

Francisco José Rodrigues dos Santos

FLEET MANAGEMENT SYSTEM

Internship Report in the context of the Master in Informa<cs Engineering, Specializa<on in
SoAware Engineering, advised by Professor Pedro Furtado and presented to
Faculty of Sciences and Technology / Department of Informa<cs Engineering.

January 2021

FL
EE

T
M

A
N

A
G

EM
EN

T
SY

ST
EM

Fr
an

cis
co

 Jo
sé

 R
od

rig
ue

s d
os

 S
an

to
s

This page is intentionally left blank.

Abstract

The ever growing needs of fleet managers towards the management of their fleets increases
the amount of data that needs to be tracked to fulfil said needs. Company mobility plans
considering company employees, the sustainability of the fleet, the concerns regarding
vehicle emissions and the rapid improvement of electric vehicles as a valid option, all
contribute to the amount of data that fleet managers have to keep in mind when managing
their company fleet.

With the new needs, come new systems that fulfil the necessities of fleet managers but end
up decentralizing the data by the multitude of systems used. Thumbeo Corporate is the
fleet management system developed by the hosting company, Ubiwhere, however at the
start of this internship, this product does not solve the problem of data decentralization
and as such, the main goal of this internship is to adapt Thumbeo Corporate to consume
and harmonize data from external systems, as well as implement features that relate the
data consumed with a set of Key Performance Indicators.

To develop the system proposed, this works starts by studying already existing bodies of
work or products in the market, follows by presenting Thumbeo Corporate as a product,
defines a set of requirements and designs the architecture of the system and then ends with
a demonstration of the developed system along with closing remarks regarding all of the
work produced.

The present document specifies the work produced by the student Francisco José Rodrigues
dos Santos, in the context of the Masters of Informatics Engineering of the Department of
Informatics Engineering of the Faculty of Sciences and Technology of University of Coimbra
of the Department of Informatics Engineering of the Faculty of Sciences and Technology
of the University of Coimbra.

Keywords

Fleet Management, Fleet Management System, Data Harmonization, Telemetry, On-Board
Diagnosis.

This page is intentionally left blank.

Resumo

A crescente necessidade apresentada pelos gestores de frota em relação à gestão das suas
frotas aumenta diretamente com a quantidade de dados que precisam de ser monitorizados
para cumprir essas mesmas necessidades.

Com estas novas necessidades, vem então novos sistemas para as cumprir, mas na verdade
acabam por descentralizar os dados pela multiplicidade de sistemas utilizados pelos gestores
de frota. Thumbeo Corporate é o sistema de gestão de frotas desenvolvido pela empresa
que hospeda este estágio, a Ubiwhere, no entanto à data de inicio do estágio este produto
não resolve o problema da descentralização de dados e como tal, o principal objectivo deste
mesmo estágio é adaptar o produto Thumbeo Corporate para consumir e harmonizar dados
vindos de sistemas externos, bem como implementar funcionalidades para relacionar os
dados consumidos com um conjuto de Key Performance Indicators.

Para desenvolver o sistema proposto, este trabalho começa por estudar trabalhos rela-
cionados e produtos existentes no mercado, seguindo este estudo com a apresentação do
Thumbeo Corporate como um produto, de seguida define o conjunto de requisitos e de-
senha a arquitetura do sistema e termina como a demonstração do sistema desenvolvido
em conjunto com considerações finais sobre todo o trabalho desenvolvido.

O presente documento especifica todo o trabalho produzido pelo aluno Francisco José
Rodrigues dos Santos, no contexto do Mestrado em Engenharia Informática do Departa-
mento de Engenharia Informática da Faculdade de Ciências e Tecnologia da Universidade
de Coimbra.

Palavras-Chave

Gestão de Frotas, Sistema de Gestão de Frotas, Harmonização de Dados, Telemetria, Di-
agnóstico On-Board.

i

This page is intentionally left blank.

Acknowledgments

This last year is the culmination of my progress since the start of my journey. A journey
that was not made alone, and in retrospect it could not have been done alone. Words
cannot describe how this journey was impacted by the people that, along with me, are
part of it, and for all those people, my gratitude is unending.

To Ubiwhere, for enabling my development as a person and worker, and for arming me
with the resources that I needed to complete this work.

To André Duarte, for the immense trust put on me and my work. No words can describe
how thankful I am for having you as my advisor and, dare I say, as a friend.

To Professor Pedro Furtado, for the support and feedback given to the project, and for
being available whenever any help was needed.

To my friends, for sharing these last five years with me, the good and the bad, the happy
and the sad, without you all, my progress would not have been possible.

To my parents, for always being present whenever I needed the most, and for providing
me with the opportunity to study, learn and improve myself to the best of my ability.

iii

This page is intentionally left blank.

Acronyms

API Application Programming Interface. vii, 70

CAN Controller Area Network. 8

CMS Content Management System. 48

DTC Diagnostic Trouble Code. 9, 10, 11

DVIR Driver Vehicle Inspection Report. 17, 18, 80

ECU Engine Control Unit. 8

EU European Union. 80

GDPR General Data Protection Regulation. 36

KPI Key Performance Indicator. , i, xi, 1, 5, 12, 13, 14, 52, 66, 73, 74

MIL Malfunction Indicator Lamp. 11

OBD On-Board Diagnostics. 1, 8, 9, 10, 11, 12, 14, 19, 34, 36, 64, 66, 71, 84, 99

OBD-II Second version of the original On-Board Diagnostics unit. 9

ORM Object-Relational Mapping. 46

RDBMS Relational Database Management System. 45, 46

SAE Service of Automotive Engineers. 8

TCM Total Cost of Mobility. 81, 82

TCO Total Cost of Ownership. 81, 82

ToS Threshold of Success. 30

v

This page is intentionally left blank.

List of Figures

2.1 Utilitmarc Survey Results . 13

2.2 High-Level Competitors Analysis . 15

3.1 High Level Competitors Analysis — New Thumbeo Corporate Features . . . 23

4.1 Gantt Diagram — Planned Effort . 28

4.2 Gantt Diagram — Real Effort . 29

4.3 Risk Matrix . 31

6.1 C4 Model — Existing System . 43

6.2 C4 Model — System Context . 47

6.3 C4 Model — Containers . 48

6.4 Information Flow (Containers) — Importing Data 49

6.5 Information Flow (Containers) — Creating Data 50

6.6 C4 Model — Components . 51

6.7 Information Flow (Containers) — Importing Data 53

6.8 Information Flow (Containers) — Creating Data 55

6.9 Data Harmonization System . 56

6.10 First Semester — Containers . 58

6.11 Second Semester — Containers . 59

7.1 Docker Configurations . 63

7.2 Fleet Management System — Entity Relationship Diagram 66

8.1 Fleet Management System — API Documentation 70

vii

8.2 Fleet Management System — Administration Interface 70

8.3 Data Harmonization System — Harmonization Process 71

8.4 Thumbeo Corporate — Harmonized Data 71

C.1 Fleet Management System — Low Level Entity Relationship Diagram . . . 94

viii

List of Tables

2.1 OBD-II Services . 10

2.2 Fleetio Metrics . 12

2.3 KPI — Data Source Matching . 14

4.1 Risk Classification Scale for Impact and Probability 30

4.2 Risk Management Analysis . 30

4.3 Risk Mitigation Plans . 30

5.1 First Persona — CEO . 33

5.2 Second Persona — Fleet Manager . 34

5.3 Third Persona — Driver . 34

5.4 Fourth Persona — Collaborator . 34

7.1 django-rest-framework — Endpoints defined by ModelViewSet 62

D.1 Data Harmonization System — Unit Tests 99

D.2 Fleet Management System — User Component Unit Tests 100

D.3 Fleet Management System — Vehicle Component Unit Tests 100

D.4 Fleet Management System — Rides Component Unit Tests 101

D.5 Fleet Management System — Statistics Component Unit Tests 101

ix

This page is intentionally left blank.

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Document Structure . 2

2 State of the Art 5

2.1 Literature Review . 5

2.1.1 Fleet Management . 5

2.1.2 Data Gathering — Human Generated Data 6

2.1.3 Data Gathering — Sensors and Devices 7

2.1.4 Data Services — Fleet Management 9

2.1.5 Data Services — Vehicle Data . 10

2.1.6 Key Performance Indicators . 12

2.1.7 Conclusions . 13

2.2 Competitor Analysis . 14

2.2.1 High-Level Competitor Analysis . 15

2.2.2 In-Depth Competitor Analysis . 16

2.3 Internship Contributions . 19

3 Thumbeo Corporate 21

3.1 The Product . 21

3.2 The Problem . 22

3.3 Internship Contributions . 22

4 Project Management 25

4.1 Team Organization . 25

4.2 Software Development Methodology . 25

4.3 Planning . 26

4.3.1 First Semester Plan . 26

xi

4.3.2 Second Semester Plan . 26

4.3.3 Gantt Diagrams . 27

4.4 Risk Management . 30

4.5 Success Criteria . 31

5 Requirements Specification 33

5.1 User Personas . 33

5.2 Terminology . 34

5.3 Requirement Structure . 35

5.4 Restrictions . 35

5.4.1 Business Restrictions . 35

5.4.2 Legal Restrictions . 36

5.4.3 Technical Restrictions . 36

5.5 Functional Requirements . 36

5.6 Quality Attributes . 38

6 Architecture and Technology 43

6.1 Project Background . 43

6.2 Architecture Overview and Decisions . 44

6.3 Technology Overview and Decisions . 45

6.4 System Architecture . 46

6.5 Architecture Representation Phases . 57

6.5.1 First Semester . 57

6.5.2 Second Semester . 58

6.6 Final Considerations . 59

7 Project Development 61

7.1 Django Concepts . 61

7.1.1 ViewSets . 61

7.1.2 Serializers . 62

7.2 Docker . 62

7.3 Messaging System . 63

7.4 Data Harmonization System . 63

7.4.1 Models . 63

7.4.2 Celery Tasks . 65

xii

xiii

7.5 Fleet Management System . 65

7.5.1 Models . 65

7.5.2 Statistics . 66

7.6 Testing . 67

7.6.1 Unit Testing . 67

7.6.2 Data Harmonization System . 67

7.6.3 Fleet Management System . 68

8 Final Product of the Internship 69

8.1 Fleet Management System . 69

8.2 Data Harmonization System . 70

9 Conclusions 73

9.1 Work Done . 73

9.2 Future Work . 73

9.3 Lessons Learned . 74

Appendix A Thumbeo Corporate — Applied Concepts 79

A.1 Applied Concepts . 79

A.1.1 Vehicle Maintenance . 79

A.1.2 Expense Management . 81

A.1.3 Vehicle Depreciation . 82

Appendix B Requirement Specification — Functional Requirements 83

Appendix C Project Development — Fleet Management Models 94

Appendix D Project Development — Unit Tests 99

This page is intentionally left blank.

Chapter 1

Introduction

The amount of data that needs to be tracked by fleet managers is ever growing and fleet
management systems have to reflect the new challenges and the new data generated by
fleets. The new data arises from recent technologies and strategies that are surfacing
nowadays, such as the rising necessity for company mobility plans that have the employees
in mind, the concerns of fleet managers to maintain sustainable fleets, the restrictions on
vehicle emissions being increasingly imposed by politics and the advent of electric vehicles.

Thumbeo Corporate is a product developed by Ubiwhere, the hosting company for this
internship, which offers a fleet management service in the form of a software system. This
service, like the competitors studied, contributes to the decentralization of data in the
fleet management industry, by creating yet another system, albeit with different features,
that fleet managers must use when their features are necessary to comply with their com-
pany needs. In this context, the decentralization of data refers to the separation of data,
generated by the fleet, across different system that must be consulted separately by fleet
managers.

This internship proposes a solution to tackle the decentralization of data in the fleet man-
agement industry. At the beginning of this internship, Thumbeo Corporate had no way to
integrate and harmonize data from external systems, since it only uses information gath-
ered by the internal system itself. To improve on the current scope of the product this
internship will adapt Thumbeo Corporate to consume and harmonize data from external
systems, allowing fleet managers to import data from other fleet management systems used
into the Thumbeo Corporate software system.

Following the consumption and harmonization of data from external systems, Thumbeo
Corporate will be adapted to provide fleet managers with an overview of the users of
it’s fleet, and the interactions they perform with it, such as any rides taken or reports
on any vehicle or ride; the vehicles registered and the data generated by their On-Board
Diagnostics (OBD) system; and the relation of data stored by the system with a set of
predefined Key Performance Indicators that fleet managers can use to measure availability,
utilization and fuel consumption metrics of their fleet.

This report documents the study, design and development that took place during the aca-
demic internship. This internship is included in the curricular plan of the Informatics’
Engineering Masters Degree in the Software Engineering branch. Ubiwhere is the host-
ing company for the internship that took place in its office in Instituto Pedro Nunes, in
Coimbra.

1

2 Chapter 1. Introduction

1.1 Objectives

From a shallow perspective, the primary objective of this thesis is to develop a system
that can consume and harmonize data from external system. Nevertheless, the previous
perspective lacks in the sense that it is vague, therefore a deeper perspective follows.
Concretely, the project has four objectives:

• Present academic research on fleet management topics and a competitors analysis on
fleet management applications.

• Propose an architecture that can be used to develop a fleet management application
that intends to consume data from external systems.

• Define and implement a Data Harmonization System capable of consuming data from
different external systems and transform the data into a defined data structure.

• Define and implement a Fleet Management System that can correlate the data con-
sumed and created with a set of established metrics.

1.2 Document Structure

This document is organized into four chapters, each of them with the following ambitions:

Chapter 2 — State of the Art provides the research methodology, the academic literature
available regarding fleet management topics and the answers to questions initially posed
about the problem; it also explores other available solutions in the market, providing a
competitors analysis and lastly it defines what are the contributions of the internship.

Chapter 3 — The “Thumbeo Corporate” chapter details the core principles of Ubiwhere’s
solution and demonstrates the research done on the topics applied when building the
product, along with the changes that will be made to the already existing system.

Chapter 4 — Project Management explains the methodology used in the whole internship,
the planning done for both semester that compose the internship. This chapter also covers
the risk management process and builds the success criteria that will be used as metric to
evaluate the internship.

Chapter 5 — Requirements Specification presents all the user stories elicited while ex-
plaining the elicitation process. This chapter also exposes the business, legal and technical
restrictions, and provides the quality attributes mandated at the system that will later
impact the architectural decisions.

Chapter 6 — Architecture and Technology consolidates the technology background; de-
scribes the system architecture; reviews design decisions and illustrates the technologies in
use by the system.

Chapter 7 — Project Development presents the implementation aspects of the different
systems developed as well as the quality assurance performed on the systems implemented.

Chapter 8 — Final Product of the Internship shows the implementation of the product
specified throughout the document.

Chapter 9 — Conclusions presents the thoughts regarding the entire internship, providing

1.2. Document Structure 3

insight into the problems faced, the lessons learned and an overall critical analysis of the
internship.

This page is intentionally left blank.

Chapter 2

State of the Art

The first step to develop a fleet management system that works with a data harmonization
system is to research state-of-the-art work produced either in an academic environment
or in an enterprise setting. This chapter is structured in such a way that the academic
literature is tackled first, by posing and answering a set of questions. Next, a competitors
analysis of the available solutions created by different companies follows the academic
literature review. Lastly, the chapter ends by clearly defining the contributions of this
internship.

2.1 Literature Review

The current section serves the purpose of reviewing the results found in the literature read,
initially presenting the research methodology followed.

Research Methodology When defining the research methodology, the main goal estab-
lished was that of answering the following questions: Q0: What is fleet management? Q1: What
data can be gathered about a fleet? Q2: Which data services have to be integrated to achieve
a fleet management system? Q3: What fleet management Key Performance Indicators are
relatable to the data made available by the data services?

Researching academic literature is the basis from which to answer the proposed questions,
and DBLP [1], Google Scholar [2] and Repositórios Científicos de Acesso Aberto de Portu-
gal [3] were the chosen search engines to find literature that could help to find answers to
the previously posed questions. The following sections reference related work that provide
insight into possible answers.

2.1.1 Fleet Management

Before delving deeper into the various aspects of fleet management, it is important to
define the term itself in order to contextualize the research done, the decisions made, and
the references made to “Fleet Management” as a concept.

In [4], Kaixiang Lin (et al) consider the fleet management problem as the “problem of

5

6 Chapter 2. State of the Art

managing a large set of available homogeneous vehicles for online ridesharing platforms”. It
also presents what is the goal of the management aspect as “maximize the gross merchandise
volume (. . .) of the platform (. . .)”. Regarding both statements made, the definition of
fleet management provided lacks precision by not specifying a quantity to tie into the “large
set” and by limiting how homogeneous the vehicles themselves must be. The definition
given is also being limited to online ridesharing platforms, which in reality is a subset of
the environments in which fleet management occurs.

In [5], Warren B. Powell (et al) define the fleet management problem as involving “managing
fleets of equipment to meet customer requests as they evolve over time”. The equipment is
being specified as “containers which hold freight (. . .), locomotives, truck tractors, taxicabs
or business jets”; The customers are considered to be either (people or freight) and their
requests are defined as wanting “(. . .) to move from one location to the next.”. This
definition of fleet management as a concept is specific enough in identifying what is the
fleet equipment and what are the customers and their goals. Nevertheless, the “managing”
aspect is never accurately defined, nor are the actions taken to manage a fleet specified.

In [6], Falco (et al) points out that “Fleet Management addresses transportation manage-
ment and monitoring, including cars, trucks, airplanes, ships, among others (. . .)”. This
definition specifies which vehicles can be included in fleet management, and it also points
out one goal of performing fleet management, it being to “remove or minimize the risks
associated with investing in vehicles as well as knowing the behavior of drivers”. Nonethe-
less, the “management and monitoring” aspects are not scrutinized enough; what is being
monitored? what is being managed and how is it being managed?

In [7], Monnerat (et al) express that “Fleet management is a broad concept that incorporates
decisions about fleet sizing and configuration, fleet allocation, vehicle routing, considering
homogeneous or heterogeneous vehicles.”. This definition identifies Fleet Management as
a concept that encompasses a subset of other concepts and problems, being the problem
of finding the right number of vehicles for a fleet and their respective jobs, or finding the
best routes for each vehicle used, or how each vehicle should be allocated for a specific use
case. The consideration for homogeneous and heterogeneous fleets is also important given
that different companies might employ distinct types of vehicles in their business model.

2.1.2 Data Gathering — Human Generated Data

The human element of fleet management — the fleet managers, drivers and passengers —
inherently produce data that can be used by a fleet management system. In this sense,
the data that can be gathered is directly tied to the interactions each actor has with the
company fleet; to give some examples: drivers and passengers schedule work trips, fleet
managers plan vehicle maintenances and drivers report failures in fleet vehicles. The set of
all interactions, when gathered to be displayed to fleet managers, should provide a more
holistic view of the company fleet.

In [8], Calderón (et al) present a data mining approach towards the exploitation of a
trip-based dataset, from the RideAustin application, and subsequent transformation into
a dataset capable of enhancing a ridehailing service. As a body of work, it constitutes
an example of the importance of mining human generated data — in this case, the data
inherent to trips, the starting and finishing points, average speed and number of passengers,
among other pieces of data.

