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Abstract 

This paper presents a review of selected models, methods and challenges associated with the use of bilevel 

optimization in problems arising in the power sector that involve consumers’ demand response. The main 

formulations and concepts of bilevel optimization are presented. The importance of demand response as a 

“dispatchable” resource in the evolution of power networks to smart grids is emphasized. The hierarchical 

nature of the interaction between decision makers controlling different sets of variables in several problems 

involving demand response is highlighted, which establishes bilevel optimization as an adequate approach 

to decision support. The main concepts and solution approaches to those problems are underlined, in the 

context of the theoretical, methodological and computational issues associated with bilevel optimization.  
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1. Introduction 

Bilevel optimization (BLO) models enable to formulate problems involving non-cooperative hierarchical 

decision processes. These models have their roots in the leader–follower duopoly model presented by 

Stackelberg in his book “Market Structure and Equilibrium”, firstly published in German in 1934 (von 

Stackelberg, 2011). For this reason, the solution of a BLO problem is also called Stackelberg equilibrium, 

although this type of problem had been introduced in the mathematical programming community about 

forty years late with the work of Bracken and McGill (1973). In a Stackelberg equilibrium, the leader forms 

a conjecture about the follower’s reaction and acts in such a way that the ensuing the follower’s behavior 

provides the leader with an advantage. 

In a BLO model, the leader (upper level - UL) and the follower (lower level - LL) decision makers control 

different sets of variables and have, in general, objective functions displaying some antagonism and being 

subject to interdependent constraints (i.e., involving variables of both levels). The LL problem belongs to 
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the constraint set of the UL problem; in fact, the BLO problem is the UL decision maker’s problem. 

Decisions are made in a sequential manner: the leader establishes the values for his variables thus restricting 

the follower’s options; the follower reacts by selecting a solution to optimize his objective function in the 

feasible region restricted by the instantiation of the leader’s decision variables. However, the leader should 

consider the follower’s reaction in his decision process, since it affects the UL objective function value and 

possibly the solution feasibility. Two reference books for BLO are (Bard, 1998) and (Dempe, 2002), in 

which theoretical results, algorithms and applications are presented. Dempe et al. (2015) discuss linear, 

convex and mixed-integer BLO problems, as well as the reduction of BLO problems to a single level, also 

presenting applications in energy systems - a natural gas cash-out problem, an equilibrium problem in a 

mixed oligopoly and a toll assignment problem, including numerical experiments. 

Although the present paper focus on the bilevel single-leader single-follower case, these models can be 

generalized to the multiple-leader multiple-follower equilibrium, in which there is more than one leader 

deciding in the first stage, which is affected by the reactions of multiple followers and the other leader’s 

decisions; the followers make their decisions considering the other followers’ decisions, which can be 

modeled as a Nash game parameterized by the leaders’ decisions. Also, multi-level problems can be 

considered, in which a series of optimization problems should be solved in a predetermined sequence 

pertaining to a hierarchical structure. 

BLO models have been extensively used in the power sector to address several problems, including 

strategic bidding and market-clearing, participation of storage systems in energy and reserve markets, 

microgrid power and reserve capacity planning, energy management of combined heat and power micro-

grids, energy allocation mechanism with grid constraints, bidding and offer strategies of electric vehicle 

(EV) fleets, power generation investment expansion planning, transmission/distribution networks 

investment planning, bidding of flexible load aggregators in system-level service, day-ahead energy and 

reserve markets, analysis of the vulnerability of power systems under attacks, and pricing problems 

consisting of the design of time-differentiated tariff schemes to induce changes in energy consumption 

patterns (see also Pozo et al., 2017).  

Multiple trends have contributed for a more active role of (residential, commercial or industrial) consumers 

in the management of power systems. Deregulation opened the generation and retail segments to 

competition, with different types of wholesale and retail markets balancing supply and demand while 

keeping the grids as regulated monopolies. Due to factors such as regulation uncertainties, the investment 

in grid assets may not be enough to cope with aging equipment and/or growing demand, which may cause 

a strain in existing lines and equipment (e.g., transformers). Climate change has led to increasingly extreme 

weather phenomena, with more frequent heat and cold waves that require further climatization needs. 

Activating power plants just to meet very high peak demand of short duration is very expensive and has 

significant environmental impacts. Environmental concerns and economy decarbonization induce a 

growing share of renewable generation of intermittent nature, namely based on wind and solar photovoltaics 

(PV). The progressive electrification of the transportation sector puts an extra burden on the grid requiring 
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adjusted planning and management to cope with the increasing implementation of (fast and super-fast) EV 

battery chargers. The deployment of pervasive sensing and control equipment in the grid, including smart 

meters at the customers’ premises, enables acquiring vast amounts of data that can be used for a more 

efficient grid management and offering tariffs more adequate to the consumption profiles. Consumers are 

becoming prosumers (producing and consuming energy) and prosumagers (also owning storage 

equipment), who may produce their own electricity, draw from the grid, store and feed to the grid. In this 

energy transition context, the paradigm is changing from “supply follows load” to “load follows supply”. 

The designation demand response refers to schemes that may induce voluntary changes in the habitual 

consumption patterns reacting to economic signals, including time-differentiated energy prices or incentive 

payments according to wholesale market prices, renewable energy availability and/or grid conditions. 

Therefore, supporting decisions in several settings in the power sector should capture the reactive nature of 

demand response through the optimization of demand side resources embodying consumer empowerment. 

This can be accomplished by BLO models whenever leader-follower decisions are at stake, as for instance 

the design of time-of-use tariffs subject to the consumer’s reaction by means of rescheduling load operation. 

The interest of BLO models to deal with problems in the power sector in which demand response plays a 

role has been addressed in this Introduction. The main concepts and approaches of BLO, including some 

pitfalls of approximate algorithms, are presented in Section 2. Section 3 summarizes how demand response 

has been included in optimization models for several applications of optimization in the power sector. A 

review of recent selected BLO models and solution techniques in problems in which demand response is a 

relevant component of the decision process is offered in Section 4. Conclusions and challenges ahead are 

discussed in Section 5. 

 

2. Bilevel optimization 

2.1. Formulation 

A BLO problem can be formulated as in (1), where x represents the leader-controlled decision variables 

and y the follower-controlled decision variables: 

max
𝑥∈𝑋

   𝐹(𝑥, 𝑦)          (1) 

𝑠. 𝑡.    𝐺(𝑥, 𝑦) ≤ 0 

𝑦 ∈ arg max
y ∈𝑌

 {𝑓(𝑥, y): 𝑔(𝑥, y) ≤ 0} 

𝑋 ⊂ ℝ𝑛1 and 𝑌 ⊂ ℝ𝑛2 are compact sets and place additional constraints on variables, such as upper and 

lower bounds; n1 is the number of UL variables and n2 is the number of LL variables. 𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) 

are the leader’s and the follower’s objective functions, respectively.  

The follower optimizes his objective function 𝑓(𝑥, 𝑦) after decision variables 𝑥 ∈ 𝑋 are set by the leader, 

i.e. the LL objective function is optimized for an instantiation of x. However, the leader’s decision is 
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implicitly affected by the follower’s reaction. The follower’s feasible region for a given 𝑥 is 𝑌(𝑥) =

{𝑦 ∈ 𝑌: 𝑔(𝑥, 𝑦) ≤ 0} and the corresponding follower’s rational reaction set is  

Ψ(𝑥) = {𝑦 ∈ ℝ𝑛2: 𝑦 ∈ arg max
𝑦∈𝑌(𝑥)

𝑓(𝑥, 𝑦)}      (2) 

The feasible set of the BLO problem, generally called inducible region, is 𝐼𝑅 = {(𝑥, 𝑦): 𝑥 ∈ 𝑋, 𝐺(𝑥, 𝑦) ≤

0, 𝑦 ∈ Ψ(𝑥)}. The BLO problem (1) is equivalent to optimizing the leader’s objective F over IR. Solving a 

BLO problem is very challenging from theoretical, methodological and computational perspectives, since 

it is intrinsically non-convex and even the linear BL problem is NP-hard (Dempe, 2002). 

