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Abstract

Despite many field-service companies plan their tasks manually, there is software that helps
companies managing and optimizing their resources employed on field service operations.
In Field-Service Management, there is a demand for solutions tailored to the client’s needs,
one of the solutions sought is the creation of optimized work plans for logistics and field-
service. A work plan defines tasks to be performed by human resources on the field that
can be evaluated with Key Performance Indicators, thus allowing to measure the quality
of a work plan when compared with other plans.

In the context of this internship, Sentilant develops and sells a Field-Service Management
service. One of the main objectives of this service is generating work plans for his clients.
The different clients of Sentilant have specific needs for their businesses, so there is a
need for solutions tailored for those clients and new ones. To build a tailored planning
solution, Sentilant iteratively develops a model based on the client’s feedback, but it is
time-consuming to build. The company uses a solver to implement the models, but seeks
for alternatives that could reduce the development time-effort, while producing similar or
better work plans.

To address this issue, the main goal of this internship is developing a multi-tenant planning
system that serves optimized work plans, containing performance indicators to let the
clients evaluate their solutions, and intervene in the optimization to influence the resulting
plans.

An extensive comparison of 3 solvers to develop models was carried out, as a conceptual
analysis was not enough to take conclusions a model was implemented and compared
between the solvers (passengers model). Then, using existing software components at
Sentilant, a planning system API was developed to provide a proposal of optimized work
plans for a fuel transports problem from one of the largest Portuguese carriers, which
included generating feedback reports with indicators to send to the client, meeting with
the client, take decisions based on the feedback, and the integration with the Field-Service
system used by the client to present him our work planning proposal. To develop the fuel
model, the solver used by the company was chosen which proved to be 60% faster than
the other solvers for the passengers problem, while achieving better solutions. During the
development of the fuel model, the feedback resulted in refining the model, providing in
each iteration a solution closer to the client’s needs. As the future direction of this work,
new models will be developed and integrated into the system to deliver optimized work
plans.
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Resumo

Apesar do muitas empresas de serviço de campo planearem as suas tarefas manualmente,
há software que ajuda as empresas na gestão e optimização dos seus recursos empregues
em operações de serviço de campo. Na Gestão e Otimização Operacional, há procura por
soluções adaptadas às necessidades do cliente, uma das soluções procuradas é a criação de
planos de trabalho otimizados para logística e serviço de campo. Um plano de trabalho
define um conjunto de tarefas a serem executadas por recursos humanos no campo, e pode
ser avaliado com Indicadores Chave de Desempenho, permitindo assim medir a qualidade
de um plano de trabalho enquanto comparado com outros planos.

No contexto deste estágio, a Sentilant desenvolve e vende um serviço de Gestão e Otimiza-
ção Operacional. Um dos principais objetivos do serviço é gerar planos de trabalho para
os seus clientes. Diferentes clientes da Sentilant têm necessidades específicas para os seus
negócios, então há a necessidade de soluções à medida para esses e novos clientes. Para
construir uma solução de planeamento à medida, a Sentilant iterativamente desenvolve um
modelo com base no feedback do cliente, mas demora tempo a construir. A empresa utiliza
um solucionador para implementar os modelos, mas procura alternativas para que possa
reduzir o esforço temporal de desenvolvimento enquanto produzindo planos semelhantes
ou melhores.

Para responder a este problema, o principal objetivo deste estágio é desenvolver um sis-
tema de planeamento multi-inquilino que serve planos de trabalho optimizados contendo
indicadores chave para permitir o cliente avaliar as suas soluções, e intervir na optimização
para influenciar os resultados do plano.

Uma comparação extensiva de 3 solucionadores candidatos para desenvolver os modelos
foi realizada, como a análise conceptual não foi suficiente para tirar conclusões um modelo
foi implementado e comparado entre os solucionadores (modelo dos passageiros). Depois,
utilizando componentes de software existentes na Sentilant, um sistema de planeamento
foi desenvolvido para fornecer uma proposta de planos de trabalho optimizados para o
problema do transportes de combustível de uma das maiores transportadores Portuguesas,
o que incluiu gerar relatórios com indicadores para enviar ao cliente, reunir com o cliente,
a tomada de decisões com base no feedback e a integração com o sistema de Gestão de
Serviço de Campo utilizado pelo cliente, para apresentar-lhe a nossa proposta de planea-
mento. Para desenvolver o modelo dos combustíveis, o solucionador utilizado pela empresa
mostrou ser 60% mais rápido do que os outros solucionadores para o problema dos pas-
sageiros, enquanto atingindo melhores soluções. Durante o desenvolvimento do modelo
dos combustíveis, feedback resultou em refinar o modelo, entregando assim a cada iter-
ação uma solução mais próxima das necessidades do cliente. Como direção futura deste
trabalho, novos modelos serão desenvolvidos e integrados no sistema para entregar planos
de trabalho otimizados.
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Gestão Operacional; Gestão e Otimização Operacional; Sistema de Planeamento; Opti-
mização de Rotas;
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Chapter 1

Introduction

Field-Service Management (FSM) is concerned with the management and optimization
of resources employed outside of the company’s properties to perform field-service tasks.
Despite the large number of FSM platforms on the market, several clients value tailor-
made solutions, a solution is developed align to the business needs, obtained through
direct contact with client.

At a software level, an FSM system involves the optimization of the client’s resources. For
this purpose, optimization algorithms are used to find good approximated solutions for the
client. When it comes to allocating human resources, vehicles, tasks and manage limited
resources, an FSM system allows clients to obtain work plans. Those plans indicate a
schedule of routes to guide the human resources in their field service jobs to successfully
perform a set of tasks.

By involving optimization of resources, clients also value the quality of the plans, so besides
routes, Key Performance Indicators (KPIs) are obtained as part of the work plans, allowing
clients to take and improve field service decisions. Planned total distance to be traveled
by a set of vehicles is an example of a KPI.

1.1 Context

This internship took place in Sentilant, a company that has been developing a system for
FSM. As one of the components of the FSM system, Sentilant uses a routing optimization
solver to build models and generate work plans, but stopped receiving major updates since
2016. Currently, Sentilant is looking for alternative solvers to develop its models.
In addition to the need for an alternative, clients of the company are interested in work
plans for field-service problems that Sentilant currently has no answer as the fuel
problem, but also in better quality work plans for the passengers transport problem e.g.,
more tasks assigned.

In the fuel problem, the client wants work plans with assigned fuel orders (i.e., tasks)
from gas stations to their drivers of tractors with cisterns. A cistern is composed by a
set of isolated compartments. The load in each compartment must be optimized between
the compartments to avoid destabilizing the tractor. For the passengers problem, the
client wants a work plan for the transportation of people between accommodations and
the airport, and vice-versa.

One of the FSM concerns is to ensure that the solution provided meets the client’s needs,

1



Chapter 1

since their logistic decisions and resource management highly depends on a set of Quality
Attribute (QA) of the software systems they are using. On the client-side, there is a high
concern with the quality of the work plans. Some clients want to intervene in the
optimization to change the quality of their plans. For example, requesting the possibility
of their employees being able to work longer, allocating more tasks, that otherwise would
not be assigned.

As the company responds to new clients within the same solver, the source code becomes
more difficult to maintain. Modifications to the source code can unintentionally change
the behavior of the models that were already validated by their respective clients. Thus,
in parallel with the client’s needs, the company values a system that uses evolving i.e.,
frequently updated technologies prepared for continued update and ease the integration
of new models. By offering the ease of developing and adding new models, the
Sentilant ’s team can reduce the cost of developing a model.

1.2 Objectives

The main objective of this work is to contribute to the enrichment of the FSM system of
the company, by developing software components and offering a set of quality attributes
aligned with the needs of Sentilant and their clients in a mid-long term. To achieve this
main objective, we divide into the following goals:

• Develop and deploy a multi-tenant planning system delivered as an API,
allowing clients to obtain optimized work plans: To achieve this goal, we did
requirement gathering centered on QAs, derived an architecture for the system and
implemented the system. To derive the architecture, a solver technology was chosen
to develop a fuel model and integrate into the system as the first tenant, thus serving
this client with work plans;

• Offer optimized work plans to answer real clients problems as depicted in
1.1: To achieve this goal, an extensive analysis to solver technologies was performed
to find the best solver that can meet the client problem requirements, while complying
with the QAs;

• Guarantee to clients a way to evaluate their solutions by delivering a set
of KPIs: Based on the result from the optimization, metrics are extracted and
appended to the plan received by the client. For this, the KPIs for the passengers
and the fuel transport problem were identified;

• Offer clients an interface to parameterize the model (Quality of the Solu-
tion and Performance): For instance, in the case of the passengers problem the
client wants to reduce the distance traveled in empty by the drivers, or in the fuel
problem configure the loading time of the cistern. Therefore, the parameters that
the client wants to configure were identified and added to the model as configurable.
This is, in addition to the problem’s data a model accepts additional parameters as
input;

• Integrate the API in the FSM service used by the fuel problem client to close
a development cycle of a tailored planning solution for a tenant in this work. The
integrated solution serves as demonstration to the client.

2
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1.3 Document Structure

Chapter 2 reviews technical knowledge necessary to understand the root of our plans and
how they are computed: the main types of routing problems and meta-heuristic algorithms.
Then, an extensive analysis and comparison between solvers. In Chapter 3 is explained
the software development process, planning versus work executed, and risks identification.
Chapter 4 depicts the architectural drivers (ASR) of the project: high-level overview of
the functional requirements, QAs, and business and technical constraints. Chapter 5
defines the architecture of the system and the developed components. Chapters 6 defines
the problems and documents the models in mathematical notation for the passengers and
fuel problems, respectively. For the fuel model, Preferences Elicitation (PE) are given
to justify the implementation decisions, based on feedback from the client. Chapter 7
presents results: comparison between two solvers configured in this work and the Sentilant ’s
solver for the passengers problem. Data showed the Sentilant ’s model found better quality
solutions in less time. Therefore, Sentilant ’s model was extended to answer the fuel model
and results presented. Also, results regarding the Planning System API, the feedback
report presented to the client and the integration with the FSM service is presented.
Finally, Chapter 8 summaries the work performed and proposes future work.
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Background Knowledge

The key component of this system, a solver, uses an optimization algorithm to find a good
solution given a problem instance from a client. Since those problems involve routing, in
2.1 is explained how vehicle routing is defined in the literature and how it is usually solved.
To contextualize the reader, in 2.2 is described the work plan and what information should
be included in it. Section 2.3 details the identified tools candidates to generate optimized
plans. Then, a comparison of the tools was performed in 2.4 and conclusions took in 2.5.

2.1 Optimization

The work plans to be generated involves routes, in 2.1.1 is explained the main type of
routing problems and introduce to concepts in the literature. Section 2.1.2 describes algo-
rithms used in this work to answer this optimization problem. Then, section 2.1.3 explains
what is a solver in our context, the over-constraining scenario, and termination criteria.

2.1.1 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem that aims to
find an optimal set of routes. Giving a formal definition from the book, “Vehicle Routing
Problems: Methods, and Applications”, Toth et al. (2014) defines a VRP by “Given: A set
of transportation requests and a fleet of vehicles”, the task is to define a plan for “Task:
Determine a set of vehicle routes to perform all (or some) transportation requests with
the given vehicle fleet at minimum cost; in particular, decide which vehicle handles which
requests in which sequence so that all vehicle routes can be feasibly executed”.

A VRP can be divided into different variants, the simplest variant is the Traveling Sales-
man Problem (TSP). Given a set of n cities, a salesman has to visit each one of the cities,
taking the most efficient route that minimizes the distance traveled by the salesman. An
exhaustive search of all possible paths guarantees to find the shortest path, but it’s compu-
tationally intractable, the search space grows exponentially n! and becomes time-expensive
to find an optimal solution. TSP is a well known NP-hard problem in the literature reason-
ably solved with combinatorial optimization techniques. TSP and the main VRP variants
are usually formulated as discrete problems solved with combinatorial optimization tech-
niques that iteratively seeks to find improving solutions from the finite set of possibilities
i.e., search space.

Depending on the authors describing the VRPs variants, they are described differently.
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One of the most influential books on VRP: “The Vehicle Routing Problem” by Toth and
Vigo (2002) defines the four main types of VRP as particular variants of it:

Capacitated VRP (CVRP) where all vehicles are identical and based at a single central
depot, only capacity constraints for the vehicles are imposed. The goal is to minimize the
total cost (i.e., distance or travel time) to serve all the customers;

VRP with Time Windows (VRPTW) is an extension of the CVRP in which capac-
ity constraints are imposed and each customer is associated with a time window. Each
customer must be served between the time windows [ai, bi], and the vehicle must stop at
the customer i location during a si time instants within the time interval. The goal is to
find a collection of exactly K simple routes with the minimum cost, such that: i) each
route visits the depot, ii) each customer is visited by exactly one route, iii) the sum of the
demands of the customers visited by a route does not exceed the vehicle capacity, C and
iv) for each customer i, the service starts within the time window [ai, bi] and the vehicle
stops for si time instants;

VRP with Backhauls (VRPB) is an extension of CVRP in which the customer set is
partitioned in two subsets. The first subset contains Linehaul customers each requiring a
given quantity of products to be delivered. The second contains Backhaul customers, where
a given quantity of inbound products must be picked up. Whether a route serves both
types of customers, all linehaul customers must be served before any backhaul customer;

VRP with Pickup and Delivery (VRPPD), each customer i is associated with two
quantities di and pi, the demand to be delivered and picked up at customer i, respectively.
In some cases, only one demand quantity is used di = di−pi for each customer i, indicating
the net difference between the delivery and the pickup demands. For each customer i, Oi

denotes the origin of the delivery demand and Di the destination of the pickup demand.
Find a collection of exactly K simple routes with minimum cost, such that: i) each route
visits the depot; ii) each customer is visited by exactly one route; iii) the current load of
the vehicle along the route must be non-negative and must not exceed the vehicle capacity
C, iii) for each customer i, the customer Oi, when different from the depot, must be served
in the same route and before customer i, and v) for each customer i, the customer Di,
when different from the depot, must be served in the same route and after customer i.

The models developed in this work are Capacitated VRP with Pickup and Deliveries
and Time Windowss (CVRPPDTWs) that involves properties from three of the main
types of VRP: CVRP, VRPTW and VRPPD.

2.1.2 Meta-heuristics

As opposed to exact methods, which guarantee to give an optimum solution to the problem,
heuristic methods attempt to find good solutions within a realistic time frame but not
necessarily optimum solutions. The algorithms that showed better results by the solvers in
this work are as follows, better is defined by assigning more tasks giving a similar running
time. These algorithms belong to the family of local search algorithms that move from
solution to solution in the search space by applying local changes.

Tabu Search (TS) where the name tabu comes from the fact that some moves are
temporarily declared as forbidden (i.e., tabu), this restricts the move selection. Allows
moves that deteriorate the current objective function value;

Guided Local Search (GLS) focus on exploitation of the problem and search-related
information to guide local search in the search space. This is achieved by augmenting
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the objective function of the problem with a set of penalty terms that are dynamically
manipulated during the search process to steer the heuristic, Voudouris (1998);

Late Acceptance in Hill-Climbing (LA) first published by Burke and Bykov (2008),
compares the candidate solution with a solution, which was the “current” solution several
steps before, opposing to Hill Climbing that compares a candidate solution with the current;

Ruin-and-Recreate (R&R): A meta-heuristic developed by Schrimpf et al. (2000) that
combines elements of simulated annealing and threshold-accepting algorithms with bold,
larges moves instead of smaller i.e., against the local search idea of applying a local change
to move to a neighbor solution. Every time during the R&R optimization there is always an
admissible solution, in the ruin step parts (e.g., tasks) are disintegrated from the solution
and in the recreate step the solution is rebuilt.

Our intention is to use tools that facilitate the creation of models for FSM, pre-
senting an optimization algorithm suitable to solve routing problems as a basis for the
development of our models.

2.1.3 Additional Concepts

A solver is a mathematical software used to model and/or solve mathematical problems.
Distributed as a stand-alone program, as a software library or even as a complete frame-
work. The most known are general-purpose to solve linear, integer, and constraint satisfac-
tion problems. Our problems involves routing optimization, therefore choosing the solver is
one of the most important decisions in this work, since we are confined to its functionalities
and performance. Under the context of optimization modeling in a solver there are two
types of constraints: i) hard constraint that must be satisfied by any feasible solu-
tion. E.g., a driver cannot drive more than 7 hours in a day, and ii) soft constraint that
can be violated, but has an associated cost/penalty added to the objective function.
E.g., penalize the distance traveled with a vehicle in empty.

In some problems is convenient letting solutions be feasible without assigning all objects
e.g., tasks, this is known as over-constraining problem.

Without setting a termination criteria the local search algorithm runs forever, conse-
quently never stops and returns a solution. From Gendreau (2006), the commonly used
termination criteria in TS (also applied to the remaining meta-heuristics), stop: i) after
a fixed number of iterations without finding a better solution, ii) after a fixed number of
iterations or processing time, and iii) when the solution reaches a defined threshold value.

2.2 Work Plan

Figure 2.1: Illustra-
tion of a work plan

The work plan is the information that clients are interested in. Our
objective is to obtain a balance between performance and solution
quality of the optimization that satisfies the client. The work plan
consists of a set of routes, each route is made up of a set of tasks
to be performed sequentially. The plan has aggregated KPIs i.e.,
metrics, for the plan as a whole, and for each route. Figure 2.1
illustrates a generic plan.

Metrics do not strictly depend on the type of field service activity of
the client, sometimes clients have personal preferences. How-
ever, there are mandatory metrics that are provided in a work plan.
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The following metrics are included to each route, global to the plan
e.g., sum of each route, and averages.

• Tasks assigned: The number of tasks assigned, given the
overconstraining cases when all tasks could not be assigned;

• Distance

– Total distance: Distance traveled between locations;

– In empty: Distance traveled between location when the vehicle is empty;

• Duration

– Driving: Driving duration between locations;

– Service: Duration to perform each task on the place;

– Effective: Driving and service duration together;

– Route: Duration between the actual start and the end of the route;

– Work: Duration between the start of a work block and the end of the route.
The work duration is greater than or equal to the route duration;

– Wait: A driver can arrive at a location earlier, so there is a waiting time;

• Cost

– Resources: The cost of the resources (e.g., drivers), usually per hour;

– Vehicles: The cost of the vehicles, usually per kilometer plus the fixed costs;

– Work: The resources cost plus the vehicles cost;

• Average speed: The average speed of the vehicles;

• Monetary gain: The monetary gain of the assigned tasks.

