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Abstract

Feature extraction of high-resolution images is a challenging procedure in both
high and low-power signal processing applications. This thesis describes how to
optimize and efficiently parallelize the scale-invariant feature transform (SIFT) fea-
ture detection algorithm and maximize the use of bandwidth on the GPU subsys-
tem. Together with the minimization of data communications between host and
device, the successful parallelization of all the main kernels used in SIFT allowed
a global speedup in high-resolution images above 78x while being more than an
order of magnitude energy efficient (FPS/W) than its serial counterpart. From the
3 GPUs tested, the low-power GPU has shown superior energy efficiency in almost
every case. Achieving up to 6x less power consumption than the CPU for the same
amount of work.

Keywords

Feature extraction, Scale-invariant feature transform (SIFT), GPGPU, CUDA,
Parallel Programming.



Resumo

A extração de caracteristicas de imagens de alta resolução é um procedimento
bastante desafiante tanto em aplicações de processamento de sinais de alta como
de baixa potência. Esta dissertação descreve como otimizar e paralelizar de forma
eficiente o algoritmo scale-invariant feature transform (SIFT) e maximizar o uso
da largura de banda na GPU. Juntamente com a minimização das comunicações de
dados entre o host e o device, a paralelização bem-sucedida de todos os kernels
principais usados no SIFT permitiu um aumento de velocidade global de 78x em
imagens de alta resolução. Ao mesmo tempo, a solução apresentada consegiu uma
maior ordem de grandeza de eficiência energética (FPS/W) do que a sua contra-
parte sequencial. Das 3 GPUs testadas, a GPU de baixo consumo mostrou maior
eficiência energética em quase todos os casos. Alcançando até 6x menos consumo
de energia do que a CPU para a mesma quantidade de trabalho.

Palavras Chave

Feature extraction, Scale-invariant feature transform (SIFT), GPGPU, CUDA,
Parallel Programming.
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1. Introduction

In the field of computer vision, feature extraction has always been an intriguing
topic of research. Its purpose is to eliminate redundancies from datasets, thus al-
lowing derived values (features) to be unique and informative. In image processing,
feature extraction is used to detect and isolate desired portions of an image or a
video stream.

In order to do so, developers often resort to algorithms that are invariant to
changes in scale, rotation, illumination, and, to some degree, affine distortions. All
these characteristics are essential to Scale-invariant feature transform (SIFT), an al-
gorithm that has stood the test of time and that it is still popular in various computer
vision applications, such as, image registration [12], object recognition [13], motion
tracking [14], 3D modelling [15], among others.

In the past decade, the growth of storage capacity [16] and quality of digital
cameras has indirectly contributed to a significant increase in the size and resolution
of digital images, which in turn has made feature extraction algorithms computa-
tionally more demanding. Under these circumstances, linear solutions implemented
using the central processing unit (CPU) are limited by computational power and are
no longer capable of maintaining real-time execution for large scale images.

1.1 Motivation
However, in the field of parallel computing, a group of architectures, tradition-

ally linked to image rendering (mostly in games), has gained prominence within
this area. Also known as graphics processing units (GPUs), their functionality has
extended beyond the visualization domain, to also accommodate general-purpose
processing on GPUs or GPGPU.

Companies and organizations such as Nvidia and The Khronos Group respec-
tively, have designed APIs and frameworks (e.g., CUDA and OpenCL), thus pro-
viding developers with the ability to exploit the full potential of GPUs and to build
faster parallel solutions for more resource-intensive problems.

Even though CUDA is exclusive to Nvidia GPUs, it is still far better optimized
than its OpenCL counterpart, with speedups up to 30% when executing the same
task on the same hardware [17]. As a result, this makes CUDA a preferable choice
for this work.

Additionally, as AI-related applications (where feature extraction is included)
started making the shift from the cloud down to the power-constrained edge, the
demand for low-power solutions rose likewise. In order to meet this criterion, the
current work purposes to exploit the parallel computational power of modern low-
power GPUs and simultaneously perform algorithmic optimizations capable of re-

2



1.2 Objectives

ducing computational complexity while incurring negligible accuracy losses.

Apart from that, while there are other feature extraction algorithms that are
faster than SIFT, it cannot be overlooked that this algorithm is much more known
and commonly used due to its high robustness and accuracy which other algorithms
struggle to match [18]. It is therefore a suitable candidate to be parallelized on a
GPU and to be the focal point of this thesis.

1.2 Objectives
This thesis proposes to explore the parallelism of different families of GPUs in

order to speedup and improve the energy efficiency of the SIFT algorithm. The
main objectives of this work are:

• Review the state-of-art of the SIFT algorithm;

• Develop a parallel solution of SIFT using CUDA;

• Apply CUDA optimizations iteratively to the proposed solution;

• Measure and compare execution times as well as energy consumption of the
proposed implementation;

• Evaluate the obtained results and the feasibility of the GPU for future appli-
cations that involve feature extraction.

1.3 Dissertation Outline
This thesis is organized into six chapters. The first chapter introduces the topic

of the thesis, the motivation behind it and the main goals this work intends to
achieve. Chapter 2 focuses on the structure of the SIFT algorithm. Chapter 3
presents and explains the differences between the CPU and GPU architectures, fur-
thermore, it also introduces the CUDA programming model. Chapter 4 describes
the methods that were tested and implemented in order to accelerate and optimize
SIFT. Chapter 5 provides results alongside with their analysis. And finally, Chapter
6 concludes this thesis and presents some suggestions for future work.
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2.1 The SIFT Algorithm

This chapter introduces the theoretical concepts regarding feature extraction and
the techniques that SIFT employs in order to obtain keypoints and features from
digital images and video streams. Lastly, it is presented the performance and energy
efficiency of several parallel approaches that were found in the literature.

2.1 The SIFT Algorithm
SIFT can be decomposed into four major parts [1] [2]: Scale-Space creation

(please see 2.1.1), extrema detection (see 2.1.2), attribution of orientations (2.1.3),
and descriptor generation (2.1.4). Next, we address each step in detail.

2.1.1 Creation of the Scale-Space
In image processing, scale-space is a technique that allows the representation

of a given image at different scales. This is useful in SIFT because it grants scale
invariance to the algorithm. Besides that, it can also remove unwanted details from
the input image through recursive use of Gaussian filters, which, subsequently, also
avoids the formation of aliasing artifacts [19]. Gaussian filters can be defined as

G(x,y) =
1

2πσ2 e−
x2+y2

2σ2 , (2.1)

where x and y are the axis coordinates and σ the standard deviation.

The scale-space is divided into groups of images with equal size that are increas-
ingly blurry, each group is called an octave, and each image of an octave is referred
to as a layer. The first octave usually begins with an (2×) upscaled version of the
input image. Some implementations make this an optional step and prefer to use the
original image instead, however the present work tries to stay true to the algorithm
and therefore includes the upscaling by default. After each octave, the Gaussian
image with an accumulated blur of 2σ of the initial layer is down-sampled by a
factor of 2, creating a new octave. The cycle continues until the dimensions of the
final octave reach a given threshold defined by the user.