 

2.2. Solution concepts 

Figure 1 illustrates these concepts for a linear BLO problem with two decision variables: 𝑥 is controlled by 

the leader, 𝑦 is controlled by the follower and S is the set of all constraints (in this example, no UL 

constraints  𝐺(𝑥, 𝑦) ≤ 0 involving the LL variables 𝑦 exist). In a linear BLO problem, once the leader 

selects a value for 𝑥, the corresponding term in 𝑓(𝑥, 𝑦) becomes constant and can be removed from the 

problem; so, the follower’s objective function can be expressed as 𝑓(𝑦) only. For each value of 𝑥, the 

follower selects the value of 𝑦 that optimizes his objective function 𝑓(𝑦). Therefore, the inducible region, 

where the feasible solutions to the BLO problem are located, is IR = [AE] [ED]. The optimal solution to 

the BLO problem is point D that maximizes 𝐹(𝑥, 𝑦) in IR. 
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Fig. 1 – Inducible region and optimal solution to a linear BLO problem 

 

Note that the optimal solution to a BLO problem is not, in general, a Pareto optimal (efficient) solution to 

the bi-objective problem in which the leader’s and the follower’s objective functions are considered at the 
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same level, i.e. cooperation would exist. This issue is illustrated in Fig. 2 for the same BLO problem of Fig. 

1. The Pareto optimal solutions to the bi-objective problem defined by the maximization of 𝐹(𝑥, 𝑦) and 

𝑓(𝑦) over S lie on the edge [AB]. The set of all feasible solutions to the bi-objective problem that dominate 

the optimal solution to the BLO problem (point D) is displayed with the hatched pattern. In this region, 

better values than the ones in D can be obtained for both UL and LL objective functions. Therefore, the 

cooperation between the leader and the follower would be beneficial for both decision makers with respect 

to the optimal decision in the hierarchical non-cooperative setting. 
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Fig. 2 – Bi-objective vs. BLO problems 

 

However, several real-world problems involve sequential non-cooperative decisions for which BLO models 

are adequate. An example in the energy sector is the setting of appropriate price signals to induce behavior 

changes in the time, and possibly magnitude, of electricity use by (different types of) consumers. 

Note that a solution is feasible to the BLO problem only if it is optimal to the LL problem. However, this 

may not be guaranteed if approximate approaches (such as metaheuristics) are used to solve this problem 

or the (exact) solver cannot reach optimality due, for instance, the combinatorial complexity of the LL 

problem after the instantiation of the UL variables. In this case, the results may be misleading in the sense 

that apparently better, but infeasible, solutions can be given. 

Whenever alternative optimal solutions exist for the LL problem for a given x, the follower may choose the 

one that is the best or the worst (or any intermediate one) for the leader’s objective function. Therefore, the 

leader may obtain different solutions with different objective function values ranging from the optimistic 

solution, assuming that the follower’s choice among his alternative optimal solutions is the one leading to 

the best outcome for the leader, to the pessimistic solution, assuming that the follower’s choice is the 
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solution with the worst outcome for the leader. It is often assumed that the follower breaks ties (among his 

multiple optima for a given leader’s decision) in favor of the leader, presuming that the leader has some 

means to influence the follower’s decision. This is the optimistic formulation of the BLO problem, whose 

optimal solution is easier to calculate. However, if this assumption is not possible and the leader is risk 

averse, he may want to choose the pessimistic optimal solution (which is more difficult to obtain), thus 

bounding the damage resulting from an unfavorable selection made by the follower. While in the optimistic 

formulation the optimization of the leader’s objective function of (1) may be taken with respect to x and y, 

i.e., max
𝑥∈𝑋,𝑦∈𝑌

   𝐹(𝑥, 𝑦), the pessimistic formulation is a max-min problem, i.e., max
𝑥∈𝑋

 min
𝑦∈𝑌

  𝐹(𝑥, 𝑦). 

 If multiple objective functions are considered at the LL (e.g., the electricity consumer wants to minimize 

electricity costs and minimize the discomfort of rescheduling the appliances to benefit from the time-

differentiated prices established by the retailer to maximize his profit) a different decision issue is at stake 

at the LL problem. That is, for each leader’s decision, the follower has to choose a solution among an 

efficient solution set displaying distinct trade-offs between his objectives (e.g., enduring some discomfort 

to decrease costs). Therefore, it may be difficult for the leader to anticipate the follower’s decision, as well 

as to influence this decision in some way. The leader may adopt a more optimistic or a more pessimistic 

attitude according to his expectation that the follower will decide in a more or less favorable way for the 

leader’s objective. An optimistic/pessimistic attitude assumes that the follower’s decision, within his 

efficient solution set for a given instantiation of the UL variables, is the best/worst for the leader. In most 

real-world problems, it is not reasonable to assume that the follower would always choose his efficient 

solution that gives the best solution for the leader. For instance, this would mean that the consumer would 

choose the solution that minimizes discomfort regardless of cost so that the leader’s profit would be 

maximum, which is seldom realistic. This BLO problem with a single objective function at the UL and 

multiple objective functions at the LL is generally designated in the literature as semi-vectorial BLO (SV-

BLO). For this type of problems, Alves and Antunes (2018) proposed the concepts of deceiving, rewarding 

and moderate solutions, considering the optimistic/pessimistic leader’s attitude in selecting x and the 

follower’s choices within his efficient solution set. The deceiving solution is obtained when the leader 

adopts an optimistic attitude when setting his decision variables and the follower’s decision is the most 

unfavorable. The rewarding solution is obtained when the leader adopts a pessimistic attitude and the 

follower selects the most beneficial solution for the leader. The optimistic/deceiving and the 

pessimistic/rewarding solutions frame the extreme solutions the leader can obtain, which offer relevant 

insights for decision support. A moderate solution can be defined as a solution that gives the highest 

expected value for 𝐹(𝑥, 𝑦) considering an optimism/pessimism index (e.g., probabilities of the follower’s 

decision being in favor or against the interests of the leader). 

The BLO problem becomes even more complicated when multiple objective functions exist at both levels. 

The aim is generally to find the UL Pareto optimal front, which is easier to determine when the multiple 

objective LL problem is transformed into a single objective problem by considering that the follower’s 

preferences are known such that a LL utility function can be developed. Alves et al. (2019) proposed the 
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concepts of Optimistic Pareto Front (consisting of all feasible solutions belonging to the induced region 

such that no other solution in this region dominates them) and Pessimistic Pareto Front (based on the 

concept of “most dominated” solutions for the leader). For a formal definition of these solutions, please see 

Alves et al. (2019). 

 

2.3. Methodological approaches 

Different methodological approaches have been developed to address BLO problems, which may be 

broadly categorized as classical and metaheuristics-based approaches. The classical approaches include 

single level problem reformulation using the Karush-Kuhn-Tucker (KKT) conditions (or primal-dual 

reformulation for linear problems), descent and penalty function methods, optimal-value-function 

reformulations to obtain lower bounds and enumeration techniques in linear problems.  

The first approach consists of replacing the LL problem by its KKT conditions, which provide the necessary 

and sufficient conditions for optimality if the LL problem is a convex optimization problem in the y 

variables for fixed x, and add this set of constraints (the equilibrium constraint set) to the UL problem. 

Under the convexity assumption, the optimistic formulation of the BL problem and the problem resulting 

from the KKT conditions are equivalent (Dempe and Dutta, 2012). The resulting single level optimization 

model is nonlinear, called a mathematical program with equilibrium constraints (MPEC), due to the 

complementarity conditions (in pricing problems, the product of price and quantity variables is another 

source of nonlinearity). If the UL and the LL problems are linear, the complementarity constraints can be 

replaced by linear constraints with binary variables, thus transforming the MPEC into a mixed-integer linear 

programming (MILP) problem (Fortuny-Amat and McCarl, 1981). The optimal solution can be then 

obtained using a general MIP solver, usually with a significant computational effort.  