2.3 Technological Choices

The solution employed by Sentilant uses JSprit solver for developing the models, and
providing work plans as a part of the FSM system. Currently, there are many tools on
the market labeled as VRP, however, only a portion of them answer the CVRPPDTW
as JSprit does. Some are targeted to routing optimization such as JSprit, yet others are
generic to solve various combinatorial problems, letting extend with custom functionality.

During the first step, documentation and examples were analyzed to understand the po-
tential of each tool, thus any tool that provided much fewer functionalities than JSprit or
didn’t allow CVRPPDTW models was excluded. For each tool in sections 2.3.1-2.3.3, a
summary of examples, documentation, and some relevant information about the optimiza-
tion algorithms and constraints, as this is the core of the illustrated tools. Then, the main
limitations of the tools are presented.

As a second step, meta-information about the tools was gathered, such as frequency of
version update, relevance on GitHub, StackOverflow, and main uses-cases, trying to create
a large distinction between them. Technical aspects were also compared, assuming JSprit
would not be used in this work. The results of the analysis are depicted in the next section,
although before providing the comparison the reader should form an idea about each solver.
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In Optimization Algorithms and Constraints, a summary of the supported con-
structive heuristics, meta-heuristics and contextualizes how hard and soft constraints are
implemented. Documentation and Examples summaries the conditions of the doc-
umentation and VRP examples provided by the tool. Selection and Custom Moves
only applies to OptaPlanner, explaining how can be improved the performance for problems
with pickup and deliveries. Then, limitations of the tools depicting the main downsides
of each tool to implement our planning problems.

2.3.1 Technology 1: JSprit

JSprit (jsprit.github.io) is an open-source tool for solving VRPs. It can solve a wide range
of VRP problems such as VRPTW, VRPPD, heterogeneous fleet, multiple depots, and
with distinct start and end locations. Unlike the technologies in 2.3.2 and 2.3.3, JSprit is
not supported by a large company like RedHat and Google, respectively.

Optimization Algorithms and Constraints: Uses the best insertion as construction
heuristic and offers variants of R&R. The R&R is extended with strategies based on the
work of Pisinger and Ropke (2007). The algorithm is suited to solve complex problems
that have many constraints and a discontinue solution space. Can be extended with a
custom cost function, hard and soft constraints.

In the R&R an iteration of the algorithm involves a ruin and a recreate step. In the ruin
step giving a set of routes and assigned tasks, a random number of tasks are disintegrated
from the solution and put into a bag. In the recreate step a best insertion is followed.
The hard-constraints are evaluated before any insertion, and a task is not inserted if it
breaks any of the constraints, thus a feasible solution is always obtained at the end of
every iteration. Some strategies can be selected in JSprit. For instance, in the radial ruin
given a random location v and a random probability r, the r nearest locations from v,
including v, are disintegrated from the solution.

Documentation and Examples: Provides source code of 40 executable examples, and
it seems straightforward to solve the main VRP variants. Moreover, it provides a graph
viewer to easily visualize the various routes obtained from the best solution found. It does
not contain a specification document, just a set of text files describing some of the examples
and an overview of the main components. Therefore, the way to learn how to interact with
this tool is to follow the examples and read the source code. A CVRPPDTW solution is
already implemented, and it follow a builder pattern to set them up.

Limitations: Restricted to already implemented VRP features such as settings up the ve-
hicles, pickup and deliveries, services, and time windows. The service is done on the place,
whereas a shipment has a respective pickup and delivery place. In detail, the shipment
object allows setting location, service time, various time windows of both pickup and de-
livery, dimension and capacity, various required skills to perform the task, maximum time
on the vehicle, and priority of the task. However, complying with custom functionalities
proves to be a more complex task, but this limitation also proves to be an advantage, since
it guides the developers to quickly implement a solution to solve the main VRP variants.

To implement a custom hard-constraint, it requires to implement the logic whether an
insertion will lead to a feasible or infeasible solution as part of the recreate process of the
R&R. However, in the meta-heuristics used by 2.3.2 and 2.3.3 technologies, first the move
is performed, then the hard constraints are simply evaluated.
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2.3.2 Technology 2: OptaPlanner

OptaPlanner (optaplanner.org) is self-claimed as constraint satisfaction framework, which
optimizes planning problems through constraint satisfaction programming targeted to aid
organizations to provide products and services with a limited set of resources. Self-claimed
as stable, reliable and scalable, used in production throughout the world.

The solver is not provided as a “pre-made model” to solve VRP problems, however it
provides examples of TSP and CVRP. A CVRPPDTW can be modeled, but there are
performance gaps as the meta-heuristics and local search moves are not built in a dedicated
way for routing problems. To understand the wide scope of OptaPlanner, it provides a set
of use-cases to solve VRPs, employee rostering, maintenance scheduling, task assignment
optimization, school timetabling, cloud optimization, and conference scheduling.

Optimization Algorithms and Constraints: A problem is modeled with Java classes
to define the business domain model and implement the required logic. Lets us define
the data (i.e., facts of the problem) and supports several decision variables (i.e., planning
objects). After this step, constraints of the problem can be described. Provides 3 main
ways to implement constraints: i) easy score, ii) incremental java, iii) drools. The first one
is straightforward, yet it is slower than the others, since it calculates the entire cost on
every solution evaluation. It supports multi-threading for incremental java and drools with
significant performance gains. It’s advised to use drools as the second is time-consuming
and difficult to implement. Drools is a business rule management system with a forward-
chaining and backward-chaining inference, based rules engine that reacts to changes in
data and provides built-in temporal reasoning, Proctor (2012). Most of the Drools syntax
uses forward chaining and does incremental calculation without extra code.

Supports 8 constructive heuristics, for VRP first fit decreasing is advised, several meta-
heuristics: hill climbing, tabu search, simulated annealing, late acceptance, great deluge,
step counting hill-climbing, and variable neighborhood descent meta-heuristics, and also
exhaustive search i.e., brute force algorithms such as branch and bound.

Documentation and Examples: The framework provides a well-documented specifica-
tion (docs.optaplanner.org). It provides 2 examples of VRPs and encourages users to adapt
the examples to solve their business problems. The first example is the tsp, the second is
a CVRP with the option to use time windows VRPTW. These examples are important to
understand which mechanisms OptaPlanner provides to implement VRPs. Apart from the
technical details, the specification also details each of the examples. It should be noted
that every example provided with OptaPlanner represents a real optimization problem.
The examples are not large datasets, nevertheless, they may represent real case scenarios.

Selection and Custom Moves: A complex functionality is the ability to design a custom
behavior to the local search moves. To have control over moves they are structured in a
tree as depicted in 2.2, the root move selector creates an iterator of moves to be injected
in the optimization algorithm in every iteration. The unionMoveSelector selects a Move
by selecting one of the MoveSelector children (in the Figure are changeMoveSelector and
swapMovelSelector). A set of generic moves are supplied such as change move that changes
1 entity’s variable value and swap that swaps variables of 2 selected entities.
According to the creator of this tool, design a custom move is complex, and usually leads
to conflicts with other mechanisms of the framework, besides, the debugging is usually
complicated. This is because there is a set of behaviors that the framework takes that
are not trivial to understand and no documentation is provided in this regard. A custom
move can involve change, add and remove of several decision variables, in a single atomic
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Figure 2.2: Example of the structure of the selector tree in the OptaPlanner ’s architecture
to generate the next move of the local search (Adapted from Optaplanner ’s specification).

move. Moreover, non-doable moves can be filtered that: 1) changes nothing, 2) impossible
to perform in the current solution. When optimizing with multi-threading, additional be-
havior has to be implemented to migrate moves from one thread to another. Furthermore,
custom moves can be generated, for example, in scenarios with pickup and delivery, 2 pairs
of entities to be changed or swapped in just one move can be generated.

Limitations: The VRPs are not abstracted, the logic has to be written, implementing
problems such as VRPPD with hard constraints provides bad results, the move is constantly
breaking the constraints and the local search is inefficient, based on the OctaPlanner ’s
founder Geoffrey De Smet. Based on our searches, VRPPD cannot be easily solved with
OptaPlanner, even if solved, the logic is prone to error and causes performance issues.

The straightforward implementation of enforcing pickup and delivery through constraints
yield bad performance results. Workaround: Custom moves: move pickup and delivery
together, constraining other functionalities (From: Redheat issues PLANNER-833).

For overconstraining, it uses a chaining variables feature to generate a chain of visits that
ends on an anchor e.g., start or end location of the route. This feature does not support the
unassignment of variables, thus hindering the performance of the algorithm. Workaround:
Assign the dropped visits to a ghost vehicle (From: Redheat issues PLANNER-226).

As a complement, a specialist in meta-heuristics Gendreau (2006) says that in local search:
"the quality of the solution obtained and computing times are usually highly dependent
on the “richness” of the set of transformations (moves) considered at each iteration".

2.3.3 Technology 3: OR-Tools

Google Operational Research Tools (OR-Tools) is an open-source software tool for solving
optimization problems and it’s supported for Python, Java, C# and C++. One of the
provided solvers is a Routing Library (RL) for solving node-based problems such as VRPs,
and also arc-based problems. Implemented as a "single model" to solve a wide range of
routing problems, such as CVRPPDTW. Google uses OR-Tools to plan the shortest routes
for Google Street View cars. OR-Tools provides modules to solve bin packing, network
flows, employee scheduling, and the job shop. As an operation research tool, it offers linear,
constraint, and integer optimization solvers.

As a fact to prove the OR-Tools performance, Surana (2019) performed a benchmark to
measure the performance of OR-Tools to solve CVRP problems from the Networking and
Emerging Optimization organization. It provides 3 benchmark sets with different criteria
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that must be met, such as the maximum running time of the solver. The authors ran all
combinations of constructive heuristics and meta-heuristics for each instance and concluded
that almost 60% of the best solutions for each CVRP found better results than the current
best-known from the Spain Networking and Emerging Research Group benchmark.

Optimization Algorithms and Constraints: Model is configured in a procedural pro-
gramming pattern. To implement custom hard constraints, a single line notation is used, for
instance, routing.VehicleVar(pickup_index) == routing.VehicleVar(delivery_index) telling
that nodes pickup_index and delivery_index have to be served by the same vehicle. Re-
garding soft constraints, the solver only supports: i) transition cost between nodes, ii)
lower and upper bounds that penalize whether the solution exceeds defined cumulative
bounds, iii) set nodes as optional to be visited, whether a node is dropped penalize with a
certain cost, iv) fixed cost for using the vehicle. First runs a constructive heuristic to find
an initial solution, and then a meta-heuristic, offering 10 constructive heuristics e.g., local
cheapest insertion and 5 meta-heuristics e.g., TS and GLS.

Documentation and Examples: The documentation of the RL (developers.google.
com/optimization) is a guide with brief explanations accompanied by source code. Those
examples explain how to add capacities, time windows, pickup and deliveries, and introduce
to the dimension mechanism to configure cumulative variables. Each example is dedicated
to explain a functionality apart from real use cases, unlike OptaPlanner which focuses on
explaining functionalities from a real use case example. As a downside, there is no formal
documentation that details neither the OR-Tools nor the RL.

Limitations: Implemented as "one single model", so its pattern has to be followed, like
JSprit. The way the model is coded the driver only starts and/or arrives at the depot, only
supports a fixed transition cost between nodes for each vehicle that cannot be influenced by
other variables during optimization. A custom soft constraint only can access one variable
(e.g., distance) for penalization. For instance, to penalize the distance in empty traveled
by a vehicle, it’s necessary to acess capacity to know that the vehicle is empty, this is
impossible in OR-Tools. When transporting people in a taxi-mode pickup and delivery
scenario, before the first pickup and after each delivery to the next location the vehicle
is always empty, so we can set this type of penalization in OR-Tools. However, when
dealing with mixed pickup and deliveries is never know when the vehicles are empty, there
is a dependency on the vehicle’s capacity to add the penalty. In the C++ version of
OR-Tools there are two mechanisms called State Dependent Transit and State Dependent
Dimensions that allows to access different variables to lead with these problems, but the
feature is experimental and currently does not work well.

2.3.4 Other Technologies

According to our searches, JSprit, OptaPlanner andOR-Tools are the main tools to answers
VRP in a planning point of view where various constraints are considered. In any case,
a list of other tools that could be candidates is presented: i) VRPH: An open-source
C++ library (projects.coin-or.org/VRPH ) for solving VRPs, developed by Chris Groër in
2010. In some cases, it can find solutions that are within about one percent of the best-
known solution on benchmark problems Groër et al. (2010), ii) VROOM: An open-source
optimization engine (vroom-project.org) written in C++ to solve various real-life VRP;
and iii) Open-VRP: A Lisp library (github.com/mck-/Open-VRP) to solve TSP, VRP,
CVRP, VRPTW, and VRPPD released by Marc Kuo in 2013.
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2.4 Comparison Vectors

Although a CVRPPDTW can be answered with any of these tools, these 3 tools have
strengths only detected when compared side by side. Therefore, two types of information
were collected: i) meta-information about the tools e.g., license and ii) technical informa-
tion. Moreover, as a requirement of the company, only free tools were considered.

Assuming that more than one tool can answer our problem, the meta-information is
more relevant than the technical characteristics of the tool for the company in a mid-long
term. The following parameters were collected:

• Free: Is this software library free or not?;

• Paid Features: Does it offer any supplementary paid service(s)?;

• Features: If paid services are offered, what services are these e.g., technical support?;

• License: While there are open source tools, some have licenses that do not allow us to
use the tool for free. What license does it have?;

• Documentation: Without documentation the way to understand a tool is to reverse
engineering it. Does the tool present any kind of meaningful documentation?;

• Documentation Specification: Does the tool present a formal document that details
the architecture and how to interact with the tool;

• Code Examples: A solver without examples of use is very suspicious in terms of its
quality. How many usage examples does it provide?;

• Working Examples: From the examples provided by the tool, how many did work on
our personal computer?;

• Specialized for Routing: Is the tool specialized for routing optimization or can it also
be used to solve other optimization problems?;

• VRP Code Examples: How many examples does it provide to solve VRPs?;

• Languages: What language does the tool support? This point is important as it may
not be supported in a language adopted in the company. They are Python and Java;

• Descendant Projects: Do the developers of the tool have any project descending from
their tool?;

• Easy Install: Does the tool have a simple installation on different operating systems
(e.g., MacOS, CentOS, Windows) or does it involve dependencies that are difficult to
install or outdated?;

• Use-Case: What is the usage scenario that the tool is aimed at?;

• Production Ready: Can we use this tool in a production environment? This is a
common question addressed to the developers of the tools and it is usually possible to
get an answer. It may work to obtain a few plans, but may not be prepared to run in a
server environment constantly processing requests;

• GitHub Starts: Giving a star to a GitHub (github.com) repository means that the
follower will receive notification of updates and will be able to quickly find the repository.
The number of stars is related with the number of releases Borges et al. (2017);
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• Google Trends: (trends.google.com) ranks search terms as trends with an interest over
time. Tools are sorted by the interest rate of the last 5 years, a lower value means more
interest rate;

• StackOverflow Questions: The StackOverflow is the largest question answering web-
site about software, the website domain is in 39th place on the top sites onalexa.com
(26th of February 2020). How many questions are posted in the StackOverflow that tags
this tool;

• Software Type: At the developer level, how is it delivered? Usually in the form of a
software library, but it can be a framework that provides a development environment;

• Releases: Initial release, current version, last release, previous version, previous release,
update frequency: This information is extremely important for the company. A tool that
stays up to date and evolves over time is one of the strongest points for choosing a tool,
considering that it can functionally answer our problems;

• Company: Which company owns the project? Being a large company, more guarantees
are given that the quality of the tool is ensured, comparing to a tool, for instance,
maintained by a doctoral student.

Table 2.1: Comparison of the meta-information about the tools on 27th February 2020

JSprit OptaPlanner OR-Tools
Free Yes Yes Yes
Paid Features Yes Yes No
Features Route Optim. API Tech Support None
License Apache v2 Apache v2 Apache v2
Documentation No Yes Yes
Doc. Specification No Yes No
Code Examples 40 22 93
Working Examples All All All
Specialized for Routing Yes No Yes (RL)
Routing Code Examples 40 3 16
Languages Java Java C++, Python, C, or Java
Descendant Projects Route Optim. API OptaWeb –
Easy Install Yes Yes Yes
Use Case VRP Planning Problems Combinatorial Optim.
Production Ready Yes Yes Yes
GitHub Stars 982 1477 5002
Google Trends 3 1 2
StackOverflow 84 956 348
Software type Library Framework Library
Initial Release 2013 2004 2015 (As open-source)
Current Version v1.8 7.33.0.Final v7.5
Last Release Apr 10 2019 Feb 17 2020 Jan 28 2020
Previous Version v1.7.2 7.32.0.Final v7.4
Previous Release June 8 2017 Jan 28 2020 Oct 11 2019
Update Frequency Low Very High High
Company GraphHopper RedHat Google

Table 2.1 depicts the results of the meta-information analysis. The Route Optimization
API is a paid service that uses JSprit to obtain optimized routes since its launch JSprit
stopped receiving major updates. The OptaWeb is a set of free projects that uses a Web
GUI to optimize planning problem, using the OptaPlanner solver.

