

António Fernando Crisóstomo Fraga

PARALLEL FACE DETECTION

Dissertação no âmbito do Mestrado Integrado em Engenharia
Eletrotécnica e de computadores orientada pelo Professor Doutor

Gabriel Falcão Paiva Fernandes e a pelo Professor Doutor Luís
Filipe Barbosa de Almeida Alexandre presentada à Faculdade de

Ciências e Tecnologias da Universidade de Coimbra no
Departamento de Engenharia Eletrotécnica e de Computadores

Outubro de 2020

PARALLEL FACE DETECTION

António Fernando Crisóstomo Fraga

Dissertação para obtenção do Grau de Mestre em Engenharia

Eletrotécnica e de Computadores

Orientador: Doutor Gabriel Falcão Paiva Fernandes
Co-Orientador: Doutor Luís Filipe Barbosa de Almeida Alexandre

Júri

Presidente: Doutor Jorge Nuno de Almeida e Sousa Almada Lobo
Orientador: Doutor Gabriel Falcão Paiva Fernandes
Vogal: Doutor Pedro Alexandre Dias Martins

Outubro de 2020

Imagination is more important than knowledge. Knowledge is limited. Imagination
encircles the world.

- Albert Einstein

Agradecimentos

Em primeiro lugar, gostaria de expressar o meu agradecimento ao Professor

Doutor Gabriel Falcão Paiva Fernandes e ao Professor Doutor Luís Filipe Barbosa de

Almeida Alexandre pela sua mentoria, dedicação e disponibilidade que demonstraram

ao longo do desenvolvimento desta dissertação, tendo tido um papel primordial na

conclusão da mesma.

Em segundo lugar, gostaria de agradecer ao Instituto de Telecomunicações por

disponibilizar todos os meios de trabalho necessários.

Gostaria de dedicar esta tese aos meus pais, agradecendo-lhes a educação que

me deram e por nunca terem deixado de acreditar em mim e no meu sucesso. Por isto,

e por tudo o que já fizeram por mim, estarei eternamente grato.

Agradeço às minhas irmãs, pelo companheirismo e pela sua presença assídua

em tudo, mesmo nos tempos mais difíceis.

Para além disto, não podia deixar de referir os amigos que Coimbra me deu:

Louro, Costa, Matos, Bernardo, JC, Filipe, Janela, Veríssimo, Lousada e Francisco pela

companhia e amizade durante este percurso.

Quero agradecer também aos meus amigos de infância: Guilherme, Inês, Pedro

e Tomás pela sua amizade incondicional e por sentir que, passe o tempo que passar,

estarão sempre presentes e disponíveis. Também quero agradecer à Margarida pelo

seu apoio durante o desenvolvimento desta tese.

Por fim, um especial agradecimento ao João Azevedo pela sua disponibilidade,

tendo sido essencial para alcançar este resultado.

Muito Obrigado a todos

Abstract

Face detection is typically used millions of times per day in many different

contexts and the resolution of the images has seen a significant increase. These high-

resolution images can be a very defiant challenge in sequentially based architectures

since with the rise in the number of pixels the overall performance of this type of

implementation decreases drastically.

This thesis describes the implementation of a framework of the Viola-Jones in

parallel architectures such as GPUs and low-power GPUs. They emerge as natural

candidates for the acceleration that we seek, offering a very high computational power

and core numbers that enable the process of such large amounts of data in parallel.

It also shows the parallelization and optimization of the implementation utilizing

the advantages offered by these architectures to achieve an overall performance boost

and speedup in high-resolution images when comparing to sequential architectures.

An analysis of the results shows the successful implementation and the influence

that the GPU resources available (power, CUDA cores, etc.) have on the overall GPU

speedup as well as in its performance. This parallel face detector implementation was

able to obtain a global speedup as high as 33 times in 8k images in comparison with the

sequential version.

Keywords

CUDA, Parallel Programming, Viola-Jones Face Detector Framework,

Low-Power Graphic Processing Units, GPGPU

Resumo

O reconhecimento de faces em imagens é atualmente feito em grande escala e

as imagens utilizadas tende a ser cada vez mais de resolução mais elevadas. Isto pode

ser um desafio complicado em arquiteturas sequenciais, pois, com o aumento do

número total de pixels das imagens, o desempenho geral desse tipo de implementações

tende a diminuir drasticamente.

A tese apresentada descreve a implementação da framework Viola-Jones em

arquiteturas paralelas. Desta forma, as arquiteturas paralelas (GPUs e GPUs de baixo

consumo), emergem como a solução ideal já que oferecem elevados valores de poder

computacional e números de cores que beneficiam o processamento de grandes

quantidades de data em paralelo. Utilizando, assim, as vantagens destas arquiteturas

para uma paralelização e otimização específica a esta implementação, obtendo,

portanto, uma melhoria significativa na performance em comparação a arquiteturas

sequenciais em imagens de alta resolução.

Por sua vez, também é realizada uma análise dos resultados desta

implementação, que acaba por ser bem-sucedida em diversas GPUs, com o objetivo de

fazer uma análise conclusiva da influência dos recursos de GPU disponíveis (Power,

CUDA cores, etc.) na aceleração geral da GPU. De referir ainda que este detetor de

caras baseado em arquiteturas paralelas foi capaz de obter uma aceleração global de

até 33 vezes superior em imagens de 8k em comparação com a versão sequencial

inicialmente implementada.

Palavras Chaves

CUDA, Programação Paralela, Framework de deteção de caras Viola-Jones,

Unidades de processamento gráfico de baixa potência, GPGPU

Contents

1. Introduction 1

1.1. Motivation …………………………………………...……………………….. 2

1.2. Objectives …………………………………………...……………………….. 3

1.3 Dissertation Outline …………………………………………...…………. 4

2. Viola-Jones Face Detector 5

2.1. Viola-Jones Framework ……………………………………..……...….. 6

2.2. Integral Image ………………………………………..……….………...….. 8

2.3. Cascade Classifier ………………………….………………………...….. 9

2.4. Baseline CPU Implementation .…………………...……………...… 10

2.4.1. Detecting Faces …………………………………………………...... 10

2.4.1.1. Nearest Neighbor ……………………………………...……..…...... 10

2.4.1.2. Integral Image …………………………………………….………..... 10

2.4.1.3. Cascade Classifier …………………... 10

2.4.1.4. Scale Image Invoker ………………….. 11

2.5. Related Work …………………... 11

3. GPU architecture and CUDA programming model 13

3.1. CPU Architecture …………………... 14

3.1.1. CPU Memory ………………………….……………........................ 15

3.2. GPU Architecture …………………………………........................... 16

3.2.1. CUDA …………………... 17

3.2.2. Memory Hierarchy ………………….. 19

3.2.3. CUDA optimization techniques …………………......................... 20

4. Parallelization and optimization of the Viola-Jones 23

4.1. Detecting Faces CPU results …………..……………………………....... 24

4.2. GPU implementation structure …………………................................... 25

4.3. Functions parallelization and optimization ………………................ 28

4.3.1. Nearest Neighbor and Cascade Classifier ……………….......... 28

4.3.2. Integral Image …………………... 29

4.3.3. Scale Image Invoker ……………………………..…...................... 34

5. Experimental Results 35

5.1. Methodology ……………………………………………........................... 36

5.2. Test apparatus ………………………………………….......................... 36

5.3. System Setup ………………………... 38

5.4. Parallel Detecting Faces ………………………………….................. 39

5.4.1. Nearest Neighbor ……………………………..……………...…...... 39

5.4.2. Integral Image ………………………………...…………………...... 40

5.4.3. Cascade Classifier ………………………...................................... 41

5.4.4. Scale Image Invoker ………………………………………….......... 42

5.5. Overall Speedup Contribution ……………………………….. 42

5.6. Energy Efficiency Analysis ……………………………..…........ 45

6. Conclusion & Future Work 47

6.1. Conclusion ……………………………………………………………......... 48

6.2. Future work ……………………..…………………………………...…...... 48

List of figures:

2.1 – Three rectangle Haar Feature [4] ………...………………………………………………. 6

2.2 – Two rectangle Haar Feature [4] ……………………..……………………………………. 6

2.3 – Integral Image of point 1 will the sum of all the pixels belonging to the rectangle A ... 7

2.4 – Integral Image 4 is the sum of pixels from the rectangles A + B + C + D ……………. 7

2.5 – Sub-window that passes through the image and example of four Haar Features that

are applied to this sub-window [3] ………………………………………………………...... 8

2.6 – Input Image exemple ………………………………………………………………………. 9

2.7 – Output obtained from the input image 2.6 ……………………………………………….. 9

2.8 – Data flow of Detecting Faces ……………………………………..……………………... 11

3.1 – Example of a dual-core CPU architecture ……………………………………………… 15

3.2 – CPU and GPU Multiprocessors architecture …………………………………………... 16

3.3 – CUDA Processing Flow …………………………………..…………………………...…. 18

3.4 – GPU Memory Layout, based on [11] ……………………………………………………. 19

3.5 – Grid and Block layout, based on [16] …………………………………………………… 20

3.6 – Data transfer speeds in the GPU and CPU …………………………………....………. 21

4.1 – Data transfer speeds in the GPU and CPU …………………………………….………. 26

4.2 – Structure of the GPU Viola-Jones Implementation ………………………….………… 26

4.3 – Parallelization of Cascade Classifier ………………………………………………….… 28

4.4 – Transpose kernel[9] …………………………………………………...……………….…. 29

4.5 – Scan kernel[9] ……………………………………………………………………………... 29

4.6 – Illustration of the work done for images with width or height bigger than two times the

maximum number of threads that the GPU used can launch ………………………………. 30

4.7 – Integral Image GPU implementation scheme ………………………………………….. 31

4.8 – CUDA ScanSQ kernel …………………….……………………………………………… 32

4.9 – New CUDA Scan kernel ………………………………………………………………….. 32

4.10 – New CUDA Transpose kernel ………………………………………………………….. 32

4.11 – Parallelization of Scale Image Invoker ...……………………………………………… 33

5.1 – Nearest Neighbor speedup in relation to the total number of pixels ………………… 39

