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Resumo

Complicações card́ıacas são comuns durante uma cirurgia, com uma estimativa de 30% dos pa-

cientes submetidos a extensos procedimentos cirúrgicos devido à presença de comorbidades cardio-

vasculares e intervenções não card́ıacas associadas a uma taxa de 7-11% de complicações, sendo

que 42% dessas são causadas por problemas card́ıacos. A hemodinâmica reflete a capacidade de

perfusão de oxigénio e nutrientes em todos os órgãos, a fim de manter as funções orgânicas ideais e

evitar complicações. Uma técnica fundamental para avaliação hemodinâmica é a monitorização da

pressão arterial (PA), que pode ser realizada de forma invasiva com cateter arterial ou não invasiva

com uma braçadeira. As técnicas invasivas fornecem monitorização cont́ınua da PA ”batimento a

batimento”, leituras precisas da PA em baixas pressões e formas de onda de pressão de pulso, mas

são caras, demoradas e precisam de um operador treinado. Enquanto isso, os métodos baseados na

braçadeira fornecem medições intermitentes (com intervalos de alguns minutos a várias horas) de

pressão arterial sistólica (PAS), diastólica (PAD) e média (PAM) e são associadas à subestimação

dos valores da PA hipertensiva e superestimação da PA hipotensiva, mas são baratos e fáceis de

empregar. Na verdade, a monitorização intermitente da PA é realizada mesmo em pacientes grave-

mente doentes sob certas circunstâncias, como falta de equipamento técnico ou equipa cĺınica.

Sendo assim, este estudo aborda a oportunidade para o desenvolvimento de soluções de monitor-

ização de PA cont́ınuas e não invasivas com base em métricas relacionadas com a PA, como o tempo

de chegada de pulso (PAT), que podem fornecer estimativas de PA em tempo real, sendo fáceis de

empregar e exigindo apenas tecnologias amplamente dispońıveis, como a fotopletismografia (PPG)

e eletrocardiografia (ECG).

Os dados adquiridos de 9 pacientes submetidos a cirurgias card́ıacas ou neurológicas incluem PA

invasiva e sinais de ECG e PPG. Três modelos de regressão baseados nas equações de Moens-

Korteweg e Bramwell-Hill são estudados e métodos para calibração sistemática são analisados. Os

resultados são comparados com a PA (invasiva) e a amostragem intermitente dos valores originais

da PA arterial como um processo de retentor de ordem zero (ZoH) para simular métodos baseados

na braçadeira sem quaisquer erros comumente associados. Além disso, é proposta uma solução para

amostragem não uniforme da PA, baseada na variabilidade da PA com o objetivo de aumentar a

frequência de amostragem da PA quando a PA é instável e diminuir caso contrário. Os resultados

sugerem que o uso de modelos de regressão, o modelo MK-BH mais especificamente, com um pro-

cedimento de amostragem e calibração uniforme com um intervalo de 5 minutos melhoraria muito

a monitorização da PA no ambiente intraoperatório em comparação com o ZoH contra a PA ”real”,

resultando numa redução do desvio padrão do erro e do erro absoluto médio de até 50% para a

PAS. Estas melhorias tornam-se mais expressivas quando olhamos para os 5% e 1% maiores erros

absolutos com uma redução de mais de 50%.
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Resumo

Em relação à abordagem de amostragem de PA não uniforme, pode-se identificar ligeiras melhorias

nos modelos de regressão alimentados por essas amostras de PA para calibração em termos de ME

± SD e MAE em comparação com a amostragem e calibração uniforme anterior de 5 minutos.

Olhando para os maiores 5% e 1% erros absolutos, a melhoria é viśıvel para o modelo MK-BH,

que melhora os maiores 1% de erros absolutos em até 30%, enquanto o ZoH melhora em até 30%

para ambos.

Por último, um algoritmo para detecção e classificação de eventos rápidos de PA é proposto com

base em métricas indiretas relacionadas com a PA. O algoritmo analisa os últimos 5 minutos de

monitorização em cada instante e classifica como nenhum evento, evento pequeno, evento médio ou

evento grande. Os resultados sugerem o potencial de desenvolvimento de uma ferramenta semel-

hante com base em métricas indiretas de avaliação da PA, a fim de criar um procedimento de

amostragem de BP não uniforme e otimizado.
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Abstract