While trying to implement the passengers model in the OR-Tools and OptaPlanner, tech-
nical restrictions of each tool were identified. The technical points are as follows:

14



Background Knowledge

• Model: Not all solvers allow to design the problem model. OptaPlanner allows to model
the problem domain, but cannot compete with the performance of OR-Tools and JSprit
as a "pre-made model" targeted to specifically solve complex variants of the VRP;

• Cost function evaluates the quality of the solutions found. OptaPlanner offers 5 dif-
ferent ways to write constraints in each one the performance differs, whereas OR-Tools
is attached to an objective function in which only the penalty values can be changed,
and JSprit supports two types of soft constraints: cost function and insertion costs;

• Custom Soft Constraints: For example, to maximize the number of tasks performed
and minimize drivers’ working hours. All solvers support these soft constraints in the
cost function, so it can be consider to support custom soft constraints;

• Multi-Variable Constraint: In a given objective, we want to minimize the empty
distance traveled by vehicles. For this penalty, it is necessary to know if the vehicle is
empty to be able to add a penalty cost with a value proportional to the distance. That
is, there is a dependency in the value of the capacity of the vehicle; OR-Tools does not
allow this type of constraint, only to define upper and lower bounds for a single variable,
if the value is exceeded than add a penalty to the cost function;

• Hard Constraints are supported by all solvers, however, the implementation method in
OR-Tools is very counter-productive, since each condition has to be added individually.
This mode is not maintainable. In the case of OptaPlanner, the constraints can be
described in Drools which makes the constraints highly understandable, whereas in JSprit
are implemented in traditional Java programming;

• Cumulative Variables: Vehicle load, time, distance traveled (among others) are ac-
cumulated along the route. There are arrival and departure times for each task that the
solver should calculate during optimization. OR-Tools introduces the concept of dimen-
sion to configure a cumulative variable. OptaPlanner provides listeners who, according
to the moves, recalculate the value of those variables, whereas JSprit let be extended
with custom states similar to OptaPlanner ’s listeners;

• Algorithms Configuration: OptaPlanner and JSprit allows to change configuration
parameters of the algorithm, for OptaPlanner it also allows defining how certain con-
struction heuristics build the initial solution. In OR-Tools construction heuristic and
the meta-heuristic are simply selected to be used;

• Termination Criteria: All tools allows to define the termination criteria of the meta-
heuristic. It may involve several conditions such as unimprovement time elapsed, unim-
provement iterations elapsed, time limit and custom implementations;

• Custom Moves: Only OptaPlanner allows to change the selection and behavior of the
local search moves. In terms of routing, OptaPlanner has not implemented an optimized
way to respond to the VRPPD. The only way is resorting to custom moves to avoid
breaking constraints. In the case of OR-Tools, a method is provided to indicate pairs of
pickup and delivery where internally it uses a richer way to move them. JSprit also has
a dedicated implementation, although it cannot be extended with custom functionality.

For the best of our knowledge, a comparison between these tools was not found at this level.
A summary of the comparison of technical details of the tools is depicted in 2.2. Design a
model can create ambiguity for the reader. In the company, a model is an implementation
that responds to a client’s problem. This analysis refers what solvers offer to implement a
model. For example, OR-Tools is confined to the solver’s architecture that is provided in
the form of a model, in which the decision variables cannot be changed.
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Table 2.2: Comparison of technical details between JSprit, OR-Tools and OptaPlanner.
The checkmark means the tool has the functionality.

JSprit OptaPlanner OR-Tools
Design a Model
Change Cost Function
Custom Soft Constraints
Multi-Variable Soft Constraint
Custom Hard Constraints
Cumulative Variables
Algorithms Configuration
Termination Criteria
Custom Moves

In line with the technical analysis, there are 3 subjective points to highlight. In terms
of performance, for single-objective VRP variants, there are few tools that can compete
with OR-Tools’ performance. OptaPlanner and JSprit support multi-threading which can
boost the number of evaluated solutions per seconds and find a solution faster, yet we
are interested in a balance between quality and performance. For usage simplicity, the
OptaPlanner is the most complex in terms of features. The nomenclature of the methods
used by OR-Tools is not pleasant and it is not easy to understand, JSprit is in the middle
it is the most readable, but provides the worst documentation.

More important than the meta-heuristic being use is the quality of the solutions found
and the performance of the algorithm. Since these algorithms are complex, their imple-
mentation differs from tool to tool even for the same algorithm. In OR-Tools the GLS is
the best in most cases and in OptaPlanner for our problem that involves routing is LA.
Making a fairer comparison with the same algorithm, the TS implementation in OR-Tools
showed better results in the passengers problem than the TS in OptaPlanner.

2.5 Discussion

Our field-service problems involves routing in its core. The VRP is one of the most impor-
tant problems in the combinatorial optimization literature with applicability in the indus-
try. These solvers can be adjusted, allowing us to obtain optimized work plans, without
care about the underlying implementation of the optimization algorithms. Our
effort should be directed towards meeting the client’s needs.

As a planning tool, the OptaPlanner allows us to design models for a variety of combinato-
rial problems. There is a loss in performance related to dedicated routing tools since those
dedicated tools use specific implementations select on purpose to solve variants of VRP.
The JSprit and OR-Tools provides a straightforward way to implement the most common
VRPs, however, they lack extensibility to change the behavior of particular components of
the solver as OptaPlanner that can be used in our advantage.

By seeking a balance between performance and quality of the solutions provided by the
solver, the solution quality of the work plans highly depends on the performance of the
solver to find better solutions in the shortest time possible. A study that compares these
solvers was not found to help us make a decision. As the solvers showed very different
strengths, they were explored with the passengers problem. Comparing results obtained
from the models implemented in these tools to solve the same problem, is an asset for
Sentilant.
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Planning Process

The followed software development process, involved parts, and the communication mech-
anisms used to communicate with the team in section 3.1. The work planned versus
performed in 3.2, then in 3.3 the risks derived from the thresholds of success.

3.1 Development Methodology

In software engineering one of the most important steps is the definition of the develop-
ment methodology. Sentilant uses the Agile development process for the development of its
projects. There is no confinement to this methodology and given that Sentilant is a com-
pany with a reduced number of employees in which much of the information is transmitted
verbally, an Agile development approach is followed.

The Agile development process allows to focus on responding to changes rather than follow-
ing a rigid development plan. There is still a plan, but it gives flexibility to accommodate
changes. Despite being only one system, the solution for each client is tailored according
to his needs. These needs are dynamic, with Agile the system benefits from incrementally
improving the system to answer new clients and modifying the existing models according to
the field-service requirements of the clients. It also allows to prioritize requirements, since
requirements can be postponed to future iterations, when better information or structure
is available, thus optimizing the efficiency of the client’s choices.

Figure 3.1: Agile development process

In Figure 3.1 is depicted the development process (inspired on Scrum). In summary, the
beginning of the development of the project starts with a Sprint where feature(s) are
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selected to be implemented during the Sprint Planning, the end of the Sprint corresponds
to an increment to the product.

The Product Backlog corresponds to a list of user stories wished to implement in the
product, ordered by priority. The Sprint Backlog is a set of tasks derived from the Product
Backlog committed to implement in the product until the end of the Sprint. This choice
is based on priority and developers’ perception of how long it will take to implement each
item discussed in the Sprint Planning. The Sprint Planning is a meeting held before start
the actual Sprint. During the course of a Sprint, as part of the Daily Meetings, a meeting
is held with the team to report the progress and find possible solutions for problems that
have occurred or may occur. After the end of the Sprint, the product is incremented and
a the next iteration is discussed in the Sprint Planning meeting.

The company uses the Slack platform to establish communication between the team. For
the meetings, Zoom platform is used. Moreover, the advisor from Sentilant, Eng. Bruno
Cabral represents the client for the passengers problem and for the fuel transports problem
the client is one of the largest Portuguese carriers.

3.2 Planning

This section documents the tasks planned for both semesters and the actual work done. The
work developed in the first semester was the review of the methodologies and technologies,
necessary knowledge about the problem domain, implementation of the passengers problem
to demonstrate the practical capabilities of the solvers, capture of architectural drivers and
derive a preliminary architecture. For the second semester, the solver from Sentilant, that
uses JSprit, was extended to solve the fuel transports problem, progress reports were
generated and delivered to the client, and the API built and integrated for this tenant.

3.2.1 First Semester

In the first semester, the plan exposed in the internship proposal was followed. The work
done and the planning is depicted in Figure 3.2. The following textual description helps
the reader to interpret the plan and understand what was done.

Figure 3.2: Planning for the first semester
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The first week was dedicated to integrate in the project and learn about the team’s work-
ing method. While learning tools and technologies, one week was not enough to
understand how work plans can be generated, contextualize about the routing problem in
optimization and the technologies used to solve it, so it took another week. The study of
the competition involved identifying and comparing solvers to generate work plans. It
took one more week than expected as the information about the tools was not sufficient to
make a decision. A week was estimated for the identification of requirements to start
the development, but took a week and a half due the thread of COVID-19. During the
first week after the alert, no work was done and the company started to work remotely.
What was planned was allocated for the following week.

At this stage, start the development process with a functional system would not be produc-
tive, more time to explore the solvers was invested. The planned sprints of 2 weeks were
renamed as cycles to implement the passengers problem as prove of concept in OR-Tools
and OptaPlanner, without delivering functional software at the end of the cycle. In cycle
1, a model for the passengers problem was implemented in OR-Tools. In cycle 2, vari-
ant with simultaneous pickup, simultaneous deliveries and parameterization from the data
input was tested. In Cycle 3, results were compared with the Sentilant solution. Only
Cycle 4 was dedicated to OptaPlanner, because during the study of competing technolo-
gies OptaPlanner revealed that it was unable to find admissible solutions for a sequential
pickup and delivery problem with 20 tasks even if running for hours for a problem that is
solved by JSprit in less than a minute. With the learning of custom moves and help from
the OptaPlanner ’s community, custom moves were configured, thus obtaining solutions
within an acceptable time.

The update of the requirements would be done during the sprints, but cycles were per-
formed instead. So, three more weeks was dedicated for the requirements. As a last task
of the first semester, a preliminary architecture was derived to present in the intermediate
defense and a visualization of the system intended to build.

3.2.2 Second Semester

The plan defined in the first semester was followed for the second semester, and 2 additional
sprints were made as part of this work for the integration with the FSM service used by
the fuel model client. The work done and the planning is depicted in Figure 3.3.

The second semester started by reviewing the architecture and comparing the three solvers
for the passengers problem. Based on the results, JSprit proved to be better in performance
and in the quality of the solutions, so the Sentilant ’s versions of the JSprit was chosen and
time was invested to analyze the source code. The first sprint consisted in generate an
initial problem instance and implement tanks states where the products were distributed by
the compartments during optimization using an adaptation of the minimum sum sub-array
algorithm. In the second sprint, several constraints were implemented, split-delivery
and the periodic rests. The periodic rests required to change several parts of the JSprit
core. During the third sprint, a PDF report generator was built to report the progress
to the client and a presential meetings was held in the client’s quarters. Based on the
feedback, the sprint was readjusted, a better problem instance was generated and shifts
were implemented, and two constraints were refined based on the feedback. KPIs about the
tanks states e.g., percentage of empty space, total quantity transported were also collected.
In the fourth sprint time was dedicated to improve the architecture, adapt source code
from other Sentilant projects to build the system and interact with technologies such as
Docker to learn how to containerize the Planning System. Another meeting was held
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with the client, and new requirements emerged: avoid Ponte 25 de Abril, avoid travel
large distances between simultaneous deliveries and a better distribution of the fuel by the
compartments was requested. The fifth sprint was not enough to implement the avoid
travel large distances and more days of the following sprint were dedicated, in the end
it originated two constraints. In the sixth sprint the API Gateway was built using the
latest versions of the required technologies with a development and a staging environment.
Also, the documentation of the API was written for the tenant.

Figure 3.3: Planning for the second semester

The development of the Planning System ended in the sixth sprint. After than, my work
continued in the company and to complete a development cycle for a tenant, time was
dedicated to integrated the fuel model in a seventh and eighth sprint. The system used
by the fuel model’s client is tailored for him and does not use automatic work planning.
Consequentially, the integration was developed for this client, until then no client of the
Sentilant ’s service used a model with tanks, shifts, periodic rests or capable to explicitly
trace routes that avoid locations. Several integration problems were faced, for instance,
the solver has the pickup convection, but for the client in its database, a cargo is a set of
sequential pickups, this is, a cargo as one or more related deliveries, so non-existing cargo
tasks are created after the optimization, or even destroyed in re-optimization scenarios, the
system was not prepared for these operations. Further development is needed after these
sprints, but at this stage the planning can be demonstrated.

3.3 Risks Management

The risk analysis is the process of identifying, prioritizing, and managing risk that threaten
the accomplishment of a project objectives with success. The success is defined by the
threshold of success, this is a set of conditions that must be met for the project to be
considered successful. In the beginning of the second semester, the objectives of the project
were revised, which originated one threshold of success for this project: "Have a field-
service planning system delivered as an API until the end of December 2020 that generates
work plans for the fuel transport problem." The followed risk management approach was
informal, but with the threshold of success in mind.

Table 3.1 synthesizes the identified risks with decreasing ordered priorities and the miti-
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gation strategy. The factors to measure it were identified. Then, the risks were prioritized
in Likelihood (L) and the Impact (I). Both vary between Low (L), Medium (M) and High
(H). The status identify whether the risk has already been overcome.

Whether there is no certainty that a risk can be completely avoid, mitigation strategies
were defined. The followed risk management approach was informal where strategies to
mitigate the risks were discussed with the team, keeping the threshold of success in mind.

Table 3.1: Risks Identification and Mitigation Plan

Risk Factor L I Mitigation Strategy Status

Client refuses the
planning because a
specific requirement
cannot be
implemented.

Accept to develop a
model without know-
ing if a requirement
can be met

The solver being used
cannot satisfy the
requirement.

M H

1. Review production-ready
solvers and elaborate a
detailed comparison.

2. Test a proof of concept in
the solvers: CVRPPDTW,
custom soft and hard
constraints;

3. Negotiate with the client
alternative requirement(s).

Avoided

Client unsatisfied
with the obtained
work plans.

The client complaints
about the results while
using the solution in
production.

H M

1. Generate PDF reports
illustrating the progress to
present to the client and
obtain feedback, during
development;

2. Expose configurations
in the API to allow adjust the
model without redeploy the
Planning System. e.g., change
the loading time of a
cistern;

3. Define and make available
to the client a set of KPIs
that allow him to know, before
production, how the optimiza-
tion will improve its
cost/benefit rate.

On the deadline
date, the fuel
model is developed,
but there is no
functional API.

Fine tunning the opti-
mization takes longer
than expected and
time to develop the
API is shorter

M L

1. Start the design of the API
as soon as possible;

2. Get help from the Sentilant
team for bootstarting the
development environment;

3. Start developing before the
client approved the results
from the optimization solver.

Avoided

In the work developed for this internship, objectives had to be defined, however the fuel
model client as of January 2020 is not using the solution. Therefore, the second risk can
only be considered avoided when the client is using the final solution and satisfied with
the obtained work plans, however its mitigation was started in the beginning of the fuel
model development with progress reports sent to the client to obtain feedback, and improve
accordingly, thus avoiding dissatisfaction.
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Requirements

For the planning system, requirements are expressed as Architecturally Significant Require-
ments (ASRs), formally defined as the set of requirements that have significant influence
over the architecture. Functional requirements in 4.1 from a high-level view using user-
stories. Section 4.2 depicts ASRs as QAs scenarios, then prioritized and synthesized in the
utility tree in 4.3. Section 4.4 depicts business and technical constraints.

4.1 High-Level Functional Requirements

Table 4.1: User-Stories to describe the high-level functional requirements

Id Title Description

1 Obtain a plan As a client, I want to obtain a work plan for my specific problem,
so that I can make logistic decisions for FSM.

2 Key Performance
Indicators

As a client, I want to obtain metrics about the work plan, so that I
can use it to manage our resources, fulfilling business goals.

3 Balance parameters
As a client, I want to be able to adjust some parameters, so that I
could intervene in the optimization without strictly depending on the
developers’ decisions.

4 KPIs as developer As a developer, I want to obtain KPIs, so that I could compare the
quality of an obtained plan with other plans.

5 Update and add
new tailored models

As a developer, I want to add new models and update the existing
ones, so that I could serve different clients within the same system.

6 Monitor System
Load

As a system administrator, I want to monitor the usage of the
system, so that I can better manage and prevent loading pikes.

As an agile development process is followed, requirements were defined and planned ver-
bally, through meetings with advisor Bruno Cabral, then documented as user-stories. The
user stories are a non-formal, short and simple way to describe the requirements of the
project from a stakeholder perspective. Thus, requirements can be handled without creat-
ing extensive formal requirements documents. A user-story has the following format:

“As a <role>, I want <some goal> so that <some reason>.”

The roles are client, system administrator and developer. A client of the system is in-
terested to obtain optimized work plans for FSM. The project manager represents the
clients and also has a system administrator and developer. Before identifying QAs scenar-
ios, user stories were gathered and presented in the Table 4.1. The Id is not indicative of
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priority, but rather for quick identification.

4.2 Quality Attributes

During the capture of functional requirements through user-stories we responded to who,
what and why, but we did not constraint how the system should work. Therefore, QAs
were captured through scenarios using the methodology proposed in Bass et al. (2003) to
describe QAs. According to the author, there is always a trade-off between different QAs.
In this project, for instance, if we want the solver to find a better quality solution, there
is a loss in terms of performance.

Figure 4.1: Parts of a QA scenario in Software Architecture in Practice from Bass et al.
(2003)

A QA scenario is composed by six parts, the following is a brief explanation of each of the
parts. In this way, the QAs of this system can be measured. For a better visualization,
Figure 4.1 depicts the interconnection of each of the parts: i) source of stimulus is the
entity that initiates the scenario by generate the stimulus, ii) stimulus is the event that
initializes the scenario, iii) some artifact is stimulated. The component that receives the
stimulus and produces a response. It may be the entire system, iv) system response is
activity undertaken after the arrival of the stimulus, v) response measure: when the
response occurs, it should be quantifiable in some fashion so that the requirement can be
tested, and vi) environment condition the stimulus occurs within certain conditions.
Puts the parts into context by describing the state of the system.

Following this approach, 10 QAs were captured presented in Tables 4.2 to 4.11 with a
preceding a description:

“We develop tailored solutions for new clients by integrating new models in the system and
updating the existing models according to the existing clients’ needs. Developers add and
update models during development, without modifying the remaining models code.”

Table 4.2: Description of the QA Scenario 1: Extensibility

Extensibility ID: 1

Raw Attribute Definition Measure of the ability to extend a system and the level of effort
required to implement the extension

Source of Stimulus Developer
Stimulus Wants to update or add a new model
Environment Condition(s) During development
Artifact Source code
System Response Model added or changed
Response Measure Without modifying the remaining models code

User Story Obtain a Plan (1), Update and Add New Tailored Models (5)

“Everytime a client gives feedback of preliminary results, the system should generate KPIs
that allows him to assess the modification impact in the model, during development.”
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Table 4.3: Description of the QA Scenario 2: Solution Quality

Solution Quality ID: 2

Raw Attribute Definition Quality of the best solution found retrieved to the client

Source of Stimulus Client
Stimulus Provides feedback about preliminary results
Environment Condition(s) During development
Artifact System
System Response Model is modified accordingly
Response Measure Updated results are obtained

User Story Obtain a Plan (1), Key Performance Indicators (2), Balance
Parameters (3)

“Some clients want to intervene in the optimization. The system allows the client to balance
parameters (e.g., a weight factor) that impact the optimization, the unchanged parameters
are considered with their default values.”