5.2 – Integral Image speedup in relation to the total number of pixels …………………….. 39

5.3 – Cascade Classifier speedup in relation to the total number of pixels …………….…. 40

5.4 – Scale Image Invoker speedup in relation to the total number of pixels ..……………. 41

5.5 – Time spent in memory allocation and transfers in relation to the total number of pixels
.. 42

5.6 – Execution times in relation to the total number of pixels ... 43

5.7 – Detecting Faces GPU speedup in relation to the total number of pixels43

List of tables:

2.1 – Previous Related Work in Parallelization of Viola-Jones 13

3.1 – Types of Function available in CUDA API ……………...........……... 18

5.1 – The three systems used to test the implementation ……......…... 36

5.2 – Specifications of the three GPUs ……...…...…………..............……… 37

5.3 – Summary of time, speedup and energy efficiency …….......…….. 44

5.4 Previous Related Work in Parallelization of Viola-Jones in

comparison with results obtained …………... 45

List of Acronyms

GPU Graphics Processing Unit

CPU Central Processing Unit

GPGPU General-Purpose computing on Graphics Processing Units

CUDA Compute Unified Device Architecture

ALU Arithmetic Logic Unit

SM Streaming Multiprocessor

HPC High-Performance Computing

OpenCL Open Computing Language

DRAM Dynamic Random-Access Memory

OS Operating System

1

1 Introduction

Contents
1.1 Motivation

1.2 Objectives

1.3 Dissertation Outline

2

Face detection is typically used millions of times per day in a context that ranges

from mobile phones to personal computers. The use of fast algorithms for this type of

applications implies the process of large amounts of data. Typically, CPUs are limited in

terms of cores and memory bandwidth being mainly used in sequential operations. The

main objective of this work was the development of a fine tuned, fast and parallel face

detector. GPUs emerge as natural candidates for acceleration as they offer a very high

computational power and core numbers that enables the process of such large amounts

of data in parallel. We have developed and optimized a version of the Viola and Jones

framework obtained from “Rapid Object Detection using a Boosted Cascade of Simple

Features” [2], and originally implemented in CPU. The approach followed exploits distinct

GPU contexts that range from high-end till low-power core constrained GPUs and the

results achieved. By using the advantages offered by these types of parallel

architectures, we were able to achieve performance boosts and significantly decrease

execution times compared to the CPU counterpart.

1.1 Motivation

The introduction of computers and their evolution led to the appearance of

digital image processing. In this area, several tasks arise according to the needs

that have been surfacing over the years. A specific case was the need to detect

human faces on smartphones and mobile devices in the early 2010s. These

mobile devices, which have limitations in terms of energy and computation made

it necessary for the application to take these factors into account and to maintain

low energy consumption rates while obtaining relatively low computation times,

in order to achieve real-time detection.

In 2001, an article by Paul Viola and Michael Jones, titled "Rapid Object

Detection using a Boosted Cascade of Simple Features", was published at the

Computer Vision and Pattern Recognition Conference that unveiled an innovative

perspective, because it introduced new approaches, for instance, the use of

techniques like Cascade Classifier and Integral Image. This approach focused on

improving performance with a high success rate.

Since then, several applications have appeared based on these innovative

approaches. Also, the continuous evolution and appearance of articles focused

on the general improvement of the Framework, as well as general reviews and

comparisons of the algorithms used for the detection of faces have appeared over

3

the years [6], [8]. Other approaches, such as the use of convolution neural

networks have also emerged with good results in terms of success rates, but due

to the high computational need, and the energy restrictions of mobile devices, it

impeded their use, being that currently, Viola-Jones manages to give a good

answer to these factors.

Thus, it is intended to implement an application that uses parallel

architectures, maintains a high success rate and decreases the overall execution

time of the application.

1.2 Objectives

Firstly, we proposed the implementation of a framework that has the main

purpose of detecting human faces in an image, based on the Viola-Jones Object

Detection framework [3]. This implementation will be done using the sequential

architecture of the CPU. Afterwards, tests will be performed, collecting important

data for the future comparison between sequential and parallel implementations.

Information such as the total execution time, each main function execution time,

success rate, and the false-positive rate will be gathered.

This implementation will focus on the creation and development of an

application with relatively lower execution times when compared to the first ones

obtained in the tests performed, as well as a more efficient computational

performance both in terms of energy and in the rate of success by making use of

the specialized optimization and parallelization of parallel architectures.

In summary, this work proposes the exploration of parallel architectures for

the implementation of a face detector, making a comparative analysis between

different GPUs and CPU implementations while maintaining high success rates

and low execution times.

1.3 Dissertation Outline

The organization chosen for this thesis is done with six chapters:

Chapter one - introduction into the topic addressed, the motivation behind

it, and the main objectives that are intended to be achieved with this work;

Chapter two – in depth look into the Viola-Jones Object Detection

Framework, its structure, and the most important functions for its implementation;

4

Chapter three - presentation of both CPU and GPU architectures and a

comparison between them as well as an introduction to GPGPU (General

Purpose Graphics Processing Unit), in specific the CUDA programming model;

Chapter four - an explanation behind the optimization and parallelization

made in the GPU implementation of the Viola-Jones Object Detection;

Chapter five - presentation and analysis of the results obtained;

Chapter six - conclusions taken from the work done, as well as the

possible future development of the work already done

5

Viola-Jones

Face Detector

Contents
2.1 Viola-Jones Object Detection Framework

2.2 Integral Image

2.3 Cascade Classifier

2.4 Baseline CPU implementation

2.5 Related Work

2

6

This section briefly describes the Viola-Jones object detection algorithm,

including discussion regarding its current limitations and the innovative

approaches developed under the context of the proposed work.

2.1 Viola-Jones Object Detection Framework

Viola-Jones object detection framework was one of the first to appear in the field

of object detection, proposed in 2001 by Paul Viola and Michael Jones in the article Rapid

Object Detection using a Boosted Cascade of Simple Features [2]. This article was driven

by the high demand for a solution to the problem of detecting human faces in computer

images, and with innovative approaches such as Integral Image and Cascade Classifiers,

it achieved a significant increase in performance and a very considerable decrease in

execution time, maintaining a high success rate compared to the solutions available at the

time. Thus, it was possible to obtain results with a good percentage of success in real-

time.

2.2 Integral Image

The classification method used is based on simple feature values. These are

called Haar Features, and in this case, they are based on the assumption that all human

faces have common characteristics with each other. One of the simplest to identify, in a

monochrome image, is that the eye area is darker than the upper part of the cheeks.

Another is that the nose area is lighter than the area of the two eyes, and, using these and

other feature is how the Haar features are created (Fig 2.1 and Fig 2.2 Illustrates Haar

features resulting from these two examples).

This way, comparing these tonality differences present in the image it is possible

to perceive whether, in fact, in the area of the image in question, there is possibly a human

face. But if a small number of filters are used to detect these Haar characteristics, there

will be several false positives. To avoid this problem, and to obtain a high success rate,

multiple filters are used. Only after successfully passing through multiple filters is a human

face detected.

Figure 2.1 – Three rectangles Haar Feature [4] Figure 2.2 – Two rectangle Haar Feature [4]

7

Furthermore, as several filters have to be used, this comparison must be made

as quickly as possible, to be able to obtain reasonable execution times and processing

several frames per second. For this reason, it was proposed by Viola and Jones, the use

of Integral Images, an algorithm that quickly and efficiently adds the values of the pixels

within a given rectangular region. Thus, a point (x, y) represents the sum of the values

of all the pixels above, and to the left of this point, that is, taking Fig. 2.3 as an

example, the Integral Image of point 1 will be the sum of all pixels in rectangle A.

Figure 2.3 – Integral Image of point 1 will the sum of all the
pixels belonging to the rectangle A

Therefore, and following this logic, the value of Integral Image of point 2 will be

the sum of rectangles A and B, and the value in point 3 will be rectangle A plus C, and,

finally, the value in point 4 will be the sum of rectangles A, B, C, and D.

This is in fact very important since the difference in tonality is calculated by

comparing sums of pixels of rectangular areas, as this approach is more effective than

making the comparison pixel by pixel.

Figure 2.4 – Integral Image 4 is the sum of pixels from the
rectangles A + B + C + D

Since the features of Haar are composed of two, three, or four rectangles (Fig.

2.1, Fig. 2.2), it is possible to obtain computation times for these filters much shorter than

those previously achieved.

