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Abstract

This dissertation started with a challenge related to a Critical Software’s Project - Oversee -
developed in partnership with the Portuguese Navy, Irish Coast Guard and currently being deployed
to Papua New Guinea. It supports maritime agencies’ ability to rapidly and effectively respond to
incidents through a user experience that minimizes cognitive load whilst maximizing the value of
critical information. With an intuitive graphical information system (GIS) it allows agency operators to
instantly locate, respond to and manage emergencies with a common operational picture. Capabilities
include real-time analysis of sea vessel movements and the ability to task available resources directly
through the system. Apart from the Portuguese Navy, Oversee is used by maritime agencies like the
Irish Coast Guard (IRCG), supporting their efforts to tackle 2,600 emergencies per year. Oversee
improved the IRCG’s ability to rapidly respond to maritime incidents and, in the first year after
deployment, it helped to save 405 lives - an increase of 33% on the previous year. Oversee also allows
to cut down on wasted resources by identifying some incidents as false alarms. The main goal of
this study is to be able to predict the drift of an object by the deduction of a model that describes its
trajectory based on some known data. Such data consists on conditions of the environment in which
the object moves (water, in this case), and of the surrounding environment (weather conditions). In this
dissertation, two models will be considered: one, related to an object of reduced dimensions where the
influence of wind and different currents are neglected; another consists of an object with considerable
dimensions where the influence of wind and Coriolis’ force is considered. Gravity force produces
different reactions in each one of these cases. A study will be carried out to describe the existence
and uniqueness of the system’s solutions. The consistency and global error bound are studied for the
Runge-Kutta method, in particular, the 4th order Runge-Kutta method. Two types of stability are also
analysed, A-stability and B-stability. For the two scenarios, numerical simulations will be carried out
using the Runge-Kutta method to visualize the ocean drift under different assumptions.





Resumo

Esta dissertação teve início num desafio relacionado com um Projeto da Critical Software - o
Oversee - em parceria com a Marinha Portuguesa, a Guarda Costeira Irlandesa e que está a ser
atualmente implantado na Papua Nova Guiné. Este sistema nasceu para oferecer suporte à capacidade
das agências marítimas de responder rápida e eficazmente a incidentes. Com um sistema de informação
gráfica intuitivo (GIS), os operadores podem localizar, responder e gerir emergências instantaneamente
com uma imagem operacional comum. Os recursos incluem análise em tempo real dos movimentos
dos navios marítimos e a capacidade de verificar os recursos disponíveis diretamente através do
sistema. Na Guarda Costeira Irlandesa (IRCG), o Oversee apoia cerca de 2600 emergências por ano.
Com esta supervisão, a capacidade da Guarda Costeira Irlandesa foi melhorada no que diz respeito à
resposta rápida a incidentes marítimos - no primeiro ano em que foi implementado ajudou a salvar
405 vidas, um aumento de 33% em relação ao ano anterior. O Oversee permite também reduzir o
desperdício de recursos, identificando alguns incidentes como falsos alarmes.

O objetivo principal desta dissertação é prever a deriva de um objeto através da dedução de um
modelo que descreva a sua trajetória com base em alguns dados conhecidos. Esses dados consistem
nas condições do ambiente em que o objeto se move (a água, neste caso), e do ambiente circundante
(condições meteorológicas). Para tal, serão considerados dois modelos: um, relativo a um objeto
de dimensões reduzidas onde a influência do vento e de diferentes correntes é desprezada; o outro
consiste num objeto com dimensões consideráveis em que a influência do vento e da força de Coriolis é
considerada. A força da gravidade produz reações diferentes em cada um desses casos. Será realizado
um estudo para descrever a existência e unicidade de soluções do sistema. A consistência e o erro
global são estudados através do método Runge-Kutta, em particular, do Runge-Kutta de 4ª ordem.
São ainda analisados, para o método Runge-Kutta, dois tipos de estabilidade, A-stability e B-stability.
Para os dois cenários, as simulações serão feitas com o método Runge-Kutta de 4ª ordem.
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Chapter 1

Introduction

In April 2019, one shipwreck occurred around the islands of São Tomé e Príncipe and another
one around Peniche [13]. Thousands of kilometers separate these locations, but both incidents and
respective SAR (Search and Rescue) operations have been monitored and coordinated from Portugal,
more specifically from the Maritime Search and Rescue Coordination Center located at the Naval
Base in Lisbon, using human resources (military of the Portuguese Navy) and national technological
means, in particular, the OVERSEE software, developed by Critical Software (Portuguese company).
Currently being implemented in Papua New Guinea, the motto is "Save on land with the knowledge
of the Sea". OVERSEE is a maritime operations support information system used by customers in
its daily search and rescue, environmental protection and sea law enforcement activities. It contains
a drift simulation tool that provides an estimate of the different positions of an object adrift at sea
over a specified period of time, based on its initial position and environmental factors acting on it
such as wind and currents. It calculates the current in water generated by wind blowing over oceans’
surface and estimates its probable error. Other currents acting on water are also considered such as
tidal current and sea current. In coastal waters, tidal currents are usually important. To compute the
tidal current, search planners should consult published tidal current tables, if available, for the vicinity
of the datum position. Local knowledge is also often of great value in dealing with drift due to tidal
currents. If valid local or computed data on short-term coastal surface currents are available, these
values should be used. Sea currents derived from long-term seasonal averages should not be used
when computing total water current in coastal waters.

(a) Drift simulation with Oversee system (b) SAR operation monitored by Oversee

Fig. 1.1 Oversee system
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2 Introduction

Other works, related to maritime drift predicition, have appeared along the time. Recently, a team
of researchers has developed a new algorithm to anticipate the location of drifting objects during
the first three hours of a search by identifying zones in the water called transient attracting profiles
(TRAPs), where currents and waves conspire to pull in nearby objects. In the early hours of future
search-and-rescue operations, factoring in these previously hidden “attractors” could prove crucial
in saving lives. The movement of ocean water can be represented mathematically as a velocity field,
which in this case describes the speed and direction of water at each point on the surface. This
new algorithm, described in May 2020 in Nature Communications [26] , uses ocean wave data and
forecast models of this field to find zones with the strongest pull. Though invisible in the water, each
TRAP can be drawn on a map as a curve of about 100 to 1000 meters long. As surface conditions
change, TRAPs move slowly enough to drag objects along with them - similar to how a magnet
moving under a table can pull an iron item along the tabletop. These researchers field-tested the
method by throwing GPS-tagged manikins in the turbulent waters just south of Martha’s Vineyard
in Massachusetts. Each manikin followed a different trajectory, but “they all clustered on the same
TRAP,” just as the algorithm predicted. These initial tests were carried out close to shore, but the
same mathematics predicts the presence of TRAPs in the open ocean. These will supplement, and not
replace, existing models, by incorporating TRAP curves into actual prediction maps. More studies
about effects of wind and buoyancy are being done in order to increase the predictions’ accuracy.

This dissertation consists of conducting a maritime drift prediction study using mathematical
models that can help on SAR operations. Two scenarios will be studied. In one case, an object of
reduced dimensions is considered and influence of wind and different currents is neglected. The
other case considers an object of larger dimensions where both the influence of wind and the force of
Coriolis are considered.

The aim of the problems based on differential equations is to understand, as much as possible,
what is expected to happen to a quantity satisfying a differential equation, i.e., predicting the value
this quantity will have at some future time.

The main goal is to present an implementation and consequent application of the system of
equations that models the speed and the trajectory described by a body, under different circumstances
and under the influence of waves. The drift models will be deducted and studied in chapter 2. In
chapter 3 a theoretical study is done for the system of differential equations related to the models
previous presented in chapter 2. This study focuses on determining and analyzing the conditions for
the existence and uniqueness of solutions of this initial value problems. The contents of chapter 4
focuses on the study of the Runge-Kutta numerical method, namely the study of consistency, global
error bound and stability of the method. Finally, in chapter 5, numerical simulations are carried out,
considering different variations of the variables involved in the model.



Chapter 2

Model problems

In this chapter two different drift models will be introduced. The movement of a body can be fully
characterized by the forces that are exerted on it, i.e., it can be described by Newton’s laws. Such laws
determine that the resultant of the forces applied to a body produces an acceleration with its direction.
In the first section, a model for small objects, where the influence of wind and different currents are
neglected is presented. In the second one, another model considers an object with larger dimensions
where both the influence of wind and Coriolis’ force are considered. Finally, in the third section, a
possible model for wave motion is described.

2.1 Model for small objects

To deduce the model that describes the drift of a floating object, it is necessary to understand
which forces are acting on the body. In this case, the equation of the horizontal movement of a rigid
body due to waves is deducted, assuming that the object is much smaller than the wavelength. This
investigation is restricted to monochromatic waves. The movement equation is considered in a mobile
frame and is given by [20]

ma = Fd +Fg, (2.1)

where Fg represents the sliding force due to gravity acting on the body, and Fd the drag force between
the body and the water (see Figure 2.1). Still, a denotes acceleration and m the mass of the floating
object. According to Figure (2.1), θ represents the slope of the sliding surface.

Fig. 2.1 Forces on a sliding surface slope model.

To better understand the acceleration, it is important to deduce its decomposition into two
directional components at each point on the path. Such components, relative to the water surface, are

3



4 Model problems

called normal and tangential (n and τ , respectively) [29]. Next, the acceleration vector (2.1) is studied
in detail.

In a mobile framework, v = vτ represents the vector velocity, in the direction τ , where v represents
the scalar speed and τ the versor in the tangential direction of the trajectory. If r designates the

position vector,
dr
dt

consequently represents the displacement vector. Let s be the position of the body
on the path.

Then,
dr
dt

=
ds
dt

τ. (2.2)

That is, the velocity vector in any movement, in order of time, is given by [31]

v =
ds
dt

τ. (2.3)

The vectorial acceleration can be written, by deriving (2.3),

a =
dv
dt

=
d2s
dt2 τ +

ds
dt

dτ

dt
. (2.4)

In Figure 2.2 A and B are two points of a trajectory. A represents the location of the body at
the time t0 and B at the time t0 +∆t. At the limit, ∆t → 0 and so, the directions of the two versers
intersect at a common point, C. At this limit, the distances from C to each point, A and B, RA and RB

respectively, will be the same. The distance between the centre of curvature at an instant ti and the
trajectory point at this same instant is de radius of curvature.

It is possible to say that the distance travelled by the body is then given by s(t) = Rθ(t) in which
R represents the radius of curvature and θ represents the angle relative to the radius of curvature.