Table 4.4: Description of the QA Scenario 3: Solution Quality

Solution Quality ID: 3

Raw Attribute Definition Quality of the best solution found retrieved to the client

Source of Stimulus Client
Stimulus Submits a problem with additional changed parameters
Environment Condition(s) Runtime
Artifact System
System Response Optimized plan is retrieved
Response Measure The obtained plan reflects the changes compared to an

optimization with the default values and provides feedback to
the client that enables him to evaluate the effects of the
parameterization

User Story Key Performance Indicators (2), Balance Parameters (3)

“We expect our system to keep compatibility with the existing clients. The client will not be
aware that he is accessing a different planning system.”

Table 4.5: Description of the QA Scenario 4: Compatibility

Compatibility ID: 4

Raw Attribute Definition Ability of two or more systems (or components) to perform
their required functions while sharing the same environment

Source of Stimulus Clients from the current FSM system of Sentilant
Stimulus Performs Request
Environment Condition(s) Runtime
Artifact System
System Response The system will answer as expected, and the client is not going

to be aware that he is accessing a different optimization system
Response Measure Client is not required to adapt his system

User Story Obtain a Plan (1), KPIs (2), Balance Parameters (3)

“The client sends an identification of a problem not understandable as input to the API.
The system spots the error in a field or the value out of range and retrieves a message.”
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Table 4.6: Description of the QA Scenario 5: Usability

Extensibility ID: 5

Raw Attribute Definition How easy it is for the user to accomplish a desired task and the
kind of user support the system provides

Source of Stimulus Client
Stimulus Sends a problem with a wrong parameter or value
Environment Condition(s) Runtime
Artifact System
System Response A informative error message is retrieved
Response Measure After the system spots the first error, a message is built and

retrieved to the client.

User Story Obtain a Plan (1), KPIs (2), Balance Parameters (3)

“When modifying the source code, we want to ensure that we did not introduce any new
errors. After updating or introducing new models in the system, a battery of tests is run
to verify that new errors have not been introduced.”

Table 4.7: Description of the QA Scenario 6: Testability

Testability ID: 6

Raw Attribute Definition Ease with which software can be made to demonstrate its faults
through testing

Source of Stimulus Developer
Stimulus Perform unit tests
Environment Condition(s) At development time
Artifact System
System Response Each model is successfully verified if it’s working correctly
Response Measure For each model is verified that errors were not introduced.

User Story Obtain a Plan (1), Balance Parameters (3), Update and Add
New Tailored Models (5)

“We expect our system to take a similar performance to the existing planning system in
Sentilant. The runtime to optimize a problem does not take 15% longer than the current
solution, given inputs up to 50% above the typical size of the client’s problem, considering
all the constraints to satisfy the same problem.”

Table 4.8: Description of the QA Scenario 7: Performance

Performance ID: 7

Raw Attribute Definition It’s about time and the software system’s ability to meet timing
requirements.

Source of Stimulus Client
Stimulus Wants to obtain an optimized work plan
Environment Condition(s) Runtime
Artifact System
System Response Optimized work plan retrieved
Response Measure The runtime to optimize a problem does not take 15% longer

than the current Sentilant ’s solution, for problems with
dimensions up to 50% above the typical size of the client’s
problem.

User Story Obtain a Plan (1), Balance Parameters (3), Update and Add
New Tailored Models (5)

“A client submits a problem much larger compared to its typical size, then receives an error
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message in the generation of the plan. The system administrator sets a limit for each model
and receives a notification whether the limit is exceeded.”

Table 4.9: Description of the QA Scenario 8: Scalability

Scalability ID: 8

Raw Attribute Definition Scalability is the ability of the system to handle load increases
without decreasing performance, or the possibility to rapidly
increase the load.

Source of Stimulus Client
Stimulus Submits a problem much larger than usual
Environment Condition(s) Runtime
Artifact System
System Response Retrieves an error message
Response Measure Whether the problem submitted to solve exceeds the limit set

by the system administrator for the correspondent model an
error message is generated, then sends a notification to the
system administrator

User Story Obtain a Plan (1), Monitor System Load (6)

“For answering a new client, a model is added to the system. Therefore, the increase in the
number of simultaneous calls to the system should not introduce latency increases of more
than 15%.”

Table 4.10: Description of the QA Scenario 9: Scalability

Scalability ID: 9

Raw Attribute Definition Scalability is the ability of the system to handle load increases
without decreasing performance, or the possibility to rapidly
increase the load.

Source of Stimulus Developer
Stimulus New model added
Environment Condition(s) Runtime
Artifact System
System Response Respond to an additional new client
Response Measure The increase in the number of simultaneous calls to the system

should not introduce latency increases of more than 15%

User Story Obtain a Plan (1)

“The client needs to provide his credentials to access the API. The system denies users with
wrong credentials or inactive accounts.”

Table 4.11: Description of the QA Scenario 10: Security

Security ID: 10

Raw Attribute Definition The measure of the system’s ability to withstand unauthorized
attempts to use data or services, providing access to legitimate
users.

Source of Stimulus Client with a credential
Stimulus Accesses the system
Environment Condition(s) Runtime
Artifact System
System Response Grants access to the API
Response Measure Whether the account is active and the credential is valid,

otherwise denies access to the API.

User Story Obtain a Plan (1)
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4.3 Utility Tree

Table 4.12: Utility Tree representing the ASRs captured for this project, the attributes are
sorted by business value in descending order, where the most valuable is at the top.

P Quality At-
tribute

Attribute Re-
finement

ASR

1 Extensibility Source code
structure

Add and update models during development, without
modifying the remaining models code. (H,H)

2 Solution
Quality

Client
feedback

A client gives feedback of preliminary results, the system
generates KPIs to allow the client to assess the modifi-
cation impact in the model. (H,L)

3 Solution
Quality

Optimization
intervention

The work plan must reflect the influence of the param-
eters set by the client in relation to the default values.
(H,L)

4 Compatibility Interface Existing clients access our planning system without be-
ing aware of it. (M,M)

5 Performance Optimization
duration

The optimization duration on this system should not be
more than 15% slower than the current Sentilant solu-
tion. Considering the typical size of the client’s problem.
(M,H)

6 Security Authentication Only clients with authenticated and active accounts are
allowed to submit and receive optimized work plans.
(M,L)

7 Usability Consistent mes-
sages

Upon detection of an invalid problem identification, in-
dicate to the client the location and the reason for the
error. Messages should be consistent across all clients.
(M,L)

8 Scalability Limit the input
size

System administrator can set a limit to the maximum
size of the client’s input to prevent abuse of the system.
(L,L)

9 Scalability Latency The increase in the number of simultaneous calls to the
system should not introduce latency increases more than
15%, as new models are added and new clients can access
the system. (L,M)

10 Testability Verification Ensure errors were not introduced in the models after
modifying the source code. (L,M)

Utility tree in Figure 4.12 synthesizes the QAs sorted by priority in descending order,
where the most important is on the top. This prioritization was conceived through a vote
between me and the advisor. Each of us had 75 points to distribute between each scenario,
the more total points given to a scenario, the higher the priority. A large amount of points
was used to avoid draws.

The ASRs present a notation with two letters, in which (L=Low, M=Medium, H=High).
The first letter represents the business value that is automatically mapped from the
priority. We define the three most voted as must-have requirement with High and the
remaining are Medium, except the last three that are ranked as Low. The second letter
represents the architectural impact: i) High: meeting the ASR profoundly affect the
architecture; ii) Medium: meeting the ASR somewhat affect the architecture; iii) Low:
meeting the ASR have little effect on the architecture.

The extensibility and the solution quality are the most important QAs for this
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system. Extensible due to the multi-tenant characteristic of the system, since a model can
be expensive to develop, however, it is intended that the addition of new models does not
affect the results of the existing ones. Solution Quality because the system should produce
optimized work plans tailored for each client.

Facilitate adding new models (1) and optimization duration (5) are the ASRs
with the highest architectural impact in our perspective. The mechanisms provided
by the solver to implement a model may change drastically, requiring the developer to
understand too many technologies. Moreover, there is a preference to use a single solver
to implement all the problems and reduce the time-effort over time, than fragment models
in many different applications due to algorithm’s performance, for instance.

Without reverse engineering a solver and taking it to its limits to meet performance require-
ments, it may imply to trade the extensibility and the solution quality for it. Therefore,
optimization duration was ranked as an ASR with a high architectural impact.

Presenting KPIs to receive client feedback (2) during development is important. However,
the way those KPIs are presented only make sense when aggregate with the correspondent
identification of the problem and the plan in a human-readable way. A PDF report was
proposed and used to present preliminary results to the client.

The Sentilant ’s FSM system submits problems and receives work plans for its clients
through a queue service, but there are clients that interacts through an API, so Compati-
bility (4) pretends external systems access our new system with minimal change. However,
in case of the Sentilant ’s FSM system a new integration has to be developed, thus ranked
as medium architectural impact.

Security (6) and usability (7) have a medium business value, but they are straightforward
to ensure without impact other QAs. Scalability and testability affect the architecture as
new models are integrated, however they reveal a lower business value comparing to the
remaining QAs.

For clarification, in performance the typical size is the size of a problem instance from a
real client. In the absence of real problem instances, we have to be guided by the size
indicated by the client.

4.4 Business and Technical Constraints

The architecture is commonly constrained by a set of business and technical constraints.
Those constraints are perceived as assumptions, limiting the design-decisions. In beginning
of the second semester, 1 business constraints and 1 technical constraints was pinned,
respectively:

• Scheduling: The Planning System API to solve the fuel problem must be finished
by December 2020;

• Free software licencing: All the software required to develop the components must
be free of charge, presenting a license e.g., Apache License, allowing to legally use it
in a production environment without expose the source code.

Moreover, there is a preference to use Java and Python programming languages, as these
are the main languages used in the backend stack of Sentilant, being more maintainable in
this regard. However, there is no imposed restriction on using other languages.
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Architecture

An overview of the system is presented in 5.1 with the C4 model. The communication
mechanisms to serve plans in 5.2, a description of the required persistent data in 5.3,
the main components involved in a optimization inside the solver in 5.4, the structure of
a problem instance and the work plan in 5.5, and the deployment environments in 5.6.
Throughout the chapter, architectural decisions are justified with the QAs from utility
tree in section 4.12.

5.1 System Overview

The high-level architecture of the system is designed following the Simon Brown (2011)’s C4
Model offering 4 levels of detail to visualize an architecture (C1: Context, C2: Containers,
C3: Components, C4: Classes). Designed only with the first two levels, furthermore the
author says they are enough for the majority of the projects.

Figure 5.1: System Context Diagram: clients can directly interact with the planning system
or the system is invoked by a component of the Sentilant system.
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The context diagram defines the scope of the system, focusing on people and abstracting
the software system from technologies. Figure 5.1 depicts the context with three use-cases
for the system. In the first use-case, the external clients can integrate the access to the
planning system in their applications, accessing directly to it. In the second and third
usage context the system is integrated as part of the Sentilant system, the client doesn’t
directly access it, but other applications from the FSM system does. The Open Source
Routing Machine (OSRM) is a service running in Sentilant to calculate routes and estimate
distances and durations between locations given their coordinates.

Figure 5.2: System Container Diagram for the Planning System

With container diagram, the high-level technologies to be used are defined and how
the containers communicate with each other inside the system. A container is any sepa-
rately runnable/deployable unit. In Figure 5.2 the three main containers of the system are
visualized: API Gateway, database and solver.

The core of the development was centered on the Solver, the component was deployed as
a server application responsible to process an optimization request at a time, and generate
optimized work plans. The chosen solver is JSprit ’s project from Sentilant, since the
other solvers showed to be more than 60% slower than JSprit and finding worse solutions,
{Performance (5)}, for more information see results in section 7.1.

The API Gateway is the interface to access the system, and filters the problem instances
{Usability(7)}, whether an instance is invalid returns a <message><error> message
e.g., “Task scheduled datetime end before start”, “Task 3 expects scheduled_start_datetime
to start before scheduled_end_datetime!”. As the optimization can take time, this service
is offered asynchronously — a client can submit a problem and obtain the plan later. The
API Gateway is a REST service, for dealing with asynchronous requests the Celery is used
with the in-memory database Redis and message broker RabbitMQ. Sysadmin decisions as
change the maximum problem limit or add new credentials take effect in this container.

The Database persist data for the API Gateway explained in section 5.3. Moreover, to
deal with asynchronous requests after retrieving the work plan from the solver, it’s saved
on the Database.

For the fuel model, it was necessary to avoid routes that passes through “Ponte 25 de Abril”,
as the OSRM did not allow it, an alternative called Valhalla can and was configured and
deployed in this work, it can be accessed from a public domain.

The possibility of being able to scale horizontally, that is, more instances of the solver
running in parallel or even adding other solvers, is not excluded. For this internship, two
solver instances run in parallel.
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5.2 Communication Mechanisms

In the current solution of Sentilant, the solvers are accessed through a RabbitMQ message
broker. With this Planning System, we wrapped the solver and provide the API Gateway
as the only interface. Three types of requests are provided: synchronous, asynchronous
and webhooks. The synchronous type is attractive, but both the receiver and the sender of
the request must wait with an active HTTP connection until receiving the response. In the
asynchronous type, a planning request is made and the HTTP connection is terminated,
but the customer never knows when the work plan is ready. The third type is similar to
the second, but API Gateway submits the work plan via HTTP to an address specified
by the client. Figure 5.2 depicts the communication mechanism. The API Gateway and
point-to-point messaging queues provide the bridge between the external systems and the
solver’s instances. It used a Celery background worker to receive the plans from the queue.

The API Gateway keeps the same schema as the existing JSprit input and output {Com-
patibility (4)}, although it requires to modify the current architecture of the external
systems e.g., FSM System to integrate the access to the API.

A RabbitMQ message broker is used to transmit messages between the API Gateway and
the solver. Thus, hundreds of solver instances can run in parallel, however the system
should just be ready to scale and comply with the {Scalability(9)} in a med-long-term.

Figure 5.3: Communication mechanism describing the transported messages.

5.3 Persistent Data

The system only persists data for technical reasons. Keeping information is not required for
the business, the strict intention of this system is to produce work plans given problem in-
stances. A Postgres database is used to persist the latest requests to support asynchronous
operations, control in terms of security, scalability and reproducibility of errors. Postgres
is chosen because it’s the most known database by the Sentilant ’s team. The relational
model is depicted in Figure 5.4. Token-based authentication is used {Security (6)} to
protect the system against unauthorized requests, the token is stored in the database as
token field in Key. Clients and it’s respective tokens are added in the database manually.
The ProblemLimit defines limits for the dimension and run-time of the problems {Scal-
ability (8)}, thus preventing computational waste and abuse of the system. There is a
global limit and optionally a limit set for the token that overrides a global limit.
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Figure 5.4: Relational model of the database accessed by the API Gateway.

5.4 Solver Pipeline

The solver project from Sentilant that uses JSprit is the solver chosen for this architecture.
To consolidate the pipeline of the Solver from a high-level perspective, first a sequence
diagrams describing the main objects interactions and the messages exchanged is presented,
then a second for multiple-optimizations.

Figure 5.5: High-level operations from setting up the JSprit solver until generating the
work plan for an optimization. The classes marked in orange were added.
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Sequence diagram in Figure 5.5 describes a view of the Sentilant ’s project that consumes
the JSprit solver. The Solver is the entity that recurs to the JSprit library to solve
a problem and generate a work plan. The Problem Builder an entity that build the
problem data in JSprit. The Split Task Interface provides a way to divide tasks with
large quantities into smaller tasks with a fraction identification; OSRMManager provides
durations and distances between locations. For Constraint Manager, there are many
custom configurations that change the behavior of the model, this is not limited to hard
and soft constraints. Some of the constraints depend on custom states and dynamic costs.
The State Manager keeps the state related implementations such as the cisterns states.
JSpritVRP represents the problem for the JSprit. JSprit represents the algorithm of the
JSprit, termination criterias, and listeners that triggers during the optimization process;
The Plan Generator generates the work plan giving a solution from the JSprit. For the
Metrics it can have different settings, for instance, distances are slow to obtain from the
OSRM and Valhalla, so it can calculate the distances based on the euclidean distances or
based on the velocity formula.

A discussion was held at Sentilant on whether metrics should be calculated on API Gate-
way, on an independent service or on the solver. Since JSprit runs in single-thread, and
all the information is contained in the solver, it was decided to be calculated in the solver.
Moreover, one of the objective of the API Gateway is to be stateless, the component should
requires as little maintenance as possible, therefore this is another argument for this logic
to belong to the solver. {Solution Quality (2)}

The fuel model requires more than one optimization due to drivers working in shifts,
because the start of the second-shift depends on the end of the first-shift. Therefore, an
executor was added to externally handle more than one optimization and calculates the
metrics in the end after appending the plan. Sequence diagram described in Figure 5.6.

Figure 5.6: Behavior of a solver instance from reading a problem from the Message Broker
until publishing the response. Problems with shifts require more than one optimization.
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5.5 Messages exchanged

The two messages exchanged by the API are the problem and the resulting work plan. As
the company’s solver was used, the required attributes for the fuel problem were added,
and all fields that have no effect on this model have been removed.

The problem input is described in Figure 5.7, the representation of the products were
added as Product and ProductRequest, the representation of the tank of each resource
as Compartment of a Tank which contains the loading time of the cistern. The Pe-
riodicRest represents the rest time every driving time. Some of the functionalities were
kept as the TaskSettings that is a structure that accepts arrays of tasks, where an array
represents tasks that must be performed sequentially, Skill where a task with the skill only
can be performed with resources containing the same skill, also the algorithms settings were
kept. Regarding fields, the costManager indicates how transitions between locations are
calculated (e.g., euclidean distance), the speedFactor allows to decrease or increase the
transitions time and distances from the cost manager, the useHighwaysFactor and use-
TollsFactor allow to indicate Valhalla the preference for highways and tolls, the Valhalla
is already prepared to receive this parameters. More details about the parameters
are provided in the next chapter 6, while presenting the optimization model.