For the following linear BLO problem with 𝑥 ∈ ℝ𝑛1, 𝑦 ∈ ℝ𝑛2, m1 UL constraints and m2 LL constraints 

max
𝑥

   𝐹(𝑥, 𝑦) =  𝑐1 𝑥 + 𝑑1 𝑦        (3) 

𝑠. 𝑡.    𝐴1𝑥 +  𝐵1 𝑦 ≤ 𝑏1 

𝑥 ≥ 0 

max
𝑦

   𝑓(𝑦) =  𝑑2 𝑦 

𝑠. 𝑡.    𝐴2𝑥 + 𝐵2 𝑦 ≤ 𝑏2 

𝑦 ≥ 0 

the resulting MPEC, being 𝜆 the dual variables of the LL constraints, is 



 9 

max
𝑥,𝑦

   𝐹(𝑥, 𝑦) =  𝑐1 𝑥 + 𝑑1 𝑦        (4) 

𝑠. 𝑡.     𝐴1𝑥 + 𝐵1 𝑦 ≤ 𝑏1 

𝐴2𝑥 + 𝐵2 𝑦 ≤ 𝑏2 

𝜆 𝐵2 ≥  𝑑2 

𝜆 (𝑏2 −  𝐴2𝑥 − 𝐵2 𝑦) = 0    

𝑦 (𝜆 𝐵2 −  𝑑2) = 0  

𝑥 ≥ 0, 𝑦 ≥ 0, 𝜆 ≥ 0 

The nonlinear constraints of this MPEC can be linearized by introducing additional binary variables. 

Considering 𝑢 the binary variables associated with 𝜆 (𝑏2 −  𝐴2𝑥 −  𝐵2 𝑦) = 0  and 𝑣 the binary variables 

associated with 𝑦 (𝜆 𝐵2 −  𝑑2) = 0, these constraints of problem (4) are transformed into the MILP 

formulation (5), where M is a large positive number and e is a vector of 1s of appropriate dimension:  

𝑏2 −  𝐴2𝑥 −  𝐵2 𝑦 ≤ M𝑢        (5) 

𝜆 ≤ M (𝑒 − 𝑢) 

 𝜆 𝐵2 −  𝑑2 ≤ M 𝑣 

𝑦 ≤ M (e − 𝑣) 

     𝑢 ∈ {0, 1}𝑛1 , 𝑣 ∈ {0, 1}𝑛2 

The transformed MILP has n1+n2+m2 continuous variables, n2+m2 binary variables and m1+3m2+3n2 

constraints. Therefore, computing the optimal solution to this model using a MILP solver may impose a 

very significant computational effort. Moreover, the big-Ms may be difficult to determine in some 

problems, leading to computational difficulties. Pineda and Morales (2019) showed that the usual trial-and-

error procedure to tune the big-Ms may lead to highly sub-optimal solutions, encouraging the use of more 

sophisticated techniques to tune accurately the values of the big-Ms to solve linear BLO problems (Pineda 

et al., 2018). 

Other solution approaches to deal with the KKT transformation include the use of a branch-and-bound 

strategy or penalty function methods to deal with the complementarity constraints. 

Another way to reformulate a BLO model with a linear LL problem into a single level is to replace the LL 

problem by its primal and dual constraints and enforcing the strong duality by equating the primal and dual 

objective functions (Garcia-Herreros et al., 2016). This reformulation yields a nonlinear problem, the 

nonlinearity arising from the product of UL variables and LL dual variables in the dual objective function. 

These nonlinear components can be linearized approximately using the McCormick (1976) envelopes, 

which become exact when the UL variables are binary. 

The approaches based on descent and penalty function methods enable to compute stationary points and 

local minima. Gradient descent methods are iterative methods that define descent (for minimization) 

directions using gradient information to improve the UL objective function while keeping the solutions 

feasible. Finding the descent direction can be quite challenging, requiring solving auxiliary problems. 

Penalty methods consist of solving a nonlinear programming problem approximating the original one, 
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incorporating a penalty function associated with the violation of constraints or certain optimality conditions 

(e.g., the gap between the primal and dual solutions of the follower’s problem is used as a penalty term in 

the leader’s problem), which is solved iteratively. Under certain conditions, this process leads to a sequence 

of approximate solutions converging to the optimal solution, as the penalty function algorithm introduced 

by White & Anandalingam (1993) which finds an optimal solution to the linear BLO problem. 

There are other methodological approaches that attempt to iteratively approximate the optimal value 

function of the LL problem, i.e., φ(𝑥):= 𝑚𝑎𝑥 {𝑓(𝑥, y): 𝑦 ∈ 𝑌, 𝑔(𝑥, y) ≤ 0}.   The BLO problem (1) can be 

equivalently replaced by: 

max   {𝐹(𝑥, 𝑦) : 𝑥 ∈ 𝑋, 𝐺(𝑥, 𝑦) ≤ 0, 𝑦 ∈ 𝑌, 𝑔(𝑥, y) ≤ 0, 𝑓(𝑥, y) ≥ φ(𝑥)}    (6) 

The optimal-value-function approaches are based on the use of formulation (6) with approximations of 

φ(𝑥). Two algorithms representative of this approach for problems with discrete variables are the ones 

proposed by Mitsos (2010) and Lozano and Smith (2017), which obtain a sequence of lower and upper 

bounds converging to the optimal objective value. These algorithms solve a relaxation of the BLO problem 

with disjunctive constraints generated from successive optimal solutions to the LL problem to obtain upper 

bounds. Feasible solutions are used to establish lower bounds. The subproblems to be solved in the 

operational framework of these algorithms are solved by adequate methods, namely by calling state-of-the-

art mathematical programming solvers. In particular, in the application to general mixed-integer nonlinear 

(MINL) BLO problems, it is assumed that the functions in the formulations of the UL and LL problems 

satisfy the requirements of the MINL programming solvers to be used. 

Some methods are devoted to BLO problems with special features, including linear/nonlinear objective 

functions, having just continuous or just integer variables in one or both levels, UL variables not appearing 

in the LL problem, the functions of integer UL variables in the LL constraints being also integer valued, 

etc. 

For linear BLO problems there are different approaches that involve some form of vertex enumeration in 

the context of the simplex method. The approaches built on the exploration of vertices in this type of 

problems are based on the property that only vertices of the constraint region (comprising all the constraints 

of the UL and LL problems) need to be considered for the computation of the optimal (optimistic) solution 

to a linear BL problem. A popular method in this category is the k-th best algorithm from Bialas and Karwan 

(1984). 

The methodological and computational difficulties to solve BLO problems led to the development of 

metaheuristic and hybrid approaches, namely population-based ones such as evolutionary algorithms, 

particle swarm optimization and differential evolution. In these approaches, metaheuristics perform the 

search at both levels, possibly using specific features of the problems to improve the search breadth 

capability, or they are combined with classical methods (e.g., a MILP solver) to obtain (optimal) solutions 

to the LL problem for each instantiation of the UL variables. Exact solvers guarantee the optimality of the 

LL solution for each UL variable setting (provided the MIP gap is zero, which may be unavoidable for 
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difficult LL problems), which is not ensured in pure metaheuristic approaches. The population-based 

algorithms (pure or hybrid metaheuristics), in which the LL optimization problem is solved for each and 

every UL member, are called nested methods by Sinha et al. (2018). Other metaheuristic algorithms have 

also been developed using different schemes, for instance to deal with the problem reformulation after 

applying the KKT conditions of the LL to reduce the BLO problem to a single level problem. 

The extension of BLO models to account for the time dimension as well as considering uncertainty in 

several parameters (arising for instance, in equilibrium problems among different agents in open markets) 

further complicates the development of BL algorithmic approaches, which should be able to deal with 

multi-period stochastic models where equilibrium under uncertainty is sought in each node of the multi-

period scenario tree. Techniques as the stochastic nested decomposition matheuristic proposed by Escudero 

et al. (2020) to deal with a network expansion planning may be useful in those problems. 

Surveys on classical methods can be found in Vicente and Calamai (1994), Bard (1998), Dempe (2002), 

Colson et al. (2005), Colson et al. (2007), Dempe et al. (2015), Sinha et al. (2018). The latter work presents 

a recent review on classical and evolutionary approaches to (single- and multi-objective) BLO. 

 

3. Modeling demand response 

The efficient management of network assets, including the deferral of infrastructure investments, the need 

to accommodate larger shares of variable renewable generation and the deployment of smart meters 

offering bidirectional communication capabilities, has led to an increasing active role of end-users and 

demand resources. According to the U.S. Department of Energy, the concept of demand response (DR) 

encompasses ‘‘changes in electric usage by end-use customers from their normal consumption patterns in 

response to changes in the price of electricity over time, or to incentive payments designed to induce lower 

electricity use at times of high wholesale market prices or when system reliability is jeopardized” (U. S. 

