% (ca.) for Precision, Recall, F1-Score and Accuracy

metrics, along with an average AUC of 99.9% (ca.) for all classes in the dataset. The RAN’s

comparisons with five classifiers (KNN, LR, MLP, RBM+ and SGD) displayed that RANs was

equally efficient. The experiment with Toy-data1 we simulated the cognitive process of concept

creation, learning and activation propagation and proved the hypothesis of the experiment using

a classification operation.

An experiment with IRIS data showed the characteristic of RANs deep hierarchy generation

and independence in choosing concept identifier. With the aid of concept hierarchy creation

algorithm (proposed in Section 3.4.1), evolving nature of RANs modeling is shown using Affinity

Propagation clustering algorithm (as an alternate concept identifier instead of the K-means

algorithm as used in modeling with Toy-data problem). With the generated model it was

shown that the model dynamically grew to a depth of six layers and performed with Precision

of 94.44% (ca.), Recall of 93.33% (ca.), F1-Score of 93.26% (ca.) and Accuracy of 93.33% (ca.),

along with an observed AUC of 100% (ca.), 92.00% (ca.) and 94.00% (ca.) for the three classes

of data.

Modeling with UCI’s Home Activity Recognition (UCIHAR) dataset exhibited the RAN’s be-

havior of natural identification of generic concepts. The experiment demonstrated that how

six labels (the activity of Walking, Walking upstairs, Walking downstairs, Sitting, Standing

and Laying) of the dataset are automatically identified as Mobile (Walking, Walking upstairs
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and Walking downstairs) and Immobile (Sitting, Standing and Laying) abstract concepts. The

evaluation of the model shown a performance of 99.85% (ca.) for all four metrics and AUC of

99.9% (ca.) for both abstract concepts. RANs performed equivalently when compared to all

five classifiers KNN, LR, MLP, RBM+, and SGD.

The proof of concept of RANs modeling as a classifier was also provided with eight UCI bench-

marks. It was identified that RANs approach performed satisfactorily displaying the best out-

come of 98.9% (ca.) with Mice Protein dataset (for all metrics). The comparison of RANs

modeling with five classifiers substantiated the effectiveness of the proposed methodology. It

was also observed that the RANs performance remained similar irrespective of the size of train

data. During the simulations, a non-convexity was observed in several datasets. Chapter 4

describes the second RANs modeling that can capture the non-convexity in the data.
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Chapter 4

Non-convex Abstract Concept

Modeling with Regulated Activation

Networks

This chapter describes the RAN’s non-convex concept modeling technique, and is based upon
the following National/International Conferences and posters, and part of under review Journal
article. Following is the list of articles and the Technical reports:

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Learning Non-Convex Abstract

Concepts with Regulated Activation Networks, Journal of Annals of Mathematics and Artificial Intelligence, Springer,

2020. (Sharma et al., 2020b)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Perceiving Abstract Concepts

Via Evolving Computational Cognitive Modeling, International Joint Conference on Neural Networks (IJCNN),

IEEE World Congress on Computational Intelligence (IEEE WCCI), Rio de Janeiro, Brazil, 2018. (Sharma et al.,

2018a)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto, F. Amı́lcar Cardoso, Ngombo Armando,Duarte Raposo,

Marcelo Fernandes, André Rodrigues , Jorge Sá Silva, Hugo Gonçalo Oliveira, Luis Macedo, Fernando Boavida,

Unveiling Markers of Stress Via Smartphone Usage 24th Portuguese Conference on Pattern Recognition, Coimbra

Portugal, RecPad-2018. (Sharma et al., 2018c)

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Identifying Psychological

Bio-markers Computationally with Regulated Activation Networks, in Encontro Ciência ’18 (Poster), 2018.
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4.1 Introduction

Investigations related to concepts is an essential domain in cognitive and psychological research.

Theoretically, concepts pertain to process-oriented, symbolic or distributed, and knowledge-

based conceptual representations (Kiefer and Pulvermüller, 2012). Usually, these conceptual

representations are actualized via mathematical, theoretical (conceptual), or computational

cognitive modeling approaches (Bechtel et al., 1998). In general, concepts are a hierarchy, where,

at a higher level abstract concepts are placed, and concrete concepts are situated at, relatively,

lower levels, thus, it is evident to infer the abstract concepts as the congregation of concrete

concepts (Rosch et al., 1976, Tversky and Hemenway, 1984). There have been efforts to study

abstract concepts mathematically (Saitta and Zucker, 1998), and theoretically (Borghi et al.,

2018, 2017), however, they are seldom addressed computationally (Kiefer and Pulvermüller,

2012). This chapter proposes a computational modeling approach that builds a representation

of non-convex abstract concepts via an evolving topology.

Initial computational modeling research (Rolls et al., 2008, Kyaga et al., 2013, Braver et al.,

1999, O’Reilly, 2006) not only endorsed the potential of computational cognitive modeling but

also helped researchers to understand the cognitive and psychological processes, validating the

existing theories and encouraging to conceive or propose a new hypothesis. Computational

cognitive modeling mainly comprises three types of techniques: first, are biologically inspired

connectionist models Artificial Neural Networks (ANNs) (Van Gerven and Bohte, 2018), in-

cluding Restricted Boltzmann Machine (RBMs) (Van Gerven and Bohte, 2018), Stacked Auto-

Encoders (Vincent et al., 2010), Deep Neural Networks (Collobert and Weston, 2008) and

Convolution Neural Networks (Krizhevsky et al., 2017), showing a remarkable contribution in

the field like classification, and feature recognition; second, are symbolic cognitive architectures

that, typically, conforms to Newell’s symbol system1 and are usually implemented as the if-

then-else set of rules and operations. LIDA (Madl and Franklin, 2015), SOAR (Laird, 2012),

ACT-R (Anderson et al., 1997) are a few symbolic cognitive architectures and contributed to

almost all domains of Artificial Intelligence (AI) (such as attention, memory, language trans-

lation, decision making, etc.); the third category belongs to systems that are a blend of both

symbolic and distributed systems such as CLARION (Sun and Peterson, 1996).

The computational modeling approach introduced in this chapter is a protraction of Regulated

Activation Network (RAN) modeling (Pinto and Sharma, 2016) (as described in Chapter 3).

RAN’s model is uniquely hybrid, it is not only symbolic, and distributed, but also spatial, i.e.,

considers a 〈feature-value〉 pair of each attribute as a point in n-dimensional feature hyperspace.

With RANs modeling, first convex abstract concepts are identified; further, similar convex ab-

stract concepts are represented by a node, depicting non-convex abstract concepts (see Figure 4.1

1A system that contains memory (of tokens, the physical representation of a symbol), symbols (tokens that
represent distal information), operations (that manipulate symbols), interpretations (of symbols to perform op-
erations), and capacities (memory, composability, and interpretability).
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Figure 4.1: Elucidation of geometric understanding of convex and non-convex concepts. A
geometric region is said to be convex when any line segment joining any two points lie entirely
within the region, as shown by the diagram of convex concepts and convex abstract concepts.
The non-convex regions are those where any line segment joining any two points falls out of the
region. This Figure also illustrates the formation of convex or non-convex abstract concept via

an amalgamation of two or more circular concrete convex concepts.

for the description of convex and non-convex concept geometric relevance, and how a set for

concrete convex concepts tend to represent convex and non-convex abstract concepts). Besides

being hybrid, RANs modeling exhibits a dynamic topology by arbitrarily growing the network

upon identifying abstract concepts, both convex and non-convex, and forming their respective

layers. In this chapter, RANs methodology is illustrated with an artificially generated data (i.e.

Toy-data2) and demonstrate how cognitive functions of concept creation, learning and activa-

tion propagation are simulated. An experiment, identical to Toy-data2 was performed with data

from Human Activity Recognition problem, in pursuit of determining abstract concepts depict-

ing Mobility and Immobility. A study is also reported through this chapter, illustrating how the

RAN’s model can be beneficial in determining psychological and physiological markers (such

as stress and illness), using a Sleep Detection data obtained from the Internet of Everything

(IoE) (Joseph et al., 2017) Source, i.e., smartphone app ISABELA2 from project SOCIALITE3

(Armando et al., 2017). Further, RAN’s proof of concept as a classifier is provided using the four

benchmark datasets obtained from the UCI machine learning repository. Similar to Chapter 3,

the RANs classification capability is exploited to prove the hypothesis related to non-convex

abstract concept modeling.

The formulation of this chapter is as follows: In Section 4.2 the entire non-convex concept

modeling with RANs is explained using Toy-data2; Experiment and outcome with Toy-data,

Human Activity Recognition data, Sleep Detection data and four datasets UCI Machine Learn-

ing Repository is reported in Section 4.3; Section 4.4 puts forward the conclusions.

2IoT Student Advisor and BEst Lifestyle Analyzer (ISABELA)
3Social Oriented Internet of Things Architecture, Solutions and Environment

https://www.cisuc.uc.pt/projects/show/215
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Figure 4.2: Plot of the artificially generated 2-D data (Toy-data2). The graph shows nine
clusters depicted as Class-1,..., Class-9 along with their respective centroids (C1,..., C9). The
Figure also marks three non-convex abstract concept (NAC) regions that are being determined

by RANs methodology.

4.2 Non-convex Concept Modeling with RANs

The proposed methodology of RANs modeling incorporates nine core steps performed in three

pipelined stages (the Steps 1-to-4 are already explained in Chapter 3). Besides these steps, the

technique also has an optional method to associate the determined non-convex abstract concepts

with the category label of input data. The section begins with the details related to notations,

assumptions, boundaries, and data pre-processing methods suitable for RANs approach. Later,

the RANs modeling is detailed using an artificially generated 2-D data, that has 5400 instances

spread into nine categories, as shown in Figure 4.2.

RANs modeling is performed in three stages, where Stage-1 contains three steps for representing

and learning convex abstract concepts, as described in Chapter 3. The Stage-2 concerns with

two operations to carry out similarity relation learning while relaying the input data to newly

created convex abstract concept layer. Stage-3 consists of four steps related to the creation,

learning and activation propagation, to model non-convex abstract concepts. The RANs model

described in this chapter simulates the cognitive functions of concept creation, learning and

activation propagation. Unlike the three similar cognitive function in Chapter 3, this chapter

introduces simulations related to a non-convex concept creation and activation propagation
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Table 4.1: Notations

Notation Description

W Convex concept Inter-layer weight matrix
W ′ Abstract concept Inter-layer weight matrix
w Similarity relation weight matrix
C Cluster center or centroids
A Intermediate activation
A′ Output activation
a Input activation
i, k, j Variables to represent node index for 0th, 1st and 2nd layer respectively
m,n Arbitrary node indexes for any layer
I Ith instance of input data
f(x) Transfer function to obtain similarity relation
t Variable used to depict intermediate index
na Size of input Vector at Layer-0
nA Size of convex abstract concept vector at Layer-1
nA′ Size of non-convex abstract concept vector at Layer-2

cognitive functions. The chapter also describes two new learning cognitive functions. Appendix

A describes the optional method for labeling of non-convex abstract concepts.

4.2.1 Stage-1 Convex Concept Modeling

Step 1: Convex concept Identification (CCI)

The CCI operation (detailed in Section 3.3.1 of Chapter 3) is applied at the input level, i.e., at

Layer-0 (see Figure 4.3). In this experiment, the K-means (Hartigan and Wong, 1979) clustering

algorithm was used to identify nine groups and their centers at Layer-0 (see Step-1, in Stage-1

of Figure 4.3). The centroids recognized in the CCI process are used as learning (detailed in

Section 4.2.1). Figure 4.2 displays the centroids (C1, ..., C9) of all the clusters, recognized as

Cluster Representative Data Points (CRDP) of all nine classes.

Step 2: Convex Abstract Concept Creation (CACC)

In CACC (detailed in Section 3.3.2 of Chapter 3), we create a new layer (Layer-1) having nine

nodes (see Step-2, in Stage-1 of Figure 4.3). Each node at Layer-1 acts as a convex abstract

concept for clusters identified in CCI, Figure 4.2 shows all nine groups represented by the nine

nodes in Layer-1, in Step-2 at Stage-1 of Figure 4.2.

Step 3: Convex Concept Inter-Layer Weight (CCILW) Assignment

In the experiment, nine cluster centers were identified in CCI process and learned as CCILW

W (the CCILW assignment is explained in Section 3.3.3 of Chapter 3). The weight W1 is
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Figure 4.3: The 3 stages in RANs modeling technique: Stage-1 has 3 steps to model convexity,
Stage-2 comprises 2-steps primarily to learn similarity relation, and Stage-3 contains the last

four steps of Non-convex modeling.

(W1,1,W2,1) (the center-points of cluster C1 see Figure 4.2 for the center of cluster C1). Conse-

quently, a 2×9 weight matrix W was obtained as the relation learned between nodes of Layer-0

and Layer-1 (see Step-3 in Figure 4.3).

4.2.2 Stage-2 Intra Layer Learning

Step 4: Convex Abstract Concept Upward Activation Propagation (CACUAP)

After modeling the CACs in Stage-1 of RANs methodology, Stage-2 follows with Step-4 for prop-

agating i-dimensional input data instances ai from the input layer (Layer-0) to k-dimensional

output vector Ak at CAC layer (Layer-1). The Algorithm 1 (described in Section 3.3.4 of

Chapter 3) is used to propagate the activation from input layer to CAC layer. Algorithm 1

demonstrates how the CCILW is utilized as an attractor to determine activation at nodes in the

CAC layer (Layer-1) and exhibiting the DoC with which the CAC node in CAC layer represents

the input data.
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Step 5: Concept Similarity Relation Learning (CSRL)

The main contribution of this chapter starts from this step-5, here first learning mechanism is

simulated where associations among the peer concepts are established. The prime objective of

the CSRL process is achieved by determining the alikeness among the concepts at CAC layer

(Layer-1) and interrelate them through a similarity function. This function also emulates the

activation behavior of biological neurons, i.e., upon receiving an input stimulus several neurons

that get activated concurrently are termed as affine, whereas the ones that are relatively inac-

tive simultaneously may not be considered identical. This biological phenomenon is expressed

mathematically through Equation 4.1, to calculate a pair-wise relation/weight wm→n between

node m, and node n at CAC layer (Layer-1). The numerator (1 − |AIm − AIn|) calculates the

similarity of activation4 of node m w.r.t. node n, and the product (1−AIm)∗ (1−AIn) is used to

reduce the impact of similarity on weight wm→n when both activations (i.e. AIm, and AIn) are

very close to 0, though, similar. Consequently, we obtain a symmetric k× k matrix as, learned,

concept similarity relation weights (CSRW) among the nodes within the layer.

wm→n =

∑
I

[(1− |AIm −AIn|)− (1−AIm) ∗ (1−AIn)]∑
I

[1− (1−AIm) ∗ (1−AIn)]
(4.1)

where m ∈ 1, ...., k; n ∈ 1, ...., k; and m 6= n

In the experiment concerned with Toy-data2 problem, the propagation of input data instances

to CAC layer (Layer-1) generates a 9× 9 matrix.

4.2.3 Stage-3 Non-convex Abstract Concept Modeling

Step 6: Non-convex Abstract Concept Identification (NACI)

NACI is the primary step (Step-6) in Stage-3 of RANs modeling (see Figure 4.3). The purpose of

this operation is to recognize the CACs that are akin to one another, convene them, and represent

them by a unique concept non-convex in nature (detailed in Section 4.2.3). To determine related

CACs, the CSRW (see Section 4.2.2) is inspected, i.e., each weight wk,k viewed and a set of

CSRWs are selected as potential Similarity-Threshold (ST)5 values. Further, an ST is chosen

heuristically. For example, in Toy-data2 use-case, at Layer-1, we compare this threshold (ST)

value of 0.72 with all CSRW from node C1 i.e. w1→2, w1→3, w1→k, w1→9, and found nodes

C2, and C3 which are closely related. The process terminates when all the nodes are traversed

either in groups or individually. In our experiment, we recognized three non-convex classes as

non-convex abstract concept (NAC) (NAC1, NAC2, and NAC3 see Figure 4.2).

4AI
m is the activation of Ith instance of propagated data at node Cm in Layer-1, and similarly AI

n is the
activation of Ith instance of propagated data at node Cn. m 6= n, and m,n are integer in range [1, 9]

5At present this value is chosen manually from SLW matrix, by conducting several trial and selection process
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Step 7: Non-convex Abstract Concept Creation (NACC)

The second concept creation operation is simulated by dynamically creating a non-convex ab-

stract concept (NAC) layer (Layer-2 in the model shown in Stage-3 of Figure 4.3), relying upon

the number of related CACs determined in NACI operation. The nodes of the NAC layer rep-

resents the associated nodes of the underlying CAC layer (Layer-1). Figure 4.2 illustrates the

three sets, consisting of the three CACs in each group, forming three NACs (i.e., NAC1, NAC2,

and NAC3 see Figure 4.2). Further, a new NAC layer (Layer-2) is created dynamically with

three nodes (NAC1, NAC2, NAC3 in Stage-3 of Figure 4.3), representing the three discovered

convex concept groups at Layer-1.

Step 8: Non-convex Abstract Concept Inter-layer Learning (NACIL)

As aforestated, the NACs are representative of the underlying group of related CACs. The

relation between NACs and CACs is termed as non-convex concept Inter-Layer Weight (NCILW)

which is also determined during NACI operation. The relation between CAC layer (Layer-1)

and NAC layer (Layer-2) is conceived as binary relation so that the activation of the underlying

CAC nodes in Layer-1 impacts the activation of the related NAC(s) only, in layer-2. Hence, the

weights are binary where the value of W ′k,j is “1”, indicating the association of CAC node k in

layer-1 with node j in NAC layer-2, whereas the “0” value of W ′k,j signifies the dissociation of

node k in layer-1 with node j in NAC layer-2.

W ′ =



W ′1,1,W
′
1,2, . . . ,W

′
1,j

. . .

W ′t,1,W
′
t,2, . . . ,W

′
t,j

. . .

W ′k,1,W
′
k,2, . . . ,W

′
k,j


=


1, 1, 1, 0, 0, 0, 0, 0, 0

0, 0, 0, 1, 1, 1, 0, 0, 0

0, 0, 0, 0, 0, 0, 1, 1, 1

 (4.2)

Equation 4.2 shows the non-convex concept inter-layer weight (NCILW) a generic k× j matrix,

and a 3× 9 matrix learned from the Toy-data2 problem. The row corresponds to the number of

NAC nodes in Layer-2, whereas the columns point to the number of CAC nodes at CAC layer-1.

This NCILW matrix is the second learning simulation of this chapter.

Step 9: Non-convex Abstract Concept Upward Activation Propagation (NACUAP)

In this step the second activation propagation operation of RANs modeling which simulates the

activation propagation mechanism convex concept layer to non-convex concept layer. Having

generated the representation for NACs, the last step (Step-9) propagates activation of CACs of

Layer-1 to their respective NACs at Layer-2. Since, each NAC represents a set of CACs in Layer-

1 it is evident that NACs must exhibit high activation irrespective of which of its corresponding

CAC is active (i.e., a high activation must be observed a NAC node (at Layer-2), even though
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Algorithm 3: Non-convex Abstract Concept Upwards Activation Propagation algorithm

Input: Vector [A1, A2, ..., AnA ] as input at layer l + 1
Output: New activation vector [A′1, A′2, ..., A′nA′ ] in layer l + 2

foreach Node A′j in layer l + 2 do
Calculate Normalized Euclidean Distance:

A′j = [1−
nA∏
k=1

(1−W ′k,j ∗Ak)];

Where:
k= [1, 2, ...., nA];
j= [1, 2, ...., nA′ ];
Wk,j is NCILW see Equation 4.2

only one of its underlying CAC node (at Layer-1) gets high activation). For instance (see the

model in Stage-3 of Figure 4.3) if at Layer-1 only node C1 received high activation, whereas C2

and C3 get comparatively less activation, then also node NAC1 should receive high activation.

A′j = [1−
nA∏
k=1

(1−W ′k,j ∗Ak)] (4.3)

Equation 4.3 suffices the prerequisite as mentioned earlier of NACUAP operation; it enables

us to propagate the intermediate activation Ak from Layer-1 to obtain output activation A′j

at Layer-2. Since W ′k,j has binary values, hence only those nodes Ck that are represented by

node A′j , contribute activation (Ak) for the propagation operation. Algorithm 3 demonstrates

how the NACUAP technique is applied to obtain activation at NAC nodes in Layer-2, upon

receiving an intermediate activation at nodes in CAC layer-1.

4.2.4 Evaluation of RANs modeling

In order to use RANs, all three stages of the modeling procedure must be performed, by re-

alizing all nine steps in the order as described in Section 4.2. After the ninth step in Stage-3

a three-layered model will be obtained, where the first layer is the Input-layer (Layer-0), the

second layer (layer-1) is CAC layer, and the third layer (Layer-2) is NAC layer. To label the

NAC nodes at NAC layer (Layer-2) non-convex abstract concept labeling operation is performed

(see Appendix B.2), and consequently the input labels are attached to the NAC nodes. Further,

the NACL operation generates the True and Test labels to obtain the multi-class confusion

matrices. Later, the generated confusion matrix was used to calculate the evaluation metrics

Precision, Recall, F1-Score and Accuracy. The Operational points were also determined using

the Receiver Operation Characteristics (ROC) and Area Under Curve (AUC) analysis. Ap-

pendix B.3 describes the transformations of class-labels into binary labels and confidence-score

calculations for ROC-AUC analysis. Once the transformed binary labels and confidence-scores

are obtained the ROC curves are plotted to illustrate the operational points and determine the

AUC of each class being represented by individual NACs at NAC layer.
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The time complexity of Non-convex concept modeling is dependent upon complexity of all the

nine steps. The complexity of RAN’s Convex Concept Modeling is O(f(n)) (refer Section3.3.5

in Chapter 3) where f(n) is the complexity of the concept identifier (or clustering algorithm).

The complexity of CSRL method is given by equation 4.4, where n is number of data samples

and c is the number of nodes in the layer L.

f(n) = O(n ∗ c/2) (4.4)

In RANs modeling, the 4 operations related to Non-convex modeling at stage-3 has different

complexities: (1) the concept identification process is expressed as O(c2); (2) the concept cre-

ation has complexity of O(c’) where c’ is the number of groups of similar nodes; (3) the inter

layer learning also has complexity of O(c’) because it is an assignment operation and is equal

to number of identified groups of similar nodes; (4) the upward activation operation has the

complexity of O(n) when n is the number of data instances. Since c and c’ values are signifi-

cantly small therefore the overall complexity of the RANs modeling for creating a single layer

is expressed by equation 4.5.

T (n) = O(max {O(f(n)), O(n ∗ c/2), O(n)}) (4.5)

In a RAN’s model, where a K-means algorithm is used, it’s complexity is T (n) = O(n(k+2/p))

(O(n(k+2/p)) is the complexity K-means, refer Table 3.4 in Chapter 3 for complexities related

to different algorithms).

4.3 Empirical Design, Results, and Inferences

This section describes the experiments performed with RANs modeling, reports and discusses

results. The experiments were carried out with seven datasets; one set is an Artificially gener-

ated Toy-data2 problem (used in Section 4.2); another set is obtained from IoE source of project

SOCIALITE; five other datasets are benchmarks obtained from UCI machine learning reposi-

tory. With Toy-data2 30 iterations of the experiments were carried out, and with other datasets

10 times the experiments were performed for each dataset. Each iteration of the experiment is

the same as used in Chapter 3 (refer Appendix B for experimental setup elaboration). RANs

classification capability was compared with five different machine learning approaches, Multi-

layer Perceptron (MLP) (Rumelhart et al., 1986), Logistic Regression (LR) (Freedman, 2009), K

Nearest Neighbors (K-NN) (Altman, 1992), Stochastic Gradient Descent (SGD) (Zhang, 2004b),

and Restrict Boltzmann Machine pipelined with Logistic Regression (RBM+) (Hinton, 2012).
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(a) Performance metrics

(b) ROC-AUC Analysis

Figure 4.4: Illustration of performance evaluation and ROC-AUC analysis of RANs modeling
with Toy-data2 problem in nine research designs (RD). The ROC curve analysis plot depicts

the AUC observed while validating the model.