2.1. Literature Review 7

In [9], Vogooshi (et al) mainly propose a new scoring process for a multi-agent transport
simulation platform, along with a method to generate a synthetic population in a simu-
lation. Specifically, the scoring process designed takes into account user generated data,
such as the willingness to use factors of waiting time and in-vehicle travel time and the
travel distance defined by a human agent. Although the work sets itself up to use human
generated data, it is made clear by the conclusions that such data is a key factor when
tracking operator costs and system profitability in fleet management system. The Robo-
Taxi product analyzed in the work can also be considered a solution to the mobility needs
of a company, and as such, if implemented to solve the corresponding problem, the user
data referenced in this body of work has to be tracked.

In [10], Szczepański (et al) present an approach to fleet management, while accounting
for the mobility needs of company employees and establishing a process through which
the company can select different vehicles for different tasks. The mathematical model
specified contains a vector that represents the expectations of the user that will use one
of the fleet vehicles; the expectations contained in the vector, that represent examples of
data generated by users, are the following:

• q(zd,tp) — type of implemented zd — th task by tp — th type of vehicle,
• t(tp) — assumed time of completing tasks by tp — th type of vehicle,
• rp(tp) — assumed yearly mileage tp — th type of vehicle being traversed during

the implementation of tasks,
• sf(tp) — assumed method of financing tp — th type of vehicle,
• �1 — expected type of body,
• �2 — expected permissible gross vehicle weight,
• �3 — expected number of doors,
• �4 — expected type of fuel,
• �5 — expected displacement of the engine,
• �6 — expected engine power,
• �7 — expected emission standard,
• �8 — expected type of gearbox,
• �9 — expected average fuel consumption per 100 km,
• �j — other expectations.

2.1.3 Data Gathering — Sensors and Devices

Vehicles, being complex systems have a variety of components from which data is gather-
able, and the method through which the data gathering happens can vary differently from
the type of data itself. This section presents the types of sensors and devices that can be
used to gather data from vehicles, as well as some examples of what data each sensor and
device can gather.

Smartphones

Nowadays, smartphones are highly available and are also ubiquitous devices, divided be-
tween Android and iOS operating systems. These devices are equipped with Internet

8 Chapter 2. State of the Art

connection, through Wi-Fi and 3G/4G technologies. Most smartphones also possess a
variety of different components and sensors, such as a camera and microphone, GPS, ac-
celerometers and gyroscopes.

These different sensors enable the smartphone to gather data about its current geographic
position, its current speed and acceleration and its orientation. The Internet connection
provides the ability to communicate with external services, sending the data previously
gathered by the sensors, to a cloud system, or to a peripheral that will parse the data.

In [11], E. Türk (et al) develop an Android framework that is able to communicate with
On-Board Diagnostics (OBD) system, described later in this section. This work demon-
strates how a smartphone can also be integrated with other data gathering tools to improve
the methods through which it is possible to gather data from vehicles. Furthermore, the
work itself reviews and researches the communication protocol used by the OBD system
and how and interface can be constructed to enable communications with Android smart-
phones. According to the work and it’s references, the OBD system uses a Controller Area
Network (CAN) protocol to communicate with vehicle’s Engine Control Unit (ECU); the
CAN itself acts only as means to provide a communication channel, without specifying a
communication standard itself. Nevertheless, the Service of Automotive Engineers (SAE)
developed a standard named J1939 that is used in most commercial vehicles.

Although the smartphone provides access to some of the data that could be useful for
this internship, it proves to be limited in comparison to the two following options when it
comes to the variety of data it can extract from vehicles. While the smartphone provides the
geographical location as well as speed and acceleration, the following devices can provide
not only the same information but a lot more. Given this limitation on the data that can
be extracted with smartphones, another option will be chosen to gather data from vehicles.

Independent Sensors

The installation of independent sensors on important components is also a possibility for
detecting maintenance needs. These independent sensors can be accelerometers, GPS, a
tachograph, an oxygen sensor reader, among other sensors. Although the use of indepen-
dent sensors is theoretically possible, the research done was unsuccessful in finding a body
of work that would prefer to experiment with this approach instead of using either the
aforementioned smartphone or the following device explored, the On-Board Diagnostics.

In theory it is possible to gather data from every component in a vehicle using independent
sensors installed unto the components themselves, but in reality the usage of these inde-
pendent sensors for every component imposes added costs in terms of buying, installing
and maintaining the needed sensors. There is also another problem pertaining to the in-
stallation of independent sensors, there would be the need to relay all of the information
of the sensors into a cloud service and even before that, the data from the sensors would
have to be aggregated into a local system that could transmit the data into the cloud. All
of these problems make it so that independent sensors are discarded as an option for this
body of work.

2.1. Literature Review 9

On-Board Diagnostics

On-Board Diagnostics (OBD) is described as a standard for a vehicle’s ability to diagnose
itself and report failures in the system by the usage of Diagnostic Trouble Codes (DTCs).
Said DTC can then be read by an OBD scanner and interpreted by anyone with the
knowledge to do so; this includes a software system.

The current iteration of this mechanism, the OBD-II, was made mandatory for all cars
produced for the United States in 1996 [12]. Meanwhile, the European Union made the
OBD-II mandatory for petrol vehicles in 2001 and for diesel vehicles in 2004 [13]. Take
in mind the regulations only applied to vehicles that are planned on being sold in said
territories; meaning that European cars built to the US from 1996 onwards, were mandated
to possess an OBD unit. This proves that if the implemented system uses the OBD-II
standard, it will be capable of analyzing every vehicle that is suitable to be part of a
company fleet.

OBD-II Devices The OBD-II system can be accessed with the help of some different
types of devices. Handheld scanners are the most commonly used by automotive techni-
cians. They offer a simple terminal to view the OBD system information available. Data
Loggers are designed to spent most of their time connected to the vehicle collecting data
for later analysis. Dongles are used to enhance the OBD system usually with features like
Wi-Fi, Bluetooth or 4G modules, to communicate with the system over larger distances.

The aforementioned OBD devices have different methods of use from one another, never-
theless one aspect they all have in common is how they connect to the vehicle, which is
through the OBD port present in vehicles. This port is located differently from vehicle
to vehicle, in most it is located under the steering wheel, in some it is inside the glove
compartment, in others it is located in the compartments below the radio, and there still
many other locations for this port. Regarding their different methods of use, Handheld
scanners have built-in screens that enable the user to read the information from the OBD;
the Data Loggers record data from the vehicle and are able to write it to an internal
storage that can be accessed later by connecting the logger to a computer or by wirelessly
connecting to the logger itself; finally the Dongles are able to read data generated by
the OBD in any given instance but in general must make use of an external system, like a
smartphone, that sends the to a cloud server.

In [14], G. Signoretti (et al) evaluate how dependable are OBD Edge devices, analyzing the
interface behavior during the experimentation process, as well as the percentage of failure
of the communication interface. While traditional OBD devices require an intermediary
device, a smartphone or an IoT device, in order to transfer data from the OBD to the
Cloud, the OBD Edge devices are equipped with Wifi, 3G/4G or LPWAN that enable
communication with cloud services that consume the data generated by these devices.
The work developed by G. Signoretti (et al) designs a set of experiments to compare two
Edge OBD and after obtaining the experimental results, the most modifiable scenario,
measured by the experiments, is then altered to achieve a better dependability.

2.1.4 Data Services — Fleet Management

To design a fleet management system it is necessary to understand what data services
actually serve such a system. This section aims to explore the research found on fleet

10 Chapter 2. State of the Art

management data services as a whole, focusing on what services must be present in a
system for it to be considered a fleet management system.

In [10], Szczepański (et al), as mentioned previously, develop a mathematical model to
approach the task of managing a fleet of vehicles. The model itself presents an equation
to represent the “Model of Car Fleet Management in Enterprise” in which MCFME =
<TPOJ, QPOJ, QU,CWK, MFP, FKO, PWDFM>, where: TPOJ — set of available
vehicle types; QPOJ — vector of technical and operational parameters of vehicles taken
during the assessment; QU — vector of task carried out by the enterprise; MFP — set of
methods financing the replacement of vehicles in an enterprise; FKO — set of sub criteria
for assessing the vehicles assignment for tasks; PWDFM — decision making procedure
in car fleet management.

2.1.5 Data Services — Vehicle Data

With the knowledge acquired in the previous research of devices and sensors, it is clear
that the data sources to explore are smartphones and the OBD system. The smartphone
itself has been shown to be a reliable source of geographic location information regarding
the vehicle, and the OBD system was purposefully made to provide detailed information
about the different vehicle components and provides a means through which repairers
can diagnose vehicles faults. As such, this section will provide an explanation about what
information can these two devices convey, and examples as to how the information conveyed
as been used in other bodies of work.

Technically, the On-Board Diagnostics (OBD) supports seven distinct services for oper-
ation [15], synthesized in table 2.1. Each service provides an intrinsic set of commands
which return the information that is gathered by the sensors and made available by the
OBD.

Modes Description
1 Display current real-time vehicle data
2 Display vehicle data related to the last Diagnostic Trouble Code generated
3 Display stored Diagnostic Trouble Codes
4 Clear stored Diagnostic Trouble Codes and values
5 Request results for the O2 sensor monitor tests
6 Request results for continuous and non-continuous monitor systems tests
7 Request emissions-related DTCs generated in the last driving cycle
8 Enables third-party devices to control the operation of an on-board system.
9 Display vehicle information

0A Request permanently store DTCs related to emissions of air pollutants

Table 2.1: OBD-II Services

The first service provided, as the description states, returns real-time data being generated
by the vehicle; this involves, but is not limited to, information such as the current speed,
revolutions-per-minute, time since the engine started and engine coolant temperature. The
second service stores the information generated along with a specific Diagnostic Trouble
Code; when a failure occurs and is registered by the OBD in a freeze frame, the system
also stores the vehicle speed and the engine’s revolutions-per-minute among other pieces of
information that are relevant diagnose faults. The third service, simply put, displays the
Diagnostic Trouble Codes recorded by the OBD system, independent of any time frame,

2.1. Literature Review 11

meaning that if a fault has not been detected in a specific drive cycle but in a previous
cycle instead, the fault code is still stored. The fourth service clears all fault codes from the
system, along with any freeze frame data stored along with the generated DTC; this can
be used to turn off the Malfunction Indicator Lamp. Services five and six return the results
stored for different sensor monitor tests, specifically the tests performed by the O2 sensor
monitor in case of service five, and in case of service six tests performed by continuous and
non-continuous monitor systems.

The aforementioned Diagnostic Trouble Codes are the mechanism through which the OBD
reports the faults detected by the sensors it has collecting data. Technically, the OBD sys-
tem uses five character codes to report faults in specific components; all of the characters in
each code provide deeper insight into the problem in question when read from left to right.
The first character specifies the system reporting the fault: either the Powertrain system,
the Body system, the Chassis system or the Network system. The second character, when
zero, indicates if the code generated is a generic code, implemented by all manufacturers,
or if the code is manufacturer specific, when it’s value is one. The third character specifies
which sub-system generated the fault; it can hold values from zero to nine, representing
sub-systems such as the emission management system, the injector circuit system or the
emission control system, among others. The last two characters are variable and represent
particular problems detected by the OBD.

Powertrain Category In the Powertrain category, most of the components being ana-
lyzed are some of the most crucial for the vehicles normal functioning. The components
in this category include, but are not limited to, the Engine Control Unit, the Fuel System,
the Turbocharger/Supercharger System, the Cooling System, the Air Inlet Sensor, the Ex-
haust System, the Fuel Injection Circuit, the Ignition Circuit, the Catalyst Temperature
Sensor.

Chassis Category The components analyzed in the Chassis category are passive se-
curity mechanisms or act as experience-enhancing for the vehicle users. In the category,
some of the components included are the following: the Wheel speed sensor, the Brake and
ABS system, the Traction control system, the Tire Pressure Monitor, the Vehicle tracking
system, the Transfer Case.

Body Category In the Body category, most of the components are situated in the
vehicle cabin, although not all. Some of the components included in this category are: the
Airbags, the Seat Sensors, the Steering Column.

Network Category The Network category offers the most distinct faults from all the
categories. The faults stored in this category simply portray communication failures be-
tween the Engine Control Unit and the respective component, along with software incom-
patibilities present in the whole system.

Although the data provided by the OBD is unparalleled, there is information that can not
be registered and conveyed by the system, and as such, there is the need to obtain such
information using other methods. Outside of the scope of data made available by the OBD,
by using the smartphone’s GPS, it is possible to pinpoint the location of the smartphone

12 Chapter 2. State of the Art

and, by extension, the vehicle it is currently riding on; along with information about the
vehicle’s current speed.

In [16], Malekian (et al) design and develop a wireless OBD system with the goal of
providing information regarding vehicle fuel consumption. The measurement process and
the data it gathers — as developed in the aforementioned work — was done in response to
the statement that “approximately 27% of the total carbon dioxide(CO2) emissions were
as a result of the combustion of fuel from vehicles”. This work, developed in 2016, sets
an example for how the OBD technology can be used in the field of fleet management by
acting as a source for the data generated the company vehicles.

2.1.6 Key Performance Indicators

In any business, measuring performance is an important part of managing and improving
the work produced and the revenue gained. KPIs are a tool designed for this purpose, as
they constitute a set of values against which to measure the performance of an organization
or any specific activity.

In [17], Fleetio’s content marketing specialist defines fifteen metrics that fleet managers
should be tracking to evaluate their respective fleets. The metrics identified are divided into
three different groups: Maintenance metrics, Cost metrics and Driver and Asset metrics.
The following table 2.2 is a summary of the categories and the respective metrics, identified
by Fleetio.

Category KPI

Maintenance Metrics

Inspection Results
Preventive Maintenance Practices
Diagnostic Trouble Codes
Repair Turnover
Odometer Readings

Cost Metrics

Fuel Management
Total Cost of Ownership
Asset Utilization
Vehicle Replacement
Parts and Inventory

Driver and Asset Metrics

GPS and Telematics
Accidents and Safety
Driver Assignments
Technician Productivity
Performance Metrics

Table 2.2: Fleetio Metrics

In [18], the company Utilimarc surveyed more than one hundred utility companies hosted
in North America, as to what the KPIs each company uses to manage their fleets. The
results of the survey are not limited to the summary of all KPIs, listed by the surveyed,
but also present the frequency of reporting for each indicator, the audience that reports
each indicator, if the indicator is required by the customer department or by management
department, if the indicator is used to evaluate fleet performance, and finally some of the
business decisions that resulted from tracking each indicator. The following figure 2.1

2.1. Literature Review 13

visually represents the KPIs tracked by the surveyed companies.

Figure 2.1: Utilitmarc Survey Results

In [19], Sanna-Mari sets out to solve two problems for the Valmet transportation team:
First, establish a relevant KPI dashboard for the transportation team, and second study
the relevance of an on-time delivery performance indicator. The conclusions of this body
of work indicate that an organization should not approach KPI measurements from the
perspective of what other organizations are measuring. Meaning that each organization
should ponder what indicators are valuable from an internal point of view; nevertheless,
KPIs established and measured by other companies serve as an example for what indicators
can be tracked in a specific area of work.

The first two bodies of work mentioned previously in this section present examples about
what KPIs can be measured in the field of fleet management, and the last work establishes
a strategy about how to approach KPIs in general.

2.1.7 Conclusions

Answering the questions posed initially is the last step before concluding the literature
review.

The first question Q0, and arguably the core question, of defining “Fleet Management” is
answered with the following statement: Fleet Management is the set of actions that allows
for an individual or a society of individuals to control and monitor a fleet of heterogeneous
or homogeneous vehicles and the interactions with customers or fleet users (i.e drivers).
Monitor assumes being able to gather data regarding the vehicles of the fleet, the users
and customers of the fleet and the interactions between the vehicles and the users and
customers (i.e trips). Controlling the fleet assumes being able to take actions based on the
data presented by monitoring, be it changing the fleet size based on activity rates for each
vehicle, or sending a vehicle to maintenance based on the data gathered from a vehicle.

Concerning question Q1, the gatherable data is comprised of two distinct groups — the
data generated by the vehicles in the fleet, and the data generated by the human interac-

14 Chapter 2. State of the Art

tions with the vehicles themselves.

As for Q2, taking the work produced by Szczepański (et al) in [10] as an example, it is
necessary to integrate services that: monitor the set of vehicles available, their correspond-
ing technical and operational parameters and their performance in the tasks performed;
analyze the tasks carried out by the company with the vehicles; record and monitor the
financing methods for the replacing or maintaining the vehicles themselves. In reality
which data services are integrated mostly depend on the intentions of the company that
acquires a fleet management system; nevertheless the data services, formerly specified, act
as a starting point or examples for which can be integrated in a fleet management system.

Lastly, before answering Q3 it is necessary to specify that the KPIs tracked are completely
dependent on the company, it’s wants and needs, as well the tasks the company performs or
business model it employs. Nevertheless, as mentioned previously, Utilimarc surveyed fleet
owning companies and detailed the KPIs tracked, which enables for a matching between
the resulting KPIs and the data services analyzed previously.

KPI Data Source
Operating Cost User Generated Data and OBD
Budget Compliance User Generated Data
Cost per Customer User Generated Data
Fuel Consumption OBD — Fuel Readings
Total Cost per Mile OBD
Total Cost per Unit User Generated Data
Utilization User Generated Data
Preventive Maintenance Metrics OBD and User Generated Data
Safety OBD and User Generated Data
Mechanic Time User Generated Data
Work Order Metric OBD
Availability User Generated Data

Table 2.3: KPI — Data Source Matching

Although the previous table generalizes the data source for each KPI, it is not without
reason; as the actual data required depends on the company specific process to measure
each individual KPI. For the purposes of this internship the KPIs that will be tracked are
Fuel Consumption, Availability and Utilization given their immediate availability.

2.2 Competitor Analysis

The present section serves the purpose of exploring and comparing possible competitors
to Ubiwhere’s solution. The process of analyzing competitors started by researching what
products existed that focused on fleet management and a high-level comparison was per-
formed. This high-level analysis was followed by a more in-depth comparison between the
competitors that were deemed the most important and most influential in the field of fleet
management in the context of Thumbeo Corporate’s design and development.

2.2. Competitor Analysis 15

2.2.1 High-Level Competitor Analysis

As a way to compare the different features present in Ubiwhere’s solution, the high-level
competitor analysis will approach four different categories for the main features of the
product:

• Resource Tracking — Expense Tracking and vehicle real-time tracking.

• Vehicle Maintenance — Preventive and predictive maintenance.

• Tasks and Resources Optimization — Driving patterns, depreciation cost anal-
ysis, routing efficiency and matching, parking needs and fleet size analysis.

• Carpooling — The act of sharing the same vehicle in a trip with more than one
person, in order to save resources by performing the same trip at the same time using
different vehicles.

The high-level analysis of the competitors identified is presented in the following figure 2.2,
followed by a general overview of how the different competitors stack up against the dif-
ferent categories specified previously.

Figure 2.2: High-Level Competitors Analysis

Regarding Resource Tracking, most of the competitors possessed both sub-categories
of Expense Tracking and Real-Time Tracking. There were some exceptions: Via
Verde [20], Odoo [21] and MTC Pro [22] do not implement real-time tracking; OnFleet
and Cartrack [23] do not implement expense tracking.