This improvement in computation time is extremely considerable in the final

execution time of the framework, due to the huge number of times that these filters are

8

applied since these are not all applied at once in the image, but applied whenever the

sub-window is moved. This sub-window passes through the entire image scanning for

potential human faces (Fig. 2.5).

Figure 2.5 - Sub-window that passes through the image and example of four Haar
Features that are applied to this sub-window [3]

2.3 Cascade Classifier

The Cascade Classifier algorithm was another of the innovations presented by

this Framework, which had an enormous influence on the fact that the results obtained

were much better in comparison to the results of other options available at the time in

terms of detecting human faces, since this one, in addition to being able to increase the

detection performance of the Framework, it also helps to decrease significantly the total

execution time.

As mentioned in section 2.2, the image is traversed by a sub-window that is

shifted until it completely crosses the image, and over it, a set of filters is applied to detect

the Haar Features (Fig. 2.5), but instead of all these filters being applied all at once in

this sub-window, creating high computational demand, Viola and Jones suggested that

there would be different levels of classifiers, with increasing complexity, as well as an

increasing number of filters applied per step.

Therefore, the first level of the classifier is not very complex, having a reduced

number of filters, but it still manages to reject a large portion of the image's sub-windows

that should be rejected and detects almost all positive sub-windows. As such, there is no

need to apply very complex filters to sub-windows that clearly do not have a human face

in their area since even with the simplest filters they do not pass this initial stage, making

this approach much more efficient and faster.

9

In the case of the result being positive in the first classifier, the evaluation of the

same sub-window is automatically triggered by the second classifier, which in turn, if

positive, triggers the evaluation by the third classifier and so on until the most complex

classifier, which will confirm the presence of a human face in the sub-window in question.

At any time a negative result in any stage leads to the immediate exclusion of the

sub-window.

Finally, as the sub-window has to go through the evaluation of all these stages,

with increasing complexity, it makes this process of evaluating and detecting a human

face extremely selective. Thus, the percentage of false positives found is very low.

2.4 Baseline CPU Implementation

To acquire deeper knowledge about this Framework a simplified version of it was

implemented in CPU[3]. With this sequential implementation, it is possible to understand

the areas where parallelization and optimization are possible and will have better results.

Therefore, a more informed decision will be possible when choosing the functions that

should use GPGPU, CUDA in specific. As the work that has to be performed is now

known, and the GPU will only be used in the tasks that its architecture is more efficient

than the CPU.

In the CPU implementation, it is requested as input an image in PGM format

(grayscale image format), which will be processed to detect any human faces present in

the image. This way, the output of this implementation will be a copy of the original image

with the faces appearing with a square drawn in their area, as it is possible to observe in

the example Fig. 2.6 and Fig. 2.7.

Figure 2.6 – Input Image example Figure 2.7 – Output result of Figure 2.6

It is important to note that in this implementation, as it is simplified, a pre-trained

cascade classifier is used, with a total of twenty-five stages, containing 9 to 211 filters in

10

each stage. Even though it is simplified, the success rate presented during the tests was

satisfactory, with the failed cases having as main cause the same problem presented by

the original article by Viola and Jones: difficulty in detecting side way faces, due to the

non-detection of the Haar Features by the applied filters, since the entire face is

necessary to not be rejected by the cascade classifier.

For a better understanding of the future work that will be performed for the

parallelization of this baseline CPU version using the GPU, a deeper look at each of the

main functions that composes this implementation will be taken in the following sub-

sections.

2.4.1 Detecting Faces

The Detecting Faces function performs all the work that has to be done for the

face detection, and it has to be executed multiple times since the work computed is done

for different scales of the image pyramid. This pyramid starts from the original scale and

downscales a number of times depending on the size of the original image. The number

of downscales performed will be the number of iterations of the Detecting Faces function.

They are four main functions being called by Detecting Faces they are Nearest

Neighbor, Integral Image, Cascade classifier and Scale Image Invoker. A quick look at

the work that each computes is now presented.

2.4.1.1 Nearest Neighbor

This is the first main function to be called by the detecting faces and has the

purpose of downsampling the input image for each level of the image pyramid. This

downsampled image will then be used by the other main functions in the computation

of their work.

2.4.1.2 Integral Image

The image downsampled by Nearest Neighbor is then passed to the integral

image function, that calculates the integral image and the squared integral image of this

image. This is done for every iteration of the Detecting faces.

2.4.1.3 Cascade Classifier

The Cascade Classifier is the function that sets the image for the haar filters of

all twenty-five stages of the pre-trained cascade classifier. It loads all the necessary

11

filters with the index of the four corners of the filter rectangle so to be easily compared

with the integral image values that have already been calculated.

2.4.1.4 Scale Image Invoker

The actual computation of the filters is only done in this function, here a window

is shifted through the image with the current scale being processed with the cascaded

filter. For each shift the window has to go through the cascade filter again making this

function the most computation heavy out of the four. The work performed by this function

is divided in three functions the Scale Image Invoker that calls Run Cascade Classifier,

that then calls Eval Weak Classifier.

Figure 2.8 – Data flow of Detecting Faces

In figure 2.8, it is possible to see the data flow associated with all main functions

of Detecting Faces and how the output produced by one function is then used by the

following function being called. Only after all scales of the image pyramid have been

computed that the positive face detection results are grouped and the output is then

written in the output image of the implementation.

2.5 Related Work

The Viola-Jones face detection framework to this day is still one of the more

widely used face detection algorithms in research studies, mainly because of its

simplicity and the positive results it still produces. For this reason many of the attempts

12

of implementing face detectors in parallel architectures are based in this famous

algorithm. Some related work in this area was explored to provide a reference point for

the work that would be performed.

Other attempts of improving the accuracy of the Viola-Jones were present in

the literature before, using different methods and technics. We highlight one where the

authors propose the initial usage of a skin color filter as well as object extraction to filter

out sections of the image that don’t seem to have a face present [22]. This combination

overcame the problem presented by the skin filter that suffered from a large number of

false negatives. This approach achieved its goal and a decrease in both false negative

rate and the false positive rate was noticeable.

Although much of the work that has been presented is focused in the accuracy,

the main objective of this thesis is the increase in performance and speed. In this area,

many approaches have focused in the usage of different hardware. One such approach

used Verilog HDL to implement a face detector in a physical FPGA [23]. Having very

positive results, achieving very fast detection but with a clear limitation of usability as

they only work on the hardware they were developed for, being a disadvantage

compared to generic GPU-based optimized implementations.

There are also several papers that utilized parallel architectures, GPUs in

specific, and the advantages associated with them to obtain significant speedups in

comparison with CPU based implementations. In specific Kong J. and Deng Y. [25],

presented the highest average speed up across several resolutions (23x). This method

was based in the assignment of one detection window to one GPU thread combined with

the implementation of the skin color filtering method that was mentioned above.

With this information gathered, the main goal of this thesis remains the same,

focusing on the relative speed up of the implementation in comparison with the baseline

CPU version. Using the most recent CUDA versions and techniques, we are able to

utilize the increased resources that are now available in the latest GPUs to achieve better

results in terms of execution time. The direct comparison with these related works is a

difficult to perform accurately as the configurations of the cascade classifier and other

parameters of this parallel face detector are not specified, but they are still a useful

guideline to follow to understand the success of our implementation and for that, table

2.1 is constructed. A normalized value of performance is presented by multiplying the

FPS values by the resolution of the images used (Performance per Pixel), as well this

was done per Core and per Watt for a fair comparison between the related works.

13

 Table 2.1 - Previous Related Work in Parallelization of Viola-Jones

Paper FPS* Perfor. per Pixel* Perfor. per Core* Perfor. per Watt*

Reference [Frames Per Sec] [MPixels/Sec] [KPixels/Sec/Core] [KPixels/Sec/W]

FPGA [3] 16,08 4,94 NA 1 266,61

GPU [4] 35,00 7,56 19,68 228,99

GPU [5] 37,91 11,65 4,04 47,53

GPU [6] 10,00 2,62 6,83 79,44

GPU [7] 51,02 66,87 278,64 283,36

GPU [8] 3,00 1,22 0,79 5,30

GPU [9] 9,35 2,87 5,98 13,12

14

13

GPU architecture and

CUDA programming

model

Contents
3.1 CPU Architecture

3.2 GPU Architecture

3

14

This chapter analyzes the main properties of the CPU and GPU architectures,

exposing their main advantages and disadvantages. Also, it elaborates on the reasoning

behind the usage of the GPU and its programming model CUDA to achieve the main

goal of an overall performance boost and a very significant time reduction on the Viola-

Jones implementation addressed before.

3.1 - CPU Architecture

The central processing unit (CPU), is known as the key component of any

computer system since it contains all the circuitry needed to interpret and execute

program instructions. Since it has the responsibility for logic, basic arithmetic, controlling,

and input/output(I/O) operations.

In historical terms, the first computers were physically wired to perform a

specific task, and CPUs are normally defined as a device to execute software. As such,

the earliest versions of computers weren’t considered to have a CPU.

The first machine to have a CPU was presented in August of 1949 and it was

called the EDVAC [21]. This was the first computer designed to perform a certain number

of instructions and operations and the programs that these instructions composed were

stored in high-speed computer memory rather than physically wired, as in previous

machines.