4.3.1 Experiment with Toy-data2

The hypothesis of this experiment is to illustrate that nine convex clusters (depicted as clusters

Class1, ..., Class9 in Figure 4.2) can be grouped and symbolically represented by three non-

convex abstract regions (shown as NAC1, NAC2, and NAC3 in Figure 4.2). This hypothesis can

also be validated through a classification operation. To validate the assumption as mentioned

earlier RANs modeling was performed with Toy-data set by traversing through nine steps as de-

scribed in Section 4.2, and including the optional labeling operation, NACL (see Appendix B.2).

The Stage-3 shows the pictorial view of the generated model in Figure 4.3. The nine CACs at

Layer-1 corresponds to the nine convex clusters in Figure 4.2, and the three NACs at Layer-2

represents the three non-convex groups having three CACs in each (i.e. in Stage-3 of Figure 4.3,

NAC1 is mapped to the set CAC1, CAC2, and CAC3, whereas NAC2 corresponds to set CAC4,
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Table 4.2: RANs Comparative Study with Toy-data2

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

RBM+ 80.10 ± 8.45 73.26 ± 7.74 68.26 ± 11.63 73.26 ± 7.74
K-NN 99.99 ± 0.006 99.99 ± 0.006 99.99 ± 0.006 99.99 ± 0.006
LR 99.99 ± 0.002 99.99 ± 0.002 99.99 ± 0.002 99.99 ± 0.002
MLP 99.54 ± 1.36 88.48 ± 1.52 99.48 ± 1.53 99.48 ± 1.52
RANs 98.66 ± 0.23 98.48 ± 0.37 98.47 ± 0.40 98.48 ± 0.37
SGD 99.98 ± 0.02 99.98 ± 0.02 99.98 ± 0.02 99.98 ± 0.02

Figure 4.5: Model generated with the RANs approach for UCIHAR datasets. The Nodes
NAC1 and NAC2 represents Motion and Stationary non-convex abstract concepts. The nodes
C1,.., C6 represents the convex abstract concepts labeled as six activities Walking, Walk-

ing upstairs, Walking downstairs, Sitting, Standing, and Laying in the input data.

CAC5, and CAC6, and NAC3 represents the set CAC7, CAC8, and CAC9). The graph in Fig-

ure 4.4a shows the performance of the RAN’s model for all RDs, depicting 98% (approximate)

values for Precision, Recall, F1-Score, and Accuracy. The ROC-AUC analysis shown in Fig-

ure 4.4b for all RDs also exhibits the satisfactory operational characteristic of the model. The

comparative study conducted with five distinct methodologies, shown in Table 4.2, portrays

the RAN’s fair performance, with an added advantage of being unsupervised, and having the

ability to automatically map the CACs to NACs (i.e., in all five techniques the nine labels are

converted in advance into three tags before evaluating, whereas this mapping is intrinsic in

RANs methodology).

4.3.2 RANs Demonstration with Human Activity Recognition Problem

The goal of this experiment is to exhibit RANs methodology with benchmark data, and to show

how it can represent similar categories of convex regions by the non-convex abstract concept.

The use case of this illustration belonged to Human Activity Recognition (HAR) problem do-

main and obtained from the UCI Machine Learning Repository (its the same UCIHAR (Anguita

et al., 2013) dataset is used in Section 3.4.2 of Chapter 3. The data was preprocessed to comply

with the RANs requirement. The six labels of the dataset was merged to form two labels Motion

and Stationary as described in Section 3.4.2 of Chapter 3.
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(a) Evaluation metric

(b) ROC-AUC

Figure 4.6: Illustration of performance evaluation and ROC-AUC analysis in nine research
designs (RD) for the RAN’s model obtained with UCIHAR dataset. The ROC analysis is carried
out for the two non-convex abstract concepts, i.e., Motion and Stationary, at Layer-2 of the

generated model.

Table 4.3: RANs Comparative Study with UCIHAR dataset

Model Precision (%) Recall (%) F1-score (%) Accuracy (%)

RBM+ 99.87 ± 0.05 99.87 ± 0.05 99.87 ± 0.05 99.79 ± 0.05
K-NN 99.94 ± 0.03 99.94 ± 0.03 99.94 ± 0.03 99.95 ± 0.03
LR 99.57 ± 0.22 99.57 ± 0.22 99.57 ± 0.22 99.57 ± 0.22
MLP 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02 99.96 ± 0.02
RANs 96.97 ± 0.22 96.57 ± 0.27 96.53 ± 0.28 96.57 ± 0.27
SGD 99.95 ± 0.03 99.95 ± 0.03 99.95 ± 0.03 99.95 ± 0.03
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Figure 4.7: Model generated by RANs methodology with sleep detection data. The input
layer has five nodes, Layer-1 has twelve CAC nodes, and Layer-2 depicts the two NAC nodes

representing Active-Subject (NAC1), and Inactive-Subject (NAC2) respectively.

The modeling procedure commenced by selecting K-means as concept identifier with ‘K’ equal to

6, to determine six CACs as the convex abstract concept. The modeling progressed until Step-5

of Stage-2, whereby the learned CSRW was inspected to determine the Similarity-Threshold

(ST) with a value of 0.75. Having obtained the ST value, Stage-3 realizes the RANs modeling,

and representation is acquired as depicted in Figure 4.5. Upon performing the labeling operation

NACL, it was observed that input data labels Walking, Walking upstairs, Walking downstairs

were mapped to node NAC1. The categories Sitting, Standing, and Laying were represented by

node NAC2. The label assignment commensurates with the hypothesis made earlier. The M-B

and I-B are represented as non-convex abstract concepts obtaining an outcome of 96% (ca.)

for all the parameters of validation (see Figure 4.6a). The ROC-AUC analysis also reflected a

similar observation with an average area under the curve of 99% (approximate) for both NACs,

i.e., Motion, and Stationary (see Figure 4.6b). To carry out comparative study the input labels

were transformed into a binary label where Walking, Walking upstairs, Walking downstairs are

grouped to form the first category (e.g., Label-1). The labels Sitting, Standing, and Laying

was also combined to get the other set (e.g., Label-2). Further, these altered input labels were

applied for validation. Table 4.3 logs the result of the comparisons displaying an acceptable

performance, though, a bit lesser than the other techniques, with an advantage of automatically

identifying, and associating input labels to NACs at Layer-2.

4.3.3 RANs Model Usage for Psychological and Physiological Bio-marking

The purpose of this experiment is to demonstrate the usability of RANs methodology with

unlabeled data. Further exemplifying the identification of the psychological or physiological

conditions of three subjects (students), based upon the statistical inferences for each student.

The experiment uses sleep detection data (Sharma et al., 2017b), obtained from a smartphone

app ISABELA of project SOCIALITE by capturing activities, the day of the week, light, sound,
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phone utility usage, and time. For our experiment, only five attributes were utilized (Activity,

Day-of-week, Light, Sound, and Phone-Lock-State).

(a) Evaluation metric

(b) ROC-AUC

Figure 4.8: Illustration of performance evaluation and ROC-AUC analysis of RANs modeling
with Sleep Detection Data in nine Research Designs (RD). The ROC curve analysis plot depicts

the AUC observed while validating the model.

Whether its social activity and inactivity, or physical activity and inactivity, both are responsible

for adverse cognitive conditions (Cacioppo and Hawkley, 2009, Luanaigh and Lawlor, 2008,

Sampson et al., 2009). This study aims to investigate students psychological and physiological

conditions by modeling two abstract concepts “Active-Subject” (A-S), and “Inactive-Subject”

(I-S), from the given data. The experiment begins by pre-processing the data, selecting K-

mean as concept identifier with k value as 12 (value of ‘k’ is arbitrarily chosen to represent

the number of CACs to be identified in Layer-1). Further, the modeling process is carried out

until Step-5 to determine concept similarity relation weights (CSRW). Having inspected the
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Table 4.4: Active-State (A-S) and Inactive-State (I-S) observations of the Three Subjects
using model generated by RANs approach

Student-1 Student-2 Student-3
Is-Inactive Is-Active Is-Inactive Is-Active Is-Inactive Is-Active

Days PoH
I-S
(%)

DoC
(%)

A-S
(%)

DoC
(%)

I-S
(%)

DoC
(%)

A-S
(%)

DoC
(%)

I-S
(%)

DoC
(%)

A-S
(%)

DoC
(%)

E-MH 99.57 89.09 0.43 61.48 0.03 51.68 99.97 72.78 28.60 52.86 71.40 64.19
M-H 89.17 91.18 10.83 72.09 22.57 69.21 77.43 85.25 8.55 63.19 91.45 87.67
AF-H 89.61 91.35 10.39 71.29 84.65 90.07 15.35 75.67 50.00 64.68 50.00 65.17

Weekdays

E-H 83.61 89.30 16.39 74.33 26.78 67.10 73.22 80.62 0.13 54.89 99.87 85.75

E-MH 98.63 86.91 1.37 60.01 0.00 40.59 100.0 68.63 0.00 51.47 100.0 72.56
M-H 93.14 93.98 6.85 70.34 29.09 69.12 70.91 82.22 5.33 57.91 94.67 83.40
AF-H 95.03 93.51 4.97 69.70 3.06 62.33 96.94 87.29 57.58 79.35 42.42 76.47

Weekends

E-H 86.94 89.35 13.06 74.01 34.85 69.98 65.15 78.30 29.87 70.89 70.13 85.08

E-MH [Early Morning Hours 4 Am -To- 6 Am]; M-H [Morning Hours 6:01 Am -To- 11:59 Am]
AF-H [Afternoon Hours 12 Pm -To- 5 Pm]; E-H [Evening Hours 5:01 Pm -To- 9:59 Pm]
PoH [Period of Hours]; I-S [Inactive-State]; A-S [Active-State]; DoC [Degree of Confidence]

CSRW, a suitable Similarity-Threshold (ST) was selected with a value of 0.70. Later, a model

is built (see Figure 4.7) by performing all four steps of Stage-3. Layer-2 in Figure 4.7 depicts

one non-convex abstract concept node NAC1 as A-S, and the other node NAC2 as I-S. Thus,

we obtain two abstract nodes as expected.

For evaluating the generated model the data was also labeled for two classes, “Active-Subjects”

(A-S), and “Inactive-Subject” (I-S), based upon following conditions:

� If Phone is locked and Activities are {Still, Tilting, and Unknown} and Luminescence

are {‘Pitch Black’, ‘Very Dark’, ‘Dark Indoors’, ‘Dim Indoors’, ‘Dim Outdoors’, ‘Cloudy

Outdoors’} and Sound value 〈=12000 units Then Label the instance as an Inactive-

Subject

� Else label the instance as an Active-Subject

Upon conducting the validation, the performance metrics were observed with Precision of 88.81%

(ca.), Recall of 85.95% (ca.), F1-Score of 85.31% (ca.) and Accuracy of 85.95% (ca.), see

Figure 4.8a for the performance of RANs for all Research Designs. The ROC analysis also

displayed satisfactory results with AUC of 93.15%(ca.) for A-S, and 90.71% (ca.) for I-S,

Figure 4.8b depict s the average AUC for both classes in all RDs.

The model, generated with the entire dataset, was considered as the generic Model for identifying

A-S and I-S of students. The comprehensive model determining Active and Inactive states

of students is used to discover percentage amount of A-S and I-S in three students for four

Period-of-Hours (PoH) (see Table 4.4 for period classification), during weekdays, and weekend

separately. Eight test cases, representing each student, were extracted from data altogether 24

test cases were created for three students. Each test case was passed through the generic model

and percentage of Activity or Inactivity is calculated for the entire test set, for example, see
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Figure 4.4 the test data of Early Morning Hour (E-MH) during weekdays for Student-1 depicted

0.42% of Active-State and 99.57% of Inactive-State. Table 4.4 displays all 24 test cases.

Generally, the following is presumably an idle behavior of students:

� On all days students are usually in Active-State during Morning Hours (M-H), Evening

Hours (E-H), Afternoon Hours (AF-H).

� During the weekend at AF-H Inactive-State can be observed with the student as an ex-

ception.

� Every day at Early Morning Hours (E-MH) most students are in Inactive-State.

Based upon the afore-stated nature of student Activity interesting inference can be made, see

Table 4.4. In Table 4.4 the A-S and I-S states of Student-2 and Student-3 resemble the idle

state of student behavior indicating a healthy mental and physical condition of the students. It

can also be observed in Table 4.4 that during weekdays, Student-2 was mostly inactive in A-FH

and Student-3 was mainly active in E-MH showing variation in normal sleep behavior, which

is very much related to stress. An atypical outcome was observed with Student-1’s test sets.

The student was always in an Inactive-State, it can be a sign of unfavorable psychological and

physical conditions. The average Degree of Confidence (DoC) values, also endorses the inferences

mentioned above based on their activity or inactivity (DoC explained in Section 4.2.2).

4.3.4 Substantiation of RANs modeling as Classifier

This portion of the chapter focuses on establishing RANs ability to perform classification task

w.r.t distinct domains. The experiments were conducted to support the RANs usability with

four benchmark data sets. The classification presented in this section identifies categories,

provided with the labels of the datasets6, as non-convex abstract concepts. A comparative

study was also performed using five methodologies as mentioned earlier.

The Mice Protein (Higuera et al., 2015), Breast Cancer 569 (Street et al., 1993) datasets repre-

sent data from Medical domain, whereas Credit Approval (Quinlan, 1999) is a finance-related

data, and the classical IRIS (Fisher, 1936) dataset is from botanical discipline. All investiga-

tions uses the pre-processed data, and K-mean algorithm as a concept identifier with ‘K’ value

as 12 to identify twelve convex abstract concepts. In all use-cases, after Step-5, the CSRWs

were inspected to identify appropriate Similarity-Threshold7 values. All four studies execute the

Stage-3, and models were obtained having 8, 3, 2, and 2 non-convex abstract nodes at Layer-2

for Mice protein, IRIS, Breast Cancer 569 and Credit Approval datasets, respectively.

6In experiments demonstrated in Section 4.3.1, and Section 4.3.2 the data labels are to be transformed based
upon the hypothesis non-convex abstract concept, however experiment in Section 4.3.4 considers data’s original
categories to be identified as non-convex abstract concept, and therefore original labels are used in validation.

7Refer Table B.3 of Appendix ?? for ST values used in the experiments
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(a) Performance metrics

(b) ROC-AUC

Figure 4.9: Illustration of performance evaluation and ROC-AUC analysis of RANs modeling
with four datasets of distinct domains. The graph 4.9a shows the Precision, Recall, F1-Score
and Accuracy metrics observed while evaluating the RAN’s model. The graph 4.9b depicts the
Area Under Curve (AUC) while performing ROC curve analysis for RAN’s model generated
with four datasets. The graph shows the plot of percentage AUC for classes 1 to 8. In the
graph 4.9b class labels of each dataset is serially mapped as: Mice protein {c-CS-s (Class-
1), c-CS-m (Class-2), c-SC-s (Class-3), c-SC-m (Class-4), t-CS-s (Class-5), t-CS-m (Class-6),
t-SC-s (Class-7), and t-SC-m (Class-8)}; IRIS) {Setosa (Class-1), Versicolar (Class-2), and
Verginica (Class-3)}; Breast Cancer 569 {Benign (Class-1), and Malignant (Class-2)}; Credit

Approval {Postitive (Class-1), Negative (Class-2)}
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Figure 4.9a shows the evaluation graph plotted for observed Precision, Recall, F1-Score, and

Accuracy metrics. The results with Mice Protein data depicts a Precision of 99.92% (ca.),

Recall of 79.5% (ca.), F1-Score of 86.74% (ca.) and Accuracy of 79.5% (ca.). The observations

with Breast Cancer 569 dataset obtained approximately 96.38%, 92.45%, 93.74%, and 92.45% of

evaluation for the four metrics. With the IRIS dataset, the outcome was approximately 93.64%,

86.86%, 88.06%, and 86.86% for the four metrics. Furthermore, the assessment with Credit

Approval data displayed the score values of 89.43%, 78.94%, 82.40%, and 78.94% (ca.) for

four valuation parameters. Figure 4.9b shows the ROC curve analysis for the various classes in

four datasets. In Mice Protein dataset the classes c-CS-s, c-CS-m, c-SC-s, c-SC-m observed to

have higher representation, i.e., AUC 75.53%, 72.54%, 65.73%, 62.87% for each class. Whereas

the remaining four categories t-CS-s, t-CS-m, t-SC-s, and t-SC-m depicted relatively lower

operation characteristics with AUC of 57.79%, 53.29%, 52.16% and 51.04%, respectively. The

ROC-AUC analysis of three groups Setosa, Versicolar, and Verginica of IRIS data obtained

96.54%, 98.63% and 98.04% of AUC for all three classes. The operational characteristics for

the Breast Cancer 569 data were 89.39% and 89.41% of AUC for Benign, and Malignant NACs.

Lastly, The AUC of Positive, Negative types of Credit Approval data were 84.01%, and 80.78%.

Table 4.5 logs the comparative study of RANs performance using four datasets (the best results

are highlighted in bold and the worst outcome are displayed in italics). The experiment used

the results of RANs methodology along with five methods (i.e., RBM+, K-NN, LR, MLP, and

SGD) for comparisons. In the outcome of IRIS, Breast Cancer 569 data the RANs performance

is not only satisfactory but also competent with other methodologies especially with RBM+

in both datasets. The outcome of the analysis of Mice Protein and Credit Approval datasets

with RANs revealed a decent performance, with relatively better results when compared with

valuation produced by RBM with both the datasets. Collectively, the assessments substantiate

the RANs capability as a classifier, with the benefit of being an unsupervised modeling approach.

Figure 4.10 plots four graphs, showing Precision, Recall, F1-Score, and Accuracy values for nine

Research Designs. While traversing from RD-1 to RD-9, the size of the training data varies from

90% to 10%. Despite having a variable RD, it appears that the performance of RANs remains,

relatively, same for all datasets. The performance with IRIS and Credit Approval data showed

the maximum variance, whereas, the efficiency with Sleep Data and Toy-data2 were almost the

same in all RDs. This ability to learn and perform equivalently irrespective of the size of the

training data displayed a noticeable feature of RANs modeling.
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4.4 Conclusions

Concrete concepts (such as object table, or activity like walking, speaking, sitting, etc.) are,

usually, identified by their intrinsic properties, and have been represented theoretically, math-

ematically and computationally. The notion of abstract concepts (such as love, freedom, and

Is-active) are often debated but seldom explored. In humans, abstract concepts are of great

importance, because, it capacitates us with relative comprehension and enables a contextual

understanding of allied concepts. In an endeavor to computationally model, and represent the

contextually similar concepts as abstract concepts, an approach, named Regulated Activation

Network (RAN), is proposed with this chapter. The RANs modeling is hybrid (i.e., it is sym-

bolic, distributed, and spatial), and exhibits an evolving topology with an unsupervised learning

mechanism.

The RANs modeling consists of nine steps batched into three stages (Stage-1 learns and rep-

resents convex abstract concepts, Stage-2 for concept similarity relation learning, and Stage-3

for learning and representing non-convex abstract concepts), along with an optional method to

associate labels with learned abstract concepts. To demonstrate the RANs methodology a two

dimensional artificially generated data (Toy-data2) was used. The generated model observed a

performance with Precision of 98.66% (ca.), Recall of 98.48% (ca.), F1-Score of 98.48% (ca.) and

Accuracy of 98.48% (ca.), and was discovered to be competent with five classifiers, Multilayer

Perceptron (MLP), Restricted Boltzmann Machine pipelined with Logistic Regression (RBM+),

Logistic Regression (LR), K Nearest Neighbor (K-NN), and Stochastic Gradient Descent (SGD).

While building the RAN model in this chapter three cognitive were also simulated depicting:

2 concept creation mechanisms; 2 activation propagation mechanisms; and 3 learning mecha-

nisms. Another experiment with RANs used a benchmark data of Human Activity Recognition

obtained from the UCI machine learning repository. The objective of this investigation was

to automatically identify six activities (i.e., Walking, Walking upstairs, Walking downstairs,

Sitting, Standing, and Laying) by two non-convex abstract concepts as Mobility (representing

Walking, Walking upstairs, Walking downstairs), and Immobility (representing Sitting, Stand-

ing, and Laying). The results reflected that the model exhibited a satisfactory outcome with

Precision of 96.97% (ca.), Recall of 96.57% (ca.), F1-Score of 96.53% (ca.) and Accuracy of

96.57% (ca.).

Additionally, another experiment was performed with RANs modeling using Sleep Detection

data obtained from ISABELLA smartphone app of project SOCIALITE. With this study, a

generic model was generated capturing Active and Inactive states of students. Further, a probe

was made on the three student subjects by using afore generated RAN’s model, and it was

observed that one of the three students was mostly Inactive. This observation indicated the

possibility of ill physical or psychological conditions of the student. Demonstration of RANs

modeling with four datasets obtained from the UCI Machine Learning Repository puts forward
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the proof of concept of RAN’s classification capability. The results unfolded a notable feature

of RANs methodology that enables efficient modeling regardless of the size of the training data

size.

The concept similarity relation learning weights (CSRLW) introduced in this Chapter are used

in the following Chapter 5 for simulating the recall operations.





Chapter 5

Cognitive Behavior Modeling with

Regulated Activation Networks

This chapter describes the cognitive behavior simulation of RAN’s convex concept modeling
technique and is based upon the following International Conferences and Technical report,
under review Journal article.

� This work received recognition from Innovation Radar of European Union as one of the 5 “excellent innovations”

that resulted from European projects in the year 2017, https://www.innoradar.eu/innovation/20221.

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Emulation of Cued Recall of

Abstract Concepts Via Regulated Activation Networks. IEEE Access. Submitted June 2020.

� Rahul Sharma, Bernardete Ribeiro, Alexandre Miguel Pinto and Amı́lcar F. Cardoso, Reconstructing Abstract Con-

cepts and their Blends Via Computational Cognitive Modeling. International Joint Conference of Neural Network,

July 2020.

� Alexandre Miguel Pinto, and Rahul Sharma. Concept Learning, Recall, Blending with Regulated Activation Network.

International Conference on Cognitive Modeling (ICCM) 2016. (Pinto and Sharma, 2016)

� Alexandre Miguel Pinto, Rahul Sharma, Regulated Activation Network, deliverable D2.4 Project Concept Creation

Technology (ConCreTe), Small or Medium-Scale Research Project ICT- Future and Emerging Technology (FET)

http://conceptcreationtechnology.eu/?q=node/43. Technical Report, 2016.
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5.1 Introduction

Concepts are an important part of investigations in cognitive and psychological research. Usu-

ally, the conceptual representations may be classified into process-oriented, symbolic or dis-

tributed, and knowledge-based (Kiefer and Pulvermüller, 2012, Bechtel et al., 1998). In general,

a hierarchical structure defines an organization of concepts where the concrete concepts are

placed in the lower level, and the abstract concepts occupy the higher levels. Therefore, abstract

concepts are also seen as the generalization of concrete concepts (Rosch et al., 1976, Tversky

and Hemenway, 1984). abstract concepts are studied mathematically (Saitta and Zucker, 1998),

and psychologically (Borghi et al., 2018, 2017), but computational studies are scarce (Kiefer and

Pulvermüller, 2012). This chapter uses RAN’s convex concept modeling (Sharma et al., 2018b,

2017b) (also described in Chapter 3), and Intra-Layer Learning (discussed in non-convex ab-

stract concept modeling in Chaptet 4) to perform recall simulations.

The prime aspect of this chapter is to emulate the recall procedure. Context plays an emi-

nent role in the recall of concrete concepts (such as the word table). This recall operation of

concrete concepts is often termed as concreteness effect. The concreteness effect is expressed

through the dual-coding theory (Paivio, 1990, 1971) and context availability hypothesis (Schwa-

nenflugel et al., 1992). The dual-coding theory discusses two independent representations: the

verbal system and the imaginal system, corresponding to linguistic and non-verbal information

processing. According to this theory, concrete concepts (concrete words) and abstract concepts

(abstract words) are both defined by the verbal system. However, the imaginal system describes

only concrete concepts. With concrete words, both the systems (i.e, verbal and imaginal) gets

activated, providing relevant contextual information during the recall process, whereas recall

of abstract concepts involves only one system therefore lacks in providing contextual informa-

tion. According to the context availability theory, the concreteness effect is determined by

prior knowledge and inciting stimuli. Individually, abstract concepts are difficult to understand

in context retrieval when compared with concrete concepts, which also complicates their re-

call procedure. An interesting work discovered that, when response pairs of abstract concepts

are relevantly related to one another, they provide context for the abstract stimuli (Bransford

and McCarrell, 1974). Hence, with an adequate context relation defined among the abstract

concepts, their recall can be realized. This work proposes an approach that uses the learned

associations (CSRL process described in Chapter 4) among the abstract concepts to simulate a

regulated recall operation.