The comparisons in the topic of Vehicle Maintenance were more sparse among the
competitors analyzed, meaning there were not many competitors that implement this
set of features. Fleetio [24] and Samsara [25] implement Predictive Maintenance
and Automatic Maintenance Scheduling features into their products. FleetSoft [26],
MTCPro [22] and Stratio Automotive [27] implement only Predictive Maintenance fea-
tures. Finally, VW FS Fleets [28] implements only Automatic Maintenance Schedul-
ing.

The categories present in the topic of Tasks and Resources Optimization were the
most neglected by the majority of the competitors. Driving Patterns features were im-
plemented by four competitors: Localiza [29], Samsara [25], Cartrack [23] and VW FS
Fleets. Depreciation Cost Analysis was the second most neglected category, being
implemented only by Efleets [30] and Stratio Automotive [27]. Efficient Routing was
the most implemented feature of this topic, being present in OnFleet, Samsara [25], Car-
track [23] and Frotcom [31]. Lastly the most neglected category, Parking Needs was only

16 Chapter 2. State of the Art

implemented by Via Verde [20].

The Carpooling feature is the main difference between Thumbeo Corporate and the
remaining solutions analyzed, as none of the solutions researched implemented features
even closely related to ride-sharing.

After these conclusions, the analysis for some competitors deepened by focusing the features
they implement and the business model they follow. These competitors are Via Verde [20],
Stratio Automotive [27], Fleetio [24] and Samsara [25].

2.2.2 In-Depth Competitor Analysis

This section aims to break down the four direct competitors identified, by listing their
features and defining their business models in order to compare them against Thumbeo
Corporate’s own features and business model.

Via Verde [20]

Important features:
• Expense tracking.

• Parking Needs

• Automatic shared invoices.

• Automatic toll payment.

• Discount for three types of
commercial vehicles.

Competitor — Via Verde

Via-Verde as a company started by creating a service in Portugal that offered its clients
an efficient method for automatically paying tolls through a device to be installed in the
windshield of the vehicle. Nowadays, after further developing its service, Via-Verde now
offers a service with some fleet management features in mind: the invoices generated pay-
ing a toll are now shared with the driver and the fleet manager; expenses are automatically
tracked and Via-Verde shows them to their respective fleet managers to help them manage
their expenses. Via-Verde also offers, through another one of it’s service, an easy wait to
pay for parking tolls, which is the feature designed as related to Parking Needs. This
competitor was evaluated because it is has an already established position in the national
market and provides products to help either a company or an individual manage one or
more aspects of their vehicles. The data recorded by Via-Verde is distributed by their
range of services, furthermore it is closed source and to be included in the development of
this thesis an agreement would have to be made with Via-Verde.

2.2. Competitor Analysis 17

Stratio Automotive [27]

Important features:
• Vehicle Telemetry.

• Predictive Maintenance.

• Guided Decision Making.

Competitor — Stratio Automotive

Stratio Automotive offers an automated vehicle maintenance software directed at heavy-
duty vehicles, designed to be used by fleet managers. This software is composed of three
different components: stratio foresight , a fault detector that utilizes predictive intelli-
gence to detect anomalies and potential breakdowns before they occur; stratio pilot , a
fleet manager software component equipped with telematics intelligence that aims to op-
timize the different aspects of a fleet; stratio explorer , a data navigator that helps fleet
managers perceive the data gathered about their fleet from different perspectives to guide
them to make the best decisions. Stratio Automative was evaluated for being a national
newcomer to the fleet management market that provides a service based on components for
different management needs using newer strategies to tackle the existing problems. Alike
the previous competitor, the data stored by Stratio Automotive is also closed source and
an agreement would have to be made with the competitor in order for the data to be used
in the context of this thesis.

Fleetio [24]

Important features:
• Vehicle-Driver Assignments

• Preventive Maintenance Scheduling

• Fleet Reports

• Vehicle Tracking

• Total Cost of Ownership tracking

Competitor — Fleetio

Fleetio is a fleet management software whose main selling point is comprised in four differ-
ent aspects: the first aspect concerns the tracking of all equipment related to a given fleet,
maximizing its lifespan while increasing profits, and generating reports about equipment
usage and total cost of ownership; the second aspect is related to automating maintenance
handling and consequent resolution, this is achieved by first identifying defects through
methods like preventive maintenance, DVIR defects and recall and repair requests; the
third aspect is directed to fuel optimization through simplifying fuel data collection and

18 Chapter 2. State of the Art

importing fuel costs directly from fuel cards; the fourth and final aspect relates to the
integration of the various systems, that gather data related to the fleet, to improve the
information shown to fleet managers. This competitor was evaluated because, alike the
first, it is already established within the market of fleet management systems, albeit at
an international level and tackles a different set of fleet management problems when com-
pared to Via-Verde. Similarly to the previous services, the data collected by Fleetio is
closed source and an agreement is necessary for a third-party to access said data.

Samsara [25]

Important features:
• GPS Fleet Tracking

• Fault Code Monitoring

• Usage-based Maintenance

• Real-time Route Tracking

• Historical Performance Analysis

Competitor — Samsara

Samsara is a company that offers a product, of the same name, directed at fleets of heavy-
duty vehicles, that employs a vast range of features related to fleet management. To
name the most important: it has live vehicle location tracking, recording individual trips;
the product also supplies fault code monitoring and Driver Vehicle Inspection Reports;
it provides real-time route tracking and historical analysis of the routes taken. The less
important features for this comparison include tracking trailers, providing dash cams to
record driving, hosting in-cab Wi-Fi, and validating compliance through Electronic Logging
Devices (ELD). All of these features are aimed at fleet managers of heavy-duty vehicles,
which means that the product itself is not optimized primarily for light-duty vehicles.
Samsara as a competitor was analyzed because alike the second competitor, it is a newcomer
to the market of fleet management systems, but instead tackles an international market.
Alike the previous competitors, the data harvested by Samsara is closed source and once
again an agreement is necessary for a third-party to have access to the data.

Cartrack Portugal [23]

Important features:
• Real Time Vehicle Satellite Monitoring

• Stolen Vehicle Recovery

• Reports of Fleet Activity

• Driving Pattern Optimization Report

Competitor — Cartrack Portugal

2.3. Internship Contributions 19

Cartrack Portugal is the portuguese version of the Cartrack service provided by the com-
pany of the same name, co-founded and launched in 2004 in South Africa. The main
features of Cartrack Portugal are providing stolen vehicle recovery solutions and top of
the line vehicle tracking. As a fleet management system the product also provides reports
regarding fuel consumption, tachograph data, OBD data and driver history. Cartrack
was analyzed because it is an already established international product tackling very spe-
cific problems and a wider market when compared to Samsara. The specific problems are
namely a more accurate real time vehicle tracking, with the ability to detect and track
stolen vehicles. Similarly to the previous competitors, the data gathered by Cartrack is of
a closed source nature and would required an agreement to be made in order for third-party
entities to access the data.

Conclusions

In the competitors analysis performed it is clear that there are many fleet management
systems provided to companies that have the need to manage their fleets. Many of these
systems implement similar features, with arguably some implementation changes, but no
system implements all the features identified in this analysis.

Concluding the competitors analysis it is worth noting that, if a new company needed a fleet
management system to track the location of the vehicles with stolen vehicle recovery, along
with expense tracking, parking needs, and a predictive maintenance system, this company
would have to hire at least three distinct services. Via-Verde could provide the expense
tracking and parking needs features, Stratio Automotive could provide the predictive
maintenance, and Cartrack could provide the vehicle tracking the stolen vehicle recovery
features. By hiring these three services, the company would also possibly duplicate expense
tracking data, as both Via-Verde and Stratio Automative provide this functionality,
and the company would fragment the data generated by the fleet through different systems.
With solution proposed in this internship this new company could solve the problem of
decentralized data in the systems hired for the different features.

2.3 Internship Contributions

Based on the work previously presented in this chapter, regarding the academic principles
behind Fleet Management topics and the competitors analysis performed on fleet man-
agement applications, the following contributions are considered the key aspects of this
internship in this chapter:

• The structure of a research methodology for State of the Art, consisting on a set of
questions and respective answers pertaining to Fleet Management topics.

• The research performed on competitors available in the fleet management industry,
pertaining to various types of competitors ranging from the established to the new-
comers.

This chapter and its development also paved the way for the next two Chapters 5 and 6
in terms of the requirements to elicit and the architecture to define.

This page is intentionally left blank.

Chapter 3

Thumbeo Corporate

To improve an already existing solution, it is first necessary to study the concepts that
lead to it’s ideation, as well as the thought process behind it’s first inception. As such, the
present chapter will detail the aspects of Thumbeo Corporate as a product, along with the
characteristics that differentiate it.

3.1 The Product

The present section presents a description of Thumbeo Corporate, the solution presented
by Ubiwhere to help fleet managers in their decision-making process, and answers questions
regarding different aspects of the product itself. The following questions will be answered:
What is the product? Who is the product for? Why is the product different? After
answering the previous questions, the expectations on the final product of the internship
will be presented as a way to describe the contributions made by this internship in the
context of Thumbeo Corporate.

What is Thumbeo Corporate? Thumbeo Corporate is Ubiwhere’s fleet management
system. As a product and a service, it focuses on providing features that enable company
employees to share rides between themselves and enable fleet managers to control and
optimize their fleets.

Who is Thumbeo Corporate for? The target audience for Ubiwhere’s solution are
companies owning small or medium-sized fleets, between 20 and 200 vehicles, that oper-
ate in Portugal. These companies generally concern themselves with at least one of the
following sectors: distribution of people or goods, sales, construction or waste collection.

Why is Thumbeo Corporate different? Based on the results of the Competitor Anal-
ysis in Chapter 2, Thumbeo Corporate innovates by providing mobility as a service while
covering for the fleet needed by the service itself. The product also provides a white label
solution for companies that like their brand present on the products they use daily.

One of the core principles behind Thumbeo Corporate’s innovation is the idea of building
a system based on bundled features to better correspond to the needs of each company.

21

22 Chapter 3. Thumbeo Corporate

Some companies might want to keep their already established method of managing the
fleet but need to give their collaborators a ride-sharing platform; others might need the
whole set of features implemented by Thumbeo Corporate; while others might only need
a way of managing their respective fleets but might choose to not adopt ride-sharing into
their company’s mobility policy.

3.2 The Problem

At the start of the internship, Thumbeo Corporate as a product had stagnated and it was
not at all clear why. After the study of the topics regarding fleet management and the
competitors analysis presented in Chapter 2 it was clear that Thumbeo Corporate, alike the
competitors analyzed, did not offer a solution to import data from external systems, leaving
fleet managers with yet another system that they must use to manager their fleets. As
specified in the competitors analysis if a new company needed a fleet management system
with different specifications it could have to hire services from more than one company
offering a fleet management system, which would make it so that this new company would
replicate the information of the fleet by the number of systems hired.

By studying the topics that led to Thumbeo Corporate’s inception, present in Annex A,
it became apparent that the product had innovate ideas on how to tackle problems for
vehicle maintenance and depreciation, and expense management, but it nevertheless shared
features with other fleet management systems. Moreover, the features that these systems
share with one another make it so that fleet managers have to input similar data into
the various systems used, which leads to the replication of data. Therefore, as previously
explained, the internship aims to build upon a central solution that solves such problems
as explained along this document.

3.3 Internship Contributions

Having already defined the product in this chapter, and having studied competitors in the
previous Chapter 2, the problem with Thumbeo Corporate is clear. Despite the different
features it provides, the product is yet another tool for fleet managers to use, which helps
the decentralization of data regarding the company fleet. The core contribution of this
internship to Thumbeo Corporate is that of developing a system containing a Data Har-
monization System and a Fleet Management System that is both able to consume data
from external systems and utilize it to perform Fleet Management tasks.

Revisiting the previously defined figure 2.2 in the competitors analysis, now altered to
present the features that were added to Thumbeo Corporate.

3.3. Internship Contributions 23

Figure 3.1: High Level Competitors Analysis — New Thumbeo Corporate Features

The following Chapters 5 and 6 detail the requirements and the architecture of the system,
and in Chapter 8 the results of the implementation are shown.

This page is intentionally left blank.

Chapter 4

Project Management

In the present chapter, the topics related to project management will be addressed. Starting
with the software development methodology employed, moving onto the planning idealized,
followed by risk identification and explanation, ending with the established success criteria.

4.1 Team Organization

The team involved in designing Thumbeo Corporate, as stated before, plays a part in
studying the ever growing problem of fleet management and consequently designing and
developing Ubiwhere’s solution. This team is comprised of three members, each with their
own role inside the project:

• Product Owner: André Duarte

• Senior Developer: João Garcia

• Junior Developer: Francisco Santos

4.2 Software Development Methodology

For the duration of the internship, the software development methodology followed is based
on the Agile Manifesto Principles. The values proposed by the Agile Manifesto [32] that
where fundamental for its choice as the methodology applied in the internship are the
following:

• Individuals and interactions over processes and tools;

• Responding to change over following a plan.

As the product was idealized internally, the Agile paradigm is the best choice to deal
with the rapid changes that will surely arrive with new breakthroughs in development or
problems that might only appear at latter stages of the process. The first value mentioned
corresponds to the individuals at Ubiwhere that worked on Thumbeo Corporate; their
joined vision, knowledge and motivation are of greater importance to the product itself,
rather than focusing on what tools the product should use or what processes should be
employed because of their prestige or past usefulness to other projects. The second value is

25

26 Chapter 4. Project Management

tied to the first in such as way that the changes that might occur, come from the individuals
and their interaction along the project’s development. Combining the investigation and
knowledge of the people responsible for the project is bound to lead to changes and so, the
development methodology applied should allow for the changes to happen fast and have
their quality assured easily.

In the practical sense, regarding the implementation of the Agile methodology, there was
one meeting between both developers every week. In this meeting, both developers would
review the requirements elicited and the quality attributes defined, as well as the design
of the architecture and the decisions regarding the technologies and its uses. Apart from
these meetings between developers, the Junior Developer also had meetings every two
weeks with the Product Owner in order to update it with the decisions made and to gather
feedback that will be used to iterate the decisions made or the artifacts produced.

4.3 Planning

The planning of the project is structured in two different time periods corresponding with
the respective university semesters. The first semester runs from February to June 2020,
while the second semester runs from September 2020 to January 2021.

4.3.1 First Semester Plan

For the first semester, the plan built was divided into five different tasks, correspond-
ing to this very report, the state of the art studied, the project management tasks, the
requirements elicitation and the architecture design.

• Report: This stage is performed during the whole duration of the project. The
subtasks involved in this stage are writing and reviewing the report;

• State-of-the-Art Analysis: This phase of the plan was important to understand
the problem statement, study existing solutions and build a knowledge base to use
during the whole project;

• Project Management: This stage was carried out to plan the different tasks needed
to conclude the project. The success criteria and risk analysis were also defined during
this stage;

• Requirements: During this phase the elicitation of functional requirements and the
definition of the quality attributes was carried out;

• Architecture Design: This stage was crucial in development of the project. The
following task were performed: research about architecture patterns to use when im-
plementing the software; research possible technologies to use; define the architecture
using diagrams; initial training on the technologies chosen.

4.3.2 Second Semester Plan

The plan designed for the second semester consisted on the completion of a new task — the
development of the final product of the internship — while revisiting previously established
phases, such as the State-of-the-Art definition, the project management, the requirements

4.3. Planning 27

elicitation phase and the architecture design. This plan for the second semester was revis-
ited based on the feedback provided in the intermediate presentation.

• Report: For the second semester, this stage will consist of acting on the feedback
received from the intermediate defense and in the writing of the implementation
chapter of this report.

• State-of-the-Art Analysis: This phase of the plan is revisited to continuously
study the problem in question and to continue to search for solutions in the academic
or entrepreneurial world.

• Project Management: This stage was revisited to assert the state of the project
planning and to review the tasks proposed in the initial planning.

• Requirements: The requirements elicitation will be consistently iterated during the
project duration in order to reevaluate the elicited requirements or defined new ones.

• Architecture Design: The architecture design phase will also be iterated during
the project in order to comply with new or updated quality attributes.

• Product Development: This phase of the plan will be assigned for the implemen-
tation and testing of the product of this internship.

4.3.3 Gantt Diagrams

The first Gantt Diagram presented next is a visual representation of the effort that was
expected from the internship and how that effort was split into the different tasks and sub-
tasks mentioned previously. As for the second Gantt Diagram, it represents the real effort
that was made and how that effort divided itself into the different tasks and subtasks, in
which some of the subtasks are clearly different and arguably more detailed than expected.

The differences between the planned effort 4.1 and the real effort 4.2 exist for two main
reasons, those being the faults existent on the initial plan, and the changes made to the
plan in light of the feedback given in the intermediate presentation. The initial plan was
faulty in the sense that it did not present the requirements elicitation process and the
architecture design phases correctly; it presented the phases in a sequential manner, rather
than the intended iterative manner of being revisited for the majority of the duration of
the internship. The feedback provided in the intermediate presentation also required the
State-of-the-Art research to be revisited and thought out in a different form. Although
some of the previous performed work was still used in the new structure, it was mostly
utilized for a new phase and a corresponding chapter named “Thumbeo Corporate” which
explains the concepts behind the product developed by Ubiwhere.

28
C

hapter
4.

P
roject

M
anagem

entFigure 4.1: Gantt Diagram — Planned Effort

4.3.
P
lanning

29Figure 4.2: Gantt Diagram — Real Effort

30 Chapter 4. Project Management

4.4 Risk Management

The risk management plan constructed during the project planning phase was crucial to
identify all the different factors that might lead to an unsuccessful internship, in this
case, not reaching the Threshold of Success (ToS) criteria. To initiate this task, a way
of classifying the risks, with respect to their probability and impact, was defined and is
presented in table 4.1. After that, the risks themselves were gathered and written in
table 4.2, and finally mitigation plans were created for all risks. The mitigation plans are
present in table 4.3.

Scale Impact Description Probability Probability Threshold

1 Marginal Can reach ToS without
greater difficulty. Low <40%

2 Critical Can reach ToS but with
greater effort/cost. Medium between 40% and 70%

3 Catastrophic Can not reach ToS. High >70%

Table 4.1: Risk Classification Scale for Impact and Probability

ID Risk Probability Impact

R01
The technology being developed is state of

the art; This might cause scope/requirements
change based on new discoveries.

1 2

R02

The software being developed relies on data
from external systems; This will affect the

implementation in relation to what data can
be obtained.

1 3

R03
The lack of resources and the changing in
scope/requirements might delay or hinder

the final delivery.
2 3

Table 4.2: Risk Management Analysis

Risk ID Mitigation Plan

R01

Requirements and scope will be crafted to adequate changes that might
appear at later stages in the development. The success criteria will also be
written in a way that leaves some leeway for the requirements and scope to

change.

R02 The data needed will be chosen based on its immediate availability and the
system architecture is designed to ingest different types of data.

R03 The negotiations made on the scope or the requirements will consider
importance and the value of the final delivery for all stakeholders involved.