An equally important evolution in CPU history was the advances in technology

starting in the era of discrete transistor mainframes till today's era of using integrated

circuits to manufacture CPUs. These advances paved the way for the generalization of

designs of multi-purpose processors that are produced in mass quantities instead of

custom designs for particular applications that were used in the early stages of the CPU

history.

Another important milestone was the introduction of multi-core processors, in

the beginning, only one core processor was produced consequently they were only able

to execute one instruction at a time. Only after many years passed that the first multi-

core processor was developed. In theory, dual-core processors would be close to twice

as powerful as the single-core processor but in practice, this does not happen, and only

about a 50% increase in performance is observed.

The increase of the number of cores (quad-core, octa-core, etc…) was a

success, and manufacturers quickly understood it provided a significant performance

boost in comparison with its predecessor. This increase, brought to the CPUs the ability

to handle even bigger workloads than before, giving it a clear performance boost, mainly

in programs that supported multithreading. In today’s market, CPUs still have a limited

15

number of cores since its main function hasn’t changed and they are still optimized to

perform sequential operations using significant amounts of local memory (cache) that as

very low latency to achieve great performance.

The exponential growth of performance observed in the CPU history (supported

by Moore's law), is now coming to a standstill and concerns have arisen about the limits

of integrated circuit transistor technology. So to continue the performance growth that

CPU has seen since the 1960s when the law was created, expansion and research in

the usage of parallelism and the increase in the number of cores present in the CPU is

now the new trend in processor development.

3.1.1 – CPU Memory

To reduce the time and energy cost to access data from the main memory, the

CPU has a hardware cache that is a small and very fast memory, located very close to

the processor's cores. This cache is usually organized as a hierarchy of different cache

levels, in most processors, they are 3 levels, L1, L2, and L3, where in terms of speed L1

is the fastest and L3 the slowest. Here copies of data from the main memory are stored,

reducing the need for fetching data in higher latency and lower speed memory such as

the DRAM or the Hard Drive hence enhancing the overall performance of the operations

executed by the CPU.

The overall design of the CPU memory structure can be observed in the figure

below:

Figure 3.1 – Example of a dual-core CPU architecture

https://en.wikipedia.org/wiki/Parallel_computing

16

3.2 - GPU Architecture

In comparison, the GPU (graphics processing unit) was since the beginning used

to accelerate memory-intensive work such as texture mapping and so they were

projected to have an architecture completely different from the CPU, as its purpose was

completely different as well and was designed with this in mind.

As it's visible in figure 3.2, the CPU has bigger ALUs and Control units as well as

bigger cache memory resulting in a bigger and more developed core than the ones in

the GPU. Therefore, the CPU has the advantage in more complex tasks that have to be

executed sequentially. On the other hand, in tasks that can be divided into simpler

operations the numerous smaller cores available in the GPU can be used to parallelize

the operations and execute them all at once. This way, taking the most advantage of the

hundreds to thousands of small cores that can launch and handle thousands of threads

simultaneously. Hence, the GPU architecture is perfectly suited for parallel work and the

CPU for sequential work.

Figure 3.2 – CPU and GPU Multiprocessors architecture

In the beginning, these cores had a simple and specific task of rendering but with

technology advances registered in this area, GPUs began to process more complex

tasks such as realistic 2D and 3D scenarios, and with the popularity of the gaming and

multimedia industry rising, this technology arrived in the personal computer.

Today, modern GPUs have become very efficient at manipulating computer

graphics and image processing. Besides these tasks, since GPUs offer very high

computational power different and new applications began to be presented to harvest

and take advantage of this power to process high amounts of data with parallelization

(e.g. Deep learning, artificial intelligence, etc…). Considering their highly parallel

17

structure, GPUs are way more efficient than general CPUs for algorithms that process

large amounts of data in parallel. The advances and the explosive growth of research

and usage of Deep learning in recent years were in part thanks to the evolution of general

GPUs.

To conclude, GPUs with their very large core count and high bandwidth are

opening a new range of possibilities for the development of more GPU-accelerated

applications. This is where GPGPU (General-Purpose Computing on Graphics

Processing Units) development platforms were introduced and play a key role, helping

the harvesting of the computational power available by the GPU to perform and

accelerate tasks normally only handled by the CPU, instead of only handling the graphics

renderings of the computer.

In section 3.2.1, a deeper look into the different GPGPUs available and why the

decision to use CUDA, in specific, was made, and how the platform boosts the

performance of applications.

3.2.1 – CUDA

Nvidia, one of the biggest producers of GPUs worldwide developed a GPGPU

platform named CUDA to help the development of such applications on their GPUs. In

2008, the OpenCL (open source) was another framework that was developed and

presented by Apple to the Kronos Group, a technology consortium that now maintains it.

Both OpenCL and CUDA are the most used software frameworks for GPGPU (General-

Purpose Computing on Graphics Processing Units) helping the acceleration of many

applications throw parallel computing using tasks and data-based parallelism.

The biggest difference between them is that CUDA being a proprietary

framework from Nvidia, it has top quality support to app developers and has constant

development allowing better performance results than OpenCL[10], the only limitation is

that CUDA is only supported in NVIDIA GPUs. This better performance attributed to

CUDA made it the obvious choice for the optimization and parallelization of the Viola-

Jones implementation.

CUDA API at the start only supported the C language, but now it supports

Java, C++, and Python and allows the programmer to write kernels, that are functions

that are executed on the Device (GPU). An important definition in this framework is that

the host is the CPU and the device the GPU.

In the CUDA API, they are three types of functions:

o Host functions - run in the host and are only callable by the host,

essentially a typical CPU function;

18

o Global functions - executed in the device but can only be called by the

host, this type of function requires a configuration at the time of calling.

The configuration has as parameters the number of threads per block and

the number of blocks per grid, as well as the specification of the dimension

of the blocks and grids;

o Device functions - executed and called by and from the device, i.e., has

to be called inside a global or device function.

As it is visible in the table below:

Table 3.1 – Types of Function available in CUDA API

Another important point, is that the main memory is separate from the GPU

memory and so it is not accessible by the GPU, nor for writing or reading and so there is

a processing flow that has to be followed for the correct functioning of the CUDA API.

The correct order and the visual illustration of the CUDA processing flow is presented in

figure 3.3.

Figure 3.3 – CUDA Processing Flow

19

Normally the tasks executed in parallel on the GPU are simple, but more

complex and difficult tasks can be run as well. Considering, that the programming model

from the CUDA framework is based on the premise that all problems can be split into

simpler sub-problems or tasks that after this division can be parallelized and executed

by multiple threads at the same time. Hence, taking advantage of the high number of

CUDA cores available to achieve a performance boost in comparison with the sequential

execution of the CPU.

3.2.2 GPU Memory Hierarchy

The CUDA threads during runtime, upon the launch of a kernel, have the ability

to access data from different memory spaces as illustrated in Figure 3.4. Each thread

has its own private local memory, plus the shared memory that is visible to all threads

from the same block. Also, all threads have access to global memory. Registers and

local memory have the fastest data transfer speeds, then the shared memory and the

slowest being the global memory. This decreasing data transfer speed should be taken

to account when developing a CUDA application, as memory accessibility is a key part

of the optimization of a CUDA implementation. This and other CUDA related optimization

techniques will be discussed in greater depth in the next section.

Figure 3.4 – GPU Memory Layout, based on [11]

It is also important to understand the hierarchy between grid, blocks, threads

and their layout. As visible in Figure 3.5 (below), a grid is an assembly of blocks that is

an assembly of threads in itself. The blocks can be created and organized as one-

dimensional, two-dimensional (2D), or three-dimensional (3D) grid of thread blocks. This

20

is not only just for readability, but also for exploiting 2D/3D locality in the blocked shared

memory, which provides much faster memory accesses. This decision is made

depending on the size of the data being processed and as the number of thread blocks

and the number of threads in each block is determined and defined by the size of data

to be processed or limited by the number of processors in the system as depending on

the GPU there is a maximum number of threads each block can launch. Given that, the

same processor core has to have all threads of a block contained in itself and sharing its

limited memory resources. In today's average GPU each thread block may contain up to

1024 threads [16].

Figure 3.5 – Grid and Block layout, based on [16]

3.2.3 CUDA optimization techniques

Before the development of the CUDA implementation, and to utilize to the fullest

the advantages offered by the GPU resources, it is important to understand some

optimization techniques already developed by NVIDIA[16]. After the study and research,

the optimizations that were better suited and were indeed used in this CUDA

implementation were memory and instruction optimizations.

Out of the two, memory optimizations have the most significant and visible impact

in terms of performance since the transfer times and access times can have a big

difference between the memories used. Hence, the optimizations implemented tried to

follow two important goals:

- Firstly, the usage of the fastest memories possible maximizing the available

bandwidth. One clear example of this, is the usage of shared memory, as it

lies on-chip, it has lower latency and higher bandwidth than the global

21

memory. As it is shared by all threads belonging to the same block (visible in

figure 3.4), it is used mainly for inter-block thread communication and reduce

global memory transfers. One disadvantage is that when multiple threads try

to read or write onto the same memory bank, a bank conflict happens and

these accesses are serialized for them to still be able to be executed but the

performance suffers. Different strategies such as padding or changing the

address patterns can be used to counter this problem.