Once the scale-space is generated, the algorithm proceeds to detect blobs in
every layer. These blobs are regions that present similar properties, such as bright-
ness or color. These are aspects are crucial later for keypoint extraction. A simple
way to locate these regions would be by applying a Laplacian filter over each of
the generated images. However, this approach is computationally demanding, and
not practical for most applications. D.Lowe, the author of SIFT, suggests to calcu-
late the difference of Gaussians (DoG) instead, whose result is approximate to the
Laplacian of the Gaussian and is overall much faster [1] [20] [21].

5



2. Background on SIFT

Figure 2.1: Difference of Gaussians, courtesy of [1].

Figure 2.1 shows that for each octave, a new group of layers is created from the
subtraction of adjacent Gaussian layers.

2.1.2 Extrema Detection
The following step is to locate local extrema from the set of DoG images that

were just generated. The algorithm transverses each point of each resulting non-
bound layer and compares it to the neighboring pixels of that same layer and the
adjacent ones (see Figure 2.2). This is equivalent to comparing each pixel with 26
neighbors in a 3×3 ×3 volume. If the selected pixel is a maximum or minimum of
these 26 points, then it is considered to be a point of interest or a keypoint.

A later approach to SIFT [1] goes a step further and determines the sub-pixel
location of each keypoint to improve matching and stability. This method uses
the quadratic Taylor expansion to interpolate the DoG function D(x,y,σ) with the
candidate keypoint as the origin. This Taylor expansion is given by:

D(x) = D+
∂DT

∂x
x+

1
2

xT ∂ 2D
∂x2 x, (2.2)

where x = (x,y,σ)T is a column vector that represents the offset from the point of
interest. The location of the extremum, x̂ , is determined by taking the derivative of

6



2.1 The SIFT Algorithm

Figure 2.2: Extrema detection, extracted from [1].

this function with respect to x and setting it to zero, resulting in:

x̂ =−∂D−1

∂x2
∂D
∂x

, (2.3)

where:
∂D
∂x

= (
∂D
∂x

,
∂D
∂y

,
∂D
∂σ

)T (2.4)

and:

∂D
∂x

=
D(x+1,y,σ)−D(x−1,y,σ)

2
∂D
∂y

=
D(x,y+1,σ)−D(x,y−1,σ)

2
∂D
∂σ

=
D(x,y,σ +1)−D(x,y,σ −1)

2

. (2.5)

One drawback this method usually has, is the detection of a vast number of ex-
trema points, which may negatively impact performance, especially on larger scales.

Not all of these points provide useful information, in fact, some may have a
very low contrast while others may be situated along edges. In either case, the best
solution is to discard these points. For the former, we can analyze the intensity of
each pixel by using the Taylor expansion in (2.2) and remove pixels whose value
is less than a given threshold. For the latter, it is necessary to calculate the two
gradients with orthogonal directions at the chosen point. From here we can attain
three possible outcomes:

• A flat region, if both gradients are small;

• An edge, if one of the gradients is large and the other small;

7



2. Background on SIFT

• A corner, if both gradients are large.

Mathematically this can be achieved by analyzing the ratio between the eigen-
values of the second-order Hessian matrix, H:

H =

[
Dxx Dxy
Dxy Dyy

]
, (2.6)

where Di j are the derivatives obtained from the differences of the keypoint neigh-
bors. Let α and β be the smallest and largest eigenvalues respectfully. Then the
trace and determinant of H can be computed as:

Tr(H) = Dxx +Dyy = α +β

Det(H) = DxxDyy− (Dxy)
2 = αβ

(2.7)

The SIFT algorithm discards keypoint candidates whose eigenvalue ratio r = α

β
is

higher than a predefined threshold. Since only this ratio is required, the computation
of the eigenvalues can be skipped. The ratio of the Hessian matrix determinant and
its trace are related to r by:

Tr(H)2

Det(H)
=

(α +β )2

αβ
=

(rβ +β )2

rβ 2 =
(r+1)2

r
(2.8)

Therefore, to determine if a point is within the threshold, SIFT checks for:

Tr(H)2

Det(H)
<

(r+1)2

r
(2.9)

2.1.3 Orientation assignment
The next stage consists of assigning orientations for each keypoint. Orientation

is an essential aspect of the algorithm, as it grants invariance to rotation. This
is achieved by analyzing gradient directions and magnitudes around each point of
interest. In practice, SIFT uses a 36 bin circular histogram to store the essential
data(orientation and magnitudes of the gradients). Afterward, it checks for the bin
with the highest contribution and defines it as the predominant orientation of the
current keypoint. Additionally, if any other bin is at least 80% of the maximum, then
another keypoint is generated in the same location, but with that bin’s orientation.

The magnitudes and orientations of the gradients can be obtained with equations
(2.10) and (2.11), respectively:

m(x,y) =
√

(L(x+1,y)−L(x−1,y))2 +(L(x,y+1)−L(x,y−1))2, (2.10)

θ(x,y) = tan−1(
(L(x,y+1)−L(x,y−1))
(L(x+1,y)−L(x−1,y)

)), (2.11)
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2.1 The SIFT Algorithm

where m is the magnitude of the gradient, θ is the orientation, L is the smoothed
image and x,y the coordinates of the point.

2.1.4 Keypoint Descriptor
Finally, SIFT generates the keypoint descriptors/features, which are unique fin-

gerprints that help identify important and unique regions of the original image. In
order to achieve this, it first calculates the gradient map around each keypoint us-
ing a 16× 16 window, which is later divided into 16 cells 4× 4 (Figure 2.3 shows
a simplified version with a 8× 8 window). Then in each cell the magnitude and
orientation of the gradients are determined and their values are placed in an 8-bar
histogram. In this histogram, the magnitude of the closest gradients to the keypoint
weights more than the magnitude of more distant gradients. Once the histogram is
completed, it produces a 128 element vector that, once normalized, corresponds to
a feature.

Figure 2.3: Descriptor generation, obtained from [1].

Some examples of applications using this algorithm can be seen in figures 2.4,
2.5 and 2.6, which illustrate image matching, image stitching and object detection,
respectively.

Figure 2.4: Example of image matching using SIFT.
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Figure 2.5: Example of image stitching using SIFT.

Figure 2.6: Example of object detection using SIFT, adapted from [2].

2.2 Related Work
In the following section, it is presented the results of several parallel imple-

mentations that were found in the literature. These are subsequently split into two
different categories: High performance and low power. The former focuses on the
parallelization and acceleration of the SIFT algorithm on mid to high-end GPUs,
while the latter aims at a more energetic point of view, where efficiency is key.

2.2.1 High performance implementations
Table 2.1 shows the performance (in FPS) and efficiency (in FPS/W×100) of

several parallel SIFT implementations running on various platforms. Some of these
achieve more than 30 FPS for large scale images, however it is worth to mention that
the inner parameters of several steps can be changed to favor speed over accuracy.
The implementation proposed in the current work uses the ideal parameters that
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were suggested by D.Lowe, the original author of SIFT [2]. This often translates
into a greater number of detected features.