Fig. 2.2 Radius of curvature

We have that

dτ

dt
=

dθ

dt
n (2.5)

in which n and τ are the normal and tangential versors, respectively. Replacing (2.5) in (2.4),

a =
d2s
dt2 τ +

ds
dt

dθ

dt
n (2.6)

and the acceleration decomposition is then obtained in its tangential and normal components.
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The angular velocity value at each point of the trajectory is given by the velocity value divided by

the radius of curvature, both at the point in study. It is now possible to write the angular velocity,
dθ

dt
,

according to these considerations. That is

dθ

dt
=

1
R

ds
dt

. (2.7)

The acceleration is then given by

a =
d2s
dt2 τ +

Åds
dt

ã2 1
R

n . (2.8)

This is,

a =
dv
dt

τ +
v2

R
n. (2.9)

Definition 2.1.1. For a curve described by y = f (x), the radius of curvature, R, is given by

R =

ñ
1+
Ådy

dx

ã2ô 3
2

∣∣∣∣∣d2y
dx2

∣∣∣∣∣
. (2.10)

Let η(x, t) be the deviation of the water surface (see Section 2.3) and x(t) the horizontal location
of the body (Figure 2.3).

Fig. 2.3 Wave behaviour

It is now possible to identify normal and tangential versors in order to η given, respectively, by
[20]

n =

Ç
−∂η

∂x
, 1
åÃ

1+
Ç

∂η

∂x

å2
, τ =

Ç
1 ,

∂η

∂x

åÃ
1+
Ç

∂η

∂x

å2 (2.11)



6 Model problems

From Definition 2.1.1,

R =

[
1+
Ç

∂η

∂x

å2] 3
2

∣∣∣∣∣∂ 2η

∂x2

∣∣∣∣∣
(2.12)

and finally,

an =
v2

R
=

v2

∣∣∣∣∣∂ 2η

∂x2

∣∣∣∣∣[
1+
Ç

∂η

∂x

å2] 3
2
. (2.13)

Having this, the acceleration vector can now be written as

a =
dv
dt

τ +

v2

∣∣∣∣∣∂ 2η

∂x2

∣∣∣∣∣[
1+
Ç

∂η

∂x

å2] 3
2

n . (2.14)

Until now,

Fg +Fd = m


dv
dt

τ +
v2 d2η

dx2Ç
1+
Ådη

dx

ã2å 3
2

n

 . (2.15)

For the sliding force due to gravity [21], it follows that

Fg · τ =−
mg

∂η

∂xÃ
1+
Ç

∂η

∂x

å2
, (2.16)

where g ≈ 9.81ms−2 and η(x, t) represents the height of the body in the direction of gravity, that is, it
represents the vertical deviation of the surface.

Performing the scalar product of (2.15) by τ , the following is obtained

m
dv
dt

=−
mg

∂ 2η

∂x2Ã
1+
Ç

∂η

∂x

å2
+Fdτ

(2.17)
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where Fdτ
represents the drag force produced by the water on the body. Also, the horizontal component

of velocity for the body in a dynamic system, is given by [20]

dx
dt

= v · τ =
vÃ

1+
Ç

∂η

∂x

å2
. (2.18)

This represents the velocity of the body tangential to the water surface.

The drag force is the force that resists to the movement of the solid body through the fluid [22]. It
is a force characterized both by frictional and pressure forces that act in parallel and perpendicular to
the surface of the body, respectively. This force is described by

Fdτ
= ρwCdA|Vw − v|(Vw − v) (2.19)

with ρw the density of the fluid and Cd the drag coefficient. Also, A represents the contact area of
the body with the fluid that it moves in and Vw and v tangential velocities of the fluid and the body,
respectively.

This force can also be decomposed in its normal and tangential directions. Performing the scalar
product of (2.15) by n, it comes that

Fdn =
mgÃ

1+
Ç

∂η

∂x

å2
+

m v2 ∂ 2η

∂x2(
1+
Ç

∂η

∂x

å2) 3
2
. (2.20)

This force is, generally, represented by its tangential direction, since its normal direction is, nearly,
balanced by the buoyancy force and so only the tangential component is able to produce movement in
the body.

It is also necessary to consider that the body transfers part of its momentum to water when
accelerating. This means that because the body moves in a fluid, it is subject to some inertia that leads
to a difference between the actual mass of the body and its effective mass in the fluid. For this reason,
appears the so-called added mass coefficient, Cm.

According to Grotmaack [14], the body’s own inertia, Fi, is balanced by the forces acting upon it,
and so, the effective mass in water is greater than the real mass, which can be modelled by introducing
a so-called added mass term (Cm represents the added mass coefficient) in the following way

Fi = m(1+Cm)a.

Having this,

m(1+Cm) a = Fg +Fd. (2.21)
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Let mi, inertial mass, be mi = m(1+Cm). Replacing (2.14) in (2.21), the following is obtained

mi


dv
dt

τ +

v2

∣∣∣∣∣∂ 2η

∂x2

∣∣∣∣∣[
1+
Ç

∂η

∂x

å2] 3
2

n

= Fg +Fd. (2.22)

The system of differential equations for the tangential velocity of the body in a coordinate system
moving with the wave is given by

mi
dv
dt

=−gmi

∂η

∂x…
1+
Ä

∂η

∂x

ä2
+

1
2

ρwCdA|Vw − v|(Vw − v)

dx
dt

=
v…

1+
Ä

∂η

∂x

ä2

. (2.23)

2.2 Model for cargo containers

The immersion of a container is variable. It may remain constant or be a function of time. The
main goal is to obtain a dynamic model that hindcasts drift trajectories under the influence of wind,
current and Coriolis forcing. The wind action is considered on the emerged surface. To introduce the
model, the Sherbro accident is now narrated [23].

On 8 December 1993, the French container ship Sherbro was en route from Cherbourg to Montoir
(near Nantes) when it was caught in a heavy storm. Several rows of containers broke loose and fell
overboard while others, thrown off balance, collapsed on deck.

In total, 88 containers fell overboard, 10 of which contained dangerous substances: two types
of pesticides (12.2 tonnes), nitrocellulose (21.6 tonnes), sulphur (1 tonne), phenol (200 kg), methyl-
ketone (35 kg) and a flammable product (3.6 tonnes). Among these substances, the pesticides presented
the greatest threat for the environment due to their persistence and therefore their bioaccumulation
potential in marine organisms. On December 9, at 13:50, an overflight spotted 20 containers within a
large area. On December 10, seven containers were drifting fourteen miles south west of Casquets area
with a same kind of immersion ratio than the previous observations. On December 11, wind was still
strong and one container full of cigarettes was found beached near Flamanville city coast. More, three
observed containers were drifting between Guernesey and the Cotentin coastline. On December 12, at
13:30, one pesticides container was recovered. As 17:30, an air overflight succeeded in locating other
seven containers. Three of them beached on the western coast near Flamanville. Two containers were
drifting in the surroundings of La Hague Cape and one of those was damaged. The other ones were
drifting four miles North West of Carteret. The mean position of the containers given by the numerical
simulation [23] is consistent with the observations. Nonetheless, for an immersion ratio close to the
extreme percent ranges, simulated trajectories were too fast or too slow. Containers 80% and 90%
immersed were beached on the North coast of Guernsey Island and that was not observed. With an
immersion of 10%, the container drifted too far in the Northeast direction. The hypothesis of 10%
immersed container is unrealistic according to the observations. It appears that the best agreement
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between the simulated positions and the observed positions were given by the containers having a
60% immersion.

The model deduction will now be explained. The basic movement conservation can be written as
[23]

m
∂v
∂ t

+m f kΛv = Fa +Fd +Fr (2.24)

where m represents the mass of the object, Fa the wind drag, v the horizontal velocity, f the Coriolis
parameter, k a unit vertical vector, Λ is the wavelength, Fd the water drag and Fr the radiation force
(see Figure 2.4). Notice that both, Fa and Fr were not presented at the last model.

Also, the gravity force previously presented, Fg, is now replaced by the radiation force, Fr, in
which the gravitational acceleration also appears. The inertial motion will be picked up by the Coriolis
force and the object will be driven into an inertia circle which is then carried forward by the basic
ocean current.

Fig. 2.4 Drift forces and parameters

Ekman [11] formulated the classical solution to the problem of upper ocean response to wind in a
rotating reference frame. Sudden onset of wind over a viscous ocean initially at rest leads to damped

inertial oscillations with a period T =
2π

f
where f is the Coriolis parameter or inertial frequency. The

Coriolis-Stokes force is perhaps the least disputed wave-mean flow interaction term in ocean models,
and is an important part of coupled modeling systems [6].

The drag produced by the wind into the emerged section of the object is given by

Fa =
1
2

ρaCaSa|Va −v|(Va −v) (2.25)

where Ca is the drag coefficient, Sa is the cross-sectional area affected by the wind and Va is the wind
velocity at 10m. Ca is defined as 1 due to the fact that air drag coefficient of bluff objects at high
Reynolds number is typically about 1 [27]. As deducted so far, the tangential version of this force can
be deducted such as

Faτ
=

1
2

ρaCaSa|Va − v|(Va − v) (2.26)
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The immersed section of the object is subjected to the water drag, a force that can be written as

Fd =
1
2

ρwCdA|Vw −v|(Vw −v) (2.27)

where Cd is the drag coefficient, A is the cross-sectional area affected by the water and Vw is the water
velocity. Cd has been defined as 0,8 <Cd < 1,2 [5].

The tangential component of the force is then given by

Fdτ
=

1
2

ρwCdA|Vw − v|(Vw − v) (2.28)

The force due to reflection of waves on a container wall is now defined:

Fr =
1
4

ρga2L (2.29)

where L is the length of the container normal to incident waves of amplitude a.

2.3 Mathematical formulation of the wave motion

Incompressible inviscid fluid flow usually gives a sufficiently accurate description for water wave
motion [10]. Since water is an incompressible fluid, this means that its density is constant through
time. Water viscosity is considered negligible [14] and any rotational movement is always ignored.
So, potential theory can be used to describe the flow. Consider the case in which the Cartesian frame
(x,y,z) is taken. In this section, η(x, t), which represents the deviation from the water surface, relative
to its horizontal balance, is introduced.

Fig. 2.5 Geometry in a vertical wave section

Assume that waves propagate in the horizontal direction, x, and a fluid domain boundary above,
z = η(x, t) for each instant of time t. Let the underneath impermeable surface of the fluid be at
z =−h(x,y). The potential velocity is given by Φ(x,z; t) related to the flow velocity components ux

and uz in the horizontal and vertical directions respectively:

ux =
∂Φ

∂x
uz =

∂Φ

∂ z
.
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It is now time to apply boundary conditions in order to close the system of equations. Consider
the following set of equations:

∂ 2Φ

∂x2 +
∂ 2Φ

∂ z2 = 0, −h ≤ z ≤ η(x, t) (2.30a)

∂Φ

∂ t
+gη = 0, z = η(x, t) (2.30b)

∂η

∂ t
=

∂Φ

∂ z
, z = η(x, t) (2.30c)

∂Φ

∂ z
= 0, z =−h (2.30d)

Equations representing, respectively, Laplace Equation (2.30a), dynamic free-surface boundary
condition (2.30b), kinematic free-surface boundary-condition (2.30c) and kinematic bed boundary-
condition (2.30d).