Table 4.3: Risk Mitigation Plans

4.5. Success Criteria 31

Figure 4.3: Risk Matrix

COVID Pandemic The pandemic that affected the world during this internship was
pondered as a risk for the work, but given the fast adaptation of the team to a remote
environment, combined with the immediacy at which the advisors responded with feedback
when needed made it so that the impact of the pandemic was reduced to the point of it
not being defined as a risk in the final version of this document.

4.5 Success Criteria

In order to evaluate the state of the project delivered, the following success criteria were
established:

• The requirements specified and the architecture designed are approved by the existing
stakeholders.

• Requirements classified as “Must have”, must be implemented at the time of the final
delivery.

• The product developed satisfies the quality attributes proposed in their respective
definitions in Chapter 5.

The previous success criteria represent the metrics through which the project will be
deemed successful or not; to fail one of the success criteria means to fail the delivery
itself.

This page is intentionally left blank.

Chapter 5

Requirements Specification

The present chapter will specify all requirements identified for the proposed work. Firstly
the user personas identified are presented; next, the terminology used in the requirements
and the structure of the functional requirements are identified and explained; this is fol-
lowed by the restrictions imposed at the system. Lastly, the chapter ends with the elicita-
tion of the functional requirements, along with the description of the quality attributes.

5.1 User Personas

Understanding the demographics targeted by the product is an important aspect of the
requirements elicitation phase. To model the useful aspects of the target audience User Per-
sonas were used. These personas constitute a semi-fictitious representation of segments of
the target audience; each representation is comprised of a name, important characteristics,
and the goals and frustrations felt by the persona.

First Persona

Name: Albert Peterson

Characteristics: • Company CEO.

• Owns a company fleet with 200 vehicles.

Goals: • Obtain the optimal Total Cost of Ownership for the company’s fleet.

• Wants to include collaborators in the company’s mobility plan.

Frustrations: • Has to use multiple systems to analyze the fleet.

• The multiple systems used are not always synchronized.

Table 5.1: First Persona — CEO

33

34 Chapter 5. Requirements Specification

Second Persona

Name: Isaac Dawkins

Characteristics: • Fleet Manager

• Manages a fleet of 50 vehicles

Goals: • Wants to be able to view all aspects of the company fleet within a single system.

• Wants to measure fleet performance.

Frustrations: • Has to use multiple systems to manage the fleet.

• The multiple systems used are not interoperable with each other.

Table 5.2: Second Persona — Fleet Manager

Third Persona

Name: Steven Piker

Characteristics: • Company Driver.

Goals: • Wants to manage the company vehicle.

Frustrations: • Has no way to track information generated by the vehicle.

• Has no system to inform CEO or Fleet Manager about fleet related events.

Table 5.3: Third Persona — Driver

Fourth Persona

Name: Leonard Harris

Characteristics: • Company Collaborator.

Goals: • Wants to reduce the time and money spent on everyday commuting.

Frustrations: • Spends 30 to 40 minutes everyday in commuting.

• Has no system to inform CEO or Fleet Manager about fleet related events.

Table 5.4: Fourth Persona — Collaborator

5.2 Terminology

In order to understand the requirements specified in the present work, it is necessary to
define the terminology used in the specification of both functional requirements and quality
attributes.

• On-Board Diagnostics: Vehicle system responsible for diagnosing faults in the
vehicle’s subsystems.

• OBD Readers: External device responsible for the gathering of data from the
vehicle OBD system.

• Data Harmonization System: Set of components responsible for gathering and
processing the data from the OBD system.

5.3. Requirement Structure 35

5.3 Requirement Structure

To allow for a more user-focused specification all functional requirements are specified
using User Stories. The choice of this requirement elicitation technique also pairs well with
the Agile Methodology used for project management, given that this technique focuses the
requirements to be written from the perspective of the end user. As a result of the previous
decision, the requirements specified have the following structure:

EPIC#ID

• Epic: User Story Epic

• Description: As a [role], I [want to], [so that]

• Acceptance Criteria:
– Scenario: Predetermined business situation

∗ Given a precondition
∗ When an action is performed by an actor
∗ Then a testable output is presented

• Dependencies: EPIC#ID

• Priority: Must Have, Should Have, Nice to Have

As a way to prioritize the requirements identified, the MoSCoW method was applied. This
method applies the following scale:

• Must have: Requirements that are critical to the current delivery time frame in
order for it to be a success.

• Should Have: Important but not necessary requirements.

• Could have: Desirable but no necessary requirements.

• Won’t have: The least critical requirements agreed upon by the stakeholders.

5.4 Restrictions

The restrictions identified for this system present themselves in three different types, and
impose constraints on how the system will be built. The present section will present said
restrictions and justify their existence.

5.4.1 Business Restrictions

Business restrictions are described as constraints related to business resources such as the
quantity and quality of the team in charge of the project, the time constraints imposed on
the project.

• R01 — Development Time Frame: The system proposed in this report will be
developed by a single developer for four months.

36 Chapter 5. Requirements Specification

5.4.2 Legal Restrictions

Legal restrictions, like the name implies, are related to constraints imposed by European
legislation.

• R02 — GDPR Compliance: The system to be developed must be compliant with
the European General Data Protection Regulation (GDPR) [33].

5.4.3 Technical Restrictions

Technical restrictions can be described as the constraints bound to the technologies used,
the systems that should be integrated with the project in development or the different
platforms that should be able to interact with the system.

• R03 — Integration with Thumbeo Corporate: The system to be developed
must be integrated with a pre-existent solution developed by Ubiwhere.

• R04 — Open Source Technologies: The system under development must make
use of Open Source Technologies in order to allow for unrestricted updates and the
availability of the source code in case modifications have to be done.

5.5 Functional Requirements

The functional requirements specified were idealized during the State-of-the-Art research,
drafted for the first time once the Requirement Specification phase was undertaken and
iterated when needed until the final version was achieved.

The requirements specified were divided by their respective Epics for various reasons.
Needing to organize the different features based on their related implementations is the first
reason; the second reason regards the need for sets of features that can be easily described
when attached to a delivery; and lastly these epics provide agility when organizing large
amounts of features to be developed. The following lists comprehend a summary of the
requirements divided by their epics and roles, the full elicitation of the requirements along
with their acceptance criteria can be reviewed in Annex B.

Epic: Data Harmonization, Role: Fleet Manager

1. Import vehicles from an external system, in order to centralize vehicle information
in a single system.

2. Import users from an external system, in order to centralize user information in a
single system.

3. Import rides from an external system, in order to centralize trip information in a
single system.

4. Import driving patterns from an external system, in order to centralize driving pat-
tern information in a single system.

5. Import OBD data from external OBD Readers, in order to centralize the data in a
single system.

5.5. Functional Requirements 37

Epic: Statistics Collection, Role: Fleet Manager

1. See statistical data gathered concerning fuel consumption, to analyze fuel spending
of the vehicles of the fleet.

2. See statistical data gathered concerning vehicle utilization, to analyze if the vehicles
are being used according to the company’s intent.

3. See statistical data gathered concerning vehicle availability, to analyze if the vehicles
are available when they are needed.

Epic: Vehicle Management, Role: Fleet Manager

1. Add a vehicle to my fleet so that I can manage it using the web application.

2. Edit the information about a specific vehicle so that I can update the data kept on
it.

3. See all my vehicles so that I can have a global view of my fleet.

4. Archive a vehicle of my fleet so that I can tell the system that the vehicle in question
is no longer operational in my fleet.

Epic: Permission Management, Role: System Administrator

1. Give fleet management permissions to a user, so that the user can act as a fleet
manager inside the web application.

2. Remove fleet management permissions from a user, so that the user can no longer
act as a fleet manager inside the web application.

Epic: Permission Management, Role: Fleet Manager

1. Give driver permissions to a user, so that the user can act as a driver inside the web
application.

2. Remove driver permissions from a user, so that the user can no longer act as a driver
inside the web application.

3. Give a driver permissions to drive one of my vehicles, so that I can provide him with
a means of transportation.

4. Remove a driver’s permissions to use one of my vehicles, so that I can stop him from
driving a specific vehicle.

Epic: Vehicle Evaluation, Role: Driver

1. Make an evaluation of the vehicle’s condition after a trip, so that I can notify the
fleet manager about occurrences during said trip.

2. Report a fault in vehicle that I am currently driving, so that I can inform the fleet
manager.

Epic: Fleet Manager Notifications, Role: Fleet Manager

38 Chapter 5. Requirements Specification

1. Is notified when one of my drivers starts a trip, so that I can be up to date with my
vehicles state.

2. Is notified when one of my drivers finishes a trip, so that I can be up to date with
my vehicles state.

3. Is notified when one of my drivers reports a vehicle fault, so that I can properly plan
the maintenance for the reported fault.

Epic: Driver Notifications, Role: Driver

1. Is notified when I am assigned a new vehicle, so that I can be up to date with which
vehicles I can use.

2. Is notified when my access to a vehicle has been removed, so that I can be up to date
with which vehicles I can use.

3. Is notified when one of the vehicles assigned to me has been declared unavailable, so
that I can be up to date with which vehicles I can use.

5.6 Quality Attributes

The quality attributes, often also called non-functional requirements, are defined as the
requirements that will impact the architecture of the system itself. The quality attributes
redacted for the system are defined using the following structure.

Priority: Set of priorities established based on the architecture impact and the
business value. Scale will be High (H), Medium (M) and Low (L). The representation
used is <architecture impact, business value>

Source of stimulus: Entity producer of the Stimulus

Stimulus: Condition that incites an action from the Artifact

Environment: Set of circumstances under which the Stimulus occurs

Artifact: Entity that is stimulated on a set Environment

Response: Action produced by the Artifact as a reaction to the Stimulus

Metric: Measurement criteria to evaluate the quality of the Artifact Response

Confidentiality

This quality attribute is present to provide drivers with the right to not have information,
that is deemed confidential, disclosed to either other users in the system, that are not
allowed to access the respective data; or to third party systems that are not required for
the proper functioning of this system.

Priority: <L, H>

Source of stimulus: Drivers.

Stimulus: The drivers right to not have their sensitive information and information
about their location to other users in the system or to third parties outside the system
itself that are not defined as a requirement for the system itself to function properly.

5.6. Quality Attributes 39

Environment: Production.

Artifact: System.

Response: Sensitive information is only shared with the driver who defined it; or,
if needed, with their respective fleet managers. Information about a driver’s location
is only disclosed to the fleet manager.

Metric: The system does not disclose any of the previously mentioned information
with unauthorized users.

Data Integrity

Priority: <L, M>

Source of stimulus: Developers and System Integrators.

Stimulus: Need to update the harmonization system based on the a new system to
integrate.

Environment: Development and maintenance.

Artifact: System.

Response: The harmonization system processes the data provided if the data follows
the data structure set out by Ubiwhere.

Metric: The new system integrated is made available in one week of work.

Interoperability

Ubiwhere and its collaborators have shown great interest in designing a system that com-
municates seamlessly with various data collection devices. Therefore, this interest is defined
as a quality attribute of the system to design and build.

Priority: <H, M>

Source of stimulus: Ubiwhere.

Stimulus: Need to change the acrshortobd data collection device if the problem
requires it or a client demands it.

Environment: Production.

Artifact: System.

Response: The identification of vehicle faults is independent of the data collection
device.

Metric: The identification of vehicle faults is based on the data available and not
the device that collects the data.

Priority: <H, M>

Source of stimulus: Ubiwhere.

Stimulus: Need to aggregate data collection services that consume different types
of data.

Environment: Production.

Artifact: System

40 Chapter 5. Requirements Specification

Response: The data ingestion system is able to consume data from different sources.

Metric: At least two data collection services are integrated with the data ingestion
system.

Modifiability

The ability to easily develop new features and maintain legacy ones is the driving force for
this specific quality attribute. The developers at Ubiwhere need to maintain the system
with the lowest amount of effort possible and develop new features with the assurance that
new work will force the least amount of changes in the work already produced.

Priority: <H, L>

Source of stimulus: Developers.

Stimulus: Need to implement a new feature to the system.

Environment: Development and maintenance.

Artifact: Web Application.

Response: The system maintains the intended behavior after the new feature is
added.

Metric: The feature can be successfully developed, integrated and tested within a
week of work.

Priority: <H, M>

Source of stimulus: Developers.

Stimulus: Need to integrate a new data collection service with the data ingestion
system.

Environment: Maintenance and Development.

Artifact: System.

Response: The system maintains the intended behavior after the new data collection
service is integrated.

Metric: The new data collection service is integrated and tested within a week of
work.

Scalability

This quality attribute is driven by the necessity to scale the already existing fleet manage-
ment system in terms of the subsystems it can collect data from. The fleet managers or
the CEO of any given company might need to integrate a new or pre-existent system with
Thumbeo Corporate and the system should scale to integrate the new subsystem.

Priority: <H, M>

Source of stimulus: Fleet Managers and CEOs.

Stimulus: Need to integrate a new data collection service with the data ingestion
system.

Environment: Maintenance and Development.

5.6. Quality Attributes 41

Artifact: System.

Response: The system maintains the intended behavior after the new data collection
service is integrated.

Metric: The new data collection service is integrated and tested within a week of
work.

Priority: <H, M>

Source of stimulus: System.

Stimulus: Need to deal with peaks of data being imported into the system.

Environment: Production

Artifact: System.

Response: The system maintains intended behavior while dealing with a peak of
data being loaded into the database.

Metric: The messaging system auto-scales itself after the CPU usage threshold
exceeds 80%.

This page is intentionally left blank.

Chapter 6

Architecture and Technology

Following the elicitation of the functional requirements and quality attributes, this chapter
will document the process through which the architecture of the system was built. The
process relied on the research of what tools exist for the purposes of the system and how
can said tools be orchestrated together to fulfill the goals of this internship. Firstly, the ar-
chitectural decisions will be discussed and presented, followed by the technologies adopted,
moving onto the architectural definition through diagrams and finalizing by validating the
compliance of the architecture with the quality attributes established.

6.1 Project Background

Before introducing the architecture developed for the purpose of this internship it is valu-
able to present the already existing architecture for one of the two systems that will be
integrated with the system to develop. This system is a product, also developed by Ubi-
where, named Thumbeo and it is a ride-hailing service.

Figure 6.1: C4 Model — Existing System

43

44 Chapter 6. Architecture and Technology

As the previously figure 6.1 shows, the existing system was composed of four different ap-
plications within a django-rest-framework monolith. The Identity and Access Manage-
ment application serves to manage user information and authenticate users into demanded
and authorized resources. The Vehicle Management Application is responsible for
managing the records of fleet vehicles, and provide functionalities to create, update, read
or delete vehicle information. The Ride Management Application is responsible for
managing the records of ride requests and offers, keeping track of the vehicle used, the
passengers taking the ride, among other pieces of information. To provide driver pattern
recognition functionalities, Driver Pattern Application implements a set of methods
that analyzes incoming vehicle data in order to recognize intended or unintended driving
patterns. All of the previously mentioned modules read from and write to the Thum-
beo Database which is responsible for storing the information recorded by the respective
modules.

6.2 Architecture Overview and Decisions

When designing Thumbeo Corporate’s architecture, some decisions had to be made re-
garding the structure of the architecture, while taking into consideration the objectives
specified in the Chapter 1 and the quality attributes specified in Chapter 5.

The first hypothesis posed was that of the overall structure of the architecture; whether it
would follow a Microservices, a Monolithic pattern or a Layered pattern. All the patterns
will be explained next, in order to present the advantages and disadvantages inherently
tied to Microservices, Monolithic or Layered patterns.

Monolithic Architecture Pattern The Monolithic Pattern considers the system as
a self-contained single component. The philosophy behind this pattern is such that the
application itself is responsible for every step necessary to complete a specific function. This
pattern in particular lacks the application of the concept of modularity, where parts of the
application logic are reused in order to ease development and maintenance. Nevertheless,
this architectural pattern eases the development and deployment phases, given that the
application consists of a single component, although it adds complexity in the testing
phase, and makes the system harder to scale.

Microservices Architecture Pattern The Microservices Pattern[34] applies the no-
tion of separately deployed units when organizing the components of the systems. These
components, denoted as service components can vary in granularity, providing one or more
modules, depending on the functions that the service component should perform. The
main challenge of the Microservices Pattern is to find the right level of granularity that
each service component should have; given that coarse-grained components will lead a
bloated architecture that might lose the benefits proposed by the Microservices Pattern;
and fine-grained components will lead orchestration problems that cause an increase in
complexity, confusion and expense.

Layered Architecture Pattern The Layered Architecture Pattern[35] organizes the
architecture constituents as horizontal layers with each layer having a specific role within
the application itself. In general, most layered architectures present four standard layers:

6.3. Technology Overview and Decisions 45

presentation, business, persistence and database; nevertheless, the architectural pat-
tern does not specify the number of layers that must exist and neither does it specify what
are the roles and responsibilities of the layers. One of the key concepts present in layered
architectures is the notion of layers of isolation, in which each layer is independent of the
other layers and therefore have little to no knowledge of the inner workings of the other
layers of the architecture.

Having the concepts of all architectural patterns in mind, it was decided that Thumbeo
Corporate’s architecture will follow a Layered Architectural pattern. This pattern allows
for a clear division between the different layers of the system, hereby defined as the Mes-
saging Layer, the Harmonization Layer, the Business Layer and the Data Layer. Another
crucial idea behind the choice of a Layered pattern is the isolation between all layers,
which allows for a separation of the concerns that the system will uphold. Also, in theory,
updating the system to support a new external system requires only the development of a
new interface in the Harmonization Layer and in the Business Layer.

6.3 Technology Overview and Decisions

Deciding the technologies that will be used to build Thumbeo Corporate is the next step
of this chapter. In order to provide some deciding factors for the different technologies
available some restrictions are imposed, either directly by Ubiwhere or by the stakeholders,
or indirectly by the attributes the system should possess. These restriction are as follows:

• The technologies must be used in production-grade, scalable software systems.

• The technologies/frameworks used must be open-source.

• The chosen technologies/frameworks must have good community support and docu-
mentation.

• The time to learn each technology and implement the product must not exceed the
existing delivery deadlines.

Having the previous restrictions in mind the choice for the technology to be employed
was straightforward, the system will be implemented using the Python web framework,
Django. This choice of technology meets all the restrictions imposed given that Ubiwhere
already built some components present in Thumbeo Corporate using Django; which also
indicates that the company already knows the technology, and discussions with other de-
velopers at Ubiwhere proved that the company is fluent in Django. The last restriction did
not pose an issue, given that the developer of this internship is already well versed with
the technology itself and any new challenges found could be discussed with the experienced
team at Ubiwhere.

The choice of a Relational Database Management System (RDBMS) was also as straight-
forward as the choice of a web framework, given that Ubiwhere and the developer of this
internship already had experience with the technology elected, PostgreSQL. This RDBMS
also met all the open-source restriction posed initially, along with the community support
and the existing documentation for the database itself and for its integration with Django.
Given that there is a need to implement a message queue system, a technology that provides
such features had to be chosen. RabbitMQ was elected as the ideal choice for its presence
in Ubiwhere’s knowledge-base, for the fact that it employs an open-source methodology
and for its extensive documentation. Finally, the technology employed to orchestrate all of

46 Chapter 6. Architecture and Technology

the services together is Docker; which was again chosen based on Ubiwhere’s tech stack
and the knowledge-base created around the technology.

