

Rodrigo Filipe Mendes dos Santos

DYNAMIC RESOURCE FRAMEWORK

Internship Report in the context of the Master in Informatics Engineering, Specialization in
Communications, Services and Infra-structures, advised by Professor Filipe Araujo from the

Department of Informatics Engineering and Pedro Verruma and Gonçalo Pereira from
Talkdesk and presented to

Faculty of Sciences and Technology / Department of Informatics Engineering.

January, 2021

D
Y

N
A

M
IC

 R
ES

O
U

R
C

E
FR

A
M

EW
O

R
K

R
o

d
ri

go
 F

ili
p

e
M

en
d

es
 d

o
s

Sa
n

to
s

Faculty of Sciences and Technology

Department of Informatics Engineering

Dynamic Resources Framework

Rodrigo Filipe Mendes dos Santos

Dissertation in the context of the Master in Informatics Engineering, Specialisation in
Communications, Services and Infra-structures advised by Prof. Filipe Araujo from the

Department of Informatics Engineering and Pedro Verruma and Gonçalo Pereira from Talkdesk
and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering..

January, 2021

This page is intentionally left blank.

Acknowledgements

As this is a more personal part of the document, I will write the remainder of it in Por-
tuguese.

Em primeiro lugar quero agradecer aos meus pais, António Pereira e Margarida Cardoso,
não só por todo o apoio que me deram durante este estágio, mas também por toda a ajuda
que me deram durante toda a vida, sem eles não teria conseguido alcançar tudo o que
consegui.

O meu obrigado aos meus orientadores, Prof. Filipe Araújo e Pedro Verruma pela ajuda,
apoio, dedicação e conhecimentos que me transmitiram ao longo deste estágio.

Por todo o apoio técnico, tempo gasto, paciência e acompanhamento extraordinário durante
o desenvolvimento do projeto, um especial agradecimento ao Gonçalo Pereira.

E por fim, quero agradecer a todos colegas da Talkdesk, por todo o apoio que me deram
durante o estágio.

iii

This page is intentionally left blank.

Abstract

Based on the micro-services architectural model, Talkdesk’s infrastructure is now a complex
system, ever-growing in the number of services and clients.

Most of the implemented clients responsible for manipulating resources data have a com-
mon codebase, differing only in hard-coded operations: how they show the resource forms
and how to execute the actions (endpoint URL and HTTP method). This kind of imple-
mentation is hard to maintain because it implies a refactor on the client codebase when a
resource structure is updated.

This work and document address the issue, proposing a framework architecture capable
of handling resources based on high-level representations and improving service responses
with meta-information regarding subsequent possible actions (endpoint URL and HTTP
method).

We can then create a generic client capable of discovering available service APIs, how
to invoke them and render the resources and associated forms based on its high-level
representation.

In the end, this internship was completed successfully. We were able to fulfil the two main
goals: have the first implemented version of the framework; decouple the client from the
service implementation.

The current version of the framework already abstracts multiple operations, that otherwise
would require extra development time.

The client implements generic UI elements that are only displayed/called when the server’s
response contains the necessary information.

Right now the framework is usable, but it is still in his early development state. We can
solve some of the configuration-related flows to improve usability.

Keywords

Resource, REST, API, Micro-Service, Data Representation, Schema.

v

This page is intentionally left blank.

Resumo

Na Talkdesk, a infraestrutura segue um modelo arquitetural baseado em micro-serviços.
Atualmente esta infraestrutura está cada vez mais complexa, existindo um número cres-
cente de serviços e clientes.

A maioria dos clientes implementados são utilizados para manipular recursos contidos nos
serviços. Estes clientes partilham a maior parte do seu código, exceto algumas partes que
estão “hard-coded”, por exemplo: os formulários que os utilizadores podem preencher e
como executar as operações sobre os recursos (URL e informação sobre o método HTTP a
invocar). Este tipo de implementação tornou-se difícil de manter porque sempre que existe
uma alteração no sistema isso implica alterações nos clientes.

Este trabalho serve para apresentar a arquitetura para uma “framework” capaz de lidar
com os recursos utilizando uma representação de alto nível. A “framework” também será
capaz de adicionar meta-informação às respostas enviadas pelo serviço.

Com esta informação extra, podemos criar clientes genéricos capazes de descobrir as APIs
de um serviço, como as invocar, gerar os formulários baseados na representação de alto
nível de um recurso.

Podemos afirmar que o estágio foi concluido com sucesso. Conseguimos concluir com
sucesso os dois principais obectivos: ter a primeira implementação da “framework”; de-
sacoplar os clients da implementação do serviço.

A versão atual da “framework” já permite uma abstração de algumas operações que neces-
sitariam de uma alocação de tempo de desenvolvimento.

O cliente implementa um “UI” genérico, os elemento apenas vão aparecer quando o serviço
envia a informação necessária na resposta.

Apesar de utilizável, a “framework”, ainda está num estado muito inicial do seu desenvolvi-
mento. Ainda é possível alterar alguma da lógica relativa a configurações para que a sua
utilização seja mais fácil.

Palavras-Chave

Recurso, REST, API, Micro-Serviço, Representação de dados, “Schema”.

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Project overview . 1
1.2 Problem . 2
1.3 Motivation . 2
1.4 Objectives . 2
1.5 Document structure . 3

2 Background and State of the Art 5
2.1 Data representation standards . 5

2.1.1 XML . 5
2.1.2 JSON . 7
2.1.3 YAML . 7
2.1.4 Conclusions . 9

2.2 Schemas for data representation . 10
2.2.1 XSD . 10
2.2.2 JSON Schema . 11
2.2.3 Conclusions . 12

2.3 Architectural communication patterns for Web Services 13
2.3.1 RPC . 13
2.3.2 SOAP . 13
2.3.3 REST . 14
2.3.4 Conclusions . 16

2.4 RESTful Implementations . 17
2.4.1 HAL . 17
2.4.2 JSON-LD . 18
2.4.3 HYDRA . 20
2.4.4 Collection+JSON . 20
2.4.5 SIREN: a hypermedia specification for representing entities 21
2.4.6 Conclusions . 23

3 System requirements and Architecture 25
3.1 Requirements . 25

3.1.1 Functional requirements . 25
3.1.2 Non-Functional requirements . 27
3.1.3 Business constraints . 27
3.1.4 Technical constraints . 27
3.1.5 Use cases . 28

3.2 Architecture . 30
3.3 Risk Analysis . 31

3.3.1 Risk List . 32

ix

Chapter 0

4 Framework definition 33
4.1 Contract rules . 33

4.1.1 Communication . 33
4.1.2 Data representation . 33
4.1.3 Data validation . 34
4.1.4 Response format . 34

4.2 Implementation . 35
4.2.1 Schema resource . 37
4.2.2 Schema validator . 37
4.2.3 Response creator . 38
4.2.4 Exception module . 44

4.3 Framework limitations . 45

5 Case Study 47
5.1 Overview . 47
5.2 Tools . 47
5.3 Service architecture . 48
5.4 Implementation . 48

5.4.1 Service configuration . 49
5.4.2 Frontend implementation . 50

5.5 Conclusions . 53

6 Planning 55
6.1 First Semester . 55
6.2 Second Semester - Expected work . 56

6.2.1 Task definition . 56
6.3 Second Semester - Actual work . 58

7 Conclusion 61
7.1 Main accomplishments . 62
7.2 Future work . 62

x

Acronyms

API Application Programming Interface. 17–21, 33, 35, 37, 38, 47, 57, 61, 62

DTD Document Type Definition. 11, 13

HAL Hypertext Application Language. ix, xiii, 17, 18, 23, 33–35, 38–41, 45, 61, 62, 69,
70

HATEOAS Hypermedia as the engine of application state. 15

HTTP Hypertext Transfer Protocol. 14, 16, 20, 33

HYDRA Hypermedia-Driven Web APIs. ix, 17, 20

IANA Internet Assigned Numbers Authority. 34

IRI Internationalised Resource Identifiers. 19, 20

JSON JavaScript Object Notation. ix, 5, 7–12, 17–20, 23, 33, 36, 37, 39, 41, 42, 44, 47,
49, 61, 67, 69

JSON-LD JavaScript Object Notation for Linked Data. ix, 17–20, 23

OS Operating System. 5

REST Representational State Transfer. ix, 3, 5, 13–17, 20, 25, 33, 61

ROA Resource Oriented Architecture. 17

RPC Remote Procedure Call. ix, 13, 14, 16

SGML Standard Generalised Markup Language. 5

SMTP Simple Mail Transfer Protocol. 14

SOAP Simple Object Access Protocol. ix, 13, 14, 16

SOX Simple Object XML. 11

URI Uniform Resource Identifier. 15, 18, 21, 22

URL Uniform Resource Locator. 19, 20, 34, 37, 38, 51, 61

W3C World Wide Web Consortium. 10, 13, 18

XML Extensible Markup Language. ix, 5–7, 10–14, 16–18, 70

XSD XML Schema Definition. ix, 10–12, 66

YAML YAML Ain’t Markup Language. ix, 5, 7–9

xi

This page is intentionally left blank.

List of Figures

1.1 Agent Assist Pipeline . 1

3.1 Framework Architecture . 30

4.1 Framework overview . 36
4.2 Hypertext Application Language (HAL) model, image from [12] 38

5.1 User service architecture . 48
5.2 Service class Diagram . 49
5.3 User index page . 50
5.4 Index Interactions . 50
5.5 Create User Interactions . 51
5.6 Update User Interactions . 52
5.7 User index page without edit link . 52

6.1 Work plan for the first Semester . 55
6.2 Work plan for the Second Semester . 56
6.3 Actual Work plan for the Second Semester 58

1 Service Architecture . 79
2 Work plan for the first Semester . 87
3 Work plan for the Second Semester . 88
4 Actual Work plan for the Second Semester 89

xiii

This page is intentionally left blank.

List of Tables

2.1 Data Representation Comparison . 9

3.1 Use Case 1 . 28
3.2 Use Case 2 . 28
3.3 Use Case 3 . 29
3.4 Use Case 4 . 29
3.5 Use Case 5 . 29
3.6 Risk Exposure Matrix . 31

4.1 Base set of Keywords . 34
4.2 Pagination keywords . 34

5.1 Available operations . 48

xv

This page is intentionally left blank.

Chapter 1

Introduction

This chapter gives the reader a brief introduction to this project. The section 1.1 contains
a simple description of the project where this internship is integrated. The section 1.2
explains the current problem of the system, while the internship motivation is explained
in section 1.3. Finally, this internship’s objectives are explained in section 1.4, and section
1.5 has a brief description of the document structure.

1.1 Project overview

The Agent Assist project is the first attempt of Talkdesk in developing an AI-powered
virtual agent with the objective of decreasing the time that a call-center agent loses while
searching their knowledge base during a call. Agent Assist listens to the agent call, pro-
cesses it and returns a set of recommendations. This process is handled in real-time.

Figure 1.1: Agent Assist Pipeline

Agent Assist is a processing pipeline made up of a set of modules, figure 1.1. During a call
the pipeline receives pieces of the conversation between an agent and a client (transcrip-
tions). Then the transcriptions follow the pipeline path, and each module is responsible for
performing one of the basic operations of the service. As a growing project, Agent Assist’s
complexity (the number of modules) is increasing.

1

Chapter 1

1.2 Problem

The clients can show and manipulate resource data. How the client renders and handles
resource operations is hard-coded. This kind of implementation is hard to maintain because
implies a refactor on the client codebase when a resource structure is updated.

Most of the clients we have are somewhat similar; they share most of the structural code.
The differences are mostly related to rendering the resources and invoking the endpoints
that will perform the action.

For example, let us say that we have two different services, one that handles user informa-
tion and the other handles fruits. The user is defined by a name, a surname and age and
the fruit resource have a name, an origin code, and a date when the fruit was picked.

The two resources are entirely different. Suppose we wanted to create a frontend page
with a form to insert a new element in the service. We would need to make the page, map
each resource field to a form field, and create a button to call the endpoint to persist the
resource.

After that, we would effectively have two clients that do the same thing but that are
different because they have the resource form and the request endpoint hard-coded.

Another problem that we have is related to the services resource representation. In Agent
Assist’s current implementation, data objects are defined using polymorphic techniques.
This approach allows us to have fewer objects to maintain but also increases the data
validation and processing complexity, leading to more complex code that needs to be
developed to perform simple system modifications and implement new features.

1.3 Motivation

As Agent Assist is growing, we are developing more modules to be plugged into the pipeline.
The developed modules will have one or more resources (with different data structures)
associated with them.

We want to decrease the time that we take in the development of the new modules. One
place where we think it will be possible to reduce this time is in developing frontend clients.

One possible approach to that is creating a generic client capable of handling multiple
resource types. This generic client might be possible if we define the forms based in a
generic resource definition. The client must also know what operations are available and
how to execute them because the interactions with the service that previously would be
hard-coded must be removed.

1.4 Objectives

This internship’s primary goal is to propose an architectural design and implement the
first version of a framework to develop our services.

We want to find a way to describe the resources. It must contain the resource structure like
variable names, and also the resource constraints, like variable “A” is an integer between 5
and 10, and variable “B” is a string.

2

Introduction

As we want to deal with multiple types of resources, the framework must handle any
resource. The clients will work with a high-level resource representation, and because of
that, the framework must provide a way to store and deliver those representations.

Clients do not know which operations they can invoke and how to call them. The framework
must handle the service response and expand it with the information necessary for the client
to know how to perform operations on the resources.

Lastly, the framework will also be able to validate the resource data using the generic
representation.

1.5 Document structure

This document will cover the internship’s work, such framework requirements analysis,
specification, project planning, development and conclusions, and is organised as follows.
The current chapter describes the context, the problem and the main goals of this project.

The next chapter will cover some of the research about, data representation, data struc-
ture and validation (schemas), architectural communication patterns for web services, and
discuss and compare various standard implementations of Representational State Transfer
(REST)ful web services. And the third chapter will cover the system requirements (both
functional and non-functional) and constraints (both business and technical). After that,
the system architecture is presented, described and, in the end, we have the risk analysis
and mitigation plan.

The fourth and fifth chapters will cover the implementation done during the internship.
First, we will cover the framework specific implementation, and in the other, we will
describe the case study and how we used the framework to implement it.

Lastly, we have the planning and conclusions chapters. In the planning chapter, we describe
the tasks and time they took to be developed. The last chapter contains a summary of the
work done and the project conclusions.

3

This page is intentionally left blank.

Chapter 2

Background and State of the Art

In this chapter, we set the stage on the various standards and frameworks used in devel-
oping services and web applications. We cover various topics, like data representation,
data structure and validation, architectural communication patterns for web services (such
as Representational State Transfer (REST)) and lastly we discuss and compare various
standard implementations of RESTful web services.

2.1 Data representation standards

Data representation standard is the definition of a common language used to describe,
store and transport complex data structures.

These standards address the issue of representing heterogeneous data in a format that
everyone can equally understand and possibly represent the same information in different
environments (programming language, Operating System (OS)...).

We will cover some of the most used standards, like Extensible Markup Language (XML),
JavaScript Object Notation (JSON) and YAML Ain’t Markup Language (YAML). We
choose those standards because of popularity and for defining languages that are human-
readable.