Table 2.1 Performance of various implementations of the SIFT algorithm on the
GPU

Article GPU Image Dimensions FPS TDP FPS/W × 100
[22] GTX 480 1280 × 720 13 250 W 5.2
[23] Tesla C2050 1280 × 960 20 238 W 8.4
[24] GTX 960 1280 × 1024 29 120 W 24.1
[25] GTX Titan Black 1280 × 960 48 250 W 19.2
[26] GTX 9600 1200 × 800 11 95 W 11.6
[27] Quadro FX 3400 1280 × 960 20 101 W 19.8

To give an interesting example, CUDASift [28], which claims to be the fastest
implementation of this algorithm, omits some small steps in order to achieve greater
performance. As a result, fewer keypoints are generated and accuracy drops when
compared to the original algorithm.

2.2.2 Low-power implementations
The use of feature extraction algorithms in a low-power system is not some-

thing that is relatively new. In [29], the authors proposed an FPGA implemen-
tation of SIFT which achieved a 56 frames per second for a VGA resolution of
(640×480). [30] proposed an ASIC solution of SIFT/SURF that managed 5.5 FPS
in HD images while running at 23mW. [31] proposes another implementation of
SIFT in a FPGA which runs 640×480 images at 32FPS. More recently [32] intro-
duced an OpenCL-based SIFT accelerator for image features extraction on FPGA
speeding up the algorithm up to 13.7× compared to software version and increasing
the energy efficiency up to 1.38× more than the GPU accelerator on an high-end
NVIDIA GPU. On the mobile side, [33] proposed a low power solution of SIFT us-
ing OpenCL on a smartphone, achieving an average of 5.89FPS on the [10] dataset
while being 41% more power efficient than its CPU counterpart.

The proposed solution, however, is done in a relatively new environment, in
this case, a dedicated low-power GPU. While some of the other solutions are faster
or more efficient than ours, we can not ignore the complexity, development time
needed and cost associated to the implementation of feature extraction algorithms
on FPGAS and ASICS. The current work is also portable between various NVIDIA
GPUs, and therefore its easier and faster to implement.
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3.1 CPU architecture

The main focus of this chapter is to analyze and compare the CPU and GPU
architectures of modern computers in order to understand the strengths and weak-
nesses of each. Additionally, this section also explores how CUDA interacts with
each.

3.1 CPU architecture

The central process unit (CPU) is essentially the brain of every computational
system. It is responsible for basic arithmetic, logic, controlling, and input/output
(I/O) operations. The first commercially available CPUs were designed with only
one core in mind. As a result, they could only execute one instruction at a given
time. This paradigm did not change for a while. In fact, it took 30 more years for
the first dual-core processor to be released in the market [34]. Moreover, as this
new architecture continued to evolve, the more obsolete its predecessor became. As
manufacturers quickly realized that multi-core processors had the potential to pro-
vide better gains in the overall performance of programs that support multithread-
ing, thus giving them a competitive edge.

Today, CPUs still possess a small number of cores, since its primary role has
not changed much, continuing to act as a microprocessor optimized with significant
amounts of local memory (i.e. cache) to perform sequential operations. However,
due to the slowing down of Moore’s Law, it is expected that the number of cores
will scale upwards [35].

3.1.1 Memory Hierarchy

The CPU has a big emphasis on low latency, which is mainly possible due to
the three memory components that exist alongside the processor (cache L1, L2 and
L3)(see figure 3.1.). Since data is fetched in blocks, the existence of a cache can
help the CPU predict the flow of execution by taking advantage of the principle
of locality. In terms of speed, cache L1 is the fastest, followed by L2 and L3 (or
LLC) [36]. The only drawback of this, is the relatively small size of each component
since SRAM (the type of memory used by CPU caches) is rather expensive.

The CPU can still access other types of memory such as the DRAM or the Hard
Drive, however this comes at a cost of higher latency and lower speeds overall.
Hence the reason the CPU tries to avoid fetching data from these memories, unless
it is forced to (in case of a cache miss).
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Figure 3.1: An example of a modern dual core CPU architecture.

3.2 GPU architecture
The graphics processing unit (GPU), on the other hand, was projected to have

hundreds/thousands of small cores that can handle thousands of threads simultane-
ously (see figure 3.2.).

Figure 3.2: CPU vs GPU Architecture, adapted from [3].

Initially, these cores were built exclusively for rendering, however as times went
on, new techniques emerged, and GPUs began to process more complex tasks such
as realistic scenarios in two dimensions or even simple scenarios in three dimen-
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sions. Eventually, this technology started gaining popularity in the gaming and
multimedia industry, which played a vital role in bringing GPUs to personal com-
puters [37]. Taking into account the computational power of GPUs, it would be a
matter of time before new applications began to surface besides graphic rendering
(e.g. Blockchain, artificial intelligence, deep learning, among others).

Today, GPUs have become an essential component in modern computers. One
of the main reasons why they are important and valued is because they can eas-
ily outperform the CPU at heterogeneous tasks. Their large core count and high
bandwidth are reaching unprecedented numbers, thus opening doors for the future
development of more GPU-accelerated applications [38].

3.3 CUDA Programming Model
CUDA (also known as Compute Unified Device Architecture) is the develop-

ment platform for GPGPUs, which includes the combination of specific hardware
and software for the development of solutions in heterogeneous systems. At first,
this platform only supported the C language, but later, it expanded to C++, Java, and
Python. This increase in accessibility enabled programmers to take better advantage
of GPU resources that were previously inaccessible to them.

The CUDA API allows users to write kernels, which are functions that are exe-
cuted on the device (GPU). These kernels, unlike normal CPU functions, are usually
carried out by a large number of threads. To illustrate this idea, the following code
performs the simple task of adding two vectors together (A and B) and storing the
result in another vector (C).

1 / / K e r ne l d e f i n i t i o n
2 g l o b a l vo id VecAdd ( f l o a t ∗ A, f l o a t ∗ B , f l o a t ∗ C)
3 {
4 i n t i = t h r e a d I d x . x ;
5 C[ i ] = A[ i ] + B[ i ] ;
6 }
7

8 i n t main ( )
9 {

10 . . .
11 / / K e r ne l i n v o c a t i o n wi th 32 t h r e a d s
12 VecAdd<<<1, 32>>>(A, B , C) ;
13 . . .
14 }

In this sample, the VecAdd kernel is defined using the global declaration
specifier and the number of CUDA threads that are launched is configured inside
the <<<...>>> syntax in the main function. In other words, the kernel in this
example is executed with one block of 32 threads.
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On a lower level, the CUDA processing flow would go as follow (illustrated in
Figure 3.3):

1. Copy data from main memory to GPU memory;

2. CPU launches the GPU kernel;

3. GPU’s CUDA cores execute the kernel in parallel;

4. Copy the resulting data from GPU memory back to main memory.

Figure 3.3: Processing Flow in CUDA.