Django: Defined as a high-level Python web framework that encourages rapid develop-
ment, Django[36] has many of the tools needed to develop the product of this internship.
Offering an abstraction on the REST pattern with the package django-rest-framework [37]
and an imbued Object-Relational Mapping (ORM) that supports geographic queries when
extended with PostGIS, along with many other open-source extensions developed by the
community. The documentation provided by Django and by django-rest-framework is also
more than sufficient to help with the work that must be produced.

PostgreSQL: Having over thirty years of open-source development, PostgreSQL[38] is
considered to be a robust, reliable and performant RDBMS. It offers an official documen-
tation, although it is not expected that the developer of this internship would use raw SQL
queries, preferring instead to use of Django- ORM along with the geospatial extension
PostGIS. PostgreSQL also offers the possibility of saving JSON objects or Array types
directly to the database, which might become advantageous in case this functionality ever
becomes needed.

Docker: The modern day technology used to orchestrate microservices involves utilizing
images with the intended technologies configured, to create isolated containers that will
communicate with one another through network, that can either internal or external de-
pending on the wants and needs of the product. These containers are sometimes replicated
at will in order to build elastic system or replicate existing system in another context.
Docker[39] and it’s extensions, docker-compose[40] and docker-swarm[41] are used to cre-
ate containers using the images, orchestrate those containers together, and replicate those
containers when needed, respectively.

RabbitMQ: This lightweight open source message broker is deemed as “easy to de-
ploy on premises and in the cloud”[42]. RabbitMQ offers a multitude of features such
as asynchronous messaging, compatibility with a wide range of programming languages
and distributed deployment using clusters or the federation paradigm. The open-source
community developing RabbitMQ also extended some functionalities [43] through a plugin
system. For the purpose of this architecture, the most important feature provided by this
technology is, without a doubt, the asynchronous messaging functionality, that will allow
for a set of subsystems to gather and process data in a performant manner.

6.4 System Architecture

Having explained the hypothesis posed for the architecture and the decisions made, along
with the having chosen the technologies that will be employed in the development of this
internship, this section will show the architecture constructed and how it will integrate
with the already existing components of Thumbeo Corporate.

The C4 Model was the elected method for visually representing the architecture, as it
was already well known by the Ubiwhere’s collaborators, meaning it would not pose an

https://docs.djangoproject.com/en/3.0/
https://www.django-rest-framework.org/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/

6.4. System Architecture 47

entry barrier for those who must grasp the architecture to critique it or implement it.
This model also projects a natural order onto the architecture, first describing the System
Context where a more high-level approach is taken, illustrating the users and the systems
that will interact with Thumbeo Corporate. Diving deeper into the representation of the
system presented in the System Context diagram, the Containers diagram aims to break
down the high-level vision of the system into the separate entities that constitute deployable
units that execute code or store data. Finally, the last diagram, the Components diagram,
zooms in to the specific containers presented in the previous diagram, to provide a lower
level view of architecture to implement in the context of this internship.

The following diagram, System Context will present a high-level view of the different actors
that will interact with Thumbeo Corporate.

Figure 6.2: C4 Model — System Context

The previous diagram shows both types of Software Systems that will interact with Thum-
beo Corporate: the Thumbeo system is an external system that will supply data related
to previously registered vehicles, users and rides; and the OBD Readers present in every
vehicle that will supply data to Thumbeo Corporate. The figure also shows that the type
of user that will interact with the system is the Fleet Manager.

The following Containers diagram visually demonstrates how the different constituents

48 Chapter 6. Architecture and Technology

of Thumbeo Corporate are organized in order to provide the necessary functions to the
product as a whole.

Figure 6.3: C4 Model — Containers

Analyzing the previous diagram it is clear that the architecture is composed of a variety
of different containers each with their respective responsibilities:

Entry Point The client-side system that acts as the user centered entry point is Content
Management System (CMS), developed with ReactJS, and it provides the user interface
that will forward the user requests to their respective system. This system will allow fleet
managers to create, view, update or delete information regarding the company vehicles, as
well as assign vehicles to drivers and visualize the data generated by their fleet. Although
this system is being mentioned, it resides outside of the scope of this internship.

Messaging System This system resides within the Messaging Layer and it serves the
purpose of receiving messages with data from the integrated external systems and forwards
the messages into the Data Harmonization System. The existence of a messaging system is
justified by the unknowable quantity of external systems that fleet managers will want to
integrate with Thumbeo Corporate, and as such this system will enable multiple systems
to be integrated without heavily compromising the system performance.

Data Harmonization System The purpose of this system it to transform the data
received from the integrated external systems; it functions by using serializing methods to
transform said data into the data structure defined by Ubiwhere. The serializing methods
used are provided by django-rest-framework and use Django models to convert the data

6.4. System Architecture 49

into Python objects. After the harmonization is performed, the data created is then written
into the Data Layer in order to be accessible by the Fleet Management System.

Fleet Management System This system implements all the features related to fleet
management, being the registration of users, vehicles, rides, the submission of reports and
notifications to fleet managers. All of the data manipulated by this system is written into
the Data Layer to the same database as the Data Harmonization system, this enables this
system to read the data imported from external systems.

Before presenting the next level diagram, the Components diagram, it is important to
represent the information flow of two different situations pertaining to this architecture.
The first situation is that of importing data into the Fleet Management System.

Figure 6.4: Information Flow (Containers) — Importing Data

To import data into the Fleet Management System, the data is first sent in (1) by the
external systems into the Messaging System, which then sends out the data in (2) to the
Data Harmonization System. In this last mentioned system, the data is transformed from
it’s original format into the proprietary data structures defined by Ubiwhere. Upon final-
izing the harmonization process, the data is then written into Fleet Management Database
in (3).

The next information flow to present is that of creating new data which up until the last
step, takes a completely different route from the previous flow explained.

50 Chapter 6. Architecture and Technology

Figure 6.5: Information Flow (Containers) — Creating Data

The information flow in the process of creating new data starts out by the Fleet Manager
inputting data (1) into the Content Management System. This new data is then transmit-
ted by the CMS into the Reverse Proxy/Web Server in (2), which in turn forwards the
request (3) into the Fleet Management System. Before writing the data (4) into the Fleet
Management Database, the previously mentioned system validates the format of data sent
in the request and only if the data is as intended, is it written into the database.

The Components diagram, presented next, zooms into the previously shown system as a
way to demonstrate how each layer of the architecture is structured and how the informa-
tion is communicated within the layers themselves and transmitted from one layer onto
another. This diagram makes use of technology specific concepts and as such it may not
reflect the actual architecture of systems that employ different technologies.

6.4.
System

A
rchitecture

51

Figure 6.6: C4 Model — Components

52 Chapter 6. Architecture and Technology

Components

• Fleet Management System — All of the following components encompassed by
this system are django-rest-framework applications, that contain the models, the
corresponding serializers and views responsible for managing the respective resource.

– Users Component — This component is responsible for managing information
pertaining to users, be it authentication credentials or profile data.

– Vehicles Component — This component manages the information related to
the vehicles registered in the platform.

– Notifications Component — This component handles the notification pro-
cess, sending notifications to users and allowing them to change their notification
status.

– Reports Component — This component is responsible for handling the re-
porting features of the system; allowing users to create report about rides or
vehicle faults.

– Statistics Component — This component handles the gathering of informa-
tion pertaining to the KPIs specified in Chapter 2.

• Data Harmonization System
– Harmonization Models — These models serve as the data structures used

to transform the imported data into the intended format to be written into the
Data Layer.

– Celery Workers — The workers provided by the Celery package serve as the
asynchronous runners that will execute the data harmonization tasks established
for the respective data structure.

– Data Harmonization Script — This script acts as the interface between the
Messaging System and the Data Harmonization System; creating the Default
Exchange in the system to which the external systems will send the informa-
tion.

• Messaging System
– Default Exchange — Pre-declared direct exchange with no name, that when

used will deliver messages to the queue equal to the routing key of the message.
– Data Ingestion Service — This service acts as queue for the messages that

intend to be transmitted to a specific consumer.

Having explained the roles of each component present in the system, the next step is
that of demonstrating how the information flows within the system, alike what was done
with the previous Containers Diagram. The two following images pertain respectively the
information flow when a fleet manager wants to import data and when it wants to create
new data.

6.4.
System

A
rchitecture

53

Figure 6.7: Information Flow (Containers) — Importing Data

54 Chapter 6. Architecture and Technology

In the previous figure 6.7, analogous to the containers diagram, the information flow of
importing data starts when an external systems sends data to the Messaging System in
(1), more precisely this time, to the Default Exchange. This exchange then sends the
transmitted data into the Data Ingestion Service in (2) that will queue the data to be
consumed by the Data Harmonization System in (3). This script will make use (4) of
Celery Workers to start asynchronous tasks that transform the data imported into the
their respective data structure (5) specified by the Harmonization Models. After the
harmonization process is concluded, the Celery Workers will write (6) the new data into
the Fleet Management Database.

The following figure 6.8, again analogous to the containers diagram, the information flow of
creating data starts by the Fleet Manager inputting data (1) into the Content Management
System. The CMS then sends the data (2) into the Reverse Proxy/Web Server that will
transmit the data (3) into the corresponding component present into the Fleet Management
System. Finally, any of the components in the Fleet Management System will write the
data (4) inputed by the Fleet Manager into the Fleet Management Database.

6.4.
System

A
rchitecture

55

Figure 6.8: Information Flow (Containers) — Creating Data

56 Chapter 6. Architecture and Technology

Lastly, to fully explain the architecture is necessary to present how the process of harmo-
nizing data occurs within the system. When the Data Harmonization System receives
data coming from the Messaging System, it executes a Celery Worker. This worker will
use the Harmonization Models specified to convert the incoming data into objects that can
the be inserted into the database, given that these models will be specified using Python
Classes, the objects created are Python Objects. The following diagram is an overview of
what models exist and in what circumstances are these models used.

Figure 6.9: Data Harmonization System

As seen in the previous diagram 6.9, the Data Harmonization Script recognizes the type of
data it is importing, and uses the corresponding data model to transform the original data
structured into a Python Object that is then written into the Fleet Management Database.
It is necessary to clarify that the previous diagram is specific for this internship only and
it is not representative of what can be achieved by the Data Harmonization System in the
case that the external systems where different than those specified.

6.5. Architecture Representation Phases 57

6.5 Architecture Representation Phases

This section aims to help maintain a cohesive narrative of the design of the architecture
of the project, showing the different architecture diagrams that lead to the final diagrams
shown previously. For the purposes of a establishing a timeline, this section is divided
between the first semester, prior to the intermediate presentation, and the second semester,
after the intermediate presentation.

6.5.1 First Semester

In the first semester, the basis for the architectural pattern was a microservices architecture.
This choice was made because the perspective of the project was different at the time; given
the knowledge about the Thumbeo Corporate product as a whole and about Ubiwhere’s
objectives for the Fleet Management topic, the decision of choosing a microservices pattern
was indeed the correct one. The initial idea was to develop Thumbeo Corporate, to be
integrated with other Ubiwhere products that implement other fleet related functionalities.
To achieve this idea, the remaining products and the fleet management system, that is the
goal of this work, where defined as plugins, that could be toggled on or off based on
customers decision.

In hindsight, this decision was not necessarily wrong for the product as a whole, but it
was not correct approach for the work of this internship, and the objective of developing a
data ingestion hub to collected data from external systems along with a system to provide
fleet management functionalities was not correctly expressed in the diagram presented at
the time.

58 Chapter 6. Architecture and Technology

Figure 6.10: First Semester — Containers

6.5.2 Second Semester

As of the second semester, based on the feedback given in the intermediate presentation,
the goal shifted to create an architecture more aligned with a standalone Fleet Management
System, that is also able to import data from external systems.

The first diagram shows the two external systems that will be integrated by the end of

6.6. Final Considerations 59

this work, along with the relationships between the Data Harmonization System, the Fleet
Management System, and the Statistics application.

Figure 6.11: Second Semester — Containers

6.6 Final Considerations

Given that the idea of conceptualizing an architecture to define the representation of the
system predicates the necessity of meeting the quality attributes defined in Chapter 5, this
section will explain how these attributes were met by the architecture defined.

• Confidentiality: The User Component is responsible for validating the autho-
rization of a user that intends to access a resource.

• Data Integrity: The models established in the Data Harmonization System
assert the integrity of the data received; if the data does not follow the structure
define by Ubiwhere, it will get rejected.

• Interoperability: The Data Harmonization System is be able to harmonize the
data received from the OBD Readers, independently of how those systems operate.
Obtaining the data and processing it into a usable format by the system is the Data
Harmonization System’s responsibility.

• Modifiability: The structure of the Data Harmonization System assures that
creating new data structures to import new data requires simply defining the new
models and letting the Data Harmonization Script know it needs to use the new
models to import the data.

• Scalability: The system will automatically scale itself when needed with the help of

60 Chapter 6. Architecture and Technology

technologies present in the environment it resides on. Technologies like Docker and
the usage of RabbitMQ will assure that the system can deal with peaks of data and
can scale itself based on the resources it is using.

Chapter 7

Project Development

This chapter explains the details of the implementation of the previously defined require-
ments and architecture in chapters 5 and 6. The first aspect covered are the configurations
used in the Docker Virtualization system; followed by the configurations in the messaging
system implemented using RabbitMQ; next, the implementation of the models, the serial-
izers and the celery workers from the data harmonization system will be shown; finally the
fleet management system models and the statistics collection mechanism will be explained.

7.1 Django Concepts

This sections serves to explain some of the main concepts used by the django-rest-framework
used in the development of the Fleet Management System, which are key to understanding
the implementation details explained further.

7.1.1 ViewSets

A django-rest-framework viewset, as defined by the documentation, is used to “combine
the logic for a set of related views in a single class” [44]. The documentation also states
that other frameworks also provided conceptually similar implementations named along
the lines of “Resources” or “Controllers”. In short these components allow the programmer
to quickly define REST endpoints in few lines of code.

Using the ModelViewSet provided by django-rest-framework it is possible to define
CRUD methods with their corresponding REST endpoint in the following manner.

class AccountViewSet (v i ewse t s . ModelViewSet) :
"""
A simple ViewSet f o r v iewing and e d i t i n g accounts .
"""
queryse t = Account . ob j e c t s . a l l ()
s e r i a l i z e r _ c l a s s = Accoun tSe r i a l i z e r
pe rmi s s i on_c la s s e s = [IsAccountAdminOrReadOnly]

The previously defined code generates the following endpoints:

61

62 Chapter 7. Project Development

Protocol Function Description
GET list Lists all available objects for the corresponding model
GET retrieve Retrieve the single instance that corresponds to the attribute sent in the request
POST create Create a single instance of the model defined in the viewset, using the attributes sent in the request
PUT update Updates the instance specified by a parameter in the endpoint, using the attributes sent in the request
DELETE delete Deletes the instance specified by a parameter in the endpoint

Table 7.1: django-rest-framework — Endpoints defined by ModelViewSet

This tool defined by the framework eases the implementation of basic functionalities, since
the behavior of the viewset functions was only overridden when more complex actions
arouse.

7.1.2 Serializers

The django-rest-framework serializers are a tool to translate data structures sent by re-
quests, made to the previously mentioned, viewsets, into Python data structures. In these
serializers it is also possible to define validation criteria that must be followed by the in-
coming data to transform, if these criteria are not met, the viewset will issue a response
error with the corresponding messages relating to the error that occurred. As seen in the
documentation [45], the serializers are defined as follows:

from rest_framework import s e r i a l i z e r s

class CommentSeria l izer (s e r i a l i z e r s . S e r i a l i z e r) :
emai l = s e r i a l i z e r s . Emai lFie ld ()
content = s e r i a l i z e r s . CharField (max_length=200)
c r ea ted = s e r i a l i z e r s . DateTimeField ()

In the previous example it is possible to see how the validation criteria are defined for
each field in the serializers, as well as some of the available parameters for the validation
criteria. These serializers are used in the project to transform incoming json data, from
the requests made to the endpoints defined by viewsets, into Python data structures to be
stored into the database.

7.2 Docker

As previously specified in chapter 6, Docker is used to orchestrate Thumbeo Corporate’s
environment. The following image refer to the configurations developed to allow Docker
to orchestrate the system. Note that both the Fleet Management System and the Data
Harmonization System are built from their own contexts using their respective Dockerfile,
this is intended not only to isolate the systems but also to make it possible to alter the
environment from each system separatly.

7.3. Messaging System 63

Figure 7.1: Docker Configurations

7.3 Messaging System

This system, as specified in chapter 6, receives and queues messages containing the data
pertaining to the external systems integrated with Thumbeo Corporate. Given that the
messaging system is implemented using RabbitMQ, the developed done on this specific
system was that of installing and configuring the software to enable its use in the system
as whole. As seen in the previously mentioned Docker configuration 7.1 the Messaging
System is declared as rabbitmq.

7.4 Data Harmonization System

This system in specific, responsible for transforming incoming data from external systems
into their respective format, was implemented with using Celery Workers and Models that
correspond to the intended data structure.

7.4.1 Models

The models implemented in the Data Harmonization System are used by the Celery Tasks
to transform the data consumed by the system into the data to be transmitted into the
Fleet Management System. Given that models implemented in the Data Harmonization
System have no relationships with one another, it is not possible to construct a diagram
showing how they are related.

64 Chapter 7. Project Development

OBD Readers Models

In order to comply with the Fleet Management System models for recording OBD data, the
Data Harmonization System implements models that are analogous to the models present
on that system.

Telemetry Event

• Event Type: Type of event recorded by the OBD;
• Event Value: Value of the event recorded by the OBD;
• Occurrence Datetime: Date and time at which the event occurred;
• Vehicle: Vehicle that generated the event;
• Completed Ride: Ride at which the event was generated;

Thumbeo Models

The following models served as the intermediary between the data sent by the Thumbeo
software system and the data transmitted to the Fleet Management System.

User

• Email: Email of the user;
• Name: Name of the user registered on the system sending the data;
• Phone: Phone number of the user registered on the system sending the data;
• Profile Photo: Profile photo submitted by the user on the system sending the data.

Vehicle

• Make: Vehicle manufacturer name;
• Model: Vehicle model name;
• License Plate: Identification number in the vehicle license plate;
• Number of Seats: Number of seats available in the vehicle;

Ride Request

• User: User that issued the ride request;
• Vehicle: Vehicle to be used in the ride request;
• Departure Datetime: Date and time at which the user requesting the ride wants

to be picked up;
• Origin: Place of origin where the ride should start;
• Destination: Place at which the ride should end;
• Notes: Miscellaneous information provided by the user that created the ride request;
• Status: Status of the ride.

7.5. Fleet Management System 65

Ride Offer

• User: User that issued the ride offer;

• Vehicle: Vehicle to be used in the ride offer;

• Departure Datetime: Date and time at which the offer will depart;

• Origin: Place of origin where the ride should start;

• Destination: Place at which the ride should end;

• Notes: Miscellaneous information provided by the user that created the ride offer;

Featured Place

• Name — Name of the place frequently used;

• Description — Description of the place;

• Coordinates — Set of coordinates describing the location of the place.

