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Abstract

Under the IFRS 9 framework, we analyze the tradeoff of classifying a financial asset at
amortized cost versus at fair value. Defining an impairment model and based on historical
(2003-2019) data for the 10-year Portuguese Government bonds, we analyze the annual
performance (income/comprehensive income) of different investment allocations. Setting as
objectives the maximization of the income and the minimization of the semivariance of the
comprehensive income, we suggest a bi-objective model in order to find efficient allocations.
Given the non-smoothness of the semivariance function, we compute the solution of the
suggested model by means of a multi-objective derivative-free algorithm. Assuming that
the yields and funding rates follow a correlated mean-reverting process and that the bonds’
rating dynamics are described by an ordinal response model, we show a possible approach
to mitigate the estimation error ingrained in the proposed bi-objective stochastic model.
Finally, we assess the out-of-sample performance of some of the suggested efficient allocations.
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1 Introduction

In the portfolio optimization literature, it is possible to find several studies on backtesting and
on the out-of-sample performance analysis of portfolios constructed under frameworks inspired
by the seminal work of Markowitz (1952). When in the face of a portfolio optimization model,
it is well known that special attention should be given to the inputs’ estimation errors (see,
e.g., Chopra and Ziemba 1993). Despite the sophisticated models that have arisen, over the
years, the truth is that simple heuristics often are able to achieve superior out-of-sample perfor-
mances (see, e.g., DeMiguel et al. 2009). This happens because a portfolio optimization model
can be seen as a two-step model (Michaud, 1989): in one step the model’s inputs need to be
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estimated (with error); in the second step, the optimization is performed (the estimation error
is optimized!). In turn, a heuristic, free of estimation error, leads to superior out-of-sample
results (notwithstanding that in-sample it is a sub-optimal strategy). This does not mean that
all the portfolio optimization models do not work in practice; it tells us that when building such
portfolio optimization models somehow the estimation error sensitiveness must be addressed.
As Gigerenzer (2015) states, in situations of risk (where we can generate future scenarios with
a certain probability) optimization models can work just fine, and in situations of uncertainty
(where we cannot anticipate anything about the future) heuristics that incorporate the intuition
developed over the years, tend to produce better results.

Regarding optimization models for the bank balance sheet, the literature is sparser than
for the case of portfolio optimization but still substantial. It had its beginning at least since
the sixties with the paper of Kalman and Hammer (1967). In the eighties we highlight the
papers of Koehn and Santomero (1980) and Kusy and Ziemba (1986). More recently we have,
for example, the works of Diamond and Rajan (2000), Halaj (2013) and Schmaltz et al. (2014).
Both the works of Halaj (2013) and Schmaltz et al. (2014) already address the impact of recent
regulatory constraints imposed by Basel III. Nevertheless, these studies focus on the regulatory
guidelines and overlook the impact of the more recent accounting rules, namely the financial asset
classification system imposed by the International Financial Reporting Standard 9 (IFRS 9).

Accounting rules are one of the key variables in the optimization of a bank balance sheet.
Motivated by the 2008 financial crisis, the International Accounting Standards Board (IASB)
issued IFRS 9, on July 24, 2014, and replaced the International Accounting Standard 39 (IAS 39).
IFRS 9 has become mandatory on January 1, 2018. Therefore, in 2018 banks had to adapt to
the new accounting rules. From a bank’s investment side, one of the practical pressing aspects
issued by IFRS 9 lies on financial asset classification. According to the classification system
established by IFRS 9, the financial manager faces the decision of classifying a financial asset
either at amortized cost or at fair value: for assets at amortized cost, a decrease in market prices
does not have an impact on the bank’s capital, thus reducing risk; fair value assets, although
impacted by variations in market prices, allow the possibility of realizing gains in case of an
increase in market prices. This paper addresses the impact of this decision and investigates how
it can be taken in an efficient way.

Motivated by the fact that banks tend to invest in sovereign debt (Gennaioli et al., 2018),
we begin by designing a backtest on the 10-year Portuguese Government bonds for the period
between 2003 and 2019. Due to the experienced downgrades during the 2011-2014 financial
crisis, the history of the Portuguese bonds constitutes a very rich data set. The backtest consists
in assessing the historical annual income and comprehensive income of different allocations to
amortized cost and to fair value. In order to accomplish this, we need to compute the bonds’
expected credit loss as imposed by IFRS 9. However, IFRS 9 does not give a definition of the
impairment model, allowing each bank considerable discretion in its implementation. Thereby,
in this paper, we suggest and implement a possible impairment model, based on the assumption
that the marginal probability of default follows a Poisson process.

From the backtest’s results, we stress that the higher the allocation of the investment to fair
value, the higher the annual income achieved (higher investment return) and the greater the
variability of the annual comprehensive income (greater investment risk). These results depend
on two important determinants: the time horizon defined by the bank investment manager and
the threshold from which she/he decides to realize gains at fair value.

According to the best of our knowledge, in the literature, there is no backtest on the classifi-
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cation of financial assets at amortized cost versus fair value. Furthermore, no methodology that
enables the bank investment manager to efficiently make this choice is known. In the particular
case of fixed-income financial assets, the literature of portfolio theory has focused on the risk
management side by suggesting alternative models to deal with different risk sources (see, e.g.,
Zenios 1995, Bertocchi et al. 2005, and Cassader et al. 2014). In a more recent study, Ortobelli
et al. (2018) suggest a two-step optimization model, for the construction of a fixed-income port-
folio, in order to cope with the minimization of the interest rate risk (immunization risk) and the
maximization of return/risk metrics (namely, the Rachev and Sharpe ratios). As one can verify,
none of these studies approach the portfolio selection problem from a holistic accounting/risk
management perspective. All the studies mentioned above assume that assets are measured at
fair value, meaning that the variations in market prices have a direct impact on capital so that
a decrease in market values reduces the net position. However, for assets at amortized cost,
variations in market prices do not have an impact on the net position of the bank, thus reducing
capital risk. The approach presented in this paper enables the investment manager to decide the
optimal mix between assets at amortized cost and at fair value, balancing the tradeoff between
reducing risk (in the case of amortized cost) and the potential to realize gains (for assets at fair
value).

To give a more substantial contribution to the literature, we construct an optimization model
that allows the bank investment manager to directly find efficient allocations (amortized cost
versus fair value) in a risk-return bi-dimensional space. We define as the model’s objectives the
maximization of investment income and the minimization of the semivariance of the compre-
hensive income. Both objectives have a direct impact on the bank’s own funds and regulatory
capital ratios. Given the non-differentiability of the semivariance objective function, we use a
multi-objective derivative-free algorithm to find the efficient allocations.

Since in a stochastic optimization model we are optimizing objective functions with stochastic
parameters, it is very important to explicitly cope with the estimation error. Motivated by this
fact, in this paper we discuss and implement a possible approach to mitigate the estimation
error present in the proposed stochastic bi-objective model. This approach is based on stochastic
simulation and scenario generation. Finally, based on simulated paths (for a 10-year period), we
assess the out-of-sample performance of efficient allocations, selected according to the proposed
bi-objective model. An alternative approach is to compare performance against the hard-to-beat
equally-weighted heuristic that corresponds to an equal allocation of the investment’s amortized
cost and fair value. For both considered objectives, the results suggest a robust performance of
the efficient portfolios when compared to this benchmark.

The remainder of this paper proceeds as follows. In Section 2 we make a brief presentation
on the IFRS 9 rules around the classification of financial assets. In Section 3 we perform a
quantitative analysis: we begin by defining and implementing the impairment model; then,
we design a backtest on the 10-year Portuguese Government bonds and analyze the respective
results. In Section 4 the suggested bi-objective model is motivated, presented and discussed.
We develop the stochastic simulation (scenario generation) and the out-of-sample performance
assessment in Section 5. In the last section, Section 6, we present the main conclusions of the
paper and discuss some possible directions for future work.
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2 The IFRS 9 Framework

The classification system of IFRS 9 (IFRS Foundation©, 2017) is based on the business model
in which assets are managed and their cash flow characteristics (KPMG, 2016). Under the
IFRS 9 framework, financial assets are classified into one of the three categories: amortized cost
(AC), fair value through other comprehensive income (FVOCI), and fair value through profit or
loss (FVPL). The categories of held to maturity, loans and receivables, and available for sale,
existing in the IAS 39 framework, are eliminated (KPMG, 2016).

According to the IFRS 9 (IFRS Foundation©, 2017) classification system, a financial asset
is classified at AC if: the financial asset is held within a business model whose objective is to
collect contractual cash flows, and the contractual terms of the financial asset give rise to cash
flows that are solely payments of principal and interest. As examples of financial assets that
can be classified at amortized cost, we have trade receivables, loan receivables, investments in
government bonds that are not held for trading and investments in term deposits at standard
interest rates. In turn, a financial asset is classified at FVOCI if the financial asset gives rise to
cash flows that are solely payments of principal and interest, and it is held in a business model
whose objective is achieved by collecting contractual cash flows and selling financial assets. As
examples, we have investments in government or corporate bonds where the investment period
is shorter than the maturity. If a financial asset does not fall into any of the two previous
classifications, then it is classified as FVPL. As examples, we have held for trading financial
assets.

An important practical implication of this classification system is that only loans, receivables,
investments in debt instruments, and other similar financial assets can qualify to be measured
at AC or at FVOCI (PWC, 2017a). From the perspective of a banking portfolio construction,
in this paper we focus on the tradeoff between a financial asset being classified at AC or at
FVOCI (hereafter FV). If a financial asset is classified at FV, it will allow realizing potential
gains that may occur since the acquisition date to maturity, whereas if it is classified at AC
this will not be possible. However, a financial asset classified at FV will expose the bank
capital to market fluctuations. Therefore, according to the type of financial asset to include in
the banking investment portfolio, the bank investment manager should carefully consider what
business model to adopt.