Computational models are useful in understanding the psychological and cognitive phenomena,

validating the existing cognitive theories, besides helping to formulate fresh ideas related to

cognition (Rolls et al., 2008, Kyaga et al., 2013, Braver et al., 1999, O’Reilly, 2006). The

representations produced by computational approaches are amodal (symbolic), multimodal

(distributed), or hybrid (Hayes and Kraemer, 2017). Adaptive Control of Thought-Rational
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(ACT-R) (Anderson et al., 1997) is a symbolic architecture intended to model memory (Lovett

et al., 2000), simulate attention (Anderson et al., 2004, 1997, 2004), decision making (Marewski

and Mehlhorn, 2011), recognition (Schooler and Hertwig, 2005), and forgetting (Schooler and

Hertwig, 2005). Multimodal approaches such as artificial neural networks (ANN), including

Restricted-Boltzmann Machine (RBM) (Hinton, 2012), Deep Neural Networks (Collobert and

Weston, 2008) stacked auto-encoders (Vincent et al., 2010), and Convolution Neural Networks

(CNN) (Krizhevsky et al., 2017), have significantly contributed in feature recognition (Dara and

Tumma, 2018) and distributed representation (Hinton et al., 1986). Besides, hybrid cognitive ar-

chitectures like Connectionist Learning with Adaptive Rule Induction On-line (CLARION) (Sun

and Peterson, 1996) simulated scenarios related to cognitive and social psychology.

This chapter utilizes the RAN’s hybrid nature and modeling to build representations of convex

abstract concepts and further simulate recall of abstract concepts. The model generation takes

place with four basic steps of RANs approach (Sharma et al., 2018b), i.e., convex concept Iden-

tification, convex abstract concept creation, convex concept inter-layer learning, and convex

abstract concept upward activation propagation (as described in Chapter 3). An Intra-layer

procedure also takes place at all the layers to learn associations among the concepts at the

same layer (described as CSRL in Section 4.2.2 of Chapter 4). Then, these learned associations

are uniquely interpreted to determine whether the impact of their learned weights is inhibitory,

excitatory, or neutral. Finally, these impacts are applied to obtain a regulatory effect on peer

concepts (abstract concepts, or input layer concepts) during the recall operation. A Toy-data

problem (Toy-data3) is used for modeling with RANs and demonstrating the novel Geometric

Back-Propagation Algorithm for simulation cued recall operation. A benchmark dataset of im-

age domain, MNIST, is also used to demonstrate the cued recall experiment. These experiments

also show how blends of abstract concepts can be recalled.

The remaining of this chapter is organized in the following way: Section 5.2 puts forward the

state of the art related to recall operations; the RANs modeling, the Intra-Layer Regulation

algorithm, and Geometric Back-propagation algorithm are detailed in Section 5.3 using a Toy-

data problem; the cued recall demonstration with MNIST dataset is reported in Section 5.8;

Section 5.9 concludes the chapter.

5.2 Advances in Recall Research

Recall or retrieval is a cognitive process (Buzsáki, 2010) of remembering a thing or an event.

While recalling, the brain activates a neural assembly that was created when the original event

occurred (Buzsáki, 2010). In psychology, there are a plethora of articles studying the recall pro-

cess. Psychologists used free-recall, cued-recall, and serial-recall as tools to investigate memory

processes (Bower, 2000). The recall has been used to study the effect of cognitive strategies
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such as chunking, in the use of mnemonics for memorization of things (such as large num-

bers) (Bermingham et al., 2013). A research reported the benefits of subsequent recall oper-

ations where memories are related or competing (Rafidi et al., 2018). The proverb ”Practice

makes a man perfect“ relates to the fortification of memory, and an investigation has shown

how retrieval plays an important role in this process (Antony et al., 2017). Technologies such

as fMRI 1, MRI 2, PET 3, and EEG 4 were used in validating several recall related hypothe-

ses (Polyn et al., 2005, Hulbert and Norman, 2014, Kapur et al., 1995, Rafidi et al., 2018).

Notable contributions to model the memory recall procedures are observed in literature. Based

upon the Temporal Context Model (Sederberg et al., 2008, Howard and Kahana, 2002) of human

behavior, human memory performance was modeled using a probabilistic approach during free-

recall experiments (Socher et al., 2009). A computational model of interaction of Prefrontal

Cortex and medial temporal lobe in memory usage was designed to study the Prefrontal Control

in a recall process (Becker and Lim, 2003). The model was a simple neural network with quick

and flexible reinforcement learning exhibiting strategic recall. Another computational model

differentiates the recall from the recognition process depending upon the number of cues involved

in the retrieval procedure (Srivastava and Vul, 2017). For encoding, the model used an inference-

based model of memory (Gillund and Shiffrin, 1984), and retrieval was carried out using a

Bayesian observer model (Wei and Stocker, 2015). A large number of computational psychology

contributions studying the recall process along with the recognition, using the neural networks,

is available (Ruppin and Yeshurun, 1990, Biggs and Nuttall, 2015, Ruppin and Yeshurun, 1991,

Recanatesi et al., 2015)

An interesting work simulated the free-recall process using the ACT-R architecture (Taatgen,

1996), showing that the classical effect of primacy and recency can be recreated through rehearsal

theory based upon ACT-R and Baddeley’s phonological Loop (Baddeley, 1992). ACT-R was

also used to propose a new theory of memory retrieval to predict intricate serial and free recall

operations (Thomson et al., 2015). This research also focused on the prospects of associative

learning by introducing a strengthening and decaying mechanism depending upon the similarity

of the input stimulus. The serial recall has been modeled in a scientific contribution using the

same architecture to explain the processes involved while recalling a list of words (Anderson and

Matessa, 1997). The traditional ACT-R recall operations had a limitation: here the memory

access depends upon limiting the capacity of the activation process, consequently inducing errors

in the contents being recalled. This theory overcomes such limitations by predicting the latency

and errors in a serial recall process.

The free recall process was also modeled using the CLARION architecture to determine the role

of distractions in an incubation task (Hélie et al., 2008). This study made a striking observation

1Functional Magnetic Resonance Imaging
2Magnetic Resonance Imaging
3Positron-emission tomography
4Electroencephalography
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that rehearsals play an important role in memory consolidation during free recall procedure, and

distractions can hinder the free recall and eventually effect memory strengthening. CLARION

was also used to emulate, acquire, and expound human-centric data relevant to incubation and

insight through free recall, lexical decision, and problem-solving tasks (Hélie and Sun, 2010).

In our work, a Geometric Back-propagation mechanism is added to the RANs methodology, to

simulate the recall of learned Abstract Concepts. The Abstract Concepts are of great value in

our lives, as they help us in attaining abilities such as relative comprehension, effective decision-

making etc. Most of the investigations related to Abstract Concept came from psychological

research, such as a study related to the role of emotional contents in processing and representing

Abstract Concepts (Kousta et al., 2011). While studying languages, the cognitive linguists and

psychologists made a considerable amount of effort to investigate about the representations

and modeling of Abstract Concepts, like the internal representation of Abstract Concepts via

amodal symbols (Barsalou and Wiemer-Hastings, 2005). Abstract words were also studied

for their association and context in comparison with Concrete words (Barsalou and Wiemer-

Hastings, 2005). An interesting work showed that the metaphors are mostly represented as

Abstract Concepts (Gibbs Jr, 1996). Besides psychological research, biomedical research has

also contributed to studies related to Abstract Concepts, such as identifying brain regions

involved in the processing of Abstract Concept with the help of MRI scans (Binder et al., 2005).

As mentioned earlier, Abstract Concepts are complex5 hence are difficult to understand when

compared with Concrete Concepts. Therefore, in computational modeling realm, Concrete

Concepts are mainly addressed by feature recognition techniques (Ji et al., 2013, Ripley, 2007,

LeCun et al., 2015, Anderson, 1996). However, there are a few computational approaches to

the modeling of Abstract Concepts, besides our own. Natural Language Processing research

reports some work in Abstract Concept representation, as a text-based multimodal architecture

to study the Abstract and Concrete representations of the language used in daily life (Hill and

Korhonen, 2014). Semantic similarity among the Abstract and Concrete nouns (in Greek, and

English) were also studied using semantic network-based Distributed Semantic Model (Iosif

et al., 2013, Iosif, 2013a). In the image processing domain, an interesting work contributed with

a technique to build an Abstract feature of face using deep sparse auto-encoder (Le, 2013).

The method we propose uses the RANs modeling approach to build representations of Abstract

Concepts. We also describe how the learned associations among the Abstract Concepts deduce

context, which is very useful in the recall process. As stated before, to simulate the recall pro-

cedure we propose an algorithm that propagated activation from higher layer Abstract nodes to

input layer nodes. While simulating the recall operation, we also demonstrate how learned asso-

ciation among the Abstract Concepts helps in excitation, inhibition, and regulation of activation

at nodes.

5According to Dual coding theory (mentioned in Section 5.1) Abstract Concepts are only represented by verbal
systems and makes it difficult deduce contextual information for this reason they are complex.
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Figure 5.1: Graph of 2-D Toy-data3 with the five cluster, along with their respective cluster
centers [1, ..., 5].

5.3 RANs Methodology to Simulate Recall Operation

Here we describe the emulation of the recall process using RANs modeling as described in Chap-

ter 3. At first, for background understanding, the RAN’s convex abstract concept modeling is

described along with two learning mechanisms, i.e., inter-layer and intra-layer learning. Having

explained the RANs modeling, the two contributions of this chapter are described: first, we

present and discuss the Regulation mechanism; secondly, a novel Geometric Back-propagation

Algorithm is proposed that propagates activations from abstract level to input level. The RANs

methodology and the proposed algorithm are illustrated using a Toy-data3 dataset. At the end

of the section, the experiments of RANs modeling with the Toy-data are also reported, demon-

strating the recall operation.

5.4 Modeling with RANs

This section is dedicated to describing convex abstract concept modeling with RANs. For

demonstrating the RANs methodology, a Toy-data problem (Toy-data3) is used (see Figure 5.1).

The Toy-data consists of 1800 data instances randomly distributed into five categories. Out of

the five clusters, three are far apart from one another; the other two clusters are very close to each

other. This arrangement of clusters was introduced into the Toy-data problem to demonstrate

the Excitatory and Inhibitory impact of concepts, representing each cluster at an abstract level.

The modeling is performed using the four basic steps (as explained in Chapter 3), where the

Step-1b and Step-4b are similarity relation learning (explained in Chapter 4) operations at

different layers.
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Figure 5.2: RANs convex abstract concept modeling process. The procedure displays the four
steps in RANs modeling. This figure shows the three learning procedures, i.e., two Similarity
Relation Learning at two layers, and one inter-layer learning between the Layer-1 and Layer-
0. In Step 1 the Similarity Relation Learning (Step 1-a) is performed along with concept
identification Process (Step 1-b). Similarly, in Step-4 the Similarity Relating Learning (Step

4-b) is performed together with the Upward Activation Propagation method (Step 4-a).

5.4.1 Step-1a: Convex Concept Identification (CCI) process

In this operation, the cluster centers are determined for the inter-layer learning operation (see

Section 5.4.4). Step-1a in Figure 5.2 shows the input Layer-0, where nodes S1 and S2 correspond

to the dimensions of the input Toy-data3. To identify the five Convex groups the K-mean (Har-

tigan and Wong, 1979) clustering algorithm is chosen as concept identifier (CI), and the value

of K is set to 5 to determine five clusters. Five cluster centers are also identified in this process,

as shown in Figure 5.1, as Cluster Representative Data Points (CRPD).

5.4.2 Step-1b and Step-4b Concept Similarity Relation Learning (CSRL)

The CSRL is an intra-layer operation as described in Section 4.2.2 of Chapter 4. This learning

mechanism is performed two times while modeling with Toy-data3, First, in Step-1b at the

input Layer-0, (see Figure 5.2 Step-1b). Second, when the input data is propagated upward

to convex concept Layer-1. The learning at Layer-0 was of size 2 × 2 as the input layer has

two nodes, whereas, the learning at Layer-1 was of size 5 × 5 (refer Figure 5.4 for the CSRL

weights).
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5.4.3 Step-2: Convex Abstract Concept Creation (CACC) operation

The convex abstract concept creation operation is the method described in Section 5.4.1 of

Chapter 3 to create a new layer dynamically. The Step-2 in Figure 5.2 depicts the creation of a

new convex abstract concept (CAC) Layer-1 having five nodes (C1, ..., C5). These Five nodes

(C1, C2, C3, C4 and C5) represent Clusters 3, 1, 4, 2 and 5 of Figure 5.1, respectively. The

count of the CAC layer nodes depends upon the number of clusters identified in CCI operation

at the input layer, i.e., if k clusters were determined in CCI mechanism then in Step-2 a new

layer is created consisting of k nodes.

5.4.4 Step-3: Convex Concept Inter-Layer Weight (CCILW) Assignment

The inter-layer learning is the second learning mechanism in RANs modeling to learn association

among the nodes at CAC layer and input layer as described in Chapter 3 . In the experiment

with Toy-data3, a 5 × 2 weight matrix was learned between the five nodes at CAC layer-1 and

two nodes of input layer-0, as shown in Figure 5.2 Step-3. Having completed the Step-3 a basic

RAN’s model is obtained consisting of input layer-0, the CAC layer-1, learning between two

layers and learning among the nodes at input layer-0.

5.4.5 Step-4a: Convex Abstract Concept Upward Activation Propagation

(CACUAP)

This step is used to propagate i-dimensional (i.e. 2-D) input data vector a to CAC layer and

obtaining a k-dimensional (5-D) data vector A. In order to build more than one layer, all the

steps are to be repeated iteratively using Algorithm 2 described in Chapter 3.

Upon propagating all input values to the CAC layer, the observed outputs A are used to perform

the concept similarity relation learning (CSRL) process (described in Section 4.2.2 of Chapter 4),

as shown in Figure 5.2 at Step-4b. After completing the Step-4b, the RANs modeling procedure

terminates, and a model is obtained as shown in Step-3 of Figure 5.2.

5.5 Regulation Mechanism

The Regulation operation in RANs modeling is performed in three steps. First, an Impact

Factor of CSRL matrix is computed. Second, we determine the intra-layer (IL) contribution of

activation at a node by another node in the same layer. Third, we obtain activation at a node

by a function of self-activation and intra-layer activation induced by other nodes on the latter.
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Figure 5.3: Excitatory, Inhibitory and Neutral effect of CSRL weights (W), when transformed
using the Pinto’s Effect (or Impact-Factor) σ.

Figure 5.4: The CSRL weight matrices learned with Toy-data and their corresponding Impact
Factor (σ) at Layer-0 and Layer-1. The σ is calculated using Equation 5.1.

5.5.1 Impact Factor (σ) Construction and Interpretation

This Impact Factor (or Pinto’s Effect) is a function that interprets the CSRL weight values (in

the range [0, 1]) as Excitatory, Inhibitory or Neutral weights. The purpose of CSRL weights

was to determine how two nodes (for eg. S1 and S2) were concurrently active. If the CSRL

weight is intermediate, i.e. 0.5, it signifies that the two nodes were 50% concurrently active

(depicting a state of confusion). Therefore, these nodes do not have an impact over each other

in the same layer. If the CSRL weights of the two nodes were ‘0’, it signifies the two nodes

were never simultaneously active. This also indicates that the two nodes were Inhibitors of one

another. At last, if the CSRL weights of the two nodes is ‘1’, this means that the nodes are

always conjointly active, showing that they also Excite each others activation.

σm→n = [2 ∗ (Wm→n − 0.5)]3 (5.1)

The aforementioned comprehension of CSRL weights W is exhibited by a mathematical Equa-

tion 5.1, where σm→n is the impact of node m over node n. Figure 5.3 shows the graphical

view of the Impact-Factor σ (Equation 5.1), depicting the Excitatory, Inhibitory or Neutral

interpretations of CSRL weights. Figure 5.4 shows the CSRL and their respective σ weights
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for both the layers. At Layer-0 the nodes S1 and S2 have a very minimal Excitatory impact on

each other (in Figure 5.1 every node at Layer-1 can be related to clusters C1, .., C5 serially).

However, at Layer-1 node C1 has no impact over node C2 (and vice versa). There are many

negative weights in the σ matrix of Layer-1 indicating that these nodes inhibit each other. In

Figure 5.1 we see that the clusters C2 and C5 are very close, and the activations observed at

both the nodes must be very similar. Hence, high CSRL weight is learned between node C2

and C5. It is also interesting to observe that both exhibit good excitatory behavior over one

another.

5.5.2 Intra-Layer Activation

The objective of calculating intra-layer (IL) Activation is to determine the amount of activation

a node n receives from all the other m nodes of the same layer. To obtain the intra-layer

activation at node n the approach must address three prospects. First, the intra-layer activation

must consider the impact (σ) of Excitatory, Inhibitory or Neutral effects of all m nodes over

node n. Second, the current activation of m nodes and their CSRL weight (Wm → n) to

node n should be considered in calculating the activation of node n. Third, the intra-layer

activation computed for node n must be in the range [0, 1]. Equation 5.4 conform to all the

three requirements.

χm = (am ∗Wm→n) (5.2)

¬χm = (1− am) ∗ (1−Wm→n) (5.3)

IL(an) =

∑
m
σm→n(χm + ¬χm)∑

m
σm→n

(5.4)

5.5.3 Intra-Layer Regulation

To find the Actual Activation (AA) (an) at node n, we use a Regulation Factor (ρ) to decide

the share of self-contribution of activation by node n and intra-layer Activation at node n, i.e.

IL (an). Equation 5.5 shows the mathematical function for the intra-layer regulation operation.

From Equation 5.5 we can observe that if ρ is ‘0’, i.e. there is no Regulation, only the activation

of node n contributes to the Actual Activation.

AA(an) = (1− ρ) ∗ an + ρ ∗ IL(an) (5.5)
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Algorithm 4: Intra-Layer Regulation

Input: Current Activation an at node n at layer L.
Input: CSRL W at layer L
Input: Impact Matrix σ at layer L
Initialization: The Regulation Factor ρ, between [0, 1]
foreach an in L do

Calculate IL(an), using Equation 5.4
Calculate Actual Activation AA(an), using Equation 5.5

return AA(an)

Figure 5.5: Single window operation in Geometric Back-propagation operation. Figure also
shows the Error calculation and propagation.

Algorithm 4 presents the Intra-Layer Regulation operation in an algorithmic form. This Regu-

lation operation has its importance when propagating the activation from an abstract concept

layer to the input layer, as described in Section 5.6.

5.6 Geometric Back-propagation (GBP) Operation

The Geometric Back Propagation (GBP) is a downward propagation mechanism in RANs mod-

eling. This method enable us to determine an activation vector am (< a1, .., ai, .., am >) at layer

L-1, for an Expected Activation (E-A) vector A′n (< A′1, .., A
′
j , .., A

′
n >) at layer L. This is a

window operation that takes place between two adjacent layers, i.e. layer L and layer L-1. For

instance, if the RAN’s model has three layers L0 (Input layer), L1 and L2 (Output layer), then

two GBP operations take place, first between L2 and L1, then between L1 and L0. Figure 5.5

shows the single window operation between two layers.

The GBP mechanism commences with an Expected Activation (A′n) vector at layer L. Next, a

starting input vector am (< a1, .., ai, .., am >) is injected in layer L-1. Now we enter into a cycle

where we propagate the activation of the nodes in layer L-1 upwards to layer L and determine the

Observed Activation (O-A) vector An (< A1, .., Aj , .., An >) at layer L. Afterwards, an error

vector e is calculated using A′n and An (Expected and Observed Activation vector) through

Equation 5.6. The error vector e is used to determine an accumulated delta value 4ai (see
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Algorithm 5: Geometric Back-Propagation Operation

Input: A ExpectActivation activation A′n (< A′1, .., A
′
j , .., A

′
n >) at layer L, with n nodes

Input: Desired Maximum Iteration maxIter
Output: An activation pattern am (< a1, .., ai, .., am >) at layer L-1, with m nodes
Set Regulation Factor ρ between [0, 1]
Set currentActivation = Starting-Point (a vector of activation < a1, . . . , am >)
Set previousActivation = currentActivation
Set PropagateActivation= CCUAP of currentActivaiton to layer L (see Section 5.4.5)
Set ObservedlActivation (A)= Regulate PropagateActivation via Algorithm 4
Calculate error vector (e) at layer L using Equation 5.6
Set iter = 0
repeat

Set iter = iter + 1
foreach ai in previousActivation do

Calculate the delta (4ai,Aj ) using Equation 5.7
Calculate the sum of delta for ai, i.e. 4ai , using Equation 5.8
if 4ai > 0 then

atemp = ai +4ai ∗ (1− ai)
if atemp > 1 then

Assign ai = 1

else if atemp < 0 then
Assign anewi = 0

else
Assign anewi = atemp

else
atemp = ai +4ai ∗ (ai)
if atemp > 1 then

Assign anewi = 1

else if atemp < 0 then
Assign anewi = 0

else
Assign anewi = atemp

Set currentActivation = < anew1 , .., anewi , .., anewm > (new activation vector at layer L-1 )
Set previousActivation = currentActivation
Set PropagateActivation= CCUAP of currentActivaiton to layer L (see Section 5.4.5)
Set ObservedlActivation (A)= Regulate PropagateActivation via Algorithm 4
Calculate error vector (e) at layer L using Equation 5.6

until iter = maxIter;
return currentActivation
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(a) Exp-1 (b) Exp-2 (c) Exp-3

(d) Exp-4 (e) Exp-5

Figure 5.6: The trajectories of activation observed at input Layer-0 while carrying out a
thousand iterations of the GBP algorithm. The Red circle is the starting point of trajectory
and the Black circle is the activation value after the thousandth iteration. The graphs also depict
the trajectories observed at input Layer-0 with six regulation factors ρ (0%, 0.5%, 0.75%, 1%,

1.25% and 1.5%). Each graph visualizes the recalled activation for five SCR experiments.

Equation 5.8) based upon the function expressed by Equation 5.7. This 4ai value is then added

to the activation vector at layer L-1 (See Equation 5.9) to obtain a new input vector anewm .

The cycle is repeated with the new anewm input at layer L-1 until the error is minimized, or the

cycle equals the user-defined maximum iteration threshold. Algorithm 5 provides the detailed

Geometric Back-propagation Algorithm. As mentioned earlier, the GBP operation takes place

between two consecutive layers. However, if the hierarchy has more than two layers, then with

the window operation it is possible to propagate down the injected E-As at the nodes of the

top-most layer-L, to the Input layer-0.

ej = A′j −Aj (5.6)

4ai,Aj = (Wj,i − ai) ∗ (ej) (5.7)

4ai =
∑

j=1,..,i

4ai,Aj (5.8)

anewi = ai +4ai (5.9)
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5.7 Recall Demonstration with Toy-data

There are two types of experiments performed in this section. First, the Single Cue Recall (SCR)

operation, where the recall is performed based upon the Expected Activation by one node in

an abstract concept layer. Second, Multiple Cue Recall (MCR) mechanism; here, the recall

procedure is carried out for the Expected Activation at all the nodes in the abstract concept

layer. The experiments demonstrated in this section use the two-layered model generated with

RANs methodology (refer the two-layered model obtained at Step-3 in Figure 5.2 in Section 5.4).

In the model, the five abstract concept nodes (C1, C2, C3, C4 and C5) correspond to Clusters

3, 1, 4, 2 and 5 respectively (see Figure 5.1 for the clusters). In both SCR and MCR operation,

the five abstract concept nodes at Layer-1 will be injected with an Expected Activation set.

