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Abstract

Deep Learning and Convolutional Neural Networks have been staples in solving challenges related

to Image Processing, Computer Vision and Pattern Recognition. Since their breakthrough in 2012 that

no other method has come close, be it in overall results, consistency, but also computation capabilities,

with the technology evolving and delivering more and more impressive results as researchers push the

boundaries. As a consequence, we are seeing work in the domain of Deep Learning creep more and

more in our every day lives, automating a variety of tasks, many of them unnoticeable.

In this work, Deep Learning will be applied to try and automate one such barely noticed task:

toll collection. In Porugal, Brisa operates an automatic toll collection service, which despite their

best efforts, is still fragile and subject to fraud. It is then in their interest that toll collection be-

comes as precise and reliable as possible. With this in mind, this document explores technology

related to Vehicle Recognition, and, taking advantage of a multi-camera setup, applies state-of-the-art

methodologies that identify key defining features in vehicles, fusing this multi-perspective information,

ultimately delivering a solution that performs vehicle recognition with state-of-the-art competitive

results. Moreover, the methodologies here applied can easily be replicated and should translate well to

other applications where the main type of data is a visual, particularly where multi-perspective data

entries are available, such as medical imaging based diagnosis.

Key Words: Deep Learning, Convolutional Neural Networks, Computer Vision, Vehicle Recognition,

Multi-Perspective Data, Information Fusion
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Resumo

Deep Learning e Redes Neurais Convolucionais estabeleceram-se como as ferramentas mais comuns

para resolver problemas relacionados com Processamento de Imagem, Visão por Computador e Recon-

hecimento de Padrões. Desde 2012, quando foi demonstrado o quão poderosas poderiam ser, nenhum

outro método chegou perto dos resultados, consistência e capacidade de computação obtidos, sendo

que a tecnologia continua a evoluir e a mostrar resultados cada vez mais impressionantes, à medida

que investigadores exploram os limites. Como consequência, estamos a observar aplicações, muitas

delas imperceptíveis, resultantes de trabalhos de investigação na área do Deep Learning a entrar cada

vez mais nas nossas vidas e a automatizar diversas tarefas.

Neste trabalho, Deep Learning será aplicado de modo a automatizar uma dessas tarefas imper-

ceptíveis: cobrança de portagens. Em Porugal, a Brisa opera um serviço de cobrança de portagens

automático, chamado Via Verde, que apesar dos seus melhores esforços ainda é frágil e susceptível a

fraude. É então no melhor interesse da Brisa que o processo de cobrança se torne o mais preciso e fiável

possível. Tendo isto em conta, este documento explora tecnologia relacionada com reconhecimento de

veículos, e, tirando partido de uma configuração multi-câmara, são aplicadas metodologias estado da

arte que permitem identificar características altamente definidoras em veículos, fundindo a informação

multi-câmara, e, em última instância, alcançando resultados que competem com o demonstrado pelo

estado da arte no que toca a reconhecimento de veículos. Além disso, as metodologias aqui aplicadas

e desenvolvidas podem ser facilmente replicadas e devem transportar para outras aplicações de redes

neuronais e visão por computador os resultados obtidos, particularmente em situações em que existem

dados de multiplas perspectivas, como diagnóstico do cancro mamário.

Palavras Chave: Deep Learning, Redes Neurais Convolucionais, Visão por Computador,

Reconhecimento de Veículos, Dados Múltipla Perspectiva, Fusão de Informação
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1 Introduction

Coarse-grained classification problems are an established and matured field of research. An example

that is a good indicator of this is the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)[1],

and the progress observed over time in the results of the competition. ImageNet is a Large-Scale

Visual Classification (LSVC) dataset, and in the ILSVR Ccompetition, teams of researchers attempt

to achieve the highest accuracy classifying a trimmed version of ImageNet into one thousand different

categories. Over time, mean accuracy points have progressed from 0.22581 in 2013, to 0.731392 in 2017.

The state-of-the-art performance as of the writing of this document is a top-1 accuracy of 88.55%,

88.5% and 88.4% according to the works of [52],[51] and [2] respectively, with the work in [52] still

under review.

However, real world problems are often not coarse-grained and thus require more specialized

datasets and approaches. This means that there may arise situations where coarse-grained work and

research may lead to non-optimal results, due to the fact that in these more specialized situations, the

classes on a particular dataset usually have significant intra-class variation and inter-class similarity,

along with smaller sample sizes [3]. As such, image classification research applied on these real-world

problems has become a research field of its own, Fine-Grained Visual Classification (FGVC).

Several problems have become benchmark staples for FGVC such as [4], [5] or [6]. In addition to

this more research-oriented investigation stream, more frameworks are being proposed and developed to

target real-world problems such as face-recognition applied to surveillance [7] and road traffic analysis

[8].

These FGVC frameworks and methods, specially those applied to vehicle recognition, will be of

great interest to the work proposed in this document, since the scope of application is very similar.

1.1 Motivation and expectations

The work proposed in this document was developed within the scope of A-to-B, a company owned

by Brisa Innovation & Technology, serving as the group’s international brand responsible for developing

and delivering solutions to mobility services operators.

Brisa is a transport infrastructure operator offering an electronic toll collection service called “Via

Verde”, in which, if acquired, one installs a device in the windshield of one’s car and is automatically

charged for the distance travelled in paid highway roads, without having to stop at the toll. This

13



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

device is usually specific to one car only.

To make sure the correct car is passing the toll and no fraud is taking place, a License Plate

Recognition (LPR) system is already in use. This system captures an image of the passing vehicle and

extracts the corresponding license plate. With such information, it’s easy to cross examine the database

of registered vehicles and verify that the correct one is present. Although the current performance of

the LPR system is good for ideal conditions, those conditions can’t be guaranteed 100% of the time,

with both natural (like rain, foggy days, sun-light reflection) and unnatural(such as degraded license

plates)circumstances hindering performance, which could lead to False-Negatives and False-Positives.

It is not only accidental circumstances that challenge the performance of the LPR, more elaborate

frauds may circumvent the system, such as a situation where one not only places the “Via Verde”

device in another car, but also the license plate.

Figure 1: Example of parallel recognition systems for fraud detection. License plate and vehicle

info are extracted and cross-examined.
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To solve this situation, a tool was developed to automate the recognition and validation of vehicles

passing “Via Verde” tolls. As said previously, the system is integrated in the scope of A-to-Be and

will serve as a complement to the current LPR system, attenuating the effects of situations where the

LPR isn’t providing satisfactory results. It will also work in parallel to other vision systems such as

front seat occupancy detectors.

The results will be a more robust system, more immune to variations and disturbances in the

acquired images, providing not only better results (leading to more efficient charging of customers)

but also the added benefit of fighting fraudulent and criminal activities, since license plate fraud is a

crime, in accordance with the Portuguese penal code (DL n.º 48/95, 15 de Março, Capítulo II, Secção

II, article 256º).

1.2 Contributions

This is an FGVC focused work, and as such, provides insights in a subset area of Machine and

Deep Learning, which is not where the bulk of DL applied to Image Processing and Computer Vision

research is done, or at the very least, published. Particularly, it’s a problem of FGVC applied to

vehicle make recognition, which is of emergent interest and where good results are being achieved. In

this work, properties of Convolutional Neural Networks (CNN) are explored, as well as what vehicle

patterns are important for CNNs to perform recognition. State-of-the-art methods that related work

has shown to be of use in solving such a problem are employed and evaluated. As such, this work

could be of interest to other students and researchers working on similar FGVC problems, particularly

vehicle make and model recognition.

Ultimately, a weakly-supervised solution with results competitive with the state-of-the-art, that

can be applied to any domain of computer vision where there are multiple perspectives of data, is

proposed.
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2 Deep Learning and Convolutional Neural Networks Concepts

2.1 Introduction

The general approach to solve FGVC problems is to find discriminant parts and extract features

from the input images, and from these features some form of prediction method is used to perform

classification. Different methods for this have been proposed, such as Scale Invariant Feature Transform

(SIFT) descriptors and CNNs.

SIFT-based approaches have shown good results. [9] used a SIFT-based approach to obtain good

results on datasets like Flower-102, LandUse-21 or Aircraft-100, being able to match a great number

of features between different images of the same coarse-grained category. SIFT methods were the main

method of feature extraction from 2003 to 2012.

Although the ground work to make fast CNN implementations was already laid in 2004 (by [10]

with the suggestion to use GPU computation, taking advantage of its many cores and parallelism

capabilities), it was not until 2012, when a CNN architecture called AlexNet was put forward and

won the ILSVRC competition, that it became the standard method to solve image pattern recognition

tasks [11]. Ever since, CNN-based approaches have dominated the field and achieved remarkable

breakthroughs, as concludes [12]. [12] also remarks that CNNs yield competitive accuracy on various

retrieval tasks and have advantages in efficiency. [13] remarks that CNNs outperform their counterparts

(such as SIFT) by a considerable margin. [14] draws a comparison between SIFT and CNN methods,

from which the following table is derived:

Figure 2: SIFT and CNN comparison. Table taken from [14].