Credit risk is the risk of default on a debt due to a borrower failing to fulfill its obligations.
Within the IFRS 9 framework, the financial assets classified as AC or FV are impaired under
a single impairment model (Volarević and Varović, 2018). IFRS 9 replaces the incurred loss
model, used under the IAS 39, with a forward-looking expected credit loss (ECL). In the IAS 39
framework, value adjustments resulted from objective facts; in turn, the IFRS 9 impairment
model focuses on possible future losses and therefore makes use of a greater amount of informa-
tion (e.g., macroeconomic data). IFRS 9 allows each bank to define its own internal impairment
model. Nevertheless, the ECL impairment model should be based on credit quality and must
contemplate three stages.

Following Taylor (2017), stage 1 (“Performing”), corresponds to the case where there is no
indication of a decline in credit quality since acquisition; for financial assets in this stage, the 12-
month ECL must be recognized and the interest income is recognized on a gross basis (interest
will be calculated on the gross carrying amount of the financial asset before adjusting for ECL).
Stage 2 (“underperforming”), corresponds to the case where there is a significant increase in
credit risk (SICR) since acquisition; when a financial asset is transferred to this stage, lifetime
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ECL must be recognized; nevertheless, the interest income is still recognized on a gross basis.
Finally, Stage 3 (“non-performing”), corresponds to the case where the financial asset is credit-
impaired; the lifetime ECL continues to be recognized but the interest income is now recognized
on a net basis (interest income will be calculated based on the gross carrying amount of the
financial asset less the ECL).

3 Quantitative Analysis

Intending to help the bank investment manager in the design of an efficient strategy for asset
classification, in this section we perform a quantitative analysis of the tradeoff between a financial
asset being classified at AC or at FV.

The analysis relies on the data for the 10-year Portuguese Government bonds, for the period
between 2003 and 2019. We have gathered monthly data for the yields1. As funding rates we have
collected monthly data for the interest rate in term deposits (deposits with agreed maturity, up to
one year) of individuals2 (resident individuals in the monetary union and Portuguese emigrants
outside the monetary union). Moreover, for the sample period, we have also gathered data of
the Portuguese Government bonds credit ratings according to the Moody’s Agency3. These
monthly time series, corresponding each one to 204 observations, are reported in Figure 1.

Figure 1: Historical Data Gathered
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Displayed: monthly funding rates (interest rate on term deposits of individuals in Portugal), monthly yields of the 10-year

Portuguese Government bonds and corresponding rating changes (according to the Moody’s Agency notation) for the period

2003-2019, inclusive.

We are interested in analyzing the impact of annual decisions (namely, looking at the annual

1This data is publicly available on https://bpstat.bportugal.pt/. We have collected all the available data in
which the first observation corresponds to January 2003.

2Monthly data, for the funding rates, is publicly available on https://bpstat.bportugal.pt.
3This data is publicly available on https://pt.countryeconomy.com/governo/ratings/portugal.
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income and the annual comprehensive income); thus, we have annualized all the collected data.
Note that, for the funding rates and yields, the monthly data correlation coefficient is equal
to 0.6539 and the corresponding annualized data coefficient equals 0.6601. Thereby, the use
of annual data does not lead to any loss of generality. Regarding the rating, according to the
Moody’s Agency notation we have sixteen (considering modifiers) different rating levels: B3, B2,
B1 !→ highly speculative grade; Ba3, Ba2, Ba1 !→ non-investment (speculative) grade; Baa3,
Baa2, Baa1 !→ medium-low grade; A3, A2, A1 !→ medium-high grade; Aa3, Aa2, Aa1 !→ high
grade; Aaa !→ prime. By assigning a numerical value to each possible rating level (1 to 16), this
allows us to compute the annual average (rounded value) rating for the sample under analysis4.
The three annualized series (yields, funding rates, and rating levels) are reported in Figure 2.

Even though our analysis could be applied to any other financial assets, we decided to
focus on the 10-year Portuguese Government bonds. The evolution of the 10-year Portuguese
Government bonds has been exhibiting very unique dynamics as we can see in Figure 1. In
particular, the data set shows a substantial number of downgrades which allows us to assess the
impacts of the numerous changes in credit rating. Moreover, banks make substantial investments
in sovereign debt (Gennaioli et al., 2018), given the low capital requirements and high liquidity.
Thereby, we have chosen to carry out the analysis on the 10-year Portuguese Government bonds
which, according to our best knowledge, corresponds to the first time that such an analysis
is made. Due to the fact that these bonds have experienced significant downgrades during the
2011-2014 financial crisis, the computation of the ECL, through an impairment model definition,
constitutes a challenging task.

Figure 2: Annualized Data
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Displayed: annual average funding rates (interest rate on term deposits of individuals in Portugal), annual average yields

of the 10-year Portuguese Government bonds and corresponding annual average rating levels (according to the Moody’s

Agency notation) for the period 2003-2019, inclusive.

4In the monthly data collected we observe eight different rating levels (see Figure 1): Ba3, Ba2, Ba1, Baa3,
Baa1, A3, A1, and Aa2.
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3.1 Impairment Model Definition and Implementation

One of the great “freedoms” given to the banks by IFRS 9, in the implementation of the impair-
ment model, is related to the computation of the ECL. Since IFRS 9 does not stipulate how
to compute the ECL, it is not straightforward to implement it. Banks are expected to develop
their internal models making use of past and future information.

In order to quantify the bond credit risk, we begin by defining the lifetime ECL as

ECL(lifetime) =

T!

t=1

ECLt, (1)

where ECLt represents the expected credit loss at time t and T is the bond maturity. Fol-
lowing KPMG (2017), ECLt depends on four factors: (1) the discount factor; (2) the survival
probability up to time t; (3) the probability of default between time t and time t + 1; (4) the
loss given default (LGD). Thereby we can model the lifetime ECL as

ECL(lifetime) =

T!

t=1

exp (−rt)× exp (−λt)× λ× LGD, (2)

where r represents the discount rate and λ defines the intensity of the Poisson process that rep-
resents the marginal probability of default. Equation (2) can be approximated by the following
integral

LGD

" T

0
λ exp (−(r + λ)t)dt = LGD × λ

λ+ r
× [1− exp [−(λ+ r)T ]]. (3)

We can observe from Equation (3), that the loss increases with LGD and maturity. Moreover,
it has an asymptote in λ/(λ+ r), i.e., λ/(λ+ r) is an upper bound to the loss.

Regarding the stage allocation, IFRS 9 does not define what a significant increase in credit
risk (SICR) is. A SICR determines if an asset should change from stage 1 to stage 2. A
bank must identify the factors that indicate a SICR based on the specific nature of the financial
asset (PWC, 2017b). Commonly there are three elements taken into account in this identification
(see, PWC 2017b, for further details): a quantitative element, a qualitative element, and the
30 days past due backstop indicator in IFRS 9 paragraph 5.5.11 (IFRS Foundation©, 2017).
Since great “freedom” is given to banks in defining what constitutes a SICR, several banks are
undecided about which indicators to use (Ernst & Young, 2017). However, a great number of
banks have declared to make use of the low credit risk simplification as their main indicator for
debt securities (Ernst & Young, 2017). In the context of the IFRS 9 framework, a financial asset
can be classified as having low credit risk if it has a rating of “investment grade” or above (Taylor,
2018). According to IFRS 9 paragraph 5.5.10 (IFRS Foundation©, 2017), if a financial asset is
classified at a reporting date as having low credit risk, then it is assumed that a SICR has not
occurred since initial recognition. This can be seen as an absolute threshold (PWC, 2017b).

In our analysis, we assume the following criteria: stage 1 - investment-grade financial assets
or financial assets that have not had a downgrade greater or equal than 3 rating categories
since origination; Stage 2 - speculative grade financial assets or financial assets that have had a
downgrade of at least 3 rating categories since origination.

According to the described methodology, in order to compute a bond’s ECL, three inputs
are needed: the intensity of the Poisson process (λ), the discount rate (r), and the LGD. The
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intensity of the Poisson process can be calibrated using probabilities of default. Nevertheless, we
highlight that probabilities of default inferred from market instruments, such as credit default
swaps, must not be used in the computation of the ECL. Just as insurers do not use insurance
premiums to infer probabilities associated with events (e.g., mortality tables), credit default
swaps should not be used to infer probabilities of default, given the uncertainties relating to
market risk premia, counterparty risks, and market frictions (for further details see, e.g., Jarrow
2012). Thus, to calibrate the Poisson process intensity, we use the sovereign issuer-weighted
cumulative default rates, made public by Moody’s Investors Service (2019). For general purposes,
we consider, without modifiers, six different rating levels (in ascending order: B, Ba, Baa, A, Aa,
Aaa). Therefore, each sovereign issuer-weighted cumulative default rate can be seen as a pk,n
element, with k = 1, . . . , 6; n = 1, . . . , 10 (where k represents each rating level and n the number
of years considered in Moody’s Investors Service 2019). We have calibrated each intensity λ(k)

(with k = 1, . . . , 6) through the minimum squares method. Accordingly, each intensity, λ(k),
corresponds to the solution of the following optimization problem

min
λ(k)∈R

K!

k=1

N!

n=1

[1− exp (−λ(k) × n)− pk,n]
2, (4)

where K = 6, N = 10, and 1 − exp (−λ(k) × n) represents the model’s n-year probability of
default. Problem (4) has a nonlinear but smooth objective function; thereby it can be solved
straightforwardly by a nonlinear optimization algorithm. We have used the Broyden-Fletcher-
Goldfarb-Shanno algorithm (this algorithm was originally and simultaneously published by Broy-
den 1970, Fletcher 1970, Goldfarb 1970 and Shanno 1970), also known as the BFGS algorithm.
The results are reported in Table 1.