Regarding complex tasks, they can still be executed in parallel on the GPU. In
fact, the programming model of the CUDA platform is based on the notion that all
problems can be factored into simpler sub-problems (see Figure 3.4.).

To better understand this, the programming model includes three fundamental
abstractions [4]: a hierarchy of thread groups, shared memories, and barrier syn-
chronization. These are exposed to the programmer as a minimal set of language
extensions. Additionally, they can provide fine-grained data parallelism and thread
parallelism, thus serving as a guide to the programmer on how to partition the prob-
lem into simpler sub-problems that can be solved independently and in parallel.

3.3.1 Memory Hierarchy
During runtime, threads can access data from various sources, as illustrated in

Figure 3.5. Each thread has a private local memory. Each block of threads has a
shared memory visible to all threads of that same block and all threads have access
to the global memory.
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Figure 3.4: Scalability in CUDA, obtained from [4].

Figure 3.5: GPU Memory Hierarchy, acquired from [4].
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Furthermore, blocks can be organized in a one-dimensional, two-dimensional or
three-dimensional grid of thread blocks, as illustrated in Figure 3.6. The number of
thread blocks in a grid is usually determined by the size of the data to be processed
or the amount of processors in the system.

Figure 3.6: Grid blocks layout, extracted from [4].

There are also two additional read-only memory spaces that can be accessed by
all threads: the constant and texture memory. These memory spaces are optimized
for different memory usages [4].

3.3.2 CUDA optimization techniques
In order to take full advantage of the GPU resources, it is essential to have a

good understanding of the many techniques that NVIDIA recommends [39]. Major
optimizations can be separated into three main categories:

• Memory optimizations;

• Latency optimizations;

• Instruction optimizations.

Memory optimizations have the most significant impact in terms of perfor-
mance. Their main goal is to maximize the use of bandwidth by using faster mem-
ories and mitigating wasted transactions. Some of these techniques are:
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• Minimizing data transfers between host and device: Since the peak theo-
retical bandwidth between the main (host) memory and the device memory is
slower than the theoretical peak bandwidth between GPU and device mem-
ory, programmers should strive to group and reduce the number of memory
transfers between these components whenever it is possible, even if it means
running kernels on the device that do not show performance gains.

• The use of pinned memory: Page-locked or pinned memory transfers are
high bandwidth transfers between host and device. The usage of this type
of memory can boost the speed of memory transfers, however, because this
resource is scarce, it takes a longer time to allocate. This technique is, there-
fore, situational and depends on the application. Figure 3.7. illustrates both
ways data can be sent to the device.

Figure 3.7: Difference between pageable and pinned data transfers, obtained from
[5]

• Asynchronous transfers: Data transfers between the host and the device
can either be blocking or non-blocking. In blocking transfers, control is re-
turned to the host thread only after the data transfer is complete. On the other
hand, in non-blocking transfers, control is returned immediately to the host
thread. This means that non-blocking transfers are asynchronous and can also
be overlapped. Consequently, this allows the programmer to perform a con-
current copy and execute, which, when implemented correctly, is faster than
the sequential method (see Figure 3.8).

• Coalesced access to global memory: Memory coalescing is a technique that
allows an optimal usage of global memory bandwidth. That is, when par-
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Figure 3.8: Asynchronous vs synchronous transfers, adapted from [6].

allel threads running the same instruction access consecutive locations in the
global memory, the most favorable access pattern is achieved [40]. In the case
of misaligned or strided memory accesses the same can not be said. In fact,
both suffer performance penalties as seen in Figure 3.9a and 3.9b.

(a) Misaligned memory access (b) Strided memory access

Figure 3.9: The performance impact of different memory access patterns, extracted
from [7].

On a side note, the increasingly larger cache sizes have diminished the per-
formance impact of misaligned memory accesses on newer devices.

• The use of shared memory: Because it lies on-chip, shared memory has
higher bandwidth and lower latency than global memory. Its primary use in-
cludes inter-block communication, reducing redundant global memory trans-
fers, and avoiding non-coalesced accesses. While shared memory can provide
a significant boost in performance, when multiple threads try to read or write
to the same memory bank, a bank conflict occurs and those accesses are se-
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rialized, degrading performance (see Figure 3.10). Strategies that are used to
avoid those bank conflicts usually include padding or changing the address
patterns.

Figure 3.10: Example of a 2-way bank conflict, obtained from [8].

• The use of texture memory: The read-only texture memory space is cached.
Therefore a texture fetch costs one read from texture cache unless a cache
miss takes place. In that case it costs the same as reading from device mem-
ory. Texture cache is optimized for 2D spatial locality, so threads of the same
warp that read texture addresses that are close together will achieve the best
performance.

One way to achieve better performance is to keep the multiprocessors fully occu-
pied. A program that has too many idle threads is considered to be poorly balanced
and suboptimal in terms of performance. Hence, the importance of maximizing
occupancy, that measures the ratio between active warps per multiprocessor and to-
tal possible active warps. While a higher occupancy does not necessarily imply a
higher performance, it is still an overall good practice. Furthermore, it helps to hide
latency arising from register dependencies.

Another point that should also be taken into consideration is the fact that stream-
ing multiprocessors (SMs) launch threads in warps, or groups of 32 threads. This
is important because the number of threads per block should be a multiple of that
number for optimal efficiency.

Finally, instruction optimizations are a part of a lower-level category that in-
cludes integrated functions and fast math libraries. The main goal of these op-
timizations is reduce the number of instructions that are needed to get the same
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amount of work done.
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4. Parallelizing SIFT on the GPU

This chapter discusses several methods that were developed during the course
of this work in order to obtain performance gains by parallelizing SIFT on the GPU.

4.1 The SIFT Datablock
One of the biggest hurdles in parallel computing is the proper management of

memory transfers between host and device. As mentioned in the previous chapter,
consecutive transfers between the two can hinder the overall performance of the so-
lution. SIFT is no exception to this rule. Hence it is better to parallelize a significant
part of the algorithm and then run it on the GPU rather than sending data back and
forth. Figure 4.1 shows how the proposed implementation is laid out.

Figure 4.1: The proposed execution flow of the SIFT algorithm on a GPU.

4.2 2D Gaussian Convolution
2D convolution is a complex task that demands a considerable amount of com-

putational power. For this reason, the current work presents two different ap-
proaches that were tested and evaluated in order to develop an optimal solution.
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4.2 2D Gaussian Convolution

4.2.1 Separable convolution
In image processing, the Gaussian blur is the result of the convolution between

a given image and a Gaussian function. This type of blur, not only it is used to
reduce noise and detail from the image, but it can also enhance image structures at
different scales without introducing aliasing artifacts, which is essential for scale-
space representation.

The main issue is that 2D Gaussian convolutions are very taxing both in terms of
time and resources. Even with the implementation of the optimizations mentioned
in the previous chapter, this part would still be a bottleneck in SIFT.