2.2 Convolutional Neural Network (CNN) Architectures

In the following sections, an high-level analysis of some common and powerful CNN architectures

is performed.
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2.2.1 VGGNet

[15] introduces a CNN architecture which was submitted to the ILSVRC challenge in 2014, where it

won first and second places in localisation and classification tasks, respectively. It’s main contribution

was investigating the effect that increased network depth had on network performance, by pushing the

number of layers to a maximum of 19 layers (smaller architectures were also presented, such as a 16 layer

model), with the convolution layers having smaller 3x3 convolution filters (the minimum to get a sense

of left/right and up/down) and a convolutional stride of 1 pixel. Each convolutional layer is followed

by a ReLU activation function and occasionally, throughout the pipeline, Max-Pooling is performed

over a 2x2 pixel window with stride 2. Each time this operation is performed the convolutional layer

width increases by a factor of 2, starting at 64 in the fist layers and ranging to 512 in the last layers.

The variable stack of convolutional layers are followed by three fully-connected layers, with the first

two having 4096 channels and the last one performing the classification for the 1000 outputs related to

the ImageNet dataset. It is also claimed that the network generalises well to other tasks and datasets.

In sum, it was shown that deep architectures have potential for good performance while maintaining

a simple, but computationally heavy structure.

Figure 3: VGG16’s deep, yet simple, architecture.

2.2.2 Inceptionv3

The CNN introduced in [16] attempted to address some shortcomings of very deep CNNs, like

VGG16, which despite its architectural simplicity, pays a price in computing power, limiting its (and
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other similarly deep networks) applicability in scenarios like mobile-vision. It is an attempt at scaling

up CNNs utilizing added computation as efficiently as possible, and it is claimed that the resulting

computing cost is lower than VGGNet.

The network is composed of so called Inception modules, arranged sequentially, which feature

1x1, 3x3 and 5x5 convolution filters (along with other common CNN layers like 3x3 MaxPool Layers).

Different sizes of filter banks were bringing different benefits to neural networks and in this way,

Inception manages to capture benefits from a variety of filter sizes.

Figure 4: A single Inception module. These are arranged sequentially and ultimately feed toward

a fully-connect section that performs the final prediction.

2.2.3 Residual Networks (Resnet18, Resnet50, etc)

Very deep CNNs are harder to train, require more epochs and more computational power. [17]

aimed at maintaining depth in CNNs, while keeping computing cost low and easing the training process

by proposing a reformulation of the convolution layers. The layers became residual functions that

reference the input. It was empirically proven that residual networks are easier to optimize and gain

accuracy from increased depth. Depths of up to 152 layers were achieved, which is 8 times the max

depth in VGG networks, while maintaining lower computational cost.
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Figure 5: A single Residual Block. Similarly to Inception, these blocks are arranged sequentially

in variable depth sizes, leading to fully-connected layers.

2.2.4 Densely Connected Convolutional Neural Networks (Densenet-121, Densenet-161,

etc

Expanding on the idea of residual networks and the fact that they can be deeper, more accurate

and efficient to train (due to layers close to the output having a reference to the input values), [18]

presented an approach that expands on this concept, where each layer connects to every other layer

in the same (dense) block. In a standard network, for L layers there are L connections. With dense

networks there are L(L+1)
2 connections. This way, all feature maps resulting from previous layers are

used as input to the current convolution layer, and the result from the current convolution layer is used

as input in every subsequent layer (for layers in the same dense block). It is claimed, that among other

benefits, this topology promotes feature propagation and reuse, thus improving feature detection, as

well as reducing the number of parameters. The authors claim to reach state-of-the-art performance

while needing less computation to achieve these results, when compared to other competitors.
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Figure 6: A dense block. Previous layers feed to all subsequent layers in the block. Like Inception and

residual networks, a variable sequential arrangement of these blocks is performed. Diagram taken from

[18].

2.3 Neural Network Training

2.3.1 Supervised Learning

Supervised Learning refers to Machine Learning work that is performed on labeled data. This has

both advantages and disadvantages.

One advantage is that with this method one is in full control of the data. Assuming there wasn’t

any human error during the labeling of the data and that this person had sufficient expertise to perform

this task, one can trust that the data is correctly labeled, and that there will be no "noisy" inputs to

a model.

On the other hand, this is the most costly kind of learning/training method, as the time required for

labeling can be quite significant, as was already mentioned, specially for tasks such as hand annotation

of bounding boxes or contours for segmentation tasks.
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2.3.2 Unsupervised Learning

This is used primarily to cluster data into categories, that may or may not be apparent to the

naked eye. Usually the output data will then be interpreted and possibly labeled, but the labeling

process is much less expensive, since one can label whole clusters of data instead of labeling data

entries one by one. A disadvantage is that one is not in full control of the data and is relying on the

assumed performance of whatever algorithm or model that was used to perform this clustering.

2.3.3 Weakly-Supervised Learning

Weakly supervision relates to tasks where both supervised and unsupervised methods are employed.

It usually involves a label (or a weak label) that leads to some type of unsupervised function that is

learned and taken advantage of.

One example of this, which will be used during the course of this work, would be labeling classes of

a certain dataset (i.e., vehicle make) and then allowing whatever network or architecture one is using

to learn by itself how to segregate the image portions that contain that class.

2.3.4 Transfer Learning

One interesting approach for CNN training is the widely used transfer learning methodology. As

many other aspects of DL, it draws inspiration from human behaviour. If someone was to learn and

master a particular skill, its safe to assume that that person would be able to learn new skills in the

same domain or sub-domains of the original one due to this previous knowledge. For example, someone

that can play an instrument (i.e., classical guitar) and has also learned music theory, can probably

transfer the fine skills (guitar playing) and more general skills (music theory) to other learning tasks,

such as playing the violin.

The idea behind transfer learning in CNNs is much the same. It has been observed that, independent

of the task, CNNs tend to learn similar convolution filters in the convolution layers. Particularly, earlier

layers tend to develop into general feature extractors (line detectors, gradient detectors, etc.), while

later layers tend to specialize to the data at hand. As a concept, one can equate the earlier layers

to the music theory knowledge in the previous example, and the later specialized layers to the guitar

playing knowledge. One can also equate the transferring of knowledge from playing guitar to playing

the violin, to the transfer of knowledge from a CNN model that differentiates animals to a CNN that
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differentiates dog breeds.

It has been verified that however closer the domains (the original and the target domain) are, the

more effective the transferred knowledge will be, lowering the amount of epochs required to converge

to a solution. This is not always possible in very specialized datasets and there aren’t readily available

pre-trained models trained in all domains. As such, many transfer learning use cases use models pre-

trained on the ImageNet dataset. These observations are supported by scientific surveys [22][23][24][25].

[21] performed experimental validation of performance with fine-tuned networks vs training from

scratch and verified the following:

Table 1: Results obtained by [21], performed on the same dataset with the same training conditions,

proved that transfer learning not only converges faster, but has potential for better results.

Architecture Approach Accuracy

Resnet50 from scratch 84.3%

Resnet50 transfer learning 92.0%

Resnet152 from scratch 35.3%

Resnet152 transfer learning 92.6%

2.4 CNN performance metrics

2.4.1 Accuracy

Accuracy (CorrectP redicionts
T otalInputs ) is usually a very important (perhaps the most important) metric when

measuring CNN model performance. However, there are situations where this in not only insufficient,

but can also be quite misleading.

Table 2: Example results from a model with very high, but misleading, accuracy.

True Class 1 True Class 2 True Class 3 Total Samples

Predicted Class 1 150 0 0 150

Predicted Class 2 0 1 7 8

Predicted Class 3 10 0 1 11

For the data in Table 2 there are 152 correct predictions and 169 total inputs. This represents

23



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

Table 3: Example of a model with worse accuracy, but better performance.

True Class 1 True Class 2 True Class 3 Total Samples

Predicted Class 1 60 7 5 72

Predicted Class 2 4 30 7 41

Predicted Class 3 10 10 65 85

an accuracy of 89.95%. For the data on Table 3 there are 155
198 = 78.28% accuracy. At first glance

this could lead one to dismiss the model of Table 2, as superficially it appears less capable. However,

when analyzing the individual class results, it can be seen that Table 2’s model performs poorly on

classes 2 and 3, while Table 3’s model, despite not performing as well in class 1, outperforms Table 2’s

model significantly on the other classes. Of these, which is then more capable? Intuitively, Table 3’s

model seems better, but this can be quantified. This is a common problem in FGVC datasets, where

representation may be lacking in certain classes.