Figure 5.7: Problem input representation with the added classes in blue.

The work plan structure for the fuel model is represented in Figure 5.8. In addition to
a fraction (i.e., part of a task), and the shift identification, 4 types of metrics were
extract and appended: RouteMetrics are about the route, PlanMetrics obtained from
the route metrics constituting the KPIs,AlgorithmMetrics related with the optimization
algorithm, and UnassignedReasons that tells how many times each hard-constraint was
broken. Metrics allows to external clients measure the modifications impact on the work
plan {Solution Quality (3)}.
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Figure 5.8: The work plan output represented with the added classes in blue, also the
fractionId and shiftId fields representing the assigned part of the task if divided and the
shift identification.

5.6 Deployment Environments

The company uses docker (docker.com) to manage the deployment environments. Sentilant
uses at least three deployment environment in its workflow: development, staging and
production. Two deployment environment were used, development and staging. In the
development environment the containers are: a RabbitMQv3.8.9, a PostgresSQL
v13 relational database, an in-memory database Redis v6.0.9, a Django v3.12.2 web
application for the API Gateway, a Celery v4.1.1 worker to read responses from the
queue, a Readbeat Server (github.com/sibson/ redbeat) that stores scheduled Celery
jobs. For the staging environment, the NginX v1.19 is used, two instances of the
solver are ran in two containers with JDK v13, and debug mode and any profile software
is turned off. All the services are containerized with docker on a server machine running
Ubuntu v18.04.4 operating system with a i7 3770 CPU up to 3.9 Ghz and 4.5Gb of RAM.
Valhalla was launched on a cloud server with 8 GB of RAM and 4 threads. By default,
Valhalla accepts up to 50 locations to calculate the asymmetric matrix, the configuration
was changed to 250, moreover Valhalla is also containerized (github.com/gis-ops/docker-
valhalla) using Portugal and Spain maps (download.geofabrik.de).

The architecture built in this work does not comply with {Extensibility (1)}. In the de-
velopment of the system, the behavior of the solver was modified, including in the JSprit
core, which may have change the results of the existing models of Sentilant e.g., passengers
model, so we were unable to guarantee this QAs despite having been voted as the most
important. As for testability, some unit tests were implemented to ensure that whenever
the solver is compiled, new errors were not introduced, mainly code sections that involve
computations during optimization e.g., fuel distribution. Moreover, the deployment envi-
ronments help to ensure {Testability (10)}.
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Optimization Models

As explained in the previous chapter, the planning system only provides the fuel transport
model, but two optimization models were developed in this work. In 6.1 is described the
passengers model developed in OR-Tools and OptaPlanner, then in 6.2 is described the
fuel transport model developed with the Sentilant ’s solver. For each model is described
a problem definition to transmit the requirements, a formalization of the problem, and the
implementations that involved developing custom functionalities (excluding configurations)
in the solver(s).

6.1 Passengers Transport Model

In 6.1.1 is described the passengers model requirements and the formulation of the opti-
mization model in section 6.1.2 based on Holborn et al. (2012), depicting the requirements
of the passengers transport problem. The problem’s model and the local search movements
implemented in OptaPlanner to improve the performance of the model for pickup and de-
livery are presented in 6.1.3 and 6.1.4, respectively. This is not required for OR-Tools
and JSprit since both have a native implementation for pickup and delivery that prevent
breaking VRPPD hard constraints.

6.1.1 Problem Definition

The client receives requests to transport people from accommodations to the airport
and vice-versa. A task consists of a request to transport one or more people, the pickup
is denominated as departure and the delivery as arrival. Departures have short-period
time-windows e.g., 10 minutes, whereas arrivals have no restrictions.

The client’s main objective is to allocate as much tasks as possible, while having
control over the optimization. The amount of tasks can vary from just a few tasks to
more than 200 for a single day, and the number of resources employ by the client varies
from just a few drivers up to 40. Each drivers has an associated vehicle with a variable
number of seats most are 5-seat cars, but only 2-3 seats are available, and can only
perform a request at a time. There is a concern for passengers satisfaction, they should
fell comfortable when being transported, the more free seats available in the vehicle
the better.

A driver usually starts in his home and usually ends in the same location, and have an
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associated cost per hour, maximum driving time and maximum working time.
Despite drivers having a maximum work limit, the client sometimes wants to reduce the
length of the assigned working time to each driver, while assigning work to all of his
drivers. The associated vehicle has a cost per kilometer and a fixed cost for being
used. Furthermore, the client’s experience in his business reveals that drivers do not
appreciate to travel many kilometers with the vehicle empty i.e., driving while
not performing any task. Regarding tasks, some have more priority than others,
and an associated payback to be tuned by the client.

Currently, there is a solution in the company for a client with a similar problem as told
in the introduction. For this problem, the client himself adjusts the parameterization and
sometimes re-optimize several times the same instance to improve the work plan. This
is a special client, in a way that most of the Sentilant ’s clients have less control over
parameterization.

6.1.2 Problem Formulation

To define our version of CVRPPDTW for the passengers problem, let V = {v0, v1, .., vn}
be a set of locations where n is odd, composed by three sub-sets V = M ∪N+ ∪N−. Let
M = {v0, v1, .., vK∗2−1} be the set defining the start and end location of each vehicle k ∈ K
in the route where a pair {v2k, v2k+1} represents the start and end location and |M | = 2K.
Let N = {v|M |, .., vn} be the set of pickup and delivery locations where N+ denotes the
pickup locations and N− the delivery locations. A pair of locations {vi, vi+1} ∈ V where
i >= |M | and i is even, the location vi ∈ N+ denotes the pickup and vi+1 ∈ N− the
respective delivery location. Therefore, N+ ∪N− = N,N+ ∩N− = ∅, |N+| = |N−|.

A location vi ∈ V has an associated time window [tMini, tMaxi] which represents the
earliest and the latest time that a service can start at location i. A service at location i
takes si time to be performed. In case of vi ∈M represents the work block of the respective
vehicle k. A vehicle can arrive before tMini, so let Ai be the arrival time and Wi the wait
time. If Ai < tMini, then the vehicle has to wait Wi at location i, where Wi = tMini−Ai.
For vi ∈ N+, let qi > 0 be the demand to be pickup and the qi+1 = −qi demand to be
delivered. Each task has a payback and a priority, so for delivery locations vi ∈ N−, let
pi >= 0 be the payment amount and pri ∈ {1, 2} be the priority of the task where 1 is
normal and 2 is high. Let tij be the duration between location i and j, and dij be the
distance between location i and j, in addition both duration and distance are asymmetric
i.e., the value from i to j can differ from j to i.

Let Qk be the maximum capacity of the vehicle k, tHardk be the maximum time that can
be traveled (i.e., when the vehicle is moving, excluding the wait time Wi and service time
si), tDrvHardk the maximum driving time, T k be the cost per hour, Ck be the cost per
kilometer, Ek be the cost in empty per kilometer, F k be the fixed cost, the comfort bound
qUpperk be the desired capacity range to keep along the road for the vehicle k, such that
qUpperk respects qUpperk <= Qk, and Jk be the maximum number of assigned tasks to
k. Also, let tSoftk be a soft maximum working time, for each vehicle k.

The variables are: i) decision variable xkij : V × V × K representing sets of ordered
locations, each set represents a route of the vehicle k, ii) cumulative variables that
update depending on the value of the decision variable xkij .

xkij =

{
1, if vehicle k goes from visit i to visit j
0, otherwise
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notAj =


1, if

∑K−1
k=0

∑
i∈N xkij = 0, pair with delivery j is

not assigned (over-constraining)
0, otherwise

Di = max{Ai, tMini}+ si, departure time from visit i

tWorki = working time until visit i

tDrvi = driving time traveled until visit i

lki = load of the vehicle k at visit i, after service i

ak =

{
1, if ∃

∑
i,j∈V xkij = 1, then vehicle k is assigned

0, otherwise

qAboveUk
i =

{
1, if lki > qUpperk for vehicle k, after service i

0, otherwise

In addition to the problem data, let {w0, w1, w2} be a set of parameterizable weights to
adjust the penalization of the objective function, where w0 influences the maximum working
time tSoftk, w1 the comfort bounds and w2 the payback. The objective function is:

min f(x) =
K−1∑
k=0

ak[F k + (tDrv2k+1 − tSoftk)w0]

|V |∑
i,j∈V :i 6=j

xki,j [ti,j · T k + dij(!l
k
i · Ek + Ck)]

+

n∑
i=|M |

qAboveUk
i (lki − qUpperk)w1 +

n∑
i=|M |:i%26=0

notAi(pi · pri)w2

The !li means if the vehicle is empty the value 1 is yield, otherwise 0, thus firing the
distance in empty penalization. Decomposing the objective function: i) fixed cost ak · F k,
ii) maximum working time cost ak · (tDrv2k+1 − tSoftk) · w0, iii) duration on the route
ti,j · Tk , iv) distance in empty traveled cost !lki · dij · Ek · w2; v) distance traveled cost
dij ·Ck

3 , vi) comfort upper bound qAboveUk
i (lki − qUpperk)w1, and vii) tasks not assigned

/ payback / priority notAi(pi · pri)w2.

The constraints are as follows. The constraints 6.1 ensures that a task location is either
visited once or not visited/assigned. Constraints 6.2 ensures the vehicle departs from a
given start location and 6.3 ensures the vehicle arrives at the end location if the vehicle is
assigned, otherwise 0. Constraint 6.4 ensures a vehicle is either assigned or not assigned.
Constraints 6.5 ensures whether a vehicle arrives to a visit, then the vehicle must also
depart from that visit. Constraints 6.6 ensures the pickup and delivery visits are assigned
to the same vehicle k. Constraints 6.7 ensures the non-transgression of the maximum
tasks that can be assigned. Constraints 6.8 and 6.9 ensure the capacity constraints are
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met. Constraints 6.10, 6.11, 6.12 ensure time windows, precedence of sequential pickup
and delivery visits and perform before end time of the work block and visits. Constraints
6.13 and 6.14 ensures the vehicle respects the maximum driving time and distance.

0 ≤
K−1∑
k=0

n∑
j=0:i 6=j

xkij ≤ 1, ∀i ∈ V (6.1)

0 ≤
n∑

j=|M |

ak · xkk∗2,j ≤ 1, k ∈ K (6.2)

0 ≤
n∑

i=|M |

ak · xki,k∗2+1 ≤ 1, k ∈ K (6.3)

n∑
j=|M |

xkk∗2,j −
n∑

i=|M |

xki,k∗2+1 = 0, k ∈ K (6.4)

n∑
i=0:i 6=h

xkih −
n∑

j=0:j 6=i

xkhj = 0, ∀h ∈ N, k ∈ K (6.5)

n∑
p=0

xkpi −
n∑

d=|M |

xkd,i+1 = 0, ∀i ∈ N+, k ∈ K (6.6)

∑
i∈N+

∑
j∈N−

xki,j <= Jk,∀k ∈ K (6.7)

lki ≤ Qk, ∀i ∈ V, k ∈ K (6.8)

xkij = 1⇒ lki + qj = lkj ,∀i, j ∈ V, k ∈ K (6.9)

xkij = 1⇒ Di + ti,j = Aj ⇒ Aj ≤ Dj ⇒ Di ≤ Dj ,

∀i, j ∈ V, k ∈ K
(6.10)

Ai ≤ Ai+1, ∀i ∈ N+ (6.11)

xkij = 1⇒ Aj ≤ tMaxj , ∀i, j ∈ V, k ∈ K (6.12)

tWorkk∗2+1 ≤ tHardk, k ∈ K (6.13)

tDrvk∗2+1 ≤ tDrvHardk, k ∈ K (6.14)
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This formulation as at least one feasible solution which in the worst case no task is assigned.
The solution representation is given by a set of routes R = {r0, r1, .., rK} where rk is
represents by a subset of V ordered locations. If ak = 1, then rk is not empty and the
vehicle is assigned. Otherwise, rk is empty and k is not assigned.

6.1.3 Domain Model

In the OptaPlanner framework, the representation of a problem has to be created known as
domain model. The implemented domain model is explain without mathematical notation.

The solver provides a use case model to solve the VRPTW, and can be extended to solve
the passengers transport problem. A Pair class was added to represent a pickup and a
delivery, and the missing data added to the Visit and Vehicle classes. For instance, the
driving time limit and the cost per hour were added to the model. Figure 6.1 illustrates
the domain model, where VehicleRoutingSolution represents the problem and contains the
data and variables involved in the optimization process. The instances of Vehicle and Visit
are the objects that can be modified by the solver declared as @PlanningEntity, and the
remaining are declared as @ProblemFact that cannot change during optimization. The
routes are represented by doubly linked lists, where the @PlanningVariable is changed by
the local search algorithm, and the shadow variables are updated accordingly, facilitating
access to data. Not shown in the figure, but as part of the model, custom state updaters
were implemented to update the driving, working duration, the load of the vehicle, the
arrival date time and the index of a visit in a route after every local change.

Figure 6.1: Domain Model implemented in OptaPlanner adapted from a VRPTW example,
the extended classes in blue color for the time-windows logic
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6.1.4 Optimization Algorithm

A local search algorithm explores the search space by applying local changes moving to
neighbor solutions. Six operators are applied to explore the neighborhood in OptaPlanner :
change, swap, change pair, swap pairs, sub-route change, and sub-route swap. Examples
of the movements are described in Figures 6.2 and 6.3. The examples consider two distinct
routes, although moves also occur within the same route i.e., intra-route. Any of these
operators performs inter and intra-route movements, except inter-route movements ra rb :
a 6= K ∧ b 6= K in the bag that keeps the unassigned visits.

A change operatormoves a visit vi from one place to a different place. A swap operator
exchanges two visits vi and vj . In the Figure 6.2b is depicted a basis for the change operator
movement and in Figure 6.2c for the swap operator movement.

depot visit moved visit

ra

rb

(a) A Solution

ra

rb

(b) Change Operator

ra

rb

(c) Swap Operator

Figure 6.2: Simple local search movements used in the passengers model: (b) and (c).

Movements in Figure 6.3 take advantage of visits forming pickup and delivery pairs. The
change pair operator selects a random pair {vi, vi+1}, i ∈ N+ then chooses a random
visit vj , j ∈ V and create a set with potential previous visits P to assigned to the delivery
vi+1. The vi and any visits after vj are inserted into P . To execute the movement, the
previous visit of vi is assigned such that vj ← vi, and the previous visit of vi+1 a random
visit vr ∈ P such that vr ← vi+1. The swap pairs operator selects two random pairs
{vi, vi+1}, i ∈ N+ and {vj , vj+1}, j ∈ N+ where i 6= j. Then, pickups vi and vj are
swapped and the same for the deliveries vi+1 and vj+1. In the Figure 6.3b is depicted a
basis for the change pair movement and in Figure 6.3c for the swap pairs movement.

depot visit moved pair moved pair

ra
rb

(a) A Solution

ra
rb

(b) Change Pair Operator

ra

rb

(c) Swap Pairs Operator

Figure 6.3: Local search movements taking advantage of the pickup being assigned before
a delivery and belonging to the same route. Example of move (b) and (c)

6.2 Fuel Transport Model

Problem definition provided in 6.2.1 describing the fuel model requirements, a formulation
of the optimization problem in 6.2.2 excluding constraints, and a mapping from the problem
definition to implementation in 6.2.3 considering the architecture of JSprit and client’s PE.
Then, an explanation of the effort to implement the requirements in 7.2.3.
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6.2.1 Problem Definition

The supply of Gas Stations (GSs) is made by carriers that transport fuel from Cargo
Centers (CCs) to GSs. One of the largest Portuguese national carriers, which supplies
GSs of a fuel brand, does manual planning to allocate tasks to its employees. A task
consists of an order with specific quantities of fuel that must be delivered within a time-
window established by the GS. Some GSs have several time-windows, or we can think
in just one time-window where certain intervals are excluded. The information regarding
these time-windows is known for each GSs and usually does not change. However, the
majority of GSs accepts deliveries at any time of the day.

The carrier’s main objective is to reduce the number of cisterns used to satisfy all
orders. On a typical day, the carrier has 26 tractors available, in which each tractor has
a cistern attached. The majority of the cisterns have 6 tanks, being able to transport up
to 36 thousand liters of fuel. The capacity is higher, but for safety reasons the tanks are
limited to a lower capacity (36 thousand liters). There are also cisterns with 1 or 3 tanks,
but they are used less often in this problem. Of these tractors, 23 of them are driven by
drivers who work from 8 AM until 6 PM. Each of the remaining 3 tractors is driven
by 2 drivers who work in shifts. The first shift starts at midnight until 3 PM and the
second shift from 1PM until 3 AM the next day. A driver can work up to 10 hours, and
sometimes some of the orders cannot be fulfilled, so the schedule can be extended to 12
hours, however this work period must be avoided. By this, we mean that these 10 working
hours limit can be relaxed. Every 4 hours of driving (with a legal maximum of 4 and
a half) the driver must take a 45-minute rest, and it does not count as working time. A
driver is also limited to a maximum of 9 to 10 hours of driving.

A driver starts in a CC and has to end the route in the same CC. Loading a cistern,
regardless of whether one or all tanks in the cistern are loaded, the loading time is 1
hour. For delivery, it can take up to 1 hour to unload the fuel from the cistern,
depending on the number of tanks to be emptied. Typically, if all the tanks or almost
all tanks will be emptied in a GS, it takes 1 hour. Otherwise, it takes half an hour to
45 minutes. In the first loading, the cistern must be loaded in the CC where
it starts. After the first loading, a cistern can be loaded at another CC. Furthermore, a
cistern can only be loaded in a CC, and to be loaded it must be empty.

Some orders require the transportation of a quantity of fuel exceeding 36 thousand
liters. These orders have to be delivered by more than one cistern. There is no obligation
that the planning system has to allocate all fractioned tasks, it can allocate just a fraction
i.e., term used for a part of an order when it’s divided into smaller parts. Orders that do
not exceed capacity must be delivered all at once, as GSs do not appreciate receiving more
than one cistern on the same day at different times of the day.

The CCs belong to companies such as Galp and Repsol. The CCs are already assigned
prior to planning to the respective orders, however it is possible to load at another CC of
the same company (e.g., Galp). If a change occurs the CC’s owner (e.g., Galp) has to be
notified of the change. The change of CC can be made at most to 3 or 4 orders. This
change is only accepted if it results in a better plan, however it must be avoided.