Table 1: Calibrated Intensities

Rating Level Intensity

Aaa 0.000390%
Aa 0.112%
A 0.349%
Baa 0.273%
Ba 1.106%
B 2.477%

This table reports the Poisson process intensities (see Equation (3)) for each rating level. These intensities correspond to

the solution of Problem (4), using as input parameters the sovereign issuer-weighted cumulative default rates (Moody’s

Investors Service, 2019).

Moody’s Investors Service (2019) also reports the historical average value-weighted sovereign
recovery rate (RR), RR = 0.41. Thereby the corresponding historical average LGD is equal to
0.59 (LGD = RR− 1). We use this historical value for the computation of the ECL.

As discount rate, r (see Equation (3)), we use the 12-month Euribor rate5 for the period
under analysis, 2003-2019.

5Source: https://www.euribor-rates.eu/.
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Once defined the three inputs needed to implement the methodology described in Section 3.1,

the lifetime ECL in year i of a bond acquired in year j, ECL
(lifetime)
i,j , is given by

ECL
(lifetime)
i,j = LGD ×

#
λ
(k)
i

λ
(k)
i +ri

$
×

%
1− exp [−(λ

(k)
i + ri)[10− (i− j)]]

&
,

∀j ∈ J = {1, . . . , s− 1} ,

∀i ∈ I = {l ∈ {(j + 1), . . . , (j + 10)} ∧ l ≤ s} ,

(5)

where s is the number of sample periods (s = 17, corresponding to the number of years for

the period 2003-2019), ri is the discount rate for year i, and λ
(k)
i represents the intensity of the

Poisson process (see Table 1) associated to the rating level k (1,2,3,4,5 or 6) observed in year i.

In turn, the one-year (12-month) ECL in year i of a bond acquired in year j, ECL
(one-year)
i,j ,

can be computed by

ECL
(one-year)
i,j = LGD ×

#
λ
(k)
i

λ
(k)
i +ri

$
×

%
1− exp [−(λ

(k)
i + ri)]

&
,

∀j ∈ J, ∀i ∈ I.

(6)

3.2 Backtest

In this section, we compute and analyze the annual income and comprehensive income corre-
sponding to different investment allocations on the 10-year Portuguese Government bonds. The
price of a bond depends on the coupon rate c, yield y and time to maturity T . Therefore, the
bond price, P (c, y, T ), can be computed as

P (c, y, T ) =

T!

t=1

c

(1 + y)t
+

1

(1 + y)T
. (7)

Given the sum of the first n terms of a geometric progression, Equation (7) can be expressed
as

P (c, y, T ) = c

T!

t=1

1

(1 + y)t
+

1

(1 + y)T

= c

#
1

1 + y

$
'

()
1−

*
1

1+y

+T

1−
*

1
1+y

+

,

-.+
1

(1 + y)T

=
c

y

/
1− 1

(1 + y)T

0
+

1

(1 + y)T

=
c

y
− c

y

1

(1 + y)T
+

1

(1 + y)T

=
c

y
+

1

(1 + y)T

#
1− c

y

$
.

(8)
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A bank investment portfolio must obey double-entry accounting requirements (see, e.g., Horn-
gren et al. 1998; Weygandt et al. 2012, for further details). Accordingly, at AC we measure the
originated income (difference between the margin impact and the impairment flow), in year i by

the bonds’ investment made in year j, x
(ac)
i,j , as

x
(AC)
i,j = MI

(AC)
i,j − IF

(AC)
i,j = (yj − fi)× w(AC) − (IS

(AC)
i,j − IS

(AC)
i−1,j),

∀j ∈ J, ∀i ∈ I,
(9)

where yj represents the 10-year Portuguese Government bond yield in year i, fi is the funding

rate in year i, w(AC) is the proportion of the bonds’ investment allocated to AC and IS
(AC)
i,j is

the impairment’s stock in year i, of the proportion of the bonds’ investment (in year j) allocated

to AC. In case of the existence of a SICR (see Section 3.1), IS
(AC)
i,j is computed as

IS
(AC)
i,j = ECL

(lifetime)
i,j × w(AC),

∀j ∈ J, ∀i ∈ I.
(10)

If a SICR did not occur, then IS
(AC)
i,j is computed as

IS
(AC)
i,j = ECL

(one-year)
i,j × w(AC),

∀j ∈ J, ∀i ∈ I.
(11)

In turn, at FV, we measure the originated income (difference between the margin impact
and the impairment flow plus the gains if realized), in year i by the bonds’ investment made in

year j, x
(FV )
i,j , as

x
(FV )
i,j = MI

(FV )
i,j − IF

(FV )
i,j + 11A(x)× [P (yj , yi, (j + 10)− i)− 1]× w(FV )

= (yj − fi)× w(FV ) − (IS
(FV )
i,j − IS

(FV )
i−1,j ) +

+ 11A(x)× [P (yj , yi, (j + 10)− i)− 1]× w(FV ),

∀j ∈ J, ∀i ∈ I.

(12)

where P (·, ·, ·) is defined in Equation (7), IS
(FV )
i,j is the impairment’s stock in year i, of the

proportion of the bonds’ investment (in year j) allocated to FV (it is computed in an analogous
way as described in Equation (10) and Equation (11)), w(FV ) is the proportion of the bonds’
investment allocated to FV, and 11(·) represents the indicator function, A = {yj − yi >= τ}. τ
defines a threshold from which the bank investment manager decides to realize the gains or not.
The careful selection of the normative level for this decision variable determines what proportion
of the investment should be allocated to FV. Note that the decision to realize gains, in a given
period, may lead to a sacrifice of future gains through the margin impact.

The comprehensive income, at AC, in year i by the bonds’ investment made in year j,

z
(AC)
i,j , is equal to the income, x

(AC)
i,j . At FV, the comprehensive income (income plus other

comprehensive income), in year i by the bonds’ investment made in year j, z
(FV )
i,j , is computed

as
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z
(FV )
i,j = I

(FV )
i,j +OCI

(FV )
i,j = MI

(FV )
i,j +MV

(FV )
i,j

= (yj − fi)× w(FV )+

+ [P (yj , yi, (j + 10)− i)− 1]× w(FV )

− [P (yj , yi−1, (j + 10)− (i− 1))− 1]× w(FV ),

∀j ∈ J, ∀i ∈ I,

(13)

where OCI
(FV )
i,j and MV

(FV )
i,j represent, respectively, the other comprehensive income and the

market fluctuations, in year i by the bonds’ investment made in year j.
In what follows we consider that the bank investment manager invests a fixed amount, M ,

each year on the 10-year Portuguese Government bonds6. The annual income and the annual
comprehensive income are the results of different invested amounts. For example, the income in
2005 results from the investments made in 2003 and 2004. In turn, the income of 2006 results
from the investments made in 2003, 2004 and 2005; and so on. The results are presented in
percentage of the annual fixed amount invested (M). The bank investment manager faces each
year, the tradeoff between what proportion of the investment must be allocated to AC and what
proportion must be allocated to FV. The proportion of the investment allocated to AC must
obey the rule that a bond acquired in year j will be in the bank investment portfolio until
maturity, i.e., until the year j + 10. In turn, the proportion of the investment allocated to FV
should follow the rule that a bond acquired in year j will be sold in year i with j ≤ i ≤ j + 9
if yj − yi ≥ τ , otherwise it will be in the bank investment portfolio until maturity, i.e., the year
j + 10. We begin by realistically assuming that τ = 0.05 (500 basis points). All the gains are
reinvested in the next period at FV. We consider four different settings:

• Setting #1 - the case where the bank investment manager allocates the investment to-
tally to AC (w(AC) = 1 in Equation (9)) or to FV (w(FV ) = 1 in Equation (12) and
Equation (13));

• Setting #2 - the case where the bank investment manager allocates 50% of the investment
to AC (w(AC) = 0.5 in Equation (9)) and 50% to FV (w(FV ) = 0.5 in Equation (12) and
Equation (13));

• Setting #3 - the case where the bank investment manager allocates 25% of the investment
to AC (w(AC) = 0.25 in Equation (9)) and 75% to FV (w(FV ) = 0.75 in Equation (12) and
Equation (13));

• Setting #4 - the case where the bank investment manager allocates 75% of the investment
to AC (w(AC) = 0.75 in Equation (9)) and 25% to FV (w(FV ) = 0.25 in Equation (12) and
Equation (13)).

3.2.1 Historical Annual Income and Comprehensive Income

In Figure 3 and Figure 4 we report, respectively, the annual income and the annual compre-
hensive income, for each of the four considered settings. There is one year that stands out

6In our model, we assume that each investment decision is made at the end of the corresponding year, the first
one made at the end of 2003 and the last one made at the end of 2018.
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Figure 3: Annual Income
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Displayed: annual income for each of the four considered settings.
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Figure 4: Annual Comprehensive Income
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Displayed: annual comprehensive income for each of the four considered settings.

13



immediately in all these figures, the 2011 year. In May 2011, the Portuguese Government signed
the e78 billion bailout program (European Comission, 2011) with the European Commission
(Eurogroup), the European Central Bank, and the International Monetary Fund. In this year
the 10-year Portuguese Government bonds’ yield climbed to 10.24% (see Figure 2) and as the
result we observe a considerable drop in the income (see Figure 3) and comprehensive income
(see Figure 4).