Cardiac complications are common during a surgery, with estimated 30% of patients undergoing

extensive surgical procedures in the presence of cardiovascular comorbidities and non-cardiac inter-

ventions being associated with 7-11% of complication rate while 42% of these are caused by cardiac

issues. Hemodynamics reflect the ability for perfusion of oxygen and nutrient to all organs in or-

der to maintain optimal organ functions and avoid complications. One fundamental technique for

hemodynamics evaluation is the arterial blood pressure (BP) monitoring, which can be performed

invasively with an arterial catheter or non-invasively with cuff-based methods. Invasive techniques

provide continuous ”beat-to-beat” BP monitoring, accurate BP readings at low pressures and pulse

pressure waveforms, but are expensive, time-consuming and need a trained operator. Meanwhile,

cuff-based methods provide intermittent measurements (from a few minutes to several hours in-

tervals) of systolic (SBP), diastolic (DBP) and mean (MAP) arterial pressure, and are associated

with underestimation of hypertensive BP values and overestimation of hypotensive BP, but are

cheap and easy to employ. In fact, intermittent cuff-based BP monitoring is performed even in

critically ill patients under certain circumstances, such as lack of technical equipment or clinical

staff.

Being so, this study addresses the opportunity for development of non-invasive BP monitoring so-

lutions based on BP surrogates such as the pulse arrival time (PAT) that might provide real-time

BP estimations while being easy to employ and only requiring widely available technologies such

as photoplethysmograpy (PPG) and electrocardiography (ECG).

Data acquired from 9 patients undergoing cardiac or neuro surgeries include invasive arterial BP,

PPG and ECG signals. Three regression models based on Moens-Korteweg and Bramwell-Hill

equations are studied and methods for systematic calibration are analyzed. Results are compared

with ground truth BP (invasive) and intermittent sampling from the original arterial BP values as

a zero-order hold (ZoH) process in order to simulate cuff-based methods without any commonly

associated errors. Furthermore, a solution for non-uniform BP sampling is proposed, based on BP

variability aiming to increase BP sampling frequency when BP is unstable and decrease otherwise.

Results suggest that the use of regression models, the MK-BH model more specifically, with a

uniform 5 minutes interval BP sampling and calibration procedure would highly improve the BP

monitoring in the intraoperative environment comparing with the ZoH against ground truth BP,

resulting in a reduction of the standard deviation of the error and the mean absolute error up to

50% for the SBP. These improvements become more expressive when one looks at the top 5% and

1% absolute errors with a reduction of more than 50%.

Regarding the non-uniform BP sampling approach, one could identify slight improvements from

the regression models using these BP samples for calibration in terms of ME ± SD and MAE
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comparing with the previous uniform 5 minutes BP sampling and calibration. Looking at the top

5% and 1% absolute errors, the improvement is visible for the MK-BH model which improves the

top 1% absolute errors up to 30%, while the ZoH improves up to 30% for both top 1% and 5%

absolute errors.

At last, an algorithm for fast BP events detection and classification is proposed based on BP

surrogates. The algorithm analyzes the last 5 minutes of monitoring at each time instance and

classifies it as no event, small event, medium event or large event. The results support the potential

for developing such tool based on BP surrogates in order to create a non-uniform BP sampling

procedure.
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1

Introduction

This thesis addresses the problem of evaluation of the cardiovascular function in the operative

room (OR) and intensive care unit (ICU) covering the perioperative care and later focusing in

the intraoperative period and the blood pressure monitoring using non-invasive techniques. Sev-

eral surrogates were extracted from electrocardiograms (ECG) and photoplethysmograms (PPG)

from patients during surgical interventions and their capability of describing changes in the cardio-

vascular system function is analyzed. State-of-the-art models for blood pressure estimation from

surrogates are analyzed and, finally, an algorithm for blood pressure events detection is proposed.

1.1 Motivation

Recent studies show that major operations worldwide happen at the pace of 4% of the global

population annually. Estimated 30% of patients undergo extensive surgical procedures when car-

diovascular comorbidities are present. Non-cardiac interventions are associated with 7-11% com-

plication rate while 42% of those are caused by cardiac complications. Regarding to Europe, these

numbers translate into at least 167 000 cardiac complications annually because of non-cardiac

surgical procedures, of which 19 000 threat lives [72]. The cardiovascular homeostatic state is

what clinicians commonly define as hemodynamics and reflects the ability for perfusion of oxygen

and nutrients to all organs so that optimal organ functions are maintained and complications are

avoided. Hemodynamic instability is recognized to create a crucial impact in surgical patient’s out-

come, ultimately resulting in an increase of organ failures and mortality rates [3, 4]. Monitoring

hemodynamic variables during surgeries enables clinicians to identify any organ disfunction which

can be correlated with a surgical procedure or patient’s comorbidities. It’s known that a proactive

hemodynamics management strategy within the perioperative period may reduce morbidity and

mortality for high-risk surgical patients [53].