2.4.2 Confusion-Matrix

The data in tables 2 and 3 is presented in a confusion matrix. A confusion matrix is a way to

arrange the output data of a model vs the inputs, and easily visualize performance. One can easily

check for True-Positives, False-Positives, True-Negatives and False-Negatives.

Figure 7: Generalist binary confusion matrix example.

2.4.3 Precision and Recall

Precision and recall are useful measures for binary information retrieval tasks, that sometimes

better describe performance than just accuracy.

Precision can be calculated as True positives/Total number of positives predicted. Recall can
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be calculated as True Positives/Total number of actual positives. These can be combined into a

single measure of performance called the F-score calculated by 2∗Recall∗P recision
(P recision+Recall) .

These metrics can be extended to multi-class labels by considering a one vs all approach, binarizing

the prediction, and thus getting individual prediction and recall values for each class.

Going back and applying the precision formulations it results prediction values of 100%, 12.5%

and 9.1% for classes 1,2 and 3 respectively for Table 2. Comparing to table 3 it results 83.3%, 73.2%

and 76.47% for classes 1,2 and 3. Applying the recall formulations, values of 93.75%, 100% and 12.5%

are obtained for Table 2, and 81.1%, 63.83% and 84.41% for Table 3.

Plugging these values in the respective formula, an F-score of 0.97, 0.22 and 0.11 for classes 1,2

and 3 for Table 2’s model is achieved. For Table 3, F-scores 0.82, 0.68 and 0.80 are derived. Averaging

these results, it can be verified that Table 3 is actually the better performing model with an average

F-score of 0.77, while Table 2’s model averages 0.43.

2.5 Large-Scale vs Fine-Grained Visual Classification (LSVC vs FGVC)

Visual classification problems can generally be divided in two categories: LSVC and FGVC. What

differentiates one from the other is the data within the dataset that one is working with and the

outputs/classes that one is trying to predict.

In the case of LSVC datasets, they are generally composed of coarse classes, i.e., classes with low

inter-class similarities, easily distinguishable by the general population. As such, building a LSVC

dataset is easier and can be crowdfunded for labeling. Many of these LSVC datasets are so well-curated,

that they become too well-curated, which in the end makes their application to real world problems

limited, due to not addressing real world limitations such as poor lighting or varied object poses.

Usually, class representation is well distributed, as the generality of the objects in these datasets makes

it easy to find new samples. Properties like these can be found, for example, on the ImageNet dataset.

When it comes to FGVC however, classes are of more fine-grained nature (i.e., different bird species,

or different vehicle brands, or even vehicle models), where inter-class similarities can be very high,

and so can intra-class differences. This invalidates, for the most part, the option to crowd-source the

labeling of an FGVC dataset, as one would usually need a person with the necessary expertise to do

this.

Although there are datasets commonly used for FGVC research which are well-curated and of good

25



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

quality, many suffer from a lack of uniform representation of classes, making it harder to validate

models. Images with poor lighting and generally more heterogeneous images are also more commonly

found. These issues are exacerbated if one was to build a custom dataset applied to a particular real-

world problem. This makes FGVC exceptionally challenging and still an important topic of research

in the field of computer vision, specially when compared to LSVC tasks.

2.6 Object Recognition

Object Recognition is a general term used to describe one of the tasks CNNs are used for. It

includes other sub-tasks that perform more specialized functions in the field of Image Processing and

Computer Vision. Within Object Recognition, the tasks of Image Classification, Object Localization

and Detection or Object Segmentation can be performed.

Figure 8: Specialized tasks within Object Recognition. Image taken from [53].

2.6.1 Classification

Classification has been somewhat covered in prior sections, and as shown in figure 8, it simply

identifies one class, among several that are contained in a dataset without any extra information

about the semantics of the input data. It is the most common task to perform, and generally, in

Deep Learning development frameworks, the available pre-trained models (be it Resnets, or Inception

networks or others) are classification networks [50]. Classification generally relies on previously labeled

data.

2.6.2 Localization and Detection

This particular task provides additional information about the input data, giving information about

the target class’ location within the input image. Depending on the architecture and dataset, the

task can be localization of a single object or various objects within the same context. Generally, these
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localization networks adapt or take advantage of previously successful classification CNNs, such as [19],

where an AlexNet is used as a feature extractor, while introducing other methodologies for localization.

This was one of the first successful implementations of object localization with CNNs, introduced in

2014, hence the use of AlexNet, which was still somewhat the state-of-the-art architecture at the time.

While obviously useful in certain scenarios, this requires manual labeling of data (specifically,

bounding boxes surrounding areas of interest), and if one is dealing with labeling more that one object

per input, time required to label can increase dramatically.

2.6.3 Segmentation

Applying Object Detection Models can give us a bounding box around each relevant object in

an image, however there are situations where one may be interested in a more descriptive output.

Instance Segmentation provides a similar type of information to localization detectors, but outputing

a mask over the pixels which have been deemed to contain the expected output. Applications of such

models are more limited, and more importantly, the manual labour required to label the respective

dataset is much greater, as one would need to identify all relevant contours for all relevant objects.

2.7 Data Augmentation

Deep CNNs have established themselves as the best performing method for pattern recognition in

image processing. They are however reliant on large amounts of training data to guarantee that the

results observed on test data are credible and that the model has not overfit to the training data.

Overfitting is a consequence of low amounts of data, or uneven representation of data over the

dataset’s classes, which leads to a model learning to perfectly adapt itself to the training data, and

only the training data. This is very prevalent in research areas where sourcing image data is more

complicated, either because of scarce existing examples and/or privacy concerns, such as medical image

analysis.

27



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

Figure 9: Typical curve of error progression of training and testing data when overfiting is occurring,

as seen in [20].

A dependable Deep Learning Model should have equal, or very similar performance throughout

the training and testing epochs. Data Augmentation is a powerful method to combat this shortcom-

ing, allowing artificially increasing the available data via image processing techniques like geometric

transformations, color space transformations, strategic noise placement, among others. Survey work

performed by [20] and [21] has demonstrated that indeed data augmentation is essential for Deep

Learning CNNs performance.
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3 State-of-the-art

3.1 FGVC Classification

The work in [26] presented a new Max Pool layer that performs the Max operation along the

channel of a (x, y) positioned feature in the final convolution (before the fully-connected) layer. This

method compresses the final feature tensor into a smaller dimensional feature space, while claiming

to maintain classification performance. This means that the number of parameters of a particular

network become reduced and the number of redundant features is reduced. With this change in

network structure, state-of-the-art results have been achieved for both the CompCars and Car-196

dataset, with the best results being and accuracy of 97.82% and 93.71% respectively.

Figure 10: Max Channel Pool (MCP) operator (left) vs Regular Max Pool (right). MCP

results in a smaller depth of channels of feature maps.

The work put forward in [28] suggests a non-CNN alternative for unsupervised Vehicle FGVC

classification solution. It was developed and evaluated in a real-world acquired dataset, which features

many of the problems one would expect real-life to present, that are not found in research datasets

like CompCars or Stanford-Cars: sun-light reflections, varying weather and visibility conditions, poor

lighting. It is also claimed that by avoinding a CNN solution, common CNN derived problems are

not of such concern, like class under representation. A SIFT based feature extractor is utilized that

analyses parts of the image in a grid fashion, identifying features by comparing them to a feature

codebook/trained dictionary of features. This method achieved competitive results in the CompCars

dataset (98.63%) and in the custom dataset (97.51%).
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Figure 11: Diagram representation of the solution put forward in [28].

[29] introduces a simple, yet interesting way to deal with noisy and heterogeneous real-life vehicle

images, which is to hierarchically feed the input images through networks dedicated to assess image

quality. A threshold is defined and if the hierarchical section that classifies image quality attributes

a quality score below the threshold, the image will be then processed and classified by a network

dedicated to low quality image feature extraction, otherwise, the image will be classified by a standard

quality network. Results were assessed on CompCars and an accuracy of 98.89% was achieved.

Figure 12: The hierarchical architecture of [29].

[34] is another method that aims at dealing with non uniform and noisy input images, instead of

just evaluating performance on "good" datasets. Vehicle localization is performed and a bounding is

output by a first stage, Then image processing is done on the found front view of the vehicle, which is

then the input to a CNN for classification. The devised application was tested on a custom private

dataset composed of 2191 test images and 26 classes. It was reported a performance of 97.31% accuracy

for the task of vehicle make and model classification.
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Figure 13: The image quality enhancement stage of [34].