- Secondly, minimizing data transfers between the host (CPU) and device

(GPU) and the other way around. Only doing the transfers that are indeed

necessary and mitigating wasted or useless ones. Considering that the

bandwidth between the main memory and device memory is the slowest of

all available, as it is possible to see in figure 3.6. So all the data that is to be

used by the device should be passed by the programmer to the device, in the

least number of transfers possible.

Figure 3.6 – Data transfer speeds in the GPU and
CPU

At last, the instruction optimizations' main goal is to diminish the number of

instructions needed to execute the same amount of work. To achieve this, integrated

functions and fast math libraries that are available by Nvidia in CUDAtoolkit are to be

used.

22

23

Parallelization and

optimization of the

Viola-Jones

Contents
4.1 Detecting Faces CPU results

4.2 GPU implementation structure

4.3 Functions parallelization and optimization

4

23

The following chapter analyzes the parallel approach developed, in particular

the specific parallelization of each functionality of the original/baseline Viola-Jones

algorithm. It aims for an overall performance boost and execution time reduction of every

function of the newly proposed GPU implementation in comparison with the baseline

CPU implementation.

4.1 Detecting Faces CPU results

Before advancing to the parallelization, the different functions that composed

the Detecting Faces had the time that each took in the CPU implementation measured,

to see which of them were taking the longest and the percentage of time that was spent

on each of them (Chart 4.1). This allowed to concentrate the parallelization work on the

functions that were taking the longest as the time reduction in these functions would have

the most impact in the overall execution time.

As a result, all main functions that belonged to the function Detecting Faces

were timed and the results are shown below.

Detecting Faces Total Execution Time

Nearest Neighbor Integral Image Cascade Classifier Scale Image Invoker

Chart 4.1 – Percentage of each function in the total execution time of Detecting faces

Taking into account the results showed above it is obvious that the first function

to take a look at optimizing is Scale Image Invoker as it takes an average of about 96%

of the computation time of Detecting Faces. This was foreseeable as it calls Run

Cascade Classifier that then calls Eval Weak Classifier, as such, it takes in total the

execution time of the three functions combine.

2,5% 0,8%

96,4%

0,3%

24

Furthermore, in CUDA implementations it is important to take into

consideration the Amdahl's law [22] which states that the theoretical possible speedup

obtained by optimizing a function is limited by the fraction of time that the function is

taking previously. Using the Amdahl’s law formula and considering n the number of

execution threads equal to 1024 with B being the fraction of the algorithm that is strictly

serial equal to 0,05 (as the work performed is highly parallelizable), the theoretical

speedup of Scale Image Invoker can be calculated as shown below:

Formula 1 – Amdahl’s law formula and Scale Image Invoker theoretical speedup calculation

4.2 GPU implementation structure

With this information gathered the next step was to make a decision regarding

which functions should be transferred to the device (GPU), whether in terms of possible

optimization and parallelization of its work or overall execution time.

Some important considerations that were taken before deciding which

functions should be passed to the device (GPU) were:

Understanding that as seen in table 3.1 and explained in section 3.2.1, there

are three different function types in CUDA: host, device, and global functions. One of the

main points presented and important to remember now is that the global function can´t

be called inside the device kernel and the device function can’t be called by host

functions. As such, when thinking of passing the Scale Image Invoker to the GPU and

so changing it to a global function we have obligatorily to change both Run Cascade

Classifier and Eval Weak Classifier to device functions so that they can continue to be

called by Scale Image Invoker.

Another important aspect is that as device functions are called already inside

the kernel, global function when they are called create a device kernel, and as such the

launching options such as the number of threads, blocks or the dimension of the grid are

already decided and cannot be changed during runtime.

With the bandwidth for memory transfers between device and host being the lowest

(8Gb/s), the optimization and parallelization in the device could be not worth it since the

time spent in the data transfers between the two can be higher than the time reduction

obtained from the device optimization.

So, a deeper analysis of the data used and the amounts of data transfers that

would be necessary if only the Scale Image Invoker and the two functions that it calls,

25

were passed to the device (GPU). And it was visible that for every iteration (total number

of filter stages, in this case, is 25) the data would have to be updated in each iteration in

both host and device, making it a clear problem in reducing the execution time.

So, when making the decision on which functions should then be passed to

the device, the ones that used and updated the same data were the ones selected.

Hence, reducing the data transfer Host to Device and Device to Host to the strict

minimum necessary.

This way, after the image loading and before any iteration is made, all the data

used and updated by the device is transfer and made available in the GPU memory at

the start of Detecting Faces.

This way, after the image loading and before any iteration is made, all the data

used and updated by the device is transfer and made available in the GPU memory at

the start of Detecting Faces.

At the end of Detecting Faces, after all the computation is completed the output

results are passed back to the Host, where they are used to draw the rectangles on the

faces detected, i.e., writing the output.

With this approach, the time spent transferring data between the two is

maintained to the bare minimum necessary as it is extremely important for the

achievement of the main goal of reduction in the execution time.

As such, the proposed processing flow of the Detecting Faces CUDA

implementation is as shown in the image below.

26

Figure 4.1 – Proposed processing flow of Detecting Faces
CUDA implementation

A detailed observation of the final scheme of the GPU implementation that was

obtained is shown below. Offering a better understanding of the structure of this

application, with all functions that composed Detecting Face and their types being

displayed.

Figure 4.2 – Structure of the GPU Viola-Jones Implementation

27

As shown in figure 4.2, out of the main function of Detecting Faces the Integral

Image was the odd one out, considering that its implementation in the GPU had to be

decomposed in different device functions as it will be explained in greater depth in

section 4.3.1. Thus to optimize the threads usage and obtain better results time-wise,

these functions were divided into different kernel calls (global functions). This decision

opens up the ability to launch the optimized kernel settings for each function, taking into

account the work it does at each iteration and launching only the necessary number of

threads to obtain the most optimal implementation possible. As such, the computation

work it executes is still all performed in the device.

4.3 Functions parallelization and optimization

In the next section, a more detailed look into each function will now take place,

explaining in greater detail the optimization and parallelization made in each one of the

newly global and device functions as well as the thinking process behind the decisions

taken to obtain a significant speedup in all images, and expecting a bigger increase as

the resolutions of the image grow.

4.3.1 Nearest Neighbor and Cascade Classifier

In Nearest Neighbor and Cascade Classifier, the work being computed was

simple and for this reason, a division of the work performed was made into threads taking

advantage of the parallel computation of the GPU.

To prevent any thread starvation the division made was homogenous. This

would decrease the optimization of the implementation since some threads would be

doing less work than others and the parallelization would not be optimal as the work is

not completed till the last threads have concluded its work.

In the case of the cascade classifier, the parallelization was done as each

stage of the cascade classifier is done by a block and each thread of the block in question

does the work needed for each filter that belongs to the stage as it is illustrated in the

figure below.

28

Figure 4.3 – Parallelization of Cascade Classifier

4.3.2 Integral Image

Integral Image is a well-known algorithm in computer vision as it is very useful

for image processing with box filters since it fairly helps with very high efficiency and

quick way to calculate the total sum of data in a specific area.

As such, some CUDA implementations of this algorithm have already been

presented as a solution to optimize and reduce the time it takes to calculate these sums

of data. Another factor for different papers and studies being presented is that the

parallelization isn’t the easiest, because different operations needed in this algorithm are

sequential. One clear example is the dependence on the previous data since it is a sum

of all the previous summed areas plus the area in question. To resolve this problem,

scientific papers were presented that overcame it, this, and other problems that were

encountered. In particular, the paper “Efficient Integral Image Computation on the GPU”

[9] by Berkin Bilgic, Berthold K.P. Horn, and Ichiro Masaki that was presented in 2010

was a clear reference to the algorithm implementation that will be presented.

Taking advance of the parallel characteristics of the GPU, a SCAN function

was created to sweep and scan the values of an entire row of the image using each

thread to calculate two iterations using temporary shared memory, a type of memory

available in the GPU that is visible to all threads within a block. This way, all threads can

access the calculations made by others from the same block as them. This approach

made it possible to use input images up to 2048 pixels in width, with most of the graphic

cards available in 2020 since most can launch up to 1024 threads. In the year of

publishing (2010) of the paper referenced fewer threads were available by most GPUs

and so only smaller images could be used. But since there is a need to scan the rows as

well as the columns, and the scan function only scans the values of the rows, there is a

need to transpose the array with the results from the scan function. Another CUDA

29

function called transpose was presented by the paper in question to perform that task.

After scanning the rows, the results from this first scan are transposed by this function

and scanned again, and now the columns are scanned as rows, and the total image is

now scanned. To finalize, and have the integral image completed the last transpose is

needed so that the final result is the same row and columns as the original input. Now,

the integral image calculation is finally completed and saved in an output array. Both of

the functions are shown in Figures 4.3 and 4.4 (below).

Figure 4.4 – Transpose kernel [9] Figure 4.5 – Scan kernel [9]

Both functions presented have limitations, in the case of the transpose

function, there is a need for the input array to have the same number of rows and

columns. This is, the input image has to be a square. On the other hand, the scan

function as previously stated has to receive as input an image of dimensions not greater

than the maximum number of threads that the GPU used can launch multiplied by two,

seeing that each thread is responsible for the scan of data concerning two pixels. In most

mid-tier modern GPUs, this value is about 1024 threads per block, and as such this

concludes to a maximum image size of 2048x2048p. Another limitation of the scan

function is that the width and height of the input image have to be the power of 2. This is

because the input has to be dividable by two since each thread is responsible for 2 pixels,

limiting the possible images that could be used.