Laplace equation (2.30a) can be solved using the method of separation of variables such that

Φ(x,z; t) = X(x)Z(z)T (t). (2.31)

Replacing into (2.30a), and supposing that X(x), Z(z), T (t) are not identically zero,

1
X

d2X
dx2 =− 1

Z
d2Z
dz2 . (2.32)

Since the left-hand side is a function of x alone and the right-hand side is a function of z alone,
both sides are equal to a constant. Choosing this constant −k2, traveling waves are obtained:

d2X
dx2 + k2X = 0 , d2Z

dz2 + k2Z = 0 (2.33)

with general solutions

X(x) = Acos(kx)+Bsin(kx) , Z(z) =Cekz +De−kz. (2.34)

From (2.30d), comes

∂φ

∂ z
= Z′(z)X(x)T (t) = 0, z =−h. (2.35)

This implies that Z′(z) = 0 at z =−h, and so, Z′(−h) = 0. Now, at z =−h,

Z′(z) = kCekh − kDe−kh = 0. (2.36)
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Then, D =Ce−2kh, and finally comes that

Z(z) =Cekz +De−kz =
C
ekh ekh+kz +

Ce−2kh

ekh ekhe−kz

=
C
ekh

î
ek(h+z)+ e−2khekhekz

ó
=

C
ekh

î
ek(h+z)+ e−kh−kz

ó
=

C
ekh

î
ek(h+z)+ e−k(h+z)

ó
. (2.37)

It is now possible to write Z(z) as follows

Z(z) =
2C
ekh

ñ
ek(z+h)+ e−k(z+h)

2

ô
=

2C
ekh cosh[k(z+h)] = τ cosh[k(z+h)], (2.38)

where τ is a constant to be determined.

From (2.34) and (2.38), the solution for Φ can be written as

Φ(x,z; t) = τ cosh[k(z+h)][Acos(kx)+Bsin(kx)]T (t), (2.39)

where k is the wave number. From the kinematic free surface condition presented on (2.30c) and
kinematic free boundary condition (2.30c), we have that

∂Φ

∂ t
=−gη , (2.40a)

∂ 2Φ

∂ t2 =−g
∂η

∂ t
, (2.40b)

∂Φ

∂ t
=−g

∂Φ

∂ z
, (2.40c)

T ′′(t)X(x)Z(z) =−g Z′(z)X(x)T (t), (2.40d)

T ′′(t)Z(z) =−g Z′(z)T (t), (2.40e)

T ′′(t) =−g
Z′(z)
Z(z)

T (t) , at z = η(x, t). (2.40f)

Using (2.38),

T ′′(t) =−gτ
sinh(k(z+h))
cosh(k(z+h))

T (t). (2.41)
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Finally, at z = η(x, t),

T ′′(t)+gτ tanh(k(z+h))T (t) = 0 (2.42)

under the condition that X(x) ̸= 0. Let, for h > 0, ∀k

ω
2 = gτ tanh(k(z+h))> 0. (2.43)

The general solution for T (t) is then

T (t) = E cos(ωt)+F sin(ωt). (2.44)

It is now possible to write the general expression for Φ for a single value of the separation constant
k, from (2.42) and (2.44),

Φ(x,z; t) = τ cosh[k(z+h)][Acos(kx)+Bsin(kx)][E cos(ωt)+F sin(ωt)]. (2.45)

Notice that ω can be identified as the wave frequency. Because k can be known as the wave
number, (2.43) is the dispersion relationship (relation between the wave frequency and the wave
number). A progressive wave solution can be obtained as

Φ(x,z; t) = Acosh(k(z+h))sin(kx−ωt). (2.46)

From (2.30b), the corresponding expression for the free surface elevation is

η(x, t) =
Aω

g
cosh(kh)sin(kx−ωt). (2.47)

The amplitude a of the free surface elevation can be introduced as

a =
Aω

g
cosh(kh) (2.48)

and so,

η(x, t) = acos(kx−ωt). (2.49)





Chapter 3

Initial value problem

A fundamental question that arises in scientific modelling is whether a given differential equation,
with its respective initial condition, can be reliably used to predict behaviour of the trajectory at later
times. The three attributes of an initial value problem that have to be considered are: whether there
actually exists a solution; whether the solution, if it exists, is unique; and, thirdly, how sensitive the
solution is to small perturbations to initial conditions. In this chapter, questions about existence and
uniqueness of solutions for initial value problems are discussed. Models discussed in previously
chapters are particular cases of the general initial value problems presented here.

3.1 Introduction

Let the initial value problem be considered as

y′(t) = f (t,y(t)), t ∈ I . (3.1)

Given t0 and y0 it is intended to find a solution to the Equation (3.1) for t > t0 such that

y(t0) = y0. (3.2)

The system of equations formed by (3.1) and (3.2) define the initial value problem. To guarantee the
unicity of the solution, it is necessary to impose conditions on the function f (t,y).

To study the models described in Chapter 2, existence and unicity of solutions of a system of
ordinary differential equation will be analyzed [16]. The models are consistent with an initial value
problem, that is, consists on two ordinary differential equations plus two initial value conditions.
These differential equations describe the system evolution over time.

Models presented can be translated into a system of ordinary differential equations (ODEs) such
that v′(t) = f1

x′(t) = f2
, (3.3)

15
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where, for the model for small objects, f1 =
F

τ
+Fdτ

m(1+Cm)
and f2 =

v…
1+
Ä

∂η

∂x

ä2
. For the cargo

containers model, f1 =
Faτ

+Fdτ
+Fr

m2 f kΛv
and f2 = v. This system is completed with the following initial

conditions
x(t0) = x0 v(t0) = v0 . (3.4)

3.2 Existence and unicity of solutions

In this section it is intended to make a study a general problem, this is, a problem that can be
written as y′(t) = f (t,y)

y(t0) = y0
(3.5)

where f = ( f1, . . . , fn)
T : D −→ Rn with D ⊂ R×Rn open and (t0,y0) ∈ D.

In order to establish results of existence and unicity of solutions to initial value problems some
results and definitions are considered [16].

Definition 3.2.1. A function φ(t) is a solution of the initial value problem (3.5) if φ(t) is differentiable
in an interval J that contains t0 as an interior point such that (t, φ(t)) ∈ D, φ ′(t)≡ f (t, φ(t)) in J,
and still φ(t0) = y0.

Lemma 3.2.1. Let f be such that f ∈ C(D,Rn). So, y(t) is a solution of the initial value problem
(3.5) if and only if v(t) is solution of the integral

y(t) = y0 +

∫ t

t0
f (s,y(s))ds (3.6)

where ∫ t

t0
f ds =

Ç∫ t

t0
f1 ds, ...,

∫ t

t0
fn ds

åT

. (3.7)

Proof. Let y(t) be a solution of (3.5). Then,

y′(t)≡ f (t, y(t)), y(t0) = y0.

It comes
y(t)− y0 =

∫ t

t0
f (s, y(s))ds

So, y(t) is a solution of the equation (3.6). Supposing then that y(t) is a solution of the equation (3.6),

f (s, y(s)) can be integrated from t0 to t for any t in the domain. Also,
∫ t

t0
f (s, y(s))ds is continuous

at t. From (3.6), y(t) is continuous. Besides that, since f ∈C(D,Rn), f (t, y(t)) is continuous, the
right member of (3.6) is differentiable and y(t) too. Differentiating both members of (3.6), becomes
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y′(t)≡ f (t, y(t)). Notice that y(t0) = y0.
Then, y(t) is a solution of (3.5).

Definition 3.2.2 (Lipschitz condition). Let f such that f : D ⊂R×Rn −→Rn and f is said Lipschitz
in v ∈ D if ∃ k > 0, with k constant, such that

| f (t,y1)− f (t,y2)| ≤ k |y1 − y2| (3.8)

for any (t,y1),(t,y2)∈ D. Also, f is locally Lipschitz in x ∈ D if ∀(t∗,y∗)∈ D, there ir a neighborhood
N ∗ of (t∗,y∗) in D and a constant k∗ > 0 such that

| f (t,y1)− f (t,y2)| ≤ k∗|y1 − y2| (3.9)

for any (t,y1),(t,y2) ∈ N ∗.

Lemma 3.2.2 (Gronwall inequality). Let M ∈ R, h ∈C([t0,∞),R+) for some t0 ∈ R and u(t) contin-
uous solution of the following inequality

u(t)≤ M +

∫ t

t0
h(s)u(s)ds, t ≥ t0. (3.10)

So,

u(t)≤ M e
∫ t

t0
h(s)ds

, t ≥ t0. (3.11)

Proof. Let r(t) = M+

∫ t

t0
h(s)u(s)ds.

Then, for t ≥ t0, r′(t) = h(t)u(t)≤ h(t)r(t), that is r′(t)− h(t)r(t) ≤ 0. Multiplying both sides by

e
−
∫ t

t0
h(s)ds

, results that Ç
r(t) e

−
∫ t

t0
h(s)ds

å′
≤ 0

and so, r(t) e
−
∫ t

t0
h(s)ds

is decreasing. Also, for t ≥ t0,

r(t)e
−
∫ t

t0
h(s)ds ≤ r(t0) = M.

It turns out that

r(t)≤ M e
−
∫ t

t0
h(s)ds

.

We conclude what is intended since u(t)≤ r(t).

Corollary 3.2.1. Let h ∈ C([t0,∞),R+) for some t0 ∈ R and u(t) ≥ 0 continuous solution of the
following inequality

u(t)≤
∫ t

t0
h(s)u(s)ds , t ≥ t0. (3.12)

Then, u(t)≡ 0, t ≥ t0.
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Lemma 3.2.3. 1. Let fm ∈ C([a,b],Rn) for m = 1,2, . . . and the set of functions { fm(t)}∞
m=1

uniformly convergent for f (t) in [a,b]. Then, f ∈C([a,b],Rn), and

lim
m−→∞

∫ b

a
fm(t)dt =

∫ b

a
f (t)dt. (3.13)

2. Let fm ∈ C([a,b],G) for m = 1,2, . . . , where G is a compact subset of Rn, and the subset of
functions { fm(t)}∞

m=1 is uniformly convergent for f (t) in [a,b]. So, ∀g ∈C(G,Rn), the subset
of functions {g( fm(t))}∞

m=1 is uniformly convergent for g( f (t)) in [a,b].