At the end of 2011, in setting #1, regardless of the allocation type (AC or FV), there is
a drop of 0.16% of M (e0.16 for each e100 of the fixed amount, M , invested each year from
2003 until 2011) in the income and a drop of exactly the same magnitude in the comprehensive
income if the allocation is done at AC; if the allocation is done at FV a more significant drop,
equal to 134.14% of M (e134.14 for each e100 of the fixed amount, M , invested each year from
2003 until 2011), is observed in the comprehensive income.

Moreover, between 2004 and 2013, the yearly originated income (see Figure 3) is always the
same independently of the allocation type. In 2014 we observe a superior income originated at
FV in comparison with the income originated at AC. This results from realized gains, since the
bonds acquired in 2010 and 2011 at the yields of 10.24% and 10.55%, respectively, are sold in
2014 because the defined threshold is exceeded, i.e., the bond yield of 2014 is equal to 3.75%.
In 2015, despite gains realized in 2004 being reinvested at FV, we observe a decline (compared
to the case where the investment is totally allocated to AC) in the income. This decline is
explained by the margin drop due to the liquidation carried out in the previous year of 2014.

Still in setting #1, in terms of annual volatility, we observe that, both in terms of income and
comprehensive income, if the investment is totally allocated to FV we have more volatility than if
the investment is totally allocated to AC. In fact, looking to the case of income (see Figure 3), if
the investment is allocated totally to FV we observe an annual income standard deviation equal
to 32.39% and a standard deviation equal to 22.67% in the case that the investment is made
totally in AC. In the case of comprehensive income (see Figure 4), if the investment is totally
made to FV the standard deviation of the annual comprehensive income is equal to 74.35%. In
turn, if the investment is allocated totally to AC this number falls to 22.67% (more than three
times lower). This was somehow expected since an asset classified at FV is subject to market
variations.

Regarding settings #2, #3, and #4, at the end of 2011 the drop in the income (see Figure 3)
has the same magnitude as the one observed in setting #1 but has different origins. In setting
#2, a drop of 0.08% of M results from the allocation to AC and the other 0.08% of M from the
allocation to FV. In setting #3, we observe a drop of 0.04% of M from the allocation to AC and
a drop of 0.12% of M from the allocation to FV. In setting #4, a drop of 0.12% of M results
from the allocation to AC and a drop of 0.04% of M results from the allocation to FV. In terms
of comprehensive income, the observed drop, at the end of 2011, has different magnitudes. In
setting #2, it drops 67.15% of M : 0.08% of M from the allocation to AC and 67.07% of M from
the allocation to FV. In setting #3, it drops 100.65% of M : 0.04% of M from the allocation
to AC and 100.61% of M from the allocation to FV. Finally, in setting #4, the comprehensive
income drops 33.66% of M : 0.12% of M from the allocation to AC and 33.54% of M from the
allocation to FV.

We note that the biggest drop is observed in the case that the bank investment manager
decides to allocate the investment totally to FV: in setting #1, where the allocation is all to
FV, a drop of 134.14% of M is observed. The lowest drop is observed when the bank investment
manager decides to allocate the investment totally to AC: in setting #1, where we have a full
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allocation to AC, we observe a drop of 0.16% of M.
Summing up, the annual income and the annual comprehensive income (see Figure 3 and

Figure 4, respectively) in settings #2, #3 and #4 exhibit a similar behavior as observed in
setting #1 (differing only in the percentage that is allocated to AC and to FV). The higher
the percentage allocated to FV the more volatile will be the annual income and the annual
comprehensive income of the investment.

In order to understand the most advantageous allocation, from the point of view of the
bank investment manager, in addition to observing the annual variations of the income and the
comprehensive income, it is important to compute (for the defined time horizon) the annual
average value of the income and the comprehensive income. These results are presented in
Figure 5 and Figure 6, respectively.

On the one hand, the maximum annual average income (23.40% of M) and the maximum
annual average comprehensive income (29.02% of M) are obtained in the case where the bank
investment manager decides to allocate the investment totally to FV (see setting #1, allocation
at FV, in Figure 5 and Figure 6, respectively). On the other hand, the minimum annual average
income (22.81% of M) and the minimum annual average comprehensive income (22.81% of M)
are observed in the case where the bank investment manager allocates the investment totally to
AC (see setting #1, allocation to AC, in Figure 5 and Figure 6, respectively).

These numbers contrast with the settings where the investment manager decides to imple-
ment mixed allocations (settings #2, #3, and #4, see Figure 5 and Figure 6): the annual average
income in settings #2, #3 and #4 is equal to 23.11% of M , 23.25% of M and 22.96% of M ,
respectively; in turn, the annual average comprehensive income in settings #2, #3, and #4 is
equal to 25.92% of M , 27.47% of M , 24.37% of M , respectively. According to these data, we
infer that the higher the allocation to FV the higher the annual average income and the annual
average comprehensive income.

So, given the assumptions under which this backtest was performed, the best choice for the
bank investment manager would be to allocate the investment totally to FV.

Nevertheless, these results are dependent on two very important assumptions: the investment
time horizon (in the backtest case seventeen years - from 2003 to 2019) and the value assigned
to the threshold (τ) that defines when gains at FV should be realized (in the backtest τ = 0.05).
Let us analyze the importance of these assumptions more deeply, focusing on setting #1 (this
without losing generality), where the bank investment manager decides to allocate the investment
totally to AC or totally to FV.

3.2.2 The Importance of the Investment Horizon

Regarding the investment time horizon, in practice, we know that the bank investment manager
has incentives to choose shorter time horizons. Instead of the seventeen-year investment period,
let us consider three different time horizons: 3, 5, and 10 years. Considering a rolling-window
approach (for further details see, e.g., DeMiguel et al. 2009), we compute the annual average
income and the annual average comprehensive income, for the cases where the investment is
allocated totally to AC or totally to FV. The results are reported in tables 2 to 4, for 3-year, 5-
year and 10-year time horizons, respectively. Contrasting these results with the seventeen year’s
investment period (see setting #1 in Figure 5 and Figure 6), we observe that the bank investment
manager has a greater gain in deciding to allocate the investment totally to FV instead of to
allocate the investment totally to AC. In the case of a 3-year time horizon (see Table 2) and
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Figure 5: Average Results - Income
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Displayed: average results, for the period 2003-2019, of the income for each of the four considered settings.

Figure 6: Average Results - Comprehensive Income
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Displayed: average results, for the period 2003-2019, of the comprehensive income for the four considered settings.
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considering the entire sample period (2003-2019), the annual average income/comprehensive
income for the investment totally allocated to AC is equal to 7.69% / 7.69%, and for the
investment totally allocated to FV is equal to 10.57% / 14.19%. For the case of a 5-year time
horizon (see Table 3), the investment totally allocated to AC originates an annual average
income/comprehensive income equal to 24.21% / 24.21%, and the investment totally allocated
to FV originates an annual income/comprehensive income equal to 35.37% / 31.02%, considering
the entire sample period (2003-2019). Finally, in the case of a 10-year time horizon (see Table 4)
and considering the entire sample period (2003-2019), the annual average income/comprehensive
income for the investment totally allocated to AC is equal to 67.88% / 67.88%, and for the
investment totally allocated to FV is equal to 83.66% / 106.08%.

Thereby, when the bank investment manager considers, as investment time horizon, the
entire sample period, 2003-2019 (see setting #1 in Figure 5 and Figure 6), she/he has an upside
(from allocating the investment totally to FV in contrast with totally to AC) of 0.58% in the
annual average income, and 6.21% in the annual average comprehensive income. In turn, this
upside is greater in the cases that the investment time horizon is shorter. In the 3-year case
(see Table 2), this upside is equal to 2.89% in the annual average income, and 6.50% in the
annual average comprehensive income. For the 5-year case (see Table 3), we observe an upside
of 11.17% in the annual average income, and 6.82% in annual average comprehensive income.
In the 10-year case (see Table 4), the upside is equal to 15.79% in the annual average income,
and 38.20% in the annual average comprehensive income. We highlight that these results are
dependent on the yields’ trajectory. In hindsight, we know that, in the data set under analysis,
there was a great downward trajectory for the bond yields from 2012 to 2015 (see Figure 2),
which allows for the realization of gains at FV.

3.2.3 The Importance of the Threshold Reinvestment Level

In Table 5 we report the annual average (for the seventeen years’ sample) income and annual
average comprehensive income, for different values of τ (the threshold that determines if the bank
investment manager realizes gains and reinvests them, at FV, in the following period). Of course,
the τ value does not have any influence on the annual income and the annual comprehensive
income when the investment is totally allocated to AC. Thus, the annual average income and the
annual average comprehensive income are always equal to 22.81% (see Figure 5 and Figure 6,
respectively) independently of the chosen τ value. From the results presented in Table 5, we
observe that for τ equal to 0.01, 0.02, 0.03, 0.04 and 0.06, the annual average income is always
lower in the case that the investment is totally allocated to FV (in contrast with the case where
the investment is allocated totally to AC).