Department of Energy, 2006). That is, DR materializes the flexibility consumers generally have in the 

operation of their loads regarding the timing of operation and the level of quality of the energy service 

being provided. Eurelectric (2014) defines flexibility as “the modification of (…) consumption patterns in 

reaction to an external signal (price signal or activation) in order to provide a service within the energy 

system. The parameters used to characterize flexibility in electricity include: the amount of power 

modulation, the duration, the rate of change, the response time, the location etc.”. DR is expected to bring 

benefits for all stakeholders involved, contributing to improve the global system efficiency, lower peak 

generation costs, facilitate the penetration of renewable sources, reduce network losses and delay network 

reinforcement investments, while offering economic benefits to end-users by exploiting the flexibility they 

may have in the operation of some of their appliances in response to prices or event (e.g., emergency) 

notifications. Active DR programs play a key role to improve power system reliability and market 

efficiency. Load modulation may be called for by a utility company, such as an independent system (grid) 

operator (ISO), transmission system operator (TSO), distribution system operator (DSO), retailer or third-

party aggregators. Aggregators are emerging as relevant entities in power system management, leveraging 
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and monetizing the consumption flexibility of small consumers through the participation in system and 

energy/reserve markets. 

DR is generally categorized in two broad groups: price-based and incentive-based.  

Price-based schemes offer time-differentiated rates, which may depend on the time of the day, day-of-week 

or season. The possibly significant magnitude of price variation is expected to lead consumers to voluntary 

adapt the timing of load operation to make the most of lower price periods. These rates may consist of time-

of-use (ToU) pricing, critical peak pricing, peak load pricing, real-time pricing and variations thereof. The 

simplest ToU tariff considers just static peak and off-peak prices, being contracted for long periods (e.g., 

one year) so customers know the prices well in advance, which in principle are attractive in off-peak and 

comparatively high in peak-demand hours. Consumers can therefore adapt their consumption patterns 

accordingly. This type of ToU tariffs may, however, be more complicated: present more price levels (e.g., 

one for each hour), thus enabling to better adapt retail prices to wholesale market prices helping to mitigate 

their spikes, renewable energy availability and grid status (e.g., congestion); and be dynamic, for instance, 

announced one day or two days ahead. Critical peak pricing is used to anticipate high demand peaks, in 

general with a maximum number of events and event duration, in which the ratio of on-peak to off-peak 

price is higher than in a ToU scheme. Real-time pricing is the limit situation, in which prices generally 

reflect the ones in the wholesale market with very frequent variations possibly with significant price 

differences along the day, which may be announced within very short notice (e.g., 15 minutes). This pricing 

scheme may be advantageous for commercial and industrial consumers able to adjust operations to make 

the most of lower price periods that may involve premium/discount associated with consumption 

above/below a baseline, which requires advanced energy management and communication systems to 

optimize real-time energy usage in face of forward prices. Other variations of ToU may exist, such as block-

and-swing pricing, which consists of a combination of fixed and real-time pricing – a certain amount of 

load is subject to fixed prices and additional load changes with market prices.  

Incentive-based schemes include direct load control, interruptible load contracts, peak time rebate, demand 

bidding/buy back, emergency programs, capacity and ancillary service markets. The incentives offered to 

end-users, in addition to retail electricity rates, may be fixed or time-varying for the actions required. Direct 

load control programs have been primarily directed for residential and small service consumers through 

signals that remotely cycle the operation of thermostatic-controlled loads (for which the interruption of 

supply during short periods does not jeopardize the energy service provided due to some thermal inertia). 

Several types of interruptible service (curtailable load) contracts have been used since the 1980s, namely 

for large commercial and industrial consumers able to reduce at least a certain amount of load per event 

within a short period notification (half hour to two hours), involving rewards/penalties and constraints on 

the number of total interruption hours, guaranteed minimum load curtailment and payments for availability. 

Peak time rebates allow participant consumers to receive a rebate payment for load reduction below an 

estimated baseline, otherwise they pay the contracted price. Demand bidding / buy-back programs allow 

(large) consumers to offer load reduction bids in wholesale markets, whose price competes with the market 
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price. DR resources may bid for some ancillary service products, such as synchronous and non- 

synchronous reserve, through load curtailment for a given period. Combinations of these schemes can be 

used (e.g., emergency DR), which may involve direct load control and interruptible load. At large, 

incentive-based schemes account for the vast majority of peak load reduction among the array of DR 

schemes, namely for reliability triggered events. 

Several configurations of these DR mechanisms exist, involving different types of contracts and 

corresponding rewards and penalties, being voluntary or mandatory, having opting-in or opting-out 

conditions. The Federal Energy Management Program developed profiles of DR and time variable pricing 

programs throughout the U.S. (https://www.energy.gov/eere/femp/demand-response-and-time-variable-

pricing-programs). It should be noticed that ToU tariffs and DR programs may lead to benefiting non-

participant consumers with consumption patterns more fitted with the prices, while participants may be 

penalized from not being able to shift base consumption away from peak price periods. Also, a negative 

impact on low-income consumers may exist, since they cannot generally reduce or shift demand. These 

issues should be accounted for when designing DR programs, namely by incorporating them into 

optimization models. 

Vardakas et al. (2015) offer an extensive review of DR programs in smart grids, classifying them in three 

categories based on control mechanisms (centralized vs. decentralized), motivations offered (price- vs. 

incentive-based) and decision variables (task scheduling vs. energy management). Jordehi (2019) makes a 

review of research works on DR mainly from the perspective of the optimization algorithms used. 

Several single- and multi-objective models to optimize DR, from the consumer’s point of view, have been 

proposed in the scientific literature, namely in power systems and operations research / optimization 

journals. The objective functions in those models encompass economic, technical and quality of service 

concerns, such as minimizing the electricity cost, minimizing peak power, maximizing the utility (i.e., level 

of comfort/satisfaction) associated with energy consumption (a proxy for energy services delivered), 

minimizing the discomfort associated with changing the habitual time slots of appliance operation (e.g., 

laundry or dishwasher) or having a control variable (e.g., indoor or water temperature, state of charge of 

the EV battery) outside user-defined comfort thresholds. The discomfort may be measured in physical 

quantities (e.g., delay in load operation beyond the expected time, period the load operates outside those 

thresholds regarding time or temperature, or both) or may be monetized and aggregated in an overall cost 

function (which implies assessing, for instance, the cost of having the indoor temperature one degree above 

or below those thresholds). A quadratic utility function is typically used, which displays linear decreasing 

marginal benefit associated with energy consumption. Some models also integrate the optimization of 

specific DR actions with local microgeneration (in general, photovoltaic panels) and storage (static batteries 

or the EV battery operating in grid to vehicle - G2V - or/and vehicle to grid - V2G - modes). Moreover, the 

possibility of selling back energy to the grid or participating in ancillary markets (e.g., reserve or frequency 

regulation) is also considered.  

https://www.energy.gov/eere/femp/demand-response-and-time-variable-pricing-programs
https://www.energy.gov/eere/femp/demand-response-and-time-variable-pricing-programs
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In addition to the consumer’s perspective, according to the type of application envisaged, DR optimization 

models can also be seen in the perspective of the grid operator (DSO, ISO, TSO), the retailer or a third-

party aggregator. In these cases, objective functions to be considered include the maximization of social 

welfare (which may be broadly defined as end-user’s utility minus the procurement capacity cost and day-

ahead/real-time balancing energy costs, and may also include storage operational costs; Deng et al., 2019), 

maximization of economic benefit, minimization of network losses, maximization of the system reliability 

(e.g., voltage control), minimization of the load diagram peak-to-average ratio (as a proxy for grid 

efficiency and stability), maximization of the use of renewable energy resources, etc. Special attention has 

been devoted to DR in the framework of optimizing grid-connected / islanded microgrid operation, in which 

the integrated optimization of all energy resources is of utmost importance. 

In a residential setting, controllable appliances can be classified as shiftable (loads having an operation 

cycle associated with each program that cannot be interrupted once initiated; e.g., laundry machine or 

dishwasher), interruptible (loads whose operation can be interrupted as long as a given amount of energy 

is supplied during a specified time slot and possibly can be charged at different power levels; e.g., the 

battery of an EV), and thermostatically-controlled (being switched on/off or possibly being supplied at a 

fraction of the nominal power according to the parameterization of a thermostat; e.g., air conditioning 

system). In general, lighting, oven, refrigerator, etc., are not deemed for control and constitute the base 

(uncontrollable) load. Therefore, optimization models should consider a realistic physical-based modelling 

of appliances and not resort to excessive simplifications. For instance, it is rather simplistic to just consider 

that an appliance should be supplied with a given amount of energy for service completion, as it happens 

in some models, without modelling the actual operation cycles. Since peak demand is a crucial issue in the 

optimization problem, it is not realistic to consider a load diagram as the one depicted in Fig. 3b when the 

actual operation load diagram is the one in Fig. 3a, although the amount of energy consumed is the same. 