2.1.1 Extensible Markup Language (XML)

According to [6], XML is a derivation of the Standard Generalised Markup Language
(SGML) and thus XML documents maintain the same overall structure as SGML docu-
ments.

The XML is a meta-language (describes other languages), allowing the user to specify the
markup language for each document class. In contrast, the SGML describes a document
structure and content generically, having an endless variety of document structures, this
makes the SGML a very complex standard for data representation [22].

In XML, we represent the information as a set of entities and values. Entities are enclosed
by an opening tag <entity> and a close tag </entity> . The entity value must be
present between the tags.

Entities can also have attributes, that are key-value pairs. For a given entity, the defined
attributes must have unique keys.

5

Chapter 2

All XML documents follow the same structure:

Listing 2.1: XML document base structure
<root>
<child1>
<subChild1>...</subChild>
(...)
<subChildn>...</subChild>

</child1>
(...)
<child_n>
value

</child_n>
</root>

The elements used to describe a XML can represent the document like a tree graph and
the notation used is the parent and child notation, as seen in 2.1. Each parent can have
one or more child nodes, and a child can only have one parent, nodes that belong at the
same level are siblings.

For example, if we wanted to represent a simple Java model with user information, first
and last name and age:

Listing 2.2: Simple Java Class
public class Users {

private List <User> users;
}

public class User {
private UUID id;
private String firstName;
private String lastName;
private int age;

}

The corresponding XML representation can be something like this:

Listing 2.3: XML Representation
<?xml version="1.0" encoding="UTF-8"?>
<Users>

<user id="974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd">
<firstName>Rodrigo</firstName>
<lastName>Santos</lastName>
<age>30</age>

</user>
<user id="94135e0a-0778-4cb2-8982-80e3e7bdea21">

<firstName>John</firstName>
<lastName>Doe</lastName>
<age>100</age>

</user>
</Users>

We have the <Users> root node containing multiple <user> (list elements). Each <user
id="..."> has an id attribute and 3 children, <firstName> , <lastName> , <age> .

6

Background and State of the Art

2.1.2 JavaScript Object Notation (JSON)

JSON is a lightweight and straightforward data representation format. Like XML, a JSON
document is human-readable, has a structure that is easy to understand, uses an extensible
language and is system independent.

The JSON language assumes the mapping paradigm, where each element is a key, and each
key has a value pair. Each key must always be a string without spaces. The values, on the
other hand, can assume one of the following types:

• Object - a non-ordered set of key-value pairs bounded between two curly brackets
{...} ;

• String - a character sequence that appears between double-quotation marks, "..." ;

• Number - a numeric value. It can be an integer, or it could also include a floating
part;

• Boolean - either one of the values true or false ;

• null - empty value, using the word null ;

• Array - a set of ordered elements that can be of any of the supported types. The
array elements appear between two square brackets [...] .

Using the 2.2 as a reference, the resulting JSON document is something like this:

Listing 2.4: JSON representation
{

"users" : [
{

"id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

},
{

"id" :"94135e0a-0778-4cb2-8982-80e3e7bdea21",
"first_name" : "John",
"last_name" : "Doe",
"age" : 100

}
]

}

Comparing the XML 2.3 and the 2.4 representation, JSON needs less information to de-
scribe the data structure of the serialized information, this means that a JSON represen-
tation is less verbose and that it will have less impact on message size [21].

2.1.3 YAML Ain’t Markup Language (YAML)

According to [2], YAML is a human-friendly data serialization standard for all programming
languages.

7

Chapter 2

The YAML language was created to be easily readable by humans, allow for data porta-
bility between programming languages, have a structure that can be parsed using a single
processing passage, expressive and extensible and also to be easy to implement and use.
The design of this language had in mind the following use cases:

• Representation of configuration files;

• Log files;

• Messages between processes;

• Data share in multi-language systems

• Object persistence;

• Represent complex data structures.

The YAML syntax is similar to the python syntax, and it can use indentation to define
nested information or use a language more similar to JSON.

Part of the YAML syntax is as follows:

• Whitespace - the indentation in YAML is done using whitespaces before the
elements;

• List - a list of elements is a set of elements that begin with the minus character (
-) each in a single line. Alternatively, we can also represent a list with single line
elements, placed between square brackets and separated by commas (like [value1,
value2, ...]);

• Associative Array - is used to define key-value pairs, the key is followed by :<whitespace>
then the value, one per line. Like the lists there is another possible representation, the
key-value can have a one-line representation like {key1: value1, key2: value2}
.

• Strings - are unquoted sequences of characters, but the string values can also have
double quotes (" ") or single quotes (’ ’). When using double quotes, the string
can have special characters escaped using a backslash (\);

• Numbers - same representation has the Strings.

A YAML document can optional begin with three hyphens (––-) and also optional end
with three dots (...)

8

Background and State of the Art

Using the example 2.2, the YAML representation can be something like this:

Listing 2.5: YAML Representation
users:
− id: 974e7b5c−fd64−4bfe−92a5−ae60ad16d4bd
first_name: Rodrigo
last_name: Santos
age: 30

− id: 94135e0a−0778−4cb2−8982−80e3e7bdea21
first_name: John
last_name: Doe
age: 100

Comparing with the same JSON representation 2.4 this is far more simple. But in the
other and the YAML representation can have some problems, the use of whitespaces as a
mean of indentation can lead to unexpected results.

2.1.4 Conclusions

Being that in this section we studied different data representations. Each language was
created and can be better suited for some specific cases other than others, this does not
mean that one is better than other.

Data Represen-
tation

Objects Data
type

Parse Verbose

XML Human and Ma-
chine Readable
(text)

All the values are
Strings

Difficult High

JSON Human and Ma-
chine Readable
(text)

The values can be:
Strings;
Numbers;
Booleans;
Null;
Arrays;
Objects

Easy Moderate

YAML Human and Ma-
chine Readable
(text)

Mix between json
and xml

Easy Moderate/Low

Table 2.1: Data Representation Comparison

9

Chapter 2

2.2 Schemas for data representation

Generally speaking, a schema is a meta-representation of an object. It defines the charac-
teristics related to each object property (name, type and other data constraints).

When developing a service, it is essential to get some security level about the input data
quality, and thus the service should validate the input data before being accepted. We can
use Schemas to validate documents.

Alternatively, the code could perform input validation programmatically, increasing code
complexity and making the code more difficult to maintain/read. Using schemas, we can
take advantage of external libraries that accept the input and validate if it follows all the
imposed structural rules and data constraints. It is also easier to update a schema than
refactor the code to change some validation parameters.

We will cover some of the most used schemas, like XML Schema Definition (XSD) and
JavaScript Object Notation (JSON) Schema. We choose those schemas because of popu-
larity and compatibility with the languages in section 2.1.

2.2.1 XML Schema Definition (XSD)

The XSD is the World Wide Web Consortium (W3C) recommended schema to describe
the elements that define a Extensible Markup Language (XML) document, it can be used
to define a set of constraints that a XML document must follow. These constraints can
be related to the document structure, entities definition, data types and default values for
entities and attributes.

Since the XSD defines constraints for expected XML documents, we can use it to validate
the input document. This validation compares the document structure to the expected
structure defined in the schema, and it also verifies if all data presented in the entities
follows the correct constraints.

As the XML is one of the most preferred data representation standards, many tools that
can process those documents already exist. They can transform its contents into human-
readable documentation, allowing for an easier understanding of complex XML documents
[18].

The XML specification defines the concept of Namespaces [7]. In XSD the Namespaces
is a mechanism for defining a schema across multiple files (child schemas). This can be
seen as a way to simplify the schema and avoid searching the whole schema in case of
changes (only need to change the child schema). When using namespaces the value xs
must always define the schema xmlns:xs="http://www.w3.org/2001/XMLSchema" [3].

These documents follow the same structure and syntax as a XML document, having the
same properties and constraints.

In the example 1 (Appendix A), is shown one possible XSD representation of the XML
document defined in the example 2.3.

All XSD documents start with the <schema> tag. This tag may contain some attributes
that help defining the schema:

• xmlns:xs - defines that the elements and data types used in the schema come from
“http://www.w3.org/2001/XMLSchema” namespace;

10

Background and State of the Art

• targetNamespace - defines that the elements present in this schema (Users, user,
firstName, lastName, age) come from the “https://api.example.com/api/contact-
center/Users.xsd” namespace;

• elementFormDefault - defines if the elements declared in the document must or not
be qualified (if it belongs to the namespace);

• attributeFormDefault - same as elementFormDefault but for the attributes.

The <element> tag defines each of the elements. We can use the attributes to determine
some object properties, like name, type, occurrence constraints, default values and fixed
value.

Nested values can be defined using the <complexType> . An element can also have some
content restrictions, using the <restriction> tag. Restrictions can be an interval of
values, enumerations of valid values and patterns and size for strings.

Using a XSD schema to represent a XML document has multiple advantages over Document
Type Definition (DTD) or Simple Object XML (SOX) - two cases of early adopted schema
languages for XML. A XSD schema follows the same format of a XML document, which
means that the same tools can be used to parse both documents, the language is self-
describing and also self-documenting.

2.2.2 JavaScript Object Notation (JSON) Schema

JSON schema [8] is a language that can be used to define the structure, the contents and
data properties of JSON and yaml documents 1. Using JSON schema we can evaluate if a
JSON object contains all the required values, if the values have the correct data type and
also verify if they respect the specified constraints, allowed values, size, patterns, etc.

Like XSD schemas are XML documents, a JSON schema is also a JSON document, and
as such follow the same language and set of rules.

A JSON schema document can is a set of hierarchical schemas. Many of the values asso-
ciated with specific keys, make use of schemas to define its constraints.

The example 2 (Appendix B), is the schema representation of the JSON document defined
in 2.4, in this example, as in XSD, the defined schema can be used to verify all the input
information when it arrives to the server.

The JSON schema has the following properties:

• ’$schema’ - defines that the document is a schema and it also points to the meta-
schema that contains the valid vocabulary used to define this schema — in this case,
it is the draft seven specifications;

• ’$id’ - unique identifier for each schema in the document (mandatory only for the
root node);

• title - allows for the definition of a title for the schema (optional);

• description - a small description for the schema;

1https://json-schema-everywhere.github.io/yaml

11

Chapter 2

• type - the data type that the property must follow, this data types must be a valid
type according to the JSON specification, and this defines the first constraint;

• properties - defines an object that contains keys representing the property name and
a JSON schema for each value. This schema will then validate the contents of that
property;

• additionalProperties - is used to handle if properties that are not defined are allowed
or not, by default all extra properties are allowed;

• items - similar to the properties, the items define the set of possible schemas for
the elements that are present in a list. This property is only valid when defining
constraints to Arrays/List elements;

• required - defines which of the possible properties must be present in the JSON
document;

• dependencies - creates a directional dependency between one property and a set of
other properties, meaning if the first property appear all of the properties that it
depends must also appear, but the contrary is not true.

Having the objective of being human-readable, the JSON schema language has a lot more
element complexity to describe the documents. This can lead to larger documents com-
pared to the ones produced in the XSD language 1 [20]. This problem occurs because of
how each language is structured. The XSD being a XML document, has access to a lot
more elements that can it can use to describe certain aspects of an object. On the other
hand the JSON language is simpler and needs to use nested properties to define some
complex objects [20] [1].

2.2.3 Conclusions

Being that XSD follow the same structure of the XML documents, it can define and
constrain all the elements of the document. With XSD, it is possible to add more meaning
to each structural and logical part of the document [23].

The JSON Schema can generate clear, human- and machine-readable documentation. It
also allows for an accurate description of the data structure. On the other side, the JSON
Schema complexity when defining the property constraints can lead to a steep learning
curve[1], there is also the document size problem because every nested level of JSON adds
two levels of JSON Schema[1].

12

Background and State of the Art

2.3 Architectural communication patterns for Web Services

Architectural Communication Patterns are implementations, standards and guidelines used
to develop web services.

In this section, we focused the research on patterns that work with the data representations
researched in subsection 2.1.

We will cover some of the most used patterns, like Remote Procedure Call (RPC), Simple
Object Access Protocol (SOAP) and Representational State Transfer (REST). We will also
talk about some advantages of using hypermedia.

2.3.1 Remote Procedure Call (RPC)

In Distributed systems, a RPC system is when a program can invoke resources from a
remote machine. An RPC is like a program invoking functions outside of the machine. In
RPC there are two distinct actors, the client and the server. The client sends a request to
a remote machine, in some place over the network. This request contains all the necessary
parameters to allow for the execution. The server will receive the request information. It
will process the input data and then return the response (result) to the client. During this
process, the client will typically be waiting for the result, making this a form of synchronous
communication.

Most RPC calls are synchronous. However, using some programming techniques like using
processes and/or threads to parallelize remote calls, leaving the threads waiting for the
response, can mitigate this problem. This solution can lead to some performance problems
as machine resources are limited, and the number of available threads is also limited. There
are some RPC implementations, like the XMLHttpRequest (later called Simple Object
Access Protocol (SOAP)), that allow for asynchronous requests. This kind of modifications
leads to multiple protocol implementations that are not compatible with each other.

One problem that might occur during a RPC call is that the communication might not be
entirely reliable, leading to some remote calls failing because of network problems. When
this problem occurs, it is tough for clients to know if the server could perform the remote
actions were, and in most cases, there are no mechanisms to retry the operation.

2.3.2 Simple Object Access Protocol (SOAP)

In distributed Systems SOAP is a communication protocol used to transfer structured
messages. In SOAP the messages are structures using the Extensible Markup Language
(XML) information set, this is a World Wide Web Consortium (W3C) specification2 that
can be used to describe an abstract data model of an XML document.

The SOAP messages have some syntax constraints:

• must be encoded using XML;

• must use the SOAP Envelope namespace

• must not contain a Document Type Definition (DTD) reference

2https://www.w3.org/TR/2004/REC-xml-infoset-20040204/

13

https://www.w3.org/TR/2004/REC-xml-infoset-20040204/

Chapter 2

• must not contain XML processing instructions

The SOAP specification, does not define how the client and server must exchange the
messages, the SOAP Bindings solves this issue [11]. The bindings are a set of mechanisms
that ensure the correct exchange of SOAP messages using a transport protocol. Most of
the SOAP implementations have bindings that ensure compatibility with most of the more
common transport protocols, like Hypertext Transfer Protocol (HTTP) or Simple Mail
Transfer Protocol (SMTP). Most of the SOAP implementations rely on the use of HTTP
because it is widely used on web service development [17].

Like Remote Procedure Call (RPC), SOAP allows for a program to invoke processes that
can be running on different machines. The use of HTTP for communication and XML
for data representation allows for service abstraction, meaning that the invoked services
language is agnostic and can also be running on multiple platforms.

The use of XML as a message format can lead to a lot of message complexity, increasing
the transmission size of each message has seen in the section 2.1.

2.3.3 Representational State Transfer (REST)

The REST is a software architectural style that defines a set of rules and constraints.
When a service is compliant with the REST standard, it is called a RESTful Web Service.

According to [10], the constraints of the REST architectural style affect the following
architectural properties:

• performance in component interactions, which can be the dominant factor in user-
perceived performance and network efficiency;

• scalability allowing the support of large numbers of components and interactions
among them.