7.4.2 Celery Tasks

A Celery Task, in this project, is the set of instructions that will be used by a Celery Worker
to transform the data received into the intended data structure. For the development of
the project, a total of four tasks were created, each one imports respectively the users, the
vehicles, the rides and the telemetry data. As seen in the previous Chapter 6, these
tasks are executed by the workers instantiated in the Data Harmonization Script and will
make use of the models defined in the previous section to transform the raw data coming
from the Messaging System into Python objects that are written into the database.

7.5 Fleet Management System

For the development of the Fleet Management System the important aspects worth men-
tioning are the models created for the records that will be kept in the system, and the
models that will be stored for the purpose of keeping statistics to show to fleet managers.
The extensive definition of the models is present in Annex C, along with a low level entity-
relationship diagram showing the attributes.

7.5.1 Models

The following diagram reflects the developed models for the Fleet Management System.
Most of the models included were developed with the models of the existing system 6.1 in
mind given that the data to be imported was first generated by the system in question,
and the development team decided that the work done on the previously mentioned system
could and should be taken advantage of when developing this new iteration.

66 Chapter 7. Project Development

Figure 7.2: Fleet Management System — Entity Relationship Diagram

The full data model developed for the Fleet Management System, complete with all the
attributes of each model is present in Annex C.

7.5.2 Statistics

To enable the collection of statistical data, the three different KPIs defined in Chapter 2
of Fuel Consumption, Utilization, Availability.

To implement the Fuel Consumption KPI it is necessary to fetch all TelemetryEvents
that correspond to the type FUEL_RATE. This type of Telemetry Event, generated by
the OBD Readers, is a record of the instantaneous fuel injection rate into the engine; stored
using liters per hour as a unit of measure. Using a ViewSet function that calculates the
average fuel rate spent per ride produces the average fuel consumption for a given vehicle;
this function then returns the result of this KPI using a serializer to transform the python
object into a json data structure.

Regarding the Utilization KPI, it’s implementation consisted of a ViewSet that filters
the Completed Rides in the database by the Vehicle identifier sent in the request. This
restricts the set of all Completed Rides into the subset that was performed using the
specified vehicle, allowing the fleet manager to compare the utilization of a given vehicle
with any other. The results filtered by the ViewSet are then transformed into a json data
structure by a serializer and sent in the response body.

The Availability KPI is implemented by filtering the set of all vehicles by those who are
currently not performing a ride using the Is Active field specified in the models C. Alike
the previous KPI, a ViewSet implements a function that receives the parameter by which

7.6. Testing 67

it should filter the fleet of vehicles and returns a json data structure with the results of
the filtering.

7.6 Testing

In order to assess the quality of the features implemented, a unit testing suite was de-
veloped. Further testing strategies were considered, end-to-end testing being one of
the strategies that made sense to implement into a finalized product, nevertheless, it was
decided that it is not worth addressing this type of tests at this stage of development.
Therefore, unit testing is the only strategy implemented in the system as a means to
validate the implementation of the requirements specified in Chapter 5.

7.6.1 Unit Testing

The main goal of performing unit tests is to isolate each part (or unit) of a particular
software in order to show that the individual parts are correct. In the specific context of
this system, the units are defined as the different components of the Fleet Management
System: User Component, Vehicle Component, Rides Component, Statistics Component.

The tests performed and their respective results are described in the tables D.1, D.2, D.3, D.4
and D.5 of Annex D

7.6.2 Data Harmonization System

Regarding the testing of the components of the Data Harmonization System, the main
concern was testing the transmission of data incoming from the Messaging System, the
transformation of the data into the intended data model and ultimately the process of
writing the data into the database.

• User Data
– Received data that is valid, is transformed into a User Model;
– Received data that is invalid is discarded;
– User Models can be written into the Fleet Management Database.

• Vehicles Data
– Received data that is valid, is transformed into a Vehicle Model;
– Received data that is invalid is discarded;
– Vehicle Models can be written into the Fleet Management Database.

• Rides Data
– Received data that is valid, is transformed into a Ride Request or Ride Offer;
– Received data that is invalid is discarded;
– Vehicle Models can be written into the Fleet Management Database.

• OBD Data
– Received data that is valid, is transformed into a Telemetry Event;
– Received data that is invalid is discarded;
– Telemetry Events can be written into the Fleet Management Database.

68 Chapter 7. Project Development

7.6.3 Fleet Management System

When unit testing the different components of the Fleet Management System, the concern
was in testing actions of creating, reading, updating or deleting the specific models defined
for each component. A summary of the unit tests performed for each component is as
follows:

• Users Component
– Create a new user along with a profile;
– Fetch a user profile or a set of user profiles;
– Update a user and user profile information;
– Delete user information;

• Vehicles Component
– Create a new vehicle;
– Fetch a vehicle or a set of vehicles;
– Update vehicle information;
– Delete vehicle information;
– Filter vehicles by their utilization in rides;
– Filter vehicles by their immediate availability;

• Rides Component
– Create ride requests and ride offers;
– Fetch ride requests or ride offers;
– Update information in ride offers and ride requests;
– Delete ride offers and ride requests.

• Statistics Component
– Fetch the average fuel consumption for a given vehicle.
– Fetch the average fuel consumption for all vehicles in the fleet.

Chapter 8

Final Product of the Internship

In this chapter, Thumbeo Corporate is presented following the implementation phase of
this internship. Given that no front-end application or web interface was within the scope
of the project most of the demonstration will occur with the help of pictures from the
documentation developed for the Fleet Management System, the administration interface
that comes bundled with django-rest-framework or requests sent to the Data Harmonization
System.

At the start of this internship, Thumbeo Corporate as a product had stagnated it’s de-
velopment. The study of the concepts in Chapter 2 were essential to understand that the
product had stagnated because it created yet another service for fleet managers to use.
After studying the concepts that were the basis for Thumbeo Corporate’s initial ideation,
present in Chapter 3, the focus of the internship became the creation of a system capable
of consuming data from other systems along with the fleet management features defined
in Chapter 5. The idea behind creating a system that consumes data from other systems
serves the purpose of helping fleet managers unify the systems already in use into a single
software, and the architecture of this system is defined in Chapter 6.

8.1 Fleet Management System

Regarding the Fleet Management System, there are some aspects that can be shown,
namely the documentation developed for the system, along with a administration interface.
Initially, the documentation developed for the Fleet Management System allows for anyone
to explore the endpoints implemented along with the attributes required and allowed by
each one.

69

70 Chapter 8. Final Product of the Internship

Figure 8.1: Fleet Management System — API Documentation

Lastly, the administration interface provided by django-rest-framework allows anyone with
the administration credentials to view and change the records of the system, nevertheless
some of the functional aspects provided by the API are not available from this interface.

Figure 8.2: Fleet Management System — Administration Interface

8.2 Data Harmonization System

The Data Harmonization System, as demonstrated in figure 6.9 in Chapter 6, transforms
incoming data into data that the Fleet Management System can understand the following
demonstrations present the harmonization process in action, as well as the transformed
data now included in the product Thumbeo Corporate.

8.2. Data Harmonization System 71

Figure 8.3: Data Harmonization System — Harmonization Process

In the previous image 8.3 the harmonization process is demonstrated, the first line of the
image shows the data received by the Data Harmonization System of an event generated
by an external system, the second line shows the data transformed into a model to be
stored into the database; a process which is shown to take process in the lines that follow,
with the process repeating for the next event harmonized.

In the next image, it is possible to see that the data harmonized by the Data Harmoniza-
tion System is now accessible in Thumbeo Corporate and is visible in the administration
interface.

Figure 8.4: Thumbeo Corporate — Harmonized Data

The vehicle telemetry data was only accessible through a mobile application the connected
to the OBD devices and now, through the Data Harmonization System, it is accessible
in the product Thumbeo Corporate, allowing fleet managers to track this data in single
system, where the remaining data of their vehicles is centralized.

This page is intentionally left blank.

Chapter 9

Conclusions

This chapter concludes this report of the internship, starting by summarizing the conclu-
sions withdrawn from the work done, following with the tasks planned for the future work
of this internship and ending with the lessons learned during the internship.

9.1 Work Done

During this internship the problem identified was that of the decentralization of data
belonging to fleet management systems; that is, fleet managers who use multiple systems to
manage their fleets, have their data scattered throughout the systems used. This internship
proposes a solution to this problem by implementing a fleet management system that is
capable of consuming data from external systems, using a data harmonization system.
Along with the implementation of this data harmonization system in Ubiwhere’s fleet
management system, Thumbeo Corporate.

Reflecting upon the work done during this internship, considering the success criteria
established in Chapter 4, the overall internship is classified as success. The system is
developed with all requirements with “Must Have” priority implemented and it satisfies all
the quality attributes established in Chapter 5.

The objectives specified in Chapter 1 are also met. The academic research presented
encompassed fleet management topics from the definition of what is fleet management
in the context of this thesis, the specification of what data should be present in a fleet
management system and finally what metrics can be tracked from the data present in such
systems. As specified before, the architecture proposed also fulfills the need of unifying
data from various systems into a single fleet management system, and the implementation
of said system is also in line with the requirements and quality attributes defined.

9.2 Future Work

Although the success criteria are met and the system is developed, it can still be improved
in several ways. First, a graphical interface is necessary for users to interact with the system
developed. Next, focusing more on implementing more KPI related features would allow
fleet managers to have access to more metrics to manager their fleets. Lastly, partnering

73

74 Chapter 9. Conclusions

with companies can allow the development of more models for the Data Harmonization
System and successively the implementation of more features into the fleet management
system, that are shown to be desired by fleet managers.

All of the previous aspects contribute for the improvement of Thumbeo Corporate not
only as Fleet Management System, but also as a system that is capable of centralizing
the information regarding fleets into a single source of truth for fleet managers to analyze
when evaluating their fleets, which will improve their day to day operations since all the
data regarding their fleet is centralized. More KPIs allow fleet managers to analyze the
fleet with different perspectives in mind and making decisions with more information at
hand; more models for the Data Harmonization System allows the system itself to respond
to a wider range of needs by fleet managers; and lastly a graphical interface would tie all
these aspects together and bring them to fleet managers in such a way that the information
stored by the system can be interpreted by those visualizing the data.

9.3 Lessons Learned

The internship provided opportunities to learn new skills and solidify already existent
knowledge. Ubiwhere, directly and indirectly, influenced the learning process of the ju-
nior developer, directly by the feedback provided on the work produced and indirectly by
entrusting the developer with the responsibilities inherent to the internship.

The skills learned belonged to two different categories, soft-skills and hard-skills. In terms
of soft-skills, the internship provided a full semester worth of communication experience
inside a company, which taught the junior developer how to professionally negotiate his
opinion whenever the decision was important enough to be discussed. On the category of
hard-skills, the writing of an academic report was the most important skill learned; a skill
that involves reading and analyzing how the report delivers its message.

The preexistent skills consolidated during this internship consisted of hard-skill developed
during the Masters course. The elicitation of requirements, the design of an architecture
for a system and the planning of a project are part of the hard-skills improved during the
internship.

References

[1] “Dblp — computer science bibliography.” https://dblp.uni-trier.de/.

[2] “Google scholar.” https://scholar.google.com/.

[3] “Repositórios científicos de acesso aberto de portugal.” https://www.rcaap.pt/.

[4] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet management via
multi-agent deep reinforcement learning,” CoRR, vol. abs/1802.06444, 2018.

[5] W. B. Powell and H. Topaloglu, “Fleet management,” in Applications of Stochastic
Programming, Math Programming Society - SIAM Series on Optimization, 2005.

[6] M. Falco, I. Núñez, and F. Tanzi, “Improving the fleet monitoring management,
through a software platform with iot,” in 2019 IEEE International Conference on
Internet of Things and Intelligence System (IoTaIS), 2019.

[7] F. Monnerat, J. Dias, and M. J. Alves, “Fleet management: A vehicle and driver
assignment model,” European Journal of Operational Research, vol. 278, 2019.

[8] F. Calderón and E. J. Miller, “Bridging the knowledge gap in ridehailing service provi-
sion with human-driven fleets: A data mining approach,” Procedia Computer Science,
vol. 170, 2020. The 11th International Conference on Ambient Systems, Networks
and Technologies (ANT) / The 3rd International Conference on Emerging Data and
Industry 4.0 (EDI40) / Affiliated Workshops.

[9] R. Vosooghi, J. Kamel, J. Puchinger, V. Leblond, and M. Jankovic, “Robo-taxi service
fleet sizing: assessing the impact of user trust and willingness-to-use,” Transportation,
vol. 46, p. 1997–2015, May 2019.

[10] E. Szczepański, M. Nivette, I. Jacyna-Gołda, and M. Izdebski, “The car fleet man-
agement model with including expectations of the users,” Journal of KONES, vol. 25,
no. 4, pp. 489 – 500, 01 Dec. 2018.

[11] E. Türk and M. Challenger, “An android-based iot system for vehicle monitoring
and diagnostic,” in 2018 26th Signal Processing and Communications Applications
Conference (SIU), 2018.

[12] Environmental Protection Agency (EPA), “(...) Regulations Requiring Availability
of Information for Use of On-Board Diagnostic Systems (...).” [Available at: http
s://www.govinfo.gov/content/pkg/FR-1995-08-09/pdf/95-18867.pdf; Online; ac-
cessed 15-February-2020].

[13] European Parliament, “DIRECTIVE 98/69/EC OF THE EUROPEAN PARLIA-
MENT AND OF THE COUNCIL.” [Available at: https://eur-lex.europa.eu/le
gal-content/EN/TXT/HTML/?uri=CELEX:31998L0069&from=en; Online; accessed 16-
February-2020].

75

https://dblp.uni-trier.de/
https://scholar.google.com/
https://www.rcaap.pt/
https://www.govinfo.gov/content/pkg/FR-1995-08-09/pdf/95-18867.pdf
https://www.govinfo.gov/content/pkg/FR-1995-08-09/pdf/95-18867.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31998L0069&from=en
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31998L0069&from=en

76 References

[14] G. Signoretti, M. Silva, J. Araujo, I. Silva, D. Silva, P. Ferrari, and E. Sisinni, “A de-
pendability evaluation for obd-ii edge devices: An internet of intelligent vehicles per-
spective,” in 2019 9th Latin-American Symposium on Dependable Computing (LADC),
2019.

[15] I. O. for Standardization, “Road vehicles — Communication between vehicle and
external equipment for emissions-related diagnostics,” standard, International Orga-
nization for Standardization, Oct. 2015.

[16] R. Malekian, N. R. Moloisane, L. Nair, B. T. Maharaj, and U. A. K. Chude-Okonkwo,
“Design and implementation of a wireless obd ii fleet management system,” IEEE
Sensors Journal, vol. 17, p. 1154–1164, Feb 2017.

[17] L. Flowers, oct 2019. [Available at: https://www.fleetio.com/blog/15-metrics-e
very-fleet-manager-should-be-tracking; Online; accessed 14-September-2020].

[18] F. Nicole H, “Key performance indicator survey,” 2013. [Available at: http://ww
w.fleetanswers.com/sites/default/files/KPI_Report_0.pdf]; Online; access 14-
September-2020.

[19] S.-M. Juntunen, “Key performance indicators of transportation category manage-
ment,” 2017. [Available at: https://www.theseus.fi/bitstream/handle/10024/1
32096/Juntunen_Sanna-Mari.pdf?sequence=1].

[20] V. Verde, “Via Verde - Soluções para Empresas.” https://www.viaverde.pt/empres
as/Solu%C3%A7%C3%B5es, accessed 21-Jun-2020.

[21] Odoo, “Odoo.” https://www.odoo.com/, accessed 21-Jun-2020.

[22] M. Pro, “MTC Pro.” https://www.mtcpro.com/, accessed 21-Jun-2020.

[23] Cartrack, “Cartrack.” https://www.cartrack.pt/, accessed 21-Jun-2020.

[24] Fleetio, “Fleetio.” https://www.fleetio.com/, accessed 21-Jun-2020.

[25] Samsara, “Samsara.” https://www.samsara.com/, accessed 21-Jun-2020.

[26] FleetSoft, “FleetSoft.” https://fleet-maintenance.com/, accessed 21-Jun-2020.

[27] S. Automotive, “Stratio Automotive.” https://stratioautomotive.com/, accessed
21-Jun-2020.

[28] Volkswagen, “Volkswagen Financial Services Fleets.” https://www.vwfsfleet.co.uk/,
accessed 21-Jun-2020.

[29] L. Hertz, “Localiza Hertz.” https://www.localizahertz.com/others/en-us, ac-
cessed 21-Jun-2020.

[30] E. F. Management, “Enterprise Fleet Management.” https://www.vwfsfleet.co.uk/,
accessed 21-Jun-2020.

[31] Frotcom, “Frotcom - Intelligent Fleets.” https://www.frotcom.com/pt-pt/gestao-d
e-frotas, accessed 21-Jun-2020.

[32] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for agile software
development,” 2001.

https://www.fleetio.com/blog/15-metrics-every-fleet-manager-should-be-tracking
https://www.fleetio.com/blog/15-metrics-every-fleet-manager-should-be-tracking
http://www.fleetanswers.com/sites/default/files/KPI_Report_0.pdf
http://www.fleetanswers.com/sites/default/files/KPI_Report_0.pdf
https://www.theseus.fi/bitstream/handle/10024/132096/Juntunen_Sanna-Mari.pdf?sequence=1
https://www.theseus.fi/bitstream/handle/10024/132096/Juntunen_Sanna-Mari.pdf?sequence=1
https://www.viaverde.pt/empresas/Solu%C3%A7%C3%B5es
https://www.viaverde.pt/empresas/Solu%C3%A7%C3%B5es
https://www.odoo.com/
https://www.mtcpro.com/
https://www.cartrack.pt/
https://www.fleetio.com/
https://www.samsara.com/
https://fleet-maintenance.com/
https://stratioautomotive.com/
https://www.vwfsfleet.co.uk/
https://www.localizahertz.com/others/en-us
https://www.vwfsfleet.co.uk/
https://www.frotcom.com/pt-pt/gestao-de-frotas
https://www.frotcom.com/pt-pt/gestao-de-frotas

References 77

[33] European Parliament and Council of European Union, “Regulation (...) on the pro-
tection of natural persons with regard to the processing of personal data and on the
free movement of such data (...).” [Available at: https://eur-lex.europa.eu/lega
l-content/EN/TXT/PDF/?uri=CELEX:32016R0679; Online; accessed 22-May-2020].

[34] M. R. @O’Reilly, “Microservices Architeture Pattern.” https://www.oreilly.com
/library/view/software-architecture-patterns/9781491971437/ch04.html, ac-
cessed 21-Jun-2020.

[35] M. R. @O’Reilly, “Layered Architeture Pattern.” https://www.oreilly.com/library
/view/software-architecture-patterns/9781491971437/ch01.html, accessed 3-
Nov-2020.

[36] “Django.” https://www.djangoproject.com/, accessed 21-Jun-2020.

[37] “django-rest-framework.” https://www.django-rest-framework.org/, accessed 21-
Jun-2020.

[38] PostgreSQL. https://www.postgresql.org/, accessed 21-Jun-2020.