A weakly supervised data augmentation network was suggested in [31]. It claims to increase

performances by playing with high descriptive zones in the input images. After a high descriptive

image region is discovered, that same input is modified either by "dropping" (i.e., occluding said zone)

or "cropping" (i.e., zooming in on the feature, excluding surrounding zones). This resulting image is

then fed again to a classification network. This is a form of weakly supervised data augmentation, that

delivered state-of-the-art results in several non-vehicle fine-grained datasets. In the same vein, [32]

introduces a weakly-supervised approach which aims to focus high descriptive zones, also achieving

state of the art on four widely-used datasets. [33] also presents a novel attribute-aware model that

focus descriptive regions for fine-grained datasets, where local and global features are learned in an

end-to-end manner, resulting in a feature vector with better information, instead of noisy or irrelevant

features. Here, state-of-the-art results are reached on the CARS196 dataset.

Figure 14: The weakly supervised concept of [31].
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3.2 Multi-View approaches

Intuitively, there are situations where human observers may benefit from having several perspectives

to perform predictions. It comes as no surprise that similar approaches have been tried on CNNs.

[35] and [36] took advantage of Multi-View CNN (MV-CNN) architectures for detection of mam-

mal cancers, with both approaches delivering state-of-the-art results in their fields. The addition of

different perspectives of data allows the MV-CNN to extract complementary information from several

viewpoints, similar to the way a larger field of vision benefits human observers. In these approaches,

each view is passed through a CNN that extracts that views’ features. The outputs of these multiple

feature extractions are then concatenated into a single feature vector and fed through a dense network.

Figure 15: MV-CNN used in [36].

The work of [37] is similar to that of [35] and [36], but applied to the same domain and similar scope

of this work. It is again a multi-input configuration of CNNs. It takes one input which is resized to

three different sizes. They then pass through dedicated convolution branches and feature extraction is

performed. Additionally there is a local loss module after each branch, so that the parameters of these

feature extracting branches can be updated during training. This makes it so that the model takes

advantage of all predictions: the predictions from the three input branches and the final prediction

performed by the fully connected layers, which is placed in the network after the features extracted

from the three convolution branches are concatenated. Again, the authors mention that one of the

systems this architecture draws inspiration from is human vision.

The devised architecture was trained on a dataset acquired and labeled for the purpose of the work

and tested on 7 fine-grained classes with each being composed of about 1000 samples. In this dataset
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an accuracy of 94.9% was achieved, while on the CompCars dataset Top-1 accuracy was 91%. These

results are not state-of-the-art at the time of the writing of this dissertation, but this still builds a

good base for working with multiple image inputs.

Figure 16: MV-CNN architecture used in [37].

3.3 Object Detection State-of-the-art

3.3.1 R-CNN

[44] presents the work that lead to one of the first successful implementations of object detection

using CNNs. It’s a region proposal based system that selects parts of the image and passes them

through a CNN, where the proposed class is extracted. This is quite a computationally heavy solution

due to the several passes being made on the classification CNN, however this was, at the time, a

significant breakthrough and the state-of-the-art for object detection.
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Figure 17: Diagram representing the architecture of [47].

The work in [44] was eventually built upon by the same team of researchers, and results reported

in [45] and [46] showed that this achieved state-of-the-art results accuracy wise, although only near

real-time utilization was possible. [47] is a report by the same team, where it is shown how a branch

for predicting a mask inside the previous bounding box detected by [46] achieves good instance

segmentation results, outperforming similar architectures.

3.3.2 YOLO

The YOLO object detection architecture introduced in [38] a frame object detector that delivers

a bounding box and prediction probability. It took a different approach when compared to other

detection systems that re-purposed classifiers to perform detection. While re-purposed classifier based

systems will usually evaluate an image at various locations with the classifier network and check if

that image part has a certain object, (i.e., [41] proposes a sliding window approach where the classifier

network is run in equally spaced intervals over the input image) YOLO suggests a single pass through

the CNN (hence its name: you only look once (YOLO)). This also has the advantage of reducing the

overall complexity found in R-CNN.

In YOLO, a single convolution network predicts the bounding boxes and the supposed object,

which means that YOLO is faster than its competitors. It is also claimed that the system is more

immune to background noise when compared to Fast R-CNN, due to looking at the input image as a

whole and not with region proposals, making less than half of background errors. Despite this, YOLO

does not beat state-of-the-art methods on accuracy due to difficulties in detecting smaller objects,

with the main contribution being the fast execution time and real-time application capabilities.
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Over time, improvements have been made to the architecture leading to it delivering state-of-the-

art results: [39], among other improvements, increased the number of predicted classes and [40] also

reports other minor improvements that lead to better localization of small objects, which leads to

results competitive with [42].

Figure 18: The single pass architecture of [38].

3.3.3 RetinaNet

RetinaNet was introduced in [42] and, like [38], its a one-stage object detector that aimed, again

like [38], at handling not only the fact that the best performing object detectors were, at the time,

two-stage detectors, but the existing one-stage methods offered worse performance with the trade-off

of faster execution. The main goal was then to develop a one-stage object detector that delivered

state-of-the-art accuracy and fast execution.

It was assumed that the main issue driving lower results for one-stage architectures to be class

imbalance. The suggested solution was a modified loss function that down-weights the losses derived

from well performing and well represented classes.

Afterwards, the works presented in [17] and [43] served as the backbone for the object detection sys-

tem, with the proposed loss function change implemented. Results achieved from this implementation

matched state-of-the-art for one-stage object detectors for the first time.

3.3.4 Class Activation Maps

While not directly an object detection technique, [48] suggests that neural networks have good

innate object localization ability. This allows the visualization of which parts of the input image led

specifically to a certain prediction score on the output of the neural network. Experimental results

showed that this method performs good localization. And although this may not be the state-of-the-art

for this task, it has the big advantage of being a weakly-supervised method, since one only needs to
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annotate the output class and not the bounding box itself. A disadvantage is that this way it is not

directly obtained a bounding box as the output, but a heat-map of importance in the image. From

here, by establishing a threshold, a bounding-box can be built, but it is not as straightforward.

Figure 19: Regions in one input image that led to the top-5 predictions on a certain model [48].
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4 Metodology

4.1 Datasets

In this section, the datasets used for the development of the work are summarized.

4.1.1 CompCars

For part of the work that will be outlined in coming sections, the dataset proposed in [49] (which

is publicly available) was used.

Much of the FGVC research currently performed on vehicle classification is validated on this

dataset. It features data acquired both from the web and from surveillance cameras. The purpose of

the surveillance data was to add more heterogeinity to the data, with images with more variation in

quality, and generally more similar to what one would find in real life applications. However, even

these surveillance sourced images are still quite similar, with the images being of similar pose (for

a particular view) and even where there may be some kind of noise, vehicle features are still easily

discernible. As such, state-of-the-art research has largely solved the problem of classifying the vehicles

of this dataset, with one of the next steps, which isn’t made possible with this dataset, being the

validation of FGVC methods in a real-life scenario.

The dataset contains 163 annotated car makes and 1716 annotated car models. A total of 136716

images of the cars are available, with another 27618 images of car parts (headlights, interiors, dash-

boards, etc.). The 136716 set of images are divided in 5 viewpoints (Front, Rear, Side, Front-Side and

Front-Rear), with the distribution per-class being quite balanced.

In sum, this is quite a well curated dataset, with overall very good quality images, and, within the

the same viewpoint, most images present the vehicle in the same pose, which facilitates classification

performance, and thus, for certain tasks, accuracy achieved on this dataset may not be transferable to

a real-life application.
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Table 4: Composition of CompCars

Viewpoint Total No. per Model

Front 18431 10.9

Rear 13513 8.0

Side 23551 14.0

Front-Side 49301 29.2

Rear-SideS 31150 18.5

Figure 20: Example given on [49] of the surveillance sourced images. Given as an example of variety

within images of the same viewpoint, it can be seen that the vehicles are still in identical poses and

still easily recognizable.

4.1.2 ShortBrisa

This dataset is comprised of images of vehicles passing Brisa’s tolls. Thus, the acquisition of these

images were all subject to real world constraints, that are evident upon analyzing the data.

One can verify that vehicle pose has significant variation, as well as other visible constraints, like

lighting, due to some images being acquired at different times of the day.

The train set of data is made up of 4560 samples for the three views (thus, 1520 sets of viewpoints

per vehicle). The test set of data is made of 1137 samples for the three views (379 individual entries).

There are 15 labeled classes. Class distribution for this dataset can be consulted in attachment R.
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Figure 21: Sample images of ShortBrisa.

4.1.3 LargeBrisa

LargeBrisa is a much more complete version of ShortBrisa. It contains all the images and classes

of ShortBrisa but extends the number of classes to 39, has an additional viewpoint, has 1286 sets of 4

view samples per vehicle for testing and 5864 samples for training. As a much bigger dataset, results

achieved in it should be more credible.