Analyzing the comprehensive income variations, only with τ equal to 100 basis points, the
annual average comprehensive income at FV is lower than the annual average comprehensive
income at AC. Note that with values of τ equal or greater than 700 basis points, the bank
investment manager reaches the higher values of annual average comprehensive income (higher
than the initial case considered of τ = 0.05, see Table 5). With τ equal to 900 basis points,
the bank manager obtains the best values of annual average income (25.79% of M) and annual
average comprehensive income (31.95% of M). Somehow, these are expected results. The lower
the τ value, the lower the possible gains a bond classified at FV can originate, which, in turn, is
an incentive to allocate the bond to AC instead of allocating it to FV. An analogous reasoning
can be applied to the case of higher τ values but with an upper bound (note that with τ equal
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Table 2: Annual Average Income and Comprehensive Income for a 3-Year Investment Time
Horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2005
AC 3.41% 3.41%

FV 3.41% 8.72%

2004-2006
AC 2.37% 2.37%

FV 2.367% 1.427%

2005-2007
AC 0.41% 0.41%

FV 0.41% -4.64%

2006-2008
AC 0.01% 0.01%

FV 0.01% -2.26%

2007-2009
AC 2.53% 2.53%

FV 2.53% 4.45%

2008-2010
AC 3.85% 3.85%

FV 3.85% -3.01%

2009-2011
AC 2.38% 2.38%

FV 2.38% -27.22%

2010-2012
AC 5.11% 5.11%

FV 5.11% -8.58%

2011-2013
AC 11.23% 11.23%

FV 11.23% 38.27%

2012-2014
AC 10.39% 10.39%

FV 33.48% 43.68%

2013-2015
AC 5.95% 5.95%

FV 5.95% 25.84%

2014-2016
AC 3.53% 3.53%

FV 3.53% 3.32%

2015-2017
AC 2.92% 2.92%

FV 2.92% 1.82%

2016-2018
AC 3.78% 3.78%

FV 3.78% 14.33%

2017-2019
AC 3.63% 3.63%

FV 3.63% 17.35%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 3-year investment time horizon.
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Table 3: Annual Average Income and Comprehensive Income for a 5-Year Investment Time
Horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2007
AC 2.99% 2.99%

FV 2.99% -0.23%

2004-2008
AC 1.04% 1.04%

FV 1.04% -2.14%

2005-2009
AC 2.05% 2.05%

FV 2.05% 1.59%

2006-2010
AC 4.25% 4.25%

FV 4.25% -2.39%

2007-2011
AC 4.26% 4.26%

FV 4.26% -23.65%

2008-2012
AC 5.30% 5.30%

FV 5.30% -15.26%

2009-2013
AC 8.79% 8.79%

FV 8.79% 18.86%

2010-2014
AC 13.70% 13.70%

FV 35.07% 42.66%

2011-2015
AC 17.80% 17.80%

FV 34.36% 44.63%

2012-2016
AC 14.79% 14.79%

FV 21.52% 25.98%

2013-2017
AC 9.14% 9.14%

FV 9.14% 14.39%

2014-2018
AC 6.54% 6.54%

FV 6.54% 15.79%

2015-2019
AC 6.19% 6.19%

FV 6.19% 19.66%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 5-year investment time horizon.
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Table 4: Annual Average Income and Comprehensive Income for a 10-Year Investment Time
Horizon

Investment Time Horizon Allocation Type Income Comprehensive Income

2003-2012
AC 4.17% 4.17%

FV 4.17% -10.94%

2004-2013
AC 6.08% 6.08%

FV 6.08% 10.32%

2005-2014
AC 8.97% 8.97%

FV 18.46% 25.39%

2006-2015
AC 13.35% 13.35%

FV 20.60% 31.66%

2007-2016
AC 17.29% 17.29%

FV 22.72% 28.83%

2008-2017
AC 20.37% 20.37%

FV 23.67% 29.58%

2009-2018
AC 22.85% 22.85%

FV 24.01% 34.80%

2010-2019
AC 27.59% 27.59%

FV 29.02% 38.95%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for both cases where the bank investment manager decides to allocate the bonds’ investment totally to AC

or totally to FV (setting #1). The results are reported to a 10-year investment time horizon.
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Table 5: Annual Average Income and Comprehensive Income for Different τ Values

Threshold Income Comprehensive Income

τ = 0.01 18.63% 19.45%

τ = 0.02 21.52% 23.46%

τ = 0.03 19.34% 25.06%

τ = 0.04 21.62% 26.96%

τ = 0.05 23.40% 29.02%

τ = 0.06 22.04% 29.02%

τ = 0.07 23.93% 31.33%

τ = 0.08 24.50% 31.33%

τ = 0.09 25.79% 31.95%

τ = 0.10 22.81% 31.95%

This table reports the annual average income and the annual average comprehensive income (in % of the annual fixed

investment, M), for the case where the bank investment manager decides to allocate the bonds’ investment totally to FV

(setting #1), for 10 different thresholds (τ) that determine when gains should or should not be realized.

to 1000 basis points the annual average income obtained with the allocation totally made to FV
is the same as if the allocation is totally made to AC).

The analysis of the tradeoff between classifying a bond at AC or at FV constitutes, as we
can see from the backtest’s results, a crucial decision for the bank investment manager. It is
therefore important to have a quantitative model that allows the bank investment manager to
systematically identify efficient allocations (AC or FV) according to a risk-return target. The
income originated by the investment presents itself as a good return target. As a risk target,
we suggest considering the downside of the comprehensive income, which effectively impacts the
bank’s own funds and regulatory capital ratios. In the next section, we propose to build and
analyze a model, over the space of all feasible allocations to AC or FV, in which, on the one
hand, the bank investment manager intends to maximize the income and, on the other hand,
she/he intends to minimize the downside of the comprehensive income.

4 A Bi-Objective Model and the Pareto Front

In this section, we propose a bi-objective model designed over the feasible space of all possible
allocations (to AC or to FV), in which the bank investment manager maximizes the annual
income and minimizes the annual downside of the comprehensive income. Such a framework
allows the bank investment manager to directly identify efficient allocations according to two
defined objectives. As the risk target, we suggest using a downside risk measure, since downside
risk measures realistically only account for the negative part of the deviations from a certain
predefined level (for a detailed survey on downside risk measures, see Nawrocki 1999 and Estrada
2006).
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Roy (1952) was one of the earliest contributors (with the Roy’s safety first principle) for
further development of downside risk measures. Posteriorly, Bawa (1975) and Fishburn (1977)
introduced the lower partial moments. Fishburn (1977) showed that the lower partial mo-
ments’ framework allows the representation of several Von Neumann-Morgenstern utility func-
tions (Von Neumann and Morgenstern, 1953), instead of considering that the preferences of the
investor follow a particular utility function (such as a quadratic utility function). Therefore,
this groundbreaking framework enables accommodating different levels of the investor’s risk
aversion (Nawrocki, 1999).

The framework for lower partial moments promoted further research (see, e.g., Balzer 1994
and Sortino and Price 1994) in the semivariance (also known as the lower partial measure of
degree 2; see Bawa 1975 and Fishburn 1977). These studies showed the practical importance
of the semivariance as a downside risk measure. In fact, already Markowitz (1959), in the late
1950s, stated that the semivariance is a much more plausible risk measure than the variance.
However, for computational reasons, the semivariance is often neglected (Estrada, 2008). It is
possible to overcome the endogeneity problem of the semicovariance matrix (see, e.g., Ben Salah
et al. 2018) using the heuristic method described in Estrada (2008).

In this paper, as a measure of the downside of the comprehensive income, we make use of
the semivariance (the lower partial measure of degree 2). Before we show how the semivariance
of the annual comprehensive income can be computed, let us introduce additional notation. Let
c(w(AC), w(FV )) = [c1(w

(AC), w(FV )), . . . , cs−1(w
(AC), w(FV ))]⊤ represent the (s − 1) × 1 vector

of the annual comprehensive incomes. Thereby each annual comprehensive income is given by

ci−1(w
(AC), w(FV )) =

!

j∈{1,...,i−1}
z
(AC)
i,j + z

(FV )
i,j , ∀i = 2, . . . , s. (14)

Accordingly, we can compute the semivariance of the annual comprehensive income, SMV (c(w(AC), w(FV ))),
as

SMV (c(w(AC), w(FV ))) =
1

s− 1

!

i∈{1,...,s−1}
min

*
ci(w

(AC), w(FV ))−B, 0
+2

, (15)

where B represents a benchmark target. In this paper we establish B as the sample mean of
the annual comprehensive income distribution. Therefore,

B =
1

s− 1

!

i∈{1,...,s−1}
ci(w

(AC), w(FV )). (16)

Defining the semivariance of the annual comprehensive income as in Equation (15) leads
to an endogenous definition, i.e., a change in the bonds’ investment allocation (w(AC) and
w(FV )) changes the years when the annual comprehensive income underperforms its mean (the
mean is also affected), which in turn changes the elements of the annual comprehensive income
semivariance.

Defining the annual average income, AV I(w(AC), w(FV )), as

AV I(w(AC), w(FV )) =
1

s− 1

!

j∈J

!

i∈I
x
(AC)
i,j + x

(FV )
i,j , (17)

22



the bank investment manager can decide the efficient allocation (to AC or to FV) by finding the
solution of the following bi-objective problem

max
(w(AC),w(FV ))∈R2

AV I(w(AC), w(FV ))

min
(w(AC),w(FV ))∈R2

SMV (c(w(AC), w(FV )))

subject to w(AC) + w(FV ) = 1.

(18)

The solution of Problem (18) is given in the form of a Pareto front. (w
(AC)
∗ , w

(FV )
∗ ) ∈ R2

belongs to the Pareto frontier if it corresponds to a nondominated point, i.e., there is no other
feasible point (w(AC), w(FV )) ∈ R2 such that

AV I(w(AC), w(FV )) > AV I(w
(AC)
∗ , w

(FV )
∗ )

1

SMV (c(w(AC), w(FV ))) < SMV (c(w
(AC)
∗ , w

(FV )
∗ )).