Fortunately, the Gaussian blur contains a property known as filter separability,
that if used correctly, can mitigate this bottleneck and grant significant performance
gains. In other words, the effect of applying a 2D Gaussian filter to an image can
also be achieved by applying two consecutive 1D Gaussian filters to the same image,
one in the horizontal direction and another in the vertical direction (see Figure 4.2).

Figure 4.2: Example of a spatially separable convolution using a Gaussian filter.

In the example of Figure 4.2, the 2D matrix:

1
16

1 2 1
2 4 2
1 2 1

 (4.1)

can also be written as the product of these two one dimensional filters:

1
4

1
2
1

 · 1
4
[
1 2 1

]
=

1
16

1 2 1
2 4 2
1 2 1

 (4.2)

This property has the advantage of offering more flexibility to the implementa-
tion, not to mention it also reduces the overall arithmetic complexity and bandwidth
usage. Assuming the 2D filter has size L×L and the input image M×N then this
technique saves a total of (L2−2L)MN operations, as long as L > 2 (see figure 4.3).
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Figure 4.3: 2D convolution versus separable convolution in a 100x100 image

On the GPU, the present work takes advantage of the various resources that are
available in order to build a fast and efficient solution. For instance, operations with
high arithmetic intensity (i.e convolution) are performed on shared memory instead
of global memory, due to its high bandwidth and low latency. Gaussian filters are
stored in constant memory since they do not change. Other optimizations involve
padding thread blocks to achieve the alignment required for coalesced loads as well
as loading multiple pixels per threads to reduce the number of idle threads. Finally,
it is also possible to process rows and columns in parallel.

4.2.2 Box Filters approximation
Another way to approach convolution is with box filters. A box filter or mean

filter is a spatial domain linear filter that has a box-shaped impulse response. It is
a low-pass filter that applies an averaging blur to the input image (4.3 shows an
example of a typical box filter).

1
9

1 1 1
1 1 1
1 1 1

 (4.3)

Unlike Gaussian filters, box filters always have equal weights, which can sim-
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4.3 Difference of Gaussians

plify the complexity of convolutions. However, these filters alone are not suitable
for scale-space representation.

Fortunately, they also contain special properties that can prove to be useful for
the current work. According to the central limit theorem, box filters can converge
to a Gaussian blur when applied multiple times [41]. Figure 4.4. demonstrates
that as the number of passes increases, the more accurate the shape becomes when
compared to a bell curve.

Figure 4.4: Gaussian approximation using a box filter.

On the GPU, the proposed implementation uses the sliding window method.
That is, as the kernel moves from left to right, it adds in the contribution of the
new sample on the right, and subtracts the value of the exiting sample on the left.
This only requires two additions and a multiplication per output value, which makes
convolution independent of the filter size (see Figure 4.5).

In addition to the above, box filters are separable, which means two one dimen-
sion filters can achieve the same as a 2D filter while using fewer operations. In
CUDA, this can also be exploited to process rows and columns in parallel.

4.3 Difference of Gaussians
The DoG is a relatively simple task when compared to the rest of the algorithm.

Mathematically, it performs pixel-wise subtraction over every pair of layers from the
scale-space. Since there are no data dependencies associated with this operation, it
can be done entirely in parallel, as shown in figure 4.6.
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Figure 4.5: Example of a 1D convolution with box filters using the sliding window
method.

Figure 4.6: Difference of Gaussians on the GPU.

Nevertheless, some optimizations can still be made in order to avoid unneces-
sary memory accesses. A naive approach would load a pair of images each time it
needs to calculate a DoG layer. This is suboptimal because some images are used
more than once. The current implementation increases the workload of each thread.
Instead of doing a single subtraction, each thread performs a total of N−1 subtrac-
tions, where N is the number of layers per octave. This allows for every needed
image to be loaded only once, saving a total of N−2

2N−2 of all memory accesses.
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4.4 Extrema Detection

4.4 Extrema Detection

Finding the position of the local minima/maxima requires 26 comparisons per
pixel. It is, therefore, a time-consuming task in which the control flow tends to di-
verge. Consequently, load balancing becomes harder, which may negatively impact
performance.

The proposed implementation tries to minimize the effects of branching by cre-
ating a bitmask that is capable of evaluating if a given pixel is a minimum or a
maximum. This bitmask can be very useful for the current case, as it converts most
branches into bitwise operation, which reduces the number of data dependencies
and consequently accelerates parallelism.

In CUDA, the ideal approach would be to take advantage of shared memory,
however in this case, neighborhood regions overlap each other (as seen in figure
4.7), which tends to generate several bank conflicts. To avoid this scenario, our
implementation opts for texture memory instead, as it is cached and also designed
to be efficient for spatially-localized accesses in 2D arrays.

Figure 4.7: Extrema Detection on the GPU.

Regarding subpixel refinement, it can be achieved by using the Gaussian elim-
ination, however there is a faster way that bypasses most data dependencies. That
is, through a closed circuit based on the Laplace expansion.
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4.5 Orientation Histogram
A naive implementation of the 36 bin histogram on the GPU would make each

allocated thread responsible for computing the predominant orientation of each fea-
ture point (or keypoint). However, this approach suffers from load imbalance and
non-coalesced accesses. The current work proposes to use a warp (32 threads) per
keypoint instead, as this does not present the disadvantages mentioned above [42]
[43].

The radius of the neighbor region around a given point is calculated with r =

3×λori×σoct , where r is the radius, λori = 1.5 by default [44] and σoct is the scale
of the octave in which the keypoint was located.

During run-time, each warp loads the gradient from those regions in a coalesced
pattern, thereby increasing the number of simultaneous accesses to the same bin.
However, since the radius is considered relatively small, atomic operations (opera-
tions that are guaranteed to be performed without interference from other threads)
can be applied without significant performance losses.

4.6 Feature Descriptor
In order to generate SIFT descriptors, this work makes 512 threads cooperate in

16 warps (groups of 32 threads), where each group calculates 8 values of a descrip-
tor, representing a histogram for one of the 16 squares surrounding the keypoint.
Together they define the grid that is aligned with the image that contains their as-
signed square (16×8 = 128 elements for each feature vector). For every pixel that
is inside this region, weighted gradient information is extracted and added to the
8-bin histogram that makes up the descriptor.

After obtaining the descriptors of each keypoint, the final step is to normalize
its values in order to reduce the effects of illumination changes, which can be done
using an L2 normalization.

4.7 Pinned memory optimizations
The usage of pinned memory in SIFT is advantageous in a case where alloca-

tion is only done once, preferably at the beginning. A video stream, for example,
can reuse the same memory space as long as its dimensions do not change(see fig-
ure 4.8), which allows the algorithm to bypass the overhead of re-allocations and
improve the overall performance.
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Figure 4.8: Example of how a video stream can take advantage of pinned memory
transfers. Due to memory constraints, each frame must be processed sequentially,
however the allocated memory space of the first frame is reused by every other
frame, hence allocation is only needed once.
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5.1 System Setup

This chapter presents and analyzes the results that were obtained from the par-
allelization of the SIFT algorithm. Each experiment was repeated multiple times on
three different test benches (see table 5.1) to ensure consistency within the results.