Observation 3.2.1. Similarly, point 2 of the Lemma (3.2.3) can be generalized as follows:
For g ∈ C([a,b]× G,Rn), the set of functions {g(t, fm(t))}∞

m=1 is uniformly convergent for
g(t, f (t)) in [a,b].

Lemma 3.2.4 (Weierstrass M-test). Consider the constants Mm, m = 1,2, . . . such that

|gm(t)| ≤ Mm, ∀t ∈ [a,b] , m = 1,2, . . .

∑
∞
m=1 Mm convergente

. (3.14)

So,
∞∑

m=1

gm(t) is uniformly convergent on [a,b].

Lemma 3.2.5. Let
G = {(t,y) : |t − t0| ≤ a, |y− y0| ≤ b} (3.15)

and f ∈C(G,Rn) from Lipschitz in y on the domain G. The initial value problem (3.5) has a unique

solution for |t − t0| ≤ γ where γ = min{a ,
b
M
} and M = max(t,v)∈G | f (t,y)|. The result can be

translated by the following figure:

Fig. 3.1 Rectangular domain

Proof. Notice that (3.5) is equivalent to the integral (3.6).

• Unicity is proven first:
Let (3.5) have two solutions y1(t) and y2(t). From (3.2.1), these solutions are also solutions of
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the integral (3.6), that is

yi(t) = y0 +

∫ t

t0
f (s,yi(s))ds, i = 1,2. (3.16)

Now, subtracting the equations for i = 1,2 and applying the Lipschitz condition (3.2.2), comes,
for t ≥ t0

|y1(t)− y2(t)|=
∣∣∣∣∣
∫ t

t0
( f (s,y1(s)))− ( f (s,y2(s)))ds

∣∣∣∣∣
≤
∫ t

t0
|( f (s,y1(s)))− ( f (s,y2(s)))|ds

≤
∫ t

t0
k|y1(s)− y2(s)|ds,

(3.17)

where k is the Lipschitz constant. Still, let u(t) = |y1(t)−y2(t)|. Results that u(t)≤
∫ t

t0
ku(s)ds

for t ≥ t0. From Gronwall’s inequality (3.2.1), u(t)≡ 0 for t ≥ t0. Similarly, it can be proved
that t < t0, for the left side of Gronwall’s inequality (3.2.2). Becomes proved that y1(t)≡ y2(t),
and so, if existing, the solution is unique.

• Existence is now proven:
A sequence of functions {ym(t)}∞

m=0 is defined by recurrence as follows

y0(t) = y0

ym+1(t) = y0 +

∫ t

t0
f (s,ym(s))ds, m ∈ N0 := 0,1,2, . . .

(3.18)

Let ym(t) be defined in the interval J := [t0 − γ, t0 + γ] and still

|ym(t)− y0| ≤ b , m ∈ N0 (3.19)

and (t,ym(t)) ∈ G for t ∈ J. This is trivially verified for m = 0. Suppose true for some m ∈ N0.
Then, (t,ym(t)) ∈ G for t ∈ J. From (3.18), ym+1(t) exists in J and

|ym+1(t)− y0|=
∣∣∣∣∣
∫ t

t0
f (s,ym(s))ds

∣∣∣∣∣≤ M|t − t0| ≤ Mγ ≤ b. (3.20)

This is, (t,ym+1(t)) ∈ G for t ∈ J.
It is now shown that ym(t)

∞

m=0 is uniformly convergent in J. For that case, rewrite ym(t) as
following

ym(t) = y0 +
m−1∑
i=0

(yi+1(t)− yi(t)), m = 1,2, . . . (3.21)
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By induction, we have t ∈ J and i = 0, . . . ,m−1

|yi+1(t)− yi(t)| ≤
M ki|t − t0|i+1

(i+1)!
≤ M ki γ i+1

(i+1)!
. (3.22)

Clearly, (3.22) is true for i = 0. Assume (3.22) valid for some i ∈ N. So, from (3.18) and using
Lipschitz condition, for t ∈ J : t ≥ t0,

|yi+2(t)− yi+1(t)| ≤
∫ t

t0 | f (s,yi+1(s))− f (s,yi(s))|ds

≤ k
∫ t

t0 |yi+1(s)− yi(s)|ds ≤ k
∫ t

t0

M ki(s− t0)i+1

(i+1)!
ds

=
M ki+1(t − t0)i+2

(i+2)!
≤ M ki+1γ i+2

(i+2)!
.

(3.23)

Similarly, for t ∈ J and t < t0. So, (3.22) is verified by i+1. Since the series
∞∑

i=1

(yi(t)− yi−1(t))

is convergent, using the Weierstrass M-test (3.2.4), the series of functions
∞∑

i=1

(yi(t)− yi−1(t))

is uniformly convergent in J. Let y(t) be the uniform limit of {ym(t)}∞
m=0. By the Lemma

(3.2.3) and the Observation (3.2.1), y(t) s continuous in J and f (t,y(t)) uniformly convergent
for f (t,y(t)) in J. So, f (t,y(t)) is continuous in J. Taking limits in m −→ ∞, we obtain

y(t) = y0 +

∫ t

t0
f (s,y(s))ds, t ∈ J (3.24)

ithat is, y(t) is solution from (3.6) and consequently, solution of (3.5).

Theorem 3.2.1 (Picard’s existence and unicity). Let D be an open subset Rn ×Rn and (t0,y0) ∈ D.
Suppose that f ∈C(D,Rn) is locally Lipschitz (3.2.2) in y ∈ D. Then, there is γ > 0 such that (3.5)
has a unique solution that exists for |t − t0| ≤ γ .

Fig. 3.2 Open domain
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Proof. Since D is an open set and (t0,y0) ∈ D, then there are a,b > 0 such that G, defined by (3.15),
is contained in D (see Figure (3.2)). As f is locally Lipschitz in x ∈ D, a and b can be chosen small
enough that the Lipschitz condition (3.2.2) with a fixed constant k > 0 is verified in G. By the Lemma
3.2.5, the intended conclusion is concluded.





Chapter 4

Numerical methods

Suppose that a particle is moving in such a way that, at time t0, its position is equal to y0 and that,
at this time, the velocity is known to be v0. The simple principle of Euler’s method is that, in a short
period of time (so short that there is no time for velocity to change significantly from v0), the change
in position will be approximately equal to the change in time multiplied by v0. If the motion of the
particle is governed by a differential equation, the value of v0 will be known as a function of x0 and y0

[4]. In this chapter, Runge-Kutta method is presented and consistency, error bounds and stability are
studied for this method.

4.1 Runge-Kutta method

The Runge-Kutta method was born to allow a number of evaluations of the derivative to take place
in a step, i.e., to be a generalization of Euler’s method. Consider that the initial value problem, as
described before,

y′(t) = f (t,y), y(t0) = y0 , (4.1)

has solution
y(t) = y(t0)+

∫ t

t0
f (s,y(s))ds. (4.2)

To obtain a numerical solution to this problem, defined in [t0, tM], the interval is divided in
equidistant points such that

tk = t0 + kh, k = 0,1, ...N, h =
tM − t0

N
. (4.3)

For each tk it is intended to find a numerical approximation for y(tk). Such approximations are
calculated successively.

Let yn be an approximation of the exact solution y(tk), with k = 0, . . . ,M and so, tM = T . The
numerical methods of one-step can be obtained approximating the integral in the right-hand-side of
(4.2).

23
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The explicit one-step numerical methods can be obtained using the approximation yn such that

y0 = y(t0) (4.4a)

yk+1 = yn +hφ(tk,yn,h), k = 0, . . . ,M−1 (4.4b)

where φ : [t0,T ]×Rn × (0, h0]−→ Rn.
To use the implicit, the method can be written as

y0 = y(t0) (4.5a)

yk+1 = yn +hφ(tk,yn,yk+1,h), k = 0, . . . ,M−1 (4.5b)

where φ : [t0,T ]×Rn × (0, h0]−→ Rn.
The numerical method that is going to be used is the Runge-Kutta method.

Definition 4.1.1. Let s be an integer (that represents the number of stages) and a21,a31,a32, . . . ,as1,

as2, . . . ,as,as−1,b1, . . . ,bs,c2, . . . ,cs real coefficients. Then, the method

k1 = f (t0, y0)

k2 = f (t0 + c2h, y0 +ha21k1)

k3 = f (t0 + c3h, y0 +h(a31k1 +a32k2))

. . .

ks = f (t0 + csh, y0 +h(as1k1 + · · ·+as,s−1ks−1))

y1 = y0 +h(b1k1 + · · ·+bsks)

(4.6)

is called an s-stage of the explicit Runge-Kutta method for (4.1).

According to the previous definition,

φ(tk,yn,yk+1,h) =
s∑

j=1

b jk j (4.7)

where k j = f (t j + c jh,y j +h
s∑

i=1

a jiki), with j = 1, . . . ,s.

Next, the way to obtaind the family of Runge-Kutta methods is described. This description is
done based on 2nd order Runge-Kutta method.

Taylor’s Method at order 2 is based on the following expression

y(t +h) = y(t)+hy′(t)+
h2

2
y′′(t)+T2(h) (4.8)
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where T2(h) represents the truncature error, that is studied on the next section.

This expression can be rewritten as

y(t +h)≈ y+h f +
h2

2
( ft + fy f ) (4.9)

or, also,

y(t +h)≈ y+
h
2

f +
h
2
( f +h ft +(h f ) fy). (4.10)

The expression in curved brackets corresponds to a Taylor expansion of f , centred on (t,y) and,
along the (h,h f ) which allows to circumvent the use of partial derivatives ft , fy.

Considering the Taylor’s formula of order 1 with Lagrange Remainder [19], comes that

f (t +h,y+h f ) = f (t,y)+h ft(t,y)+(h f ) fy(x,y)+T1(h) = f +h ft +(h f ) fy +T1(h) (4.11)

and so, the expression can be written as

y(t +h) = y+
h
2

f +
h
2

f +(t +h,y+h f ). (4.12)

Runge-Kutta method family of order 2 can be obtained introducing parameters in the expression
(4.10) such that

y(t +h)≈ y+ω1h f +ω2h( f +αh ft +βh f fy). (4.13)

Such parameters must satisfy
ω1 +ω2 = 1 (4.14a)

ω2α =
1
2

(4.14b)

ω2β =
1
2
. (4.14c)

Heun method can so be obtained doing ω1 = ω2 =
1
2

and α = β = 1.