(19)

We have no access to the derivatives of both the objective functions of Problem (18), since
both functions are endogenous. Therefore, we solve Problem (18) using a derivative-free al-
gorithm. Among the derivative-free algorithms available for multi-objective optimization, di-
rect multisearch7 performs the best in a robust numerical exercise (test set of more than 100
problems) reported in Custódio et al. (2011). Moreover, in terms of the purity metric (Bandy-
opadhyay et al., 2004), on the test set considered by Custódio et al. (2011), direct multisearch
exhibited a better efficiency and robustness than the popular non-dominated sorting genetic
algorithm - NSGA-II (Deb et al., 2002). Thus, we have chosen this algorithm to find the Pareto
front solution of Problem (18).

Using the entire available time window (2003-2019) to estimate the inputs’ parameters,
the solution of Problem (18) is presented in Figure 7. Now, the bank investment manager
has a way to find efficient allocations (to AC or to FV) according to her/his own risk-return

preferences. Thereby, e.g., w10 = [w
(AC)
10 , w

(FV )
10 ]⊤, where w

(AC)
10 = 0.0441 and w

(FV )
10 = 0.9559, is

the allocation corresponding to the top8 10% of the SMV (see Figure 7). w50 = [w
(AC)
50 , w

(FV )
50 ]⊤,

where w
(AC)
50 = 0.2667 and w

(FV )
50 = 0.7333, is the allocation corresponding to the top 50% of the

SMV (see Figure 7). Finally, w90 = [w
(AC)
90 , w

(FV )
90 ]⊤, where w

(AC)
90 = 0.7062 and w

(FV )
90 = 0.2938,

is the allocation corresponding to the top 90% of the SMV (see Figure 7). We observe that the
proposed framework incorporates the intuition that the greater the allocation to FV, the greater
the expected risk. In turn, the expected return also increases with the allocation to FV.

Corresponding this framework to a stochastic optimization setting, it is important to take
into account the results’ sensitivity to the estimation error present in both the objectives. Par-
ticularly, we know that the semivariance, being an asymmetric risk measure, is many times
more sensitive to estimation error, than symmetric risk measures that make use of more in-
formation (Satchell, 2010). One possible way to mitigate this estimation error is through a

7A derivative-free solver based on direct multisearch, dms, is publicly available under request at
http://www.mat.uc.pt/dms/.

8Let cdf be the normalized cumulative distribution function of SMV (w(AC), w(FV )). Then, the top x% of risk
is defined by the allocation (w(AC), w(FV )) such that cdf(w(AC), w(FV )) >= x%.
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Figure 7: Pareto Front
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Displayed: Pareto front, solution of Problem (18), using all the sample period (2003-2019) for the input parameters’

estimation. The threshold, τ , used for the computation of the annual income at FV (see Equation (12)), was equal to 500

basis points. In this figure are also plotted the allocations that correspond to the top 10%, 50% and 90% of risk.
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resampling methodology as proposed by Michaud and Michaud (2007). The idea is straightfor-
ward. The bank investment manager generates different scenarios for which a solution of the
proposed model is found. The average of the obtained solutions corresponds to the optimal
efficient solution. But how to simulate the different scenarios for the complex problem that we
have in our hands? In the next section, we address this issue by presenting and exemplifying a
possible approach.

5 Stochastic Simulation and Out-of-Sample Performance

Simulating future scenarios is an arduous task that mainly requires a significant amount of
modeling. In this section, we will consider just a possible way to simulate future scenarios in
our framework. We assume only one general premise: that the future resembles the past. Of
course, this premise is quite debatable, but our aim here is just to have a systematic way of
simulating scenarios instead of predicting the future. We are interested in simulating different
possible “futures” that are generated according to the historical available information. On the
one hand we need to simulate the yields and funding rates (incorporating the observed historical
correlation between these two rates), and on the other hand we need to simulate the rating
dynamics.

Regarding the simulation of the yields and funding rates, in this study, we make use of a
correlated mean-reverting process. Since our aim is to simulate (not to predict) different possible
future states that somehow are a mirror of the past information, we will not allow negative rates
and thereby we decided to make use of a squared Bessel stochastic process (Chou and Lin, 2006).
The squared Bessel stochastic process is the basis of the Cox-Ingersoll-Ross model (Cox et al.,
1985) and it is well known in the financial literature as the CIR process. Given an interest rate,
rt, a CIR process can be defined by the following stochastic differential equation

drt = α(µ− rt)dt+ σ
√
rtdWt, (20)

where α is the mean reverting speed, µ is the mean reverting level and {Wt, t ≥ 0} represents a
standard Brownian motion. The interest rate, rt, thus follows a diffusion process with drift α(µ−
rt) (it is linear and ensures the mean reverting property) and diffusion rtσ

2 (it is proportional
to the interest rate and ensures the positiveness of rt). If 2αµ ≥ σ2 (with α, µ,σ ≥ 0), the CIR
process defined by Equation (20) has a marginal density that is gamma distributed (Cox et al.,
1985). Following Cox et al. (1985) and Kladivko (2007), given rt (at time t) the density of rt+∆t

(at time t+∆t) is given by

p(rt+∆t|rt;α, µ,σ,∆t) = ce−u−v
*v
u

+(q/2)
Iq(2

√
uv), (21)

with c = 2α
α2(1−e−α∆t)

, u = crte
−α∆t, v = crt+∆t, q = 2αµ

σ2 − 1, and Iq(2
√
uv) is the modified

Bessel function of the first kind and order q (for further details see, e.g., Arfken and Weber 2012).
The transition density given by Equation (21) was for the first time derived by Feller (1951).
Given this closed-form expression for the transition density it is straightforward to estimate
the parameters α, µ and σ by maximum likelihood. In fact, according to Equation (21) and
assuming that there are N observations (rtn , n = 1, . . . , N), being equally spaced with time
step ∆t, the likelihood function of a CIR process can be expressed as
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L(α, µ,σ) =

N−12

n=1

p(rtn+1 |rtn ;α, µ,σ,∆t). (22)

Then the log-likelihood function is given by

log[L(α, µ,σ)] =

N−1!

n=1

log[p(rtn+1 |rtn ;α, µ,σ,∆t)]. (23)

According to Equation (21), Equation (23) can be rewritten as

log[L(α, µ,σ)] = (N − 1) log(c) +

+

N−1!

n=1

/
−utn − vtn+1 +

1

2
q log

#
vtn+1

utn

$
+ log[Iq(2

√
utnvtn+1)]

0
,

(24)

where utn = crtne
−α∆t and vtn+1 = crtn+1 . Given that the logarithm is a monotonically increas-

ing function, maximizing the log-likelihood function (Equation (24)) is equivalent to maximizing
the likelihood function (Equation (22)). Thereby, the maximum likelihood estimators, α̂, µ̂, and
σ̂, correspond to the solution of the following maximization problem

(α̂, µ̂, σ̂) = arg max
(α,µ,σ)

log[L(α, µ,σ)]. (25)

The numerical solution of Problem (25) can be obtained by the Nelder-Mead method (Nelder
and Mead, 1965). To ensure convergence to the global optimum, typically the starting values are
the estimates given by ordinary least squares (Kladivko, 2007). A MATLAB® implementation
of this procedure can be found in Kladivko (2007).

Assuming that the yields and the funding rates follow

dyt = αy(µy − yt)dt+ σy√ytdW
y
t , (26)

and

dft = αf (µf − ft)dt+ σy
3

ftdW
f
t , (27)

respectively, we have calibrated through maximum likelihood (using as initial estimates for
the optimizing procedure those obtained through ordinary least squares) Equation (26) and
Equation (27). Using all the available historical information, monthly data from 2003 to 2019,
the monthly parameters estimated were: αy = 1.614, αf = 1.588, µy = 0.03023, µf = 0.01023,

σy = 0.2735, σf = 0.2033 and E[dW y
t dW

f
t ] = ρdt = 0.6539dt.

Now we can use Equation (26) and Equation (27) to simulate different future states for the
yields and funding rates. As we want to take into account the historical correlation between
the yields and the funding rates, instead of simulating, separately, each one of the equations
(Equation (26) and Equation (27)), we consider a correlated vector-valued CIR process of the
form
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dRt = α [µ−Rt] dt+ Σ
√
RtdWt ∧ E[dW y

t dW
f
t ] = ρdt ⇐⇒

/
dyt
dft

0
=

/
αy 0
0 αf

0#/
µy

µf

0
−

/
yt
ft

0$
dt+

+

/
σy

√
yt 0

ρσf
√
ft σf

√
ft
3

1− ρ2

0 /
dV y

t

dV f
t

0
,

(28)

where V y
t and V f

t are independent standard Brownian motions. Therefore, future yields and
funding rates can be simulated, according to Equation (28), following discretization in time
by a forward Euler approach (see Deelstra and Delbaen 1998, for further details). Through
discretization, negative values can occur. One possible way to handle the negative values is by
means of the Higham-Mao method (Higham and Mao, 2005). Assuming that t = 0 is the time
period corresponding to the last sample observation (December 2019), Figure 8 presents one
simulated path (for 10 years) of the yields and funding rates.

Figure 8: Simulated Path of the Yields and Funding Rates
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Displayed: one simulated path of the yields and funding rates. We assume that the yields and funding rates follow the

dynamics described by Equation (28). The first time period, t = 0, corresponds to the last historical sample observation

(December 2019).