Table 5.1 Test System Configurations
Workstations GPU CPU RAM
a) GTX TITAN X Intel Core i7-4790K @ 4.00 GHz 32 GB
b) GTX 1060 Intel Core i7-8750H @ 2.20GHz 16 GB
c) Jetson TX2’s GPU ARM - Cortex A57 @ 2GHz 32 GB

5.1 System Setup
All of the GPUs present in this environment are part of the Pascal micro-architecture

developed by NVIDIA. Consecutively, these devices only differ in their parameters,
with some having more or fewer capabilities/constraints than others. For instance,
the GTX TITAN X is a high-end GPU mostly intended for HPC. Hence it requires
more resources than a typical GPU. The GTX 1060, despite the lower performance,
is still known to be cost-efficient and versatile for various tasks. And finally, the Jet-
son TX2 has a custom-built GPU with the purpose of maximizing energy efficiency
(over performance) on low power applications.

A more detailed overview of each can be seen in the following table:

Table 5.2 GPU specifications
GTX TITAN X GTX 1060 Jetson TX2

Memory Size 12 GB 6 GB 8 GB
Memory Type GDDR5 GDDR5 LP-DDR4
Memory Bus 384 bit 192 bit 128 bit
Bandwidth 336.6 GB/s 192.2 GB/s 59.7 GB/s
Base Clock 1000 MHz 1506 MHz 854 MHz
Boost Clock 1089 MHz 1709 MHz 1300 MHz
Memory Clock 1753 MHz 2002 MHz 1866 MHz
TDP 250 W 120 W 7.5 W - 15 W
SM Count 24 10 2
L1 Cache (per SM) 48 KB 48 KB 48 KB
L2 Cache 3 MB 1536 KB 512 KB
FP32 (float) performance 6.691 TFLOPS 4.375 TFLOPS 750.1GFLOPS
FP64 (double) performance 209.1 GFLOPS 136.7 GFLOPS 23.44 GFLOPS
Cuda Cores 3072 1280 256

The different characteristics of each device allow reduction of any bias regarding
the use of GPGPU in feature extraction algorithms, both in terms of performance
and energy efficiency.
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5. Experimental Results

In this thesis, experiments were made in a controlled environment in both Win-
dows 10 and Ubuntu 17.04 OSes with temperatures ranging from 30 to 60oC to
prevent thermal throttling. The current work is divided into two different parts:
A parallel solution made in CUDA and a serial version made in C. The latter is a
heavily modified version of [44], which tries to follow Lowe’s algorithm as close as
possible. The GPU solution was developed iteratively from the serial version and,
likewise, does not deviate from the premises of the algorithm.

The compilers that were used were the GNU Compiler Collection (GCC) for the
sequential version and the NVIDIA CUDA Compiler (NVCC) for the parallel ver-
sion. In addition to the above, various flags were explored to increase performance.
These include:

• Level 2 optimizations (-O2) for both serial and parallel versions;

• Enabling PTX assembler optimizations for the GPU code (-Xptxas O2);

• Defining the maximum register count for each GPU device in order to achieve
higher occupancy (-maxrregcount=N1);

• Matching the SM architecture accordingly (-arch compute 6x2)

• Compiling for the 64 bit platform (–machine 64) to permit the usage of more
than 4GB of RAM memory.

For testing purposes, the serial version is only limited to one CPU (Intel Core
i7-8750H@2.20GHz) core set to high priority in order to mitigate any possible in-
terference from the OS scheduling system.

The datasets that are used to evaluate the performance of implemented work
were obtained from [11] and [10]. They consist of a collection of .pgm images of
various sizes and dimensions.

Finally, execution times are measured using functions that have very high accu-
racy and precision. In Linux, the program resorts to clock gettime() from the time.h
C library. In the case of Windows, since there is no direct equivalent, QueryPerfor-
manceCounter() and QueryPerformanceFrequency() are used.

5.1.1 GPU Memory transfers
Before taking a throughout inspection of the current work, it is analyzed how

memory transfers between Host and Device can impact the performance of the al-
gorithm.

1N is a number which can be obtained using the NVIDIA occupancy calculator for that device.
2”compute 61” for both the Titan X and GTX 1060 , ”compute 62” for the Jetson TX2.
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5.1 System Setup

Figure 5.1: HtoD, DtoH and DtoD transfer times for 5MB of data on a GTX 1060

Figure 5.1 shows the times for both pageable and pinned memory transfers from
host to device (HtoD), device to host (DtoH) and device to device (DtoD). The usage
of pinned memory can cut the transfer times by more than a half in both DtoH
and HtoD (DtoD is not affected by pinned memory), however that leads to longer
allocation times as a consequence. On the other hand, as previously mentioned in
chapter 4, a video feed can bypass consecutive allocations as long as every frame
shares the same memory space. Thus, in that case, the usage of pinned memory can
be beneficial for SIFT like applications.

5.1.2 CUDA shared memory

Shared memory is often considered to be faster than global memory due to its
lower latency and higher bandwidth. However that might not be always the best
answer. Besides having a more complex implementation, shared memory can also
be subject to overheads that are absent from other versions (e.g. bank conflicts).
Another point take into consideration is that sometimes it is better to favor a simpler
implementation and better scalability over small gains. It is therefore crucial for
developers to evaluate and decide what is the optimal solution for each segment.

Figure 5.2 for example, shows that convolution using shared memory is capable
of achieving twice the performance of convolution using texture memory (which is
an abstraction of global memory).

On the other side, there are also cases where the usage of shared memory is
infeasible. For example, when comparing pixels in various vicinities in order to
find a local minimum or a maximum (local extremum detector).
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5. Experimental Results

Figure 5.2: Convolution using shared memory vs convolution using texture mem-
ory, adapted from [9]

.

5.1.3 Gaussian Convolution vs Box Filters
In the previous chapter, two different approaches to convolution were intro-

duced. In this part, these methods are compared using various images from the
datasets in order to determine the performance and accuracy of both implementa-
tions.

As shown in graph 5.3, the original 2D Gaussian convolution is by far the slow-
est implementation in all cases. As explained previously, this result is mostly due
to the sub-optimal implementation which generates more instructions than other
solutions.

The Gaussian separable convolution is the fastest method present in this part.
This is to be expected as this version explores more parallel techniques which were
previously impossible, like for example: The execution of rows and columns in
parallel.

Box filters are an alternative solution to Gaussian filters. However they require
the minimum of 3 passes in order to resemble a bell curve (see figure 4.4). In terms
of performance, they are close to the 1D gaussian filters mostly due to the fact that
each pass of this filter only requires only 1 multiplication and 2 additions per pixel
regardless of the filter size. (This can prove beneficial when attempting to simulate
a Gaussian filter with a high standard deviation).