The second order methods can be written as following

yk+1 = yn +h(ω1k1 +ω2k2); (4.15a)

k1 = f (tk,yn); (4.15b)

k2 = f (tk +hα,yn +hβk1). (4.15c)
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Regarding the 4th order Runge-Kutta method, it is deducted in the same way but has two extra
terms, i.e.,

yk+1 = yn +h(ω1k1 +ω2k2 +ω3k3 +ω4k4) (4.16)

that are forced to agree with the first 5 terms of the Taylor method. The resulting formula is as follows

yk+1 = yn +
h
6
(k1 +2k2 +2k3 + k4); (4.17a)

k1 = f (tk,yn) (4.17b)

k2 = f (tk +
h
2
,yn +

h
2

k1) (4.17c)

k3 = f (tk +
h
2
,yn +

h
2

k2) (4.17d)

k4 = f (tk +h,yn +hk3). (4.17e)

4.2 Consistency and global error bound

In this section, consistency and global error bound are studied. Errors generated after many steps
of the method will accumulate and reinforce each other. It is important to understand how this happens
and bound the global error using a difference inequality. To solve the initial value problem presented
in (4.1) having a one-step method, its explicit numerical method is given by

yk+1 = yn +hΦ(tk,yn;h), 0 ≤ k ≤ N −1 (4.18)

where y0 = y0 and Φ is called the increment function.
The global error of this method is then given by

Ek = y(tk)− yn. (4.19)

Still, the truncation error, Tk(h) is given by

Tk(h) = y(tk+1)− y(tk)−hΦ(tk,y(tk);h), 0 ≤ k ≤ N −1. (4.20)

So,

y(tk+1)− y(tk)
h

= Φ(tk,y(tk);h)+
Tk(h)

h
, (4.21)

and, the global truncation error is given by

T (h) = max
0≤k≤N−1

|Tk(h)|. (4.22)
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A requirement for our method to be convergent is that lim
h→0

T (h)
h

= 0 with

lim
h→0

y(tk+1)− y(tk)
h

= y′(tk) (4.23a)

lim
h→0

Φ(tk,y(tk);h) = f (tk,y(tk)). (4.23b)

In this case, the method is said consistent with the initial value problem [28]. Still, the method is

said consistent of order p if
T (h)

h
≤Chp where C is a real constant and independent from h.

Theorem 4.2.1. A one-step explicit method is consistent if, and only if,

lim
h→0

max
0≤k≤N−1

|Φ(tk,yn;h)− f (tk,yn)|= 0. (4.24)

Theorem 4.2.2. Let the initial value problem be approximated by (4.18) with y0 = y0.

• Let Φ be a Lipschitz continuous function, that is, there is a constant L such that for 0 ≤ h ≤ h0

and for any (tk,yn) and (tk,zk),

∥Φ(tk,yn;h)−Φ(tk,zk;h)∥ ≤ L∥yn − zk∥. (4.25)

• The method is consistent of order p, i.e.,

T (h)
h

≤Chp.

If both conditions are verified, then the global error is limited by

∥Ek∥ ≤ ∥y(tk)− yn∥ ≤
Ç

eL(tk−t0)−1
L

å
Chp, k = 0,1, . . . ,M, L > 0. (4.26)

When L = 0, Ek ≤ (tk − t0)Chp.

Proof. Suppose that both items of the Theorem are verified and also E0 = 0 since y0 = y0. Let yk+1

be
yk+1 = yn +hΦ(tk,yn;h). (4.27)

Replacing the exact solution,

y(tk+1) = y(tk)+hΦ(tk,y(tk);h)+Tk(h). (4.28)

Subtracting both equalities,

y(tk+1)− yk+1 = y(tk)− yn +h[Φ(tk,y(tk);h)−Φ(tk,yn;h)]+Tk(h). (4.29)

Taking norms,
∥Ek+1∥ ≤ ∥Ek∥+h∥Φ(tk,y(tk);h)−Φ(tk,yn;h)∥+∥Tk(h)∥. (4.30)



28 Numerical methods

By the hypothesis,
∥Ek+1∥ ≤ ∥Ek∥+hL∥y(tk)− yn∥+Chp+1. (4.31)

Recursively applying this equality and adding the resultant geometric sum,

∥Ek+1∥ ≤
(1+hL)k+1 −1

L
Chp. (4.32)

For any t ≥ 0, et ≥ 1+ t, and so, 1+hl ≤ ehL. Also, (k+1)h = tk+1 − t0. From this,

∥Ek+1∥ ≤
eL(tk+1−t0)−1

L
Chp. (4.33)

Finally,

∥Ek∥ ≤
eL(tk−t0)−1

L
Chp. (4.34)

4.3 Stability of Runge-Kutta methods

A lot can be said about the qualitative behaviour of dynamical systems, looking at the local
solution behaviour in the neighbourhood of some equilibrium points. In this chapter the stability
of these points and the related stability of Runge-Kutta methods will be studied. The majority of
definitions and results presented in this section are based in [9] and [12].

4.3.1 A-Stability

It is crucial to define, in advance, the stability of an equilibrium point. In general, the stability
concerns the behaviour of solutions near an equilibrium point in the long term. A system of differential
equations, for which f (t,y) can be written as a function of y, is only an autonomous differential
equation. Equations of this type are invariant under a translation of time, i.e., if τ = t − t0, then,
dτ

dt
= 1, and also

dy
dτ

=
dy
dt

dt
dτ

=
dy
dt

. (4.35)

Without loss of generality the initial value of time can be assumed to be t = 0, as long as the
system is autonomous, i.e., the initial value problem can be replaced by

dy
dτ

= f (y), y(0) = y0 . (4.36)

Considering the autonomous system of differential equations (4.35), with y(t,y0) the solution of
the system with the initial condition y(t0) = y0, some definitions are now given.

Definition 4.3.1 (Stability in the sense of Lyapunov). An equilibrium point, say y∗, is stable in the
sense of Lyapunov (or just stable) for the given differential equation if, ∀ε > 0, ∃δ > 0 and T > 0
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such that, if ∥y0 − y∗∥< δ , then, for t > T ,

∥y(t,y0)− y∗∥< ε. (4.37)

Definition 4.3.2 (Asymptotic stability). An equilibrium point, y∗, is asymptotically stable if there
exists γ > 0 such that, for any initial condition y0, such that ∥y0 − y∗∥< γ

lim
t→∞

∥y(t,y0)− y∗∥= 0. (4.38)

Definition 4.3.3. An equilibrium point, y∗, is unstable if it is not stable (in the sense of Lyapunov).

Lemma 4.3.1. Any asymptotically stable equilibrium point is also stable. The opposite is not
necessarily true.

The next result is the Linearization Theorem.

Theorem 4.3.1. [9][12][24] Consider

dy
dt

= Ay+F(y) (4.39)

in Rd such that y(0) = y0 states the initial condition to which the equation is subjected. Also, A
is a constant d × d matrix with λi (eigenvalues) having all negative real parts and F is C1 in a
neighbourhood of y = 0, with F ′(0) = F(0) = 0, where F ′(y) is the Jacobian matrix of F. Then, y = 0
is an asymptotically stable equilibrium point and if A has any eigenvalues with positive real part, then
y = 0 is an unstable equilibrium point.

Despite the restrictions of A and F , this theorem allows to take some conclusions.
Having y∗ an equilibrium point which is not at the origin, it is always possible to shift it to the

origin by introducing a translation. Defining ỹ = y− y∗, the following comes

dỹ
dt

=
dy
dt

= f (ỹ+ y∗)≡ f̃ (ỹ). (4.40)

This has the same form as the initial equation but has an equilibrium point at ỹ = 0.
Considering the differential equation (4.36) with C2 vector field and an equilibrium point at the

origin, Theorem 4.3.1 is allowed to be used following the steps:

1. Apply Taylor series to f around 0: f (y) = f (0)+ f ′(0)y+R(y). Because 0 is an equilibrium
point, f (0) = 0;

2. Set A = f ′(0);

3. Define F(y) = R(y).

The equation can now be written in the form

dy
dt

= Ay+F(y). (4.41)
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It is trivial to conclude that F(0) = F ′(0) = 0.
If the eigenvalues of A have negative real parts, then we can conclude that the origin is asymptotically
stable. This leads to a reformulation of Theorem 4.3.1 [12].

Theorem 4.3.2. [24] Suppose that f in (4.36) is C2 and has an equilibrium point, y∗.
If the eigenvalues of the Jacobian matrix, J = f ′(y∗), all lie strictly in the left complex half-plane,

then the equilibrium point, y∗, is asymptotically stable.
If J has any eigenvalue in the right complex half-plane, then y∗ is an unstable point.

The stability theory is developed based on test problems and so, the linear case can be studied to
introduce this theory.

For a linear system of ordinary differential equations,

dy
dt

= Ay, (4.42)

where A is a d × d matrix with a basis of eigenvectors. The general solution can be written in the
compact form

y(t) =
d∑

i=1

Cieλityi, (4.43)

with λi are the eigenvalues, yi the corresponding eigenvectors and Ci are coefficients. It is possible,
from this, to conclude that stability is determined by the eigenvalues.

Consider the problem (4.42). Applying Euler’s method,

yn+1 = yn +hAyn = (I +hA)yn.

If yn is expanded in the eigenvalues yi, i = 1, . . . ,d,

yn = α
(n)
1 y1 + · · ·+α

(n)
d yd .

Then,
yn+1 = (I +hA)

(
α
(n)
1 y1 + · · ·+α

(n)
d yd

)
.

Therefore,
yn+1 = α

(n)
1 (I +hA)y1 + · · ·+α

(n)
d (I +hA)yd .

If yi is an eigenvector of A, then

(I +hA)yi = yi +hAyi +hAyi = yi +hλiyi = (1+hλi)yi.

This implies

yn+1 =
d∑

i=1

α
(n)
i (1+hλi)yi.

It is also possible to write

yn+1 =
s∑

i=1

α
(n+1)
i yi.
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Comparing the last two equations and using the uniqueness of the basis representation [25],

α
(n+1)
i = (1+hλi)α

(n)
i .

Origin is a stable point if |1+λi| ≤ 1 and is asymptotically stable if |1+λi|< 1.

The stability condition for linear case of Euler method is given by [1]: For every eigenvalue λ of
A, hλ must lie inside a disk of radius 1 centred at z =−1 in the complex plan (see Figure 4.1).

Given the set of eigenvalues of A, the above condition implies a restriction on the maximum step
size h.

Fig. 4.1 Region of absolute stability of Euler’s method

In order to develop a theory applicable to most cases, the scalar case is introduced. It is possible
to see that Runge-Kutta methods, when applied to y′ = λy can be written in the form

yn+1 = R(hλ )yn, (4.44)

where R(µ) is a rational function of µ .