• simplicity of a uniform interface;

• modifiability of components to meet changing needs (even while the application is
running);

• visibility of communication between components by service agents;

• portability of components by moving program code with the data;

• reliability in the resistance to failure at the system level in the presence of failures
within components, connectors, or data.

According to [10], there are six guidelines or constraints that can define a system as a
RESTful system. This set of guidelines define how service must process information and
respond to client requests. The main goal of using these guidelines is to give the system a
set of non-functional properties, such as the ones defined in the list defined above.

The formal REST constraints are as follows:

Client-Server architecture

14

Background and State of the Art

Using a client-server architecture allows for a great separation of contexts. For example,
suppose the interface layer and data layer are separated and independent (via commu-
nication interface). In that case, they can quickly be developed each layer in multiple
platforms/systems without interfering with each other. This context separation also al-
lows for a more scalable system [14], because we have less complicated modules, and it is
easy to create and deploy new modules. The most crucial gain of a Client-Server architec-
ture is the ability to iterate different components separately, meaning that we can evolve
a piece without changing others.

Stateless Servers

In a stateless system, the server must not save any context about client requests, and it
only contains the logic necessary to understand and reply to each request. Because of the
stateless server constraint, all the clients must save all the context information, and all
the requests must contain all the context information. According to to[14] this constraint
also allows for simple servers, because there is no need to keep information about resources
between requests. It also improves the system scalability, because the resource usage is
minimum, and the server can free the used resources when it finishes serving the request. In
[10] is said that using the stateless approach can generate some communication overhead.
For each request, the client must send the required information necessary to perform that
request and all the prior information that might be relevant.

Cache

Any response must either cacheable or non-cacheable. Cached responses can be saved (for
some time, by intermediary parties) and later served to equivalent requests. By using cache
mechanisms, we can reduce the number of interactions between clients and server. Serving
cached responses allow for a boost in performance.

Uniform interface

Using uniform interfaces, we can decouple the interfaces from the implementations. This
constraint is composed of the following sub constraints, resource identification in requests,
resource manipulation through representations, self-descriptive messages and Hypermedia
as the engine of application state (HATEOAS).

Resource identification in requests

In a RESTful service, each resource is identifiable using an immutable Uniform Resource
Identifier (URI) if the resource is updated the URI must be the same.

Resource manipulation through representations

The client does not access the resources directly; instead, the service exposes an URI and
a resource representation that contains the resource data.

Self-descriptive messages

Each message must include enough information to describe how to be processed. For exam-
ple the message can define which parser to use by defining a MediaType (application/json
or application/xml).

HATEOAS

The system must work in self-discovery mode, having access to an initial URI (entrypoint).
The client should then be able to use provided links in the responses dynamically discover
all the available actions and available resources. The server responds with text that includes

15

Chapter 2

hyperlinks to other actions that are currently available. The client can be almost entirely
generic. It only needs to know how to call the entrypoint.

Layered system

A client must only know the service layer that he is calling. All the other service layers
must remain hidden. The client must be entirely agnostic for whom he is communicating.
It must communicate with the server or with a proxy/load balancer, without the need for
code changes.

By enabling load balancing and providing shared caches, we can improve system scalability.
It is also possible to add security as a layer on top of the services and separate the business
logic from security logic.

Finally, it also means that a server can call other servers/services to perform actions needed
to satisfy the client request, without the client knowing.

Code on demand

This constraint is optional. It states that a service must allow a server to manipulate the
client in runtime. The server can send code to the client to be executed, extending or
customising the client functionalities.

2.3.4 Conclusions

The RPC allows for simple web services. The client can invoke the server and use the
available resources to perform complex tasks; it is easy to deploy and can work over multiple
transport protocols. But it also lacks support, out of the box, for some features commonly
seen in web services implementations, like asynchronous calls and error handling.

The SOAP is like a successor of the RPC, supporting some of the missing features. The
SOAP can also use multiple transport protocols, but it is commonly used in conjunc-
tion with HTTP. The messages use the XML structure, leading to some communication
overhead.

Finally, the REST is a set of properties and constraints (guidelines) that a service must
follow to achieve the following set of non-functional properties: performance, scalability,
simplicity, modifiability, visibility, portability, reliability. Being only an Architectural style,
this means that the REST implementations can be language and technology agnostic.

16

Background and State of the Art

2.4 RESTful Implementations

In this section, we will cover some message implementations that we might use to create
Resource Oriented Architecture (ROA) that are compliant with the Representational State
Transfer (REST) proposed constraints.

From the multiple defined REST constraints, this message formats are used to make the
REST Application Programming Interface (API)’s follow the Uniform interface constraint.

We will cover some of the most used implementations, like Hypertext Application Language
(HAL), JavaScript Object Notation for Linked Data (JSON-LD), Hypermedia-Driven Web
APIs (HYDRA), Collection+JSON and Siren.

2.4.1 Hypertext Application Language (HAL)

The HAL representation [12] gives a generic media type to specify an Application Pro-
gramming Interface (API) as a series of links. The application uses a set of relations to
define possible actions and associated links. Clients can then used those links to get the
information necessary to flow through the application.

In the first draft [13], the HAL representation only followed the JavaScript Object Notation
(JSON) language, but on a later one [19] it was expanded to also be compatible with the
Extensible Markup Language (XML).

Using the object model 2.2 as an example, we can define the general user resource as such:

Listing 2.6: JSON HAL Representation
{
"_links":{
"self":{
"href":"api/contact-center/users"

}
},
"id":"users",
"name":"Contact Center Users"

}

Listing 2.7: XML HAL Representation
<resource rel="self" href="/api/contact-center/users">
<id>users</id>
<name>Contact Center Users</title>

</resource>

The listings 2.6 and 2.7 represent the same resource, using the two possible representations,
JSON and XML.

An API response can have child resources, this resources can have a direct relation to the
resources served in the current service state, meaning that expanding the response and
serving the related resources can prevent future API calls. There is also the possibility
that the response can have a collection of resources.

In the JSON Specification of HAL [13], the keyword _embedded is reserved. This keyword
is optional and can be used to represent the related child resources. This resources can

17

Chapter 2

be a single object or a list of objects, each one following the HAL structure, with _links
property, the object definition and optionally an _embedded property for nested resources.

In the listing 3 (Appendix C), the _embedded property has a single object of the type
user with a _links property that is addressed for its own Uniform Resource Identifier
(URI). In the listing 4 (Appendix C), the base _links property has multiple values, each
one of them represent a search option that the system allows for page navigation. In this
example, the _embedded property now has a list of objects of the type “user”, and each
one of them has its _links property.

In the case of the XML representation, the specification [19] defines that the tag <resource>
is used to define the embedded resources. In the case of a response that can have multiple
types of resource, the attribute rel can be used to specify the resource type.

The example 5 like the 3 (both available in Appendix C), the response has a single embed-
ded resource. XML representation, the self link can be represented directly in the resource
attribute.

In the example 6 (Appendix C), the response has a collection of users, each one of them
has a corresponding <resource> tag with the corresponding “self” link attribute. The
root resource has a set of child <link> tags that represent the operations available in the
page navigation. Using both JSON and XML representations, allows for representation of
the same information in the responses.

The XML representation is more straightforward when dealing with self links and embed-
ded results. Because the self links appear in the resource attributes and the child embedded
resources appear all at the same level, using the rel attribute to make the differentiation
can lead to some problems with resource organisation.

In the case of the JSON representation, there is the need to use more attributes to represent
the same information. Because the data is grouped to prioritise the document’s readability,
this is more evident in the _embedded resources, where all the elements appear inside a
tag that defines the relationship.

2.4.2 JavaScript Object Notation for Linked Data (JSON-LD)

The JSON-LD is an World Wide Web Consortium (W3C) endorsed media type, this format
allows for data encoding using the notation of linked data. It is a set of structured data
related to other data. This link is useful when retrieving some information because there
is a direct link to query the system to retrieve some possible useful extra information [16].

The specification of the JSON-LD allows for an existing API to be upgraded to use the new
notation without significant modifications to the payloads [24]. This syntax was designed
not to introduce breaking changes to already deployed systems, the responses will maintain
the same structure (and fields) but will include some extra semantics.

Listing 2.8: Basic User JSON representation
{

"id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

}

18

Background and State of the Art

The example 2.8 can be seen as an simple JSON document that can be used to represent
the information of a system user. This kind of representation can lead to some ambiguities
when using simple tokens (JSON keys) to identify the represented data. In the JSON-
LD, to avoid ambiguities, the JSON keys can be replaced by Internationalised Resource
Identifiers (IRI)s [9].

Listing 2.9: JSON-LD document JSON IRI representation
{

"http://schema.org/uuid" : {
"@id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd"

},
"http://schema.org/first_name" : "Rodrigo",
"http://schema.org/last_name" : "Santos",
"http://schema.org/age" : 30

}

In the example 2.9, the IRIs define a simple and unambiguous identifier to each one of the
document properties. The specification stated that the keys must be the Uniform Resource
Locator (URL) for the schema that defines each property. The use of IRIs can expand the
property context when parsing the JSON document, using the IRIs it is possible to retrieve
the object definition (schema).

In the JSON-LD documents when there is a value that define an IRI, the keyword @id is
used for its definition [24], in this example this keyword is used when defining the user id.

This representation can be overly verbose when presenting the information, making the
readability of the documents more difficult and changing all the keys to the IRIs values
can lead to API incompatibilities. To avoid those problems, the JSON-LD specification
defines the use of the @context keyword [24]. This keyword defines a map between the
object keys and the corresponding IRI.

Listing 2.10: JSON-LD document with Inline context representation
GET: https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae6

↪→ 0ad16d4bd
{

"@context" : {
"user_id" : {

"@id" : "http://schema.org/uuid",
"@type" : "@id"

},
"first_name" : "http://schema.org/first_name",
"last_name" : "http://schema.org/last_name",
"age" : "http://schema.org/age"

},
"@id": "https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe

↪→ -92a5-ae60ad16d4bd",
"user_id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

}

In the example 2.10, the @context object is used to alias the JSON keys to the spe-
cific IRI identifier, in this example the context appears inline with the rest of the data

19

Chapter 2

representation, but the JSON-LD specification allows for multiple context definition:

• Inline - the context appears inline with the properties that it defines;

• Reference - The context is a external resource that is referenced using an URL
("@context": "https://json-ld.org/contexts/person.jsonld") ;

• Relative context - Defines the relative path to the context definition, this path is
relative to the document location ("@context": "context.jsonld") .

The use of the context object to map the IRIs to the corresponding JSON keys, allows for
the compatibility of APIs. If an API is not prepared to understand the context property,
the serialiser can ignore this property and parse the rest of the object as he usually would.

The JSON-LD does not support specifying the actions that can be done against a resource.
To address this problem, Hypermedia-Driven Web APIs (HYDRA) provides a vocabulary
expansion that allows for communications using the JSON-LD syntax.

2.4.3 Hypermedia-Driven Web APIs (HYDRA)

The HYDRA specification [15] appears as a way to simplify the creation of hypermedia-
driven Web APIs. This specification is built over two core components, the JSON-LD
format [24] and the HYDRA core vocabulary [15]. The JSON-LD defines the communica-
tion contract between the server and client and the HYDRA vocabulary is used to define
the common elements between JSON-LD and HYDRA.

Using HYDRA it is possible to implement web services that follow the Representational
State Transfer (REST) guidelines, it also allows for the creation of generic API clients
instead of tailored clients for each API.

Using the HYDRA vocabulary [15], like the example 7 (Appendix D), the keyword operations
can be used to specify the set of available steps that the client can perform over the re-
source identified with the @id property. Inside of the operations property it is possible
to define:

• @type - The action type;

• method - The Hypertext Transfer Protocol (HTTP) method that is supported by
the endpoint;

• expects - This property an expected template that defines the properties that are
expected to appear in the request and data constraints for each one of them.

The HYDRA vocabulary [15] also defines a member keyword, that can be used to define
embedded resources. The response also has the nextPage property, used to define the
page used when searching for collections.

2.4.4 Collection+JSON

The Collection+JSON is a hypermedia format with the principal focus on operations over
collections, like create, read, update and delete (CRUD). It is also possible to perform

20

Background and State of the Art

search queries using query templates and write operations using specific server-side tem-
plates [5]. As the name implies, using Collection+JSON is centred in collections of multiple
objects, but the specification also has the notion of single element collection.

Listing 2.11: Basic Collection+JSON document
GET : https://api.example.com/api/contact-center/users/88dfde3b-865c-4613-8c1d-

↪→ df5d891055ec
{

"collection": {
"version": "1.0",
"href": "https://api.example.com/api/contact-center/users/88dfde3b-865c

↪→ -4613-8c1d-df5d891055ec"
}

}

The example 2.11 represents the basic Collection+JSON response [4], it has a collection
object that contains the version and the href properties, the version points to the
specification version, in this case it is 1.0 , and the href is the URI used to identify the
returned resource.

The example 9 (Appendix E), represents the expected response in case of a search request,
like the basic example, the response has the collection object with version and href
, in this case it also includes the links and items properties, the links define the page
navigation options available and the items define the found objects that match the search
request. For each element found there is an href that contains the object URI and a
data property, the data contains an array of name/value pairs that define each property of
the returned object.

This response also has a template property, this template can define the elements inside
of a collection, the information present in this template gives the necessary fields to add
(POST) a new resource or to update (PUT) the fields of a previously created one. To
create a new element, the client must send a POST request to the href defined in the
collection property (“https://api.example.com/api/contact-center/users”), in the case
of a PUT request, the URI appears inside of the correct element of the items property.

Lastly, there is the queries property. This property defines the search queries supported
by the collection, in the data object it is possible to describe all the supported query
parameters.

The use of templates and defining the supported queries allow for a greater understanding
of an API by new users because most of the API documentation and possible operations
appear in the responses.

2.4.5 SIREN: a hypermedia specification for representing entities

Siren is a specification [25] built for entity representation, this specification also allows for
the definition of available actions that a resource supports. The action definition is used
for client navigation, making it possible to create decoupled clients who can use the actions
information to navigate the service.

In Siren there is the concept of:

1. Entities - This property is used to represent the entity (Class) information:

21

Chapter 2

• class (optional) - Array of String that can be used to identify the object type
and describe the object structure and content;

• properties (optional) - A set of key-value pairs that are used to convey the
data for the entity;

• entities (optional) - An array of sub-entities that are related with the parent
entity, the sub-entities must always have a ’rel’ property to show the relation
between them and the parent entity;

• links (optional) - a set of items that define the URIs for each possible naviga-
tion link, in the entities the links property must always have one entry, a link
to the entity self location;

• actions (optional) - A collection of available operations that can be performed
on an entity;

• title (optional) - this field can be used to provide some description about the
entity.

2. Sub-Entities - An array of sub-entities that are related with the parent entity,
this array can contain an embedded entity representation or a embedded link to the
entity, in this case it can contain:

• class (optional) - Array of String that can be used to identify the object type
and describe the object structure and content;

• rel (required) - Defines the relation of the sub-enteity and its parent;

• href (required) - This property defines the URI of the sub-entity;

• type (optional) - The media-type of the sub-entity;

• title (optional) - this field can be used to provide some description about the
entity.