This more complete dataset was only available later in development, as such, not all tests performed

on ShortBrisa were repeated (and many would be redundant and unnecessary), but this dataset is the

one where the final results were validated. Class distribution is demonstrated in attachment S.

Figure 22: Example of contents in the LargeBrisa dataset. Notice the extra view.
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4.2 Assessing Baseline Performance

4.2.1 CompCars Dataset

Preliminary tests were performed using the CompCars dataset. Using the front-view available

within the dataset, training was performed on a few established classification CNNs, following the

previously introduced training strategy of transfer learning. The purpose of this was not only to analyse

individual performance of each selected network, but other performance metrics such as training time.

It also served as a primary point of reference, as due to the homogeneity of the image composition

in this dataset and how well it was curated, good results are expected, as shown by state of the art

research.

4.2.2 ShortBrisa Dataset

Identical tests were performed on the ShortBrisa dataset. In this case, the tests were performed

individually for each available view. Here, the purpose is mainly to verify the expected downgrade

in performance when utilizing the front-view (due to the factors exposed on 4.1.2), and also to verify

what kind of performances the remaining views deliver.

4.3 Performance Boosting Techniques

This section describes techniques aimed at boosting performance and reducing incorrect predictions.

4.3.1 Bounding Boxes

As mentioned previously, image composition is much more chaotic in ShortBrisa when compared

to CompCars, which one can presume should lead to poorer results. One of contributing factors is

that ShortBrisa images were acquired "organically" (i.e., some sort of system, unknown to us, captured

a picture of a car passing a toll station, via some triggering mechanism, with minimal supervision),

as such, vehicles were captured in a variety of poses (some closer to the camera, some farther away).

To deal with this issue, bounding boxes were annotated and added to the ShortBrisa dataset. Images

were then re-scaled, before they were passed through a network for classification, leading to a more

homogeneous image composition, both due to the exclusion of background noise, and the re-scaling

making all the vehicles close to the same size.
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Figure 23: Pre and Post bounding box annotation for an Audi vehicle. Post bounding box vehicles

are scale-invariant.

4.3.2 Data Augmentations

The data augmentations strategies in the following figure were implemented and inserted in the

dataset. This should compensate certain shortcomings of the dataset, such as small representation of

a certain class.

Figure 24: Pre and Post data augmentation for one vehicle entry.
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4.4 Multi-View Solutions

Extra views from different poses are available for each vehicle on both CompCars and ShortBrisa.

In CompCars these extra views were not chosen to be part of testing because results of over 99% were

already being achieved, and no conclusions could be derived from including more views.

However, with ShortBrisa, performance is expected to degrade. In this case, and inspired by similar

solutions to similar problems, it was attempted to perform predictions fusing the information available

from the three available views on ShortBrisa. In the following two subsections the methodologies

chosen for this shall be explained.

4.4.1 Multi-Channel Convolutional Neural Network (MC-CNN)

The typical utilization of a neural network for image analysis sees the input being of a certain

dimension in width and height (i.e.,224x224 pixels) and channel depth. Usually then, the input is of

size 224x224xChannel_Depth, where Channel_Depth is usually of size 3 for each of the RGB layers

of a colored image. To insert multiple views in a single network, the Channel_Depth RGB channels

will replaced each with a vehicle view by transforming each image to a single channel gray level image,

as exemplified in the following figure.

This is not limited to 3 views/channels only, as it is possible to change this first layer to accommodate

as many input channels/views/sources of information as needed. Such feature will be taken advantage

of later in this work.

Figure 25: MC-CNN. Top Network is typical CNN usage with RGB image. Bottom is the

suggested multi-view over multi-channels.
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4.4.2 Multi-View Convolutional Neural Network (MV-CNN)

Following the work described in [37], a Resnet18 implementation was developed, featuring parallel

Resnet18 networks, with each of them processing a different input image. The architecture is composed

of standard Resnet18 networks and each of them takes a single different input image, from which three

predictions are extracted, along with the corresponding loss values for the training data. The fusion

of the information from each input happens when, before the fully connected layers of each Resnet18,

the feature vectors of size 512 resultant from each input are extracted and merged. After this, a

max operation is performed, originating a final feature vector which will be the input to the final

Fully Connected layer. The computed loss will be a function of the previous losses of each Resnet18’s

prediction for its respective image input, and a function of the final loss that results from the final

prediction based on the final feature vector. This is evident in the diagram below.

One thing of note, is that this architecture is not limited to three views/inputs only. It is possible

to have as many parallel inputs as needed and the general functioning stays the same. This will, like

the previously showcased method, be taken advantage of in upcoming sections.

Figure 26: MV-CNN. Multi-view parallel convolutional neural network. In this work Resnet18

networks will be parallelized.

4.5 Study of Descriptive Regions in Vehicles

As explored in [38], one interesting approach relating to visual classification is finding relevant

parts in images, and steer the network towards focusing more on that particular part, discarding extra

or unnecessary information. One such approach, that will be followed and analyzed in the coming
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section, is finding these descriptive regions within the image itself in order to feed them together with

the original image for classification.

To get some insight for what regions are descriptive for convolutional neural networks performing

this task, a small neural network of 10 convolution layers was realized and trained on the CompCars

dataset. Such a small network actually achieves decent performance on this dataset (92.3% accuracy),

but that is not the intent of its use. Its aim is to extract the output of each convolution filter to

determine which regions of a vehicle are discriminatory and which info is being passed to the classifier.

After training on the CompCars dataset, an image of a vehicle was fed through the network. The

outputs of each filter and the original input are shown below:

Figure 27: Sample input.

Figure 28: Resulting features from the convolutions applied to the sample input.
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The obtained images highlight descriptive regions. Based on this information, tests will be per-

formed with zoomed in image regions, taking advantage of the Multi-View solutions presented in

section 4.4. Image patches will be cropped out of the original image, as shown in Attachments H, I

and J, and a varied combination of these patches and the original images will be fed as input to both

multi-view solutions. The intent is that this "zoom" on features will allow the network to put more

emphasis on these parts that are known to be more descriptive and thus, lead to better performance.

It could also bring the added benefit of not losing image resolution: when performing training, the

original image is resized to a 224x224 image, which leads to loss of pixel resolution. By cropping

regions of the image of size 224x224, one allows, for example, the region of the make badge to be fed

to the network with its resolution intact.

4.6 Region of Interest Extraction based in Class Activation Maps

One of the things that most improved system performance was the definition of bounding boxes.

It is now of interest to automate the definition of these regions of interest (ROI) in the input image.

To that end, Class Activation Maps (CAM) will be used, following the procedure outlined in [48].

For a given input image, fx(x, y) represents the activation of unit k in the last convolution layer of

a CNN (in this case, it is layer4 of the Resnet18) at spatial location (x, y). For unit k, global average

pooling, F k, is performed as
∑

x,y fk(x, y). The input to the softmax to get the resulting class is Sc =∑
k wc

kF k, where wc
k is the weight corresponding to class c for unit k, and it indicates the importance

of Fk for class c. One can then get the output via exp(Sc)/
∑

c exp(Sc). Plugging F k =
∑

x,y fk(x, y)

in the class score (Sc) expression, one obtains Sc =
∑

k wc
k

∑
x,y fk(x, y) =

∑
x,y

∑
k wc

k.fk(x, y).

The Class Activation Map is defined by Mc(x, y) =
∑

k wc
kfk(x, y), and thus Sc =

∑
x,y Mc(x, y).

This expression shows how Class Activation Map Mc(x, y) directly represents the importance that

pixel position (x, y) represents for a class c.

In sum, getting the CAM is a matter of, in the case of resnet18, extracting the fk tensor of feature

blobs from the end of layer4 and the wc
k tensor from the linear layer in the fully connected section,

which lead to the class prediction of class c.

With the extracted CAM bounding box, a first region of interest will be extracted. This ROI will

then be an input to another resnet18 which will be trained on these new ROIs, and will output a second

ROI. This will be done for all views. A diagram representing the full network and the interactions

that lead to a class prediction can be found in Attachment K. The architecture relating just to the
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ROI extraction for a single view is presented below.

Figure 29: One ROI extraction. The input image is passed in a resnet18 network trained to

predict the vehicle model based on the non-cropped vehicle images. With CAM, a bounding box

can be obtained via a weakly supervised method that corresponds to regions which lead to the

obtained class prediction.

Following this same pipeline, another ROI will be extracted from the resulting first ROI. For the

input exemplified previously it would result in the following:

Figure 30: Example of second extracted ROI, for the same view as previously. It follows the same

pipeline of figure 29, using a resnet18 network trained to predict vehicle model based on the first

extracted ROIs.