Power

t t(a) (b)

Power

 
Fig. 3 – Load diagram associated with real operation and simplification considering that the same amount 

of energy is supplied 

 

Therefore, realistic load characterizations are necessary to model DR accurately. Approaches that rely on 

the existence of a utility function representing the end-user’s benefit/satisfaction of consuming a certain 

amount of energy for the provision of energy services, which is rather difficult to elicit, are not able to 
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capture consumer’s decisions at appliance level, considering their typical operation patterns and 

information about the time slots preferred for operation. Modelling approaches using a penalty function 

associated with the deviation from the “optimal” consumption point suffer from the same drawbacks. 

However, the physical-based modelling of load operation comes at the cost of increasing the combinatorial 

complexity of the models, requiring many auxiliary binary variables and constraints, which may turn 

impracticable obtaining an optimal solution (for single objective models) or Pareto optimal solutions (for 

multiple objective models) in an acceptable computation time. 

The next section offers a review of selected problems and optimization models in the power sector where 

DR plays a relevant role, which is captured by means of BLO approaches. The context of the problem, the 

identification of the leader and the follower as well as their concerns operationalized through their objective 

functions, and the techniques used to obtain solutions are described. 

 

4. Bilevel optimization models including demand response 

4.1. Designing ToU tariffs – retailer-consumer interaction 

In retail market pricing problems, the retailer (in general operating in a competitive environment) aims to 

design a ToU tariff structure to be offered to consumers to maximize profit (revenue obtained with selling 

energy minus cost of acquiring energy through bilateral contracts and/or in day-ahead/balancing markets). 

The consumers, who are willing to adopt this type of tariff because they consider they can manage their 

flexibility in appliance utilization, react by resetting/rescheduling (shiftable, interruptible and thermostatic) 

appliance operation to lower priced periods to minimize the electricity bill and/or to minimize the 

dissatisfaction (or maximizing comfort regarding preferences and requirements). This dissatisfaction 

objective function may encompass postponing or anticipating the operation of some appliances regarding 

most habitual periods, having indoor temperature below/above a comfort threshold, not reaching the desired 

state of charge of the EV battery, etc. Consumer’s decisions may be assisted by a home energy management 

system endowed with optimization algorithms parameterized with user’s preferences and requirements. 

Therefore, the retailer is the leader, who decides first by announcing the ToU prices, and the consumer is 

the follower who decides his load operation in face of those prices. Depending on the configuration of the 

power sector the interaction can refer to the relationships between a utility company and a demand response 

aggregator. 

Zugno et al. (2013) developed a BLO model in which the UL problem consists of determining the dynamic 

prices to maximize the retailer’s expected market profits (revenues of selling energy to consumers, minus 

the cost of purchasing energy at the spot market and the cost/profit of purchasing/selling up/down-

regulation power). Constraints include lower and upper bounds on prices and an average price as a surrogate 

for market competition (otherwise the retailer would set the prices at the upper bound to maximize profits). 

The consumer’s objective is a utility function considering the cost of energy procurement and the 

discomfort for deviating from the reference temperature (a flexible heating load is considered). Stochastic 
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prices, weather data and must-serve load are considered. The BLO model is transformed into a single level 

MILP problem using the KKT conditions, which are linear except for the complementarity conditions that 

are linearized (cf. Section 2.3). 

Afsar et al. (2016) presented a BLO model in which the energy provider (the leader) aims to determine 

hourly prices to maximize revenue minus a penalty associated with peak consumption. The consumers (the 

followers) aim to minimize overall disutility consisting of the electricity bill and an inconvenience cost 

(which is proportional to the length of the delay in starting load operation to profit from lower prices and 

inversely proportional to the width of the desired operation time window). The complementarity constraints 

of the KKT conditions of the LL problem are linearized to yield an equivalent MILP formulation.  

Soares et al. (2020) proposed a comprehensive BLO model in which the retailer establishes ToU prices 

(UL variables) to maximize the profit and a cluster of consumers (with the same consumption profile) reacts 

to these prices by determining the operation of the controllable loads to minimize the electricity bill and a 

monetized discomfort term associated with the indoor temperature deviations. The consumer optimization 

model encompasses the operation of shiftable, interruptible and thermostatic loads considering their 

physical characteristics. The BLO model is dealt with a hybrid approach: a PSO algorithm searches for UL 

solutions and calls an exact MILP solver to address the LL problem for each price instantiation. The 

inclusion of the thermostatic load in the LL problem imposes a higher effort, being impossible to solve it 

to optimality with a certain computational budget. Since a sub-optimal LL solution is infeasible to the BLO 

problem, a procedure is developed to compute good estimates of bounds for the UL objective function, thus 

providing the retailer further information to make sounder decisions. 

Alves et al. (2020) compared two BLO models to design ToU tariffs with profit maximization as the 

retailer’s objective function and energy and power costs associated with the operation of shiftable and 

interruptible appliances as the consumer’s objective function. Whereas in the first model the periods in 

which prices apply are pre-defined and the aim is to determine the price values, in the second model the 

periods and prices are decision variables, thus leading to a very large search space for the UL problem due 

to the number of combinations periods-prices. For the latter model, a hybrid approach was developed 

combining a GA for the UL search, using specific encoding as well as crossover and mutation operators to 

make the most of the physical features of the problem, with a MILP solver to obtain optimal solutions to 

the LL problem. 

This type of models can be extended for multiple players at one of both levels and for more than two levels. 

In some cases, a Nash equilibrium is sought between multiple players at the same level. 

Meng et al. (2018) considered a BLO model in a smart grid context where an electricity retailer serves three 

different types of customers (with a home energy management system coupled with smart meters, with 

smart meters only and without smart meters). The retailer aims to decide day-ahead dynamic prices to 

maximize profit and customers (displaying different price responsiveness) adjust their energy use to 

minimize costs. Interruptible, non-interruptible and curtailable appliances are considered. The consumption 

scheduling of interruptible and non-interruptible appliances is modeled as integer programming problems, 
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while that of curtailable appliances is formulated as a linear program. The BLO problem is tackled by a GA 

to coordinate the solution of the UL and LL problems. 

Soares et al. (2019) presented a BLO model considering a single leader (the retailer), who aims to establish 

a ToU pricing scheme to maximize the profit, and multiple independent followers (clusters of residential 

consumers) with different ownership rate of (interruptible and shiftable) appliances and different 

consumption patterns, who aim to determine appliance scheduling to minimize their electricity bill. 

Contracted power constraints are considered at the UL problem to avoid undesirable consumption peaks. 

Two approaches based on GA and PSO are proposed to perform the UL search, then calling a MILP solver 

to tackle the LL problem.  

Kovács (2019) developed a multi-follower model, in which the retailer defines ToU tariffs to maximize 

profit and followers are groups of prosumers who respond by scheduling controllable loads and defining 

the battery charging/discharging strategy to minimize the cost of electricity and maximize their utility (as 

an aggregate objective function). The algorithmic approach consists of a primal-dual reformulation of the 

linear LL problem to convert the BLO problem into a single level quadratically constrained quadratic 

program. The nonlinearities arise in the leader’s objective function and in the optimality constraint derived 

from the primal-dual reformulation. The nonlinear problems are solved by iteratively constructing local 

linear approximations of the original problem. The author concludes that this approach outperforms 

methods based on the problem reformulation using the KKT conditions, regarding both solution quality 

and computational efficiency on practically relevant problem sizes. 

Aussel et al. (2020) proposed a trilevel multi-leader multi-follower model for load shifting induced by ToU 

pricing. The energy supplier defines time-differentiated prices to which the consumers adapt by shifting 

their loads, either directly through local agents or indirectly through aggregators. These two latter players 

are in an intermediate level between suppliers, at the UL, and consumers, at the LL. The trilevel problem 

is transformed into a single level optimization problem with complementarity constraints. First, the 

consumers’ problems are appended to the aggregators’ problems to obtain a BLO reformulation, which is 

then tackled by replacing the followers’ problems by their KKT conditions in the leader’s problem. 