3. Actions - A collection of available operations that can be performed on an entity,
they can have this properties:

• name (required) - Identifier of the action, must be unique for the set of actions
that belong to an entity;

• class (optional) - Array of String that can be used to identify the action
representation

• method (optional) - defines the protocol method to be invoked, if omitted it
defaults to ’GET’;

• href (required) - This property defines the action URI;

• title (optional) - Description of the action

• type (optional) - The request encoding type, by default it uses ’application/x-
www-form-urlencoded’

• fields (optional) -

4. Links - are used to define the steps available during page navigation, they can have
this properties:

• rel (required) - Array of String that defines the relations of a link to a entity;

• class (optional) - Array of String that can be used to identify the link repre-
sentation

• href (required) - This property defines the URI of the linked resource;

22

Background and State of the Art

• title (optional) - Text that describes the link;

• type (optional) - The media-type of the linked resource.

5. Fields : Are a set of fill rules, that exist inside of an action, they can have this
properties:

• name (required) - Identifier of the field, must be unique for the set of fields that
belong to an action;

• type (optional) - The data-type of the defined field;

• value (optional) - The value that is assigned to the field;

• title (optional) - Description of the field.

The example 10 (Appendix F) represents an SIREN JSON document that describes the
request to search for all users of the contact-center.

With Siren, it is possible to design resources that do not have to be primarily CRUD-based.
In response to the available actions that each resource supports, it is easy to provide a task-
based interface through the Web API 3.

2.4.6 Conclusions

JSON-LD can improve existing APIs without introducing breaking changes. Most of the
improvement gains are ways to self-document the API. HYDRA adds the necessary vocab-
ulary to extend the JSON-LD specification to allow the communication.

HAL has a minimal document representation that has most of the benefits of using hyper-
media without too much complexity to the implementation. One area where HAL struggles
is, like JSON-LD, the lack of support for specifying actions.

The collection+JSON, despite the name, can be used to represent collections of items or
a single item. This implementation can list specific queries that the collection supports
and allow for templates that clients can use to alter (add, update, delete) the collection
elements.

The SIREN implementation can represent generic classes of items and overcome the main
problem of HAL – lack of support for actions. It also introduces the concept of classes to
the data representations allowing for the API response to represent the object type.

We decided to use the JSON as the resource representation because it already represents the
developers’ representation while developing the services. As a consequence, the resources
are described using JSON schemas.

The service API will follow the REST design pattern. HAL was chosen as the RESTful
pattern for the responses because it is defined in Talkdesk’s guidelines for external API.

3https://github.com/kevinswiber/siren

23

This page is intentionally left blank.

Chapter 3

System requirements and
Architecture

As previously stated, this internship aims to develop a framework architecture and commu-
nication contracts to create a Representational State Transfer (REST) compliant services.

This chapter contains three sections: requirement analysis; description of the system ar-
chitecture; initial risk analysis.

3.1 Requirements

The requirements specification is a crucial phase in the development of software. They
provide goals to be met and also serve as a metric to evaluate the project progress. In this
section, we specify the requirements for the project.

3.1.1 Functional requirements

In this section, we present a list of functional requirements. The requirements are composed
of ID, name, description, priorities, and dependencies (requirements that it depends on).
The priorities are defined in: Must Have, Should Have, and Nice to Have.

ID: FR-01
Name: Data Representation
Description: The system must use rich enough language to allow the definition of each
object representation; namely properties, data-types and value constraints – defined as the
object schema
Priority: Must Have
Dependencies: None

ID: FR-02
Name: Schema
Description: The system must be able to serve the object schemas for any object sup-
ported by the system
Priority: Must Have
Dependencies: None

25

Chapter 3

ID: FR-03
Name: Resource Creation
Description: The system must be allow for the creation of new meta-resources (new
schemas), without changes to the system code
Priority: Must Have
Dependencies: None

ID: FR-04
Name: Object persistence
Description: The system must be able to persist objects regardless of the object schema
Priority: Must Have
Dependencies: None

ID: FR-05
Name: Object Operations
Description: The system must allow creating, searching, updating and deleting specific
objects regardless of its object schema
Priority: Must Have
Dependencies: FR-04

ID: FR-06
Name: Object Validation
Description: The system must be able to validate all requests to create and update
objects using the appropriate object schema
Priority: Must Have
Dependencies: FR-05

ID: FR-07
Name: Object Rejection
Description: The system should not allow for the creation of objects, that do not have a
object schema associated
Priority: Should Have
Dependencies: FR-05

ID: FR-08
Name: Response Operation Definition
Description: The system should use hyperlinks in each response to define the next possible
operations
Priority: Should Have
Dependencies: None

ID: FR-09
Name: Response Schema Definition
Description: The system should use hyperlinks in each response to define the associated
object schemas
Priority: Should Have
Dependencies: None

26

System requirements and Architecture

ID: FR-10
Name: Service Entrypoint
Description: The system should provide a default operation which can be used to start
the chain of service discovery
Priority: Should Have
Dependencies: None

3.1.2 Non-Functional requirements

Non-functional requirements are requirements that define the behaviour of the system, as
opposed to functional requirements that define the components that the system must have.
The existing non-functional requirements are has follows:

ID: NFR-01
Name: Modifiability
Description: It must be possible to modify or introduce new functionalities in the service
modules without affecting the existing features.

ID: NFR-02
Name: Reusability
Description: The implemented modules should work together, but if necessary, they must
also be deployed independently in other systems.

3.1.3 Business constraints

Business constraints depend on business decisions and cannot be altered. The following
business constraints exist:

ID: BC-01
Name: Licenses (Commercial Purposes)
Description: The licenses of the tools and libraries used must allow for commercial use.

ID: BC-02
Name: Licenses (Free)
Description: The tools and libraries used must have free licenses.

ID: BC-03
Name: Development Time
Description: The first version of the implementation has to be preformed during the
internship second semester.

3.1.4 Technical constraints

Like the business constraints, the technical constraints must not be changed. This con-
straints are usually set by the stakeholders and have impact on a technical level. The
following technical constraints exist:

ID: TC-01
Name: On-premises
Description: The software and all associated tools must be able to be deployed on-
premises.

27

Chapter 3

ID: TC-02
Name: Programming Languages
Description: The software and associated tools must be developed in the same language
the rest of the development team is using. Java was chosen as the development language.

ID: TC-03
Name: Modular System
Description: The system must be modular allowing to a seamless change of components.
Required that all components use the same implementation.

3.1.5 Use cases

A use case is a methodology used in system analysis to identify and organise system
requirements. Allowing for the specification of a set of high-level requirements helps in the
more detailed identification of the various functional requirements.

In this section, we will show the five use cases defined for this project. The following tables
describe them.

ID UC01
Name List resources
Description User interacts with the system, in order to list available resources
Scope System
Actor(s) USER
Preconditions The user selects the option to list resources
Basic Flow The user selects the option to list resources; The system searches

for available resources; The system displays the result to the user
Exception Flow
Post Conditions The system displays the result to user

Table 3.1: Use Case 1

ID UC02
Name Show the details of a resource
Description User interacts with the system, in order to get all the details about

an available resource.
Scope System
Actor(s) USER
Preconditions The user selects the option to get a resource; The chosen resource

must exist
Basic Flow The user selects the option to list resources; The system searches

for available resources; The system displays the result to the user;
The user Selects one of the resources; The system searches for
details about the resource; The system displays the result to the
user.

Exception Flow If the resource is not available the system displays an error message;
Post Conditions The system displays the result to user

Table 3.2: Use Case 2

28

System requirements and Architecture

ID UC03
Name Resource Creation
Description User interacts with the system, in order to create a new resource.
Scope System
Actor(s) USER
Preconditions The user selects the option to create a new resource; The system

must have at least one resource template available
Basic Flow The user selects the option to create a new resource; The system

searches for available resource types; The user chooses the type;
The user fills the proper information; The system displays the
result to the user.

Exception Flow If there is no templates available the system displays an error mes-
sage;

Post Conditions The system displays the result to user

Table 3.3: Use Case 3

ID UC04
Name Resource Update
Description User interacts with the system, in order to update a resource.
Scope System
Actor(s) USER
Preconditions The user selects the option to update an old resource; The chosen

resource must exist; The chosen resource template must exist;
Basic Flow The user selects the option to create update a resource; The system

searches for available resources; The user chooses the resource; The
user fills the proper information; The system displays the result to
the user.

Exception Flow If the resource does not exist the system displays an error message;
Post Conditions The system displays the result to user

Table 3.4: Use Case 4

ID UC05
Name Delete a Resource
Description User interacts with the system, in order to delete an available

resource.
Scope System
Actor(s) USER
Preconditions The user selects the option to get a resource; The system must

have at least one resource available
Basic Flow The user selects the option to list Resources; The system searches

for available resources; The system displays the result to the user;
The user selects one of the resources; The system deletes the re-
source; The system displays the result to the user.

Exception Flow If the resource does not exist the system displays an error message;
Post Conditions The system displays the result to user

Table 3.5: Use Case 5

29

Chapter 3

3.2 Architecture

In this section, we present a high-level service architecture. The principal constraint that
the service must be modular.

Figure 3.1 represents the generic framework architecture we want to achieve. The image
is also present in the Appendix G, in larger size for ease of read.

Figure 3.1: Framework Architecture

The red components/modules are the ones that will be implemented, all the others are
outside of the scope of this internship.

First, we have the “Schema Resource” module, composed of two components: “Request
filter” and “Schema API”. The first component will act as an API filter; it will intercept all
the request done to the service API and will ensure that the clients and the service speak
the same language. The second component is a pluggable API and service logic to serve
schemas to the client and internal modules/components.

The framework will also need to validate the input information (against the defined schema).
To do that, we will have “Resource Validator”. This module also has API filter, this filter
(“Resource filter”) takes the payload and schema identifier from the request. The validation
part is done by the second component, the “validator”, it will accept a document (input
data) and a schema. The input will then be challenged against the schema, and it will
produce a result saying if the request is valid (passes all the checks) or invalid (failed at
least one check).

In the “Service Operations” module are all the supported service operations. These oper-
ations can differ from service to service. Here we have just some of the possible functions.

Lastly, we have the “Response Creator” component. This component belongs to the service
operations and will receive a response and translate them to a response compliant with the
RESTfull implementation.

30

System requirements and Architecture

3.3 Risk Analysis

Here we present an initial risk analysis with potential problems for the project. This
section explains how risks are classified and prioritised. In the final part of the section
a list of risks identified is presented. All the risks identified are classified based on their
impact and their probability in order to better determine which risks’ management should
be prioritised.

The risk’s impact can assume the following values: Catastrophic, Critical, Marginal
and Negligible.

Probability can be classified as:

• Very Likely: Probability of event happening is estimated as being above 75%;

• Likely: Probability of event happening is estimated as being between 50% and 75%;

• Unlikely: Probability of event happening is estimated as being between 25% and
50%;

• Rare: Probability of event happening is estimated as being below 25%.

Probability
Impact Negligible Marginal Critical Catastrophic

Very Likely
Likely
Unlikely
Rare

Table 3.6: Risk Exposure Matrix

In the table 3.6 we have the Risk Exposure Matrix, this matrix can be used to map risks
to specific zones. There are four possible zones that define the impact of a risk in the
development of the project. Each zone have an specific impact:

• Green Zone: Risks with low priority, they will only addressed if the mitigation plan
will demand low effort. Risk that appear in this zone have a combination of low
impact and low probability;

• Yellow Zone: Risks with moderate priority, a plan to mitigate this risks might exist,
they will only be executed if there are spare time.

• Orange Zone: Risks with high priority, a plan to mitigate this risks must exist, they
will only be executed if they do not clash with mitigation plans of higher priority
risks.

• Red Zone: Risks highest priority, there must always exist a plan and its execution
to mitigate them. Risks that fall in this zone have a combination of high probability
and high impact.

31

Chapter 3

3.3.1 Risk List

In this section we identify some of the possible risks and have them classified according to
the risk exposure matrix 3.6. The mitigation plan, if any exist, is also described.

Name: Lack of experience on Restfull implementations
Description: This project will rely on set of preexisting tools and concepts. There per-
formance can drastically influence the system end result.
Probability: likely
Impact: Critical
Priority: Orange zone
Mitigation Plan: Study APIs that have Restfull implementations. Practice by doing
some tutorials.

Name: Development tools
Description: This project will rely on set of preexisting tools and concepts. There per-
formance can drastically influence the system end result.
Probability: likely
Impact: Catastrophic
Priority: Red zone
Mitigation Plan: It will be necessary to have a testing phase, were the tools will be
tested and see their performance. Only then the we can choose the tolls that will be used.

Name: Limited Development time
Description: Due to limited development time, some requirements may not be (fully)
implemented.
Probability: Unlikely
Impact: Catastrophic
Priority: Orange zone
Mitigation Plan: In order to have a working system, the development will be focused on
the functional requirements with higher priority.

32

Chapter 4

Framework definition

The work done implementing the framework is shown in this chapter. We decided that, for
this first attempt, the framework will only support the Hypertext Application Language
(HAL) pattern for the responses because it is the one specified by Talkdesk’s guidelines for
response patterns for externally exposed Application Programming Interface (API)s.

First, we have a simple overview of the tools used in the development of the framework,
and then we have a more comprehensive analysis of each component and their interactions.

4.1 Contract rules

This section defines the contract rules that service and client implementations need to
respect. They are independent of the implementation but serve as guidelines to develop
all framework modules.

The implemented framework can be replicated in other programming languages.

4.1.1 Communication

We use the Representational State Transfer (REST) communication pattern to enable com-
munication between the various services and respective clients. Being the REST a protocol-
gnostic implementation, we decided to use the Hypertext Transfer Protocol (HTTP) to ab-
stract all necessary communication steps.

The will implement a custom Media-Type header to guarantee that the client and the
service speak the same language. If the client doesn’t send the correct header information,
the service must discard the request.

4.1.2 Data representation

Our system will use the JavaScript Object Notation (JSON) format as the data represen-
tation format because it is human-readable, has low verbosity and easy to parse. Using
JSON to represent the resource will give us some information about it, like the field names,
and the value type.

The JSON-Schema is used as a high-level resource representation giving a way to define

33

Chapter 4

complex constraints. All clients must be able to request (and be served) a resource schema.

4.1.3 Data validation

When a client sends a request, the content-type header must contain the custom Media-
Type defined in the framework, and the information regarding the schema location (variable
schema=<schema location url>).

The framework retrieves the schema and handles resource validation. The developer will
not need to create custom code for this.

4.1.4 Response format

We decided that all responses served by services using the framework must follow the HAL
pattern. It must be possible to define the “_links” and “_embedded” information.

A resource might contain “_embedded” information if the served resource contains one or
more resources related to him.

The “_link” information will be used to pass the information to the clients about the
operations that the client can invoke and how to call them. The links defined in the HAL
pattern do not provide a mean to directly describe the action (POST, PUT, etc.) that
must be performed with the Uniform Resource Locator (URL), like in other designs (like
SIREN), by default, the action is a GET.

To overcome this problem, we decided to look at the Internet Assigned Numbers Authority
(IANA) link 1 specification. The specification states a set of actions that are identifiable
by the name associated to them. Using the same strategy, we define a set of keywords
(some belong to the IANA) that the clients can map to a set of possible operations. All
the returned links will need to follow the pattern defined in the table 4.1.