In addition to the objective of reducing the number of cisterns, the carrier wants an auto-
matic planning to assist the employee who plans manually, as the manual planning
is something that is carried out by carrier employees and takes several hours to build a
plan for problems like this, that involves allocating all the tasks/orders to the drivers.
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6.2.2 Problem Formulation

This problem is a CVRPPDTW with multiple-compartments, in the literature known as
Multi-Compartment VRP (MCVRP) with fixed compartment sizes. To define our ver-
sion of the MCVRP, Passengers Model’s formulation is inherited and the modifications
explained.

The comfort bounds [qLowerk, qUpperk] and Ek are not considered. Multi-compartments
are considered, so for vi ∈ N+, let qpi > 0 be the demand of the product type p to be pickup
and the qpi+1 = −qpi demand to be delivered. Let Qkc be the maximum capacity of each
compartment c of the vehicle k. Let TC be the number of compartments of each vehicle k
and TP the number of fuel (i.e., product) types. A location vi ∈ N has an associated time
window [tMinw

i , tMaxwi ], where w represents the time-windows of the pickup or delivery
i. The start and end locations vi ∈M only have one time window w corresponding to the
working block of the driver. Let P be a periodic rest, and D be a time interval, where
every D driven time by a vehicle k there is a mandatory rest during P time.

The variables introduced in the passengers problem are kept, except qAboveUk
i , dDrvi

and lki . The additional cumulative variables that update depending on the value of the
decision variables xkij are: tWorki time elapsed from start until arrive at visit i, and lkci
load of each compartment c of vehicle k at visit i, after service i.

The JSprit ’s algorithm has two types of soft constraints evaluated in different steps: cost
function and insertion cost. The following objective function is the cost function. Con-
sider M as a sufficient large number that outweighs any possible total sub-cost from the
first term of the cost function.

min cost =

K−1∑
k=0

∑
i,j∈V :i 6=j

xkij [tij ·Hk + dij · Ck] +
∑
i∈N−

notAi ·M

For the MCVRP constraints useful to understand our implementation, they are presented
in the cistern states hard constraint in the next section.

6.2.3 Mapping to Implementation

The mapping is divided into 4 parts describing exclusively what was added in this work
to the Sentilant ’s solver, accompanied by Preferences Elicitation (PE) to provide facts
about our decisions. In pre-processing is described the functionalities added that act
outside of the optimization model, but still part of the fuel model. Then, the added
hard constraints and soft constraints. Also, there are variable that are stateful during
optimization, so states described the implementations that modifies and/or adds states
to the model.

Pre-processing

Fraction tasks: Given T = {qp0 , .., q
p
n} representing the demands of the GSs n, where p

represents descending ordered products. Let F be the max fraction size. Every GS n that
requests a total quantity

∑n
i=0 > F , the order is divided into at least two tasks, where the

t− 1 new tasks have F total quantity. The task is divided as many times as, and the fuels
are divided in descending order.

46



Optimization Models

PE: Fractioning orders should be avoided, since the GSs doesn’t appreciate receiving more
than one delivery on the same day. However, tasks above the capacity of a cistern have to
be divided and supplied in two or more separated deliveries.

Shifts: Each driver has an associated time-window [tMini,Maxi] representing the work
block of the driver k. There are vehicles shared between drivers that work in shifts. Thus,
let j be a second shift driver and Dj = max{Ai, tMinj} be the start time of the second
shift, where Ai is the end of the respective first shift.

Two optimizations are proposed to solve this problem. There are 3 drivers working with
shifts from midnight up to 3 PM and is known that are several requests that can only be
fulfilled during the night, the following configuration shows the best results. Let K1 be
the set of first shift drivers, K2 be the set of second shift drivers, K3 be the set of drivers
without shifts, and T be the tasks.

• First optimization: The drivers K1 of the first shift and the tasks T1 ⊆ T , where
deliveries tMaxi ≤ tMaxk are selected for the first optimization. As result of the
optimization, let U1 ⊆ T1 be a set of unassigned tasks and R1 be the routes;

• Second optimization: The drivers K2, K3, and the tasks T2 ∪ U1 not selected for
the first optimization plus U1 are selected for the second optimization. As result of
the second optimization, let R2 be the routes and U2 the unassigned tasks;

• Merge Results: The resulting routes for a given problem are R, where R =
{R1, R2} and the unassigned tasks U = U2.

Hard Constraints

Cistern states: Given a candidate job {pi, dj} to be inserted on a route, and lpi the
previous state of the cistern, were p is the compartment index, calculate the updated state
of cistern lpi after inserting the demand qpi . Let ra = {p0, .., pn−1} be the sub-route of
sequential pickups pi and La = {lp0, .., l

p
m−1} be the compartments states. Update the

states of the compartments with the added products, if cannot insert all the products the
constraint is not fulfilled. This constraint also requires a state updater and a state manager
to keep track of the cisterns loading.

Consider a set of n products {q0, ., qn−1}, a set of m sorted capacities in descending order
{Q0, .., Qm−1}, and c the compartment index. Let the variable lcp ∈ [0; qp] be the quantity
of a product or a part of it added in compartment c and the decision variable ycp = 1 if
product p in compartment c, otherwise 0. The objectiveminf(y) =

∑m−1
c=0

∑n−1
p=0 y

cp(Qc−
lcp) pretends to a find solution that minimizes the amount of unoccupied space in the
cistern. The constraints are:

0 ≤
n−1∑
p=0

ycp ≤ 1,∀c ∈ {0, ..,m− 1} (6.15)

n−1∑
p=0

ycp · lcp ≤ Qc,∀c ∈ {0, ..,m− 1} (6.16)

m−1∑
c=0

ycp · lcp = qp,∀p ∈ {0, .., n− 1} (6.17)
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n−1∑
p=0

ycp · lcp ≥
n−1∑
p=0

yc+1,p · lc+1,p,∀c ∈ {0, ..,m− 2} (6.18)

Constraint 6.15 ensures there is only one product or part of it is in a compartment. Con-
straint 6.16 ensures the capacity is not exceeded for each compartment c. Constraint 6.17
ensures each product is allocated in the compartments. Constraint 6.18 ensures the largest
compartments carry the largest quantities. Moreover, if

∑n−1
p=0 qp >

∑m−1
c=0 Qc holds, the

problem instance has no feasible solutions.

PE: The unloading of the compartments is trivial. But, for the loading process there are
several approaches. The client is interested in minimizing the total number of cisterns in
use, and if there is any empty compartments after loading the cistern, they must be the
smallest ones and the larger quantities of fuel have to be inserted in the larger tanks. This
is, the fuel arrangement is important for the tractor’s stability.

The rationale behind this decision is related to the stability of the tractor and the cistern.
Each of the compartments has a different dimension. If only one compartments is loaded,
it must be the one with the highest capacity, because it will generate less instability in
the tractor. If there are 2 occupied compartments, the two with greater capacity must be
used, and if the quantities differ, the larger must have the greater amount of fuel. If there
are n occupied compartments, the same rule applies.

Prevent loading while not empty: This constraint was already implemented;

PE: The same geographical location e.g., Aveiras can have more than one CC, for instance
a Galp CC and a Repsol CC. A driver can only load in only one CC at a time.

First loading on start location: Given a candidate job {pi, dj} to be inserted on a route,
the geographical location of the start of the route vk i.e., a CC, and the first delivery of
the route after the insertion d0. Let vi be the geographical location of the inserted pickup,
if the pickup p is inserted before d0 and vk 6= vi the constraint is not fulfilled, otherwise is
fulfilled.

PE: As a general rule of the client, the first loading is done at the start location. To relax
the solutions generated by the solver, it is considered that after the first loading, the driver
can load the cistern in another CC as long as it ends at the CC where the route started.

Working time limit: Given a candidate job {p, d} to be inserted on a route ra, tHardk,
and tWorkk of the vehicle k after the insertion. The condition tWork2k+1 ≤ tHardk has
to hold, otherwise the constraint is not fulfilled.

PE: The periodic rest does not count as working hours, however waiting and service hours
do count. This is an important detail since the calculation of the working time tWorkk
differs from client to client.

Soft Constraints

Loading time: Given a sub-route set of sequential pickups of any route ra = {p0, .., pn}
and the loading time constant L. The first pickup p0 has a service time si = si + L, while
ra \ {p0} have 0 has the service time.

PE: In reality, loading a tank or a complete cistern does not take exactly the same time.
It is debatable, but usually all tanks start to be loaded at the same time and the client
considers 1 hour for all loading times in its plannings, and told us to also consider it.
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Deliver closest GSs to the CC first: Given a candidate job {pnew, dnew} to be inserted
in a route, and ra the sub-route of deliveries where dnew is candidate to be inserted. If
|ra| ≤ 1, the penalty does not apply, otherwise obtains the distance between the CC and
the assigned delivery d, and the inserted delivery dnew. Whether the insertion of dnew
is after p and distnew × x < dist, gives a penalty equivalent to the distance between d
and dnew. Otherwise, if the insertion is before p, and distnew > dist × x gives a penalty
equivalent to the distance between d and dnew. The factor x = 1.10 relaxes the application
of the penalty, when dist and distnew are close there is no need for penalty.

PE: The client does not appreciate that tractors deliver to the furthest GSs first. Given
a loaded cistern to supply more than one GS, the nearest GSs must be supplied first,
preventing scenarios as in Figure 6.4. Those are the shortest path routes. When delivering
to the nearest GS first slightly more kilometers are traveled, which makes the solver choose
these solutions instead. In other cases hard-constraints are broken, so turning impossible
to invert the route.

(a) (b) (c)

Figure 6.4: Routes (a), (b) and (c) delivers first the furthest GS then when the trac-
tor is turning back the cistern still have fuel to deliver in another GSs. Routes
(a): CC (214.5Km) → 2 (160.6Km) → 3 (69.2Km) → CC; (b): CC (93.3Km) →
2 (62.4Km) → 3 (44.7Km) → CC; (c): CC → 2 → CC (93.3Km) → 4 (93.4Km) →
5 (16.9Km)→ CC. Distances obtained with Valhalla engine.

Figure 6.5: Penalty function 1
100s

2

Avoid travelling large distances between simultaneous deliveries: Given a candi-
date job {p, d} to be inserted on a route. Let ra = {d0, .., dn} be the ordered sub-route
of deliveries where the delivery is being inserted, and disti,j the distance between any two
location i and j. If |ra| ≤ 1 the penalty does not apply, otherwise let s =

∑n−1
i=0 disti,i+1

be the sum of the distances between deliveries in ra, and 1
100s

2 be the insertion penalty.

Thus, it penalizes the insertion of jobs during the recreate step, proportional to the dis-
tances traveled between deliveries in the sub-route of ordered deliveries where the delivery
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Figure 6.6: Route starting in Sines CC, goes to (2) to supply a GS, travels 213.9 km to
supply a GS in (3), and returns to the CC.

is being inserted. The penalty function (polynomial 1
100s

2) was adjusted several times, ex-
ponential functions were also tried, but generated very large penalties and heavily impaired
the generation of clockwise routes.

PE: The client does not appreciate that tractors travel a long distances between sequential
deliveries. Even if the plan generates a solution with a greater total distance traveled.
There is a high preference to avoid situations as depicted in Figure 6.6. The tractor travels
back a very long distance to supply the second GS.

States

To add custom states in JSprit state manager and state updaters are used. The state
manager keeps stateful information e.g., variables during optimization that are not part of
the solution representation. A state updater triggers if route and/or activity .

Cistern states: Representation of the cistern state managed by the state manager, and
a state updater to update the load of the cistern.

Periodic Rest: Every time a transition ti,j occurs from i to j and a multiple or multiples
of D are reached with the tDrvkj in relation to tDrvki , count multiples reached as X,
ti,j = ti,j + P ·X.

6.2.4 Discussion

This dissertation does not contain a chapter dedicated to the implementation, so this
section explains to the reader the student’s effort allocated to implement each of the re-
quirements for the fuel model, thus in table 6.1 is summarized the effort. The first column
orders each of the requirements temporally, in the order in which they were implemented.
The second column indicates approximately how many days were spent implementing
the requirement. The third column explains if the requirement needed to be adjusted
to the problem, so tunning required to allocate time and trial error. The fourth column
indicates if unit tests were written to test the functionality, and the last column provides
a subjective view of the difficulty to implement the requirement in JSprit. The difficulty is
classified as Low, Medium and High, the first means the implementation was straightfor-
ward requiring at most 2 days, Medium required to analyze the existing code thoughtfully
and to make some changes after the initial implementation. The High is similar to medium,
but required to change the JSprit core and included more development.
For requirement (1) to implement in JSprit required to write a state updater, a constraint,
the representation of the tanks, a tank state manager required by the solver and the
algorithm to add products in the cistern, an adaptation of the minimum sub-array sum
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Table 6.1: Summary of the effort allocated to the implementation of the requirements.

Requirements Days Tunning Unit Test Difficulty
1. Cistern States 7-8 High
2. Periodic Rest 5-6 High
3. Working Time Limit 2 Medium
4. First Loading on Start Location 1-2 Low
5. Shifts 3 Medium
6. Fraction Tasks < 1 Low
7. Deliver Closest First 3-4 Medium
8. Avoid Large Distances Sim. Del. 3-4 Low
9. Improved Cistern States 3-4 Medium

was implemented to find the set of free compartments that yield the minimum unoccupied
space after introducing a product. The representation of the tank had to be added to
JSprit to be able access it, since a new object representation (i.e., tanks) was introduced
in the problem definition of the JSprit. The main difficulty was implementing all these
components and made them work together.

For requirement (2) required to change several parts of the JSprit core that could not
be extended, from changing how ti,j is calculated, take periodic rest into account in time-
windows state updaters and reshape some constraints. A non-existing driving time variable
had to be passed around in several methods to conceive this functionality as native. This
functionality requires to change several unit tests that were ignored, however based on
black-box tests the results were always right. To update the existing tests, it would take
several days of work, in which several tests would be necessary to be re-written.

For requirement (3) the existing constraint used for the passengers model was re-written.
The periodic rest had to be included in the calculations and required to lead with the
pickup and delivery insertions to calculate both the current and the driving time after the
insertion, using the following method. The nextAct is the job (i.e., pickup or delivery in
this problem) that is trying to be inserted. Moreover, the prevActDrivingTime is one of
the new parameters add to the JSprit core because of the periodic rest, and it’s not part
of the default version of JSprit. In the implementation of (3) it was avoided to use cycles,
although tempting.

ConstraintsStatus fulfilled(JobInsertionContext iFacts, TourActivity prevAct, TourActivity
newAct, TourActivity nextAct, double prevActDepTime, double prevActDrivingTime)

The requirement (4) was the simplest of the list, requirement (5) required tunning because
of the shift schedules, some experiences were done trying to obtain the best results for
this problem. Requirement (6) was implemented with a recursive algorithm, in the first
implementation if a task was divided approximately the same quantity was distributed by
the new tasks, although it was changed to the version in the previous section. Requirements
(7) and (8) required to implement a way to calculate the smallest angles and to obtain sets
of simultaneous deliveries or pickups giving the route and a delivery or pickup, respectively.
This concept of "simultaneous" was used to improve the cistern state in requirement (9),
instead of update based on the previous state, all the products were re-introduced to yield
better solutions and a recursive distribution algorithm was written, in some cases this
constraint was broken, but in reality the products would fit in the cistern.

As a reflection, if these requirements had been implemented in OptaPlanner less effort
would have been required, however, it would be necessary to invest in performance. In
addition, no implementations were found in these tools (e.g., Github) with an answer to a
problem similar to this.
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Results

The first two sections present the performance and quality of the solutions obtained by
the solvers. The comparison between OR-Tools, OptaPlanner and the Sentilant ’s solver
for the passengers problem in 7.1, in which the Sentilant ’s solver yielded better results,
thus used to develop the model for the fuel transport problem with results in 7.2. Section
7.3 illustrates the request time of an optimization and summaries the API, the feedback
report presented to the client is explained in 7.4, and the results of the integration with
the FSM service used by the fuel model client in 7.5.

7.1 Passengers Transport Model

First a statistical description of the problem instances used to compare the models is given
in 7.1.1, the experimental setup explained in 7.1.2, a comparison between KPIs in 7.1.3,
and a discussion about the trade-offs of choosing a solver over another for this problem in
7.1.4 as take home message to the reader.

7.1.1 Data Description

A set of 30 problem instances were randomly obtained from the optimization records of
the client between 2018 and 2020, for privacy reasons no information about the loca-
tions is provided. The mean number of tasks is 124.90 (SD=122.15) and resources is
28.13 (SD=16.76). Let start by the resources, in total there are 844 resources in the
dataset. Time expressed in <hours>:<minutes>, the work time blocks has a mean
of 19:27 (SD=05:33; min=03:34; median=20:09; max=25:59), driving time limit 08:45
(SD=01:17), working time limit 11:03 (SD=02:50), fixed cost 0 (SD=0.00),maximum
number of tasks to be assigned to the resource 223 (SD=100.44), cost per hour 2.05
(SD=3.11), per km 1.09 (SD=0.39), per empty km 1.00 (SD=0.00). For the capacities,
the client uses two types, occupation to prevent sequential pickups 1.00 (SD=0.00), and
passengers 5.10 (SD=2.11) as the limit of people that can be transported with upper
bound of 559.95 (SD=5345.50; min=3.00; median=4.00; 75%=8.00; max=52018.00).

For the tasks, in total there are 3747 tasks in the dataset. Time expressed in <hours>:
<minutes>:<seconds>, the pickup time-window has a mean of 00:05:19 (SD=00:03:44),
delivery time-window 11:59:49 (SD=00:11:29), pickup service time 00:08:29 (SD=
00:04:11), delivery service time 00:05:31 (SD=00:01:09), payment 35.89 (SD=26.20),
and priority 1.0 (SD=0.0). For the required capacity, mean occupation of 1.00 (SD=0.00),
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and for passengers 3.06 (SD=1.84). The weights {w0, w1, w2} have means of {0.41(SD =
0.31), 0.45(SD = 0.27), 0.66(SD = 0.22)}.