In general, convolutions are operations that can be very well optimized to run
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5.2 Scale-space generation

Figure 5.3: The performance of the three convolution methods that were analyzed
in a 2560×1920 image using σ = 10.

on GPUs. For this reason, it should come to no surprise to see speedups up to 10x
or more relative to sequential methods.

In terms of accuracy, Figure 5.4. shows the differences between each method,
which in this case are very small.

5.2 Scale-space generation
In order to generate the Gaussian scale-space it is required at least one of the

convolution methods mentioned above, an upscaling kernel, and a downscaling ker-
nel. In this work, all of these functions are parallelized in order to maximize per-
formance. The upscaler uses bilinear interpolation, while the downscaler resamples
images from every other pixel.

Seeing that each kernel can be called multiple times, it makes sense to analyze
the accumulated times that each takes on a given image (see Table 5.3). As a matter
of fact, the convolution kernel is called once for each existing layer, the downscaling
kernel is called once for each octave and the upscaling kernel is only executed once
at the very beginning.

3Gaussian separable convolution
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(a) Gaussian output (downscaled) (b) Box output (downscaled)

(c) Original image (downscaled) (d) Differential between outputs (amplified
10x to allow visual inspection, since the er-
ror between the two proposed methods is
extremely small).

Figure 5.4: Comparison between the Gaussian convolution and Box convolution
using σ = 10.

Table 5.3 Accumulated times (in milliseconds) for the scale-space generation of a
2560×1920 image

Kernel GTX 1060 Titan X Jetson TX2 CPU
Convolution3 19.02 14.2 401.55 1131.54
Downscale 0.34 0.27 1.23 2.05
Upscale 1.7 1.54 8.54 22.95
Total 21.06 16.01 411.32 1156.54

These values show that, across every device, the convolution kernel has the
biggest impact on the scale-space. Both the downscaler and the upscaler by them-
selves do not present a significant bottleneck. However, its worth mentioning that
by introducing the upscaling kernel, every layer of the first octave becomes twice
the size of the original image, which consequently adds more time to the other ker-
nels. It is for this reason that some implementations decide to skip it entirely.
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5.3 Difference of Gaussians

In terms of performance between machines, the fastest time recorded was from
the TITAN X, achieving a speedup of 72.26× relative to the serial version. The
GTX 1060 follows next with a speedup of 54.92×, and finally the Jetson TX2 with
a speedup of 2.81×, but with a much lower energy cost.

To give a better perspective, these speedups may vary according to the size of
the input image as seen in figure 5.5.

Figure 5.5: Speedup of each device relative to the CPU while generating the scale-
space.

5.3 Difference of Gaussians
The difference of Gaussians is an interesting segment to run on a GPU, since

the only requirement of this step is to perform a maximum of 2 subtractions per
pixel for each octave, it can be done almost instantaneously as there are no data
dependencies associated with this operation (see Table 5.4).

In this part, it is possible to see a big difference in performance between the
CPU and GPU. While the CPU needs to iterate through every pixel of every gener-
ated layer, the GPU can just use its grid of thread blocks to simplify the problem,
bringing huge gains for every device.
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Table 5.4 Difference of Gaussians on CPU and GPU in milliseconds
Image Size GTX 1060 Titan X Jetson TX2 CPU
480×640 < 1 < 1 1.56 12.1
765×512 < 1 < 1 2.1 16.28
800×640 < 1 < 1 3.46 19.14
1000×700 < 1 < 1 4.6 24.86
1600×1200 < 1 < 1 7.141 66.44
2560×1920 1.17 < 1 11.43 165.22

5.4 Extrema Detection
The next step, on the other hand, requires a more detailed analysis since its im-

plementation is more complex by design. At first, it was attempted to build a naive
version in global memory that used branches, this approach was quickly discarded
as the yielded results were about the same if not worse than the sequential equiv-
alent. On the second attempt, global memory was replaced with shared memory.
This version not only was more difficult to implement but also brought up several
issues, mostly regarding bank conflicts. Due to these circumstances, it was also
scrapped. The third and final attempt explored texture memory in order to take ad-
vantage of its caching mechanisms, and branchless operations to prevent divergence
in the algorithm.

The results in figure 5.6 show that the parallel implementations achieve higher
speedups relative to the serial version as the size of data increases.

Since texture memory is cached it should also be optimal for this type of prob-
lem since each pixel interacts with every other pixel in its vicinity.

5.5 Orientation Histogram
A basic serial histogram is relatively simple to implement. For each keypoint

it tries to find the corresponding bin for each orientation and increments its value.
Parallel histograms, on the other hand, are more difficult to implement due to pos-
sible collisions. The main challenge here is that the output location of each element
is not known prior to its reading. Therefore it is impossible to create a parallel
histogram that completely avoids collisions. Nowadays, the improved atomics per-
formance from newer architectures has allowed this problem to become less of an
issue. Hence this work proposes to use a combination of shared memory and atom-
ics in order to build the orientation histogram of each keypoint.

Figure 5.7 shows that the GPUs achieve various gains, however the overall im-
pact of this step is not so significant, mostly due to the fact that the radius around
each keypoint is relatively small and therefore only a small patch of data is pro-

40



5.6 Feature Descriptor

Figure 5.6: Speedup of each device relative to the CPU while locating extrema
points.

cessed to create each histogram.

5.6 Feature Descriptor
The feature descriptor has a similar implementation to the previous method,

however in this case, the amount of data that is handled is much larger. Which in
turn can result in lower relative gains between each machine as stress increases due
to a greater number of collisions in each cell (see figure 5.8).

In this graph the TITAN X presents the best performance with a relative speedup
up to 69.97×, the GTX 1060 comes next with a relative speedup up to 53.26× and
finally the Jetson TX2 with a speedup of 2.8×.

5.7 Global SIFT Behavior and Results
In general, results show that for small scale images, the serial implementation

has no problem keeping up with real time execution. However, as image dimen-
sions start to expand, the number of detected keypoints increases and the overall
performance diminishes. To sum up, the exponential growth of the complexity of
the SIFT algorithm and the lack of resources from the CPU to handle it are the main
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Figure 5.7: Speedup of each device relative to the CPU while finding the orientation
of each keypoint.

factors for performance degradation in a serial solution.

5.7.1 Performance analysis
This increase in demand does not reflect the same level of impact on a mid to

high end GPU. Mostly due to the fact that parallel implementations split the problem
into more simpler pieces which can then run concurrently. In reality, the limiting
factor of the GPU ends up being its grid size and processing power, which explains
the differences that were obtained between the GTX 1060 and the TITAN X (see
Table 5.5).

It is important to reiterate that the CPU is only running one thread and that the
main purpose of table 5.5 is to highlight the importance of parallelism in SIFT like
applications.

5.7.2 Energy Efficiency Analysis
As seen in the results from the previous parts, the Jetson TX2 can not compete

with the other GPUs in terms of speed. This is mostly because it was built to be
a low power GPU that maximizes energy efficiency over performance. In order to
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5.7 Global SIFT Behavior and Results

Figure 5.8: Speedup of each device relative to the CPU while generating feature
descriptors.