Keyword HTTP Method URL pattern Description
self GET /<Resource name>/<Resource id> link to retrieve the current resource (and embedded if they exist)
get GET /<Resource name>/<Resource id> retrieve a single resource (and embedded if they exist)
edit PUT /<Resource name>/<Resource id> update a resource data
delete DELETE /<Resource name>/<Resource id> delete a resource (and embedded if they exist)
collection GET /<Resource name> retrieve a set of resources (pagination rules apply)
create POST /<Resource name> create a new resource entry
schema GET <Schema base URL>/<Resource class name> retrieve a resource schema

Table 4.1: Base set of Keywords

The collection must follow pagination rules, because of that, we define, in the table 4.2, a
specific set of links that those responses must contain.

Keyword HTTP Method URL pattern Description
self GET /<Resource name>?page=<page number> link for current page
first GET /<Resource name>?page=<page number> link for first page
prev GET /<Resource name>?page=<page number> link for previous page
next GET /<Resource name>?page=<page number> link for next page
last GET /<Resource name>?page=<page number> link for last page

Table 4.2: Pagination keywords

1https://www.iana.org/assignments/link-relations/link-relations.xhtml

34

https://www.iana.org/assignments/link-relations/link-relations.xhtml

Framework definition

In this case the response format (listing 4.1) for this request follows the format defined in
Talkdesk’s documentation.

Listing 4.1: HAL Fruit resource
{
"count": "<number of resources found>",
"total": "<total number of resources>",
"_links": {
"self": {
"href": "http://api.com/<resource name>?page=<actual page number>"

},
"first": {
"href": "http://api.com/<resource name>?page=<first page number>"

},
"prev": {
"href": "http://api.com/<resource name>?page=<previous page number>"

},
"next": {
"href": "http://api.com/<resource name>?page=<next page number>"

},
"last": {
"href": "http://api.com/<resource name>?page=<last page number>"

}
},
"_embedded": {
(...)

}
}

In the response root, we have the number of returned elements (“count”), the number of
total elements (“total”), the pagination links (“_links”) and finally, the result list has an
embedded resource (“_embedded”).

4.2 Implementation

To simplify the development process of services using a micro-service architecture, we
propose a framework that handles all the logic of input validation, response generation and
schema handling. The implemented modules are compliant with the set of rules defined in
section 4.1.

The developed framework, figure 4.1, consists of the following components:

• Schema resource - contains the Schema API, this module allows for a quick deploy
of the Schema related endpoints.

• Schema validator - this component, will handle the resource validation, it will receive
a resource and the corresponding schema.

• Response creator - handles the response encoding according to HAL specification.

• Exceptions - this component is a repository for the custom exceptions thrown by the
framework.

35

Chapter 4

Figure 4.1: Framework overview

The framework specification took some inspiration from micro-services architecture. Each
module as two key properties: they can work decoupled of the rest, and each module takes
care of an essential part of framework workflow.

We developed the framework codebase in java. This programming language is the same
used by the development team while developing the other services, allowing for a seamless
transition of the services. Maven takes care of dependency management.

To verify the JSON input against a schema, we use the “com.networknt:json-schema-
validator” 2 dependency.

We decided to use the Microprofile 3 and Jakarta EE4 specifications to help in the de-
velopment of the framework. Microprofile defines the “Jackson”5 framework as one of the
possible tools to handle JSON marshalling and unmarshalling, because of that, we decided
to use it across the project to handle all the JSON related operations.

The “ContainerRequestFilter”6 that we use in the message interceptors belong to the Jax-
RS specification (part of Jakarta EE).

2https://github.com/networknt/json-schema-validator
3https://microprofile.io/
4https://jakarta.ee/
5https://github.com/FasterXML/jackson
6https://access.redhat.com/documentation/en-us/red_hat_fuse/7.4/html/apache_cxf_

development_guide/jaxrs20filters

36

https://github.com/networknt/json-schema-validator
https://microprofile.io/
https://jakarta.ee/
https://github.com/FasterXML/jackson
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.4/html/apache_cxf_development_guide/jaxrs20filters
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.4/html/apache_cxf_development_guide/jaxrs20filters

Framework definition

4.2.1 Schema resource

We started by defining the custom media type (“application/schema-instance+json”) that
the requests must use. This is part of the communication rules 4.1.1, set by the framework.

Before any requests enters the service, it must be validated by the “Media-Type Validation”
operation. This is a JAX-RS message interceptor filter that ensures all requests follow the
expected pattern, to verify that, the filter validates the content-type header. Only requests
that use the media type “application/schema-instance+json” are allowed, while the others
are denied with an “Unsupported Media Type” (415) error.

The resources inside the service will be represented using schemas, and clients are able to
connect to the service and retrieve the correct schema for the resource they want.

When developing the service, the developer sets the schemas in the resources folder. For
now, the file name must follow the following pattern: “<resource simple class name>-
schema.json”. We followed this pattern because the class name can be extracted and is
used as the identifier for the schema, and the “-schema.json” is used to filter if the file
contains a schema or not.

During the service startup, this module will read all files present in the service “resources”
folder, making them available to the clients or internal validation of requests.

This module also provides the schema retrieval API. When imported, the endpoint “GET:
/schemas/<id>” is enabled. The <id> in the endpoint is the resource simple class name.
If the resource is found, the endpoint will return an “OK” response with the schema as the
body, if not, the endpoint will return a “NOT FOUND” (404) error.

4.2.2 Schema validator

The validation of the payloads was one of the defined rules 4.1.3. After validating the re-
quests Media-Type, we must validate the request content. We created a second filter (also
JAX-RS message interceptor) responsible for verifying body content. The filter will call the
“Validator” component, using the payload and the corresponding schema, the schema to
use in the validation is received in the content-type, using a variable (“application/schema-
instance+json;schema=<schema location>”), the schema location can be the resource
name or the URL. If the payload is valid, the request proceeds to the service, if not,
the request is interrupted, and the client will receive a “Bad Request” (400) error.

This module serves as a wrapper around some schema validation libraries. We defined an
interface with the method template that the implementations must follow.

The interface defines the “validateObject” method that receives two inputs:

• “jsonObject” - a string encoded JSON object that represents the payload to be vali-
dated;

• “schema” - a string encoded JSON object that represents the corresponding schema.

The “validateObject” implements a void method. It does not return anything in case of a
valid “jsonObject”, otherwise an exception must be thrown. The exception will contain a
set of failed validations (problems) found, each entry in the set includes the element path
and a description of the issue found.

37

Chapter 4

4.2.3 Response creator

The last set of rules, we have a module that handles the response encoding, using as base
the rules set in 4.1.4. In the figure 4.2, we can see a high-level representation of the resource
encoding. The HAL pattern can be divided into how to represent Resources and Links.

Figure 4.2: HAL model, image from [12]

The resource is composed of a set of links, embedded resources and resource state. The
state is the current information that the resource contains inside the service (current state).
The embedded resources are other resources inside the larger one, and to simplify, the
embedded resources are the objects that are the base for a more complex object. Finally,
the links represent the operations available for the resource. They are composed of a target
URL and a relation (name/identifier).

In the implemented framework, we developed the tools necessary to automatically encode
the API responses using the HAL pattern, without the need for extra code. The imple-
mentation process of each tool is explained in the following subsections.

Configurations

For now, the framework works using some configuration files. We defined two configuration
files with information about how the service works. First, we have the “operations.json” file
to define the next available operation based on the resource type, and the current invoked
endpoint.

Listing 4.2: operations.json file structure
{
"<resource simple class name>": {
"<current operation 1>": [
"<next allowed operation 1>",
(...)
"<next allowed operation n>"

],
(...)
"<current operation n>": [
"<next allowed operation 1>",

38

Framework definition

(...)
"<next allowed operation n>"

]
},
(...)
"<other resource simple class name>": {
(...)

},
}

The listing 4.2 is a simple representation of how to configure the service discovery. In the
JSON root level, we have the identifier for the resources, and we use the simple class name
for that. Inside of each element in the JSON, we have another level used to identify the
available operations. Finally, for each operation, we have a list of strings.

The list elements are used to define the next possible operation and create the links used
to invoke the required endpoint to perform that operation. The “current operation” and
“next allowed operation” identifiers belong to the keyword list defined in the table 4.1.

The other configuration is taken care of by “definition.json” file. This file contains the
resource structure, giving the framework the necessary information to create the embedded
representation if needed.

Listing 4.3: definition.json file structure
{
"<resource simple class name>": [
{
"class": "<resource 2 simple class name>",
"name": "<resource 2 JSON key>",
"url": "<resource 2 URL path>"

},
(...)

],
"<resource 2 simple class name>": [
(...)

],
"<other resource simple class name>": [
(...)

],
(...)

}

The listing 4.3 is a simple representation of how to configure the service for encoding the
response following the HAL pattern. Like the operations file, in the JSON root level, we
have the identifier for the resources. Inside each element in the JSON, we have another
level to identify the embedded resources (more detail in subsection 4.2.3).

The “class” key, is the simple class name of the embedded resource, the “name”, is the
original key in the JSON encoding of the original resource and finally, the “url”, is the
resource path for later creating the link information (more detail in subsection 4.2.3).

39

Chapter 4

Response manipulation

We wanted the response creation to be handled automatically by the framework, making
it possible to convert all the responses according to the HAL pattern. This process is done
programmatically, and takes place by formating and manipulating the response contents,
adding all the relevant information, like links and embedded references.

Listing 4.4: Fruit resource example
{
"name": "banana",
"colour": "yellow",
"vendors": [

{
"country": "Portugal",
"name": "Continente"

},
{
"country": "Portugal",
"name": "Pingo Doce"

}
]

}

The listing 4.4 is an example of a “Fruit” resource that is used by a service. The “Fruit”
resource contains information about the fruit name and colour, but it also has another
resource inside of it, the fruit vendor (“Vendor” resource). In this case, the fruit vendor
is an embedded resource, and following the HAL pattern, we must format the response
accordingly.

Listing 4.5: definition.json for fruit resource example
{
"fruit": [
{
"class": "vendor",
"name": "vendors",
"url": "vendors"

}
]

}

Using the configuration 4.5, we create the proper definition.json file that describes the
“Fruit” resource structure. After that, the framework has a series of algorithms (1 and 2)
to parse the response and handle the embedded reference’s creation.

Algorithm 1 halResponseEncoder(result, operation, simpleClassName)
1: Convert the result to <json> representation
2: if json contains “id” value then
3: Call method linkCreation(simpleClassName, operation, id) to create the resource

links based on the current operation
4: Append the link information to the original json using the key “_links”
5: else
6: Throw an error

40

Framework definition

7: end if
8: Get resource <definition> using the “simpleClassName”
9: if definition exists then

10: if json has embedded elements then
11: for Each embedded do
12: Retrieve embedded information (element, element name, element clas) from

json and added it to a <embeddedList>
13: Remove that element from json
14: end for
15: Append the result of the method embeddedBuilder(embeddedList, operation)

to json using the key “_embedded”
16: end if
17: end if
18: Return Updated json

The algorithm 1, receives a resource, the current operation and the resource class name.
First, the algorithm creates the “_links” information (more details in subsection 4.2.3), we
then append them to the resource.

After creating the links, the next step is to access the existence of embedded resources.
First, we get the resource definition configured in “definition.json” file, using the resource
class name.

The next step is to find the embedded resources, using the “name” value from the resource
configuration and place them inside the “_embedded” element. We retrieve the embedded
JSON nodes and put them in a list, and send the list to the method defined in the algorithm
2, the result is then put in the “_embedded” element.

Algorithm 2 embeddedBuilder(embeddedList, operation)
1: Create <baseJson> with an empty json object
2: for Each embeddedList element <e1> do
3: if e1 is an array then
4: for Each element <e2> in the array do
5: Recursively call the method halResponseEncoder(e2, operation, e1 class)
6: Add result to an auxiliary <aux> list
7: end for
8: Update baseJson with aux using e1 name as the key
9: else

10: Recursively call the method halResponseEncoder(e1, operation, e1 class)
11: Update baseJson with the call result using e1 name as the key
12: end if
13: end for
14: Return Updated baseJson

The second part of the algorithm (algorithm 2), accepts a resource list and the current
operation.

First, we create an empty JSON to save the embedded resources after processing. The
embedded resources must follow the same HAL pattern, with links and embedded resources;
this can be done by recursively calling the algorithm 1.

41

Chapter 4

For each element in the list, we have to check two possible options. It can be a JSON-
ARRAY or not. In the first case, we recursively call the algorithm 1 for each element of
the array and place them in a list of processed elements; In the second case, we call the
algorithm 1 directly. We put the results into the JSON created at the beginning of the
method, using the original names.

In the end, the “Fruit” resource will look like example 11 (Appendix H).

Link creation

The HAL pattern dictates that the responses had link information inside the resources, to
aid the navigation. The framework creates the link information based on the configurations
defined in the “operations.json” file. Using the example of the “Fruit” class 11, if we define
the following operations:

Listing 4.6: HAL Fruit resource
{
"fruit": {
"get": [
"schema",
"edit",
"delete",
"collection"

],
(...)

},
"vendor": {
"get": [
"schema",
"edit",
"delete"

],
(...)

}
}

For this example, we will see how the framework creates link information when the client
wants to retrieve a single fruit resource from the service.

Algorithm 3 linkCreation(base url, resource class name, operation, resource id)
1: Get list of next available requests <requests> using the resource class name and op-

eration
2: Create a list of links <links> for all the possible operations, “self”, “schema”, “delete”,

“create”, “get”, “edit”, “collection”
3: for each link in links do
4: if link not in requests then
5: Remove the link from the list
6: end if
7: end for
8: Return links

We use the algorithm 3 to generate the resources links to aid the navigation by the clients.

42

Framework definition

First, we need to know all the operations that the current resource allows. That information
is in the “operations.json” configuration file.

The next step is to create a list with all possible links, using the URL pattern present in
table 4.1. Then, using the allowed operations, we remove the links that are not necessary.

For the “get” operation, the “Fruit” resource will look like example 12 (Appendix H).

If the client performs a collection request he must receive a pagination encoded response
(defined in the response format rules), we developed the method “createPagination” (algo-
rithm 5) into the framework to handle the creation of this response automatically.

Algorithm 4 createPagination(page, totalPageAvailable, totalResourceAvailable, simple-
ClassName, resourceList)

1: Create a base json <base json> with {“count”: <resourceList size>, “total”: <total-
ResourceAvailable>}

2: for each element <element> in resourceList do
3: if element contains “id” value then
4: Call method linkCreation(simpleClassName, “get”, id) to create the resource

links based on the current operation
5: Append the link information to the original element using the key “_links”
6: else
7: Throw an error
8: end if
9: Add the element to a list <auxList> of processed resources

10: end for
11: Append the auxList to the base json using the “_embedded”
12: Call the method createPageLinks(page, totalPageAvailable, simpleClassName)
13: Append the result to the base json using the “_links”
14: Return json

The “createPagination” algorithm starts by creating the base response (“count” and “total”)
data, after that, it takes each element of the resource list and created the links (algorithm
3) for them. After the list is updated, it puts the elements in the base response as an
embedded resource.