Considering the Runge-Kutta method applied to a linear test problem y′ = λy, for the internal
stages, with i = 1, . . . ,s, the following relations are obtained

Yi = yn +µ

s∑
j=1

ai jYj. (4.45)

This system can be casted into a matrix form with Y = (Y1, . . . ,Ys)
T , 1 = (1, . . . ,1)T and A the

matrix with entries ai j, i.e,

Y = yn1−µAY. (4.46)
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This means that

Y = yn(I −µA)−11 (4.47)

and similarly,

yn+1 = yn +µ

s∑
j=1

b jYj = yn +µbTY. (4.48)

The stability function R can be finally obtained from the combination of these three expressions:

yn+1 = R(µ)yn (4.49a)

R(µ) = 1+µbT (I −µA)−11 (4.49b)

From Cramer’s rule [17] computation of the inverse of a matrix, R is a rational function in µ .

Applying now the general Runge-Kutta method to y′ = Ay,

yn+1 = yn +h
s∑

i=1

biAYi, (4.50)

where

Yi = yn +h
s∑

j=1

ai jYj. (4.51)

The expansion of yn, yn+1 and Yi in the linearly independent set of d eigenvectors of A (eigenbasis)
is now applied.

Let U be a matrix composed with the eigenvectors as its columns so that AU =UΛ where Λ is the
diagonal matrix of eigenvectors. This means that U−1AU = Λ is the diagonalization of A.

Also, let Zi and zn be defined as follows

yn =Uzn, Yi =UZi, i = 1, . . . ,s. (4.52)

The Runge-Kutta method (4.17)can now be rewritten as

Uzn+1 =Uzn +h
s∑

i=1

biAUZi (4.53)

or,

zn+1 = zn +h
s∑

i=1

biΛZi. (4.54)

Similarly,

UZi =Uzn +h
s∑

i=1

ai jAUZ j (4.55)
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or,

Zi = zn +h
s∑

i=1

ai jΛZ j. (4.56)

Since Λ is a diagonal matrix, the system can be completely decoupled into d independent scalar
iterations. This can be translated as the application of the same Runge-Kutta method to the d scalar,
and complex, differential equations

dz(i)

dt
= λiz(i)

with y =Uz and zT = (z(1), . . . ,z(d)).

After all these considerations, it is now possible to see that stability of the origin can be analysed
for a given numerical method by just considering the scalar problem.

Theorem 4.3.3. [12] Given the differential equation y′ = Ay where it is assumed that the d×d matrix
A has a basis of eigenvectors and the corresponding eigenvalues λi , consider applying a Runge-Kutta
method. The Runge-Kutta method has a stable (asymptotically stable) fixed point at the origin when
applied to the differential equation if, and only if, the same method has a stable (asymptotically stable)

equilibrium at the origin when applied to each of the scalar differential equations
dy
dt

= λy, with λ

an eigenvalue of A.

A Runge-Kutta method applied to the scalar differential equations
dy
dt

= λy can be written as

yn+1 = R(hλ )yn. (4.57)

The following corollary is obtained.

Corollary 4.3.1. Consider a linear differential equation y′ = Ay with diagonalizable matrix A. Let a
Runge-Kutta method be given with stability function R. The origin is stable for the numerical method
applied to the differential equation (at step size h) if and only if

|R(µ)| ≤ 1, ∀µ = hλ (4.58)

with λ an eigenvalue of A.

Definition 4.3.4. {µ : |R(µ)| ≤} is the stability region of the Runge-Kutta method.
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Fig. 4.2 Region of absolute stability of 4th order Runge-Kutta method

Through fourth order, R(hλ ) agrees with the Taylor series expansion of exp(hλ ). The stability
function in this case is given by

R(µ) = 1+µ +
1
2

µ
2 +

1
6

µ
3 +

1
24

µ
4. (4.59)

The concept of absolute stability [18][15] needs to be considered. As said before, the construction
of stability is related with the following equation

y′(t) = λy(t). (4.60)

This very simple equation is used as a model to predict the stability behaviour of a numerical
methods for general nonlinear systems [9].

Any Runge-Kutta method applied to (4.60) is reduced to the representation of (4.57) in which
R : C→ C is a polynomial or rational function with real coefficients.

Definition 4.3.5. A Runge-Kutta method is called absolutely stable at µ ∈ C if, for this µ , |R(z)| ≤ 1.

This implies that |yn+1| ≤ |yn| for any (h,λ ) pair such that hλ = µ .
Let the following implicit relation represent the one-step Runge-Kutta method for the numerical

integration of the initial value problem (4.1)

yk+1 = yn +hΦ(tk,yn;h) (4.61)

where yk is the approximation of y(tk) (see Section 4.1).
In addition to the Runge-Kutta approximations, yn and yk+1, a second pair satisfying the same

Runge-Kutta relation should be considered, say u∗k and u∗k+1. The step sizes are always the same.
So,

u∗k+1 = u∗k +hΦ(tk,u∗k ;h) (4.62)
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Definition 4.3.6. The method (4.61) is called contractive if there exists real numbers h0 > 0 and
0 ≤ ε ≤ 1 such that

∥u∗k+1 − yk+1∥ ≤ ε∥u∗k − yn∥, for all h ∈ (0,h0]. (4.63)

Definition 4.3.7. The method represented at (4.61) is called unconditionally contractive if a real
number, 0 ≤ ε ≤ 1, exists such that

∥u∗k+1 − yk+1∥ ≤ ε∥u∗k − yn∥, for all h > 0. (4.64)

Absolute stability is, in fact, a contractivity property. Absolute stability of Runge-Kutta method is
completely determined by the properties of the stability function R.

Any Runge-Kutta method applied to

y′(t) = Ay(t), (4.65)

where A is a constant matix, yields to

yk+1 = R(hA)yn. (4.66)

R(hA) is the result of applying the stability function R to the matrix hA. This matrix valued
function exists if the complex valued function R(µ) is defined on the set of eigenvalues of hA. If hλi

are the eigenvalues of hA, then, R(hλi) are the eigenvalues of R(hA).
Suppose that A is a normal matrix. Then, R(hA) is normal and

∥R(hA)∥2 = max
i

|R(hλi)|. (4.67)

Theorem 4.3.4. [8] Let λi be the eigenvalues of A. Also, if A is a normal matrix,

|R(hλi)| ≤ 1, i = 1, . . . ,s (4.68)

is necessary and sufficient for contractivity in ∥ · ∥2.

Still, let λ ∈ C be given and introduce the normal matrix

[
Re(λ ) −Im(λ )

Im(λ ) Re(λ )

]

with eigenvalues λ and λ . Since A is normal, R(hA) is also normal with eigenvalues R(hλ ) and R(hλ ).
This implies that

∥R(hA)∥2 = |R(µ)|. (4.69)

Lemma 4.3.2. A Runge-Kutta method is A-stable if and only if the method is unconditionally
contractive (4.3.7) in ∥ · ∥2 on the class of dissipative, constant coefficient problems (4.60) for
y(0) = y0 and with normal matrix A.
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A more restrictive condition, somewhat, is given by

|R(hλi)|< 1 (4.70)

for arbitrary matrices A and with λi, i = 1, . . . ,m, being an eigenvalue of A. Equation (4.66) can be
rewritten as

yk+1 = Rn+1(hA)y0. (4.71)

Also, if (4.70) is satisfied, the spectral radius (σ ) satisfies σ [R(hA)]< 1.
In this case, matrix Rn(hA) converges to the null matrix as n → ∞ [30]. However, this convergence

behaviour gives no indication as to the magnitude of yn+1 for finite n. If Re(λi)< 0, a similar situation
arises for the exact solution y(t) of (4.65) because this solution is always a linear combination of
polynomials in t multiplied by exponential functions exp(λit) [9].

Lemma 4.3.3. Condition (4.70) merely implies that the numerical solution yn+1 defined by (4.66)
cannot have unbounded growth in n (stability). If A is normal, condition (4.70) implies strict
contractivity in ∥ · ∥2.

The stability function R(µ) determines the behaviour of a one-step method when this method is
applied to the model problem (4.60).

Application of the Runge-Kutta method to the initial value problem (4.1) reveals that

R(z) = 1+bT z(I −Az)−1e, z = hλ . (4.72)

Notice that R is a polynomial in z if the method is explicit. In all other cases, is a rational function.
Let yn, yn+1 and Yi be numerical solutions defined by

yn+1 = yn +h
s∑

i=1

bi f (tn + cih,Yi) (4.73a)

where

Yi = yn +h
s∑

i=1

ai j f (tn + c jh,Yj), 1 ≤ i ≤ s. (4.73b)

Theorem 4.3.5. The stability function of the Runge-Kutta method (4.73) is given by

R(z) =
det(I − zA+ zebT )

det(I − zA)
. (4.74)

Proof. Application of the Runge-Kutta method (4.73) to the model equation (4.60) yields the linear
system 

1−hλa11 −hλa12 . . . −hλa1s 0
−hλa21 1−hλa22 . . . −hλa2s 0

...
...

...
...

...
−hλas1 −hλas2 . . . 1−hλass 0
−hλb1 −hλb2 . . . −hλbs 1





Y1

Y2
...

Ys

Yk+1


=



yk

yk
...

yk

yk


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with Y and y defined as in (4.73).
Cramer’s rule expresses yn+1 as the quotient of two determinants. The denominator is given by

the determinant of the matrix presented, which is clearly equal to det(I − zA). The numerator is the
determinant of the matrix 

1−hλa11 −hλa12 . . . −hλa1s yn

−hλa21 1−hλa22 . . . −hλa2s yn
...

...
...

...
...

−hλas1 −hλas2 . . . 1−hλass yn

−hλb1 −hλb2 . . . −hλbs yn


.

Subtraction of the last row from the first s rows leaves this determinant invariant, and so,

yk+1 =
det(I − zA+ zebT )

det(I − zA)
yn. (4.75)

4.3.2 B-Stability

In this Section, a more general contractivity theory is studied and some nonlinear stability concepts
are also presented. This behaviour analysis will concentrate most on dissipative equations applications,
i.e., equations satisfying for some real inner product < ·, ·>,

< f (t,ε1)− f (t,ε2),ε1 − ε2 >≤ 0 (4.76)

for all ε1,ε2 ∈ Rm with t ≥ 0.
From now on, is considered that the differential equation is dissipative on the whole space Rm.
Suppose that ỹn, ỹn+1 and Ỹi are solutions obtained by perturbations or different starring values

satisfying

ỹn+1 = ỹn +h
s∑

i=1

bi f (tn + cih,Ỹi) (4.77a)

Ỹi = ỹn +h
s∑

i=1

ai j f (tn + c jh,Ỹj), 1 ≤ i ≤ s. (4.77b)

This following definition has been introduced by Butcher [3] and considers the concept of B-
stability for Runge-Kutta methods applied to stiff nonlinear initial value problems with autonomous
differential equations ( f independent of t).