Traditional hemodynamic evaluation includes the simplest form of monitoring: the health care

professionals inspect the patients to see if they are conscious, agitated or in distress, breathing reg-

ular or labored, in presence or absence of central and peripheral cyanosis; touching of the skin of a

patient to notice if it’s cool and moist, and if capillary refill is quick or not; palpation of the central

and peripheral pulses to evaluate rate and firmness [128]. Other evaluation metrics include arte-

rial blood pressure (ABP), heart rate (HR), pulse oximetry, central venous oxygen saturationand

lactate concentration [116]. A survey from 2011 revealed that most of the anesthesiologists from

USA and Europe agree that their current hemodynamic management could be improved, stating

that their institutions lack written protocols, care guides or statements concerning the hemody-

namic management [17]. Also, this survey reveals that the majority of the anesthesiologists try to
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optimize the patient’s arterial blood pressure (ABP) during most of high-risk surgeries. In fact,

ABP monitoring is the most common hemodynamic evaluation measure in acutely or critically ill

patients, but there are several alternative ways to try and do it and therefore the clinician choice

has direct impact in the clinical decision-making and also the patient’s surgical outcomes. The

clinical reference method for BP monitoring in high-risk surgical and critically hill patients is the

continuous invasive ABP measurement using an arterial catheter (A-line) because it detects almost

twice as much intraoperative hypotension episodes than intermittent non-invasive measurements

using oscillometry and triggers vasopressor therapy in adults having non-cardiac surgery [112].

Although it’s considered the gold standard for ABP measurements, this technique has it’s pitfalls

and is just recommended if there’s a requirement for continuous BP monitoring, impracticality

of non-invasive BP measurements, the necessity for repeated arterial blood sampling or more ad-

vanced invasive hemodynamic monitoring (pulse wave analysis, transpulmonary thermodilution)

[148]. Intermittent non-invasive measurements using oscillometry are easy to undertake but are

related to BP overestimation during hypotension episodes and underestimation during hyperten-

sion episodes [181].

A non-invasive, continuous and reliable BP measuring device would help monitor patients without

pain and the risk of infection in emergency situations like an accident, in ambulance transfer or

within the emergency room. It could also be applied safely and easily to patients undergoing

surgery, and moreover, it might be especially beneficial for unconscious patients under continuous

monitoring for an extended period by reducing infection. For this reason, photoplethysmograph-

based, ultrasound-based, and tactile-sensor-based approaches are under investigation, but further

development is required in order to enable this technology to be reliable, accurate and user-friendly

[109].

1.2 Contributions and Relevance

This thesis is focused on the analysis of different continuous non-invasive BP inference algorithms

based on BP surrogates during intraoperative care compared with A-line measurements (ground

truth) and intermittent BP sampling. The studied algorithms are based on the analysis of non-

invasive signals that are affordable and commonly used in hospital care, such as ECG and PPG.

The extraction of cardiovascular parameters in a continuous basis (beat-by-beat) is a fundamental

requisite of the present thesis, as well as the robustness of the proposed algorithms in highly

unstable patients undergoing critical surgical interventions (e.g.: cardiac surgeries). This work

analyzes cardiovascular parameters known to characterize the chronotropic (heart rate - HR),

inotropic (left ventricular ejection time - LVET), vascular tone and blood pressure (pulse arrival

time - PAT, stiffness index – SI – and reflection index - SI, respectively).

Since most of the recently proposed algorithms in the literature are highly complex, not available

for simple implementation and require further testing in order to validate the results, it was chosen

to evaluate the most simple non-invasive continuous BP (cNIBP) estimation algorithms based on

the pulse wave velocity. Given that these models only monitor the velocity at which the blood

pressure pulse propagates through the arterial systemic circulation and this parameter is influenced

by only some of the mechanisms that regulate the peripheric BP, re-calibration is required. Different

re-calibration process definitions are tested, from simple fixed interval re-calibration to dynamic

re-calibration based on BP variability.

In the current dissertation, an approach for cNIBP monitoring in the OR is proposed based on
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the detection of BP events using BP surrogates (e.g.: pulse arrival time), defined as fast and

wide BP changes, that trigger BP samples (e.g.: cuff measurements). The proposed algorithm

provides a personalized and dynamic solution for NIBP monitoring that adapts to each patient

condition at any time, increasing the sample rate (e.g.: BP sampling) in the presence of BP

events and avoiding unnecessary measurements when BP is steady. This solution would improve

both patient’s comfort (in the absence of significant BP changes) and NIBP monitoring, including

earlier detection of critical events. At last, combining the events detection algorithm with known

cNIBP estimation algorithms highly improves their performance, opening doors for future clinical

applications.

1.3 Dissertation Outline

The content of this dissertation is organized as follows: Chapter 2 describes the anatomy and

physiology of the different human mechanisms involved in hemodynamic regulation. Starting by

describing the different structures of the cardiovascular system, including the heart and blood ves-

sels and finishing with known multi-system interactions that influence hemodynamics, outlining

the complexity of these interactions is the main focus of this dissertation.