Further, the Geometric Back-propagation Algorithm (Algorithm 5) shall perform a thousand

iterations of downward propagation of activation, to obtain appropriate values at input Layer-0

as recalled activation. In all the recall simulations, the GBP operation is initialized with values

[0, 0.60] as Starting-Point and maxIter is set for 1000 iterations. The Expected Activation

varies with the experiment, and two sets of the regulation factor were determined empirically

to demonstrate both recall procedures.

5.7.1 Single Cue Recall (SCR) Experiment

In SCR experiments, the objective was to determine the recalled activation at the input Layer-0,

by injecting binary activation values as Expected Activation in abstract concept Layer-1. The

Expected Activation vector contains value 1 for only one abstract concept node and for the

remaining nodes 0 is assigned. In all SCR experiments, six regulation factors ρ (0%, 0.5%,

0.75%, 1%, 1.25% and 1.5%) were used. Table 5.1 logs the E-A and the thousandth iteration

value of O-A for the five SCR experiments. We describe next the five experiments to show the

SCR operation along with the observations:

� Exp-1: This is the first experiment where we injected an E-A vector [0, 0, 0, 0, 1] of acti-

vation at abstract concept Layer-1. The objective is to recall activations at input Layer-0

for which a very high activation is observed at node C5 at Layer-1 and comparatively lower

activation for other four nodes in Layer-1. The GBP algorithm is executed six times with

an E-A of [0, 0, 0, 0, 1] for the six different regulation factors (ρ). The observation for

Exp-1 (see Table 5.1) shows that with a ρ of 0.75% the maximum activation of 0.85 was

observed at node C5. It is also observed that node C2 observed a good activation which

was expected as nodes C2 and C5 represents the cluster 1 and 5 (see Figure 5.1) which

are close to one another. Figure 5.6a shows the six trajectories for six regulation factors,

each trajectory is formed by one thousand iterations. In Figure 5.6a the yellow marker

shows the CRDP of the cluster C5, and the trajectory with ρ of 0.75% converge closest to
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Table 5.1: Observations of Activations at Abstract Concept Layer-1 for SCR Experiments

Regulation Experiment E-A at Layer-1 O-A at Layer-1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 Exp-1 0 0 0 0 1 0.08 0.61 0.07 0.01 0.47
0.5 Exp-1 0 0 0 0 1 0.14 0.70 0.09 0.03 0.72

0.75 Exp-1 0 0 0 0 1 0.16 0.64 0.10 0.04 0.85
1 Exp-1 0 0 0 0 1 0.19 0.56 0.11 0.05 0.82

1.25 Exp-1 0 0 0 0 1 0.19 0.54 0.12 0.06 0.75
1.5 Exp-1 0 0 0 0 1 0.20 0.52 0.12 0.06 0.71

0 Exp-2 0 0 0 1 0 0.08 0.01 0.08 0.61 0.02
0.5 Exp-2 0 0 0 1 0 0.10 0.02 0.11 0.83 0.03

0.75 Exp-2 0 0 0 1 0 0.11 0.02 0.11 0.93 0.04
1 Exp-2 0 0 0 1 0 0.12 0.03 0.12 0.90 0.04

1.25 Exp-2 0 0 0 1 0 0.12 0.03 0.13 0.83 0.05
1.5 Exp-2 0 0 0 1 0 0.13 0.03 0.13 0.78 0.05

0 Exp-3 0 0 1 0 0 0.01 0.07 0.57 0.07 0.06
0.5 Exp-3 0 0 1 0 0 0.02 0.09 0.76 0.10 0.08

0.75 Exp-3 0 0 1 0 0 0.02 0.10 0.84 0.11 0.09
1 Exp-3 0 0 1 0 0 0.03 0.11 0.93 0.11 0.09

1.25 Exp-3 0 0 1 0 0 0.03 0.11 0.91 0.12 0.10
1.5 Exp-3 0 0 1 0 0 0.03 0.12 0.84 0.13 0.10

0 Exp-4 0 1 0 0 0 0.06 0.57 0.07 0.01 0.42
0.5 Exp-4 0 1 0 0 0 0.08 0.75 0.10 0.02 0.50

0.75 Exp-4 0 1 0 0 0 0.09 0.80 0.12 0.02 0.52
1 Exp-4 0 1 0 0 0 0.10 0.77 0.13 0.03 0.53

1.25 Exp-4 0 1 0 0 0 0.10 0.73 0.14 0.03 0.54
1.5 Exp-4 0 1 0 0 0 0.11 0.69 0.15 0.04 0.54

0 Exp-5 1 0 0 0 0 0.58 0.07 0.01 0.07 0.13
0.5 Exp-5 1 0 0 0 0 0.78 0.09 0.02 0.10 0.15

0.75 Exp-5 1 0 0 0 0 0.85 0.10 0.02 0.11 0.16
1 Exp-5 1 0 0 0 0 0.88 0.10 0.03 0.12 0.17

1.25 Exp-5 1 0 0 0 0 0.84 0.11 0.03 0.13 0.17
1.5 Exp-5 1 0 0 0 0 0.79 0.11 0.04 0.13 0.18

E-A [Expected Activation], O-A [Observed Activation]

this CRPD. Thus, an activation vector [0.1, 0.24] is recalled at input nodes [S1, S2] for

the given E-A vector [0, 0, 0, 0, 1].

� Exp-2: In this experiment, the E-A provided to the GBP algorithm was [0, 0, 0, 1, 0] to

recall activation at Layer-0 that is strongly represented by node C4. For each regulation

factor, the GBP algorithm was run, the O-A obtained at Layer-1 are listed in Table 5.1

and the corresponding recalled activation at Layer-0 is shown in Figure 5.6b. From the

observations, it can be deduced that the experiment with ρ of 0.75% produced the best

outcome and recalling activation [0.9, 0.9] for the input Layer-0.

� Exp-3: In this experiment, the GBP algorithm was supplied with an E-A vector of [0,

0, 1, 0, 0] to recall input Layer-0 vector that is represented by node C3 at Layer-1. The
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(a) Exp-6 (b) Exp-7 (c) Exp-8

(d) Exp-9 (e) Exp-10

Figure 5.7: The trajectories of activation observed at input Layer-0 while carrying out a
thousand iterations of the GBP algorithm. The Red circle is the starting point of trajectory
and the Black circle is the activation value after the thousandth iteration. The graphs also
depict the trajectories observed at input Layer-0 with six regulation factors ρ (0%, 0.1%, 0.2%,
0.3%, 0.4% and 0.5%). Each graph visualizes the recalled activation for five MCR experiments.

Figure 5.6c and Table 5.1 shows the observation of the recall trajectories at Layer-0 and

O-A vector at Layer-1, respectively. The experiment with a regulation of 0.75% displayed

the best representation. A vector [0.92, 0.11] was recalled at Layer-0 for the injected E-A

vector.

� Exp-4: This experiment aims to recall an input vector that closely represents the abstract

concept node C2 by feeding the GBP algorithm with an E-A vector of [0, 1, 0, 0, 0].

After applying the six regulation factors to each GBP operation, it was observed that the

experiment with ρ of 0.75% displayed the best result. Table 5.1 the O-A for the E-A.

Figure 5.6d shows the trajectories of the recalled values and the best outcome with ρ of

0.75% that converges to an activation vector [0.14, 0.07].

� Exp-5: This experiment shows the recall vector obtained by initializing an E-A vector

[1, 0, 0, 0, 0] with all GBP experiment with six regulation values. Unlike the previous

experiments, the best O-A was obtained with a regulation factor of 1%. Figure 5.6d shows

the recall outcome for all six regulation factors. At input Layer-0 the recall operation with

ρ of 1% results into an activation vector [0.15, 0.91] for the given E-A.



Chapter 5. Cognitive Behavior Modeling with RANs 103

5.7.2 Multiple Cue Recall (MCR) Experiment

The MCR experiments were carried out to determine the recall vector at input Layer-0 for an

E-A vector at Layer-1. The constituents of the E-A vector are Degree of Confidence (DoC)

values that define the expected representation of each abstract concept node at Layer-1. To

demonstrate MCR, five experiments were performed, and in every experiment six regulation

factors ρ (0%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5%) were used to make inferences. Table 5.2

lists the observations of O-A for their respective E-A in each MCR experiment. Figure 5.7

displays the trajectories of recalled activation in Layer-0 for six regulation factors with respect

to each experiment. The E-A vectors used in the MCR experiments are vectors obtained by

propagating an input activation from Layer-0 to Layer-1. Hence, in MCR simulation we also

have an Expected Recall (E-R) vector to perform the evaluation. Next we present the MCR

experiment descriptions along with their observations:

� Exp-6: In this experiment an E-A vector of [0.57, 0.16, 0.06, 0.15, 0.25] is provided

to the GBP algorithm. With this E-A we want to recall activation at input Layer-0

that is 57%, 16%, 06%, 15% and 25% represented by nodes C1, C2, C3, C4 and C5,

respectively. Table 5.2 lists the O-A observed for the six regulation factors, the results

with ρ of 0% and 0.1% shows the outcome which is almost identical to E-A. The E-R

vector of this experiment was [0.2256, 0.7610] and with ρ of 0% and 0.1% the observed

recall was [0.2260781, 0.7647118] and [0.2343844, 0.7602842], respectively, which are also

similar to the Expected Recall vector. Figure 5.7a shows the trajectories of all the recalled

activation vectors at Layer-0 for the E-A vector w.r.t. their six regulation factors.

� Exp-7: For this experiment the GBP algorithm was injected with an E-A vector of [0.07,

0.04, 0.23, 0.46, 0.05] for recalling an activation vector at the input Layer-0. The six

O-A vectors obtained for the six regulation factors can be referred for Table 5.2. The O-A

vector for ρ of 0% and 0.1% was almost the same as E-A vector. The recalled activations

regulation factor 0% was [0.9875402, 0.6551013] which is almost similar to the E-R vector

[0.9896, 0.6568]. Figure 5.7b show all the recalled trajectories for this experiment.

� Exp-8: In this experiment the GBP algorithm is initialized with the E-A vector of [0.09,

0.5, 0.22, 0.05, 0.52]. The E-R vector for this experiment was [0.3458, 0.1157], and two

similar vectors ,[0.3444873, 0.1032499] and [0.3489568, 0.1284956], were recalled in this

experiment using regulation of 0% and 0.1% respectively, Figure 5.7c shows all recalled

trajectories. The O-A vectors obtained with the regulation of 0% and 0.1% were also

identical to E-A vector of this experiment, refer Table 5.2.

� Exp-9: The recall simulation in this experiment was instantiated with an E-A vector of

[0.09, 0.40, 0,28, 0.07, 0.35], and a recall vector of [0.4410, 0.1341] is expected at the

input Layer-0. Upon using the GBP algorithm with six regulation factors the recall oper-

ation without regulation, i.e. ρ of 0%, produced the most similar recall vector [0.4370989,
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Table 5.2: Observations of Activations at Abstract Concept Layer-1 for MCR Experiments

Regulation Experiment E-A at Layer-1 O-A at Layer-1

% ———— C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

0 Exp-6 0.57 0.16 0.06 0.15 0.25 0.579 0.162 0.063 0.148 0.246
0.1 Exp-6 0.57 0.16 0.06 0.15 0.25 0.567 0.163 0.066 0.151 0.247
0.2 Exp-6 0.57 0.16 0.06 0.15 0.25 0.556 0.164 0.068 0.154 0.249
0.3 Exp-6 0.57 0.16 0.06 0.15 0.25 0.546 0.166 0.070 0.156 0.250
0.4 Exp-6 0.57 0.16 0.06 0.15 0.25 0.537 0.167 0.072 0.159 0.251
0.5 Exp-6 0.57 0.16 0.06 0.15 0.25 0.529 0.168 0.074 0.161 0.252

0 Exp-7 0.07 0.04 0.23 0.46 0.05 0.072 0.039 0.233 0.465 0.051
0.1 Exp-7 0.07 0.04 0.23 0.46 0.05 0.086 0.048 0.235 0.482 0.061
0.2 Exp-7 0.07 0.04 0.23 0.46 0.05 0.093 0.052 0.235 0.486 0.067
0.3 Exp-7 0.07 0.04 0.23 0.46 0.05 0.099 0.055 0.236 0.487 0.071
0.4 Exp-7 0.07 0.04 0.23 0.46 0.05 0.103 0.058 0.236 0.487 0.074
0.5 Exp-7 0.07 0.04 0.23 0.46 0.05 0.107 0.061 0.236 0.485 0.077

0 Exp-8 0.09 0.50 0.22 0.05 0.42 0.091 0.502 0.218 0.051 0.414
0.1 Exp-8 0.09 0.50 0.22 0.05 0.42 0.099 0.497 0.221 0.056 0.424
0.2 Exp-8 0.09 0.50 0.22 0.05 0.42 0.105 0.492 0.223 0.061 0.430
0.3 Exp-8 0.09 0.50 0.22 0.05 0.42 0.110 0.486 0.224 0.064 0.434
0.4 Exp-8 0.09 0.50 0.22 0.05 0.42 0.114 0.481 0.225 0.067 0.437
0.5 Exp-8 0.09 0.50 0.22 0.05 0.42 0.117 0.476 0.226 0.070 0.439

0 Exp-9 0.09 0.40 0.28 0.07 0.35 0.090 0.401 0.280 0.070 0.350
0.1 Exp-9 0.09 0.40 0.28 0.07 0.35 0.096 0.397 0.281 0.076 0.355
0.2 Exp-9 0.09 0.40 0.28 0.07 0.35 0.101 0.394 0.282 0.080 0.358
0.3 Exp-9 0.09 0.40 0.28 0.07 0.35 0.105 0.391 0.282 0.084 0.360
0.4 Exp-9 0.09 0.40 0.28 0.07 0.35 0.109 0.388 0.282 0.087 0.362
0.5 Exp-9 0.09 0.40 0.28 0.07 0.35 0.112 0.385 0.281 0.090 0.363

0 Exp-10 0.07 0.09 0.44 0.26 0.10 0.068 0.093 0.440 0.263 0.099
0.1 Exp-10 0.07 0.09 0.44 0.26 0.10 0.073 0.098 0.437 0.264 0.105
0.2 Exp-10 0.07 0.09 0.44 0.26 0.10 0.076 0.103 0.434 0.264 0.110
0.3 Exp-10 0.07 0.09 0.44 0.26 0.10 0.079 0.106 0.431 0.264 0.114
0.4 Exp-10 0.07 0.09 0.44 0.26 0.10 0.082 0.109 0.428 0.265 0.117
0.5 Exp-10 0.07 0.09 0.44 0.26 0.10 0.084 0.112 0.425 0.265 0.120

E-A [Expected Activation], O-A [Observed Activation];

0.1308456], and the corresponding O-A vector at Layer-1. However, the outcome with

0.1% regulations was also similar to a recalled vector [0.4392012, 0.1518065] at input

Layer-0, refer Figure 5.7d.

� Exp-10: This experiment uses an E-A vector [0.07, 0.09, 0.44, 0.26, 0.10] in order to

obtain an E-R vector [0.8813, 0.4145] at input Layer-0. The six simulations were carried

out with different regulation factors, and it was observed that the results with ρ of 0% and

0.1% produced results very near to the E-R, i.e. [0.8873921, 0.4137484] and [0.8702277,

0.4153301] respectively, see Figure 5.7e for all trajectories. The same observations were

made at O-A vectors for ρ of 0% and 0.1% at Layer-1, refer Table 5.2.
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5.7.3 Discussion

The experiments in Sections 5.7.1 and 5.7.2 demonstrate a notable behavior of Regulated Ac-

tivation Networks by simulating the cued recall operation through a Toy-data3 problem. The

Intra-Layer Learning (i.e. CSRL) is uniquely used by RANs modeling to interpret the as-

sociation among the concepts as Inhibitory, Excitatory or Neutral. Further, the Intra-Layer

Regulation (Algorithm 4) uses the Intra-Layer Learning (CSRL) and its interpretations to pro-

duce a regulatory effect over the activation of the concepts (at same layer). The Geometric

Back-propagation operation (Algorithm 5) is a method analogous to remembering something

learned in an abstract form and recalling its concrete features. For example, while remembering

the abstract concepts “Home” we recall concrete features linked to our homes like “Mother”,

“Father”, “Wife”, “Pets” etc.

In the graphs of Figures 5.6 and 5.7 we can see that all the trajectories commence from a

starting point (red dot) and converge to a point after one thousand iterations. Each point in a

trajectory represents a temporal mental state while recalling a concrete concept. Every time a

concrete concept (activation vector in Layer-0) is recalled, the corresponding abstract concept

(at Layer-1) is compared with the Expected abstract concepts. The difference between expected

and observed activation is propagated back as an error to the previously recalled activations

at Layer-0. In the next time instance, the corrected recalled activation at Layer-0 repeats the

process until the one thousand iterations.

It was observed that, without regulation, i.e. 0% ρ, the trajectory converges to a point, but

with a little bit of regulation, the result improves. For instance, in the graphs of Figure 5.6

only one abstract concept was being recalled and the results improved when the regulation

was introduced. In the two experiments (SCR & MCR) we can see the two different sets of

regulation factors are considered. These sets were obtained empirically, but we can see that

the set of the regulation factor for SCR experiment has a higher value. This is because the

GBP algorithm strives to minimizes the error at each abstract concept node at Layer-1, and in

geometrical context, similarity cannot be the same for more than one abstract concept. Thus,

the trajectory converges to a point, but the result improves when a little regulation is induced.

With MCR experiment the best outcome is observed with little or no regulation because the

expected similarity (DoC, E-A) is a non-zero value. The other reason is that these are possible

expected similarity vector unlike the ones in SCR experiments.

5.8 Cued Recall Demonstration with MNIST Data

The MNIST (LeCun et al., 1999) dataset is a collection of handwritten images of digits [0, 1,

2, 3, 4, 5, 6, 7, 8 and 9], where each image is black & white in color and 28 × 28 pixels in

size. This dataset of image domain is used to demonstrate the Cued recall operation of learned
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Figure 5.8: RANs model generated with MNIST dataset.
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Figure 5.9: The thirty CRDPs (Cluster Centers), each node in Layer-1 of Figure 5.8 acts as
the Abstract represenatative of each CRDP.

abstract concepts representing different digits. Two types of investigations were conducted with

this dataset: first, is Multiple Binary Valued Cue Recall (MBVCR), where the E-A vector is a

binary value ([0, 1]) vector; second, is the Multiple Cue Recall (MCR). For the experiment,

one thousand images were selected randomly from the MNIST dataset. The 28× 28 image was

transformed in a single vector of 784 attributes, where each attribute corresponds to a pixel

of the image. Further, the attribute values of the data were normalized between [0, 1] using

Min-Max normalization (black pixel is Min, i.e. 0, and a white pixel is Max,i.e. 255). Having

preprocessed the data, the RANs modeling procedure is instantiated by selecting the K-means

clustering algorithm as concept identifier. The K is initialized with 30 to determine thirty

categories in the input space. The model was configured to grow one level deep and build a

convex abstract concept (CAC) Layer-1. After carrying out all four steps of RANs modeling

(see Section 5.4) a model is obtained, see Figure 5.8.

In Figure 5.8, the Layer-0 has 784 nodes representing each pixel, CAC Layer-1 has 30 nodes

representing the thirty categories identified at the CCI process in RANs modeling. The Inter-

Layer Weights (ILWs) are the cluster centers (CRDPs) of the thirty clusters. Figure 5.9 shows

the ILWs reconstructed in the image form of 28 × 28 pixels. In RANs modeling a CRDP is

the optimum representative of an input level category at CAC Layer-1. Therefore, it images in

Figure 5.9 are the best represented by CAC node N1, ..., N30, respectively. In the same figure

it’s noticeable that each digit is represented by at least two CAC node of Layer-1. The digit 9

is represented by the largest number of nodes, i.e. N2, N15, N18 and N24, whereas digit 4 was
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Table 5.3: Expected Activation injected at thirty CAC nodes in Layer-1 of RANs model for
MNIST data

Digit Exp Expected Activation (E-A)

0 MBVCR [ 0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0 ]
1 MBVCR [ 0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
2 MBVCR [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0 ]
3 MBVCR [ 0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0 ]
4 MBVCR [ 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ]
5 MBVCR [ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0 ]
6 MBVCR [ 0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0 ]
7 MBVCR [ 0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 ]
8 MBVCR [ 0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1 ]
9 MBVCR [ 0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0 ]
2& 5 MBVCR [ 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,0 ]
3 & 5 MBVCR [ 0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,0,0 ]
0 & 1 MBVCR [ 0,0,1,0,0,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0 ]
0 MCR [ 0.26,0.25,0.22,0.30,0.27,1.00,0.23,0.30,0.28,0.30,0.35,0.26,0.32,0.26,0.25,0.28,0.22,0.23,0.23,0.25,0.33,0.28,0.25,0.29,0.28,0.39,0.28,0.31,0.27,0.30 ]
1 MCR [ 0.29,0.37,1.00,0.35,0.43,0.22,0.49,0.33,0.34,0.32,0.26,0.31,0.31,0.28,0.34,0.39,0.38,0.35,0.34,0.39,0.31,0.35,0.43,0.31,0.42,0.27,0.36,0.24,0.31,0.33 ]
2 MCR [ 0.28,0.35,0.39,0.38,0.40,0.28,0.38,0.36,0.33,0.31,0.26,0.29,0.36,0.35,0.29,1.00,0.34,0.31,0.37,0.34,0.36,0.43,0.34,0.29,0.47,0.32,0.37,0.33,0.37,0.34 ]
3 MCR [ 0.31,0.38,0.31,0.46,0.35,0.32,0.32,0.31,0.35,0.33,0.26,0.32,1.00,0.33,0.31,0.36,0.31,0.33,0.31,0.30,0.40,0.34,0.33,0.35,0.38,0.34,0.46,0.35,0.27,0.37 ]
4 MCR [ 1.00,0.46,0.29,0.32,0.38,0.26,0.30,0.38,0.37,0.44,0.31,0.42,0.31,0.39,0.44,0.28,0.31,0.48,0.36,0.37,0.29,0.34,0.37,0.42,0.34,0.34,0.34,0.31,0.32,0.40 ]
5 MCR [ 0.37,0.42,0.34,0.44,0.47,0.28,0.36,0.41,1.00,0.29,0.39,0.36,0.35,0.34,0.37,0.33,0.36,0.42,0.43,0.40,0.42,0.33,0.38,0.35,0.43,0.37,0.45,0.29,0.33,0.41 ]
6 MCR [ 0.39,0.40,0.28,0.38,0.33,0.26,0.31,0.45,0.34,0.38,0.28,0.31,0.33,1.00,0.34,0.35,0.32,0.36,0.42,0.32,0.32,0.40,0.33,0.35,0.35,0.36,0.34,0.42,0.33,0.33 ]
7 MCR [ 0.42,0.45,0.31,0.34,0.35,0.26,0.34,0.32,0.36,0.34,0.28,1.00,0.32,0.31,0.41,0.29,0.35,0.47,0.33,0.35,0.29,0.32,0.43,0.47,0.38,0.30,0.34,0.25,0.28,0.34 ]
8 MCR [ 0.38,0.41,0.43,0.39,1.00,0.27,0.40,0.38,0.47,0.32,0.33,0.35,0.35,0.33,0.40,0.40,0.37,0.44,0.42,0.44,0.38,0.39,0.45,0.32,0.44,0.34,0.44,0.29,0.39,0.48 ]
9 MCR [ 0.46,1.00,0.37,0.40,0.41,0.25,0.39,0.38,0.42,0.38,0.29,0.45,0.38,0.40,0.40,0.35,0.39,0.51,0.40,0.39,0.32,0.40,0.43,0.44,0.43,0.32,0.44,0.32,0.30,0.40 ]

represented by two nodes N1 and N10. The Figures 5.9d, 5.9m, 5.9u and 5.9x depict that the

CAC nodes N4, N13, N21 and N24 do not represent individual digit. Node N4 and N13 jointly

represent digits 3 and 8, node N21 looks like two digits 3 and 5, and N24 depicts digits 7 and 9.