30

To counter these limitations, firstly before any calculation is made with the

data, the input array is padded with zeros to the dimension of the closest power of 2, i.e.,

if an image is 2010x1003p it will be padded to 2048x 1024p. Opening the opportunity to

the usage of the function scan in non-power of 2 dimensioned images.

Secondly, to solve the problem presented when the images had the width or

height bigger than the maximum number of threads multiplied by two (most cases

2048p), a division of the rows using two or more blocks is made. If the image is bigger

than 4096p then 3 blocks are needed, since each block can only launch 1024 threads

(2048p processed) and so on. Each block is to be considered as a segment. The shared

memory used by the scan function is shared only by the threads that belong to the same

block so the calculations made in each segment are independent of other segments. But

the scan function should scan and sum the entire row and with the division made only

the sum of each segment is made. Knowing the index of each block, we save the values

of the last iteration of each block in an auxiliary array to after the scan function is

completed, sum these values to all the values in all the segments with a higher block

index.

Figure 4.6 – Illustration of the work done for images with width or height bigger than
two times the maximum number of threads that the GPU used can launch

Using this segment division and padding, the scan function can now scan any

image of any size. For images smaller than 2048p, the padding still happens to the

closest power of 2 and for optimized kernel call, the number of threads launched is equal

to the width and after transpose equal to the height of the image. This approach tries to

generalize the usage of the scan and transpose functions proposed by the paper, that

was as well limited since its input had to be squared (same width and height) and was

31

changed to accept any padded input. Thus, this CUDA implementation for the Integral

Image algorithm presents an optimized and parallelized approach taking advantage of

the shared memory available in the GPU and can expect higher speedup results in bigger

images with no limitation in terms of the input image.

Figure 4.7 – Integral Image GPU implementation scheme

The figure 4.6, illustrates the order of operations and global function calls

needed to achieve the desired result. As in this implementation, it had to calculate the

Sum of the data as well as its Square Sum. To achieve this, the scan function was altered

so to do both of the calculations at the same time as they use the same data to do its

calculation. Hence, the first CUDA SCAN call is in fact the ScanSQ that does both the

sum and the square sum. Right away, both are Transposed and scan again but this time

only with Scan that does only the sum. To finalize both are again transposed and the

Square Sum and Sum of the entire image are concluded.

Below, both Scan and ScanSQ function that were developed for this Integral

Image algorithm, based on the functions presented in the paper “Efficient Integral Image

Computation on the GPU” [9] by Berkin Bilgic, Berthold K.P. Horn, and Ichiro Masaki are

displayed. As well as, the Transpose function that suffered an alteration, as already

explained to work with any image resolution.

32

Figure 4.8 – New CUDA ScanSQ kernel Figure 4.9 – New CUDA Scan kernel

Figure 4.10 – New CUDA Transpose kernel

33

4.3.3 Scale Image Invoker

An important factor that had to be taken into account in this implementation

was that Scale Image Invoker calls Run Cascade Classifier that then calls Eval Weak

Classifier. So the parallelization was made knowing that each thread will have to perform

the work from both functions.

With this in mind, the work was divided so that each thread launched was

responsible for the execution of the work of both functions. As this work was performed

in each pixel of the image a 2D block was used, with the pixel being represented by the

x and y from the CUDA block. Each thread will be doing computation work of one image

pixel that in this case is the work that would be performed at each sliding window of the

sequential version, as each window was the size of one pixel. This way, all threads will

be go through the cascade classifier at the same time, possible as there is now data

dependency on the cascade filters. This way the total number of pixels from the image

is processed all at the same time instead of one pixel at a time as it was with the sliding

window in the sequential form that was practiced by the CPU as it can be observed in

figure 4.11.

Figure 4.11 – Parallelization of Scale Image Invoker

With this implementation it is expected to achieve the transformation of a very

timely function with a high sequential workload into a paralyzed function with a high-

performance boost in comparison to the CPU version and a big reduction of the total

execution time is expected.

To conclude, with this GPU Viola-Jones Implementation optimization and

parallelization an overall performance boost across all the functions mentioned is

expected to be visible with a big-time reduction and a high value of GPU Speedup. The

goal of the next chapter will be to correlate the results obtained with the increase of the

total number of pixels in the image processed to understand and conclude if in fact the

parallelization and optimization were well performed.

34

35

Experimental

Results

Contents
5.1 Methodology

5.2 Test apparatus

5.3 System Setup

5.4 Parallel Detecting Faces

5.5 Overall Conclusion

5.6 Energy Efficiency Analysis

5

35

The main purpose of this chapter is to analyze and present the results obtained

from the parallelization and optimization of the Detecting Faces function that executes a

great part of this Viola-Jones Implementation, as explained in the previous chapter. The

functions that compose Detecting Faces and that were modified and optimized are the

Nearest Neighbor, Integral Image, Scale Image Invoker, and Cascade Classifier.

Therefore, these four functions were the ones that their execution was timed in both CPU

and GPU implementations, as well as, the total execution time of the Detecting Faces

function. Thus, a direct comparison of both implementations can be made and the GPU

speedup calculated.

5.1 - Methodology

Each test was repeated five times for each test image. A group of test images

was assembled, from a very small and low-resolution image (300x160p) to

8k(7680x4320) images. This way, a conclusion could be taken regarding the

performance of this GPU implementation as the number of pixels were increasing and

get to values that top-of-the-line smartphones and computers use at this moment in time.

While the tests were run, the time that each function took, and the total execution

time for each test image was recorded. After the five repetitions, for all time

measurements, the standard deviation and the average values were calculated, hence

obtaining more reliable and consistent results. The accuracy of detection of the faces

present in the test image was as well compared with the CPU implementation and, as

expected the results were equal. With this data and information, the comparison between

both could be made and conclusions be taken from this optimized and parallelized GPU

implementation.

5.2 - Test apparatus

In the beginning, these tests were performed using a test bench (Setup A)

consisting of an average GPU, the GTX 960. With 1024 CUDA cores it's considered to

be a low-performance device, but the versatile and cost-efficient option to the average

home computer. After, and to ensure a more complete and consistent result set, it was

of interest to test this implementation with a different range GPUs. Therefore, two new

test systems were used, one with a high-end GPU that has more resources than a typical

GPU and a low power option, that emphasizes power consumption over performance.

To achieve this goal, setup B) and C) were used to perform the same tests with the same

images and they are presented in the table below:

36

Table 5.1 - The three systems used to test the implementation developed

Setup GPU CPU RAM

a) GTX 960 Intel Core i7-4790 @ 3.60 GHz 16 GB

b) RTX 2080 Ti Intel Core i7-4790K @ 4.00 GHz 32 GB

c) Jetson TX2’s GPU ARM - Cortex A57 @ 2GHz -

Mostly intended for HPC, the RTX 2080 Ti opens up the ability to analyze the

performance boost obtained with the availability of more power, more CUDA cores, and

higher clocks speeds. Furthermore, as power is a very important factor in any technology

and can be a limitation in many system setups, the test was run as well on a Jetson TX2,

that has a custom-built GPU, with the purpose of maximizing energy efficiency and

consumption on low power applications.

With these tests in different GPUs and different test benches (Table 5.1), it

was possible to construct a spectrum of power consumption and analyze the impact that

power has on the performance of this GPU implementation, as well as other resources

like the number of CUDA cores available. The detailed overview of each GPU can be

seen in the following table:

37

Table 5.2 – Specifications of the three GPUs

 GTX 960 RTX 2080 Ti Jetson TX2

Architecture Maxwell 2.0 Turing Pascal

Memory Size 4 GB 11 GB 8 GB (shared with

CPU)

Memory Type GDDR5 GDDR6 LP-DDR4

Memory Bus 128 bit 352 bit 128 bit

Bandwidth 112.2 GB/s 616.0 GB/s 59.7 GB/s

Base Clock 1127 MHz 1350 MHz 854 MHz

Boost Clock 1178 MHz 1545 MHz 1465 MHz

Memory Clock 1753 MHz 1750 MHz 1866 MHz

TDP 120 W 250 W 7.5W - 15W

SM Count 8 68 2

L1 Cache (per SM) 48 KB 64 KB 48 KB

L2 Cache 1024 KB 5.5 MB 512 KB

FP32(float)

performance

2.413 TFLOPS 13.45 TFLOPS 750.1 GFLOPS

FP64 (double)

performance

75.39 GFLOPS 420.2 GFLOPS 23.44 GFLOPS

Cuda Cores 1024 4352 256

Transistor 2,940 million 18,600 million N/A

Process Size 28 nm 12 nm 16 nm

5.3 System Setup

The system setup setup A), B) used for the test and for the results of the

sequential version a controlled environment in Ubuntu 20.04.1 LTS. The setup C) was

the only one that differs using an older version of Ubuntu the 16.04 version.

The latest version of the implementation presented consists of a parallel

solution made in CUDA and developed entirely from the serial version (CPU)[3] and, like

so, does not deviate from the premises of the algorithm. Thus, the output of each function

was inspected to confirm whether it matched the serial version.

In terms of the compilers used, for the sequential version the GNU Compiler

Collection (GCC) was used and for the parallel version, the NVIDIA CUDA Compiler

(NVCC) was used.