[39] “Docker.” https://www.docker.com/, accessed 21-Jun-2020.

[40] “docker-compose.” https://docs.docker.com/compose/, accessed 21-Jun-2020.

[41] “Docker Swarm.” https://docs.docker.com/engine/swarm/, accessed 21-Jun-2020.

[42] RabbitMQ. https://www.rabbitmq.com/, accessed 24-Jun-2020.

[43] RabbitMQ, “Clients Libraries and Developer Tools.” https://www.rabbitmq.com/dev
tools.html, accessed 24-Jun-2020.

[44] django-rest framework, “ViewSets.” https://www.django-rest-framework.org/api
-guide/viewsets/#viewsets, accessed 04-Jan-2021.

[45] D. R. Framework, “Serializers.” https://www.vwfsfleet.co.uk/, accessed 04-Jan-
2021.

[46] European Parliament, “DIRECTIVE 2014/45/EC OF THE EUROPEAN PARLIA-
MENT AND OF THE COUNCIL.” [Available at: https://op.europa.eu/en/publi
cation-detail/-/publication/b560a38a-cf66-11e3-b682-01aa75ed71a1/lang
uage-en; Online; accessed 16-February-2020].

[47] Federal Motor Carrier Safety Administration, “Section § 396.17: Periodic inspection..”
[Available at: https://www.fmcsa.dot.gov/regulations/title49/section/396.17;
Online; accessed 16-February-2020].

[48] Federal Motor Carrier Safety Administration, “Section § 396.11: Driver vehicle inspec-
tion report(s).” Available at: https://www.fmcsa.dot.gov/regulations/title49/s
ection/396.11; Online; accessed 28-February-2020.

[49] Appa’s Facilities Manager, “ Total Cost of Ownership.” [Available at:
https://web.archive.org/web/20180215023821/https://www.appa.org/docum
ents/TCOArticleJun-Jul2016.pdf; Online; accessed 20-February-2020].

[50] S. P. C. L. F. T. P. Enderle, “Fleet management in europe,” tech. rep., Deloitte
Touche Tohmatsu Limited, 2017. [Available at: https://www2.deloitte.com/conte
nt/dam/Deloitte/cz/Documents/consumer-and-industrial/cz-fleet-managemen
t-in-europe.pdf; Online; Accessed 29-February-2020].

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch04.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch04.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch01.html
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.postgresql.org/
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://www.rabbitmq.com/
https://www.rabbitmq.com/devtools.html
https://www.rabbitmq.com/devtools.html
https://www.django-rest-framework.org/api-guide/viewsets/%23viewsets
https://www.django-rest-framework.org/api-guide/viewsets/%23viewsets
https://www.vwfsfleet.co.uk/
https://op.europa.eu/en/publication-detail/-/publication/b560a38a-cf66-11e3-b682-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/b560a38a-cf66-11e3-b682-01aa75ed71a1/language-en
https://op.europa.eu/en/publication-detail/-/publication/b560a38a-cf66-11e3-b682-01aa75ed71a1/language-en
https://www.fmcsa.dot.gov/regulations/title49/section/396.17
https://www.fmcsa.dot.gov/regulations/title49/section/396.11
https://www.fmcsa.dot.gov/regulations/title49/section/396.11
https://web.archive.org/web/20180215023821/https://www.appa.org/documents/TCOArticleJun-Jul2016.pdf
https://web.archive.org/web/20180215023821/https://www.appa.org/documents/TCOArticleJun-Jul2016.pdf
https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/consumer-and-industrial/cz-fleet-management-in-europe.pdf
https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/consumer-and-industrial/cz-fleet-management-in-europe.pdf
https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/consumer-and-industrial/cz-fleet-management-in-europe.pdf

78 References

[51] “Depreciation Tables.” [Available at: https://bit.ly/36tgd76 , http://www.lra.pt/
ficheiros/automovel/fidelidademundial_liber.pdf, https://www.caravelaseg
uros.pt/wp-content/uploads/2019/03/1.CGerais-Auto.pdf, https://www.ocident
al.pt/media/2009/au-frotas-cge.pdf; Online; accessed 20-February-2020].

[52] V. Verde, “Vehicle classification.” https://www.viaverde.pt/particulares/Ferrame
ntas/classe-veiculos.

https://bit.ly/36tgd76
http://www.lra.pt/ficheiros/automovel/fidelidademundial_liber.pdf
http://www.lra.pt/ficheiros/automovel/fidelidademundial_liber.pdf
https://www.caravelaseguros.pt/wp-content/uploads/2019/03/1.CGerais-Auto.pdf
https://www.caravelaseguros.pt/wp-content/uploads/2019/03/1.CGerais-Auto.pdf
https://www.ocidental.pt/media/2009/au-frotas-cge.pdf
https://www.ocidental.pt/media/2009/au-frotas-cge.pdf
https://www.viaverde.pt/particulares/Ferramentas/classe-veiculos
https://www.viaverde.pt/particulares/Ferramentas/classe-veiculos

Appendix A

Thumbeo Corporate — Applied
Concepts

A.1 Applied Concepts

Fleet Management is a topic comprised of many important concepts that must be re-
searched to understand the whole for its parts. The subtopics that constitute Fleet Man-
agement, and that were applied by Thumbeo Corporate, are explained in the present sec-
tion. The topics studied belong to various levels of fleet management work, such as expense
management to minimize client costs; vehicle maintenance to improve fleet conditions and
maintain vehicle value, and vehicle depreciation to maximize company revenue.

A.1.1 Vehicle Maintenance

Within the context of Fleet Management, the maintenance of every vehicle is a key aspect
in optimizing fleet expenses and minimizing fleet down-time. The focus of the research
lied on identifying when maintenance must be done and what components can and should
be actively observed to attain the goals posed by fleet maintenance. Meanwhile, although
the previous topics are the most important, it is also worth mentioning how vehicle faults
are detected nowadays; what instruments are used to disclose these faults, and what faults
are most impactful for a vehicle’s condition. Regarding how vehicle faults are currently
detected, this can be the following ways: brand recommended inspections; government-
regulated audits or driver reports.

Brand Recommended Inspections In respects to brand recommended inspections,
they translate into how and when a certain brand recommends its customers to audit their
vehicles in brand-specific workshops. This step is especially important, given that most
government regulations are trying to match current market trends, and, as such, owners
must be able to inspect and repair their vehicles according to their needs. An example
of this is the lack of inspection regulations on auto-gas in Portugal; to this day, there
are currently no laws regulating fuel emissions of auto-gas, therefore it isn’t inspected on
the mandatory periodical inspections. Meanwhile, a user of auto-gas would certainly need
to maintain its engine, and so it must go to a brand audit or a third-party workshop to
accomplish said goal.

79

80 Appendix A. Thumbeo Corporate — Applied Concepts

Government-Regulated Audits Analyzing government-regulated audits poses a dif-
ferent problem altogether. Depending on the continent, regulations vary from mandatory
inspections every six months to some vehicles, to no inspections at all for most vehicle
types. Looking at the European Union regulation, the EU Directive 2014/45 [46] obliges
all member states to perform periodic inspections to validate vehicle safety and emission
values. In the American continent, Canada and the United States vehicle inspections are
regulated on a state basis [47], meaning that each state is free to mandate or forego inspec-
tions as they see fit, while Brazil has yet to mandate vehicle inspections at all, let alone
regulate the process.

Driver Vehicle Inspection Report These types of inspections were legally required
by the United States law upon the approval of Federal Regulation 49 CFR§396.11 [48].
Companies can have their vehicles hindered from performing their duty when these inspec-
tions are lacking or failing. Driver Vehicle Inspection Report (DVIR)s are formal records
concerning a vehicle’s current working state; to be performed before and after every work
with the vehicle. The importance of DVIRs in the context of this thesis relies on the fact
that it presents some guidelines for which components could be inspected, disregarding
the fact that these might not be inspectable by current-day software and hardware. These
inspection report forms will also serve as the base for building a template for the report to
be filled by drivers after each trip.

Moving on from how faults are identified, the next logical step is to understand what
faults are searched for, and what are their consequences for vehicles in general. Using the
DVIR examples analyzed, it is possible to identify the vehicle components that could be
searched for faults.

This analysis was done by utilizing the DVIRs provided to their employees from four
different companies and gathering all the different components queried in all inspection
reports. The results of the analysis can be found in following images.

Truck/Tractor DVIR Analysis

A.1. Applied Concepts 81

Trailer DVIR Analysis

A.1.2 Expense Management

When managing a fleet, it is important to track all costs involved in its existence. Sub-
sequently, two methods of tracking expenses are presented. Although one method can be
considered a subset of the other, both have their place and time to be used, and as such
both deserve to be explained and compared.

Total Cost of Ownership TCO is defined as the purchase price of an asset plus the
costs of its operations [49]. The importance of this concept relies on the necessity of
calculating the TCO for all vehicles in fleet. This metric is important for the product to
develop because it is one of its main selling points. Clients need to know how much their
fleet costs and how much Ubiwhere’s product can help them save. Showing this information
and making it the main selling point can help the solution garner the clients it needs.

Total Cost of Mobility TCM is a term applied to describe the total sum of the costs
related to every part of mobility in a company. Besides calculating solely the cost per
vehicle, it also takes into account other mobility options used by employees, that is taxis,
flights, carpooling or rented/leased vehicles[50]. “Today, more and more companies tend
to analyze and optimize the total cost of mobility (TCM) rather than the TCO”[50].

82 Appendix A. Thumbeo Corporate — Applied Concepts

TCO vs TCM Comparing both methods, as said previously, both have a time and a
place to be used. There is no point in using TCM if the company does not plan to refund
trips undertaken by employees using other mobility methods outside the companies fleet.
In contrast, there is no point in calculating TCO if the company does not own a fleet at
all. Nevertheless, both calculation methods can be used in conjunction with one another;
to provide clients with another layer of metrics to their management needs.

A.1.3 Vehicle Depreciation

A key topic within Fleet Management is the concept of vehicle depreciation. As a fleet
manager, it is crucial to know when vehicles are starting to lose their value and should be
sold to minimize fleet expenses while maximizing their net worth.

Vehicle depreciation can be defined as the value lost by a vehicle caused by its usage over its
life-cycle. Research proved that there are two distinct ways to calculate this depreciation,
depending on each country’s laws on vehicle value, mobility taxes and market interests.

Depreciation Tables

One way of calculating vehicle depreciation, specifically in Portugal, is using Depreciation
Tables provided by insurance companies [51]. These tables provide an average value for
every vehicle; with the objective of helping the insurance company evaluate a vehicles
worth in case of a casualty. However, this method presents a problem; it doesn’t take into
account the market value of a vehicle, and understandably so. In case of a casualty, the
company’s interest is paying the least amount of money possible, and the insured’s interest
is paying the least possible quota for the insurance during the contract.

Market Analysis

An alternative way to calculate vehicle depreciation is by analyzing market values and cal-
culating the average worth based on the actual data available. This method presents some
initial challenges; firstly it is necessary to define how many markets to explore and what
sellers should be analyzed; should independent/third-party sellers be considered? Must
we only consider official stands? Thereafter, the challenge of mounting an infrastructure
capable of observing these sellers, while evaluating certain vehicles, has to be taken into
account. Ultimately, it is also of utmost importance to be able to distinguish correct vehi-
cle models and their minute differences to evaluate a vehicle correctly. In practice, this last
challenge translates into identifying the differences between all the versions of the same
make and model of a vehicle.

Appendix B

Requirement Specification —
Functional Requirements

Data Harmonization

DH01

• Epic: Data Harmonization
• Description: As a fleet manager, I want to import data from vehicles registered in an

external platform to Thumbeo Corporate, in order to centralize vehicle information
in a single system.

• Acceptance Criteria:
– Scenario: Fleet Manager imports vehicle to Thumbeo Corporate.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the fleet page
And select the “import vehicles” button

∗ Then the system communicates with the external system to import the
vehicles present in the system itself.

• Dependencies: None
• Priority: Must Have

DH02

• Epic: Data Harmonization
• Description: As a fleet manager, I want to import data from users registered in an

external platform to Thumbeo Corporate, in order to centralize user information in
a single system.

• Acceptance Criteria:
– Scenario: Fleet Manager imports users to Thumbeo Corporate.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the fleet page
And select the “import users” button

83

84 Appendix B. Requirement Specification — Functional Requirements

∗ Then the system communicates with the external system to import users
present in the system itself.

• Dependencies: None

• Priority: Must Have

DH03

• Epic: Data Harmonization

• Description: As a fleet manager, I want to import data from ride offers and requests
registered in an external platform to Thumbeo Corporate, in order to centralize trip
information in a single system.

• Acceptance Criteria:
– Scenario: Fleet Manager imports ride offers and requests to Thumbeo Corpo-

rate.
∗ Given that I am authenticated

And have fleet manager permissions
∗ When I access the fleet page

And select the “import ride offers and requests” button
∗ Then the system communicates with the external system to import ride

offers and requests present in the system itself.

• Dependencies: None

• Priority: Must Have

DH04

• Epic: Data Harmonization

• Description: As a fleet manager, I want to import data from driving pattern data
registered in an external platform to Thumbeo Corporate, in order to centralize
driving pattern information in a single system.

• Acceptance Criteria:
– Scenario: Fleet Manager imports driving pattern data to Thumbeo Corporate.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the fleet page
And select the “import driving patterns” button

∗ Then the system communicates with the external system to import driving
pattern data present in the system itself.

• Dependencies: None

• Priority: Must Have

DH05

• Epic: Data Harmonization

• Description: As a fleet manager, I want to import data from OBD readers to Thum-
beo Corporate, in order to centralize the gathered information in a single system.

85

• Acceptance Criteria:
– Scenario: Fleet Manager imports driving pattern data to Thumbeo Corporate.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the fleet page
∗ Then the information collected from OBD readers should be available in

each vehicle and for each ride.

• Dependencies: None

• Priority: Must Have

Statistics Collection

SC01

• Epic: Statistics Collection

• Description: As a fleet manager, I want to see statistics gathered concerning the
fuel consumption of the vehicles in my fleet, to analyze the cost and spending of fuel
of the vehicles and of the fleet.

• Acceptance Criteria:
– Scenario: Fleet Manager sees statistical data regarding fuel consumption.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the statistics page
∗ Then the statistical data gathered about fuel consumption of the fleet and

of each vehicle should be available.

• Dependencies: None

• Priority: Must Have

SC02

• Epic: Statistics Collection

• Description: As a fleet manager, I want to see statistics gathered concerning the
utilization of vehicles in the fleet, to analyze if said vehicles have their intended
utilization.

• Acceptance Criteria:
– Scenario: Fleet Manager sees statistical data regarding vehicle utilization.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the statistics page
∗ Then the statistical data gathered about utilization of the vehicles of the

fleet should be available.

• Dependencies: None

• Priority: Must Have

86 Appendix B. Requirement Specification — Functional Requirements

SC03

• Epic: Statistics Collection
• Description: As a fleet manager, I want to see statistics gathered related to the

availability of the vehicles in the fleet, to analyze if the vehicles are available when
they are needed.

• Acceptance Criteria:
– Scenario: Fleet Manager sees statistical data regarding vehicle availability.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the statistics page
∗ Then the statistical data gathered about the availability of the vehicles of

my fleet should be available.
• Dependencies: None
• Priority: Must Have

Vehicle Management

VM01

• Epic: Vehicle Management
• Description: As a fleet manager, I want to add a vehicle to my fleet so that I can

manage it using the web application.
• Acceptance Criteria:

– Scenario: Fleet Manager opens the page to add a vehicle
∗ Given that I am authenticated

And have fleet manager permissions
∗ When I access the fleet page

And select the “new vehicle” button
∗ Then I see a form to add a new vehicle

– Scenario: Fleet Manager provides the required information to add a vehicle to
the fleet

∗ Given that I am authenticated
And have fleet manager permissions
And I am in the “add vehicle” form

∗ When I fill the required fields with valid information
∗ Then I see a success message

And the vehicle now appears in my fleet
– Scenario: Fleet Manager does not provide the required information to add a

vehicle to the fleet
∗ Given that I am authenticated

And have fleet manager permissions
And I am in the “add vehicle” form

∗ When I fill the required fields with invalid information or leave required
fields blank

∗ Then I see an error message
• Dependencies: None
• Priority: Must Have

87

VM02

• Epic: Vehicle Management

• Description: As a fleet manager, I want to edit the information about a specific
vehicle so that I can update the data kept on it.

• Acceptance Criteria:
– Scenario: Fleet Manager open the page to update a vehicle

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I access the fleet page
And select the “edit vehicle” button in a specific vehicle

∗ Then I see a form to edit the information of a specific vehicle
– Scenario: Fleet Manager provides the required information to edit a vehicle in

the fleet
∗ Given that I am authenticated

And have fleet manager permissions
And I am in the “edit vehicle” page

∗ When I fill the required fields with valid information
∗ Then I see a success message

And the changes should be reflected in the fleet information
– Scenario: Fleet Manager does not provide the required information to edit a

vehicle in the fleet
∗ Given that I am authenticated

And have fleet manager permissions
And I am in the “edit vehicle” page

∗ When I fill the required fields with invalid information or leave the fields
blank

∗ Then I see an error message

• Dependencies: VM01

• Priority: Must Have

VM03

• Epic: Vehicle Management

• Description: As a fleet manager, I want to see all my vehicles so that I can have a
global view of my fleet.

• Acceptance Criteria:
– Scenario: Fleet Manager opens the page to see the fleet

∗ Given that I am authenticated
And have fleet manager permissions

∗ When I select “My Fleet” button
∗ Then I am redirected to the page containing all the vehicles present in my

fleet

• Dependencies: VM01

• Priority: Must Have

88 Appendix B. Requirement Specification — Functional Requirements

VM04

• Epic: Vehicle Management

• Description: As a fleet manager, I want to archive a vehicle of my fleet so that I
can tell the system that the vehicle in question is no longer operational in my fleet.

• Acceptance Criteria:
– Scenario: Fleet Manager archives a vehicle

∗ Given that I am authenticated
And have fleet manager permissions
And I am in “My fleet” page

∗ When I select the “Archive” option in a specific vehicle
∗ Then I see a success message

And the vehicle is removed from my fleet

• Dependencies: VM01

• Priority: Must Have

Permission Management

PM01

• Epic: Permission Management

• Description: As a system administrator, I want to give fleet management permis-
sions to a user, so that the user can act as a fleet manager inside the web application.

• Acceptance Criteria:
– Scenario: System administrator grants fleet manager permissions to a user

∗ Given that I am authenticated
And have system administrator permissions

∗ When I select a specific user
And grant him permissions to act as a fleet manager inside the appli-
cation

∗ Then I see a success message
And the user can now perform actions reserved to fleet managers inside
the application.

• Dependencies: None

• Priority: Must Have

PM02

• Epic: Permission Management

• Description: As a system administrator, I want to remove fleet management per-
missions from a user, so that the user can no longer act as a fleet manager inside the
web application.

• Acceptance Criteria:
– Scenario: System administrator revokes fleet manager permissions from a fleet

manager.
∗ Given that I am authenticated

89

And have system administrator permissions
∗ When I select a specific fleet manager

And revoke his fleet manager permissions
∗ Then I see a success message

And the user can no longer perform actions restricted to fleet managers
inside the application.