Algorithm 5 createPageLinks(page, totalPageAvailable, simpleClassName)
1: Create a list of links <links> for all the possible operations, “self”, “first”, “prev”, “next”,

“last”, “schema”, “create”
2: if page equals 1 then
3: Remove “prev” link
4: end if
5: if page + 1 greater than totalPageAvailable then
6: Remove “next” link
7: end if
8: Return links

The final step is to create the pagination links, the method “createPageLinks” (algorithm
5) handles this operation.

Like in algorithm 3, to create the pagination links, we build all the possible links. After
that, we must check if the “prev” and “next” links can exist; if not, we remove those links.

43

Chapter 4

We then return the links.

For the “collection” operation, the response will look like example 13 (Appendix H).

4.2.4 Exception module

The framework defines some custom exceptions, based on the internal operations and
interactions. This module serves as a repository for those exceptions, to get them all in
one place for better organization.

This module also contains exception mappers, to avoid clients receiving some untreated
exceptions. These mappers will capture custom exceptions, thrown by the service, convert
them to a custom error payload and send them to clients.

The error messages will follow the next examples:

Listing 4.7: General JSON error payload
{

"code": "<internal error code>",
"message": "<error message>",
"description": "<error description>"

}

The listing 4.7 represents the payload returned to clients in case the service throws an
exception. The “error” is the corresponding internal error code; the “message” is the error
message thrown by the service; finally, the “description” is a brief description of the error
that occurred in the service.

Listing 4.8: Resource validation JSON error payload
{

"code": "<internal error code>",
"message": "<error message>",
"description": "<error description>",
"fields": [{

"name": "<path to json element>",
"description": "<error description>"

}
]

}

The listing 4.8, represents the payload returned to clients if the service throws an exception
while validating resources against schemas. It is a simple expansion of the previous payload
(listing 4.7). It contains an extra element, the “fields” list. This element will have a list
of validation errors. The “name” is the path to the element that failed the validation; the
“description”, is the issue found during validation.

44

Framework definition

4.3 Framework limitations

During the development of the framework, we made some concessions. The developer must
generate all schemas; He needs to ensure that all resources have a schema; if the resources
change the developer must update the schemas.

The framework sets the schema location inside the resources folder, meaning that all schema
files must be inside that folder. The search routine can look for schemas inside sub-folders,
making the folder organization easier. However, as the search routine grabs all files inside
the resources folder, we created a specific pattern (<simple class name>-schema.json) for
the name of the schema files so that the framework can filter files.

For some complex resources, the configuration file that defines its structure can also become
large and complex. If the developer is not careful enough while writing the definition file,
it can lead to unexpected results.

We added some extra steps to define correct links in responses due to the library that we
are using to write the link information. The library does not allow for new links to be
added the list, nor to dynamically create them. Thus, we always create all possible links
and then remove the ones that are not available.

The creation of the link keyword names was necessary because of the HAL pattern’s lack
of action type definitions. Clients must be able to map keywords to specific actions.

45

This page is intentionally left blank.

Chapter 5

Case Study

In this section we explore a simple use case devised to test the framework’s micro-service
implementation. This is a simple client and service that handles some “User” information.

First, we have a simple service overview. Next, we show the implementation steps that we
took and finally, we quickly resume the challenges and gains that we got while using the
framework.

5.1 Overview

To test the framework implementation, we decided to create a simple micro-service. This
service handles the “User” related operations.

The service will contain all the CRUD (create, read, update and delete) and also list
(pagination) operations.

We also developed a simple web page (client) to interact with the service. The client will
read the metadata in the responses (“_links”) and display visual elements accordingly.

All the forms present in the client pages are rendered based in the corresponding schema
resource, making it possible to have a generic Frontend to some extent.

5.2 Tools

Like the framework, we developed the “User” service in java and maven for dependency
management.

To create the service Application Programming Interface (API) and data management
(access databases), we decided to use the “Quarkus”1 framework. This framework contains,
out of the box, the mechanism necessary to perform dependency injection in classes, read
and apply configurations, JavaScript Object Notation (JSON) handling, and help define
and deploy APIs. “Quarkus” is also the framework that the development team uses in the
development of the services.

We used “React”2 for the frontend implementation because of two factors: it was the only

1https://quarkus.io/
2https://reactjs.org/

47

https://quarkus.io/
https://reactjs.org/

Chapter 5

frontend related framework that I used before, and it already had components developed
to render forms based on schemas.

5.3 Service architecture

In the example, we implemented a simple service to manage user information. Two different
parts compose the service: the Frontend client, and the Backend service.

Figure 5.1: User service architecture

Figure 5.1, is a representation of the service architecture. The client contains the web
pages used to interact with the resource data and the backend (User Service).

The backend handles two different resources: the User and Address, with different end-
points and actions. The table 5.1 represents all the available actions available for each
resource and how to invoke them.

Resource Operation HTTP Method Endpoint pattern Description
create POST /users/ Create a new user
read GET /users/<user id> Retrieve a specific user
update PUT /users/<user id> Update a specific user
delete DELETE /users/<user id> Delete a specific user

User

list GET /users?page=<page number> Retrieve a set of user
create POST /users/<user id>/addresses Create a new address for a user
read GET /users/<user id>/addresses/<address id> Retrieve a address from a user
update PUT /users/<user id>/addresses/<address id> Update a address from a userAddress

delete DELETE /users/<user id>/addresses/<address id> Delete a address from a user

Table 5.1: Available operations

5.4 Implementation

We started the implementation by defining the service data model for user and address
resources, figure 5.2.

The User class is composed of the basic user data, “first name”, “last name” and “age”. It
also contains a list of addresses, represented by the “Address” class. Because the User class
includes a relation with the Address class, we defined the addresses as embedded resources.

48

Case Study

Figure 5.2: Service class Diagram

We also define a simple representation for the users, the UserList class. We use this class
to encode the result of “list user” requests. This request produces a collection result with
pagination data. We decided to use a second representation for this specific case to simplify
the response and also because we did not want to show all the user data in this case.

The next step was to create the flow of operations that the client can perform to a resource
and next available actions. This step is essential because it is in here that we can define
how to interact with service, allowing for the client to have all the information necessary
to perform the service discovery.

5.4.1 Service configuration

After defining the page’s behaviour, we need to configure the backend to correctly create the
necessary links for each performed operation and correctly encode the response embedded
resources.

First, we start by configuring the operations. We prepare this configuration by creating
the “operations.json” file, listing 14 (Appendix I), which contains the operations for the
two resource types: “user” and “address”. The framework will use this file to know which
links should it write when a client performs an operation on a resource. Note that, the
“self” reference does not appear in this configuration because it is an obligatory link, so we
decided to exclude that reference from the configurations.

Listing 5.1: user definition.json file
{
"user": [
{
"class": "address",
"name": "addresses",
"url": "addresses"

}
]

}

Because we have embedded resources (address), the next step was to configure the backend
to know how to encode the response into the correct format. To do this, we created the
“definition.json” file, listing 5.1. With this configuration, we say to the framework to look
for a JSON element named “addresses” and place it as a new element (with the same name)
inside the user embedded resource.

Lastly, we are only missing the resources schemas. This configuration is also fundamental

49

Chapter 5

because it will impact the frontend pages but also the resource validation. In the frontend,
we use the schemas to render the correct fields in the forms. The framework also uses the
schemas to validate the request payload, verify if it contains all the required fields, and
the input data respects the constraints. The used schemas can be seen in Appendix J, the
listing 15 is the schema referent to the “user” resource and it was placed in a file called
“user-schema.json”, and the listing 16 is the schema referent to the “address” resource and
it was placed in a file called “address-schema.json”.

5.4.2 Frontend implementation

We will use this section to show in more detail the frontend implementation. It will discuss
the choices in web page implementation.

The client contains three different pages, each one handling a separate operation.

Figure 5.3: User index page

First, we have the index (entrypoint) page, figure 5.3. This page is open by default and
displays the list of users in the system, each element in the list must have two buttons, one
to edit it and one to delete it. This page must also contain a button to create a new user.

Figure 5.4: Index Interactions

The figure 5.4, is the interactions that exist in the index page. When we are at the index
page, the client calls the list endpoint in the service. The service responds with a list of
found users. Before sending the client’s response, the user list passes in the framework to
update it with the pagination fields and links, and the “create” operation link. If there
are elements in the list, they appear has embedded resources. Each one will also contain
the available operations links; for this example, the delete and update are the ones that
matter. When the frontend receives the response, it will verify the root links and see if the
create link exists to know if it needs to render the button or not. The same also happens
when parsing the “users” list, element links are analysed to verify if we need to render the
buttons for the delete and edit operations.

50

Case Study

Next, we have the “create page”, this page is used to create a new “User”. When accessed,
the page displays a fillable form, a “Submit” button, to perform the request to persist the
data in the backend and finally a “Back” button to return to the previous page.

Figure 5.5: Create User Interactions

Figure 5.5, represents the interactions that exist in the create page. When we open the
create page the client already knows which endpoints to call and how to call them (the
information is already in the context because the index page interactions put it there).
The first action is to retrieve the schema necessary to render the form.

Having the schema set, the client can render the page allowing the user to fill the form.
The schema has some constraints defined for the inputs, meaning that the page already
performs some validations, if the form has wrongly filled fields the submit operation can
not occur.

Finally, we can submit the new user data to the backend. We prepare the (POST)
request with the correct Uniform Resource Locator (URL); we set the media type to
“application/schema-instance+json;schema =<schema URL>”; and the body to contain
the input data.

The backend also needs to validate the request content. The framework uses the variable
set in the media type to get the schema and validate the user information against it. If all
the checks pass, then the data is persisted in the service.

Finally, we have the “edit page”, this page is used to check and change “User” data. When
accessed, the page displays a filled form with the user data, a “Submit” button, to perform
the request to persist the updated user data in the backend and finally a “Back” button to
return to the previous page.

51

Chapter 5

Figure 5.6: Update User Interactions

Figure 5.6, represents the interactions that exist in the update page. The flow is similar
to the one in the create page, but with some extra steps. To be able to present the filled
form, the page must request user information to the backend. With the schema and the
user information, the page can then render the form filled and allow the user to submit
the changes. The update request (PUT) has the same logic from the create request the
schema for validation identified in the content-type header.

Figure 5.7: User index page without edit link

In Figure 5.7 we have the index page but, in the backend configuration, the edit link was
not defined. As the frontend did not received that link it did not render the “edit” button
for the list elements.

52

Case Study

All the requests performed by the frontend, use the custom media type (“application/schema-
instance+json”) that was created in the framework. Otherwise the requests would be re-
jected by the framework filters.

5.5 Conclusions

The main challenges in the development of the case study was related to the frontend
implementation. Some pages were problematic to develop because of the data manipulation
we have to do to obtain all the necessary information. Due to some lack of knowledge on
how to interact with the React components and javascript specific programming details,
the frontend implementation took some extra effort.

The schema creation also posed some problems; some of the schema’s properties had some
unexpected effects in the forms.

On the backend side, the use case’s implementation was more direct because of previous ex-
perience dealing with this kind of service implementation, and most of the time consuming
operations were abstracted by the framework.

53

This page is intentionally left blank.

Chapter 6

Planning

In this section the work plan is presented. There is the task definition for each semester
and the expected time for each task.

6.1 First Semester

The work done in the first semester is shown in the Gantt chart that appears in the
following image 6.1 1.

Figure 6.1: Work plan for the first Semester

This image 6.1 is displayed on Appendix L in larger size.

The tasks defined for the first semester where as follows:

1. Research:

(a) Data representation;
(b) Schemas for data representation;
(c) Communication patterns;
(d) RESTfull implementations.

2. Requirements;

3. Write Report.

During this semester, most of the time (10/02/2020 until 18/05/2020) was spent in re-
search. This phase was divided in research about formats for data representation, schemas
for representing the data formats, communication patterns used in web services and finally
response models used in RESTfull implementations.

1Generated using https://online.visual-paradigm.com/pt/diagrams/features/gantt-chart-tool/

55

Chapter 6

Later, a week (17/05/2020 until 25/05/2020) was used to define project requirements,
functional and non-functional requirements, architecture, risks and project constraints.

The last weeks (25/05/2020 until 29/06/2020) were used to write the intermediate report.

6.2 Second Semester - Expected work

The expected work for the second semester is shown in the Gantt chart that appears in
the following image 6.2 2.

The expected work for the second semester was divided in the following two groups:

1. Framework development to assist in building API’s compatible with the proposed
Architecture:

• Documentation:

– Definition of API contracts;
– Definition of tools (libraries ...);

• Implementation, development of components to automate:

– Resource validation;
– Building http responses;
– Allow definition of dependencies between resources;
– Allow definition of allowed operations on each resource;
– Persistence of models in database.

• Verification:

– Unit tests;
– Component tests.

2. Example of API implemented using the framework guidelines (POC):

6.2.1 Task definition

In this section we defined the tasks needed to be implement in the second semester.

Figure 6.2: Work plan for the Second Semester

This image 6.2 is displayed on Appendix M in larger size.

2Generated using https://online.visual-paradigm.com/pt/diagrams/features/gantt-chart-tool/

56

Planning

The tasks devised for this semester are as follows:

1. Training:

(a) API analysis;

(b) Train RESTfull implementations (tutorial, classes,....)

2. Definition of API contracts:

(a) Define Application Programming Interface (API) templates, requests and re-
sponses;

(b) Define system constraints;

(c) Define object models and schemas.

3. Definition of tools;

4. Resource validation:

(a) Create module to validate input against schema;

(b) Development of unit tests.

5. Building http responses:

(a) Create module to represent the response;

(b) Create module to represent the element relations;

(c) Development of unit tests.

6. Allow definition of dependencies between resources;

(a) Create module to represent the object dependencies;

(b) Development of unit tests.

7. Allow definition of allowed operations on each resource;

(a) Create module to represent the allowed operations for each resource;

(b) Development of unit tests.

8. Persistence of resources in database.

(a) Create module to perform CRUD operations over resources;

(b) Development of unit tests.

9. Component tests:

(a) Definition of tests for each created module;

(b) Development of component tests;

10. Write report.

It is expected that the development follows a sequential manner, tackling each component
in order.

First it is needed to allocate some time to training, this time will be used to learn about
existing API’s and train the development of RESTfull services.

57

Chapter 6

Then there will be the documentation step, the API contracts that the services must follow
will be defined as well as the tools that will be used.

The development steps come in third. In those steps the modules defined in the architecture
will be implemented. At the same time all the unit tests will also be developed to ensure
that the modules have the correct implementation.

After the development of the modules, there will be the component testing, this tests will
test the interactions between the modules to ensure that the service is working as intended.

Lastly is the writing of the final report.

6.3 Second Semester - Actual work

The work done in the first semester is shown in the Gantt chart that appears in the
following image 6.3 3.

Figure 6.3: Actual Work plan for the Second Semester

This image 6.3 is displayed on Appendix N in larger size.

We divided the work done this semester in two-week sprints. Next we have a list of tasks
that were performed during the sprints. The tasks are divided into “Framework” and
“Frontend” implementations, and “Research” work.