For simplicity, Figure 5.8 shows only Inter-Layer Learning, but the Intra-Layer Learning (CSRL

weights) was also performed on both, input Layer-0 and CAC Layer-1. The CSRL weights at

input Layer-0 was a 784×784 matrix, and at CAC Layer-1 a 30×30 matrix was learned. These

two Intra-Layer Learning were utilized by GBP algorithm to simulate the recall operations. In

all the experiments the GBP algorithm is configured to iterate five hundred times. The GBP

algorithm was initialized with a vector with activation 1 for all 784 nodes of input Layer-0. The

image at Iter-0 (see Table 5.4 & 5.6) is white because activation 1 corresponds to pixel value

255 depicting white color.

In each experiment, the two cued recall demonstrations, MBVCR and MCR, use the Expected

Activating (E-A) vector as listed in Table 5.3. The experiments of single digits and combined

digits for MBVCR operation used an E-A vector of binary values, where binary 1 at a node N

is assigned w.r.t the digit(s) being recalled. For instance, the E-A vector of digit 2 is formed by

initializing the E-A vector with binary 1 for nodes N16, N22 and N29 and binary 0 for remaining

27 CAC nodes (see Table 5.3). The E-A vectors of MCR experiments are the actual activation

values obtained by propagating upward the Inter-Layer Weights (the CRDPs see Figure 5.9) as

input. The weights represented by Figures 5.9f, 5.9c, 5.9p, 5.9m, 5.9a, 5.9i, 5.9n, 5.9l, 5.9e and

5.9b were provided as input to CCUAP operation to observe their respective activation at CAC

Layer-1. These observed activation vectors were used as E-A for each digit recall operation (see

last ten MCR E-As in Table 5.3).
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Table 5.4: Intuitive MBVCR observations with RANs model of MNIST data

Digit ρ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

0 0%

0 0.009%

1 0%

1 0.009%

2 0%

2 0.009%

3 0%

3 0.009%

4 0%

4 0.009%

5 0%

5 0.009%

6 0%

6 0.009%

7 0%

7 0.009%

8 0%

8 0.009%

9 0%

9 0.009%

5.8.1 Multiple Binary Valued Cue Recall (MBVCR) Operation

For the MBVCR operation, the RANs model generated with MNIST data (see Figure 5.8) was

used, in order to obtain the recalled activation at input Layer-0 for a given Expected Activation

vector at CAC Layer-1. As described earlier, the E-A vector for MBVCR is a vector of binary

values, which is provided as input to the GBP algorithm to perform the recall operation. The

experiments themselves are divided into two categories, i.e. Intuitive and Non-Intuitive recall.

Intuitive MBVCR experiment

In this experiment, by intuition we hypothesize, if all CAC nodes (representing a digit) are

activated with value 1 then its recall at Layer-0 must depict that digit. For example, if the

CAC nodes N6, N11 and N26 (refer Figure 5.9) are activated with value 1 (and 0 for others)

then we should get an image depicting a blend of digit zero after recall operation. We performed

this Intuitive recall experiment for all ten digits. The binary E-A vector of all ten digits for

Intuitive MBVCR operation is listed in Table 5.3. Table 5.4 displays the recalled images of all

twenty experiments. For every digit two investigations were made: first, without regulation, i.e.

ρ=0; second, with a regulation of 0.009%.
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Table 5.5: Non-intuitive MBVCR observations with RANs model of MNIST data

Digit ρ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

2 & 5 0%

2 & 5 0.009%

3 & 5 0%

3 & 5 0.009%

0 & 1 0%

0 & 1 0.009%

The first observation is that there is a very insignificant difference between the images recalled

with and without regulation. After the second iteration, the digit being recalled begins to

appear. Beyond 80th iteration no significant change is observed in the recalled images. The

recalled images of digits 0, 1, 2, 3, 7 and 8 are recognizable after 500th iteration. However, the

digits 4, 5 and 9 is not very discernible in their last iteration, this is because these digits are

cross-represented by CAC nodes (see Figure 5.9). All the images recalled in this experiment

contains noise (i.e. the gray shades) because E-A vector has two values either 0 or 1 and a node

can be 100% similar to only one node. Therefore, the GBP algorithm adjusts the activation at

CAC node such that the best representation of the E-A is achieved.

Non-intuitive MBVCR experiment

In these experiments, an E-A vector contains activation value 1 for CAC nodes representing

two different digits. The objective of the experiment was to determine what is recalled at the

input Layer-0 when the CAC nodes, representing two different digits, expect high activation.

The three E-As used in this experiment are a combination of activation 2s-with-5s, 3s-with-5s

and 0s-with-1s (refer Table 5.3 for E-A vectors for the coupled digits). The observation without

regulation and with regulation are similar, see Table 5.5. The blend of 2s-with-5s recalls an

image that looks like letter ‘x’. The fusion of 3s-with-5s recall an image similar to digit ‘3’. The

combination of 0s-with-1s, in the beginning looked like a symbol ‘Φ’ which later gets distorted.

We can also observe that the images obtained after all the iteration had lesser noise when

compared to the Intuitive MBVCR experiments. This is probably because the number of CAC

nodes were expecting activations, i.e. more cues were provided.

5.8.2 Multiple Cue Recall (MCR) Experiment

This experiment is the same as the one discussed in Section 5.7.2. The E-A vectors are the

activation values observed at CAC nodes by propagating the Inter-Layer weights using CCUAP

operation of RANs modeling. Figure 5.9 shows the images, re-constructed for each Inter-Layer

weight. The E-As corresponding to Figures 5.9f, 5.9c, 5.9p, 5.9m, 5.9a, 5.9i, 5.9n, 5.9l, 5.9e and

5.9b are listed in Table 5.3, and are used in MCR demonstrations of this section.
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Table 5.6: The observations of Multiple Cue Recall operation with the RANs model of MNIST
data

Digit ρ Iter⇒ 0 3 5 8 11 19 25 35 41 71 81 91 101 151 201 251 301 351 401 451 501

0 0%

0 0.009%

1 0%

1 0.009%

2 0%

2 0.009%

3 0%

3 0.009%

4 0%

4 0.009%

5 0%

5 0.009%

6 0%

6 0.009%

7 0%

7 0.009%

8 0%

8 0.009%

9 0%

9 0.009%

The objective of this experiment is the same as that of MBVCR experiments, i.e., obtaining

an activation vector at input Layer-0 that corresponds to an E-A vector. However, in this

experiment, an Expected Recall (E-R) is already known. Therefore, the E-As of ten digits (see

MCR E-As in Table 5.3) are expected to recall the images in Figures 5.9f, 5.9c, 5.9p, 5.9m, 5.9a,

5.9i, 5.9n, 5.9l, 5.9e and 5.9b.

In this experiment also, the observations with and without regulation are identical. It is also

worth noting that after 500th iteration the recalled images of all ten digits are similar to the

E-R images of each digit.

5.8.3 Discussion

There are a few things worth noticing in the recall demonstrations of RANs modeling with

MNIST dataset. First, we can reconstruct cognizable images of a digit by activating the CAC

nodes representing that digit. Second, it possible to recall both Intuitive and Non-intuitive

blend of learned abstract concepts (in these experiments the abstract concepts are a generic



Chapter 5. Cognitive Behavior Modeling with RANs 111

representation of digits). Third, the recalled activations, with and without regulation, are

similar for a complex dataset like MNIST. At last, the more cues we provide in the E-A vector

the accurate the recall operation becomes.

5.9 Conclusion

Concepts are normally perceived in a hierarchical form, and the concrete concepts occupy the

lower level, whereas the abstract concepts take up the relatively higher level in the hierarchy.

According to the context availability theory, the context among the concrete concepts are easily

discernible when compared to abstract concepts, hence, the abstract concepts are difficult to

understand. This abstruseness with abstract concepts adds to the complexity of their recall

process. In this work, abstract concept models generated through the RANs approach are

utilized to demonstrate the cued recall of learned abstract concepts.

To demonstrate the effect of regulation over the recall process, a Toy-data problem (Toy-data3)

was considered. At first, we modeled with Toy-data to identify five abstract concepts. The

proposed regulation algorithm used the learned Intra-Layer weight to determine excitatory,

neutral and inhibitory impact induced by peer nodes over one another. Two types of cued recall

experiments were performed using the unique Geometric Back-propagation algorithm: first,

the Single Cue Recall (SCR) simulation where the recall was simulated by activating only one

abstract concept; second, the Multiple Cue Recall (MCR) operation to retrieve the activation

vector at the input level by injecting multiple cues at the abstract Nodes. In SCR experiments

the regulation induced by peer nodes improved the recalled values. However, the observations

with MCR operations were promising because it retrieved identical activation as expected.

The benchmark MNIST dataset was used to exhibit cued recall as blends of learned abstract

concepts. A two-layered model was generated with RANs to obtain thirty abstract concepts

generically representing digits. In Multiple Binary Valued Cue Recall (MBVCR) experiment,

multiple abstract nodes were injected with high activation to recall as blends of digits. Inter-

estingly, it was observed in all the experiments that the blend of abstract nodes recalled an

image of the digit that they represent at the abstract Level. The blend of different digits also

produced some intriguing outcome such as a blend of 2 and 5 recalled x, and blend of 0 with

1 looked like a Φ. The MCR operations were interesting, upon injecting the multiple cues the

recalled image was very similar to the expected recalled image.

Both the experiments displayed how concepts can be contextually associated and impact each

other’s activation through regulation. Further, with cue recall operations it can be concluded

that the more cues are injected to an abstract concept the better recall results are obtained.





Chapter 6

Conclusion

Concepts can be represented by symbolic, distributed or spatial conceptual representations. In-

dividually, all three representations have proven their potential in the field of machine learning

and computational cognitive modeling. For contextual processing brain requires both symbolic

and distributed representation (Roy, 2011), whereas the spatial representations, such as con-

ceptual spaces (Gärdenfors, 2004), are considered to occupy the space between the symbolic

and distributed representations. The aim of this research work was to develop a computational

approach that not only unifies the virtues of the three conceptual representation but also em-

ulate the regulatory mechanism of Axoaxonic synapses (Garrett, 2014) and simulate cognitive

processes such as concept creation, concept recall and learning. This Chapter addresses the two

research objectives (see Section 1.2.2 of Chapter 1) of the work by answering the three research

questions individually. Further, the applications of the RANs modeling are briefed along with

future work directions.

6.1 Solutions to Research Problems

In this research two problems were focused upon: first related unified view of concept repre-

sentation; and second regarding emulation of regulation operation of Axoaxonic synapses (see

Section 1.2.1 of Chapter 1). To solve these two problems two hypothesis were made:

� A computational network where every node symbolically represents a concept (abstract

of concrete) and geometry among the concepts is considered in modeling, such a network

can be considered a hybrid of symbolic, distributed and spatial representation. A hierar-

chical network of concepts (nodes) can address the representation of abstract and concrete

concepts computationally. If the hierarchy generation is dynamic, the cognitive processes

such as concept creation, learning and activation propagation can be simulated.
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� The regulation behavior of Axoaxonic synapses can be simulated if the concepts at the

same level are able to impact each other’s activation. In the process of regulating activation

of other concepts, a dynamic state of concepts can be captured similar to dynamic state

when recalling a concept.

The two hypothesis were used to formulate three research questions which helped in carrying

out the research work. In this section we show how we tried to address issues related to the the

research questions

Research Question 1: Which technique can be useful in viewing concepts as data points in n-

dimensional feature hyperspace? How to build a hierarchy of concepts where higher level concepts

abstractly represent concepts at lower levels? How to learn the relation between concepts at the

same level, and different levels in the hierarchy?

Answer: The n-dimensional view of concepts in RANs modeling is inspired by the theory of

conceptual spaces (Gärdenfors, 2004) (see Appendix A.3), where the 〈 Feature, Value 〉 pairs

of the data instance enable us to view the concepts in multi-dimensional hyperspace. In RANs

modeling clustering algorithms were considered because the majority of them view data as

points and further groups these points based upon some distance measures. According to the

prototype theory of categorization (Rosch, 1975, Mervis and Rosch, 1981, Rosch, 1983) the most

generic point in the cluster acts as its abstract representative. Inspired by this prototype theory,

the convex abstract concept modeling (described in Chapter 3) utilizes the clusters counts to

dynamically create a new layer of abstract concepts and uses the cluster centers as learning

(see CCILL in Section 3.3.3) between the layers. The concept hierarchy creations algorithm

(Algorithm 2 in Chapter 3) shows how deep hierarchy convex abstract concepts can be created

dynamically and without supervision. Chapter 4 describes another kind of hierarchy creation

which is an extension of RANs modeling on Chapter 3. The non-convex abstract concept layer

is created using an intra-layer learning mechanism (see CSRL method in Section 4.2.2) that

determines the similarity relation among the nodes in a layer.

Research Question 2: How to propagate activation (signals) from the input-to-abstract level

using both types of learning? How to strew activation from abstract-to-input level using the

learning? How use learning to have a regulatory effect of activation of one concept over other?

Answer: In RANs modeling, every node in the network symbolically represents a concept.

The lower level nodes are termed as concrete concepts and the, relatively, higher level nodes

represent the abstract concepts. The activation value of every node depicts the degree with

which the node represents the concept symbolically: for example if a node gets an activation

of 0.78 it means the node identifies the concept with confidence of 78%. The CACUAP (see

Section 3.3.4) and NACUAP (see Section 4.2.3) are two algorithms to propagate activation from

input to output levels. These propagation methods transfer the activation confirming to the

assumption of percentage representation of the nodes (refer Section 3.1 of Chapter 3). RANs
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modeling has another activation propagation method, GBP algorithm (Algorithm 5 Chapter 5)

which propagates activation from an abstract-to-concrete level (or from Output-to-Input layer).

The CSRL method introduced in Section 4.2.2 of Chapter 4 is uniquely interpreted to obtain the

excitatory, inhibitory and neutral effect of one concept over other. Further, these interpretations

are used to calculate the regulation effect of one concept on other concepts.

Research Question 3: what use cases are suitable for RANs modeling? Which methods are

suitable to validate the machine learning capability of the methodology? How to simulate and

verify the cognitive behaviors exhibited by the approach and substantiate the processes like recall

and blend retrieval of concepts?

Answer: The datasets used in the research work were mostly benchmarks obtained from sources

like the UCI machine learning repository. Three datasets were artificially generated to describe

the RANs methodology. Besides these datasets, one benchmark data from the image domain

and one dataset from the IoT domain were also used in this research work. RAN can perform

classification tasks as described in Chapters 3 and 4 and standard metrics Precision, Recall, F1-

Score, Accuracy and ROC-AUC curve analysis were chosen to validate the RANs classification

performance. The classification operation was also helpful in proving the hypothesis of RAN’s

convex and non-convex abstract concept modeling (as described in Chapters 3 and 4 respec-

tively). In Chapters 3 and 4 the simulation of cognitive functions of concept creation, learning

and activation propagation are demonstrated using a Toy-data problem and validated through

analogy and experimental results. Another Toy-data problem was used in Chapter 5 to simulate

the recall cognitive function. The GBP operation (Algorithm 5 in Chapter 5) enables the RANs

modeling to perform cued recall simulations (see Sections 5.7 & 5.8 of Chapter 5). RANs GBP

method also enables the intuitive and non-intuitive blend retrievals of abstract concepts (refer

Section 5.8). The RANs behavior modeling was validated by comparing the empirical outcome

of the simulations with the expectations of the experiments.

6.2 Research Contribution

Regulated Activation Network is a computational model that learns representations of concepts

(or concrete & abstract concepts) without supervision. RANs modeling is hybrid in nature,

i.e., it consists of properties of symbolic, distributed and spatial conceptual representations.

Topologically RANs modeling is distributed (i.e., connectionist) where learning is performed

by viewing concepts as points in n-dimension feature hyperspace. Moreover, every node of the

network symbolically identifies a concept. Two variations of RANs modeling were developed

during this research work: firstly, modeling of convex abstract concepts (see Chapter 3) was

introduced; and secondly model of non-convex abstract concepts (see Chapter 4). Both versions

displayed the novelty of RANs modeling where the network evolves by creating a new layer of
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concepts dynamically. In the convex and non-convex abstract concept modeling with RANs 2

concept creation, 3 learning and 2 activation propagation cognitive function were also simulated.

The RANs classification capability was tested with eleven benchmarks of UCI machine learning

repository, three artificial datasets, one dataset from the image domain and one dataset from

IoT sources. In the experiments, the performance of both versions of RANs modeling was quite

satisfactory. It was also observed that the RAN’s model outperformed the classifier RBM+ in a

large number of cases. In several experiments the RANs produced similar outcomes as of MLP,

LR, SGD and K-NN, and in some experiments, RANs even outperformed one of the classifiers.

The RANs modeling also produced very good results when trained with a limited amount of

data. Besides satisfactory performance, the RANs modeling automatically identifies the similar

categories-labels in data as one abstract concept (see the experiments with UCIHAR data in

Sections 3.4.2 & 4.3.2). The IoT dataset obtained from project SOCIALITE was used to model

the Active and Inactive state of students through their smartphone usage. The generated RANs

model was used and the outcome was statistically analyzed, and based upon the assumptions of

the experiment the results indicated towards the ill psychological or physiological of one student

participant.

The third activation propagation operation of this research was introduced in Chapter 5 as

the GBP algorithm which propagates activation from the output-to-input layer. In behavior

simulation experiments of Chapter 5 the GBP algorithm was used to simulate the cognitive

recall operations. The Single Cue Recall experiments in Section 5.7.1 depicted the recall of an

abstract concept when cues are limited. The Multiple Cue Recall experiments (see Sections 5.7.2

& 5.8.2) were able to retrieve almost exact activation values as expected at the input layer

nodes. In Single Cue Recall experiments with Toy-data we also show how excitatory, inhibitory

and neutral effect regulates the activation of a concept to obtain better recall values. The

Multiple Binary Valued Cue Recall displayed one more feature of RANs modeling, i.e., the blend

retrieval of abstract concepts (see Section 5.8.1). All intuitive blends were obtained as per the

expectations, whereas, the non-intuitive blends not only produced an intriguing combination of

recalled abstract concepts but also with lesser noise when compared with intuitive blends.

Apart from classification and cognitive function simulations, the RANs modeling is useful in

performing the data analysis tasks. RANs modeling performs both dimension expansion and di-

mension reduction operation in the data. By alternately reducing and expanding the dimension

of the data and building a multi-layered RANs model, the data gets transformed and becomes

more comprehensible (refer to Appendix E).



Chapter 6. Conclusion 117

6.3 Prospective Research & Development Work

I the past 15 years the research in distributed computational model, from Recurrent to Deep

Neural Networks, experienced an extreme amount of success in industrial application. All these

models some way or the other addresses the learning process in the human brain. Besides,

the symbolic (ACT-R) and hybrid (symbolic + distributed) (CLARION) approaches have been

useful in simulating and studying the human cognitive processes. The RANs model developed

as part of this research is a computational cognitive model that unifies the virtues of symbolic,

distributed, and spatial representations. The RANs modeling simulates the cognitive processes,

such as concept creation, learning, and recall operations as a pattern of static events. Moreover,

it will be interesting to study temporal aspects of activities as it related to the sequence of

patterns. In the future, I would like to simulate and model sequence of events, the temporal

aspect, that induces thought in both learning and forgetting processes.

Perceiving, learning, abstracting and reasoning are four important factors recognized by DARPA

for an effective AI to process information (Launchbury, 2017). According to DARPA: the first

wave of AI-enabled perceiving and reasoning over a narrowly defined problem, where models

had no learning capabilities and poor handling of uncertainties; the second wave of AI the

methodologies are good in learning and perceiving with distinction in classification and pre-

diction capabilities, but have no contextual capabilities and minimal reasoning (Launchbury,

2017). The RANs model is capable of learning context among the concepts at the same level

in the models which helps in associating alike concepts together. In the future, I would like to

study and develop a methodology to learn association among multiple models and contribute

to the contextual learning research.





Appendix A

Theories and Principles Used in

Regulated Activation Networks

Modeling

This section provides information about the biological inspiration for regulation operation pro-

posed in this article. It also highlights the principles behind RANs modeling.

A.1 Axoaxonic Synapses

The nerve cell (neuron) consists of several main components: the Dendrites, the Cell body,

and the Axon, as shown in Figure A.1a. The Dendrites are the tree-like receptive network

made of nerve fiber that carries electrical signals into the cell body. The cell body performs

(a) Diagram of Biological Human Neu-
ron (Wikipedia, 2018)

(b) Axoaxonic Synapses

Figure A.1: The two views of human neuron. Figure A.1a details an individual neuron cell
in human. Figure A.1b shows the Axoaxonic connection at a neuron from another neuron

119



Appendix A. Theories Used in RANs Modeling 120

the integration of these signals and, if the resulting electrical potential exceeds some threshold,

the neuron “fires” propagating a similar signal to other neurons along its Axon. The Axon is a

single long fiber carrying electrical signals from the cell body to others. The connection point

between the Axon of a cell and a Dendrite of another is called a Synapse. When an electric

signal traverses the whole Axon and reaches one of its terminations it releases chemicals called

Neurotransmitters, which diffuse across the Synaptic gap, and are absorbed by the receptive

neuron’s Dendrite. Depending on the neurotransmitter, this absorption can either enhance or

inhibit the receptive neuron’s activation. The Synapse’s effectiveness can be adjusted by the

signals passing through it so that the Synapses’ can learn from the activities in which they

participate, and this, in part, is responsible for human memory.

Other kinds of synapses occur in biological brains, such as axoaxonic synapses, as shown in

figure A.1b. These synapses occur when the axon of a neuron connects to the axon of another

neuron instead of to its dendrites. Such configuration usually plays a regulatory role by medi-

ating presynaptic inhibition and presynaptic facilitation (Garrett, 2014). By virtue of artificial

axoaxonic synapses, this contribution realizes the regulatory phenomenon in RANs modeling,

that induces tuning effect to the activation at nodes during recall operation.

A.2 Principles of Regulated Activation Networks

The principles of RANs (Pinto and Barroso, 2014) modeling conceptualize a technique: which is

connectionist in topology; capable of representing and simulating the varying cognitive phenom-

ena of an agent, its learning and recall processes, the association of ideas, and the creation of

new concepts. To emulate the dynamic cognitive state such as the Priming (Jacoby, 1983) and

False Memory (Roediger and Blaxton, 1987, Roediger and McDermott, 1995) two things were

identified as essential: first, temporal activation state of a concept in agent’s brain; and second,

the association establishment between two concepts with respect to their activation at a given

instance of time. To address the habituation and sensitization phenomena two more things were

stated by the author: first, the model should have a dynamic behavior; and second, the model

must have a leaning mechanism create new concepts abstract in nature. The first version of

RANs modeling (Pinto and Barroso, 2014) demonstrated a single-layered learning and reasoning

mechanism, with a simulation of depicting a cognitive process of spreading activation (Collins

and Loftus, 1975).

The second version of RANs (Sharma et al., 2018b) modeling introduced the evolving con-

nectionist topology, and abstract representation of concepts (described in Chapter 3). The

extension of the second version of RANs modeling with a unique translation of the RAN’s

Intra-Layer learning mechanism (Pinto and Barroso, 2014, Sharma et al., 2018a) used to model

non-convex concepts as described in Chapter 4. Chapter 5 also extends the second version of

RANs to simulate recall behavior where lateral associations among concepts are interpreted are
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inhibitors, inert and exciters, and later they are used in regulating the activation of concept

nodes during recall operation.

A.3 Spreading Activation

Spreading Activation is a theory of memory (Anderson, 1983b) based on Collins and Quillian’s

computer model (Collins and Quillian, 1969) which has been widely used for the cognitive mod-

eling of human associative memory and in other domains such as information retrieval (Crestani,

1997). It intends to capture both the way information is represented and how it is processed.

According to the theory, long-term memory is represented by nodes and associative links be-

tween them, forming a semantic network of concepts. The links are characterized by a weight

denoting the associative or semantic relation between the concepts. The model assumes acti-

vating one concept implies the spreading of activation to related nodes, making those memory

areas more available for further cognitive processing. This activation decays over time, and the

further it spreads, which can occur through multiple levels (McNamara and Altarriba, 1988),

the weaker it is. That is usually modeled using a decaying factor for activation. The method

of spreading activation has been central in many cognitive models due to its tractability and

resemblance of interrelated groups of neurons in the human brain (Roediger et al., 2001).