In order to simulate the ratings dynamics, we constructed an ordered response model (Mck-
elvey and Zavoina, 1975). Ordered response models (also known as ordinal cumulative link
models) to modeling the ratings dynamics have been widely employed and analyzed in the
credit rating literature (see, e.g., Afonso 2003, Bissondoyal-Bheenick et al. 2006, Afonso et al.
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2009 and Erdem and Yusuf 2014). As our focus is on simulation and not on prediction, in this
paper we are not interested in studying or analyzing the determinants of sovereign bond ratings
(as done, e.g., in Cosset and Roy 1991 and Cantor and Packer 1996). Our focus is also not the
search for the best prediction methodology (as done, e.g., in Ozturk et al. 2016). Our aim is to
construct a simple (but not simplistic) model that allows us to simulate the 10-year Portuguese
Government bonds ratings using as a risk factor only the 10-year Portuguese Government bonds’
yield.

In the gathered historical sample (monthly data from January 2003 to December 2019) we
observe eight different rating levels (see Figure 9): Ba3, Ba2, Ba1, Baa3, Baa1, A3, A1, and
Aa2.

Figure 9: Historical Rating Levels
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Displayed: distribution of the rating levels as function of the 10-year Portuguese Government bonds’ yield, observed during

the sample period (January 2003 to December 2019).

These rating levels can be represented in ordinal form as

28



j =

4
55555555556

55555555557

8, if the rating is Aa2,
7, if the rating is A1,
6, if the rating is A3,
5, if the rating is Baa1,
4, if the rating is Baa3,
3, if the rating is Ba1,
2, if the rating is Ba2,
1, if the rating is Ba3.

(29)

Now we can define an ordinal response model by letting r∗t be a latent variable such that

r∗t = γyt + εt, ∀t ∈ {1, . . . , s}, (30)

where yt represents the bond yield and εt is the stochastic disturbance term with cdf given by
F (·). Accordingly, the rating level at time t, rt, is defined by

rt = j if cj−1 ≤ r∗t ≤ cj for j = 1, . . . , 8, (31)

where −∞ ≡ c0, c1, . . . , c7, c8 ≡ +∞ are the strictly ordered cutoffs determined by the model.
The cumulative probabilities are given by

Prob(rt ≤ j) = Prob(r∗t ≤ cj) = Prob (εt ≤ cj − γyt) = F (cj − γyt). (32)

Now assuming that εt follows a standard logistic distribution, we have

Prob(rt ≤ j) =
e(cj−γyt)

1 + e(cj−γyt)
=

1

1 + e−(cj−γyt)
. (33)

Thereby, by choosing the logistic function as the link function, it follows that

logit(Prob(rt ≤ j)) = cj − γyt, (34)

where logit(·) is no more than the odds’ logarithm, i.e.,

logit(p) = log

#
p

1− p

$
. (35)

The described model can be estimated by maximum likelihood. Typically, ordinal response
models can be estimated using a regularized Newton-Raphson algorithm with step-halving (line
search) and analytical expressions for the gradient and Hessian of the negative log-likelihood
function (Christensen, 2018). A detailed implementation in R through the ordinal package can
be found in Christensen (2018). We present the estimation results of the ordinal regression in
Table 6.

The results presented in Table 6 can be interpreted as follows. Given a 1% increase in the
bond yield, the likelihood of 8 versus 1-7 (or analogously, 7 versus 1-6, or 6 versus 1-5, or 5
versus 1-4, or 4 versus 1-3 or 3 versus 1-2 or 2 versus 1) decreases approximately 20%, this in
the log odds scale. Thus, we have a methodology to simulate the funding rates, the yields, and
the corresponding rating levels. Proceeding accordingly, we started by simulating 100 paths
(according to the vector-valued CIR process defined by Equation (28)). As such, we have
computed the rating levels according to the ordinal response model defined by Equations (30)
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Table 6: Estimation Results of the Ordinal Regression

Coefficient Estimate

c1 −2.888∗∗∗ (0.3366)

c2 −2.487∗∗∗ (0.3068)

c3 −1.103∗∗∗ (0.2432)

c4 −0.8158∗∗∗ (0.2429)

c5 −0.7603∗∗∗ (0.2434)

c6 −0.7414∗∗∗ (0.2435)

c7 −0.5867∗∗∗ (0.2441)

γ −20.04∗∗∗ (4.717)

Log-Likelihood −301.22

Observations 204

This table reports the estimation parameters of the ordinal response model defined by Equation (30), Equation (31),

Equation (32) and Equation (33). The corresponding standard error is presented in parenthesis. *** means that the result

is statistically significant at the 1% level.

to (33), inclusive. In Figure 10 we report the distribution of the simulated rating levels as a
function of the simulated 10-year Portuguese Government bonds’ yield.

Since our interest lies in analyzing the impact of annual decisions (on annual income and
annual comprehensive income), and similarly to what we did in the previous sections, we have
annualized the simulated 100 paths’ data. The annual simulated bond yield and funding rate
correspond to an annual average. Following the correspondence defined by Equation (29), the
annual simulated rating level also corresponds to an annual average (rounded value). An annu-
alized simulated path (yield, funding, and rating level) is presented in Figure 11.

Following the framework proposed in Section 4, we exemplify now how the bank investment
manager can implement a methodology that intends to mitigate the estimation error, based on
the work of Michaud and Michaud (2007), for determining optimal efficient allocations (AC or
FV) to the 10-year Government bonds.

Firstly, for each one of the 100 simulated paths (yield, funding and rating level), the efficient
Pareto front (solution of Problem (18)) is computed. Secondly, on each obtained Pareto front an
efficient allocation (AC and FV) is chosen according to the defined risk-return objectives. This
choice can be made based on any decision rule adopted by the bank investment manager. In
this paper we decided to choose three different efficient allocations (also defined in the previous

section): the allocations corresponding to the top 10%, 50% and 90% of risk, w
∗(AC)
10 , w

∗(AC)
50

and w
∗(AC)
90 , respectively9. Thus, for each of the 100 generated paths, we have three efficient

allocations: w
(AC)
i,10 , w

(AC)
i,50 and w

(AC)
i,90 , with i = 1, . . . , 100. Finally, the corresponding optimal

efficient allocations are given by the average allocations. That is, the optimal efficient allocations

9Note that an efficient allocation (AC and FV) is completely determined solely by the proportion of the
investment that is allocated at AC.
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Figure 10: Simulated Rating Levels
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Displayed: distribution of the simulated rating levels as a function of the simulated 10-year Portuguese Government bonds’

yield. These results are reported to a simulation of 100 yields paths.
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Figure 11: Annualized Simulated Path
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Displayed: one of the 100 simulated paths. The yields and funding rates are simulated according to the vector-valued CIR

process defined by Equation (28) and the rating levels according to the ordinal response model defined by Equation (30),

Equation (31), Equation (32), and Equation (33).
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corresponding to the top 10%, top 50%, and top 90% of risk are given, respectively, by w
∗(AC)
10 =

1
100

8100
i=1w

(AC)
i,10 , w

∗(AC)
50 = 1

100

8100
i=1w

(AC)
i,50 , w

∗(AC)
90 = 1

100

8100
i=1w

(AC)
i,90 . The main distributional

values of these efficient allocations are reported in tables 7 to 9.

Table 7: Efficient Allocation — Top 10% of Risk

min value max value average value (w
∗(AC)
10 )

w
(AC)
i,10 0.0348 1 0.6293

AVI -0.005% 39.43% 10.54%

SMV 0.04% 84.75% 12.34%

This table reports the main distributional values of the efficient allocation corresponding to the top 10% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

Table 8: Efficient Allocation — Top 50% of Risk

min value max value average value (w
∗(AC)
50 )

w
(AC)
i,50 0.2086 1 0.6999

AVI -0.005% 37.17% 10.23%

SMV 0.04% 57.18% 8.33%

This table reports the main distributional values of the efficient allocation corresponding to the top 50% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

Table 9: Efficient Allocation — Top 90% of Risk

min value max value average value (w
∗(AC)
90 )

w
(AC)
i,90 0.5450 1 0.8425

AVI -0.005% 32.70% 9.62%

SMV 0.04% 19.38% 2.84%

This table reports the main distributional values of the efficient allocation corresponding to the top 90% of risk, along the

computed 100 Pareto fronts (one for each simulated path). We report the minimum, maximum and average value of the

allocation to AC and the risk-return metrics (SMV-AVI).

In Table 7 we report the results for the efficient allocation corresponding to the top 10% of
risk, i.e., the efficient allocation, corresponding to the top 10% of the SMV, chosen on each of
the 100 Pareto fronts (one for each simulated path). We observe that the minimum allocation
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to AC is equal to 0.0348 (which means that the maximum allocation to FV is equal to 0.9652)
and the maximum allocation to AC is equal to 1 (the minimum allocation to FV is equal to 0).
We also report the minimum values of -0.005% / 0.04% in the AVI/SMV space. In turn, the
maximum values in the AVI/SMV space are given by 39.43% / 84.75%. The average allocation
that we were looking for is equal to 0.6293 to AC (0.3707 to FV), which corresponds to a 10.54%
/ 12.34% value in the AVI/SMV space.

Analogously, in Table 8 and Table 9 we find the results for the efficient allocations corre-
sponding to the top 50% and top 90% of risk, respectively. The average efficient allocation
corresponding to the top 50% of risk is equal to 0.6999 to AC (0.3001 to FV), which attains
a 10.23% / 8.33% value in the AVI/SMV bi-dimensional space. In turn, the average efficient
allocation corresponding to the top 90% of risk is equal to 0.8425 to AC (0.1575 to FV), which
attains a 9.62% / 2.84% value in the AVI/SMV bi-dimensional space.