Table 5.5 Summary of times(measured in milliseconds) and speedups of each seg-
ment in order to extract features from a 2560x1920 image.

GTX 1060 TITAN X JETSON TX2 CPU
Segment Time Speedup Time Speedup Time Speedup Time
Scale-Space 21.06 54.92 16.01 72.26 411.32 2.81 1156.54
Difference of Gaussians 1.17 141.21 0.42 392.26 11.43 14.46 165.22
Extrema detection 12.87 61.62 8.42 94.14 262.79 3.02 793.06
Orientation histogram 2.93 33.89 1.7 58.84 68.55 1.45 99.13
Feature descriptor 20.48 53.26 15.58 69.97 388.47 2.81 1090.45
Total 58.5 56.5 42.12 78.45 1142.56 2.89 3304.4

make a fairer comparison, table 5.6 demonstrates the performance per watt of each
implementation.

While the other GPUs can outperform the low-power GPU version in most
cases. An analysis to the energy consumption of each platform shows that the Jetson
TX2 is far more power efficient for the same amount of work. It is only surpassed
by the GTX 1060 at the last two larger images due to its limitations and constraints.

On lower scale images the JETSON can spend up to 6× less power than its CPU
counterpart running @2.20 GHz while achieving the same level of accuracy.
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Table 5.6 Performance per watt of each device (FPS/W × 100)
Image Resolution GTX 1060 TITAN X JETSON TX2 CPU
2560×1920 14.25 9.5 11.67 0.67
1600×1200 18.81 12.99 18.67 1.67
1000×700 23.08 15.61 26.14 4.47
800×640 29.98 21.16 33.94 5.81
765×512 33.33 22.86 37.61 6.82
480×640 35.92 24.99 44.44 9.18

5.7.3 Matching the robustness of the SIFT parallel algorithm

In this subsection, it is presented various examples from the two datasets in
order to show the location of the extracted features obtained from the proposed
implementation (see figures 5.9, 5.10, 5.11, and 5.12). As well as examples of
image matching in order to demonstrate the robustness of the algorithm to scale
changes, rotation changes and illumination changes (see figures 5.13, 5.14, 5.15,
5.16, 5.17, and 5.18). In the end, a deeper analysis of these claims is made.

Figure 5.9: 800x640 image from [10]: 2832 keypoints detected.
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Figure 5.10: 850x680 image from [10]: 8950 keypoints detected.

Figure 5.11: 1600x1200 image from [11]: 18021 keypoints detected.
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Figure 5.12: 2560x1920 image from [11]: 24432 keypoints detected.

Figure 5.13: Example of scale invariance in matching.

Figure 5.14: Another example of scale invariance in matching
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Figure 5.15: Example of rotation invariance in matching.

Figure 5.16: Another example of rotation invariance in matching

Figure 5.17: Example of illumination invariance in matching.
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Figure 5.18: Another example of illumination invariance in matching.

Like any other detection algorithm, false positives or matching errors are in-
evitable (best seen in Figure 5.13). Although it is nearly impossible to eliminate all
of them without affecting other matches, it is still desirable to use the parameters
suggested by D. Lowe to help minimize the number of outliers and improve the
quality of the extracted features.

In order to assess the robustness of the present work, a series of tests were
carried out on three separate images: Graf.pgm, Boat.pgm and Bikes.pgm. For each
of these images three scenarios were applied. A rotational scenario, a down-scaling
scenario and a illumination scenario. Next, each is addressed in more detail.

Rotation Robustness: Rotation invariance suggests that the algorithm is capa-
ble of correctly matching keypoints between a given image and a rotated version
of that same image or scene. In order to evaluate the rotational robustness of the
proposed solution, a known rotation must be first applied to the original image.
Then, once the algorithm is executed on the original, a ground-truth can be created
for the rotated image (since keypoint location can be predicted). After applying
the algorithm to the rotated figure and finding all the corresponding matches, the
ground-truth can be used to check the accuracy of its matches. In this case, from
10o to 60o more than 90% of matches are correct (see Figure 5.19).
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Figure 5.19: Rotation invariance analysis. The reason why ’boat.pgm’ has more
matches than the other two images is mostly due to a greater number of detected
keypoints during the extraction phase.

Scale Robustness: Scale invariance implies that the algorithm is capable of
correctly matching keypoints between a given image and a down-scaled version of
that same image or scene. In order to verify the scale robustness of the proposed
implementation, a similar method to the above is used. First, the image is scaled
down by a known factor, then keypoints are extracted from the original and are used
as a ground-truth for future keypoints of the downscaled image. Once the algorithm
runs the second image and finds the corresponding matches, a comparison with the
predicted keypoints can be used to determine the accuracy of the matches. In this
case, more than 80% of matches are still correct after a downscale by a factor of 5×
(see Figure 5.20).
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Figure 5.20: Scale invariance analysis. Any time an image scales down in size,
the amount of information contained in the image decreases. For this reason, the
number of keypoints and subsequent matches is expected to decline as well.

Illumination Robustness: Illumination invariance indicates that the algorithm
is capable of correctly matching keypoints between a given image and a darker or
brighter version of that same image or scene. In order to check the illumination
robustness of the current work, no affine transformation is required, as compared to
previous methods. In this part, the algorithm only needs to compare the differences
between the keypoints found in each image. Results show that the algorithm is
largely stable with more than 95% accurate matches up to the 40% brightness stage,
where it begins to decline sharply (see Figure 5.21). The differences seen in the
boat.pgm throughout the different scenarios are largely due to the fact that it has
more detected keypoints and is a brighter image in general.
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Figure 5.21: Illumination invariance analysis. When the level of brightness is close
to 20%, the number of detected keypoints and matches drops significantly. As a
result, the quality of remaining matches becomes uncertain as the number of correct
matches decreases.
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6.1 Future Work

By introducing the concept of GPGPU to feature extraction algorithms, it be-
comes possible to obtain massive gains when compared to optimized serial imple-
mentations, especially on larger scale inputs, as long as the hardware has enough
resources and computational power to do so. The proposed implementation is on
par with the state of art and can achieve 24 FPS on a 2560x1920 image with a GTX
TITAN X.

The use of dedicated low-power GPUs also brings a new paradigm to feature
extraction algorithms. Despite the current solution not being able to replicate the
efficiency of FPGAs and ASICs, it is still interesting from a development-effort
perspective. Besides, the gap between GPUs and FPGAs is shrinking as the demand
for more efficient smartphones continues to increase.

To conclude, the present work explores the use of emerging parallel hardware
and its feasibility for future signal processing applications.

6.1 Future Work
The results obtained are great and encourage to continue investigation on GPGPU

applications. However, for the present work there are still some steps that can be
further improved, to name a few:

• Using of interpolation that is integrated into the hardware in order to find the
accurate location for keypoints faster.

• Testing Convolution Neural Networks as a possible replacement of extrema
detection.

• Expanding the number of image formats supported.

• Testing the present solution in other GPUs
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