38

The time measurements used to calculate the total execution times for each

function in order to be as accurate as possible were made using the Chrono library, which

is a flexible collection for C++ that tracks time with varying degrees of precision. In this

case, depending on the time the function took, the degree of precision was changed

between milliseconds or microseconds.

5.4 Parallel Detecting Faces

Times were measured in all three test systems (Table 5.1), and a comparison

between the speedup obtained with the RTX2080 Ti (4086 CUDA cores), the GTX 960

(1024 CUDA cores), and the Jetson TX2 (256 CUDA cores) was built. Furthermore, as

they vary with respect to in power consumption, CUDA cores, clock speeds and memory

(Table 5.2), an analysis of the influence of these resources on the overall performance

boost of the implementation presented was also performed.

Secondly, as the main focus of the implementation were the functions Nearest

Neighbor, Integral Image, Cascade Classifier, and Scale Image Invoker since they

composed Detecting Faces and the work they perform was done by the GPU, taking

advantage of its parallel architecture to obtain an overall performance boost. A separate

view at each function GPU speedup will be taken as well for a more detailed look into

the overall speedup and execution times of this CUDA implementation in comparison to

the sequential version.

5.4.1 Nearest Neighbor

The nearest neighbor execution time obtained in the CPU was already one of

the lowest in the implementation. Still, and as visible in figure 5.1 with the parallelization

and optimization made in the Nearest Neighbor Kernel implementation, a big GPU

speedup was observed in all test systems. As well, with the increase in the number of

pixels, the speedup growth tends to be exponential.

39

Figure 5.1 – Nearest Neighbor speedup in relation to the total
number of pixels

5.4.2 Integral Image

In the case of the Integral Image function, that was decomposed in different

global functions, had multiple kernels being launched in its execution. This combined

with the need to allocate and free memory in the device in each iteration makes the

execution time and consequently the GPU speedup lower than expected. Having

negative results across the board, only at the biggest image of the test set (8k image)

does the speedup in the 2080 Ti achieve a positive result.

Figure 5.2 – Integral Image speedup in relation to the total number of pixels

40

Even with this negative record, the fact that the data is being altered and saved

in the device memory gives the Detecting Faces implementation an advantage since

there is no need for data transfers between the host and the device. These transfers

would have to happen with every iteration of the Detecting Faces and would

consequently diminish the overall speedup of this CUDA implementation.

5.4.3 Cascade Classifier

In comparison with the other two functions that obtained positive speedup

(Nearest Neighbor and Scale Image Invoker), this is the only one that the speedup does

not scale with the increase of the total number of pixels. This is a consequence of the

Cascade Classifier having always the same dimension independent of the resolution of

the image. Therefore, the work computed in this function will always be the same and its

speedup in comparison to the sequential implementation will tend to be in the 10 to 20

range for both RTX 2080 Ti and the GTX 960. In the case of the Jetson TX2, the speedup

varies between 1,5 and 4 (Figure 5.3).

Figure 5.3 – Cascade Classifier speedup in relation to the total number of
pixels

5.4.4 Scale Image Invoker

Scale Image Invoker being the most time-consuming function of the CPU

implementation would always play a key part in the achievement of the main goal

presented for this implementation, obtaining an overall speedup and performance boost.

For this reason, a huge speedup presented by its GPU implementation was crucial.

41

Figure 5.4 – Scale Image Invoker speedup in relation to the total number of
pixels

As shown, a huge difference in the performance between the CPU and GPU

implementation was achieved and the speedup values were the highest ones across all

function’s implementation. This is explained by the fact that in the sequential version each

pixel was processed at a time and as the image resolution grows so did the function

execution time. However, in the case of the GPU, this work was parallelized and optimize

using its grid to simplify the problem, bringing huge gains in every device speedup (as

much as 500 000).

5.5 Overall Speedup Contribution

Finally, an important consideration to make is that the results presented so far,

do not take into account the elapsed time to allocate device memory and the data

transfers from the host to the device, in preparation for the computation of the four

functions that compose Detecting Faces in the GPU. This necessity is a bottleneck in

most CUDA implementations and it was an important goal to reduce them to the

minimum necessary, as already explained in previous sections. Therefore, the time it

took to perform this groundwork was as well measured and it can be examined in Figure

5.5.

42

Figure 5.5 – Time spent in memory allocation and transfers in
relation to the total number of pixels

As seen in figure 5.5, this CUDA implementation independently of the image

size will always have a minimum of about 80 milliseconds of execution time. In the RTX

2080Ti this value is closer to 110 milliseconds, as it is always necessary for these

memory allocations and transfers to happen with every image. Only at the two biggest

images of the set, it is possible to see an increase in the time spent, as the data size

begins to rise to larger values. In the case of the Jetson TX2, given its very limited

memory resources and bandwidth this increase is even more noticeable.

Consequently, it is foreseeable that the speedup in smaller images that took

less than 80 milliseconds in the CPU implementation, to be negative. However, the GPU

speedup results already presented in all functions, except the integral image, were very

positive. Furthermore, in the functions Scale Image Invoker and Nearest Neighbor, with

an increasing number of pixels, an exponential growth of the speedup was noticed.

Therefore, an overall speedup and drastic reduction in the total execution time of the

Detecting Faces functions was expected and confirmed as it can be witnessed in Figures

5.6 and 5.7.

43

Figure 5.6 – Execution times in relation to the total number of pixels

In the matter of performance across all machines, the best overall time results

were recorded by the RTX 2080 Ti, as it was expected, achieving a speedup of up to

thirty-three in comparison to the serial version. The GTX 960 follows closely in execution

time and consequently in the speedup as well, till the 8k(7680x4320) image where it is

visible the limitation of its resources in comparison with the RTX 2080 Ti. Finally, the

Jetson TX2 whose results were always expected to be worse than the other two GPUs,

but still manage after the 1 million total pixel mark to obtain a better result than both

sequential implementation at a much lower energy cost.

Figure 5.7 – Detecting Faces GPU speedup in relation to the total number of
pixels

44

These values show that across every device tested, the implementation

achieves a very positive GPU speedup result after passing the memory allocation and

transfers bottleneck and as the number of pixels grows, the speedup grows as well. This

happens until the resources available in the device start to be insufficient for the workload

demand and therefore the speedup stagnates. This isn’t reflected in the high-end GPU,

the RTX 2080 Ti. As the limiting factors of the GPU end up being its grid size and

processing power, where there is a big difference between the RTX 2080 Ti and the GTX

960. Only in a bigger image where finally the size of data being processed is enough to

achieve the GTX 960 resource limitation, can the RTX 2080Ti showcase its sovereignty

in these parameters over the GTX 960 resulting in a big speedup difference and

continuing its exponential growth instead of stagnation as the GTX 960 and Jetson

encounter.

All in all, it can be considered that the implementation is in fact well optimized

and parallelized as the GPU speedup values were, as already said and shown, very

positive and had the tendency to increase exponentially when there wasn’t any hardware

limitation.

5.6 Energy Efficiency Analysis

In terms of performance, as it was visible in the results, the Jetson TX2 being a

low-power GPU cannot compete with the other GPUs used, as it prioritizes energy

efficiency over performance. Hence, for it to be a fair comparison an analysis of the energy

efficiency (FPS/Watt) was performed for all test systems.

Table 5.3 - Summary of time, speedup and energy efficiency - *Higher is better

Image

Resolution

RTX 2080 Ti GTX 960 Jetson TX2

 FPS Speedup* FPS/W* FPS Speedup* FPS/W* FPS Speedup* FPS/W*

2k

(2048x1080)
31,1 9,9 0,4 25,3 8,12 0,5 5,3 1,8 0,7

4k

(3840x2160)
15,4 12,2 0,2 12,1 9,92 0,2 2,4 2,5 0,3

8k

 (7680x4320)
10,2 32,3 0,1 3,5 9,85 0,06 0,3 1,9 0,07

The energy efficiency analysis shown in table 5.3, reveals that the Jetson TX2

obtains positive results in terms of frames per second divide by watt. As it has higher

values than the GTX 960 in all three images chosen and in comparison, with the best

overall performing GPU, the RTX 2080 Ti it only has lower value in the biggest image of

the test set, where the high-end GPU is able to obtain excellent results of nearly 32x

speedup in comparison with the sequential implementation.

45

 Table 5.4 - Previous Related Work in Parallelization of Viola-Jones in comparison with results obtained - *Higher is better

Using the same model as Table 2.1 we can compare the results obtained to other

related work in this area. As visible in table 5.4, using the same normalized parameters

of comparison (Performance per second, per core and per watt) we can conclude the

success of our implementation with higher values in contrast with those of the related

work presented in terms of energy efficiency (Jetson TX2) and performance per pixel

(RTX 2080 Ti).