In the remainder of this section, we provide some insight about the out-of-sample performance
of the efficient allocations according to the bi-objective model (see Problem (18)). Thus, we use
each of the 100 simulated paths as an out-of-sample path. Given the in-sample (2003-2019
is the in-sample time window) efficient allocations computed in the previous section (w10 =
[0.0441, 0.9559]⊤, w50 = [0.2667, 0.7333]⊤ and w90[0.7062, 0.2938]

⊤), we assess the performance
of these efficient allocations in each of the out-of-sample paths. It is interesting to contrast these
results with other three different allocations: the allocation where the bank investment manager
decides to allocate the investment totally to AC (wAC = [1, 0]⊤), totally to FV (wFV = [0, 1]⊤)
and 50%/50% of the investment distributed equally between AC and FV (wEW = [0.5, 0.5]⊤).
The results are presented in Table 10.

Table 10: Out-of-Sample Performance

Allocation Type
AVI SMV

min max average min max average

w10 -0.005% 39.33% 10.52% 1.38% 83.34% 22.35%

w50 -0.005% 36.58% 10.15% 0.90% 50.07% 13.54%

w90 -0.005% 31.15% 9.43% 0.24% 9.26% 2.74%

wAC -0.005% 29.26% 8.95% 0.04% 1.74% 0.31%

wFV -0.005% 39.88% 10.59% 1.50% 90.93% 24.36%

wEW -0.005% 33.70% 9.77% 0.54% 24.29% 6.72%

This table reports the performance, on the 100 simulated paths (corresponding to a 10-year out-of-sample period), of six

different allocations: three in-sample efficient allocations (w10, w50 and w90) computed on the Pareto front solution of

Problem (18), the allocation where the bank investment manager decides to allocate the investment 100% to AC (wAC),

100% to FV (wFV ) and 50%/50% of the investment distributed equally between AC and FV (wEW ).

Based on the results presented in Table 10, the efficient allocations computed according to
the suggested model exhibit a robust out-of-sample performance. In fact, the considered in-
sample efficient allocations are very consistent in both objectives (AVI and SMV). Note that
w10, w50 and w90 represent the ex-ante allocations corresponding to the top 10%, 50% and
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90% of the risk, respectively (see Figure 7) and thereby w10 leads to the ex-ante highest values
of AVI and SMV, followed by the w50 allocation and finally the w90 allocation. This pattern
remains untouchable ex-post (see Table 10). Moreover, the w10 and w50 allocations outperform
the wAC and wEW allocations in terms of ex-post average annual income (for the 10-year out-
of-sample period). This result is even more noteworthy, taking into account two aspects. First,
it is achieved without using any explicit methodology to deal with the parameter estimation
error (as the one presented in the beginning of this section). Second, it is well known that an
equally-weighted allocation (wEW ) is a hard-to-beat (in terms of out-of-sample performance)
benchmark (for additional detail, reference is made to DeMiguel et al. 2009). Lastly, even if we
were to consider an ex-post return/risk type measure (in this case AVI/SMV) the w90 allocation
outperforms the equally-weighted allocation.

From the results presented in Table 10 it also stands out that the best ex-post performance
in terms of average annual income (10.59%) is attained by the case where the bank investment
manager decides to allocate the investment totally to FV (wFV ). Nevertheless, this allocation
also corresponds to the highest ex-post risk (the annual semivariance of the comprehensive
income equals 24.36%).

6 Conclusions and Future Research

IFRS 9 intends to harmonize accounting with risk management. From the perspective of a
banking investment portfolio construction, this is not an easy task due to the requirements
of using both historical and forward-looking information. The bank investment manager faces
the critical decision on the allocation of securities to fair value and amortized cost. We have
addressed this important issue.

Since IFRS 9 does not give an explicit definition for the impairment model, in this paper
we have suggested a banking impairment model in order to compute a bonds’ expected credit
loss. We assume that the marginal probability of default is given by a Poisson process. From
the suggested impairment model results an expected credit loss that increases with the loss
given default, as with the bond’s maturity. In the implementation of the impairment model, we
consider the existence of a significant increase in credit risk if a bond has a rating level classified
as “speculative grade” or if a bond has had a downgrade of at least 3 rating categories since
origination.

A backtest on the 10-year Portuguese Government bonds was performed for the period
between 2003 and 2019. The backtest was constructed using only three inputs: yields, funding
rates, and the corresponding rating levels. The results suggest that the higher the proportion
of the investment allocated to fair value, the higher the variability of the annual income and
the annual comprehensive income. Moreover, for the full sample period (2003-2019) if the bank
investment manager decides to allocate the investment totally to fair value, she/he obtains a
higher value of annual average income and annual average comprehensive income than if she/he
decides to allocate the investment totally to amortized cost. Nevertheless, we have shown that
these results are sensitive to the choice of the threshold from which the bank investment decides
to realize gains at fair value. We have also shown that these results rely on the investment time
horizon which in turn can affect the bank investment manager decisions.

Based on risk-return objectives, a bi-objective optimization model was proposed to allow
the bank investment manager to directly find efficient allocations, i.e., which proportion of the
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investment should be allocated to amortized cost and which proportion should be allocated to
fair value. As a return measure, we have defined the average annual income. In turn, as a risk
measure, we have defined the semivariance of the annual comprehensive income. Our proposed
model generates a Pareto front. The solution of the defined non-smooth bi-objective problem,
using the data related to the 10-year Portuguese Government bonds for the period from January
2003 to December 2019, was computed by means of a derivative-free algorithm based on direct
multisearch. Given the significant downgrades as a result of the 2011-2014 financial crisis, the
Portuguese Bond yields constitute a very unique data set.

We have suggested and implemented a methodology to mitigate the bi-objective optimiza-
tion model estimation error. Based on the resampling methodology proposed in Michaud and
Michaud (2007), we suggested an idealization of different possible future paths that can be used
to compute different Pareto fronts. The optimal solution corresponds to the average efficient
allocations found in each of the Pareto fronts. As inputs of the bi-objective model, we have
the yield, funding, and rating levels, so we needed to simulate these variables. The yields and
funding rates were simulated by a correlated vector-valued Cox-Ingersoll-Ross process. In turn,
the rating levels were simulated using an ordinal response model. We have exemplified this
approach for a 10-year period. Finally, we have also used the simulated paths to perform an
out-of-sample analysis.

The results suggest that the efficient allocations given by the proposed approach are robust
and very competitive in terms of both defined optimization objectives (the average annual income
and the semivariance of the annual comprehensive income). Overall, the performed quantitative
analysis seems to suggest that, for the long run, the higher the proportion of the investment
allocated to fair value the higher the average annual income achieved but also the higher the
semivariance of the annual comprehensive income. In this paper, we have looked to the bank
investment portfolio in terms of recent accounting rules, namely under the IFRS 9 framework.
We could observe the several complexities that arise when we try to develop quantitative analyses
that incorporate accounting rules. However, we are convinced that the bank investment manager
needs to have this type of analysis at her/his disposal, to be able to make more informed
decisions. Therefore, as future work, we want to extend this analysis to other asset classes and
to the incorporation of recent regulatory rules inherent to the Basel III framework.

References

Afonso, A. (2003). Understanding the determinants of sovereign debt ratings: Evidence for the
two leading agencies. Journal of Economics and Finance, 27(1):56–74.

Afonso, A., Gomes, P., and Rother, P. (2009). Ordered response models for sovereign debt
ratings. Applied Economics Letters, 16(8):769–773.

Arfken, G. B. and Weber, H. J. (2012). Mathematical Methods for Physicists: A Comprehensive
Guide. Academic Press, 7th edition.

Balzer, L. A. (1994). Measuring investment risk: A review. Journal of Investing, 3(3):47–58.

Bandyopadhyay, S., Pal, S. K., and Aruna, B. (2004). Multiobjective gas, quantitative indices,
and pattern classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 34(3):2088–2099.

36



Bawa, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Financial
Economics, 2(1):95–121.

Ben Salah, H., De Gooijer, J. G., Gannoun, A., and Ribatet, M. (2018). Mean-variance and
mean-semivariance portfolio selection: a multivariate nonparametric approach. Financial
Markets and Portfolio Management, 32:419–436.

Bertocchi, M., Giacometti, R., and Zenios, S. A. (2005). Risk factor analysis and portfolio
immunization in the corporate bond market. European Journal of Operational Research,
161(2):348–363.

Bissondoyal-Bheenick, E., Brooks, R., and Yip, A. Y. N. (2006). Determinants of sovereign
ratings: A comparison of case-based reasoning and ordered probit approaches. Global Finance
Journal, 17(1):136–154.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms.
Journal of the Institute of Mathematics and its Applications, 6:76–90.

Cantor, R. and Packer, F. (1996). Determinants and impact of sovereign credit ratings. Economic
Policy Review, 2(2):37–53.

Cassader, M., Ortobelli, S., Caviezel, V., and Caglio, S. (2014). On the use of contingent claims
in portfolio selection problems. International Journal of Economics and Statistics, 2:220–229.

Chopra, V. K. and Ziemba, W. T. (1993). The effect of errors in means, variances, and covari-
ances on optimal portfolio choice. The Journal of Portfolio Management, 19(2):6–11.

Chou, C.-S. and Lin, H.-J. (2006). Some properties of CIR processes. Stochastic Analysis and
Applications, 24(4):901–912.

Christensen, R. H. B. (2018). Cumulative link models for ordinal regression with the r package
ordinal. Technical report, Technical University of Denmanrk.

Cosset, J. C. and Roy, J. (1991). The determinants of country risk ratings. Journal of Interna-
tional Business Studies, 22(1):135–142.

Cox, J. C., Ingersoll, J. E., and Ross, S. A. (1985). A theory of the term structure of interest
rates. Econometrica, 53(2):385–407.
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