Definition 4.3.8. A Runge-Kutta method (4.73) is called B-stable if, for all autonomous problems
satisfying (4.76), all yn, ỹn and all h > 0,

∥yn+1 − ỹn+1∥ ≤ ∥yn − ỹn∥. (4.78)

Later [2][7], a slightly different concept was defined, applied to non-autonomous equations
satisfying (4.76).
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Definition 4.3.9. A Runge-Kutta method (4.73) is called BN-stable if, for all f satisfying (4.76), all
yn, ỹn and all h > 0, inequality (4.78) holds.

Both stability definitions mean unconditional numerical contractivity for problems dissipative in
some inner product norm.

Corollary 4.3.2. BN-Stability implies B-stability.

Suppose that the matrix A of Runge-Kutta parameters is non-singular and let A−T the be the
transpose of A−1. The symmetric matrix is then given by

Q = BA−1 +A−T B−A−T bbT A−1. (4.79)

Theorem 4.3.6. Let B and Q be nonnegative definite. Then the Runge-Kutta method is B-stable.

Proof. Let ε1, . . . ,εs be arbitrary vectors from Rm. Then the nonnegativity definite matrix of Q implies
that

s∑
i, j=1

(
bia

(−1)
i j +b ja

(−1)
ji −

s∑
k=1

bka(−1)
ki bka(−1)

k j

)
< εi,ε j > =

s∑
i, j=1

qi j < εi,ε j > ≥ 0, (4.80)

where a(−1)
i j and qi j denote the (i, j) element of A−1 and Q, respectively. Let v0 = yn − ỹn, v =

yn+1 − ỹn+1, vi = Yi − Ỹi and wi = h f (tn + cih,Yi)−h f (tn + cih,Ỹi). From (4.77b) and (4.73), using
the non-singularity of A,

wi =
s∑

j=1

a(−1)
i j {(Yj − yn)− (Ỹj − ỹn)}=

s∑
j=1

a(−1)
i j (v j − v0). (4.81)

In order to compute the norm of v, consider the difference between (4.77a) and (4.73).

∥v∥2 = ∥v0 +
∑s

i=1 biwi∥2

= ∥v0∥2 +2 < v0,
∑s

i=1 biwi >+<
∑s

k=1 bkwk,
∑s

k=1 bkwk >

= ∥v0∥2 +2
∑s

i=1 bi < vi,wi >+2
∑s

i=1 bi < v0 − vi,
∑s

j=1 a(−1)
i j (v j − v0)>

+
〈∑s

i,k=1 bka(−1)
ki (vi − v0),

∑s
i,k=1 bka(−1)

k j (v j − v0)
〉

= ∥v∥2 +2
∑s

i=1 bi < vi,wi >

−∑s
i, j=1

(
bia

(−1)
i j +b ja

(−1)
ji −∑s

k=1 bka(−1)
ki bka(−1)

k j

)
< vi − v0,v j − v0 >

= ∥v∥2 +2
∑s

i=1 bi < vi,wi >−∑s
i, j=1 qi j < vi − v0,v j − v0 > .

(4.82)



4.3 Stability of Runge-Kutta methods 39

Since bi ≥ 0, the second term on the right-hand side is nonpositive and < vi,wi >≤ 0 according to
(4.76) and the definition of vi and wi. The last term is nonnegative by (4.80). It is possible to conclude
that ∥v∥2 ≤ ∥v0∥2.

For one dimensional problems, Theorem 4.3.6 can be proved as following. Quantities Yi and Ỹi,
for i = 1, . . . ,s, are scalars. The following vectors can be defined

Y =


Y1

Y2
...

Ys

 and Ỹ =


Ỹ1

Ỹ2
...

Ỹs

 , with Y, Ỹ ∈ Rs. (4.83)

Also,

F(tn,Y ) =


f (tn + c1h, Y1)

...
f (tn + csh, Ys)

 ∈ R (4.84)

and

V = Y − Ỹ , W = hF(tn,Y )−h(tn,Ỹ ). (4.85)

The subtraction of (4.77b) from (4.73b) leads to

W = A−1(V − v0e), (4.86)

and equation (4.82) can be formulated as

|v|2 = |v0 +bTW |2 = |v0|2 +2v0bTW + |bTW |2

= |v0|2 +2V T BW −2V T BW +2v0eT BW +W T bbTW

= |v0|2 +2V T BW −2(V − v0e)T BA−1 (V − v0e)+(V − v0e)T A−T bbT A−1 (V − v0e)

= |v0|2 +2V T BW − (V − v0e)T Q(V − v0e) .

(4.87)

Theorem 4.3.7. If an implicit Runge-Kutta method is such that

1. A is non-singular;

2. B is nonnegative;

3. The abscissas c1, . . . ,cs are distinct;

4. 0 ≤ eT BA−1e ≤ 2;

5. B(s):
s∑

i=1

bick−1
i =

1
k

, for 1 ≤ k ≤ s;
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6. C(s−1):
s∑

i=1

ai jck−1
j =

1
k

ck
i , for 1 ≤ k ≤ s−1;

7. D(s−1):
s∑

i=1

bicl−1
i ai j =

1
l

b j(1− c′j) , for 1 ≤ j ≤ and 1 ≤ l ≤ s−1;

then, the method is B-stable.

Proof. Notice that the condition 3 of the Theorem 4.3.7 implies the regularity of the Vandermonde
matrix V defined by

V =


1 c1 . . . cs−1

1

1 c2 . . . cs−1
2

...
...

...
1 cs . . . cs−1

s

 . (4.88)

Also, hypothesis 5, 6, and 7 are equivalent, respectively, to

• bTV Is = eT SIs;

• AV Is−1 =CV SIs−1;

• Is−1V T BA = Is−1S(eeT −V TC)B;

where B = diag(b1, . . . ,bs), C = diag(c1, . . . ,cs) and S = diag
Å

1,
1
2
, . . . ,

1
s

ã
. Multiplying Q with

matrix CV SIs−1 and applying the previous conditions,

QCV SIs−1 = A−T BCV SIs−1 +BA−1CV SIs−1 −A−T bbT A−1CV SIs−1

= A−T BCV SIs−1 +BV Is−1 −A−T bbTV Is−1

= A−T BCV SIs−1 +A−T B
(
eeT −CV

)
SIs−1 −A−T BeeT SIs−1 = 0.

(4.89)

Notice that CV SIs−1 has rank s−1. Thus, the dimension of the null space of Q is at least equal to
s−1. If this dimension is equal to s, then Q is the zero matrix, hence nonnegative. Supposing the
dimension equal to s−1, the nullspace of Q is spanned by the first s−1 columns of CV S, according
to (4.89). These are just the last s−1 columns of V S and because V S is non-singular, the first column
of this matrix, e, does not lie in the null space of Q.

eT Qe = eT BA−1e+ eT A−T Be− etA−T bbT A−1e

= 2
Ä
eT BA−1e

ä
−
(
eT A−T Be

)Ä
eT BA−1e

äÄ
eT BA−1e

äÄ
2− eT BA−1e

ä
≥ 0

(4.90)

according to the hypothesis 4 of the Theorem 4.3.7.Thus, Q in nonnegative. Moreover, B in nonnega-
tive and Theorem 4.3.6 can be applied and so, the method is B-stable.



Chapter 5

Numerical Simulations

This chapter presents numerical solutions of the systems discussed previously which models the
speed and trajectory of a moving body. The numerical method used to solve the systems is the 4th
order Runge-Kutta method and the codes are implemented in Matlab.

To implement the model in Matlab, four functions were created. One implements the Runge-Kutta
method for x(t) and v(t) (rksolver1). The other two contain information about the equations which
build the systems f1 and f2 (3.3) (derivsrk_dy and derivsrk_dx, respectively). Last, but not least, a
runner function has been created to run all the information digested for the other ones.

To understand the influence of body mass and water/wind velocities in the trajectories of objects
adrift at the ocean, results for different values of the parameters involved in the system (body mass,
water and wind velocities) are presented.

5.1 Small objects model

In this first simulation for the small objects model, the only parameter that changes is the mass of
the drifting object.

(a) Position along time (b) Velocity along time

Fig. 5.1 Simulation of small objects model, m = 100, V w = 100.
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(a) Position along time (b) Velocity along time

Fig. 5.2 Simulation of small objects model, m = 50, V w = 100.

Notice that, by observing Fig. 5.1 and Fig. 5.2, the object with less mass reaches faster a higher speed
and travels a greater distance, as expected. The speed of the object adrift tends to the speed of the
water since this is the main factor that triggers movement in this model.

In the second simulation of the small objects model, shown by Fig. 5.3 and Fig. 5.4, the only
parameter that changes is the water velocity.

(a) Position along time (b) Velocity along time

Fig. 5.3 Simulation of small objects model, m = 100, V w = 200.
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(a) Position along time (b) Velocity along time

Fig. 5.4 Simulation of small objects model, m = 100, V w = 500.

As expected, higher water speed causes the object to have a higher drift speed. As before, the speed of
the adrif object tends to the speed of the water.

5.2 Cargo containers model

In the first simulation for the cargo containers model, the parameter that varies is the wind velocity.
In this simulation, Va is considered equal to 0, and can be compared with the simulation displayed in
Fig. 5.1.

(a) Position along time (b) Velocity along time

Fig. 5.5 Simulation of cargo containers model, m = 100, V w = 100, Va = 0.

Even neglecting the wind velocity, the two models produce different results for objects with the same
mass and subject to the same speed of water. In the next simulation, an analysis is done about the
wind speed on the total speed of the object under the same conditions as in the previous example
(except for the wind speed parameter).



44 Numerical Simulations

(a) Position along time (b) Velocity along time

Fig. 5.6 Simulation of cargo containers model, m = 100, V w = 100, Va = 100.

It is noticed that with wind contribution, the object travels a great distance and reaches a high velocity.

Now, a simulation to study the influence of the mass is presented. The mass is the only parameter
that changes and the other parameters are the same as in (Fig. 5.6).

(a) Position along time (b) Velocity along time

Fig. 5.7 Simulation of cargo containers model, m = 2000, V w = 100, Va = 100.

Notice that the object with greater mass reaches lower velocity, and travels a smaller distance, as
expected.

Neglecting the water velocity, let us study how the wind velocity influences the movement and
velocity of an object with high mass as in the previous simulation (Fig. 5.7).
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(a) Position along time (b) Velocity along time

Fig. 5.8 Simulation of cargo containers model, m = 2000, V w = 0, Va = 100.