Luo et al. (2020) developed an energy scheduling model for a trilevel integrated energy system consisting 

of one electricity utility company and one natural gas utility company (UL), multiple smart energy hubs 

that can produce electricity and heat (middle level) and multiple consumers (LL). The utility companies 

and the hubs aim to maximize profits whereas the end-users aim to maximize their utility with the amount 

of energy (electricity and gas) consumed. A decentralized algorithm is developed to determine the energy 

prices in the market, in which participants decide their operation strategies according to the announced 

electricity prices. 

Feng, Wang et al. (2020) modeled the Stackelberg relationship between a profit-maximizing retailer 

(leader) and the strategic consumers (followers) in an incentive-compatible market as a BLO problem. The 

retailer aims to maximize its profits by providing diverse types of price schemes, considering the revenue 

from consumers, the acquisition costs in forward contracts and day-ahead markets, and the loss risk using 
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the conditional value at risk. Individual consumer’s preferences are modeled using a utility function 

representing consumer’s satisfaction (a concave function to indicate decreasing marginal utility). 

Consumers with similar preferences are clustered to be offered the same price scheme, thereby reducing 

the number of choices. Linear transformations are used to account for nonlinear terms and simplify the 

conditional value at risk function. 

Although most models encompass the consumer’s comfort in an overall utility objective function associated 

with energy consumption levels and energy service provision, the explicit consideration of economic and 

quality of service objective functions enables to exploit the trade-offs between these evaluation aspects of 

different appliance operation decisions. Alves and Antunes (2018) proposed a model in which the retailer 

(UL) establishes ToU prices to maximize profits and the consumer (LL) responds by selecting, under that 

price setting, a load scheduling decision leading to a Pareto optimal solution balancing the minimization of 

the electricity bill and the minimization of the dissatisfaction associated with postponing or anticipating 

load operation to different periods in face of routines and preferences. The model is tackled using a hybrid 

approach consisting of a GA for the UL problem and an exact solver to solve surrogate scalar problems 

(i.e., combining both objective functions) at the LL. Since there are multiple objective functions at the LL 

a set of “extreme” solutions is computed - the optimistic, pessimistic, deceiving and rewarding solutions 

mentioned above. Each of these solutions results from the retailer’s optimistic/pessimistic position and the 

possible consumer’s reaction more or less favorable to the retailer.  

 

4.2. Impact of demand response on network and generation planning 

BLO models are also useful to take into account the impact of DR on network and generation planning. 

ToU tariffs may be established just for the network access component of the price to minimize peak load. 

In general, network access tariffs are defined by the energy regulator and are paid by all electricity 

consumers regardless of the retailer. In addition to tariffs associated with the use of the distribution grid 

and the transmission grid, these tariffs may also encompass a global system use tariff, which include 

political costs for different purposes (e.g. promotion of energy efficiency programs, feed-in tariffs for 

renewable generation, etc.). Since the periods of present tariffs may not adhere to the actual consumption 

levels, and therefore to the levels of utilization of the distribution network, DSOs strive for the regulator to 

allow giving stronger price signals associated with the high grid cost in the periods of higher consumption 

considering distributed generation and power flows. Thus, well-designed dynamic ToU tariffs contribute 

to reduce losses in networks at all voltage levels, with impacts on deferring investments on network 

equipment and on the secondary reserve markets. 

Zhang et al. (2016) developed an integrated generation-transmission expansion planning model considering 

DR impacts with potential limits and operation requirements. The UL deals with the planning problem, 

formulated as a MILP model whose objective function is the minimization of the overall cost consisting of 

investment in generation and transmission expansion, operation costs of the generation units and cost of 

carbon emissions. The LL is a unit commitment problem including the dispatch of load curtailment and 
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load shifting induced by DR to find the optimal schedule for daily operation, which is formulated as a 

nonlinear model with the objective of minimizing the overall cost including fuel cost, generators’ start-up 

cost and shut-down cost, and incentive cost of DR (which is aimed at lowering the peak load with a positive 

impact on system planning). 

Asensio et al. (2017) presented a BLO model for the integrated distribution network and renewable energy 

expansion planning considering short-term real time pricing DR, which is modeled as elastic demand 

functions calibrated by load levels. The distribution network and generation planner (UL decision maker) 

aims to minimize the generation and network investment cost to meet demand, including investment, 

maintenance, energy purchase from substations and distributed generation production, and unserved power. 

Constraints relate to power flow and generation limits. At the LL problem, consumers aim to minimize 

overall cost in face of time-varying prices. This problem is linear since, in the objective function, the DR 

component only depends on the price difference between adjacent load levels, and power balance equations 

and DR limits constraints are linear. The substation prices are determined at the UL, which are the linkage 

between both levels, being then used to define the maximum and minimum amount of shiftable load for 

every load level. The BLO model is recast as a MILP using the KKT conditions of the LL problem appended 

to the UL problem. 

 

4.3. Demand response in electric mobility 

The increasing trend of electric mobility creates challenging problems to the power sector where DR has a 

relevant role, which can be modeled as BLO problems. Strategical (location, sizing, etc.) and operational 

(charging/discharging schedules, etc.) problems are at stake as the load profile in distribution networks is 

significantly changed because of EV, with impacts on the grid reliability. Moreover, EV are valuable to 

make a better management of larger shares of intermittent generation based on renewable sources by 

exploiting the possible flexibility of charging profiles associated with mobility patterns. Energy exchanges 

(in G2V and V2G modes) between the grid and clusters of plug-in EV involve pricing decisions to 

maximize profits while vehicles’ owners choose the battery charging strategies to minimize their costs 

and/or maximize their benefits (e.g., availability of the mobility service, sales to the grid).  

Yoon et al. (2016) presented a single-leader multi-follower BLO model for at home EV charging 

considering DR. The electricity retailer is the leader and the and EV owners are the followers. The retailer 

establishes the prices aiming to maximize profit subject to EV charging requirements. The consumers’ 

demand is flexible and shaped according to the electricity price according to a utility function, which 

expresses the degree of satisfaction when an appliance charges a certain amount of electricity in an hour 

following a quadratic function with linearly decreasing marginal satisfaction. The model seeks to obtain a 

balance between a minimum-generation-cost solution and an equal-charging scheme, which depends on 

the weighting factor for the utility function of each consumer. The optimum policy aims at minimizing the 

costs only, whereas the equal-charging policy attempts to charge electricity at an equal rate throughout a 

given period.  



 20 

Li and Li (2019) proposed a BLO scheduling approach for isolated microgrids with renewable generation 

considering DR provided by EV under real-time pricing. In the UL problem, the decision maker is the 

microgrid manager aiming to minimize the net operating cost, which includes the fuel cost of microturbines 

and the cost of spinning reserve provided by the microturbines and energy storage systems. In the LL 

problem, the EV owners aim to minimize the charging cost. A hybrid solution algorithm called JAYA- 

interior point method is developed to solve the model through an iterative process between levels. 

Sadati et al. (2019) developed a BLO model for operational scheduling of a distribution company with an 

EV parking lot and renewable (PV and wind) energy sources. The parking lot is able to sell energy to the 

grid. The UL objective function is the maximization of the company’s profit including the cost of power 

purchased from the wholesale market. The LL problem aims to maximize the profit of the parking lot 

owner. The model is reformulated as a nonlinear single level problem by applying the KKT conditions to 

the LL problem, which is then linearized. Uncertainties as the length of the stay of EV in the parking lot, 

the initial state-of-charge of EV and power generation of wind and PV units are considered through a set 

of scenarios. Price-based, incentive-based and combined DR programs are considered with different 

arrangements of renewable generation and smart charging/discharging of EV.  

Salyani et al. (2019) proposed a BLO for planning distributed generators and EV parking lots considering 

DR under uncertainty. The model has one leader (the distribution company) and multiple followers (the 

consumers). The leader aims to planning the distribution network (siting and sizing of microturbines and 

parking lots) to maximize its payoff. The followers are interested in adopting the DR program to maximize 

their own utility functions representing the perceived benefit of consumption during the day. The cost 

component of the leader’s objective function is associated with microturbines investment, maintenance and 

operation costs and the parking lots’ capital, repair and maintenance costs, as well as the energy purchasing 

cost. The distribution company pays EV owners for V2G operation. The benefit component relates to the 

energy sold to DR participating and nonparticipating consumers, with dynamic energy selling prices set for 

24 hours with DR participating consumers shifting their demand schedule according to their utility function. 