7.1.2 Experimental Setup

Solvers were ran in a server machine running Ubuntu v18.04.4 operating system with a i7
3770 CPU up to 3.9 Ghz and 4.5Gb of RAM, configured to run up to 30 minutes. The
configuration of the optimization algorithm in the solvers is depicted in Table 7.1. For
the termination criteria, OR-Tools only returns feasible solutions, but OptaPlanner may
return an infeasible solution, so the algorithm was configured to only stop whether a feasible
solution is found and the solution is not improving. Different constructive heuristics and
local search algorithms were tried, the GLS and LA showed better performance.

For the OR-Tools, the parameterization related to moves remained unchanged, whereas for
OptaPlanner an implementation with custom moves described in section 6.1.4 was done
to improve the performance of the model due to breaking pickup and delivery related
constraints. Two additional moves where used that grabs a random sub-route i.e., set of
sequential locations and swap or move them to other random place.

Table 7.1: Environment Configuration for the Passengers Problem

Jsprit OR-Tools OptaPlanner

Threads 1 1 4
Reproducible Yes Yes No

Termination
Criteria

500 iterations ∨
200 unimproved
iterations

10 unimproved iterations
5 unimproved seconds ∧
10 unimproved iterations ∧
No hard constraints broken

Constructive
Heuristic Best Insertion Local Cheapest Insertion First Fit Decreasing

Local Search R&R GLS LA (AcceptanceSize=64)
Moves — — 2 single, 2 sub-route, 2 custom pair

7.1.3 Comparison Results

To quantify the difference against JSprit, the percentage change (equation: 7.1) was cal-
culate for the relevant KPIs. Table 7.2 reports an overview of the results, where JSprit
is 2.78 times faster than OR-Tools and 1.63 times faster than OptaPlanner, while finding
solutions with more tasks assigned that consequentially yields more monetary payment.

Percentage Change =
∆V

|V 1|
× 100 (7.1)

The total traveled distances and durations is lower in OptaPlanner than the other solvers,
but when compared by the assigned ratio, it assigned fewer tasks. The amount of assigned
tasks is the most important KPI, which diminishes the quality of the work plans obtained
by OptaPlanner significantly. As a last observation, OR-Tools presents the lowest distance
in empty ratio, but again assigns fewer tasks than JSprit.
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Table 7.2: Comparison between the solutions obtain by the solvers using 30 problem
instances. Bold value represent the best mean value for a KPI. The red and green colors
represent the percentage change from JSprit for negative and positive criteria for the
passengers problem, respectively.

Jsprit OR-Tools OptaPlanner

Mean Mean Change Mean Change

Optimization Time (sec.) 80.30 223.23 178% 130.97 63%
Num. Iterations 424 134 — 1923 —
Assigned Ratio 0.87 0.84 -3% 0.77 -12%

Working Duration (h) 383 335 -12% 357 -7%
Effective Duration (h) 124 143 15% 111 -11%
Driving Duration (h) 98 107 9% 113 16%

Distance (km) 6773 7037 4% 4724 -30%
Distance Empty Ratio (km) 0.37 0.32 -13% 0.34 -7%

Payment 3917 3636 -7% 2890 -26%
Avg. Speed (km/h) 68 69 — 69 —

Not Assigned Vehicles 4.7 4.8 2% 2.8 -39%

7.1.4 Discussion

Despite the results favoring JSprit, the aspect of ease of developing new models should not
be overlooked. Table 7.3 depicts the trade-offs to implement the passengers model with each
of the solvers, providing a take home message to the reader. Lets start by the advantages,
the JSprit already provides good results without changing the hyper-parameters of the
R&R, although it has more than 20 parameters, but to try to match the performance of
JSprit time was invested in modifying the settings of the remaining solvers without success.
For construction heuristic, only OR-Tools matched the performance of JSprit, but in the
majority of the problem instances it was slower. The passengers model can be quickly
configured withOR-Tools showing the fastest development, but in reality it did not involved
any development just the configuration of parameters, whereas JSprit and OptaPlanner
involves weeks of time-effort of a developer to build the passengers model, which in the case
of OptaPlanner the effort is not worth it considering the results. However, from a software
architectural perspective the OptaPlanner provides the fastest interface to implement and
change constraints using Drools, whereas in JSprit the process of developing a constraint
can take a few days, for instance to implement a constraint to limit the maximum working
hours can take at least a day, this time is sufficient to implement a first version of all
constraint in OptaPlanner.

After more than a month without looking at the models code, the OptaPlanner was the
most intuitive to understand mostly due to the inversion of control which removes the pro-
cedural flow of the code, but this makes the solver more difficult to debug than the others.
However, OptaPlanner required to develop a domain model, state updaters to implement
the requirements of the problem and also custom moves to try to match the performance
of the remaining solvers. Moreover, debugging was difficult for being a framework with
inversion of control there are several operations in which the user loses control, for instance
during the development of the domain model. At last, using OR-Tools can be a risk, since
if this client wants a new feature, for instance a periodic rest, it cannot be implemented
with this solver without change the source code (in C++), and in JSprit too, but since
the solver is written in Java forking JSprit is much simpler, this is what Sentilant did to
answer some problems. Lastly, JSprit ’s R&R is composed by two types of soft constraints:
insertion and cost function costs, for the reader’s knowledge the comfort upper bounds,
distance traveled cost and payback are not part of the cost function, but instead of the
insertion cost. If a decision between them is not made, it implies having to try both.

55



Chapter 7

Table 7.3: Comparison for the passengers problem regarding advantages and disadvantages
of choosing a solver over another for a CVRPPDTW, and considering the ease of developing
and maintaining the model.

Jsprit OR-Tools OptaPlanner

Positive Positive Positive
• Best overall results • Fastest development • Easy to implement custom soft constraints
• No algorithm’s hyper-parameters
configuration needed • Low learning curve • Provides a benchmarker to compare

different hyper-parameters configurations
• Fastest construction heuristic
while achieving best initial results

• Easy to maintain promoting good source
code structure and extensibility

Negative Negative Negative

• Decide between insertion cost
and/or cost function to implement
a soft constraint

• High probability of
failing to respond to
future client’s needs
of this model

• Many time spent choosing the algorithms
and configurations to improve performance

• Hard constraints time-consuming
to implement

• No dedicated implementation to lead with
pickup and deliveries

• Highest learning curve • Required to develop the domain model
• Required to develop custom states updaters

• Slowest development if performance
is disregarded • Slowest development (due to custom moves)

• Most difficult to debug

Based on these results, a decision was made to choose the solver for the fuel problem. To
implement in OR-Tools it would be necessary to modify the source code, and in OptaPlan-
ner to heavily invest in custom moves, however the current results favor JSprit both in
performance and solution quality, therefore the Sentilant ’s solver using JSprit was
selected to implement the fuel transports model.

7.2 Fuel Transports Model

First a statistical description of the instance generated to test the model in 7.2.1, results
of the performance and quality of the solution 7.2.2 and an overall discussion about the
results in 7.2.3.

7.2.1 Data Description

Data about a real working day of the client transporting fuel on 8th August 2020 was
obtained, including locations and schedules of all cargo centers and gas stations. The
sources of the data were: i) file containing information of 161 gas stations and more than
500 clients that are not gas stations, ii) file containing information about cargo centers, iii)
five files describing 57 orders with the identification of the clients and the fuel quantities
ordered, and iv) a file describing the tractors, since the fleet is not homogeneous. The
remaining information was gathered from conversations with the client. The reader can
obtain that information from the problem statement on section 6.2.1.

Resulting testcase has 57 tasks and 26 resources. Let start by the resources, all tractors,
except one, have a 6-tank cistern with a total capacity of 36k liters, but the capacity of
the tanks differs. The most common configuration, ending at the rear of the cistern, is:
11k, 5k, 4k, 3k, 7k and 6k. The remaining tractor has a 3-tank cistern with 5.9k, 4.3k and
4.7k (Total: 14.9k) liters capacity. Loading time of 1 hour is considered, 10 maximum
working hours and 8 driving hours, and a rest time of 45 minutes every 4 hours. 23
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out of the 26 tractors have a work block [8:00; 19:00]. The remaining resources have
a work block for each shift, the first shift [00:00; 15:00] and the second shift [13:00;
03:00]. The start and end locations were not presented in the data, so 15 resources
were considered to start in cargo center 1, 7 tractors in cargo center 2, and 4 tractors in
cargo center 3. Approximately corresponds to the amount of pickup locations of the tasks.

There are 3 pickup locations i.e., cargo centers in this example. For the tasks: 37 (0.65%)
in cargo center 1, 9 (0.16%) in cargo center 2, and 11 (0.19%) in cargo center 3. The de-
livery locations corresponds to the clients’ gas station. A sufficient large time-window
was considered for the pickup, the cargo centers are always available. For 22 (0.39%) of
the tasks, the gas station does not impose any time restrictions. Eight of the tasks (0.14%)
have a time-window between [00:00; 06:00]. The remaining tasks have a time-window with
a mean start and end in hours [9:35(SD=1:41); 14:18(SD=2:47)]. It includes the exclusion
of interval of time that cannot deliver. There are 6 tasks with excluded time-windows,
the time gaps are [17:30; 19:00], [11:30; 15:30], [11:30; 15:30], [13:30; 15:30], [12:00; 15:00],
and [11:00; 15:00]. The considered service time floats between 1 hour, 45 and 30 minutes
for cargo above 18k, 7.2k and 0k, respectively. There are 6 types of products, 123 prod-
ucts requested with mean 7476.42 (SD=5233.34; min=2000; median=6000, max=30000).
Sum products quantity of an order as a mean of 16133.33 (SD=7464.04; min=4000.00;
median=14800.00; max=38000.00). Moreover, the used distance cost is 4 and 1 for time
cost.

Table 7.4: Percentage of hard-constraints evaluated as broken, thus prevented to insert
a task, during the recreate phase of the algorithm for the 1st and 2nd optimization with
47924 and 2580 violations, respectively.

Hard Constraint Percentage of Broken Hard Constraints

1st Shift 2nd Shift & No Shift

FirstPickupTasksAtStartLocationConstraint (1728) 6.33% (1804) 3.76%
PreventPickupWhileVehicleIsLoadedConstraint (16714) 61.27% (37040) 77.29%

ShipmentTankLoadActivityConstraint (0) 0% (267) 0.56%
VehicleDependentTimeWindowPeriodicRestConstraint (8836) 32.39% (6233) 13.01%

WorkTimeLimitConstraint (0) 0% (2569) 5.36%
PreventSubTasksForSameUserConstraint (0) 0% (7) 0.01%

DrivingTimeLimitConstraint (0) 0% (4) 0.02%
Total (2580) 100% (47924) 100%

7.2.2 Results

The number of constraint violations is a metric of reliability of optimization algorithms.
Table 7.4 describes the percentage of constraints broken, the bottleneck of the algorithm is
PreventPickupWhileVehicleIsLoadedConstraint preventing to insert a pickup between two
deliveries. This indicates i) if the truck could be loaded at any time, the results would
be better, and ii) the algorithm is not prepared to avoid exploring solutions that break
this constraint. The second most violated constraint is VehicleDependentTimeWindowPe-
riodicRestConstraints that corresponds to conform with the time windows. The remaining
hard constraints represent less than 10% of total violations in each optimization.

An usual metric for measuring the performance of an optimization algorithm is by obtaining
the cost of the solution found in each iteration of the algorithm. If the improvement is low
or there is no improvement at all, the computing time is considered wasteful. The algorithm
was configured to end after 32 iterations without improvement, Figure 7.1 describes the
cost of the solution and the best solution found in each iteration.
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(a) Last improvement in iteration 41 (b) Last Improvement in iteration 39

Figure 7.1: Cost function values, the algorithm stops after 32 stalled iterations. For the
first optimization 12 assigned tasks (0.52%) and 42 assigned tasks (96%) for the second.

Table 7.5: Comparison of KPIs between the initial solution and the best solution found.
Green means the solution improved towards the client’s criteria, otherwise red.

KPI Initial Solution Best Solution
Found Change

Assigned Ratio 0.95 0.96 1.05%
Working Duration (h) 155 147 -5.16%
Effective Duration (h) 135 135 0%
Driving Duration (h) 60 59 -1.67%

Distance (km) 5687 5624 -1.08%
Distance In Empty Ratio 0.43 0.42 -2.33%

Periodic Rest (h) 2 3 50%
Not Assigned Vehicles 4 6 50%

Quantity Transported (liters) 834600 886600 5.87%
Free Space (liters) 223800 192900 -13.81%
Free Space Ratio 0.27 0.22 -18.52%

Cisterns 30 30 0%
Used Compartments 153 162 5.88%
Unused Comp. Ratio 0.16 0.11 -31.25%

KPIs for the best solution found are compared with the initial solution from the algorithm
in Figure 7.5. The solution represents the merged results from both optimizations. Com-
paring the initial solution with the best solution there is no significant improvement, the
number of assigned tasks and the total distance are very close, less than 2% difference in
both cases. The algorithm was also ran in increasing base exponents of 2, b2, up to 4096
iterations and no significant improvement was found i.e., more task assigned.

The client does not appreciated some generated routes as depicted in section 6.2.3 of the
previous chapter. Routes unappreciated by the client were classified as: i) large distance
between deliveries, ii) delivered first to a further away gas station, iii) transits through
Ponte 25 de Abril where the hazardous transports should not pass. Based on the classifi-
cation, routes were ranked as bad, acceptable, and good. A route with bad ranking
is classified as i), ii) or iii); with acceptable ranking as only one delivery or a moderate
distance between deliveries (this is subjective); otherwise, ranked as good.

Table 7.6 illustrates the results for 5 different configurations of the solver. The scenar-
ios with the soft constraints avoid Ponte 25 de Abril and use the improved distribution
algorithm. The Deliver Closest First scenario seems to provide the best results, but the
majority of the bad and neutral routes in this scenario are due to a large distances travelled
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Table 7.6: Classification of the routes appreciated by the client with different configuration.
Unique Delivery is represented by 2 values, the first is the number of routes with just one
delivery and the second is the number of single deliveries.

Scenarios Routes Distance
(km)

Unique
Delivery Bad Acceptable Good

Second Delivered Report 28 6170 9 / 15 2 (7%) 13 (46%) 13 (46%)
Avoid Ponte 25 Abril and

Improved Distribution
Algorithm

23 5690 2 / 11 3 (13%) 10 (44%) 10 (44%)

Deliver Closest First 23 5772 2 / 9 2 (9%) 4 (17%) 17 (74%)
Avoid Travelling Large

Distances Between
Simultaneous Deliveries

24 5630 5 / 12 3 (13%) 8 (33%) 13 (54%)

Both constraints (Final) 23 5624 4 / 10 2 (9%) 7 (30%) 14 (61%)

between simultaneous deliveries. When both constraints are combined, the results improve
toward the client’s preferences, but 2 bad routes were generated. An analysis to those bad
routes revealed that due to time-windows constraints a better route could not be formed.
For instance, the driver goes to A then B, but going first to B than A is not possible.

7.2.3 Discussion

The results presented in this section aim to provide a view about the performance of the
last version of the model, but most of the work on this model focused on its development
and in satisfying customer preferences. Regarding customer preferences, the classification
of the routes and comparison of the results, between different work plans, was extremely
important to find a way to improve the solution toward the client’s needs. Some of the
days, more time was invested in analyzing the current solution at that moment, than
implementing something. Little time was invested in research for this model, instead it
was invested in understanding the JSprit algorithm, but there is not much information on
the internet regarding the R&R, and about our requirements implemented in any of the
compared solvers.

Some requirements were more difficult to implement than others, the most difficult to
implement were the tanks states, periodic rest, improve distribution of the load and limit
working time limit. For instance, to improve the performance, instead of update the tank
based on the previous states, each set of sequential pickups was updated at once. The same
concept of sequential pickups (and deliveries) applied in the evaluation of the constraints
made us achieve in some cases better results. One the other side, some functionalities were
straightforward to implement, for instance the solver supports multiple time-windows, so
to implement a way to excluded time-windows this functionality was simply used.

7.3 Planning System API

Two results are presented about the planning system, the processing time of a synchronous
request and a brief description of the API and its documentation.

Tests to the planning system were made with the problem instance generated for the fuel
problem. In Table 7.7 the mean time spent by the system to process a synchronous request.
As expected, the first optimization is faster because the search space is smaller, half of the
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tasks to assign and there is only 3 resources to allocate them, compared to 26 in the
second optimization. Moreover, the solver ran in single-thread and occupied around 170
megabytes of RAM for the first optimization and 190 for the second in the Java Virtual
Machine.

Table 7.7: Time, in seconds, to process a synchronous request. Processing Time: time took
by the solver from receiving the problem instance until sending to the queue; Pipeline: same
as processing but for an optimization; Valhalla: request and receive time and distances;
Search Time: optimization algorithm run-time; (1) and (2) means 1st and 2nd optimiza-
tion; Tested with 10 requests.

Mean Std

Pipeline (1) 2.71 0.52
Valhalla (1) 2.10 0.17

Search Time (1) 0.50 0.41
Pipeline (2) 9.30 0.58
Valhalla (2) 4.44 0.14

Search Time (2) 4.63 0.55
Processing Time 12.20 1.24

Sync Request Time 12.49 1.24

The API was documented using Swagger and can be accessed through the planning system
in the endpoint /api/api-doc/. The documentation page is illustrated in Figure 7.2 with two
endpoints. The endpoint /api/plan exposes an HTTP post method to submit a problem,
and a get method to retrieve a plan given its identification. The system only interprets
messages in a JSON-format, and the API has 24 objects documented.

Figure 7.2: API Documentation: Top of the page.

To submit a problem, the API requires a valid authentication token i.e., key, a valid prob-
lem instance and to choose the type of request synchronous, asynchronous or webhooks.
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If the type is webhooks, an callback url has to be provided to the server to send the re-
sponse, this part of the documentation is depicted in Figure 7.3. Four response codes
are implemented: success, bad request error, unauthorized error and unprocessable entity.
The fourth response code means the problem instance is not valid, or there is missing
information required to the solver generate the work plan.

Figure 7.3: API Documentation: Submit a problem instance to generate a work plan.

7.4 Feedback Report

To present the optimization results to the client, a PDF report is generated from the
problem data and the resulting work plan obtained from the solver represented in JSON-
format. The PDF report is divided into three parts, the first part presents two tables
with information about the drivers and the tasks, the second part presents the routes
assigned to drivers and a Gantt with the schedules of the drivers.