As expected, total velocity has decreased when the water velocity was neglected. The object, with the
same mass, was only subject to wind velocity and therefore, the total velocity decreased, impacting
the distance travelled by the object.
It is possible to conclude that, objects with higher mass are less influenced by the forces to which they
are subjected.





Chapter 6

Conclusion

Drifting objects in a marine environment are subject to different circumstances and are influenced
in different ways. It is crucial to adapt the model according to the characteristics of the objects and
also of the environment in which the object is inserted.

Objects such as cargo containers, compared to smaller objects such as a human body, need more
force applied to them in order to produce movement. Still, there is always a two-way application of
force on the object. When the object moves, it means that one of the forces is superior and it is in the
direction of that same force that the object moves. If they are the same, they are balanced and there is
no movement.

The wind produces more force on the object. This force can occur in the direction of the water
force or in the opposite direction. In the first case, without loss of generality, the speed of the object is
increased and in the second it is decreased.

Numerical simulations carried out with the 4th order Runge-Kutta method corroborate these
conclusions, allowing to conduct a maritime drift prediction study using mathematical models that can
help on SAR operations. The aim of using differential equations problems was to be able to predict
the value of some quantity, satisfying a differential equation, at some future time.
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Appendix A

Matlab Codes

A.1 Absolute stability regions

1 %% F u n c t i o n t o p l o t E u l e r a b s o l u t e s t a b i l i t y r e g i o n
2

3 f u n c t i o n t h e p l o t = A b s o l u t e _ S t a b i l i t y _ E u l e r ( )
4 x = −3 : 0 . 0 1 : 1 ;
5 y = −3 : 0 . 0 1 : 3 ;
6 [X,Y] = meshgr id ( x , y ) ;
7 Z = X+1 i *Y;
8 y0 = 0 . 0 * x ;
9 x0 = 0 . 0 * y ;

10 W1 = 1+Z ;
11 Q1 = W1. * c o n j (W1) ;
12 f i g u r e ( 1 )
13 ho ld on ;
14 t h e p l o t = c o n t o u r f (X, Y,−Q1,[−1 −1]) ;
15 p l o t ( x , y0 , ’−−k ’ , x0 , y , ’−−k ’ ) ;
16 ho ld o f f ;
17 a x i s e q u a l ;
18 s e t ( gca , ’ f o n t s i z e ’ , 1 6 ) ;
19 t i t l e ( ’ E u l e r ’ ’ s Method ’ , ’ f o n t s i z e ’ , 1 8 ) ;
20 x l a b e l ( ’ $ \ mathrm {Re } ( z ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 1 8 ) ;
21 y l a b e l ( ’ $ \ mathrm {Im } ( z ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 1 8 ) ;
22 end

1 %% F u n c t i o n t o p l o t 4 t h o r d e r Runge−K u t t a a b s o l u t e s t a b i l i t y
r e g i o n

2

3 f u n c t i o n t h e p l o t = A b s o l u t e _ S t a b i l i t y _ 4 R u n g e K u t t a ( )
4 x = −3 : 0 . 0 1 : 3 ;
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5 y = −3 : 0 . 0 1 : 3 ;
6 [X,Y] = meshgr id ( x , y ) ;
7 Mu = X+ i *Y;
8 y0 = 0 . 0 * x ;
9 x0 = 0 . 0 * y ;

10 W1 = 1 + Mu + . 5 *Mu. ^ 2 + ( 1 / 6 ) *Mu. ^ 3 + ( 1 / 2 4 ) *Mu. ^ 4 ;
11 Q1 = W1. * c o n j (W1) ;
12 f i g u r e ( 1 )
13 ho ld on ;
14 t h e p l o t = c o n t o u r f (X, Y,−Q1,[−1 −1]) ;
15 p l o t ( x , y0 , ’−−k ’ , x0 , y , ’−−k ’ ) ;
16 ho ld o f f ;
17 a x i s e q u a l ;
18 s e t ( gca , ’ f o n t s i z e ’ , 1 6 ) ;
19 t i t l e ( ’ 4 t h Order Runge−K u t t a Method ’ , ’ f o n t s i z e ’ , 1 8 ) ;
20 x l a b e l ( ’ $ \ mathrm {Re } ( z ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 1 8 ) ;
21 y l a b e l ( ’ $ \ mathrm {Im } ( z ) $ ’ , ’ i n t e r p r e t e r ’ , ’ l a t e x ’ , ’ f o n t s i z e ’ , 1 8 ) ;
22 end

A.2 Drift models

1 %% F u n c t i o n t o d e f i n e v ’ ( t )
2

3 f u n c t i o n dy = d e r i v s r k _ d y ( x , t ime , y )
4 %% Uncomment i n c o n f o r m i t y
5

6 rhow = 0 . 9 ; %w a t e r d e n s i t y
7 m = 100 ; %o b j e c t ’ s mass
8 Cm = 0 . 2 ; %added mass c o e f f i c i e n t
9 Vw = 200 ; %w a t e r v e l o c i t y

10 Cd = ( 0 . 8 + 0 . 0 6 5 * abs (Vw) ) * 0 . 0 0 1 ; %drag c o e f f i c i e n t
11 Sw = 1 0 ; %c r o s s−s e c t i o n a l a r e a a f f e c t e d by t h e w a t e r
12 g= 0 . 9 8 ; %g r a v i t i c a l a c e l a r a t i o n
13

14 r hoa = 1 . 2 ; %a i r d e n s i t y
15 Sa = 1 0 ; %c r o s s−s e c t i o n a l a r e a a f f e c t e d by t h e wind
16 Va = 5000 ; % wind v e l o c i t y
17 a = 1 . 2 5 ; %wave a m p l i t u d e
18 L = 1 0 ; %t h e l e n g h t o f t h e c o n t a i n e r normal t o i n c i d e n t waves o f

a m p l i t u d e a
19 f = 1 ; %c o r i o l i s f o r c e
20 D = 1 ; %wave l e n g h t
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21 K = 1 ; %v e r t i c a l v e c t o r
22 k = 0 . 0 1 ; %wave number
23 w = 0 . 0 1 ; %wave f r e q u e n c y
24

25 %Smal l o b j e c t s model
26 e t a _ x = k* s i n ( k*x−w* t ime ) ;
27 dy = −g* e t a _ x / s q r t (1+ e t a _ x ^2 ) + ( 0 . 5 * rhow * Cd * Sw * abs (Vw−y ) * (

Vw−y ) ) / m*(1+Cm) ; % d r i f t e q u a t i o n
28

29 %Cargo c o n t a i n e r s model
30 dy = ( 0 . 5 * rhoa *Cd*Sa* abs ( Va−y ) * ( Va−y ) + 0 . 5 * rhow*Cd*Sw* abs (Vw−y ) * (

Vw−y ) + 0 .25 * rhow*g* a ^2*L ) / (m^2* f *K*D*y ) ; %c a r g o c o n t a i n e r s

1 %% F u n c t i o n t o d e f i n e x ’ ( t )
2

3 f u n c t i o n dx = d e r i v s r k _ d x ( x , t ime , y )
4 %% Uncomment i n c o n f o r m i t y
5

6 %Smal l o b j e c t s model
7 k = 0 . 0 1 ; %wave number
8 w = 0 . 0 1 ; %wave f r e q u e n c y
9 e t a _ x = k* s i n ( k*x−w* t ime ) ;

10 dx = y / s q r t (1+ e t a _ x ^2 ) ;
11

12 %Cargo c o n t a i n e r s model
13 dx = y ;

1 %% F u n c t i o n t o run 4 t h o r d e r Runge−K u t t a
2

3 f u n c t i o n [ t , da t a , d a t a 2 ] = r k s o l v e r 1 ( y , x , d t , t _ f i n a l , d e r i v s r k _ d y ,
d e r i v s r k _ d x )

4 t ime = 0 ;
5 Ns te ps = round ( t _ f i n a l / d t ) ; %number o f s t e p s t o t a k e
6 t = z e r o s ( Nsteps , 1 ) ;
7 d a t a = z e r o s ( Nsteps , 1 ) ;
8 d a t a 2 = z e r o s ( Nsteps , 1 ) ;
9 t ( 1 ) = t ime ; %s t o r e i n i t i a l c o n d i t i o n f o r t

10 d a t a ( 1 ) = y ;
11 d a t a 2 ( 1 ) = x ;
12 f o r i =1 : Ns t e ps
13

14 k1 = d t * f e v a l ( d e r i v s r k _ d y , x , t ime , y ) ;
15 l 1 = d t * f e v a l ( d e r i v s r k _ d x , x , t ime , y ) ;
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16

17 k2 = d t * f e v a l ( d e r i v s r k _ d y , x , t ime + d t / 2 , y + k1 / 2 ) ;
18 l 2 = d t * f e v a l ( d e r i v s r k _ d x , x , t ime + d t / 2 , y + l 1 / 2 ) ;
19

20 k3 = d t * f e v a l ( d e r i v s r k _ d y , x , t ime + d t / 2 , y + k2 / 2 ) ;
21 l 3 = d t * f e v a l ( d e r i v s r k _ d x , x , t ime + d t / 2 , y + l 2 / 2 ) ;
22

23 k4 = d t * f e v a l ( d e r i v s r k _ d y , x , t ime + dt , y + k3 ) ;
24 l 4 = d t * f e v a l ( d e r i v s r k _ d x , x , t ime + dt , y + l 3 ) ;
25

26 y = y + k1 / 6 + k2 / 3 + k3 / 3 + k4 / 6 ;
27 x = x + l 1 / 6 + l 2 / 3 + l 3 / 3 + l 4 / 6 ;
28

29 t ime = t ime + d t ;
30 t ( i +1) = t ime ;
31 d a t a ( i +1) = y ;
32 d a t a 2 ( i +1) = x ;
33 end
34 end

1 %% S i m u l a t i o n s r u n n e r
2

3 [ t , da t a , d a t a 2 ] = r k s o l v e r 1 ( 0 . 1 , 0 . 1 , 0 . 0 2 , 500 , @der ivsrk_dy ,
@der ivs rk_dx ) ;

4

5 f i g u r e ( 1 )
6 p l o t ( t , da t a , ’ r * ’ )
7 l e g e n d ( ’ v ( t ) ’ , ’ F o n t S i z e ’ , 1 6 ) ;
8

9

10 f i g u r e ( 2 )
11 p l o t ( t , da t a2 , ’ r * ’ )
12 l e g e n d ( ’ x ( t ) ’ , ’ F o n t S i z e ’ , 1 6 ) ;
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