The load shifting performed by responsive loads results in decreasing the overall planning cost. A predictor 

corrector proximal multiplier iterative algorithm has been used to compute solutions. 

Rui et al. (2019) considered a distributed charging model based on day-ahead optimal internal price for an 

EV charging station powered by the grid and PV, which is devoted to industrial and commercial 

workplaces. The charging station operator is the leader aiming to maximize profit and the users are the 

followers aiming to minimize their individual costs. Users send their charging demand information to the 

charging station one day-ahead, according to price and their energy needs. A real-time billing strategy is 

proposed, which takes into account forecasting errors in PV generation and charging arrangements.  The 

LL problem is represented by a constrained nonlinear model. The UL problem consists of determining the 

prices to maximize the profit including the revenue from EV users, subsidy to distributed PV generation, 

revenue/expenditure of selling/buying energy to/from the grid. Differential evolution and particle swarm 

optimization metaheuristics have been used for obtaining solutions. 
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4.4. Demand response in microgrid planning and operation 

Microgrids are gaining a growing importance in power systems, interconnecting distributed generation, 

namely based on renewable sources, energy storage systems as well as controllable loads within defined 

electrical boundaries. Microgrids are a single controllable entity with respect to the main grid and can have 

grid-connected or autonomous (islanded) modes of operation. BLO models are useful to model the 

hierarchical relation between different stakeholders related to planning and operational problems in 

microgrids, including the interaction with the upstream grid system operators and the participation in 

different types of markets. 

Asimakopoulou et al. (2013) investigated the impact of the participation of demand resources in the energy 

market via an energy service provider, acting as an intermediary between the retail and the wholesale 

markets, that manages several microgrids comprising controllable loads and dispatchable distributed 

generation units. Part of the microgrid load is served by the distributed generation units that submit 

production bids (LL problem) and the rest is served by a central production unit (UL problem) participating 

in the wholesale market. At the LL, the energy service provider seeks the optimal combination of generation 

mix (distributed generation and central production unit) and load curtailment to maximize the profit. At the 

UL, the central production unit decides upon the profit margin to minimize costs, considering the optimal 

response of the energy service provider to the market prices. The BLO problem is transformed into a single 

level problem by replacing the LL convex programming problem with the KKT conditions, which is then 

tackled using a nonlinear solver. 

Alipour et al. (2018) developed a multi-follower BLO approach to deal with energy management in a 

combined heat and power (CHP) microgrid in grid-connect mode. The leader is the microgrid operator who 

aims to maximize profit associated with forecasted demand considering DR programs as well as 

participation in day-ahead and real-time markets. The followers are the CHP operators who aim to 

maximize profits obtained from the thermal and electrical energy sales. Network operation constraints as 

bus voltage magnitude and line flow limits are considered. Both UL and LL problems are formulated as a 

stochastic two-stage problem, to capture the uncertain nature of consumers’ loads, wind generation and real 

time market price. The BLO model of each CHP operator is transformed into an MPEC, replacing each LL 

problem by its KKT conditions, whose nonlinear complementarity terms are then linearized. 

Quashie et al. (2018) presented a BLO model for a coupled microgrid power and reserve capacity planning 

problem. The UL decision maker is the microgrid planner whose goal is to optimize the design 

configuration and power output of distributed energy resources to minimize planning and operational cost. 

The dispatch set points also include the hourly energy available for DR (as a dispatchable resource). The 

LL decision maker is the DSO, who aims to maximize the capacity of flexible reserve resources to ensure 

reliable power supply. The LL problem is linear and a primal-dual reformulation is used to recast the BLO 

model as a MPEC, which is then transformed into a MILP model by linearizing the nonlinear terms. 



 22 

Li et al. (2018) developed a BLO model to determine the optimal day-ahead scheduling between of an 

isolated microgrid and EV battery swapping stations in multi-stakeholder scenarios. The aim is promoting 

the participation of these stations in regulating the isolated microgrid operation. A real-time pricing 

mechanism based on DR is designed considering dynamic supply–demand relationships between the 

microgrid and the stations. The UL problem consists of the minimization of the isolated microgrid net costs 

associated with scheduling schemes, comprising the charge/discharge cost, the spinning reserve cost, the 

fuel cost of microturbine units, and the cost of reserve provided by the storage system. The LL problem is 

related with the maximization of the profits of the stations associated with charge/discharge scheduling 

under real-time pricing schemes determined by DR in the UL decisions. The LL objective function 

comprises charge/discharge costs, swapping incomes, battery depreciation costs and reserve incomes. A 

hybrid algorithm is proposed, called JAYA-branch and bound. This approach combines a real/integer-

coded JAYA algorithm to deal with the UL problem and a branch and bound algorithm to address the LL 

problem, which alternate iterations between the two levels to provide the solution to the BLO problem. 

Haghifam et al. (2020) presented a multi-follower BLO framework for the operational scheduling of smart 

distribution networks. The leader is the DSO aiming to minimize operating costs, subject to active and 

reactive power balance, voltage limits and line power constraints. The followers are the Demand Response 

Aggregator (DRA) and Microgrid Owner (MGO) aiming to maximize the respective profits. The DSO 

should determine the optimal amount of power purchased from the upstream grid and exchanged with the 

DRA and the MGO. At the LL, the DRA should determine the optimal amount of power exchanged with 

the DSO and the customers, whereas the MGO should determine the optimal amount of power exchanged 

with the DSO and the operation point of the energy resources (CHP, wind turbines, photovoltaics and 

storage systems). The BLO model is converted into a linear single level problem using the KKT conditions 

and the linearization of its complementarity components.  

 

4.5. Market participation of demand response 

The participation of DR in different types of markets has potential advantages due to its capability to 

respond to grid operator requests, including in spot markets in which electricity is traded for the day-ahead, 

intraday and balancing markets with a typical time scale of one hour, flexibility markets in which flexibility 

is activated in (near) real time, and reserve markets in which flexibility capacity is traded for larger time 

horizons (e.g., several days). Demand side flexibility may be used for up-regulation (reduce load, which 

implies assessing the revenue from selling to the market vs. the cost associated with loss of comfort) or 

down-regulation (increase load, which may be only profitable with very low or even negative market 

prices). Aggregators play the role of intermediaries between small consumers and the system operators 

and/or the market, enabling to exploit the small consumers’ flexibility potential and offering increased 

flexibility volumes to the market. BLO models are useful to capture the market feedback mechanism, in 

general considering the LL problem as a market-clearing problem whereas the UL problem relates to some 

type of more strategic decisions. 
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Asimakopoulou et al. (2015) proposed a BLO model for supporting the decision-making process of an 

aggregator, who is the leader that decides the price signals, in face of the reaction of distributed energy 

resources, whose interaction is determined by a bilateral contract. The UL problem involves determining 

the optimal pricing scheme for the energy bought from/sold to the local resources, as well as determining 

the energy volumes from the wholesale market and the charging/discharging of the energy storage system. 

The UL objective function is the energy supply net cost (expenses associated with buying energy from the 

wholesale market and the local production units and for remunerating the curtailable loads minus revenues 

from selling energy to the consumers with flexible loads). In the LL problem, consumers (with load bids 

and curtailable loads) and producers (with production bids) decide price/quantity pairs to maximize 

benefits. The BLO model is transformed into a single level model adding the KKT conditions of the LL 

linear problem to the UL problem, then linearizing bilinear products thus resulting in a MILP problem. 

Wei et al. (2015) considered a retail market composed of two stages in which the retailer (who also owns 

storage facilities) acts as an intermediary between the wholesale energy market (being a price-taker) and 

consumers in the retail market (being a price-maker). In the first stage, the retailer decides retail prices to 

maximize profits and end-users decide their consumption patterns to minimize costs. In the second stage, 

the retailer manages the operation of storage units and the energy contracts in the energy market after the 

consumers decide their demand patterns in the first stage, being the energy dispatch modeled as a linear 

max–min problem associated with the worst-case realization of market prices. The KKT conditions are 

used to reformulate the consumers’ problems, which are then linearized. 

Saez-Gallego et al. (2016) presented a market-bidding problem of a pool of price-responsive consumers. 