This is not the state of the art for object detection and bounding box extraction, but it was chosen
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because it is a weakly-supervised solution that doesn’t require manually labelling bounding boxes,

which saves long hours of repetitive work, since only two bounding boxes per input are actually being

used.

The expectation with this method is that the first ROI will act and bring benefits in a similar way

to the manually annotated bounding boxes of before, and the second ROI will help boost performance

by zooming on known descriptive regions, inspired by [31],[32] and [33].
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5 Results

All the following tests were performed under the same conditions: 16 batch size, Stochastic Gradient

Descent as the optimizer, a learning rate of 0.001, momentum of 0.9 and Cross Entropy as the loss

criterion. Results on the same tables all performed either 300 epochs, or enough epochs that the

learning gradient reached 0.

5.1 CompCars preliminary tests

Below are the results relating to testing standard CNNs with no changes, with the front-view of

the CompCars dataset.

Table 5: CompCars Results

CNN Architecture Acc.

VGG16 99.75%

Resnet50 99.87%

Resnet18 99.73%

Densenet161 99.84%

InceptioV3 99.82%

5.2 ShortBrisa Preliminary tests

Replicating the tests done on CompCars to ShortBrisa, the results in Table 6 are achieved.

Table 6: ShortBrisa Performance results.

CNN Architecture Pre-trained model (Test/Train) From scratch (Test/Train)

Resnet18 78.36%(100%) 30.87%(100%)

Resnet50 86.81%(100%) 26.65%(100%)

InceptionV3 91.56%(100%) 44.06%(95.72%)

Densenet161 91.03%(100%) 61.48%(100%)

VGG16 84.38%(100%) 41.69%(100%)
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It is observable how performance drops significantly, with a great degree of overfitting. This is

due to the issues already discussed that usually affect FGVC datasets. One can also confirm the

conclusions already discussed regarding transfer learning, that pre-trained models outperform models

trained from scratch.

With the predictions and respective ground truths of both datasets, the precision and recall curves

of each dataset can be plotted, for an easier visualization of the difference in performance.

Figure 31: Precision and recall curves for CompCars and ShortBrisa.

Following the guidelines laid out in section 2.4.3, it can be visually inferred that on the CompCars

dataset performance is better, as the Area Under the Curve of the Precision-Recall plot (AUCPR) is

greater than that of ShortBrisa, which indicates better values of Precision and Recall pairs for the

predicted classes.

5.3 Bounding Box and Data Augmentation addition results

Employing the dataset augmentations discussed and the annotated bounding boxes, the results in

Table 7 were achieved.

This confirms the assumptions laid out by the state-of-the-art analysis: that bounding boxes and

data augmentation are paramount to good results in FGVC CNN based image classification. Precision

and recall data for each class and curve for the Resnet50 results can be consulted in attachment L.
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Table 7: Bounding Box plus Data Augmentation results.

CNN Architecture Acc.

VGG16 93.40%

Resnet50 95.25%

Resnet18 91.56%

InceptioV3 94.99%

Densenet161 93.93%

5.4 Multi-View tests

In section 4.1.2 the available dataset was detailed and it was verified that there are 3 available

views. Previously, in sections 5.1, 5.2 and 5.3 tests were performed to assess baseline performance and

starting performance. These tests were performed using only the front-view because intuitively it is

the pose with which it would be easier for a human observer to identify the make of a vehicle, and, by

association, given that neural networks "mimic" an organic neuron, it would be expected that it is also

the view which provides better results with CNNs. To verify that this is indeed the case, the dataset

with each view, individually, was trained on the residual networks used so far.

Table 8: Individual View performances.

CNN Architecture Front View (FL) Rear View (RL) Overview (OV)

Resnet50 95.25% 84.17% 79.68%

Resnet18 91.56% 78.24% 71.14%

The results confirm the assumption that the front-view is the most descriptive by a good margin.

However it is evident that there are still descriptive features in other views for vehicle make recognition.

The following subsections showcase the results achieved when fusing information from multiple views.

5.4.1 MC-CNN vs MV-CNN

Table 9 shows results obtained when implementing and testing the MC-CNN and MV-CNN

architectures.

From the results, one can see that the MC-CNN idea has not delivered the hoped for results, with
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Table 9: Comparison of results in MC-CNN vs MV-CNN.

CNN Architecture Input Acc.

MC-CNN-Resnet18 FL-OV-RL 88.39%

MC-CNN-Resnet50 FL-OV-RL 92.08%

MV-CNN FL-RL 94.72%

MV-CNN FL-OV 92.61%

MV-CNN RL-OV 84.70%

MV-CNN FL-OV-RL 95.52%

performance actually degrading significantly on both the Resnet50 and Resnet18, when comparing the

results with those obtained in Table 7.

The MV-CNN on the other hand has delivered new top performance when fusing information from

FL, OV and RL views. Precision and Recall data and plot for this particular result can be consulted

in attachment M.

5.5 Image Patch tests/study

To study the impact that the addition of image patches containing zoomed features could have on

performance, tests were carried out. The results are detailed below.

5.5.1 MC-CNN

In table 10 are presented the results for MC-CNN, where each sequence of numbers inside brackets

represents an arrangement of image cropped patches, according to the numbering that can be found in

Attachments H, I and J. As explained previously, in the case of MC-CNN, these patches are inserted

and added channel wise, and so the input to the network will be of size 224x224xNumber_of_patches.

Evidenced in this table of results, is the fact that MC-CNN, on contrary to what was seen previously,

can also achieve top-performance (95.52%) under the right circumstances. Precision and Recall data

for this architecture can be seen in attachment N.

5.5.2 MV-CNN

Similarly, tests were carried out using the MV-CNN. Results are visible in Table 11.
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Table 10: Results for MC-CNN. Numbers inside brackets were introduced in the network by increase

the channel depth of the first layer.

CNN Architecture Patches Selected Acc.

MC-CNN-Resnet18 [30,61,92] 88.39%

MC-CNN-Resnet18 [30,61,30,92,12,14,20,30,21,46,72,79,61] 93.14%

MC-CNN-Resnet18 [30,6,12,13,14,18,19,20,21,30,22,24,25,26,27,28,30] 93.14%

MC-CNN-Resnet18 [30,61,92,12,14,20,21,46,72,79] 94.20%

MC-CNN-Resnet18 [30,12,13,14,18,19,20,21,24,25,26,27] 93.67%

MC-CNN-Resnet18 [12,13,14,18,19,20,21,24,25,26,27] 93.40%

MC-CNN-Resnet50 [30,61,92] 92.08%

MC-CNN-Resnet50 [30,61,30,92,12,14,20,30,21,46,72,79,61] 94.20%

MC-CNN-Resnet50 [30,6,12,13,14,18,19,20,21,30,22,24,25,26,27,28,30] 94.72%

MC-CNN-Resnet50 [30,61,92,12,14,20,21,46,72,79] 94.72%

MC-CNN-Resnet50 [30,12,13,14,18,19,20,21,24,25,26,27] 95.52%

MC-CNN-Resnet50 [12,13,14,18,19,20,21,24,25,26,27] 93.67%

Some things to know for correct interpretation of Table 11: all patches are gray level images (i.e.,

only one channel).

Patch numbers 30,61 and 92 are gray level versions of Front-Left (FL), Overview (OV) and Rear-

Left (RL), respectively (i.e., only one channel). FL, OV and RL are three channel images, with the

OV view being an RGB Image, while the others are three chanell gray images.

In the "CNN Architecture" column, the network name is codified in a way to tell the number of

parallel networks. For example, MV-CNN-6 denotes 6 parallel networks.

In the "Images" column, individual network inputs are within brackets (i.e., [12,14,20] means that

patches 12,14 and 20 were fed in a 224x224x3 tensor, as an input to one of the parallel Resnet18s).

Likewise, an arrangement of patches like [30][61][92][12][14][20][46][52][53][72][78][79] means that each

of these patches were fed to a dedicated Resnet18 network as a 224x224x1 tensor.

In sum, patches that were stacked in channel depth are separated by commas, while patches that

were assigned to different Resnet18s are separated by brackets. Precision and Recall data and plot for

model MV-CNN-6 can be consulted in attachment O, and in attachment P for model MV-CNN-12.
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Table 11: Results for MV-CNN. Patches that were stacked in channel depth are separated by commas,

while patches that were assigned to different Resnet18s are separated by brackets. New top-performance,

accuracy wise, is achieved by the bold entries on table 11.

CNN Architecture Images Acc.