A.4 Theory of Conceptual Spaces

Feature(or Value) set representation can alternatively be seen as spatial representations, where

entity(or feature or concept) is represented by one or more number of entity( or feature or

concept) and their activation(or value) at particular instance of time and thus representing

entity(or feature or concept) into a multi-dimension space.

The theory of Conceptual Spaces proposed by Gärdenfors’ (Gärdenfors, 2004) promoted the idea

of seeing concepts into multi-dimension spaces, over here the representations are inspired by their

geometrical aspects of concepts rather than symbolism or connectionism. The similarity among

the concepts can be identified based upon the geometrical distance between the objects. The

conceptual spaces, thus, serves as a natural way or tool to representing similarity relation among

concepts (entities or objects). Since the conceptual spaces consider the geometrical aspects and

easily address the notion of similarity relation, thus helps in understanding several cognitive

phenomena like recognition. Formally we can say, a conceptual space S is formed by a set/class

of quality dimensions D1, ....., Dn. A point in S is represented by a vector v= 〈d1, ....., dn〉,
where {1,....n} represent index of dimensions.To form spatial structures on concepts topological

characteristics of quality dimension can be utilized thus obtaining a natural concept, a convex
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Figure A.2: Henning’s taste tetrahe-
dron(Gärdenfors, 2004)

Figure A.3: The color space (Sivik
and Taft, 1994)

region of conceptual space. Any convex region C that falls between to points v1&v2εS, then

any point x between v1&v2 also belong to the same convex region C.

The quality dimension is the basic requirement for conceptual spaces (Gärdenfors, 2004). The

work of addressing the human taste perception based upon the different type of receptors: sweet,

sour, saline and bitter, is used as an example to demonstrate quality dimension for sensory space

representation (Gärdenfors, 2004). Here the quality space is represented by a tetrahedron (1

dimension for each taste) as shown in Figure A.2. Any point on each plane of the tetrahedron

(Figure A.2) represents a taste, however, no taste is mapped as point lying interior to the

tetrahedron.

Another example is a color space with the dimensions hue, saturation (or chromaticism), and

brightness. Each quality dimension has a particular geometrical structure. For example, hue is

circular, whereas brightness and saturation correspond with finite linear scales (Figure A.3). It is

important to note that the values on a dimension need not be numbers. Quality dimensions may

be grouped into domains. A domain is a set of integral (as opposed to separable) dimensions,

meaning that no dimension can take a value without every other dimension in the domain also

taking a value. Therefore, hue, saturation, and brightness in the above color model form a

single domain. Conceptual space is simply “a collection of one or more domains” (Gärdenfors,

2004). For example, a conceptual space of elementary colored shapes could be defined as a

space comprising the above domain of color and a domain representing the perceptually salient

features of a given set of shapes.

A property corresponds to a region of a domain in a conceptual space. A concept, represented in

terms of its properties, corresponds to a region in space, normally including multiple domains.

Property is a special case of concept. For instance, the concept “red’ is a region in the color

space. It is also a property of anything which is red. An object is a point in space. The spatial

location of an object in a conceptual space allows the calculation of the distance between objects,

which gives rise to a natural way of representing similarities. The distance measure may be a

true metric, or non-metric, such as a measure based on an ordinal relationship or the length
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of a path between vertices in a graph. When calculating distance, the salience (weight) of the

dimensions is varied. It is the context where a concept is used that determines which dimensions

are the most prominent, and hence, have bigger weights.

The theory of conceptual spaces also address the 1 prototype theory of categorization (Rosch,

1975, 1983, Mervis and Rosch, 1981), if concepts are described as convex regions of conceptual

space, prototype effects are indeed to be expected. In a convex region, one can describe positions

as being more or less central. For example, if color concepts are identified with convex subsets

of the color space, the central points of these regions would be the most prototypical examples

of the color.

Such spatial representations naturally afford to reason in terms of spatial regions. Boundaries

between regions are fluid, an aspect of the representation that may be usefully exploited by

creative systems searching for new interpretations of familiar concepts. Besides, conceptual

spaces are particularly powerful in dealing with concept learning and concept combination.

However, the conceptual spaces theory imposes some constraints on what kinds of subspaces can

be considered concepts, i.e., requiring them to be convex, which may compromise its applicability

in general.

1The main idea of prototype theory is that within a category of objects, like those instantiating a concept,
certain members are judged to be more representative of the category than others. For example, robins are judged
to be more representative of the category “bird” than are ravens, penguins and emus





Appendix B

Support Utilities & Configurations

for Modeling with Regulated

Activation Networks

The appendix describes several methods that are useful in the evaluation process of RANs

modeling.

B.1 Abstract Concept Labeling (ACL)

This method is optional and useful when the input data is labeled. With this mechanism,

we associate an identifier to every abstract concept node Nj . Having generated the RAN’s

model with CCI, then trough CACC, CCILL, input data is sorted label-wise, and perform

CACUAP operation. The propagated Data is inspected class-wise, and label node Nj with a

class-name for which it got the maximum count of highest activation. For example, suppose

input data for class-X has 100 instances, after inspecting the propagated data, it is observed

that node N1 received highest activation 74-times, whereas, with remaining 26 cases other nodes

experienced maximum activation, therefore, we recognize node N1 as representative of class-X.

True-Labels are identified by directly mapping class of each input instance to its respective

node representative. Observed-Labels are obtained by propagating every test-instance through

CACUAP operation, inspecting which abstract node received the highest activation for that

data-unit, and label it with the class represented by that node. True-Labels and Observed-

Labels are used to validate the model’s performance.
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B.2 Non-convex Abstract Concept Labeling (NACL)

NACL is a non-obligatory method in RANs modeling. It is applied to symbolize NAC nodes

at Layer-2, by associating them to input label incorporated with the data instances. Having

generated the RAN’s model with all nine steps, input train data is sorted label-wise, and each

input instance was propagated upward using both upward activation operations (i.e., CACUAP,

and NACUAP) serially. The class-wise inspection of Activation of node NACj associate classes

to node NACj as labels. For example, suppose the Layer-2 of the model has two nodes NAC1

and NAC2, and input data for class-X has 100 instances. The inspection of the activation of

all 100 instances observed that node NAC1 received highest activation 74-times, whereas, with

remaining 26 instances node NAC2 experienced maximum activation, therefore, we recognize

node NAC1 as representative of class-X. True-Labels are identified by directly mapping class of

each input instance to its respective NAC node representative. Observed-Labels are obtained

by propagating every test-instance through, both, upward activation operations and inspecting

which abstract node received the highest activation for that data-unit, and label it with the class

represented by that node. True-Labels and Observed-Labels are used to validate the model’s

performance.

B.3 ROC curve analysis of the model generated with RANs

This study is carried out by two processes, first the input True-labels are transformed into a

separate vector of binary labels, individually for all abstract nodes (i.e. 1 for class c1, 0 for all

other classes), second, calculating the confidence score for each instance of the input data (or

test-data). Both processes are described as follows:

1 Node-wise binary transformation of input true-labels: For example, suppose there

are three classes (c1, c2, c3) represented by three abstract nodes (n1, n2, and n3) in RAN’s

model at Layer-2, and let True-label be [c1, c2, c2, c1, c2, c3, c3] for seven test instances,

then for node n1 label will be [1, 0, 0, 1, 0, 0, 0] where 1 represents class c1, and 0 depicts

others (i.e. c2, and c3).

2 Node-wise confidence-score calculation: This is calculated by averaging activation-

value and confidence-indicator of activation for an input instance at an abstract node.

Activation-value is an individual activation of an activation vector obtained by propagating

up the data using the upward activation propagation (UAP i.e., CACUAP and NACUAP)

mechanism of RANs whereas, confidence-indicator is calculated by min-max normalization

operation of activation vector. For example, after UAP operation each node (n1, n2, and

n3) receives activation [0.89, 0.34, 0.11] (a vector of activation), and confidence-indicator
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Table B.1: Ratio distribution of Train and Test data in nine Research Designs

RD-1 RD-2 RD-3 RD-4 RD-5

Train Test Train Test Train Test Train Test Train Test

90% 10% 80% 20% 70% 30% 60% 40% 50% 50%

RD-1 RD-7 RD-8 RD-9 ————–

Train Test Train Test Train Test Train Test ——- —–

40% 60% 30% 70% 20% 80% 10% 90% ——- ——

Research Design: RD, Training Data Size: Train, Test Data
size: Test

Figure B.1: One iteration in the Experimental Setup.

is min-max ([0.89, 0.34, 0.11]) = [1.0, 0.29, 0.0]. and the confidence-score for nodes n1=

(0.89 + 1.0)/2.0 = 0.95, n2= (0.34 + 0.29)/2.0 = 0.32, and n3= (0.11 + 0.11)/2.0 = 0.05.

B.4 Research Design

Table B.1 lists the nine Research Designs (RD) used in the experiments of this article. In every

RD the ratio of the Train and Test data is varied to capture the ability of the classifier being

inspected.

B.5 Experimental Setup

To validate the classifiers the experimental setups were created with many iterations. Figure B.1

shows one iteration of an experimental setup, it consists of nine Research Designs as described

by Table B.1. Each Research Design carry out 10-fold cross validation.
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Table B.2: Dataset specific configuration details of models in simulations of chapter 3

Data Algo Configurations Data Algo Configurations

RBM +
Lr=0.000001, iter=500, comp=20
max iter=30, C=70

RBM +
Lr=0.06, iter=500, comp=10
max iter=10, C=1

K-NN n neighbors=30 K-NN n neighbors= 15
max iter=10, C=1 max iter=30, C=1

MLP Rs=1, hls=10, iter=250 MLP Rs=1, hls=10, iter=400
RAN CLS=5, Desired depth=1 RAN CLS=2, Desired depth=1T

o
y
-d

a
ta

SGD alpha=0.0001, n iter=5, epsilon=0.25

U
C

IH
A

R

SGD alpha=0.1, n iter=10, epsilon=0.25

RBM +
Lr=0.1, iter=500, comp=20
max iter=30, C=30

RBM +
Lr=0.006, iter=100, comp=10
max iter=30, C=1

K-NN n neighbors=15 K-NN n neighbors=30
max iter=4, C=0.00001 max iter=10, C=0.001

MLP Rs=1, hls=10, iter=300 MLP Rs=1, hls=10, iter=200
RAN CLS=8, Desired depth=1 RAN CLS=2, Desired depth=1

M
ic

e
P

ro
te

in

SGD alpha=0.1, n iter=10, epsilon=0.25

B
re

a
st

C
a
n

c
e
r

5
6
9

SGD alpha=,0.0001 n iter=5, epsilon=0.25

RBM +
Lr=0.001, iter=100, comp=10
max iter=30, C=1

RBM +
Lr=0.006, iter=100, comp=10
max iter=30, C=1

K-NN n neighbors=10 K-NN n neighbors=30
max iter=10, C=0.001 max iter=10, C=0.001

MLP Rs=1, hls=10, iter=200 MLP Rs=1, hls=10, iter=200
RAN CLS=2, Desired depth=1 RAN CLS=2, Desired depth=1B

re
a
st

C
a
n

c
e
r

6
6
9

SGD alpha=0.0001, n iter=5, epsilon=0.25

C
re

d
it

A
p

p
ro

v
a
l

SGD alpha=0.0001, n iter=5, epsilon=0.25

RBM +
Lr=0.001, iter=400, comp=10
max iter=30, C=5

RBM +
Lr=0.01, iter=500, comp=20
max iter=30, C=5

K-NN n neighbors=15 K-NN n neighbors=30
max iter=5, C=0.00001 max iter=5, C=1

MLP Rs=1, hls=10, iter=200 MLP Rs=1, hls=10, iter=250
RAN CLS=2, Desired depth=1 RAN CLS=2, Desired depth=1

G
la

ss
Id

e
n
ti

fi
-

c
a
ti

o
n

SGD alpha=0.01, n iter=10, epsilon=0.25

M
a
m

o
g
ra

p
h

ic
M

a
ss

SGD alpha=0.0001, n iter=5, epsilon=0.25

RBM +
Lr=0.01, iter=1000, comp=20
max iter=30, C=5

RBM +
Lr=0.01, iter=500, comp=20
max iter=30, C=50

K-NN n neighbors=15 K-NN n neighbors=15
max iter=10, C=1 max iter=10, C=0.01

MLP Rs=1, hls=10, iter=400 MLP Rs=1, hls=10, iter=300
RAN CLS=3, Desired depth=1 RAN CLS=3, Desired depth=1

IR
IS

SGD alpha=0.01, n iter=10, epsilon=0.25

W
in

e
R

e
c
o
g
n

i-
ti

o
n

SGD alpha=0.01, n iter=10, epsilon=0.25

Lr-Learning Rate; iter-Iterations; comp-Number of Hidden Components of RBM; RS-Random State
hls=Hidden Layer Sizes; CLS-Number of clusters at the input layer of RAN

B.6 Model Configurations and Research Design

Various experiments, reported in this thesis, were conducted with several datasets, using six

modeling techniques including the proposed methodology i.e. RANs modeling. Table B.2 shows

the configurations of all the models for all the experiments in Chapter 3. Table B.3 lists the con-

figuration of methodologies used in Chapter 4. The experiments were carried out using python

programing language, and implementations of Restricted Boltzmann Machine pipelined with Lo-

gistic Regression (RBM+), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Multilayer

Perceptron (MLP), and Stochastic Gradient Descent (SGD) models of Scikit-learn library (Pe-

dregosa et al., 2011). It is to be noted that experiments with RBM were carried out, pipelined

with the LR algorithm using the default configuration of its implementation in scikit-learn

library.
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Table B.3: Dataset specific configuration details of models in simulations of chapter 4

Data Algo Configurations Dataset Model Configuration

T
o
y
-d

a
ta

RBM+
Lr=0.001, iter=200,
comp=10; C=1

U
C

IH
A

R
RBM+

Lr=0.001, iter=200,
comp=10; C=1

KNN n neighbors=30 KNN n neighbors=15
LR max iter=5,C=0.00001 LR max iter=5,C=0.00001
MLP Rs=1, hls=5, iter=200 MLP Rs=1, hls=10, iter=200
RAN CLS=9, ST=0.72 RAN CLS=6, ST=0.75

SGD
alpha=0.0001,n iter=5,
epsilon=0.25

SGD
alpha=0.0001,n iter=5,
epsilon=0.25

M
ic

e
P

ro
te

in

RBM+
Lr=0.006, iter=500,
comp=10; C=1

B
re

a
st

C
a
n

c
e
r

5
6
9

RBM+
Lr=0.001, iter=500,
comp=20;C=1

KNN n neighbors=30 KNN n neighbors=30
LR max iter=5,C=0.001 LR max iter=5,C=0.00001
MLP Rs=1, hls=10, iter=400 MLP Rs=1, hls=10, iter=200
RAN CLS=12, RT=0.97 RAN CLS=12, ST=0.80

SGD
alpha=0.0001,n iter=5,
epsilon=0.25

SGD
alpha=0.0001,n iter=5,
epsilon=0.25

IR
IS

D
a
ta

RBM+
Lr=0.001, iter=500,
comp=20; C=1

C
re

d
it

A
p

p
ro

v
a
l

RBM+
Lr=0.001, iter=500,
comp=20; C=1

KNN n neighbors=15 KNN n neighbors=30
LR max iter=5,C=0.01 LR max iter=5,C=0.00001
MLP Rs=1, hls=10, iter=400 MLP Rs=1, hls=10, iter=200
RAN CLS=12, ST=0.82 RAN CLS=12, ST=0.84

SGD
alpha=0.001,n iter=5,
epsilon=0.25

SGD
alpha=0.0001,n iter=5,
epsilon=0.25

Lr-Learning Rate; iter-Iteration; comp-number of hidden components of RBM; Rs-random state;
hls-Hidden Layer Sizes; ST-Similarity Threshold; CLS- number of clusters ‘k’ being identified
by concept identifier K-mean;





Appendix C

Observations with Convex Abstract

Concept Modeling

This Appendix provides the observations of experiments of Chapter 3 showing the classifi-

cation performance of RANs modeling along with five classifiers (Restricted Boltzmann Ma-

chine pipelined with Logistic regression, Logistic Regression, Multi Layer Perceptron, K Near-

est Neighbor and Stochastic Gradient Descent). The investigations were carried out with one

artificially generated Toy-data problem and nine benchmark datasets obtained from the UCI

machine learning repository.

131
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Table C.1: Observations with Toy-data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 99.987 99.987 99.987 99.987
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 99.934 99.933 99.933 99.933
K-NN RD-8 99.925 99.925 99.925 99.925
K-NN RD-9 99.772 99.675 99.644 99.675
LR RD-1 99.621 99.600 99.600 99.600
LR RD-2 99.483 99.467 99.467 99.467
LR RD-3 99.653 99.644 99.644 99.644
LR RD-4 99.689 99.683 99.683 99.683
LR RD-5 99.672 99.667 99.667 99.667
LR RD-6 99.649 99.644 99.644 99.644
LR RD-7 99.698 99.695 99.695 99.695
LR RD-8 99.652 99.650 99.650 99.650
LR RD-9 99.721 99.719 99.719 99.719
MLP RD-1 99.556 99.533 99.533 99.533
MLP RD-2 99.414 99.400 99.400 99.400
MLP RD-3 99.561 99.556 99.556 99.556
MLP RD-4 99.571 99.567 99.567 99.567
MLP RD-5 99.415 99.413 99.413 99.413
MLP RD-6 99.255 99.244 99.243 99.244
MLP RD-7 99.273 99.257 99.256 99.257
MLP RD-8 98.724 98.692 98.686 98.692
MLP RD-9 65.811 76.681 69.504 76.681
RBM+ RD-1 92.635 89.109 87.852 89.109
RBM+ RD-2 92.064 87.703 85.939 87.703
RBM+ RD-3 91.940 87.389 85.542 87.389
RBM+ RD-4 91.405 86.359 84.102 86.359
RBM+ RD-5 90.791 84.966 82.036 84.966
RBM+ RD-6 90.449 84.474 81.280 84.474
RBM+ RD-7 90.044 83.464 79.752 83.500
RBM+ RD-8 89.722 82.685 78.457 82.685
RBM+ RD-9 88.750 81.104 76.112 81.104
SGD RD-1 97.960 97.595 97.483 97.600
SGD RD-2 97.716 97.349 97.252 97.349
SGD RD-3 97.561 97.102 96.986 97.102
SGD RD-4 97.592 97.112 96.981 97.112
SGD RD-5 97.049 96.404 96.108 96.404
SGD RD-6 96.673 95.651 95.333 95.651
SGD RD-7 96.044 94.587 93.822 94.587
SGD RD-8 94.226 92.347 90.962 92.347
SGD RD-9 89.172 89.077 86.240 89.077
RAN RD-1 99.036 99.000 99.002 99.000
RAN RD-2 99.024 99.000 99.001 99.000
RAN RD-3 98.966 98.956 98.956 98.956
RAN RD-4 99.108 99.100 99.100 99.100
RAN RD-5 99.167 99.160 99.160 99.160
RAN RD-6 99.184 99.178 99.178 99.178
RAN RD-7 99.118 99.114 99.114 99.114
RAN RD-8 99.213 99.208 99.208 99.208
RAN RD-9 99.211 99.207 99.207 99.207

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.2: Observations with Mice Protein data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 99.617 99.593 99.587 99.593
K-NN RD-9 88.053 85.429 83.001 85.429
LR RD-1 100.000 100.000 100.000 100.000
LR RD-2 100.000 100.000 100.000 100.000
LR RD-3 100.000 100.000 100.000 100.000
LR RD-4 100.000 100.000 100.000 100.000
LR RD-5 100.000 100.000 100.000 100.000
LR RD-6 99.558 99.488 99.484 99.488
LR RD-7 94.709 90.749 89.765 90.749
LR RD-8 100.000 100.000 100.000 100.000
LR RD-9 96.654 94.326 93.978 94.326
MLP RD-1 100.000 100.000 100.000 100.000
MLP RD-2 100.000 100.000 100.000 100.000
MLP RD-3 100.000 100.000 100.000 100.000
MLP RD-4 100.000 100.000 100.000 100.000
MLP RD-5 100.000 100.000 100.000 100.000
MLP RD-6 100.000 100.000 100.000 100.000
MLP RD-7 95.973 94.832 93.817 94.800
MLP RD-8 95.270 93.575 91.872 93.575
MLP RD-9 95.652 95.654 94.786 95.654
RBM+ RD-1 89.874 93.333 91.058 93.333
RBM+ RD-2 2.630 16.216 4.525 16.216
RBM+ RD-3 59.688 73.028 64.029 73.028
RBM+ RD-4 2.654 16.290 4.564 16.290
RBM+ RD-5 29.103 47.568 33.870 47.568
RBM+ RD-6 99.995 99.995 99.995 99.995
RBM+ RD-7 4.429 18.780 6.566 18.780
RBM+ RD-8 99.993 99.992 99.992 99.992
RBM+ RD-9 2.656 16.298 4.568 16.298
SGD RD-1 100.000 100.000 100.000 100.000
SGD RD-2 99.994 99.994 99.994 100.000
SGD RD-3 99.986 99.984 99.983 99.984
SGD RD-4 99.987 99.986 99.986 99.986
SGD RD-5 99.910 99.894 99.887 99.894
SGD RD-6 99.714 99.650 99.612 99.650
SGD RD-7 99.582 99.487 99.434 99.487
SGD RD-8 98.440 98.107 97.820 98.107
SGD RD-9 94.387 92.482 91.426 92.482
RAN RD-1 100.000 100.000 100.000 100.000
RAN RD-2 100.000 100.000 100.000 100.000
RAN RD-3 100.000 100.000 100.000 100.000
RAN RD-4 100.000 100.000 100.000 100.000
RAN RD-5 100.000 100.000 100.000 100.000
RAN RD-6 100.000 100.000 100.000 100.000
RAN RD-7 99.995 99.994 99.994 99.994
RAN RD-8 99.978 99.977 99.978 99.977
RAN RD-9 99.850 99.826 99.829 99.826

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.3: Observations with Breast Cancer 569 for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 99.935 99.934 99.934 99.934
K-NN RD-9 98.226 98.131 98.109 98.131
LR RD-1 100.000 100.000 100.000 100.000
LR RD-2 99.913 99.912 99.912 99.912
LR RD-3 99.768 99.766 99.766 99.766
LR RD-4 99.826 99.825 99.824 99.825
LR RD-5 99.965 99.965 99.965 99.965
LR RD-6 99.884 99.883 99.883 99.883
LR RD-7 99.850 99.850 99.849 99.850
LR RD-8 99.869 99.868 99.868 99.868
LR RD-9 99.903 99.903 99.902 99.903
MLP RD-1 99.829 99.825 99.824 99.825
MLP RD-2 99.827 99.825 99.824 99.825
MLP RD-3 98.970 98.947 98.944 98.900
MLP RD-4 98.787 98.772 98.768 98.772
MLP RD-5 98.990 98.982 98.981 98.982
MLP RD-6 99.015 99.006 99.004 99.006
MLP RD-7 97.272 97.218 97.202 97.218
MLP RD-8 97.531 97.478 97.463 97.478
MLP RD-9 97.796 97.758 97.746 97.758
RBM+ RD-1 97.376 97.269 97.277 97.269
RBM+ RD-2 96.259 96.193 96.197 96.193
RBM+ RD-3 94.419 94.390 94.391 94.390
RBM+ RD-4 95.232 95.140 95.155 95.140
RBM+ RD-5 94.420 94.389 94.387 94.389
RBM+ RD-6 92.795 92.778 92.760 92.778
RBM+ RD-7 90.950 90.926 90.867 90.926
RBM+ RD-8 92.194 92.151 92.093 92.151
RBM+ RD-9 88.794 88.338 88.021 88.338
SGD RD-1 100.000 100.000 100.000 100.000
SGD RD-2 99.983 99.982 99.982 99.982
SGD RD-3 99.973 99.973 99.973 99.973
SGD RD-4 99.951 99.950 99.950 99.950
SGD RD-5 99.941 99.939 99.939 99.939
SGD RD-6 99.864 99.798 99.794 99.798
SGD RD-7 99.802 99.791 99.791 99.791
SGD RD-8 99.689 99.460 99.403 99.460
SGD RD-9 99.647 99.721 99.673 99.721
RAN RD-1 94.139 94.035 93.960 94.035
RAN RD-2 94.040 93.772 93.667 93.772
RAN RD-3 92.937 92.752 92.650 92.752
RAN RD-4 93.748 93.596 93.516 93.596
RAN RD-5 93.249 93.078 92.986 93.078
RAN RD-6 93.034 92.830 92.733 92.830
RAN RD-7 92.834 92.675 92.588 92.675
RAN RD-8 92.609 92.281 92.146 92.281
RAN RD-9 92.921 92.738 92.648 92.738