• Dependencies: PM01
• Priority: Must Have

PM03

• Epic: Permission Management
• Description: As a fleet manager, I want to give driver permissions to a user, so

that the user can act as a driver inside the web application.
• Acceptance Criteria:

– Scenario: Fleet manager grants driver permissions to a regular user
∗ Given that I am authenticated

And I have fleet manager permissions
∗ When I select a specific user

And grant the user permissions to become a driver in my fleet
∗ Then I see a success message

And the user becomes a driver in my fleet.
• Dependencies: PM01
• Priority: Must Have

PM04

• Epic: Permission Management
• Description: As a fleet manager, I want to remove driver permissions from a user,

so that the user can no longer act as a driver inside the web application.
• Acceptance Criteria:

– Scenario: Fleet manager removes driver permissions from a driver.
∗ Given that I am authenticated

And I have fleet manager permissions
∗ When I select a specific driver in my fleet

And remove his permissions to drive vehicles in my fleet
∗ Then the driver no longer belongs to my fleet

And the driver can no longer use the vehicles in my fleet.
• Dependencies: PM01, PM03
• Priority: Must Have

PM05

• Epic: Permission Management
• Description: As a fleet manager, I want to give a driver permissions to drive one

of my vehicles, so that I can provide him with a means of transportation.

90 Appendix B. Requirement Specification — Functional Requirements

• Acceptance Criteria:
– Scenario: Fleet manager grants access to a driver to use a specific vehicle.

∗ Given that I am authenticated
And I have fleet manager permissions

∗ When I select one of the vehicles in my fleet
And grant access to a driver to use that specific vehicle

∗ Then I see a success message
And the driver receives a notification about having been granted access
to the vehicle.

• Dependencies: PM01, PM03, VM01
• Priority: Must Have

PM06

• Epic: Permission Management
• Description: As a fleet manager, I want to remove a driver’s permissions to use one

of my vehicles, so that I can stop him from driving a specific vehicle.
• Acceptance Criteria:

– Scenario: Fleet manager revokes driver access to a vehicle.
∗ Given that I am authenticated

And I have fleet manager permissions
∗ When I select one of the vehicles in my fleet

And revoke the access a specific driver of that vehicle
∗ Then I seed a success message

And the driver receives a notification about having his access revoked
to the vehicle

• Dependencies: PM01, PM03, PM05, VM01
• Priority: Must Have

Vehicle Evaluation

VE01

• Epic: Vehicle Evaluation
• Description: As a driver, I want to make an evaluation of the vehicle’s condition

after a trip, so that I can notify the fleet manager about occurrences during said trip.
• Acceptance Criteria:

– Scenario: Driver submits a trip report.
∗ Given that I am authenticated

And I have driver permissions
And I have just finished a trip

∗ When I fill the trip report with departure and arrival date and time, stops
made along the way and details about certain vehicle components.

∗ Then I see a success message
And the report is sent to the corresponding fleet manager.

• Dependencies: PM01, PM03, PM05, VM01
• Priority: Must Have

91

VE02

• Epic: Vehicle Evaluation

• Description: As a driver, I want to report a fault in vehicle that I am currently
driving, so that I can inform the fleet manager.

• Acceptance Criteria:
– Scenario: Driver submits fault report

∗ Given that I am authenticated
And I have driver permissions
And the vehicle I am driving presents a fault

∗ When I submit the fault report with the location of the fault and a de-
scription of the fault

∗ Then I see a success message
And the report is sent to the corresponding fleet manager.

• Dependencies: PM01, PM03, PM05, VM01

• Priority: Must Have

Fleet Manager Notifications

FMN01

• Epic: Fleet Manager Notifications

• Description: As a fleet manager, I want to be notified when one of my drivers starts
a trip, so that I can be up to date with my vehicles state.

• Acceptance Criteria:
– Scenario: Fleet manager receives a notification about the start of a trip by one

of the fleet’s drivers
∗ Given that I am authenticated

And have fleet manager permissions
∗ When one of my fleet’s drivers initiates a trip
∗ Then I will receive a notification about the starting point, destination point

and estimated duration of the travel.

• Dependencies: None

• Priority: Nice to Have

FMN02

• Epic: Fleet Manager Notifications

• Description: As a fleet manager, I want to be notified when one of my drivers
finishes a trip, so that I can be up to date with my vehicles state.

• Acceptance Criteria:
– Scenario: Fleet Manager receives a notification about the ending a trip.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When a driver finishes a trip
∗ Then I will receive a notification with a report of the trip.

92 Appendix B. Requirement Specification — Functional Requirements

• Dependencies: PM01, PM03, PM05, VM01, VE01

• Priority: Nice to Have

FMN03

• Epic: Fleet Manager Notifications

• Description: As a fleet manager, I want to be notified when one of my drivers
reports a vehicle fault, so that I can properly plan the maintenance for the reported
fault.

• Acceptance Criteria:
– Scenario: Fleet Manager receives a notification about a vehicle fault.

∗ Given that I am authenticated
And have fleet manager permissions

∗ When a driver reports a vehicle fault
∗ Then I will receive a notification with the location where the fault occurred

and the details of the fault itself.

• Dependencies: PM01, PM03, PM05, VM01, VE02

• Priority: Should Have

Driver Notifications

DN01

• Epic: Driver Notifications

• Description: As a driver, I want to be notified when I am assigned a new vehicle,
so that I can be up to date with which vehicles I can use.

• Acceptance Criteria:
– Scenario: Driver receives a notification about a new vehicle assigned to himself

∗ Given that I am authenticated
And have driver permissions

∗ When the fleet manager assigns me with a new vehicle
∗ Then I will receive a notification with the make and model of the vehicle

and also the license plate number.

• Dependencies: PM01, PM03, PM05

• Priority: Nice to Have

DN02

• Epic: Driver Notifications

• Description: As a driver, I want to be notified when my access to a vehicle has
been removed, so that I can be up to date with which vehicles I can use.

• Acceptance Criteria:
– Scenario: Driver receives a notification about having the access to a specific

vehicle revoked.
∗ Given that I am authenticated

93

And have driver permissions
∗ When the fleet manager revokes my access to a vehicle
∗ Then I will receive a notification with the make and the model of the

vehicle and also the license plate number.

• Dependencies: PM01, PM03, PM05, PM06

• Priority: Nice to Have

DN03

• Epic: Driver Notifications

• Description: As a driver, I want to be notified when one of the vehicles assigned
to me has been declared unavailable, so that I can be up to date with which vehicles
I can use.

• Acceptance Criteria:
– Scenario: Driver receives a notification about having a vehicle assigned to him

archived.
∗ Given that I am authenticated

And have driver permissions
∗ When the fleet manager archives a vehicle that I am assigned to
∗ Then I will receive a notification with the make, model and license plate

number of the vehicle

• Dependencies: PM01, PM03, PM05, VM01, VM04

• Priority: Nice to Have

Appendix C

Project Development — Fleet
Management Models

Entity Relationship — Low Level Diagram

Figure C.1: Fleet Management System — Low Level Entity Relationship Diagram

94

95

User

The following model pertaining to the User Profile was created to extend Django’s default
User model in order to enable additional user information to be stored. The default User
model is used in the authentication process of the Fleet Management System.

User Profile

• Name — Name of the user register;

• Job — Profession the register user performs in the company;

• Phone Number — Contact of the user registered;

• Profile Photo — Photo submitted by the user;

• Password — Encrypted password of the user;

• Is Driver — True if the user has driver permissions, else is false;

• Is Fleet Manager — True if the user has fleet manager permissions, else is false.

Vehicle

Two distinct models where created in the Vehicle component. The first model, Vehicle,
stores mandatory vehicle information that is necessary to maintain the registration of a
vehicle, and the second model, Properties, stores additional vehicle information that fleet
managers might want to keep track of.

Vehicle

• Make — Vehicle manufacturer name;

• Model — Vehicle model name;

• License Plate Number — License plate identification number;

• License Plate Country — License plate country of legalization;

• License Plate Date — License plate date of legalization;

• Number of Seats — Number of seats available in the vehicle;

• Properties — Relationship with the following Properties model;

• Assignee — Entity assigned to the vehicle;

• Users — Users responsible for the vehicle.

• Hardware Serial Number — Serial Number of the system that is gathering data
for this vehicle;

• Is Active — True if the vehicle is currently being used.

Properties

• Category — One of the following options:
– Light Duty Vehicle Carrying Passengers;

96 Appendix C. Project Development — Fleet Management Models

– Heavy Duty Vehicle Carrying Passengers;
– Light Duty Vehicle Carrying Goods;
– Heavy Duty Vehicle Carrying Goods;
– Two and Three Wheel Vehicle or Quadricycle;
– Agricultural and Forestry Tractor and Trailer.

• Classification[52] — One of the following options:
– Class 1 — Vehicles with height inferior to 1.1 meters;
– Class 2 — Vehicles with two axis and height superior to 1.1 meters;
– Class 3 — Vehicles with three axis and height superior 1.1 meters;
– Class 4 — Vehicles with four axis and height superior 1.1 meters.

• Mileage — Fuel economy tracked in liters per 100 kilometers;

• Vehicle Fuel — One of the following options:
– Petrol;
– Diesel;
– Electric;
– LPG;
– Hybrid.

• CO2 Emissions — Carbon Dioxide emissions measured in grams per kilometers;

• Max Load Capacity — Max Load Capacity as stated in the vehicle registration
documents;

• Current kilometers — Kilometers currently registered in the vehicle;

• Weight — Weight as stated in the vehicle registration documents;

• Height — Height as stated in the vehicle registration documents;

• Horse Power — Horse Power as stated in the vehicle registration documents;

• Engine Capacity — Engine Capacity as stated in the vehicle registration docu-
ments;

• Vehicle Identification Number — Unique code used to identify the vehicle;

• Acquisition Type — One of the following options:
– Rented;
– Leased;
– Purchased;
– Other.

• Acquisition Date — Date at which the vehicle was acquired;

• Acquisition Price — Price at which the vehicle was acquired;

• Acquisition kilometers — Kilometers registered in the vehicle when it was ac-
quired.

Ride

To register rides, four different models were developed: Ride was created to be extended
by the following models. Ride Offer is the model that shapes ride offers created by users
in the fleet management system or the model followed by ride offers when imported from

97

external systems. Ride Request is the model used by users to create ride requests in the
platform or the model followed by externally imported data. Completed Ride is the model
used to create the report of a finalized trip, making use of the Ride Offer and Ride Request
that generate it. The Featured Place model is used by fleet managers to create a place
frequently ridden to and from.

Featured Place

• Name — Name of the place frequently used;

• Description — Description of the place;

• Coordinates — Set of coordinates describing the location of the place.

Ride

• User — Person creating the ride request or offer;

• Origin — Origin of the ride;

• Destination — Destination of the ride;

• Departure Datetime — Datetime that the trip is suppose to start in;

• Category — One of the following categories:
– People — If the ride is suppose to carry only people;
– Cargo — If the ride is suppose to carry only cargo;
– All — If the ride is going to take both cargo and people.

• Notes — Miscellaneous information provided by the user creating the ride;

• Geometry — Geographical geometry of the route used in the ride.

Ride Offer

• Ride — Relationship with Ride model;

• Available Seats — Number of currently available seats in the ride offer;

• Deviation Radius — Deviation radius allowed by the offerer in the ride;

• Accepted Request — Relationship with the ride request accepted by this offer.

Ride Request

• Status — One of the following options:
– Pending;
– Standby;
– Accepted;
– Rejected;
– Canceled.

• Is Urgent Request — True if the ride request is urgent;

• Passengers — Passengers of the ride request;

• Matched Offers — The offers that matched this ride request.

98 Appendix C. Project Development — Fleet Management Models

Completed Ride

• Ride Request — Relationship with the ride request;

• Ride Offer — Relationship with the ride offer;

• Departure Datetime — Datetime at which the ride departed;

• Arrival Datetime — Datetime at which the ride arrived;

• Cargo — Cargo transported during the ride;

• Geometry — Ride geometry collected for the ride;

• Passengers — Passengers transported during the ride.

Reports

In the development of the reporting features the following model is used to store the
information concerning the reports created by users.

Reports

• User — User submitting the report;

• Vehicle — Vehicle about which the report is about;

• Title — Title of the report;

• Description — Description of the report;

• Report Type — One of the following options:
– Fault Report;
– Post-Trip Report;

Telemetry Event

The data generated by the OBD Readers is stored by the following model. Telemetry
Event was chosen as a name for the model rather than OBD Event given that OBD is a
standard which could be renamed, and telematics is the concept of gathering information
from vehicles.

Telemetry Event

• Vehicle — Vehicle which generated the event;

• Completed Ride — Ride at which the event was generated;

• Event Type — Type of event generated;

• Event Value — Value of the event generated;

• Occurrence Datetime — Date and time at which the event was generated.

Appendix D

Project Development — Unit Tests

Data Harmonization System

ID Component Description Passed
U01 User Data Receiving user data that is valid should transform it into a user model Yes
U02 User Data Receiving user data that is invalid should discard it Yes
U03 User Data After a user model is created it should be written into the database Yes
V01 Vehicle Data Receiving vehicle data that is valid should transform it into a vehicle model Yes
V02 Vehicle Data Receiving vehicle data that is invalid should discard it Yes
V03 Vehicle Data After a vehicle model is created it should be written into the database Yes
R01 Rides Data Receiving ride request data that is valid should transform it into a Ride Request model Yes
R02 Rides Data Receiving ride offer data that is valid should transform it into a Ride Offer model Yes
R03 Rides Data Receiving ride request data that is invalid should not discard it Yes
R04 Rides Data Receiving ride offer that is invalid should discard it Yes
R05 Rides Data After a ride request model is created it should be written into the database Yes
R06 Rides Data After a ride offer model is created it should be written into the database Yes
TD01 Telemetry Data Receiving OBD data that is valid should transform it into a Telemetry Event Yes
TD02 Telemetry Data Receiving OBD data that is invalid should discard it Yes
TD03 Telemetry Data After a telemetry event is created it should be written into the database Yes

Table D.1: Data Harmonization System — Unit Tests

99

100 Appendix D. Project Development — Unit Tests

Fleet Management System

ID Component Description Passed
U01 Users Component Creating a user with all fields provided should

be accepted
Yes

U02 Users Component Creating a user with required fields provided
should be accepted

Yes

U03 Users Component Creating a user without fields provided should
be rejected

Yes

U04 Users Component Fetching a user profile should return user and
profile attributes

Yes

U05 Users Component Updating a user profile with new attributes
should be accepted

Yes

U06 Users Component Updating a user and profile with new at-
tributes should be accepted

Yes

U07 Users Component Updating a user email and password should
be accepted

Yes

U08 Users Component Deleting a user should erase the information
from the system

Yes

Table D.2: Fleet Management System — User Component Unit Tests

ID Component Description Passed
V01 Vehicles Component Creating a vehicle with all fields provided should be

accepted
Yes

V02 Vehicles Component Creating a vehicle with required fields provided should
be accepted

Yes

V03 Vehicles Component Creating a vehicle without any fields provided should
be rejected

Yes

V04 Vehicles Component Fetching a vehicle that is not created should return
an empty result

Yes

V05 Vehicles Component Fetching a vehicle that exists should return its infor-
mation

Yes

V06 Vehicles Component Updating a vehicle with new attributes should be ac-
cepted

Yes

V07 Vehicles Component Updating a vehicle with new required attributes
should be accepted

Yes

V08 Vehicles Component Updating a vehicle with empty attributes should be
rejected

Yes

V09 Vehicles Component Deleting a vehicle should erase the information from
the system

Yes

V10 Vehicles Component Deleting a vehicle that does not exist should not crash
the system

Yes

Table D.3: Fleet Management System — Vehicle Component Unit Tests

101

ID Component Description Passed
R01 Rides Component Creating a ride request with all fields provided should

be accepted
Yes

R02 Rides Component Creating a ride request with required fields provided
should be accepted

Yes

R03 Rides Component Creating a ride request without any fields provided
should be rejected

Yes

R04 Rides Component Fetching a ride request that is not created should re-
turn an empty result

Yes

R05 Rides Component Fetching a ride request that exists should return its
information

Yes

R06 Rides Component Updating a ride request with new attributes should
be accepted

Yes

R07 Rides Component Deleting a ride request should remove its information
from the system

Yes

R08 Rides Component Deleting a ride request that does not exist should not
crash the system

Yes

R09 Rides Component Creating a ride offer with all fields provided should be
accepted

Yes

R10 Rides Component Creating a ride offer with required fields provided
should be accepted

Yes

R11 Rides Component Creating a ride offer without any fields provided
should be rejected

Yes

R12 Rides Component Fetching a ride offer that is not created should return
an empty result

Yes

R13 Rides Component Fetching a ride offer that exists should return its in-
formation

Yes

R14 Rides Component Updating a ride offer with new attributes should be
accepted

Yes

R15 Rides Component Deleting a ride offer should remove its information
from the system

Yes

R16 Rides Component Deleting a ride offer that does not exist should not
crash the system

Yes

Table D.4: Fleet Management System — Rides Component Unit Tests

ID Component Description Passed
F01 Statistics Component Fetching the average fuel consumption for a specific

vehicle should return the intended result
Yes

F02 Statistics Component Fetching the average fuel consumption for all vehicle
should return the intended result for all vehicles

Yes

Table D.5: Fleet Management System — Statistics Component Unit Tests

	Introduction
	Objectives
	Document Structure

	State of the Art
	Literature Review
	Fleet Management
	Data Gathering — Human Generated Data
	Data Gathering — Sensors and Devices
	Data Services — Fleet Management
	Data Services — Vehicle Data
	kpis
	Conclusions

	Competitor Analysis
	High-Level Competitor Analysis
	In-Depth Competitor Analysis

	Internship Contributions

	Thumbeo Corporate
	The Product
	The Problem
	Internship Contributions

	Project Management
	Team Organization
	Software Development Methodology
	Planning
	First Semester Plan
	Second Semester Plan
	Gantt Diagrams

	Risk Management
	Success Criteria

	Requirements Specification
	User Personas
	Terminology
	Requirement Structure
	Restrictions
	Business Restrictions
	Legal Restrictions
	Technical Restrictions

	Functional Requirements
	Quality Attributes

	Architecture and Technology
	Project Background
	Architecture Overview and Decisions
	Technology Overview and Decisions
	System Architecture
	Architecture Representation Phases
	First Semester
	Second Semester

	Final Considerations

	Project Development
	Django Concepts
	ViewSets
	Serializers

	Docker
	Messaging System
	Data Harmonization System
	Models
	Celery Tasks

	Fleet Management System
	Models
	Statistics

	Testing
	Unit Testing
	Data Harmonization System
	Fleet Management System

	Final Product of the Internship
	Fleet Management System
	Data Harmonization System

	Conclusions
	Work Done
	Future Work
	Lessons Learned

	Appendix Thumbeo Corporate — Applied Concepts
	Applied Concepts
	Vehicle Maintenance
	Expense Management
	Vehicle Depreciation

	Appendix Requirement Specification — Functional Requirements
	Appendix Project Development — Fleet Management Models
	Appendix Project Development — Unit Tests