MV-CNN-3 [FL][OV][RL] 95.25%

MV-CNN-6 [14,20,30][46,53,61][72,78,92] 94.46%

MV-CNN-12 [30][12][13][14][18][19][20][21][24][25][26][27] 93.14%

MV-CNN-2 [FL][14,15,20] 94.20%

MV-CNN-6 [FL][OV][RL][12,14,20][46,52,53][72,78,79] 95.78%

MV-CNN-12 [30][61][92][12][14][20][46][52][53][72][78][79] 96.04%

MV-CNN-2 [FL][19,20,21] 93.67%

5.5.3 Image Patches and Multi-Views validation

So far, good results and progress have been achieved. However, it seems accuracy is stagnating at

around 95.5%, which leads to the question: are the multiple views and image zoomed features actually

improving performance or is it negligible? After all, it adds an extra layer of complexity, and the

gains are not too significant, because due to the small amount of test data (379 entries), a wrong or

right prediction corresponds to a change of 0.26% in accuracy, and so, the difference from the 95.52%

achieved with resnet50 and the Front-View only, to the 96.04% achieved with MV-CNN-12 corresponds

to only 2 more right predictions.

Thus a test was performed where noise was introduced in one of the views as shown below, to

evaluate the effect that this has on performance.

Figure 32: Example of manually inserted noise.
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Table 12: Noise tests over different architectures that had presented good results so far.

CNN Architecture Image/View arrangement Original Acc. Noise Acc.

Resnet50 [FL] 95.25% 74.41%

MC-CNN-Resnet50 [30,12,13,14,18,19,20,21,24,25,26,27] 95.52% 48.81%

MV-CNN-3 [FL][OV][RL] 95.52% 91.56%

MV-CNN-6 [FL][OV][RL][12,14,20][46,52,53][72,78,79] 95.78% 87.60%

MV-CNN-12 [30][61][92][12][14][20][46][52][53][72][78][79] 96.04% 89.18%

5.6 LargeBrisa Results With ROI extraction

The ROI extraction method was tested with the newly available LargeBrisa dataset, with results

as shown in Tables 13 and 14.

Table 13: Comparative results of ROI architecture with MV-CNN and a simple resnet18.

Views CNN Architecture Acc.

Front-Left(Not Cropped) Resnet18 94.78%

Front-Left(First ROI) Resnet18 95.81%

Front-Left(Second ROI) Resnet18 96.46%

Front-Left(First ROI + Second ROI) MV-CNN-2 96.03%

4 Views (Not Cropped) MV-CNN-4 96.20%

4 Views (First ROI) MV-CNN-4 97.31%

4 Views (Second ROI) MV-CNN-4 97.15%

4 Views (First ROI + Second ROI) MV-CNN-8 97.77%(98.02%*)

Once again new top performance for this task is achieved, and, upon review of the missed predictions

it was found that actually 3 inputs were mislabeled, and although they were flagged as incorrect, they

were actually correct predictions. Adjusting for this, the new top accuracy becomes 98.02%*. This

correction was not performed for other results of Table 13, because this error was found only after

analysing results in detail, and the models that lead to the other results were not saved.

Precision and recall data for MV-CNN-8 can be checked in attachment Q. The 1.98% failed

predictions can be verified in attachments A through G.
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Table 14: Table 13’s MV-CNN-8 figures of merit.

Accuracy Metric Acc.

top-1 Accuracy 98.02%

top-2 Accuracy 98.65%

top-3 Accuracy 98.89%

top-5 Accuracy 99.52%
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6 Results Discussion

6.1 CompCars Preliminary tests

On Table 5, one can verify that all network architectures achieve over 99% accuracy on CompCars,

which is not surprising , since, as was said previously, the dataset is, for the most part, composed

of high quality, homogeneous images. As such, not many conclusions can be extracted, apart from

confirmation that FGVC of vehicles is achievable.

6.2 ShortBrisa results analysis

As can be observed in table 6, performance drops significantly when the FGVC dataset provided

by Brisa is used, under the same exact conditions that CompCars was tested with. This is due to the

issues evidenced in 4.1.2.

To verify the benefits of transfer learning, the models were also trained without initialized weights,

which proved that in this case performance drops dramatically with a great degree of overfitting, which

confirms the observations of previous works on transfer learning and its importance for Deep Learning.

During training, residual networks were also noticeable faster both to converge to a solution, and

performing a complete training epoch.

In sum, this section of results allowed us 3 main takeaways:

1: It is possible to perform FGVC for vehicles with the right pre-conditions (i.e., sizeable, well curated

dataset and the right neural network architecture).

2: Residual Neural Networks are good for this task, offering a good trade-off between performance

and lightweight footprint.

3: Using Pre-Trained models allows us to take advantage of general feature extraction capabilities of

CNNs trained on ImageNet and, through transfer learning, specialize them on custom fine-grained

datasets.

Observing the plotted precision and recall curves for the CompCars dataset and ShortBrisa dataset

(both on the resnet50 model), a starting point is measured and defined, and so the final objective

can be set: to get a Precision-Recall curve with ShortBrisa dataset as similar as possible to the one

observable with the CompCars dataset.
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6.3 Bounding Box and Data Augmentation Results

With the annotated bounding boxes, significant performance gains were achieved, as was expected.

Again, the trend of residual networks having good performance and the lowest training time was

maintained, which leads to the possibility that these architectures are possibly the most interesting

solution because, as can be seen, Resnet50 performs the best so far with 95.25% accuracy, with even

the Resnet18 (which has an even lighter foot print) showing good promise and performance increases.

Other networks perform well too, but the trade-off between performance and computing power required

seems to be more advantageous with the residual networks. As such, the bulk of the work done after

these tests was performed on residual networks.

6.4 Multiple Views tests

In section 4.1.2 the available dataset was detailed and it was seen that there are 3 available views.

Prior to this point, the tests performed only took advantage of a single, frontal view. And it was

shown that it was indeed possible to achieved good vehicle recognition based on only one view.

Individual tests on the other views were performed, to verify if it was possible to perform vehicle

recognition with them. Intuitively, the front-view should deliver best results, because it is the pose with

which it would be easier for a human observer to identify the make of a vehicle, and, by association,

given that neural networks "mimic" an organic neuron, it would be expected that it is also the view

which provides better results with CNNs. To verify that this is indeed the case, the dataset, with each

view individually, was trained on the same residual networks used so far, as seen in Table 8.

The results confirm the assumption that the front-view is the most descriptive by a good margin.

However it is evident that there are descriptive features in other views for vehicle make recognition.

Results with MC-CNN and MV-CNN (Table 9), which merge the information from the different

views, although not absolutely groundbreaking (mainly in the case of MC-CNN) still improved perfor-

mance somewhat (in the case of MV-CNN), giving a new best performance of 95.52%. This isn’t that

much of a significant improvement because, as seen previously, it corresponds only to 1 more correct

prediction when compared to the 52.25% results of Resnet50. It is still progress nonetheless, and most

of all, it provides a base to experiment different combinations of data, as it will be seen next.
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6.5 Multiple Views with Image Patches

Due to related work that proved such strategies successful, efforts were then focused on using

zoomed in features, with the patch selection being based on the results obtained in 4.5.

With the patch solution explained previously, it was possible to match 95.52% accuracy on MC-

CNN (Table 10), and surpass it on MV-CNN (Table 11) with an accuracy of 95.78% and 96.04%.

This seems to show that forcing the network to focus on zoomed in features does bring performance

benefits. It was noticed however that it is critical to select the appropriate patch with the appropriate

info, because in situations where the selected patch was non-descriptive, it had a noticeable negative

effect on performance.

Due to the apparent saturation of accuracy in the region of 95 to 96%, other avenues to explore the

usefulness of feature zooms were explored, as shown in 5.5.3 (in Table 12). These dataset noise tests

seem to indicate a clear gain in system reliability when using multiple views, compared to using the

single view. The test tried to mimic a situation where sun light would be reflecting off the make badge

of the car (which is definitely possible, if not even common), and in this situation, the single-view

solution dropped performance drastically, by over 20 percentile points. The other architectures, where

data from the other inputs is present, also drop percentage points in accuracy, but still maintain an

acceptable level of performance.

Interestingly, the second row on Table 12 shows how if one makes the network rely too much on a

single feature, accuracy degrades even more than with the single-view.

Taking all these observations into account, it can be concluded that multi-view inputs definitely

offer, along with performance, system reliability. One can also conclude that while zoomed patches

seem to benefit performance, if too much focus is placed in a single feature, the network performs a

kind of overfitting, where it can only recognize a given object if that feature is there, i.e., it will ignore

all other features.

6.6 ROI extraction

It was then implemented a method that takes advantage of CAM to sequentially extract smaller

ROIs that are mostly guaranteed to contain a variety of good features, and not just one feature in

particular. At this time it was also made available a larger dataset, with more samples and classes.
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The results derived from both these additions lead to a performance level which is competitive to

similar state-of-the-art approaches.