Paper FPS Perfor. per Pixel Perfor. per Core Perfor. per Watt

Reference [Frames Per Sec] [MPixels/Sec] [KPixels/Sec/Core] [KPixels/Sec/W]

FPGA [3] 16,08 4,94 NA 1 266,61

GPU [4] 35,00 7,56 19,68 228,99

GPU [5] 37,91 11,65 4,04 47,53

GPU [6] 10,00 2,62 6,83 79,44

GPU [7] 51,02 66,87 278,64 283,36

GPU [8] 3,00 1,22 0,79 5,30

GPU [9] 9,35 2,87 5,98 13,12

[This work w/ GTX960] 12,15 100,78 98,42 839,81

[This work w/ RTX 2080 Ti] 10,02 332,44 76,39 1 329,76

[This work w/ Jetson TX2] 2,45 20,32 79,38 2 540,16

45

46

Conclusion & Future

Work

Contents
6.1 Conclusion

6.2 Future work

6

47

6.1 Conclusion

The final implementation obtained does in fact represent a clear optimization of

the sequential Viola-Jones Framework. As the main goal proposed in this thesis is

achieved and an overall performance boost is obtained in the implementation of Viola-

Jones face detector in parallel architectures. Using CUDA optimization techniques as

well as parallelization to obtain high speedup values in both GPUs in comparison to the

sequential version. Opening up the possibility of real-time detections, even in an image

as big as 8k the detection of faces was done in less than a second.

In the case of the low-power GPU (Jetson TX2), even with its resources and

memory limitations, it achieved similar results to CPU implementation, while consuming

a very significant lower value in power.

All in all, with the implementation in both GPUs (GTX 960 and RTX 2080 Ti) and

the low-power Jetson TX2 GPU, that vary in many aspects between them as expressed

before, gave the possibility to elaborate conclusive analyses of the impact that power

and other important GPU resources (CUDA cores, memory bandwidth, etc.) have on the

overall performance and speedup of the implementation presented and conclusions

could as well be taken about the energy efficiency.

6.2 Future Work

One of the emerging platforms from the computer vision scientific area is the

usage of convolution neural networks (CNNs) to process images. This has recently seen

a great evolution and interest in the scientific community. Thus, an integration of such

technologies in this implementation could have been developed as the hardware

limitations that once were a great problem are now being lifted with the appearance of

ever more powerful GPUs.

Another possible future development in this work could be the introduction of new

features and filters for the detection of different objects to complement the face detection

already implemented.

48

Bibliography

[1] Jain, V., & Patel, D. (2016). A GPU based implementation of robust face

detection system. Procedia Computer Science, 87, 156-163.

[2] Viola, P., & Jones, M. (2001, December). Rapid object detection using a

boosted cascade of simple features. In Proceedings of the 2001 IEEE computer

society conference on computer vision and pattern recognition. CVPR 2001 (Vol.

1, pp. I-I). IEEE.

[3] “Viola-Jones Face Detection”, 2012. [Online] Available at:

https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-

detection, [Last Access: 27/10/2019];

[4] “Digital image processing”. [Online] Available at:

https://en.wikipedia.org/wiki/Digital_image_processing, [Last Access:

12/1/2020];

[5] Dang, K., & Sharma, S. (2017, January). Review and comparison of face

detection algorithms. In 2017 7th International Conference on Cloud Computing,

Data Science & Engineering-Confluence (pp. 629-633). IEEE.

[6] Zhou, Y., Liu, D., & Huang, T. (2018, May). Survey of face detection on low-

quality images. In 2018 13th IEEE International Conference on Automatic Face

& Gesture Recognition (FG 2018) (pp. 769-773). IEEE.

[7] Sharifara, A., Rahim, M. S. M., & Anisi, Y. (2014, August). A general review of

human face detection including a study of neural networks and Haar feature-

based cascade classifier in face detection. In 2014 International Symposium on

Biometrics and Security Technologies (ISBAST) (pp. 73-78). IEEE.

[8] Bilgic, B., Horn, B. K., & Masaki, I. (2010, June). Efficient integral image

computation on the GPU. In 2010 IEEE Intelligent Vehicles Symposium (pp. 528-

533). IEEE.

[9] “Opencl vs CUDA”. [Online] Available at: https://create.pro/opencl-vs-cuda/,

[Last Access: 12/6/2020];

https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection
https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection
https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection
https://sites.google.com/site/5kk73gpu2012/assignment/viola-jones-face-detection
https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Digital_image_processing
https://create.pro/opencl-vs-cuda/

49

[10] Derek Anderson, “Processing organization scheme and memory layout for

the GPU using CUDA”. [Online] Available at:

https://www.researchgate.net/figure/Processing-organization-scheme-and-

memory-layout-for-the-GPU-using-CUDA-Global-Constant_fig1_221399113,

[Last Access: 25/7/2020];

[11] Pipat Methavanitpong, “Heterogenous Parallel Programming”. [Online]

Available at: https://www.slideshare.net/pipatmet/hpp-week-1-summary, [Last

Access: 12/10/2020];

[12] NVIDIA Corporation, “NVIDIA CUDA C programming guide,” 2019, version

10.2. [Online] Available at: https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html, [Last Access: 9/8/2020];

[13] NVIDIA Corporation, “GPU Gems 3 – Chapter 39”. [Online] Available at:

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-

computing/chapter-39-parallel-prefix-sum-scan-cuda, [Last Access: 6/9/2020];

[14] NVIDIA Corporation, “NVIDIA Turing architecture in depth”. [Online]

Available at: https://developer.nvidia.com/blog/nvidia-turing-architecture-in-

depth/, [Last Access: 12/6/2020];

[15] NVIDIA Corporation, “NVIDIA CUDA C++ best practices guide,” 2019,

version 10.2. [Online] Available at: https://docs.nvidia.com/cuda/cuda-c-best-

practices-guide/index.html, [Last Access: 28/7/2020];

[16] NVIDIA Corporation, “Fundamental Optimizations in CUDA”. [Online].

Available: http://developer.download.nvidia.com/GTC/PDF/1083_Wang.pdf,

[Last Access: 24/9/2020];

[17] Nvidia, “NVIDIA Jetson TX2: Thermal Design Guide,” [Online] Available at:

http://developer.nvidia.com/embedded/dlc/jetson-tx2-thermal-design-guide,

May. 1, 2017, [Last Access: 19/9/2020];

[18] NVIDIA, “Nvidia turing gpu architecture,” 2018. [Online]. Available:

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/

technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.Pdf,

[Last Access: 24/9/2020];

[19] M. Harris, “How to optimize data transfers in cuda c/c++,” December 2012.

[Online]. Available: https://devblogs.nvidia.com/ how-optimize-data-transfers-

cuda-cc/, [Last Access: 17/8/2020];

https://www.researchgate.net/figure/Processing-organization-scheme-and-memory-layout-for-the-GPU-using-CUDA-Global-Constant_fig1_221399113
https://www.researchgate.net/figure/Processing-organization-scheme-and-memory-layout-for-the-GPU-using-CUDA-Global-Constant_fig1_221399113
https://www.researchgate.net/figure/Processing-organization-scheme-and-memory-layout-for-the-GPU-using-CUDA-Global-Constant_fig1_221399113
https://www.researchgate.net/figure/Processing-organization-scheme-and-memory-layout-for-the-GPU-using-CUDA-Global-Constant_fig1_221399113
http://www.slideshare.net/pipatmet/hpp-week-1-summary
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
http://developer.download.nvidia.com/GTC/PDF/1083_Wang.pdf
http://developer.nvidia.com/embedded/dlc/jetson-tx2-thermal-design-guide
http://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/

50

[20] “Central Processing Unit”. [Online] Available at:

https://en.wikipedia.org/wiki/Central_processing_unit , [Last Access: 12/1/2020];

[21] Carla Tardi, “Moore’s Law” [Online]. Available:

investopedia.com/terms/m/mooreslaw.asp , [Last Access: 17/4/2020];

[22] Benhallou, K., Kech, M., Ouamri, A., & Benhallou, K. An efficient face

detection based on improved viola and jones. International Journal of

Engineering and Technology,[Online]. Available: http://ijens.

org/Vol_14_I_03/147803-2626-IJET-IJENS. pdf.

[23] Cho, J., Benson, B., Mirzaei, S., & Kastner, R. (2009, July). Parallelized

architecture of multiple classifiers for face detection. In 2009 20th IEEE

International Conference on Application-specific Systems, Architectures and

Processors (pp. 75-82). IEEE.

[24] Kong, J., & Deng, Y. (2010, August). GPU accelerated face detection. In

2010 International Conference on Intelligent Control and Information Processing

(pp. 584-588). IEEE.

[25] Bhatia, A. R., Patel, N. M., & Chauhan, N. C. (2016, October). Parallel

implementation of face detection algorithm on GPU. In 2016 2nd International

Conference on Next Generation Computing Technologies (NGCT) (pp. 674-677).

IEEE.

[26] Wai, A. W. Y., Tahir, S. M., & Chang, Y. C. (2015, November). GPU

acceleration of real time Viola-Jones face detection. In 2015 IEEE International

Conference on Control System, Computing and Engineering (ICCSCE) (pp. 183-

188). IEEE.

[27] HB fredj, S. Sqhair, C. Souani (2020, September). An Efficient Parallel

Implementation of Face Detection System Using CUDA. In 2020 5th International

Conference on Advanced Technologies For Signal and Image Processing

(ATSIP). IEEE.

[28] Shivashankar J. Bhutekar et. al, “Parallel Face Detection and Recognition

on GPU,” International Journal of Computer Science and Information

Technologies Vol. 5 (2) , pp. 20132018, 2014.

[29] Ren Meng et. al, "Acceleration Algorithm for CUDA-based Face

Detection,”2013 International Conference on Signal Processing, Communication

and Computing, 2013, pp 1-5.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
http://ijens/