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.4: Observations with Breast Cancer 669 for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 99.863 99.857 99.858 99.857
K-NN RD-2 99.860 99.857 99.857 99.857
K-NN RD-3 99.765 99.762 99.762 99.762
K-NN RD-4 99.859 99.857 99.857 99.857
K-NN RD-5 99.802 99.800 99.800 99.800
K-NN RD-6 99.695 99.690 99.691 99.690
K-NN RD-7 99.616 99.612 99.613 99.600
K-NN RD-8 99.520 99.518 99.518 99.518
K-NN RD-9 97.121 96.978 96.932 96.978
LR RD-1 99.599 99.571 99.575 99.571
LR RD-2 99.168 99.143 99.146 99.143
LR RD-3 99.159 99.143 99.145 99.143
LR RD-4 99.124 99.107 99.109 99.107
LR RD-5 99.125 99.114 99.116 99.114
LR RD-6 99.064 99.048 99.050 99.048
LR RD-7 99.036 99.020 99.023 99.020
LR RD-8 99.152 99.143 99.144 99.143
LR RD-9 99.007 99.000 99.001 99.000
MLP RD-1 99.863 99.857 99.858 99.857
MLP RD-2 99.793 99.786 99.787 99.786
MLP RD-3 99.436 99.429 99.429 99.429
MLP RD-4 99.260 99.250 99.251 99.250
MLP RD-5 99.089 99.086 99.086 99.086
MLP RD-6 98.897 98.881 98.883 98.881
MLP RD-7 98.698 98.673 98.677 98.673
MLP RD-8 97.835 97.821 97.812 97.821
MLP RD-9 97.766 97.746 97.735 97.746
RBM+ RD-1 97.780 97.714 97.698 97.714
RBM+ RD-2 98.027 98.000 97.998 98.000
RBM+ RD-3 97.679 97.665 97.664 97.665
RBM+ RD-4 97.307 97.296 97.290 97.296
RBM+ RD-5 97.169 97.150 97.139 97.150
RBM+ RD-6 96.375 96.371 96.356 96.371
RBM+ RD-7 96.147 96.130 96.108 96.130
RBM+ RD-8 94.465 94.249 94.145 94.249
RBM+ RD-9 86.523 83.456 81.729 83.456
SGD RD-1 100.000 100.000 100.000 100.000
SGD RD-2 99.967 99.967 99.967 99.967
SGD RD-3 99.992 99.992 99.992 99.992
SGD RD-4 99.988 99.988 99.988 99.988
SGD RD-5 99.971 99.970 99.970 99.970
SGD RD-6 99.872 99.869 99.869 99.869
SGD RD-7 99.713 99.707 99.707 99.707
SGD RD-8 99.868 99.866 99.866 99.866
SGD RD-9 99.534 99.520 99.519 99.520
RAN RD-1 95.121 95.000 94.936 95.000
RAN RD-2 95.590 95.510 95.471 95.510
RAN RD-3 95.201 95.143 95.100 95.143
RAN RD-4 95.194 95.163 95.127 95.163
RAN RD-5 95.344 95.308 95.273 95.308
RAN RD-6 94.600 94.587 94.546 94.587
RAN RD-7 95.321 95.315 95.288 95.315
RAN RD-8 95.095 95.077 95.043 95.077
RAN RD-9 95.132 95.101 95.063 95.101

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.5: Observations with Credit Approval data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 95.404 95.373 95.374 95.373
K-NN RD-2 95.477 95.448 95.443 95.448
K-NN RD-3 95.313 95.300 95.301 95.300
K-NN RD-4 95.336 95.318 95.314 95.318
K-NN RD-5 95.805 95.796 95.795 95.796
K-NN RD-6 95.366 95.350 95.350 95.350
K-NN RD-7 95.625 95.610 95.611 95.610
K-NN RD-8 95.397 95.385 95.385 95.385
K-NN RD-9 95.589 95.575 95.574 95.575
LR RD-1 94.680 94.627 94.628 94.627
LR RD-2 94.506 94.478 94.473 94.478
LR RD-3 94.717 94.700 94.699 94.700
LR RD-4 94.808 94.794 94.790 94.794
LR RD-5 95.477 95.465 95.466 95.465
LR RD-6 95.232 95.225 95.225 95.225
LR RD-7 95.468 95.460 95.460 95.460
LR RD-8 95.261 95.253 95.254 95.253
LR RD-9 95.392 95.383 95.384 95.383
MLP RD-1 99.564 99.552 99.551 99.552
MLP RD-2 99.197 99.179 99.178 99.179
MLP RD-3 99.355 99.350 99.350 99.350
MLP RD-4 98.122 98.090 98.087 98.090
MLP RD-5 98.299 98.288 98.287 98.288
MLP RD-6 98.324 98.300 98.298 98.300
MLP RD-7 97.198 97.152 97.146 97.152
MLP RD-8 96.178 96.098 96.088 96.098
MLP RD-9 95.983 95.967 95.964 95.967
RBM+ RD-1 93.956 93.886 93.873 93.886
RBM+ RD-2 90.706 90.597 90.565 90.597
RBM+ RD-3 88.568 88.305 88.205 88.305
RBM+ RD-4 80.638 79.536 78.959 79.536
RBM+ RD-5 74.321 73.827 73.258 73.827
RBM+ RD-6 69.972 68.428 66.685 68.428
RBM+ RD-7 65.278 63.642 60.243 63.642
RBM+ RD-8 62.939 62.002 58.557 62.002
RBM+ RD-9 61.541 60.468 55.982 60.468
SGD RD-1 99.995 99.995 99.995 99.995
SGD RD-2 99.976 99.975 99.975 99.975
SGD RD-3 99.993 99.993 99.993 99.993
SGD RD-4 99.966 99.965 99.965 99.965
SGD RD-5 99.902 99.880 99.874 99.880
SGD RD-6 99.853 99.813 99.797 99.813
SGD RD-7 99.850 99.842 99.841 99.842
SGD RD-8 99.594 99.580 99.579 99.580
SGD RD-9 98.789 98.744 98.744 98.744
RAN RD-1 78.216 77.677 77.651 77.677
RAN RD-2 79.039 78.562 78.523 78.562
RAN RD-3 81.933 80.967 80.946 80.967
RAN RD-4 79.599 79.090 79.053 79.090
RAN RD-5 79.400 78.619 78.590 78.619
RAN RD-6 79.876 78.791 78.739 78.791
RAN RD-7 80.538 79.435 79.404 79.435
RAN RD-8 82.433 81.303 81.305 81.303
RAN RD-9 82.565 79.913 80.686 79.913

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.6: Observations with IRIS data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 100.000 100.000 100.000 100.000
K-NN RD-9 13.678 35.172 18.975 35.172
LR RD-1 100.000 100.000 100.000 100.000
LR RD-2 100.000 100.000 100.000 100.000
LR RD-3 100.000 100.000 100.000 100.000
LR RD-4 100.000 100.000 100.000 100.000
LR RD-5 99.625 99.600 99.600 99.600
LR RD-6 98.660 98.556 98.553 98.556
LR RD-7 96.240 95.714 95.691 95.714
LR RD-8 94.095 92.667 92.499 92.667
LR RD-9 87.816 83.185 81.675 83.185
MLP RD-1 95.575 94.000 93.720 94.000
MLP RD-2 97.677 97.333 97.317 97.333
MLP RD-3 97.206 96.889 96.878 96.889
MLP RD-4 97.904 97.667 97.658 97.667
MLP RD-5 97.829 97.600 97.592 97.600
MLP RD-6 97.220 96.778 96.751 96.778
MLP RD-7 97.302 97.048 97.040 97.048
MLP RD-8 97.279 96.833 96.801 96.833
MLP RD-9 97.818 97.556 97.543 97.556
RBM+ RD-1 97.746 97.356 97.009 97.356
RBM+ RD-2 97.245 96.633 96.558 96.633
RBM+ RD-3 82.388 79.341 74.181 79.341
RBM+ RD-4 85.148 77.950 74.091 77.950
RBM+ RD-5 71.755 70.627 61.090 70.627
RBM+ RD-6 77.097 69.485 60.012 69.485
RBM+ RD-7 71.091 67.635 56.447 67.635
RBM+ RD-8 72.441 70.506 61.139 70.506
RBM+ RD-9 63.353 67.133 55.413 67.133
SGD RD-1 99.109 98.874 98.832 98.874
SGD RD-2 98.542 98.356 98.239 98.356
SGD RD-3 98.358 98.007 97.790 98.007
SGD RD-4 97.814 97.194 96.934 97.194
SGD RD-5 96.785 96.244 95.741 96.244
SGD RD-6 96.287 95.589 94.932 95.589
SGD RD-7 94.238 93.346 92.066 93.346
SGD RD-8 89.889 89.631 87.141 89.631
SGD RD-9 79.179 82.933 78.091 82.933
RAN RD-1 93.778 93.333 93.306 93.333
RAN RD-2 97.566 97.333 97.323 97.333
RAN RD-3 95.364 95.111 95.099 95.111
RAN RD-4 95.593 95.333 95.316 95.333
RAN RD-5 94.905 94.533 94.500 94.533
RAN RD-6 96.191 96.000 95.991 96.000
RAN RD-7 94.961 94.857 94.852 94.857
RAN RD-8 94.575 93.736 93.639 93.736
RAN RD-9 94.190 93.259 93.138 93.259

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.7: Observations with UCIHAR data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 99.971 99.971 99.971 99.971
K-NN RD-2 99.971 99.971 99.971 99.971
K-NN RD-3 99.974 99.974 99.974 99.974
K-NN RD-4 99.981 99.981 99.981 99.981
K-NN RD-5 99.967 99.967 99.967 99.967
K-NN RD-6 99.966 99.966 99.966 99.966
K-NN RD-7 99.956 99.956 99.956 99.956
K-NN RD-8 99.937 99.937 99.937 99.937
K-NN RD-9 99.918 99.918 99.918 99.918
LR RD-1 99.971 99.971 99.971 99.971
LR RD-2 99.985 99.985 99.985 99.985
LR RD-3 99.984 99.984 99.984 99.984
LR RD-4 99.985 99.985 99.985 99.985
LR RD-5 99.979 99.979 99.979 99.979
LR RD-6 99.969 99.969 99.969 99.969
LR RD-7 99.972 99.972 99.972 99.972
LR RD-8 99.949 99.949 99.949 99.949
LR RD-9 99.940 99.940 99.940 99.940
MLP RD-1 99.961 99.961 99.961 99.961
MLP RD-2 99.981 99.981 99.981 99.981
MLP RD-3 99.968 99.968 99.968 99.968
MLP RD-4 99.976 99.976 99.976 99.976
MLP RD-5 99.963 99.963 99.963 99.963
MLP RD-6 99.963 99.963 99.963 99.963
MLP RD-7 99.964 99.964 99.964 99.964
MLP RD-8 99.936 99.936 99.936 99.936
MLP RD-9 99.924 99.923 99.923 99.923
RBM+ RD-1 99.831 99.829 99.829 99.829
RBM+ RD-2 99.767 99.766 99.766 99.766
RBM+ RD-3 99.743 99.741 99.741 99.741
RBM+ RD-4 99.749 99.747 99.747 99.747
RBM+ RD-5 99.720 99.717 99.718 99.717
RBM+ RD-6 99.731 99.728 99.728 99.728
RBM+ RD-7 99.664 99.659 99.659 99.659
RBM+ RD-8 99.575 99.566 99.566 99.566
RBM+ RD-9 99.363 99.345 99.346 99.345
SGD RD-1 99.981 99.981 99.981 99.981
SGD RD-2 99.995 99.995 99.995 99.995
SGD RD-3 99.985 99.985 99.985 99.985
SGD RD-4 99.987 99.987 99.987 99.987
SGD RD-5 99.986 99.986 99.986 99.986
SGD RD-6 99.980 99.980 99.980 99.980
SGD RD-7 99.977 99.977 99.977 99.977
SGD RD-8 99.956 99.956 99.956 99.956
SGD RD-9 99.951 99.951 99.951 99.951
RAN RD-1 99.874 99.874 99.874 99.874
RAN RD-2 99.841 99.840 99.840 99.840
RAN RD-3 99.855 99.854 99.854 99.854
RAN RD-4 99.867 99.867 99.867 99.867
RAN RD-5 99.861 99.860 99.860 99.860
RAN RD-6 99.853 99.853 99.853 99.853
RAN RD-7 99.856 99.856 99.856 99.856
RAN RD-8 99.845 99.845 99.845 99.845
RAN RD-9 99.851 99.850 99.850 99.850

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.8: Observations with Mamographic Mass data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 99.966 99.966 99.966 99.966
K-NN RD-8 99.515 99.504 99.503 99.500
K-NN RD-9 97.349 97.296 97.295 97.296
LR RD-1 99.540 99.524 99.523 99.524
LR RD-2 99.647 99.641 99.641 99.641
LR RD-3 99.566 99.560 99.560 99.560
LR RD-4 99.319 99.309 99.309 99.309
LR RD-5 99.458 99.447 99.447 99.447
LR RD-6 99.150 99.138 99.138 99.138
LR RD-7 99.458 99.450 99.450 99.450
LR RD-8 98.787 98.767 98.766 98.767
LR RD-9 99.803 99.799 99.799 99.800
MLP RD-1 100.000 100.000 100.000 100.000
MLP RD-2 100.000 100.000 100.000 100.000
MLP RD-3 100.000 100.000 100.000 100.000
MLP RD-4 100.000 100.000 100.000 100.000
MLP RD-5 100.000 100.000 100.000 100.000
MLP RD-6 99.920 99.920 99.920 99.920
MLP RD-7 99.914 99.914 99.914 99.914
MLP RD-8 95.148 94.602 94.595 94.602
MLP RD-9 95.220 94.693 94.686 94.693
RBM+ RD-1 93.588 93.504 93.498 93.504
RBM+ RD-2 93.151 93.086 93.080 93.086
RBM+ RD-3 92.793 92.752 92.751 92.752
RBM+ RD-4 92.682 92.296 92.264 92.296
RBM+ RD-5 93.771 92.748 92.609 92.748
RBM+ RD-6 93.611 93.410 93.400 93.410
RBM+ RD-7 54.903 59.941 48.258 59.941
RBM+ RD-8 56.489 57.673 45.082 57.673
RBM+ RD-9 92.668 91.180 90.806 91.180
SGD RD-1 99.996 99.996 99.996 99.996
SGD RD-2 99.922 99.848 99.812 99.800
SGD RD-3 99.989 99.989 99.989 99.989
SGD RD-4 99.939 99.915 99.911 99.900
SGD RD-5 99.994 99.994 99.994 99.994
SGD RD-6 99.908 99.820 99.764 99.820
SGD RD-7 99.984 99.983 99.983 99.983
SGD RD-8 99.977 99.976 99.976 100.000
SGD RD-9 99.958 99.957 99.957 100.000
RAN RD-1 83.158 82.143 82.035 82.143
RAN RD-2 80.461 79.281 79.154 79.300
RAN RD-3 80.560 79.440 79.327 79.440
RAN RD-4 80.287 79.249 79.148 79.249
RAN RD-5 80.308 79.183 79.060 79.183
RAN RD-6 79.994 78.792 78.656 78.800
RAN RD-7 80.242 79.226 79.124 79.200
RAN RD-8 80.082 78.992 78.880 78.992
RAN RD-9 80.335 79.415 79.322 79.415

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.9: Observations with Wine Recognition data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 99.649 99.630 99.630 99.630
K-NN RD-4 99.736 99.722 99.723 99.722
K-NN RD-5 99.349 99.326 99.325 99.326
K-NN RD-6 99.457 99.439 99.439 99.439
K-NN RD-7 98.922 98.880 98.880 98.880
K-NN RD-8 98.102 97.972 97.973 97.972
K-NN RD-9 21.417 40.977 25.289 40.977
LR RD-1 96.190 95.000 94.998 95.000
LR RD-2 95.458 94.722 94.700 94.722
LR RD-3 95.391 94.630 94.580 94.630
LR RD-4 95.168 94.583 94.516 94.583
LR RD-5 94.453 93.708 93.577 93.708
LR RD-6 93.240 92.243 92.062 92.243
LR RD-7 93.160 92.080 91.914 92.100
LR RD-8 92.634 91.329 91.106 91.329
LR RD-9 91.606 89.876 89.552 89.876
MLP RD-1 96.574 96.111 96.088 96.111
MLP RD-2 98.180 98.056 98.053 98.056
MLP RD-3 97.899 97.778 97.776 97.778
MLP RD-4 97.288 97.222 97.215 97.222
MLP RD-5 97.837 97.753 97.749 97.753
MLP RD-6 97.505 97.477 97.474 97.477
MLP RD-7 97.655 97.600 97.599 97.600
MLP RD-8 97.030 96.993 96.995 96.993
MLP RD-9 97.003 96.957 96.956 96.957
RBM+ RD-1 99.984 99.981 99.981 99.981
RBM+ RD-2 45.821 60.389 51.077 60.389
RBM+ RD-3 49.296 65.247 55.565 65.247
RBM+ RD-4 73.371 73.005 67.026 73.005
RBM+ RD-5 85.943 83.322 82.103 83.322
RBM+ RD-6 16.150 40.187 23.040 40.187
RBM+ RD-7 44.238 60.235 50.783 60.235
RBM+ RD-8 45.219 61.800 52.071 61.800
RBM+ RD-9 43.966 59.327 50.005 59.327
SGD RD-1 98.821 98.448 98.452 98.448
SGD RD-2 98.493 98.296 98.303 98.296
SGD RD-3 98.417 98.247 98.248 98.247
SGD RD-4 98.737 98.625 98.628 98.625
SGD RD-5 98.679 98.566 98.563 98.566
SGD RD-6 98.103 97.960 97.956 98.000
SGD RD-7 97.641 97.421 97.413 97.421
SGD RD-8 97.521 97.298 97.271 97.298
SGD RD-9 96.720 96.369 96.336 96.369
RAN RD-1 96.324 95.185 95.181 95.185
RAN RD-2 96.094 95.509 95.457 95.509
RAN RD-3 95.795 95.204 95.168 95.204
RAN RD-4 95.071 94.759 94.721 94.759
RAN RD-5 95.317 94.861 94.805 94.900
RAN RD-6 94.997 94.645 94.593 94.645
RAN RD-7 94.343 93.763 93.701 93.763
RAN RD-8 94.350 93.704 93.630 93.704
RAN RD-9 92.993 92.304 92.234 92.304

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table C.10: Observations with Glass Identification data for Convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 99.571 99.545 99.527 99.545
K-NN RD-2 99.549 99.535 99.527 99.535
K-NN RD-3 99.698 99.692 99.689 99.692
K-NN RD-4 98.740 98.721 98.710 98.721
K-NN RD-5 98.721 98.692 98.677 98.692
K-NN RD-6 98.344 98.295 98.265 98.295
K-NN RD-7 97.561 97.467 97.407 97.467
K-NN RD-8 95.287 94.942 94.688 94.942
K-NN RD-9 59.288 76.852 66.878 76.852
LR RD-1 99.621 99.545 99.559 99.545
LR RD-2 99.787 99.767 99.771 99.767
LR RD-3 99.421 99.385 99.391 99.385
LR RD-4 99.445 99.419 99.423 99.419
LR RD-5 99.461 99.439 99.443 99.439
LR RD-6 99.625 99.612 99.614 99.612
LR RD-7 99.546 99.533 99.536 99.533
LR RD-8 99.598 99.593 99.593 99.593
LR RD-9 99.152 99.119 99.123 99.119
MLP RD-1 97.040 96.818 96.636 96.818
MLP RD-2 92.349 91.395 90.663 91.395
MLP RD-3 93.948 93.385 92.973 93.385
MLP RD-4 93.474 92.791 92.248 92.791
MLP RD-5 94.003 93.551 93.169 93.551
MLP RD-6 93.968 93.488 93.064 93.488
MLP RD-7 93.453 93.000 92.567 93.000
MLP RD-8 93.658 93.256 92.832 93.256
MLP RD-9 92.159 91.865 91.502 91.865
RBM+ RD-1 90.698 90.455 89.895 90.455
RBM+ RD-2 88.029 86.860 85.372 86.860
RBM+ RD-3 87.924 87.390 86.116 87.390
RBM+ RD-4 86.824 86.167 84.464 86.167
RBM+ RD-5 87.238 86.903 85.526 86.903
RBM+ RD-6 86.359 85.160 82.786 85.160
RBM+ RD-7 83.608 81.651 77.312 81.651
RBM+ RD-8 74.515 76.967 68.130 76.967
RBM+ RD-9 58.012 76.166 65.861 76.166
SGD RD-1 99.467 99.436 99.412 99.436
SGD RD-2 98.060 97.961 97.903 97.961
SGD RD-3 98.386 98.328 98.294 98.328
SGD RD-4 97.455 97.345 97.276 97.345
SGD RD-5 98.006 97.935 97.889 97.935
SGD RD-6 97.804 97.724 97.672 97.724
SGD RD-7 97.543 97.453 97.395 97.453
SGD RD-8 97.483 97.380 97.312 97.380
SGD RD-9 97.362 97.250 97.182 97.250
RAN RD-1 93.249 90.515 91.055 90.515
RAN RD-2 89.642 89.535 89.459 89.535
RAN RD-3 90.613 90.128 90.211 90.128
RAN RD-4 90.400 89.783 89.929 89.783
RAN RD-5 90.300 89.551 89.765 89.551
RAN RD-6 90.466 89.837 90.008 89.837
RAN RD-7 89.812 89.667 89.685 89.667
RAN RD-8 89.913 86.711 87.289 86.711
RAN RD-9 89.417 88.214 88.210 88.214

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Observations with Non-convex

Abstract Concept Modeling

This Appendix provides the observations of experiments of Chapter 4 showing the classifi-

cation performance of RANs modeling along with five classifiers (Restricted Boltzmann Ma-

chine pipelined with Logistic regression, Logistic Regression, Multi Layer Perceptron, K Nearest