With the new LargeBrisa dataset, the results so far achieved are further validated, as with more

possible output classes and types of vehicles to identify, performance is maintained. It is also strongly

believed that this addition of data contributed heavily to the improved performance, due to less under

represented classes. This shows how a well-curated and complete dataset is the most important factor

when working with Deep Learning in general, and Deep Learning applied to pattern recognition in

particular.

The devised double ROI method also helps to attenuate two shortcomings identified previously:

it allows to avoid manually labeling bounding boxes (although manual labeling of vehicle make still

has to be performed, as this is only a weakly supervised approach and not an unsupervised one), and

guarantees good patch placement and feature content, since only regions that contributed to correct

identification in the first stage can be selected. Furthermore, analysing top-2, top-3 and top-5 scores,

one can further assess how valid this method is for the proposed task. Since this will not be the

only recognition system in place, and is to be used in cross-reference with other systems, a top-2 or

top-3 score can still guarantee that the correct vehicle has passed the toll system, if one of the other

validation systems reports the same vehicle being reported by the solution proposed in this work.

The system also achieves both good precision and recall, important metrics for unbalanced datasets,

that lend credibility to the results. In the end, the objective of approximating the Precision and Recall

curve of the devised solution to the curve obtained on the CompCars dataset was achieved.
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7 Closing Remarks

The work here presented explored several state-of-the-art research works in the field of Deep

Learning applied to Computer Vision. With the knowledge acquired from analysing these documents,

a strategy was formulated to successfully tackle a FGVC vehicle recognition problem.

The current state-of-the-art for LSVC and FGVC was verified, and it is evident that Deep Learning

and CNNs are an established and valid solution, that has made remarkable progress in the last 8 years,

increasingly drawing the attention of researchers from all areas of science where pattern recognition

and data analysis is of interest.

It was also noted that while state-of-the-art research on FGVC is progressing at an accelerated pace,

much of the research being made evaluates results on research oriented datasets. It was established

that research datasets do not often reproduce real-life conditions that one encounters when solving a

real-life problem, such as incomplete and noisy data. As such, it is very possible to get good results

on these research datasets, but harder to guarantee that they will translate well to real applications.

The before mentioned real-life conditions were present on the dataset provided to us by Brisa,

and it was confirmed how challenging achieving good performance can be. To tackle this, several

methodologies were adopted.

It was confirmed the importance of data, or more importantly, how negatively lack of data impacts

CNN performance. Data Augmentation was employed, and together with Bounding Box annotations,

this combination offered a very significant improvement in performance, proving why these strategies

are a staple in most recognition tasks.

It was further proved that data is the most important factor in CNN tasks when more of it was

made available to us by Brisa, allowing us to build a second, more complete dataset. Accuracy was

stagnating at around 96% for every architecture that was tried, and it wasn’t until it was possible to

expand the dataset that this barrier was broken.

The fact that multiple viewpoints of the data were available also contributed greatly in optimizing

the solution. With these extra views it was possible to create a more robust solution, when compared

to the single-view alternative. Taking in account that this is to become a real-life application, running

24/7, replicated over several toll stations, it is almost inevitable that external factors will interfere

with predictions (i.e., camera malfunctions). It was proven how multiple sensors (cameras) acquiring

multiple perspectives of data can decrease the effects of sensor failure. In addition to this advantage
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in reliability, the multi-view neural network architectures implemented also demonstrated that multi-

perspective information can be used and fused together, in a way that these perspectives complement

each other, which in the case of this work, lead to the best results in every architecture tested, when

compared to single-perspective inputs.

It was verified that further emphasizing descriptive regions can lead to significant accuracy increase,

even after achieving apparent peak performance for a given architecture, as long as these regions are

carefully and correctly chosen, and that this emphasis is not so great that it makes the CNN exclude

other features. Doing this allows the chosen neural-network architecture to "focus" on the important

features, lending less importance to noisy or less-relevant/irrelevant data.

Inspired by all the related-work read and results observed during the course of the work, a final

weakly-supervised method was proposed. It incorporates the multi-view aspect (thus guaranteeing

reliability) and ROI extraction, that both excludes non-descriptive regions and emphasizes descriptive

features, while not requiring manually labeling bounding boxes and selecting feature patches, thus

reducing human error and time required to implement, guaranteeing that the ROIs are only placed in

regions that were perceived as descriptive by the first stage of the architecture, since their placement

is based solely on data from within the network.

In sum, it is believed that this system fulfils the requirements to solve the problem at hand and that

it can easily and rapidly be applied to any other field where multi perspectives are useful and available,

specially if the categories are fine-grained. The results seem to be competitive with the state-of-the-art,

with the two ROI extraction stages proving their effectiveness in increasing performance.

62



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

8 Future Work

The work presented delivers good results, but the architecture has become quite complex with an

heavy footprint. There are 8 Resnet18 networks before the networks of the MV-CNN, which gives

us a total of 16 Resnet18 networks working in cooperation. It is possible that this number can be

reduced. The dataset has four perspectives: two front-views and two rear-views. It is likely that the

front and rear views can share the ROI extraction network and still obtain good ROIs. It may also be

possible to develop a training scheme to create a single network for ROI extraction, for each level of

ROI. Another possibility is that, since the classifications that these first stage Resnet18s provide are

not of real interest, such a deep CNN may not be needed. It may be possible to either use another

shallower model, or implement a custom network for this.

The dataset entries that proved to be the most challenging to correctly predict were mostly some

type of non-standard vehicle: either trucks or work vans with some specialized feature (like a cargo

area). The approach by [28] could be used, creating a dedicated class for these types of vehicles,

although then the question becomes if one isn’t simply circumventing the problem, since at that point

vehicle make recognition isn’t being performed. One could also explore the idea of more classification

networks for different types of vehicles as a solution to this (i.e., a dedicated network to classify

trucks, a dedicated network to classify vans, etc.), although this increases complexity, footprint and

development time. The system also struggled on some image sets where viewing conditions were

poorer, and in this case one could further explore the work in [34].

The acquisition and labeling of more data lead to good breakthroughs in performance, and thus,

this task is one where continuous data searching and improvement is always a benefit. In the particular

case of the architecture here presented, benefits would be exponentially good: more data would, by

itself, improve classification performance, but it would also improve the ROI extraction stage, which

would also improve classification.

Finally, the system could be extended to perform not just make recognition but also model

recognition. However, labeling for this task could prove much more challenging, due to situations

where labelling make was already hard (due to lighting condition or others), and because labeling

models needs more expertise knowledge, or at the very least requires more time researching and

comparing vehicle models. This would also increase the number of classes dramatically, spreading the

number of samples per class curve, and would probably lead to many under represented classes, which

63



Universidade de Coimbra
Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica e de Computadores

again shows how important the gathering of data is.

In sum, it is recommended that future work focuses on simplifying the devised architecture where

possible, gathering more data and extending functionality.
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9 Attachments

9.1 Attachment A: MV-CNN-8 Prediction Errors 1
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9.2 Attachment B: MV-CNN-8 Prediction Errors 2
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9.3 Attachment C: MV-CNN-8 Prediction Errors 3
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9.4 Attachment D: MV-CNN-8 Prediction Errors 4

* Correct class.
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9.5 Attachment E: MV-CNN-8 Prediction Errors 5

* Correct class.
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9.6 Attachment F: MV-CNN-8 Prediction Errors 6
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9.7 Attachment G: MV-CNN-8 Prediction Errors 7

* Correct class.
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9.8 Attachment H: Patch Selection for Front View
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9.9 Attachment I: Patch Selection for Overview
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9.10 Attachment J: Patch Selection for Rear View
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9.11 Attachment K: Full ROI extraction architecture description
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9.12 Attachment L: Prediction-Recall data for Resnet50 with FL view, as seen in

Table 7 (95.25% accuracy)
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9.13 Attachment M: Prediction-Recall results MV-CNN, as seen in table 9 (95.52%

accuracy)
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9.14 Attachment N: Prediction-Recall data for MC-CNN, as seen in Table 10

(95.52% accuracy)
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9.15 Attachment O: Prediction-Recall results for MV-CNN-6, as seen in Table 11

(95.78% accuracy)
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9.16 Attachment P: Prediction-Recall results for MV-CNN-12, as seen in Table

11 (96.04% accuracy)
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9.17 Attachment Q: Precision and Recall statistics for MV-CNN-8 on LargeBrisa,

as seen in Table 13 (98.02% accuracy)
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9.18 Attachment Q (continued): Precision and Recall statistics for MV-CNN-8

on LargeBrisa, as seen in Table 13 (98.02% accuracy)
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9.19 Attachment R: Class Distribution in ShortBrisa
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9.20 Attachment S: Class Distribution in LargeBrisa
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