• Sprint #1 - Start: 02/09/2020 End: 16/09/2020

1. Research - backend tools (HAL implementations, dchema validation)

2. Research - frontend tools (React, Form creation libraries)

3. Research - HAL API examples

• Sprint #2 - Start: 16/09/2020 End: 30/09/2020

1. Framework - schema API

– Define and implement the API
– Implement internal operations (save, retrieve, read schemas on startup)

2. Framework - Schema Validator

– Test multiple validation libraries
– Implement the module

3Generated using https://online.visual-paradigm.com/pt/diagrams/features/gantt-chart-tool/

58

Planning

• Sprint #3 - Start: 30/09/2020 End: 13/10/2020

1. Framework - Request interceptor

– Research - Jax-Rs documentation about “Server processing pipeline”
– Implement a simple example
– Create the request interceptor
– Create the resource interceptor

2. Frontend - Parse schema and create a form

• Sprint #4 - Start: 02/13/2020 End: 28/10/2020

1. Framework - Response Creator

– Define resource operations configuration pattern
– Test HAL implementation Libraries
– Integrate request interceptor with schema validator

2. Frontend - Add custom headers for the requests

• Sprint #5 - Start: 28/10/2020 End: 11/11/2020

1. Framework - Response creator

– Define resource structure configuration pattern
– Add _link information to response

2. Frontend - pages aware of link information

– Parse response
– Conditional render of buttons
– Links in page context

• Sprint #6 - Start: 11/11/2020 End: 25/11/2020

1. Framework - Response creator

– Handle resource definition file
– Parse response information to identify embedded resources
– Write _embedded results in the response

• Sprint #7 - Start: 25/11/2020 End: 09/12/2020

1. Frontend - Implement case study

• Report writing - Start: 09/12/2020 End: 18/01/2021

The first sprint was dedicated into researching and evaluating the tools we could use to
ease the development. We started developing the framework in the next sprint by creating
the modules that handle the schemas, the API and internal operations, and the module
that can use the schema to validate a resource.

In the third sprint, we started by calling the validation module from inside the service,
but it was suggested that instead, the framework should use the Jax-RS request filters, to
capture the requests before they hit the service API, and perform the validations there. In
this sprint, we started to try to integrate the new features with the frontend. We started
by requesting a schema and render it in a form.

59

Chapter 6

The next three sprints were focused on developing the “Response creator” module. From
all the development this module was the one that took more time because it was the more
complex. During these sprints, we were also testing if we could use the new responses in
the frontend.

Lastly, we have the final (development) sprint dedicated to creating the case study that
we showed in section 5.

The remainder of the time was for writing the final document.

60

Chapter 7

Conclusion

After analysing the different modules that constitute the Agent Assist service, we concluded
that most of the clients had similar code, only changing the forms used to represent the
resources and the endpoint Uniform Resource Locator (URL)s called to perform the actions.

To ease the development time and code maintainability, we proposed creating a framework
that could handle the encoding of more information in the service responses so that the
client could read that information and know how the service works. The clients should
also be able to render the forms using a high-level resource representation, in the end we
should have a “generic client”.

This internship’s primary goal was to propose an architectural design and implement the
first version of a framework to ease the service development. The framework must be able
to:

• Handle any resource;

• Store and provide high-level resource representations;

• Annotate the responses with information necessary to perform operations on the
resources;

• Validate the resource data;

To achieve the proposed goals, we decided to first, study various topics, like possible data
representation patterns, architectural communication patterns for Web Services (such as
Representational State Transfer (REST)) and lastly standard implementations of RESTful
web services.

We decided to use the JavaScript Object Notation (JSON) as the resource representation,
and as a consequence, the resources are described using JSON Schemas. The service Appli-
cation Programming Interface (API) will follow the REST design pattern, and Hypertext
Application Language (HAL) was chosen as the RESTful pattern for the responses.

We also devised the architecture for the framework and the contract rules that the service
and clients must follow. We took the modularity as the most important requirement while
designing the framework. In the “contract rules”, we defined the communication aspects
that the implementation must follow.

To validate the implemented framework, we devised and implemented a simple case study.

61

Chapter 7

7.1 Main accomplishments

In the end, this internship was completed successfully. We were able to fulfil the two main
goals: have the first implemented version of the framework; decouple the client from the
service implementation.

The current version of the framework is ready for developers to start developing services
that respect the proposed contract rules. Right now the framework already abstracts multi-
ple operations that otherwise would require extra development time: input data validation
using resource schemas; an API to handle the schema requests; response conversion to the
HAL pattern.

Because of the service discovery constraint, the response conversion in the response is
configurable by resource. The developer can define the “_links” information to determine
the next available operation and create a generic embedded resource definition.

We created a simple service that handles “user” information and a client that could ren-
der the appropriated forms based on the schema that it receives. Changing the schema
structure also changed the visual design of the form.

The client buttons and internal operations are only displayed/called if the specific link is
present in the response, the URLs and method to call are also inferred from that element.

Finally, we effectively created a generic frontend client that we can now use across multiple
services. This client codebase is simple and easy to maintain because we changed the client
structure and removed all the hard-coded information. It can now use the meta-information
added to the responses and adapt the visual design and internal calls based on the meta-
information he received from the service.

7.2 Future work

As we discussed earlier in the document, the framework is usable, but it is still in his
early development state. We can solve some of the configuration-related flows to improve
usability.

Right now, the configuration process is a little bit manual. The developer needs to create
both configurations files and put all the necessary information inside. We can further
improve this step by looking to the Java annotations, like the ones used by “hibernate”1.

We could create an annotation for the API definition where we said if a client calls an
endpoint, then the response should have the following list of links. Something similar can
be done for the resource definition, we can create an annotation for a specific field and say
that in the parent resource context, that field must be treated as an embedded resource.

The framework has a modular architecture, and because of this, we can still add new
features to improve it further. Right now, our response module only supports the HAL
pattern. One possible improvement is to expand the response creation module to allow the
developer to say which pattern they want for encoding responses.

Lastly, we need to improve the tests done to the framework; most of the work done was
manual functional tests.

1https://hibernate.org/

62

https://hibernate.org/

References

[1] Is json schema the tool of the future? https://www.conceptatech.com/blog/
is-json-schema-the-tool-of-the-future.

[2] The Official YAML Web Site, 2020 (accessed February 13, 2020). https://yaml.org/.

[3] Xsd - the element, 2020 (accessed March 8, 2020). https://www.w3schools.com/
xml/schema_schema.asp.

[4] Mike Amundsen. Collection+json - examples, May 2011. http://amundsen.com/
media-types/collection/examples/.

[5] Mike Amundsen. Collection+json - document format, Feb 2013. http://amundsen.
com/media-types/collection/format/.

[6] T Bray, J Paoli, CM Sperberg-McQueen, Y Mailer, and F Yergeau. Extensible markup
language (xml) 1.0 5th edition, w3c recommendation, november 2008, 2008.

[7] Tim Bray, Dave Hollander, Andrew Layman, and Richard Tobin. Namespaces
in xml. World Wide Web Consortium Recommendation REC-xml-names-19990114.
http://www. w3. org/TR/1999/REC-xml-names-19990114, 1999.

[8] Michael Droettboom et al. Understanding json schema.
Available on: http://spacetelescope. github. io/understanding-
jsonschema/UnderstandingJSONSchema. pdf, 2015 (accessed on March 10 2020).

[9] Martin Dürst and Michel Suignard. Internationalized resource identifiers (iris). Tech-
nical report, RFC 3987, January, 2005.

[10] Roy T Fielding and Richard N Taylor. Architectural styles and the design of network-
based software architectures, volume 7. University of California, Irvine Irvine, 2000.

[11] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Hen-
rik Frystyk Nielsen, Anish Karmarkar, and Yves Lafon. Soap version 1.2. W3C
recommendation, 24:12, 2003.

[12] Mike Kelly. Hal - hypertext application language, 2013 (Accessed April 20, 2020).
http://stateless.co/hal_specification.html.

[13] Mike Kelly. Json hypertext application language, May 2016 (Accessed April 20, 2020).
https://tools.ietf.org/html/draft-kelly-json-hal-00.

[14] Kenneth Lange. The little book on rest services. https://www.kennethlange.com/
books/The-Little-Book-on-REST-Services.pdf, 2016 (accessed on April 05 2020).

[15] Markus Lanthaler. Hydra core vocabulary: A vocabulary for hypermedia-driven web
apis, Jun 2020. https://www.hydra-cg.com/spec/latest/core/.

63

https://www.conceptatech.com/blog/is-json-schema-the-tool-of-the-future
https://www.conceptatech.com/blog/is-json-schema-the-tool-of-the-future
https://yaml.org/
https://www.w3schools.com/xml/schema_schema.asp
https://www.w3schools.com/xml/schema_schema.asp
http://amundsen.com/media-types/collection/examples/
http://amundsen.com/media-types/collection/examples/
http://amundsen.com/media-types/collection/format/
http://amundsen.com/media-types/collection/format/
http://stateless.co/hal_specification.html
https://tools.ietf.org/html/draft-kelly-json-hal-00
https://www.kennethlange.com/books/The-Little-Book-on-REST-Services.pdf
https://www.kennethlange.com/books/The-Little-Book-on-REST-Services.pdf
https://www.hydra-cg.com/spec/latest/core/

Chapter

[16] Markus Lanthaler and Christian Gütl. On using json-ld to create evolvable restful
services. In Proceedings of the Third International Workshop on RESTful Design,
pages 25–32, 2012.

[17] Michael Linderman. Object oriented communication among platform independent
systems across a firewall over the internet using http-soap, November 14 2006. US
Patent 7,136,913.

[18] Jonathan I Maletic, Michael Collard, and Huzefa Kagdi. Leveraging xml technolo-
gies in developing program analysis tools. In Proceedings of the ICSE Workshop on
Adoption-Centric Software Engineering (ACSE), pages 80–85, 2004.

[19] J. Michaud. Hal - hypertext application language, 2018 (Accessed April 20, 2020).
https://tools.ietf.org/pdf/draft-michaud-xml-hal-02.pdf.

[20] Falco Nogatz and Thom Frühwirth. From xml schema to json schema-comparison and
translation with constraint handling rules. Bachelor Thesis. Ulm: University of Ulm,
2013.

[21] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and Clemente Izurieta. Com-
parison of json and xml data interchange formats: a case study. Caine, 9:157–162,
2009.

[22] J. Roy and A. Ramanujan. Xml: data’s universal language. IT Professional, 2(3):32–
36, 2000.

[23] Seva Safris. A deep look at json vs. xml, part 3: Xml and the future of json. https:
//www.toptal.com/web/json-vs-xml-part-3.

[24] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, Pierre-Antoine
Champin, and Niklas Lindström. JSON-LD 1.1–a JSON-based serialization for Linked
Data. PhD thesis, W3C, 2019.

[25] Kevin Swiber. Siren: a hypermedia specification for representing entities, April 2017.
https://github.com/kevinswiber/siren.

64

https://tools.ietf.org/pdf/draft-michaud-xml-hal-02.pdf
https://www.toptal.com/web/json-vs-xml-part-3
https://www.toptal.com/web/json-vs-xml-part-3
https://github.com/kevinswiber/siren

Appendices

65

Chapter

Appendix A

Listing 1: XML Schema Definition (XSD) schema
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="https://api.example.com/api/contact-center/Users.xsd">

<xs:element name="Users">
<xs:complexType>
<xs:sequence>
<xs:element name="user" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:sequence>
<xs:element type="xs:string" name="firstName"/>
<xs:element type="xs:string" name="lastName"/>
<xs:element name="age">

<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>
<xs:maxInclusive value="120"/>

</xs:restriction>
</xs:simpleType>

</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="id" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

66

Appendix B

Listing 2: JavaScript Object Notation (JSON) Schema
{

"$schema": "http://json-schema.org/draft-07/schema",
"$id": "http://example.com/example.json",
"type": "object",
"title": "The root schema",
"description": "The root schema comprises the entire JSON document.",
"default": {},
"required": [

"users"
],
"additionalProperties": false,
"properties": {

"users": {
"$id": "#/properties/users",
"type": "array",
"title": "The users schema",
"description": "An explanation about the purpose of this instance.",
"default": [],
"items": {

"anyOf": [
{

"$id": "#/properties/users/items/anyOf/0",
"type": "object",
"title": "The first anyOf schema",
"description": "An explanation about the purpose of this

↪→ instance.",
"default": {},
"required": [

"id",
"first_name",
"last_name",
"age"

],
"additionalProperties": false,
"properties": {

"id": {
"$id": "#/properties/users/items/anyOf/0/
properties/id",
"type": "string",
"title": "The id schema",
"description": "An explanation about the purpose of

↪→ this instance.",
"default": ""

},
"first_name": {

"$id": "#/properties/users/items/anyOf/0/
properties/first_name",
"type": "string",
"title": "The first_name schema",
"description": "An explanation about the purpose of

↪→ this instance.",
"default": ""

},
"last_name": {

67

Chapter

"$id": "#/properties/users/items/anyOf/0/
properties/last_name",
"type": "string",
"title": "The last_name schema",
"description": "An explanation about the purpose of

↪→ this instance.",
"default": ""

},
"age": {

"$id": "#/properties/users/items/anyOf/0/
properties/age",
"type": "integer",
"minimum": 0,
"maximum": 100
"title": "The age schema",
"description": "An explanation about the purpose of

↪→ this instance."
}

}
}

],
"$id": "#/properties/users/items"

}
}

}
}

68

Appendix C

Listing 3: JSON Hypertext Application Language (HAL) Single Embedded Result Repre-
sentation
GET: https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae

↪→ 60ad16d4bd
{
"_links": {
"self": {
"href": "api/contact-center/users"

}
},
"_embedded": {
"user": {
"_links": {
"self": {
"href": "api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd"

}
},
"id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

}
},
"id":"users",
"name":"Contact Center Users"

}

Listing 4: JSON HAL Collection Representation
GET: https://api.example.com/api/contact-center/users?page=7
{

"_links": {
"self": {"href": "/api/contact-center/users?page=7" },
"first": {"href": "/api/contact-center/users?page=1" },
"prev": {"href": "/api/contact-center/users?page=6" },
"next": {"href": "/api/contact-center/users?page=8" },
"last": {"href": "/api/contact-center/users?page=17" }
"search": {

"href": "/api/contact-center/users?query={searchTerms}",
"templated": true

}
},
"_embedded": {

"user": [
{
"_links": {
"self": {
"href": "api/contact-center/users/974e7b5c-fd64-4bfe-92a5-

↪→ ae60ad16d4bd"
},

},
"id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",

69

Chapter

"age" : 30
},
{
"_links": {
"self": {
"href": "api/contact-center/users/974e7b5c-fd64-4bfe-92a5-

↪→ ae60ad16d4bd"
}

},
"id" : "94135e0a-0778-4cb2-8982-80e3e7bdea21",
"first_name" : "John",
"last_name" : "Doe",
"age" : 100

}
]

},
"_page": 7,
"_per_page": 2,
"_total": 33

}

Listing 5: Extensible Markup Language (XML) HAL Single Embedded Result Represen-
tation
GET:

https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd
<resource rel="self" href="/api/contact-center/users">
<id>users</id>
<name>Contact Center Users</title>
<resource rel="user"

href="/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd">
<id>974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd</id>
<first_name>Rodrigo</first_name>
<last_name>Santos</last_name>
<age>30</age>

</resource>
</resource>

Listing 6: XML HAL Collection Representation
GET: https://api.example.com/api/contact-center/users?page=7
<resource rel="self" href="/api/contact-center/users?page=7">

<link rel="first" href="/api/contact-center/users?page=1"/>
<link rel="prev" href="/api/contact-center/users?page=6"/>
<link rel="next" href="/api/contact-center/users?page=8"/>
<link rel="last" href="/api/contact-center/users?page=17"/>
<link rel="search" href="/api/contact-center/users?query={searchTerms}"

templated="true"/>
<resource rel="user"

href="/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd">
<id>974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd</id>
<first_name>Rodrigo</first_name>
<last_name>Santos</last_name>
<age>30</age>

</resource>
<resource rel="user"

href="/api/contact-center/users/94135e0a-0778-4cb2-8982-80e3e7bdea21">

70

<id>94135e0a-0778-4cb2-8982-80e3e7bdea21</id>
<first_name>John</first_name>
<last_name>Doe</last_name>
<age>100</age>

</resource>
<_page>7</_page>
<_per_page>2</_per_page>
<_total>33</_total>

</resource>

71

This page is intentionally left blank.