The price response of flexible loads is captured by means of a stepwise marginal utility function, maximum 

load pick-up and drop-off rates, and maximum and minimum power consumption, in a similar approach to 

the energy offers made by power generators. Therefore, the electricity price is the result of a competitive 

market-clearing process and not a retailer’s or aggregator’ decision variable, thus consumers are exposed 

to the wholesale market price. The aggregator is the UL decision maker, who aims to determine the 

parameters of the market bid relative to the aggregated pool of consumers, in order to minimize the 

estimated absolute value of the prediction error (i.e., the optimal consumption resulting from this problem 

should be as close as possible to the measured consumption in terms of a certain norm). In the LL problem, 

the price response of the pool of consumers is modeled in the form of a market bid, parameterized by the 

UL variables, to maximize consumers' welfare (difference between the total utility and the total payment). 

Since this problem is linear, it is recast using the KKT conditions to develop a single level problem. 

Mahmoudi et al. (2016) developed a BLO model, in which the leader is a wind power producer who aims 

to decide the offers in the day-ahead market and the price to offer to the aggregator by the DR product. The 

followers are related with the strategic behavior of the producer in the day-ahead market modeled through 

the market clearing process (volume and price) and the aggregator behavior modeled through a revenue 

function associated with selling DR to the wind power producer, other competitors and the day-ahead 

market. The overall problem is a stochastic MPEC in which wind generation and imbalance prices are 
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uncertain, which is transformed into a single level problem by replacing the LL problems with their KKT 

conditions.  

In the BLO model proposed by Sekizaki et al. (2016), the leader (retailer) determines the day-ahead prices 

to maximize the expected profit under uncertainty associated with spot and real-time prices. The followers 

(residential, commercial and industrial consumers) then schedule their loads according to those prices 

offered to minimize the sum of the purchasing and the disutility cost associated with the load suppressed. 

A cost component of the retailer’s objective function is the network tariff which is determined by the 

distribution line loss. A GA is used to obtain approximate solutions to the BLO problem. 

Jia et al. (2018) developed a BLO model for optimal bidding of a flexible load aggregator (encompassing 

distributed storage systems, electric vehicles and thermostatic loads) in day-ahead energy and reserve 

markets. In the UL problem the aggregator aims to maximize profit, whereas in the LL problem the 

independent system operator aims to determine the bidding of generation companies and the aggregator to 

clear the market maximizing social welfare. The LL problem is replaced with its KKT conditions and the 

BLO is transformed into a single level MPEC, which is solved with a MILP solver. 

Feng, Li et al. (2020) proposed a BLO model to optimize the transactive price signal representing the impact 

of wholesale market locational marginal prices on retail customers’ DR participation. The electricity utility 

company at the UL determines the optimal day-ahead strategy for bidding in the wholesale electricity 

market using the offers by demand response aggregators (DRA). The optimal price signal is used to dispatch 

the DR resources, also considering energy procurement from distributed energy resources, to maximize the 

worst-case realization of its payoff (utility minus costs) in face of uncertain wholesale market prices. At 

the LL, each DRA adjusts its electricity consumption using the transactive price signals set by the utility 

company, competing with the other DRA to maximize its payoff function with respect to operation 

constraints (to form a Nash equilibrium). The BLO model is transformed into a mixed integer quadratically 

constrained programming model using the KKT conditions. The linearization of the bilinear terms in the 

KKT conditions are dealt with the McCormick relaxation (McCormick, 1976) and big-M disjunctive 

constraints. 

Bruninx et al. (2020) formulated a BLO problem for the strategic participation of a price-making aggregator 

in the day-ahead electricity market (Stackelberg game) and the interaction of the aggregator with its 

consumers. These DR providers may display real-time deviations from an expected DR load profile 

modeled as chance constraints (Stackelberg or Nash bargaining game). The aggregator at the UL maximizes 

the difference between the revenue from the consumers and the cost of procuring electricity in the wholesale 

market. Consumers at the LL minimize cost. The interaction between the aggregator and the market is also 

modeled as a BLO model, in which the aggregator is the leader bidding in the market and the market 

operator is the follower aiming to maximize the total surplus with respect to the bids and offers of the 

market participants. The problems are recast as MPEC and the non-linearities in the complementary 

slackness conditions are linearized. 
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5. Conclusions  

This paper presented a review of selected models and methods, as well as considerations regarding the 

application of bilevel optimization in problems involving consumers’ demand response. It is expected that, 

in the evolution of power networks to smart grids, demand-side resources become increasingly responsive 

to dynamic pricing schemes, allowing for a better utilization of supply availability, network infrastructures 

and demand flexibility. Bilevel optimization models are adequate to deal with the leader-follower structure 

of the interaction between stakeholders controlling different sets of variables, capturing the reactive nature 

of demand response in different settings. However, there is no interest in considering as a BLO model actual 

decision contexts in which cooperation is possible between the decision makers, since it is advantageous 

for all stakeholders if a single level multiobjective model can be adopted instead. Some papers in the 

literature are misleading in this regard, since they consider different decision levels (sometimes associated 

with the same entity) and decisions may even be sequential, but no leader-follower structure is actually at 

stake because the follower’s decision does not influence the leader’s outcome. 

A review of selected applications focusing on model structure and solution techniques in problems in which 

demand response is a relevant component addressed the design of time-of-use tariffs dealing with the 

retailer-consumer interaction, the impact on network and generation planning, as well as in microgrid 

planning and operation, electric mobility, and forms of market participation.  

BLO problems are very difficult to solve due to its inherent nonconvexity. The solution technique most 

widely used consists of the reformulation of the BLO problem as a single level problem by replacing the 

linear lower level problem with its KKT conditions leading to an mathematical problem with equilibrium 

constraints, which can be transformed into a mixed integer linear programming by means of additional 

auxiliary binary variables and constraints to linearize the nonlinear terms. For the reformulation to be valid, 

big-M constants should be carefully chosen to be large enough for not excluding the optimal solution from 

the feasible space, but too large values may lead to poor computational efficiency in the solution by a MILP 

solver. The reformulation using the KKT conditions assumes an optimistic approach and the computation 

of the pessimistic solution is even more challenging. In the case of lower level problems with integer 

variables, the KKT optimality conditions cannot be used directly to make the usual reformulation as a single 

level problem. In this case, decomposition techniques involving the iterative solution of master and slave 

problems may be of help, for instance using cuts (fixing the value of integer variables) enabling the use of 

the KKT conditions in the slave problems and the ensuing reformulation as a single level problem. 

Whenever multiple objective functions exist in the lower level problem, the uncertainty of the follower’s 

decision is at stake and should be duly taken into account. In several contexts, the scalarization of the lower 

level problem by assuming the existence of a utility function may not be realistic. Therefore, it is necessary 

to identify solutions capturing the different leader’s optimistic/pessimistic attitude and the follower’s 

favorable/unfavorable response to the leader’s decision. 

A solution is feasible to the BLO problem only if it is optimal (efficient) for a single (multiple) objective 

lower level problem. However, it may be difficult to guarantee that solutions are indeed optimal (efficient) 
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when using approximation algorithms, such as metaheuristics, to deal with strongly nonlinear or 

combinatorial problems. That is, apparently better solutions to the BLO problem may just result from 

approximate (even of good quality) solutions to the true optimal (efficient) solution(s). Whenever this type 

of approaches are required due to the characteristics of the BLO problem, the possibility of using an exact 

solver to deal with the lower level problem for each instantiation of the upper levels variables should be 

assessed, i.e. coordinating metaheuristics for the upper level search with exact mathematical programming 

algorithms to solve the lower level problem. 

The changes underway in the power sector associated with the energy transition will continue to offer a 

fertile ground for the application of BLO models and algorithms. The empowerment of prosumagers, 

namely in the framework of emerging energy communities, is expected to give demand response a growing 

valuable role in the overall system efficiency at different segments of the whole value chain. BLO models 

are well suited to address the hierarchical nature of design and policy decision and operational decisions, 

possibly involving different (leaders/followers) stakeholders with potential conflicting interests. Novel and 

challenging applications as, for instance, managing congestion by exploiting the flexibility associated with 

the charge/discharge of electric vehicle batteries or enabling flexibility load aggregators to participate in 

ancillary services or capacity markets require innovative models and algorithmic approaches. 
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