Neighbor and Stochastic Gradient Descent). The investigations were carried out with one artifi-

cially generated Toy-data problem and six benchmark datasets obtained from the UCI machine

learning repository.
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Table D.1: Observations with Toy-data for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 100.000 100.000 100.000 100.000
K-NN RD-9 99.983 99.983 99.983 99.983
LR RD-1 100.000 100.000 100.000 100.000
LR RD-2 100.000 100.000 100.000 100.000
LR RD-3 100.000 100.000 100.000 100.000
LR RD-4 100.000 100.000 100.000 100.000
LR RD-5 100.000 100.000 100.000 100.000
LR RD-6 100.000 100.000 100.000 100.000
LR RD-7 99.997 99.997 99.997 99.997
LR RD-8 99.998 99.998 99.998 99.998
LR RD-9 99.994 99.994 99.994 99.994
MLP RD-1 100.000 100.000 100.000 100.000
MLP RD-2 100.000 100.000 100.000 100.000
MLP RD-3 100.000 100.000 100.000 100.000
MLP RD-4 100.000 100.000 100.000 100.000
MLP RD-5 100.000 100.000 100.000 100.000
MLP RD-6 100.000 100.000 100.000 100.000
MLP RD-7 99.931 99.924 99.924 99.924
MLP RD-8 99.979 99.979 99.979 99.979
MLP RD-9 95.913 95.430 95.388 95.430
RBM+ RD-1 66.187 65.398 55.320 65.398
RBM+ RD-2 70.698 65.937 56.436 65.937
RBM+ RD-3 75.065 66.635 58.277 66.635
RBM+ RD-4 76.478 68.040 60.868 68.040
RBM+ RD-5 81.654 71.262 66.310 71.262
RBM+ RD-6 84.641 73.989 70.593 73.989
RBM+ RD-7 86.929 79.259 78.055 79.259
RBM+ RD-8 89.063 83.101 82.677 83.101
RBM+ RD-9 90.158 85.742 85.779 85.742
SGD RD-1 100.000 100.000 100.000 100.000
SGD RD-2 99.998 99.998 99.998 99.998
SGD RD-3 99.995 99.995 99.995 99.995
SGD RD-4 99.992 99.992 99.992 99.992
SGD RD-5 99.993 99.993 99.993 99.993
SGD RD-6 99.990 99.990 99.990 99.990
SGD RD-7 99.981 99.981 99.981 99.981
SGD RD-8 99.967 99.967 99.967 99.967
SGD RD-9 99.940 99.940 99.940 99.940
RAN RD-1 98.718 98.581 98.578 98.581
RAN RD-2 98.761 98.629 98.626 98.629
RAN RD-3 98.712 98.577 98.574 98.577
RAN RD-4 98.737 98.608 98.606 98.608
RAN RD-5 98.773 98.647 98.644 98.647
RAN RD-6 98.148 97.658 97.572 97.658
RAN RD-7 98.625 98.475 98.472 98.475
RAN RD-8 98.646 98.502 98.499 98.502
RAN RD-9 98.865 98.753 98.750 98.753

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.2: Observations with UCIHAR data for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 99.981 99.981 99.981 99.981
K-NN RD-2 99.952 99.951 99.951 99.951
K-NN RD-3 99.964 99.964 99.964 99.964
K-NN RD-4 99.949 99.949 99.949 99.949
K-NN RD-5 99.944 99.944 99.944 99.944
K-NN RD-6 99.947 99.947 99.947 99.947
K-NN RD-7 99.927 99.926 99.926 99.926
K-NN RD-8 99.926 99.926 99.926 99.926
K-NN RD-9 99.874 99.874 99.874 99.874
LR RD-1 99.578 99.573 99.573 99.573
LR RD-2 99.392 99.383 99.384 99.383
LR RD-3 99.309 99.298 99.298 99.298
LR RD-4 99.394 99.386 99.386 99.386
LR RD-5 99.735 99.732 99.732 99.732
LR RD-6 99.850 99.850 99.850 99.850
LR RD-7 99.686 99.684 99.684 99.684
LR RD-8 99.353 99.343 99.344 99.343
LR RD-9 99.853 99.852 99.852 99.852
MLP RD-1 99.990 99.990 99.990 99.990
MLP RD-2 99.961 99.961 99.961 99.961
MLP RD-3 99.981 99.981 99.981 99.981
MLP RD-4 99.964 99.964 99.964 99.964
MLP RD-5 99.969 99.969 99.969 99.969
MLP RD-6 99.973 99.972 99.972 99.972
MLP RD-7 99.943 99.943 99.943 99.943
MLP RD-8 99.949 99.949 99.949 99.949
MLP RD-9 99.915 99.915 99.915 99.915
RBM+ RD-1 99.932 99.932 99.932 99.932
RBM+ RD-2 99.919 99.919 99.919 99.919
RBM+ RD-3 99.902 99.902 99.902 99.902
RBM+ RD-4 99.871 99.871 99.871 99.871
RBM+ RD-5 99.890 99.890 99.890 99.890
RBM+ RD-6 99.868 99.867 99.867 99.867
RBM+ RD-7 99.851 99.851 99.851 99.851
RBM+ RD-8 99.862 99.861 99.861 99.861
RBM+ RD-9 99.747 99.745 99.745 99.745
SGD RD-1 99.989 99.989 99.989 99.989
SGD RD-2 99.951 99.951 99.951 99.951
SGD RD-3 99.957 99.957 99.957 99.957
SGD RD-4 99.971 99.971 99.971 99.971
SGD RD-5 99.971 99.971 99.971 99.971
SGD RD-6 99.959 99.959 99.959 99.959
SGD RD-7 99.938 99.938 99.938 99.938
SGD RD-8 99.937 99.937 99.937 99.937
SGD RD-9 99.882 99.882 99.882 99.882
RAN RD-1 97.111 96.718 96.677 96.718
RAN RD-2 97.023 96.628 96.588 96.628
RAN RD-3 97.020 96.599 96.554 96.599
RAN RD-4 96.833 96.378 96.328 96.378
RAN RD-5 97.145 96.753 96.711 96.753
RAN RD-6 96.655 96.199 96.146 96.199
RAN RD-7 96.741 96.298 96.258 96.298
RAN RD-8 97.255 96.823 96.780 96.823
RAN RD-9 97.096 96.876 96.861 96.876

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.3: Observations with Breast Cancer 669 for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 99.188 99.143 99.148 99.143
K-NN RD-2 99.586 99.571 99.573 99.571
K-NN RD-3 99.487 99.476 99.477 99.476
K-NN RD-4 99.719 99.714 99.715 99.714
K-NN RD-5 99.747 99.743 99.743 99.743
K-NN RD-6 99.719 99.714 99.715 99.714
K-NN RD-7 99.636 99.633 99.633 99.633
K-NN RD-8 99.218 99.214 99.213 99.214
K-NN RD-9 96.902 96.778 96.736 96.778
LR RD-1 98.638 98.571 98.579 98.571
LR RD-2 99.031 99.000 99.004 99.000
LR RD-3 99.020 99.000 99.003 99.000
LR RD-4 99.124 99.107 99.109 99.107
LR RD-5 98.960 98.943 98.945 98.943
LR RD-6 99.157 99.143 99.145 99.143
LR RD-7 99.138 99.122 99.125 99.122
LR RD-8 99.170 99.161 99.162 99.161
LR RD-9 98.993 98.984 98.986 98.984
MLP RD-1 99.325 99.286 99.290 99.286
MLP RD-2 99.586 99.571 99.573 99.571
MLP RD-3 99.675 99.667 99.668 99.667
MLP RD-4 99.401 99.393 99.394 99.393
MLP RD-5 98.898 98.886 98.888 98.886
MLP RD-6 98.920 98.905 98.907 98.905
MLP RD-7 98.717 98.694 98.698 98.694
MLP RD-8 97.808 97.804 97.797 97.804
MLP RD-9 97.514 97.508 97.499 97.508
RBM+ RD-1 97.994 97.857 97.873 97.857
RBM+ RD-2 98.199 98.136 98.143 98.136
RBM+ RD-3 97.973 97.919 97.927 97.919
RBM+ RD-4 97.906 97.871 97.877 97.871
RBM+ RD-5 97.799 97.771 97.777 97.771
RBM+ RD-6 97.707 97.695 97.698 97.695
RBM+ RD-7 97.444 97.437 97.438 97.437
RBM+ RD-8 96.883 96.880 96.872 96.880
RBM+ RD-9 95.256 95.189 95.138 95.189
SGD RD-1 99.986 99.986 99.986 99.986
SGD RD-2 99.986 99.986 99.986 99.986
SGD RD-3 99.996 99.996 99.996 99.996
SGD RD-4 99.975 99.974 99.974 99.974
SGD RD-5 99.975 99.974 99.974 99.974
SGD RD-6 99.918 99.917 99.917 99.917
SGD RD-7 99.737 99.727 99.728 99.727
SGD RD-8 99.785 99.780 99.780 99.780
SGD RD-9 99.234 99.200 99.203 99.200
RAN RD-1 93.273 85.700 88.162 85.700
RAN RD-2 92.514 86.857 88.525 86.857
RAN RD-3 93.201 88.181 89.612 88.181
RAN RD-4 92.334 84.621 87.191 84.621
RAN RD-5 93.308 86.483 88.726 86.483
RAN RD-6 91.495 80.405 83.017 80.405
RAN RD-7 89.391 81.467 83.314 81.467
RAN RD-8 88.491 76.866 77.695 76.866
RAN RD-9 81.202 64.435 64.360 64.435

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.4: Observations with Breast Cancer 569 data for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 99.935 99.934 99.934 99.934
K-NN RD-9 97.869 97.778 97.759 97.778
LR RD-1 99.829 99.825 99.824 99.825
LR RD-2 99.740 99.737 99.736 99.737
LR RD-3 99.710 99.708 99.707 99.708
LR RD-4 99.826 99.825 99.824 99.825
LR RD-5 99.826 99.825 99.824 99.825
LR RD-6 99.855 99.854 99.854 99.854
LR RD-7 99.875 99.875 99.875 99.875
LR RD-8 99.825 99.825 99.824 99.825
LR RD-9 99.786 99.786 99.785 99.786
MLP RD-1 99.497 99.474 99.469 99.474
MLP RD-2 99.399 99.386 99.383 99.386
MLP RD-3 98.456 98.421 98.413 98.421
MLP RD-4 98.835 98.816 98.812 98.816
MLP RD-5 98.647 98.632 98.628 98.632
MLP RD-6 98.763 98.743 98.738 98.743
MLP RD-7 97.178 97.093 97.070 97.093
MLP RD-8 97.761 97.741 97.732 97.741
MLP RD-9 97.005 96.940 96.919 96.940
RBM+ RD-1 97.216 97.018 97.035 97.018
RBM+ RD-2 96.094 96.044 96.039 96.044
RBM+ RD-3 95.054 95.023 95.008 95.023
RBM+ RD-4 94.985 94.917 94.921 94.917
RBM+ RD-5 94.103 94.063 94.054 94.063
RBM+ RD-6 92.594 92.558 92.517 92.558
RBM+ RD-7 90.866 90.764 90.649 90.764
RBM+ RD-8 92.236 92.213 92.162 92.213
RBM+ RD-9 88.438 87.766 87.364 87.766
SGD RD-1 100.000 100.000 100.000 100.000
SGD RD-2 99.983 99.982 99.982 99.982
SGD RD-3 99.807 99.759 99.737 99.759
SGD RD-4 99.914 99.912 99.912 99.912
SGD RD-5 99.914 99.912 99.912 99.912
SGD RD-6 99.936 99.936 99.936 99.936
SGD RD-7 99.801 99.787 99.788 99.787
SGD RD-8 99.863 99.860 99.860 99.860
SGD RD-9 99.625 99.598 99.591 99.598
RAN RD-1 97.617 93.158 94.995 93.158
RAN RD-2 96.451 92.643 94.012 92.643
RAN RD-3 96.629 93.334 94.314 93.334
RAN RD-4 95.791 92.241 93.209 92.241
RAN RD-5 97.526 92.867 94.654 92.867
RAN RD-6 97.078 93.363 94.745 93.363
RAN RD-7 96.442 92.732 93.888 92.732
RAN RD-8 95.380 90.588 92.226 90.588
RAN RD-9 95.753 91.823 92.902 91.823

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.5: Observations with IRIS for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 98.963 98.533 98.373 98.533
K-NN RD-2 93.690 91.333 90.242 91.333
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 100.000 100.000 100.000 100.000
K-NN RD-8 100.000 100.000 100.000 100.000
K-NN RD-9 11.111 33.333 16.667 33.333
LR RD-1 91.069 87.467 86.171 87.467
LR RD-2 90.893 87.700 86.271 87.700
LR RD-3 85.710 79.778 76.831 79.778
LR RD-4 85.171 78.167 74.824 78.167
LR RD-5 84.072 76.267 71.842 76.267
LR RD-6 84.165 75.889 71.518 75.889
LR RD-7 83.390 74.381 69.019 74.381
LR RD-8 82.747 72.333 65.615 72.333
LR RD-9 81.904 71.259 63.424 71.259
MLP RD-1 96.621 94.267 94.724 94.267
MLP RD-2 96.779 94.867 95.139 94.867
MLP RD-3 97.341 96.889 96.852 96.889
MLP RD-4 98.297 98.167 98.164 98.167
MLP RD-5 97.105 96.667 96.638 96.667
MLP RD-6 97.093 96.667 96.643 96.667
MLP RD-7 97.294 96.952 96.935 96.952
MLP RD-8 96.920 96.500 96.480 96.500
MLP RD-9 97.541 97.259 97.246 97.259
RBM+ RD-1 79.825 82.533 77.465 82.533
RBM+ RD-2 72.794 73.333 65.060 73.333
RBM+ RD-3 75.070 70.289 61.460 70.289
RBM+ RD-4 73.232 70.133 60.840 70.133
RBM+ RD-5 67.174 68.013 57.993 68.013
RBM+ RD-6 67.483 69.778 60.267 69.778
RBM+ RD-7 65.257 67.324 56.726 67.324
RBM+ RD-8 64.905 68.383 59.347 68.383
RBM+ RD-9 66.670 67.674 56.289 67.674
SGD RD-1 98.526 98.333 98.144 98.333
SGD RD-2 94.282 93.700 92.452 93.700
SGD RD-3 92.504 92.367 90.699 92.367
SGD RD-4 87.852 87.333 84.695 87.333
SGD RD-5 87.852 87.333 84.695 87.333
SGD RD-6 84.447 84.733 81.278 84.733
SGD RD-7 80.889 82.829 78.456 82.829
SGD RD-8 67.189 74.008 66.155 74.008
SGD RD-9 65.127 72.519 64.407 72.519
RAN RD-1 83.663 81.933 79.035 81.933
RAN RD-2 90.066 83.567 83.739 83.567
RAN RD-3 95.692 88.689 90.829 88.689
RAN RD-4 94.338 87.967 89.483 87.967
RAN RD-5 93.710 88.573 89.385 88.573
RAN RD-6 94.772 89.506 90.588 89.506
RAN RD-7 93.010 87.076 87.578 87.076
RAN RD-8 93.968 86.958 88.260 86.958
RAN RD-9 93.562 82.556 84.594 82.556

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.6: Observations with Mice Protein Data for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 100.000 100.000 100.000 100.000
K-NN RD-2 100.000 100.000 100.000 100.000
K-NN RD-3 100.000 100.000 100.000 100.000
K-NN RD-4 100.000 100.000 100.000 100.000
K-NN RD-5 100.000 100.000 100.000 100.000
K-NN RD-6 100.000 100.000 100.000 100.000
K-NN RD-7 99.267 99.225 99.205 99.225
K-NN RD-8 88.555 87.670 84.398 87.670
K-NN RD-9 30.560 34.245 23.097 34.245
LR RD-1 100.000 100.000 100.000 100.000
LR RD-2 100.000 100.000 100.000 100.000
LR RD-3 100.000 100.000 100.000 100.000
LR RD-4 100.000 100.000 100.000 100.000
LR RD-5 100.000 100.000 100.000 100.000
LR RD-6 100.000 100.000 100.000 100.000
LR RD-7 100.000 100.000 100.000 100.000
LR RD-8 100.000 100.000 100.000 100.000
LR RD-9 99.708 99.658 99.658 99.658
MLP RD-1 100.000 100.000 100.000 100.000
MLP RD-2 100.000 100.000 100.000 100.000
MLP RD-3 100.000 100.000 100.000 100.000
MLP RD-4 100.000 100.000 100.000 100.000
MLP RD-5 100.000 100.000 100.000 100.000
MLP RD-6 100.000 100.000 100.000 100.000
MLP RD-7 99.950 99.948 99.948 99.948
MLP RD-8 99.709 99.683 99.674 99.683
MLP RD-9 99.582 99.557 99.551 99.557
RBM+ RD-1 91.695 93.143 91.252 93.143
RBM+ RD-2 2.630 16.216 4.525 16.216
RBM+ RD-3 76.394 81.096 75.682 81.096
RBM+ RD-4 2.654 16.290 4.564 16.290
RBM+ RD-5 38.115 54.808 42.136 54.808
RBM+ RD-6 16.122 31.572 17.822 31.572
RBM+ RD-7 11.442 20.106 9.758 20.106
RBM+ RD-8 2.654 16.290 4.564 16.290
RBM+ RD-9 3.145 16.378 4.715 16.378
SGD RD-1 99.348 99.482 99.347 99.482
SGD RD-2 99.629 99.757 99.673 99.757
SGD RD-3 98.743 98.977 98.758 98.977
SGD RD-4 99.585 99.605 99.504 99.605
SGD RD-5 99.585 99.605 99.504 99.605
SGD RD-6 99.555 99.699 99.606 99.699
SGD RD-7 97.294 97.605 97.219 97.605
SGD RD-8 99.014 99.063 98.912 99.063
SGD RD-9 96.552 95.537 94.770 95.537
RAN RD-1 99.786 80.089 86.509 80.089
RAN RD-2 99.572 79.099 86.295 79.099
RAN RD-3 100.000 79.464 86.847 79.464
RAN RD-4 100.000 78.195 85.861 78.195
RAN RD-5 99.904 79.236 86.655 79.236
RAN RD-6 99.981 80.502 87.639 80.502
RAN RD-7 99.907 79.829 86.925 79.829
RAN RD-8 100.000 78.767 86.160 78.767
RAN RD-9 99.974 80.891 87.575 80.891

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]
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Table D.7: Observations with Credit Approval data for Non-convex Concept Modeling

Algo RD Precision (%) Recall (%) F1-Score (%) Accuracy (%)

K-NN RD-1 96.754 96.716 96.709 96.716
K-NN RD-2 96.539 96.493 96.496 96.493
K-NN RD-3 95.863 95.850 95.850 95.850
K-NN RD-4 95.746 95.730 95.730 95.730
K-NN RD-5 95.353 95.345 95.343 95.345
K-NN RD-6 95.488 95.475 95.472 95.475
K-NN RD-7 95.392 95.375 95.375 95.375
K-NN RD-8 95.247 95.235 95.236 95.235
K-NN RD-9 95.374 95.367 95.368 95.367
LR RD-1 95.865 95.821 95.813 95.821
LR RD-2 96.109 96.045 96.048 96.045
LR RD-3 95.413 95.400 95.401 95.400
LR RD-4 95.222 95.206 95.208 95.206
LR RD-5 94.903 94.895 94.893 94.895
LR RD-6 95.188 95.175 95.174 95.175
LR RD-7 95.157 95.139 95.139 95.139
LR RD-8 95.411 95.403 95.403 95.403
LR RD-9 95.127 95.117 95.117 95.117
MLP RD-1 100.000 100.000 100.000 100.000
MLP RD-2 99.853 99.851 99.851 99.851
MLP RD-3 99.751 99.750 99.750 99.750
MLP RD-4 98.069 98.052 98.051 98.052
MLP RD-5 97.829 97.808 97.805 97.808
MLP RD-6 97.750 97.725 97.722 97.725
MLP RD-7 97.404 97.345 97.338 97.345
MLP RD-8 96.210 96.116 96.104 96.116
MLP RD-9 95.403 95.267 95.248 95.267
RBM+ RD-1 94.523 94.433 94.408 94.433
RBM+ RD-2 90.656 90.560 90.531 90.560
RBM+ RD-3 86.251 86.025 85.891 86.025
RBM+ RD-4 80.798 80.232 79.864 80.232
RBM+ RD-5 74.713 74.105 73.445 74.105
RBM+ RD-6 67.774 66.393 64.346 66.393
RBM+ RD-7 64.511 62.931 59.222 62.931
RBM+ RD-8 58.409 61.098 55.588 61.098
RBM+ RD-9 51.916 57.952 49.480 57.952
SGD RD-1 99.985 99.985 99.985 99.985
SGD RD-2 99.985 99.985 99.985 99.985
SGD RD-3 99.959 99.959 99.959 99.959
SGD RD-4 99.897 99.889 99.889 99.889
SGD RD-5 99.897 99.889 99.889 99.889
SGD RD-6 99.878 99.875 99.875 99.875
SGD RD-7 99.752 99.745 99.745 99.745
SGD RD-8 99.707 99.702 99.702 99.702
SGD RD-9 98.792 98.622 98.550 98.622
RAN RD-1 89.244 80.837 83.459 80.837
RAN RD-2 90.406 80.746 83.720 80.746
RAN RD-3 90.199 81.660 84.394 81.660
RAN RD-4 86.849 79.479 81.508 79.479
RAN RD-5 89.375 80.688 83.681 80.688
RAN RD-6 89.606 79.265 82.888 79.265
RAN RD-7 90.198 78.376 82.509 78.376
RAN RD-8 90.377 78.653 82.676 78.653
RAN RD-9 88.462 72.665 77.795 72.665

Algo [Algorithm]; RD [Research Design]; MLP [Multi Layer Perceptron]
LR [Logistic Regression]; SGD [Stochastic Gradient Descent];
RBM+ [Restricted Boltzmann Machine pipelined with Logistic Regression ]
RAN [Regulated Activation Network]; K-NN [K Nearest Neighbor]



Appendix E

Data Manipulation Via Multiple

Dimension Transformations

This appendix describes two important application of RANs modeling: first, dimension reduc-

tion and expansion of data; second, visualization of manipulated data. Convex abstract concept

modeling is used in the demonstration as described in Section 3.3 of Chapter 3 and K-means

clustering algorithm is used as a concept identifier. In this experiment yamanishi (Gutteridge

et al., 2008) data is used. The RANs model was initialized with a the desired depth of 6 to

grow up five layers above the input layer. The K value of K-means algorithm is set to 2, 30, 2,

40, 2 and 8 in order to create layers 1, 2, 3, 4, and 5 with 2, 30, 2, 40, 2 and 8 nodes in each

layer respectively. The input Layer-0 has 326 nodes equal to the number of attributes of the in-

put data, and the data was pre-processed according to the RANs requirements (see Section 3.1

of Chapter 3). The model is generated by applying the CHC algorithm (see Algorithm 2 in

Section 3.4.1 of Chapter 3). Figure E.1 shows the generated model where Layer-0 is the input

layer, dimension reduction takes place at Layer-1, Layer-3 and Layer-5, whereas the dimension

expansion happens in Layer-2, Layer-4 and Layer-6.

Having obtained the model, the data is as again propagated from input Layer-0 to Layer-5. At

layers 1, 3, and 5 the transformed 2-dimensional data is visualized and shown in Figure E.1.

The effect of alternating the dimension expansion & reduction it very interesting. The graph

to visualize the first dimension reduction at Layer-1 depicts that the data consists of two cate-

gories. After first dimension expansion at Layer-2, the second dimension reduction is obtained

at Layer-3. The graph at Layer-3 depicts two classes where one class is convex and the other is

transformed in a non-convex cluster. The last dimension reduction at Layer-5 we can observe a

drastic transformation in the data which looks like a curve depicting a single non-convex cluster.

Figure E.2 shows an analysis of the graph generated from the transformed 2-D data obtained

at Layer-5. The graph displays six regions showing the representation of Nodes 1 and 2 of

Layer-5 in Figure E.1. In region A the activation of the representative Node is between 0.9 to

151
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Figure E.1: Visualization of 2-D data transformed through RANs Model at three different
levels.

1.0 therefore it strongly represents the Node. Similarly, the regions B, C, D, & E represented

by the activation in the range 0.50 to 0.90, and not necessarily the best representation of the

Node. The region F cover the area where the Node is getting activation less than 0.50. An

activation value 0.50 can also be stated in terms of Degree of Confidence (see Section 3.3.2 of

Chapter 3), i.e., with a confidence of 50% the Node represents the data. Alternately it can be

stated the Node does not represent the data with a confidence of 50%, indicating a state of

confusion.

By viewing the plotted data points in Figure E.1 for Layer-5 we can say that the data points

neither strongly nor reasonably represented the two nodes of Layer-5. Therefore, there must

exist more than two classes in the data. The eight red ovals in Figure E.2 shows how we can
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Figure E.2: Analysis of the 2-D data graph obtained at Layer-5.

Figure E.3: Activation observed at eight Nodes of Layer-6.

infer the number of classes present in the data. Eight categories are identified in this example

because with eight Nodes in Layer-6 we observe strong, reasonable or medium activation at

each node. Figure E.3 shows the parallel coordinate plot of activation observed at all eight

Nodes of Layer-5 of Figure E.1. If we want to have only strong representation by each node the

number of Nodes at Layer-6 will increase. The choice of the range of activation values for Node

representation varies with the data understanding and choice of the data analyst.
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