The beginning of each table, in the first part is represented in Figures 7.4 and 7.5,
describing the problem instance from section 7.2.1 in a table format understandable by the
client. The first part was crucial in the first feedback, since several problems were detected
(e.g., considered time required to load a cistern, schedule of the shifts), the illustration of
this information generated discussion with the client important to collect accurate data
about the problem.

Figure 7.4: Start of the table describing the resources.

The second part presents the work plan information depicted in Figure 7.6: the routes
presented in a table format, metrics, and a map showing the geographic locations to visit,
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Figure 7.5: Start of the table describing the tasks.

for each of the routes. In the first version of the report, the routes were not graphically
presented, but the client requested to show the routes and to consider a set of sequential
pickups a load. The client was interested in the last column that presents the occupation
of the cistern, conveying this to be an important metric, as described in the PE of the
tanks states in section 6.2.3. The client explained that minimizing the distance traveled
and maximizing the quantity loaded in the cistern were the most important objective,
however, the client also wanted as many tasks as possible to be assigned.

The third part shows KPIs, and a illustrative Gantt diagram in Figure 7.7, representing
the schedule of the drivers. The Gantt represents the results from section 6.2, but the
important thing to convey is how results were presented to obtain feedback. When the
Gantt was presented to the client for the first time, it involved a long discussion about
time-related requirements, and the client suggest to implement a visualization like this in
the FSM service, but this is out of scope of this work.

Figure 7.6: Example of the presentation of a route in the report with the work plan
information. In the map, the green node is a cargo center and the black nodes are the gas
stations to deliver the fuel, the deliveries are numerated.

As a reflection, there are many ways to do software demos, in this case, to present results
of the development of an optimization model for a planning problem. Initially, a single
web page would be built with the results, but too much time would be invested. As
alternative, a PDF was generated with a script developed in a couple of days, with the
advantage of reducing the ways to convey information to: tables, figures or text without
hidden information e.g., requires to click. Also, the client could print reports to compare
different versions of the work plans, ensuring no deformation in the document.
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Figure 7.7: Gantt chart representing the routes timeline. The labels are written in Por-
tuguese.
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7.5 Planning System Integration

Sentilant provides an FSM service called DrivianTasks. In the case of the fuel model client,
the service has been tailored to his business needs, and currently does not use automatic
planning for any of his problems. In this section, the flow of the client from importing
orders to the visualization of the resulting work plan is demonstrated. The performed
integration corresponded in adapting the existing optimization user interface, in the base
version of DrivianTasks, and integrate the communication with the planning system. A
request for optimization involves retrieving data from the database, build the request, send
the request to the API, read the response and writing the modifications in the database.

The first step of the client is importing orders to the service in the interface depicted in
Figure 7.8. Usually, involves importing more than one file, each file corresponds to orders
that are loaded in a specific CC.

Figure 7.8: DrivianTasks: Interface to import data such as the fuel transportation orders.

Figure 7.9: DrivianTasks: Planning panel where tasks can visualized and edited.
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In the second step, group and day of the planning has to be chosen. The client does
several types of transports and uses a concept of groups, part of his drivers, vehicles and
the imported tasks in the previous step are associated to a group. Then, the tasks to plan
can be selected as shown in Figure 7.9, in this case all tasks were selected.

Figure 7.10: DrivianTasks: Planning panel to configure additional parameters before op-
timize the selected tasks.

In the third step after clicking the optimize button in the top right corner of the tasks
panel, a windows to configure parameterizations is displayed. For this client, this button
was not active, it was activated and almost all existing configurations were removed from
the panel, except speed factor and maximum number of tasks per user. When the green
button in Figure 7.10 is clicked to optimize, the integration done in this work comes in,
that reads the required data and saves the work plan. During the process the client has to
await for a response.

Figure 7.11: DrivianTasks: Visualization of a work plan for a driver with 7 tasks assigned
after the optimization. On the right side of the time-window in red color is presented the
expected start time of the task obtain from the solver.

After the planning process, the client can visualize the schedule for the drivers, can make
any modification to the plan or even re-optimize the plan. In Figure 7.11 is described the
work plan for a driver with 7 assigned tasks. The load in a cistern can be visualized in
Figure 7.12, the distribution of cargo from the solution obtained from the solver for a load
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(i.e., in VRPPD convention 2 pickups) with 2 deliveries.

Figure 7.12: DrivianTasks: The loading of the cistern can be visualized.

At this stage, the results were validated manually without integration and unit tests,
although the planning can be demonstrated to the client. This last part of the work
illustrates the real-world application of the developed optimization model, without this
part, regardless of the results of the optimizations and the technical difficulty, this work
would seem incomplete as the way it was presented.
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Conclusions

The initial proposal involved using OptaPlanner to answer 3 optimization problems. By the
end of the first semester, Sentilant proposed to develop a model to answer a fuel transport
problem for a real client, redirecting this work to answer that problem with inputs and
feedback from the client.

As a contribution to the Sentilant ’s FSM system, a planning system API was developed
and deployed with Docker on a remote server, allowing external software systems to obtain
work plans including aggregated KPIs for the fuel transport problem.

This project involves two areas of expertise. The mathematical optimization that in-
volves understanding optimization algorithms to implement functionalities in the problem
layer of a solver, thus satisfying the business requirements of clients. For the software
engineering involves requirement gathering, documentation, and the Agile software de-
velopment process followed to manage the project.

For the optimization part, in the first semester, an extensive review of 3 state-of-the-
art VRP solvers targeted to solve real world scenarios was performed. In addition to a
conceptual analysis, the passengers model was implemented, and compared with 30 real
test cases, concluding that JSprit can allocate more tasks in less time. In the second
semester, JSprit was chosen to implement the fuel transport model for a client of the
Sentilant ’s FSM system. The solver was extended with a set of features justified with PE,
obtained from the client’s feedback. Moreover, feedback was crucial to refine the problem
instance used to test the model, so confidence in the results shown in 8.2 can be given.

For the engineering part, in the first semester, the ASRs were defined, consisting of func-
tional requirements, QAs, and technical and business constraints, also risks were identified
and mitigated. Building the utility tree in 4.12 was an important parts of this work, in
just one table is given a view of the main requirements that the system should satisfy. The
development process started in the second semester with 6 sprints, lasting 2 weeks each.
Four sprints were dedicated to the fuel model, and 2 to the planning system. Providing
an answer to the fuel problem by the end of December 2020 was the threshold of success
for this project, thus more time was invested on the model and results visualization than
on the system. After developing the API, two additional sprints were followed to integrate
the solution in the FSM service used by the client to demonstrate the planning proposal.
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8.1 Overall Conclusions

All the goals set for this work were accomplished. Despite the routing solvers offering
implemented optimization algorithms, developing a model takes time and above all, the
student learned that there are real-world requirements for the models that are not part of
the optimization problem, such as avoiding locations, obtaining real distances and dura-
tions depending on the client needs, and multi-optimizations to lead with shifts.

This was the student’s first contact with optimization algorithms and there were difficulties
in how to expose and explain the results. Technical decisions made in terms of optimization
were taken by the student, and in the eyes of experts may not be the best, namely in the
adopted optimization language to explain the implementation, and in the application of
preferences elicitation.

Choosing the solver was the most difficult decision in this work, fortunately all model’s
requirements were successfully implemented. This shows that investing time in comparing
technologies before hand, namely solvers, can decrease the likelihood of failure to respond
to the client, and also that the quality of the work plans offered be better.

It must not be forgotten that Sentilant has a need to reduce the time invested in the
development of its models, although in this work a better alternative has not been found,
so confidence has been given in JSprit.

To conclude, this project was a great challenge that involved making technical and man-
agement decisions during the course of the project, contributing to the enrichment of hard
and soft skills that helped the student to become better at a professional level.

8.2 Future Work

Regarding the integration with the FSM service, for now the parameterization is hard-
coded, but in the future a better interface should be developed specifically for this client’s
problem. For instance, allowing the client to change the loading time of a cistern, and
specify locations that should be avoided, as bridges.

As future work to improve the fuel model is proposed to: i) generate more instances to test
the model and improve soft constraints e.g., delivery closest first, ii) each order has one
respective CC to load the fuels, so let the solver optionally accepts a set of possible CCs
for each order and assigning the most adequate, and iii) tractors transporting hazardous
materials must, whenever possible, travel on motorways, thereby providing a new KPI with
the toll cost of the work plan.

Moreover, currently there are clients of the FSM system interested to obtained work plans
that Sentilant as no answer, so in the future new tailored models will be developed and
integrated into the planning system.
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Appendix A: Results for the Airport Problem

Table 1: Results for the implementation with JSprit from Sentilant for the airport prob-
lem. Tested with 30 instances randomly taken from the requests of the client between
2018 and 2020.

Id
T
as
k
s

V
eh

ic
le
s

D
u
ra
ti
o
n

(s
ec
.)

It
er
.

A
ss
ig
n
ed

R
at
io

W
o
rk
in
g

D
u
ra
ti
o
n

(h
)

E
ff
ec
ti
v
e

D
u
ra
ti
o
n

(h
)

D
ri
v
in
g

D
u
ra
ti
o
n

(h
)

D
is
ta
n
ce

(K
m
)

D
is
ta
n
ce

E
m
p
ty

R
at
io

P
ay
m
en
t

A
v
g
.
S
p
ee
d

(K
m
/
h
)

U
n
as
si
g
n
ed

V
eh

ic
le
s

1
6
6

1
3

10
50

0
0.

74
11

9
66

55
34

08
0.

31
19

18
67

0
2

5
3

1
7

11
50

0
0.

89
24

6
61

50
30

89
0.

32
19

60
69

0
3

7
8

3
3

18
50

0
1

38
2

99
81

56
09

0.
29

34
60

67
8

4
1
4

1
5

2
20

1
0.

86
74

20
18

13
53

0.
46

58
7

74
9

5
5
6

3
1

8
21

8
1

30
1

66
53

35
62

0.
28

21
98

66
10

6
7
1

2
2

12
50

0
1

29
9

90
72

50
64

0.
29

31
08

68
1

7
3
2

2
3

7
45

2
1

18
3

38
32

22
49

0.
25

14
32

68
9

8
3
6

3
4

33
3

0.
47

56
11

7
48

1
0.

11
85

67
0

9
3
2

2
3

7
50

0
1

17
3

41
32

22
30

0.
25

14
32

67
9

10
6
7

2
3

12
50

0
0.

99
30

7
87

70
47

47
0.

31
28

44
67

1
11

5
2

2
3

13
50

0
0.

98
32

2
73

61
42

36
0.

36
22

42
69

0
12

6
5

2
2

7
26

7
0.

92
26

0
75

61
40

96
0.

33
23

81
67

0
13

1
1
6

1
6

20
24

8
0.

58
19

8
86

70
46

97
0.

37
23

93
67

0
14

1
1
0

2
0

30
50

0
0.

78
28

8
12

2
10

1
70

29
0.

39
34

81
70

0
15

3
0

1
5

5
30

8
0.

83
11

2
40

35
26

16
0.

47
11

47
70

4
16

5
8

1
0

11
50

0
0.

74
15

9
56

47
31

95
0.

39
16

99
68

0
17

9
5

3
8

27
50

0
1

36
5

12
1

10
3

69
53

0.
42

38
62

67
11

18
8
3

2
2

12
33

3
0.

92
28

3
10

4
88

61
65

0.
4

31
56

69
0

19
3
5

1
1

22
0

0.
17

21
6

4
26

1
0.

66
16

5
58

0
20

3
2
1

5
8

29
1

50
0

0.
94

81
9

42
7

35
2

25
23

6
0.

74
14

05
5

71
0

21
2
2
0

4
8

11
7

50
0

0.
93

64
0

26
8

21
8

14
96

9
0.

73
84

33
68

0
22

5
4

7
7

50
0

0.
85

64
0

38
26

17
78

0.
15

23
0

69
0

23
1
9
8

4
3

84
42

3
0.

99
61

3
24

0
19

4
13

25
3

0.
77

79
65

68
3

24
2
0
5

4
1

95
50

0
0.

94
54

6
24

7
20

9
14

42
5

0.
69

78
25

69
0

25
1
9
4

3
7

10
5

50
0

0.
85

47
3

12
0

82
56

02
0.

28
65

76
68

1
26

3
2
7

5
5

28
3

45
6

0.
9

74
4

24
6

18
4

12
75

8
0.

18
12

39
3

68
0

27
3
2
1

5
4

23
1

41
1

0.
93

73
3

23
2

18
2

12
70

7
0.

18
12

83
7

69
0

28
1
3
2

3
8

44
50

0
0.

97
46

3
11

4
79

53
31

0.
3

47
34

65
2

29
6
1

2
3

15
50

0
1

27
3

57
41

28
50

0.
27

30
5

68
3

30
5
6
5

7
0

92
0

33
8

0.
93

13
85

46
7

32
7

23
23

5
0.

14
26

20
71

69

M
ea
n

12
5

28
80

42
4

0.
87

38
3

12
4

98
67

73
0.

37
39

17
68

5

73



Appendix

Table 2: Results for the implementation done in this work using OR-Tools for the airport
problem. Tested with 30 instances randomly taken from the requests of the client between
2018 and 2020.
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Table 3: Results for the implementation done in this work using OptaPlanner for the
airport problem. Tested with 30 instances randomly taken from the requests of the client
between 2018 and 2020.
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Appendix B: JSprit’s Optimization Algorithm

Figure 1: Search process of the JSprit solver. When the searchSolutions() starts, it’s
assumed that all the required configurations and data was previously provided to the
object vra.

Figure 2: Main components and interactions in a ruin-and-recreate iteration of JSprit. The
steps are inspired by the ruin-and-recreate principle from Gerhard Schrimpf 2000.
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Appendix C: Routes Classification

(a) Routes ranked as Bad

(b) Routes ranked as Acceptable

(c) Routes ranked as Good

Figure 3: Classification of the routes for the final solution. Total of 23 routes, 2 (9%)
routes ranked as bad, 7 (30%) as acceptable and 14 (61%) good. The numbers represent
the order of the deliveries.
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Appendix D: Used Software Libraries

• Report Generation: To notify the progress of the fuel model to the client reports
were generated with the most recent versions of the Python interpreter and the
following libraries between October and December 2020.

– Matplotlib: Creates static and animated data visualizations. Used to generate
a Gantt chart (textitgithub.com/matplotlib/matplotlib);

– Requests: Allows to send HTTP requests. Used to obtain distances and du-
rations (github.com/psf/requests);

– FPDF: PDF document generator ported from PHP FPDF. Used to generated
the report (github.com/reingart/pyfpdf );

– Folium: Data visualizer in a leaflet map. The leaflet is a Javascript library
to build interactive maps. Used to generate the maps (github.com/python-
visualization/folium);

– PIL: Imaging library that adds image processing capabilities to the Python
interpreter. Used to convert the maps in HTML format generated by Folium to
png format.

• API Gateway: A web application developed using the Django Framework, the
following libraries were used.

– Django v3.1.3: Python web framework following a model-template-views ar-
chitectural pattern. (github.com/django/django);

– Django-rest-framework v3.1.3: Enables Django to work as a REST frame-
work (github.com/encode/django-rest-framework);

– Pika v1.1.0: A python implementation of the Advanced Message Queueing
Protocol (AMQP) (github.com/encode/django-rest-framework);

– Celery v4.1.1: Asynchronous job queues implementation to process jobs in
dedicated threads or processes. Celery requires a message broker to send and
receive messages, therefore RabbitMQ is used (github.com/celery/celery);

– RedisLock v3.6.0: Distributed locking using Redis, a in-memory database.
Thus, a lock can be shared across different processes (github.com/ionelmc/python-
redis-lock);

– Raven v6.10.0: A python client for Sentry, a cloud based error monitoring
(sentry.io) that Sentilant uses in the development of its software;

– Psycopg2 v2.8.6: PostgreSQL database adapter for python to allow Django
access the database (github.com/psycopg/psycopg2 );

– Watchdog v0.10.3: Listen system events and allows to auto-restart services.
Used in development to automatically apply code changes to celery workers;
(github.com/gorakhargosh/watchdog)

– Django Swagger UI v0.1.11: Swagger UI for Django, the API was docu-
mented in a OpenAPI Specification file, this library reads the file and generates
an HTML single-page documentation (github.com/assem-ch/django-swagger-ui).

• Field-Service Planning System: Part of the planning system is containerized
using Docker (docker.com) and its composed by the following containers.
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Chapter 8

– RabbitMQ Server v3.8.9 with Management Plugin: Message broker con-
figured with the AMQP to establish communication between the API Gateway,
the solvers and the Celery workers; The management plugin allows to monitor
the server with an User Interface (UI) interface (hub.docker.com/_/rabbitmq);

– PostgreSQL v13: Relational database (https://hub.docker.com/_/postgres);

– Redis v6.0.9: In-memory NoSQL key-value store that can be used as database,
cache and message broker. In this work Redis is used together with the Redis-
Lock library to prevent simultaneous write/reads performed by the different
Celery workers (hub.docker.com/_/redis);

– Web App: Python web framework following a model-template-views archi-
tectural pattern. Django is transformed in a REST API with Django Rest
Framework, in this work v3.12.2 is used to implement the API Gateway;

– NginX v1.19: HTTP Web Server to deploy the Django application
(hub.docker.com/_/nginx );

– Worker: Celery worker dedicated to consume the work plans obtained by the
solver, save in the database or return to the client; A lock is created when a
problem is submitted to be solver, the lock key is obtained by the worker to
prevent two or more workers to read/write simultaneously;

– Redbeat Server: Celery beat scheduler that stores the scheduled jobs and
runtime metadata in Redis, so the data isn’t tied to a single drive or machine.
A modified version by Sentilant is used (github.com/sibson/redbeat).

• Valhalla v3.0.9: Routing engine to compute duration and distance between lo-
cations, similar to OSRM it uses geodata in the OpenSourceMap (OSM) format.
Configured with the map of Europe from feofabrik.de, a 22.5 Gb OSM file updated
at December 12th 2020. (github.com/valhalla/valhalla); Valhalla allows to exclude
locations, meaning that no route will pass through that location e.g., Ponte 25 de
Abril;

• JSprit v1.7.1 (2017-05-11): Version of the VRP solver forked by Sentilant ;

• Jupyter Notebook: Python web application to build code live notebooks, used for
an experiment to compare OSRM and Valhalla to verify if Ponte 25 de Abril was
avoided and data analysis.
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