Appendix D

Listing 7: HYDRA document with Inline context representation
GET: https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe-92a5-ae

↪→ 60ad16d4bd
{

"@context" : {
"user_id" : {

"@id" : "http://schema.org/uuid",
"@type" : "@id"

},
"first_name" : "http://schema.org/first_name",
"last_name" : "http://schema.org/last_name",
"age" : "http://schema.org/age"

},
"@id" : "https://api.example.com/api/contact-center/users/974e7b5c-fd64-4bfe

↪→ -92a5-ae60ad16d4bd",
"user_id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30,
"operations" : [

{
"@type" : "UpdateUserAction",
"method" : "PUT",
"expects" : {

"@id": "http://schema.org/User",
"supportedProperty": [

{ "property": "first_name", "range": "Text" },
{ "property": "last_name", "range": "Text" },
{ "property": "age", "range": "Integer" }

]
}

},
{
"@type" : "DeleteUserAction",
"method" : "Delete"
}

]
}

Listing 8: HYDRA document with Inline context representation
GET : https://api.example.com/api/contact-center/users
{

"@context" : {
"user_id" : {

"@id" : "http://schema.org/uuid",
"@type" : "@id"

},
"first_name" : "http://schema.org/first_name",
"last_name" : "http://schema.org/last_name",
"age" : "http://schema.org/age"

},
"@id" : "https://api.example.com/api/contact-center/users",
"members" : [

{

73

Chapter

"@id" : "https://api.example.com/api/contact-center/users/974e7b5c-
↪→ fd64-4bfe-92a5-ae60ad16d4bd",

"user_id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

},
{

"@id" : "https://api.example.com/api/contact-center/users/94135e0a
↪→ -0778-4cb2-8982-80e3e7bdea21",

"user_id" : "94135e0a-0778-4cb2-8982-80e3e7bdea21",
"first_name" : "John",
"last_name" : "Doe",
"age" : 100

}
],
"nextPage": "https://api.example.com/api/contact-center/users?page=2"

}

74

Appendix E

Listing 9: Collection+JSON document
GET : https://api.example.com/api/contact-center/users?page=7

{
"collection":
{

"version": "1.0",
"href": "https://api.example.com/api/contact-center/users",
"links": [

{"rel": "self", "href": "https://api.example.com/api/contact-center/
↪→ users?page=7"},

{"rel": "first", "href": "https://api.example.com/api/contact-center/
↪→ users?page=1"},

{"rel": "previous", "href": "https://api.example.com/api/contact-
↪→ center/users?page=6"},

{"rel": "next", "href": "https://api.example.com/api/contact-center/
↪→ users?page=8"},

{"rel": "last", "href": "https://api.example.com/api/contact-center/
↪→ users?page=17"}

],
"items": [

{
"href": "https://api.example.com/api/contact-center/users/974e7b5c

↪→ -fd64-4bfe-92a5-ae60ad16d4bd",
"data": [
{"name": "user_id", "value": "974e7b5c-fd64-4bfe-92a5-

↪→ ae60ad16d4bd", "prompt": "Identifier"},
{"name": "first_name", "value": "Rodrigo", "prompt": "First Name"

↪→ },
{"name": "last_name", "value": "Santos", "prompt": "Last Name"},
{"name": "age", "value": "30", "prompt": "Age"}

],
"links": [
]

},
{

"href": "https://api.example.com/api/contact-center/users/94135e0a
↪→ -0778-4cb2-8982-80e3e7bdea21",

"data": [
{"name": "user_id", "value": "94135e0a-0778-4cb2-8982-80

↪→ e3e7bdea21", "prompt": "Identifier"},
{"name": "first_name", "value": "John", "prompt": "First Name"},
{"name": "last_name", "value": "Doe", "prompt": "Last Name"},
{"name": "age", "value": "100", "prompt": "Age"}

],
"links": [
]

}
],
"queries": [

{
"rel": "search", "href": "https://api.example.com/api/contact-

↪→ center/users/search", "prompt": "Search",
"data": [

{"name": "search", "value": ""}

75

Chapter

]
}

],
"template": {

"data": [
{"name": "first_name", "value": "", "prompt": "First Name"},
{"name": "last_name", "value": "", "prompt": "Last Name"},
{"name": "age", "value": "", "prompt": "Age"}

]
}

}
}

76

Appendix F

Listing 10: SIREN document with Inline context representation
GET: https://api.example.com/api/contact-center/users?page=7
{

"class": "users",
"links": [

{"rel": ["self"], "href": "https://api.example.com/api/contact-center/
↪→ users?page=7"},

{"rel": ["first"], "href": "https://api.example.com/api/contact-center/
↪→ users?page=1"},

{"rel": ["previous"], "href": "https://api.example.com/api/contact-center
↪→ /users?page=6"},

{"rel": ["next"], "href": "https://api.example.com/api/contact-center/
↪→ users?page=8"},

{"rel": ["last"], "href": "https://api.example.com/api/contact-center/
↪→ users?page=17"}

],
"actions": [

{
"name": "add-user",
"href": "https://api.example.com/api/contact-center/users",
"method": "POST",
"fields": [

{"name": "first_name", "type": "string"},
{"name": "last_name", "type": "string"},
{"name": "age", "type": "integer"}

]
}

],
"properties": {

"size": "2"
},
"entities": [

{
"class" : ["user"],
"links": [

{"rel": ["self"], "href": "https://api.example.com/api/contact-
↪→ center/users/974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd"}

],
"actions": [

{
"name": "update-user",
"href": "https://api.example.com/api/contact-center/users/974

↪→ e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"method": "PUT",
"fields": [

{"name": "first_name", "type": "string"},
{"name": "last_name", "type": "string"},
{"name": "age", "type": "integer"}

]
},
{

"name": "delete-user",
"href": "https://api.example.com/api/contact-center/users/974

↪→ e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"method": "DELETE"

77

Chapter

}
],
"properties": {

"user_id" : "974e7b5c-fd64-4bfe-92a5-ae60ad16d4bd",
"first_name" : "Rodrigo",
"last_name" : "Santos",
"age" : 30

}
},
{

"class" : ["user"],
"links": [

{"rel": ["self"], "href": "https://api.example.com/api/contact-
↪→ center/users/94135e0a-0778-4cb2-8982-80e3e7bdea21"}

],
"actions": [

{
"name": "update-user",
"href": "https://api.example.com/api/contact-center/users/94135

↪→ e0a-0778-4cb2-8982-80e3e7bdea21",
"method": "PUT",
"fields": [

{"name": "first_name", "type": "string"},
{"name": "last_name", "type": "string"},
{"name": "age", "type": "integer"}

]
},
{

"name": "delete-user",
"href": "https://api.example.com/api/contact-center/users/94135

↪→ e0a-0778-4cb2-8982-80e3e7bdea21",
"method": "DELETE"

}
],
"properties": {

"user_id" : "94135e0a-0778-4cb2-8982-80e3e7bdea21",
"first_name" : "John",
"last_name" : "Doe",
"age" : 100

}
}

]
}

78

Appendix G

Figure 1: Service Architecture

79

Chapter

Appendix H

Listing 11: HAL Fruit response without links
{
"name": "banana",
"colour": "yellow",
"_embedded": {
"vendors": [
{
"country": "Portugal",
"name": "Continente",
"_links": {

(...)
}

},
{
"country": "Portugal",
"name": "Pingo Doce",
"_links": {

(...)
}

}
]
},
"_links": {
(...)

}
}

Listing 12: HAL Fruit resource with links
{
"name": "banana",
"colour": "yellow",
"_embedded": {
"vendors": [

{
"country": "Portugal",
"name": "Continente",
"_links": {

"self": {
"href": "http://api.com/fruits/1/vendor/1"

},
"schema": {
"href": "http://api.com/schemas/vendor"

},
"edit": {
"href": "http://api.com/fruits/1/vendor/1"

},
"delete": {
"href": "http://api.com/fruits/1/vendor/1"

}
}

},
{
"country": "Portugal",
"name": "Pingo Doce",

80

"_links": {
"self": {
"href": "http://api.com/fruits/1/vendor/2"

},
"schema": {
"href": "http://api.com/schemas/vendor"

},
"edit": {
"href": "http://api.com/fruits/1/vendor/2"

},
"delete": {
"href": "http://api.com/fruits/1/vendor/2"

}
}

}
]
},
"_links": {
"self": {
"href": "http://api.com/fruits/1"

},
"schema": {
"href": "http://api.com/schemas/fruit"

},
"edit": {
"href": "http://api.com/fruits/1"

},
"delete": {
"href": "http://api.com/fruits/1"

}
}

}

Listing 13: HAL Fruit List
{
"count": 10,
"total": 100,
"_links": {
"self": {
"href": "http://api.com/fruits?page=5"

},
"first": {
"href": "http://api.com/fruits?page=1"

},
"prev": {
"href": "http://api.com/fruits?page=4"

},
"next": {
"href": "http://api.com/fruits?page=6"

},
"last": {
"href": "http://api.com/fruits?page=10"

},
"schema": {
"href": "http://api.com/schemas/fruit"

},
"create": {

81

Chapter

"href": "http://api.com/fruits"
}

},
"_embedded": {
"fruits": [
{
"name": "banana",
"colour": "yellow",
"_links": {
"self": {
"href": "http://api.com/fruits/1"

},
"schema": {
"href": "http://api.com/schemas/fruit"

},
"edit": {
"href": "http://api.com/fruits/1"

},
"delete": {
"href": "http://api.com/fruits/1"

}
}

},
(...)

]
}

}

82

Appendix I

Listing 14: User operations.json file content
{
"user": {
"get": [
"schema",
"edit",
"delete",
"collection"

],
"edit": [
"schema",
"edit",
"delete",
"collection"

],
"collection": [
"schema",
"create",
"prev",
"next",
"first",
"last"

]
},
"address": {
"get": [
"schema",
"edit",
"delete"

],
"edit": [
"schema",
"edit",
"delete"

]
}

}

83

Chapter

Appendix J

Listing 15: User schema file
{
"$schema": "http://json-schema.org/draft-07/schema",
"$id": "http://example.com/example.json",
"type": "object",
"title": "The root schema",
"description": "The root schema comprises the entire JSON document.",
"required": [
"firstName",
"lastName",
"age"

],
"properties": {
"firstName": {
"type": "string",
"title": "The firstName schema",
"description": "An explanation about the purpose of this instance.",
"default": ""

},
"lastName": {
"type": "string",
"title": "The lastName schema",
"description": "An explanation about the purpose of this instance.",
"default": ""

},
"age": {
"type": "integer",
"title": "The age schema",
"description": "An explanation about the purpose of this instance.",
"default": 0

},
"addresses": {
"type": "array",
"title": "The addresses schema",
"description": "An explanation about the purpose of this instance.",
"additionalItems": false,
"items": {
"type": "object",

"properties": {
"state": {
"type": "string",
"title": "The state schema",
"description": "An explanation about the purpose of this instance.

↪→ "
},
"street": {
"type": "string",
"title": "The street schema",
"description": "An explanation about the purpose of this instance.

↪→ "
},
"number": {
"type": "integer",
"title": "The number schema",

84

"description": "An explanation about the purpose of this instance.
↪→ ",

"default": 0
},
"postalCode": {
"type": "string",
"title": "The postalCode schema",
"description": "An explanation about the purpose of this instance.

↪→ ",
"default": ""

},
"country": {
"type": "string",
"title": "The country schema",
"description": "An explanation about the purpose of this instance.

↪→ ",
"default": ""

}
},
"additionalProperties": false

}

}
},
"additionalProperties": false

}

Listing 16: Address schema file
{
{
"$schema": "http://json-schema.org/draft-07/schema",
"$id": "http://example.com/example.json",
"type": "object",
"title": "The root schema",
"description": "The root schema comprises the entire JSON document.",
"default": {},
"required": [
"state",
"street",
"number",
"postalCode",
"country"

],
"properties": {
"state": {
"$id": "#/properties/state",
"type": "string",
"title": "The state schema",
"description": "An explanation about the purpose of this instance.",
"default": ""

},
"street": {
"$id": "#/properties/street",
"type": "string",
"title": "The street schema",
"description": "An explanation about the purpose of this instance.",

85

Chapter

"default": ""
},
"number": {
"$id": "#/properties/number",
"type": "integer",
"title": "The number schema",
"description": "An explanation about the purpose of this instance.",
"default": 0

},
"postalCode": {
"$id": "#/properties/postalCode",
"type": "string",
"title": "The postalCode schema",
"description": "An explanation about the purpose of this instance.",
"default": ""

},
"country": {
"$id": "#/properties/country",
"type": "string",
"title": "The country schema",
"description": "An explanation about the purpose of this instance.",
"default": ""

}
},
"additionalProperties": false

}

86

Appendix L

Figure 2: Work plan for the first Semester

87

C
hapter

Appendix M

Figure 3: Work plan for the Second Semester

88

Appendix N

Figure 4: Actual Work plan for the Second Semester

89

	Report_cover
	Tese_entrega_final_Rodrigo_Santos_janeiro_2021
	Introduction
	Project overview
	Problem
	Motivation
	Objectives
	Document structure

	Background and State of the Art
	Data representation standards
	xml
	json
	yaml
	Conclusions

	Schemas for data representation
	xsd
	json Schema
	Conclusions

	Architectural communication patterns for Web Services
	rpc
	soap
	rest
	Conclusions

	RESTful Implementations
	hal
	jsonld
	hydra
	Collection+JSON
	SIREN: a hypermedia specification for representing entities
	Conclusions

	System requirements and Architecture
	Requirements
	Functional requirements
	Non-Functional requirements
	Business constraints
	Technical constraints
	Use cases

	Architecture
	Risk Analysis
	Risk List

	Framework definition
	Contract rules
	Communication
	Data representation
	Data validation
	Response format

	Implementation
	Schema resource
	Schema validator
	Response creator
	Exception module

	Framework limitations

	Case Study
	Overview
	Tools
	Service architecture
	Implementation
	Service configuration
	Frontend implementation

	Conclusions

	Planning
	First Semester
	Second Semester - Expected work
	Task definition

	Second Semester - Actual work

	Conclusion
	Main accomplishments
	Future work