Chapter 3 consists of a review of hemodynamic management in critical care, more specifically the

blood pressure monitoring in the operative room. It starts with an analysis of the difficulties for

defining BP targets for different patients in different settings exposed by several clinicians and is

followed by an overview of different blood pressure techniques, from invasive to non-invasive. It

ends with the presentation and detailed description of different proposed BP surrogates obtained

non-invasively using PPG and ECG signals.

Chapter 4 analyzes different BP surrogates and how simple regression models based on PWV would

perform under critical circumstances like the operative room with patients undergoing cardiovas-

cular or neuro surgeries. The process of calibration is described and the impact of different BP

sampling intervals for calibration is addressed against ground truth BP (invasive) and intermittent

sampling. A non-uniform BP sampling strategy based on BP variability categorization is proposed

and the results improve.

Chapter 5 proposes an algorithm for fast events detection based on the variability of BP surro-

gates, using a multinomial logistic regression that fits the input data to the BP variability categories

defined previously. The results suggest the potential to use BP surrogates in order to create an

optimized non-uniform BP sampling technique that improve the BP monitoring in clinical practice.
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2

Physiological Background

In order to grasp the issue of hemodynamics monitoring and management, one needs to fully under-

stand the cardiovascular system and how different mechanisms affect the cardiovascular function.

In this chapter the anatomy and physiology of this system is described.

2.1 The Cardiovascular System

The cardiovascular system consists of the heart and the circulatory system. The heart acts as an

efficiently designed pump that pushes the blood through a complex network of arteries, arterioles

and capillaries up to the organs, tissues, and cells of the body in order to meet it’s hematologic

requirements. The heart is actually divided in two separate pumping systems that throw blood into

the systemic and pulmonary circulation. The right side of the heart receives oxygen-poor blood

(venous blood) from the superior and inferior vena cava and pumps it with the right ventricle to

the lungs, where the gas exchanges between the blood and alveoli takes place. The oxygen-rich

blood (arterial blood) comes back to the heart, through the pulmonary veins and the pulmonary

circulation is completed. The systemic circulation starts with the contraction of the left ventricle

that pumps the blood into the aortic artery. The systemic circulation supplies the oxygenated

blood to all tissues of the body and picks up carbon dioxide and waste products from the cells

activity. The venous blood comes back to the right side of the heart and this process repeats. The

Figure 2.1 illustrates the aforementioned processes.

2.1.1 Heart and Its Electro-Mechanical Activity

The heart is a cavernous, muscular organ consisting of 4 chambers: the right atrium, that receives

blood from the veins and pumps it to the right ventricle, the right ventricle, that receives blood

from the right atrium and pumps it to the lungs, where it is charged with oxygen; the left atrium

receives oxygenated blood from the lungs and pumps it to the left ventricle; and the left ventricle

(the strongest chamber) pumps oxygen-rich blood to the rest of the body. The left ventricle’s

strong contractions create our blood pressure. [59]

One-way valves situated at the entrance and exit of both ventricles channel the blood circulation

in the correct direction. The atrioventricular valves are situated at the entrance of the right and

left ventricles (the tricuspid valve and mitral (bicuspid) valve, respectively) and are mainly ac-

countable for the flow of blood from the atria to the ventricles during diastole and shut during the

beginning of the systolic contraction, producing the known first heart sound. The semilunar valves

are located at the outlet of the right and left ventricles (pulmonic and aortic valves, respectively)
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Figure 2.1: Illustration of systemic and pulmonary circuits. Adapted from [117]

and are mainly accountable for the flow of blood to the outside of the heart during systole and

close during the beginning of the ventricular relaxation (diastole), creating the second heart sound.

These valves open and close in response to pressure changes inside and outside the ventricles and

play an important role in preventing blood regurgitation to the atria and ventricles. [94]

The coronary arteries run along the surface of the heart and provide oxygen-rich blood to the heart

muscle. A web of nerve tissue also runs through the heart, conducting the complex signals that

govern contraction and relaxation. Surrounding the heart is a sac called the pericardium. [182]

Figure 2.2: Illustration of the anatomy of the heart that shows the four chambers, the major
vessels and their early branches, as well as the valves. From [117]
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2. Physiological Background

The cardiac muscle has the particular ability to induct an electrical potential at a fixed rate that

propagates quickly from cell to cell to trigger the contractile mechanism - known as autorhythmicity.

Although it’s called autorhythmicity, the heart rate is, in fact, modulated by the endocrine and

nervous systems. Two main types of cardiac muscle cells compose the heart tissue: myocardial

contractile cells and myocardial conducting cells. The myocardial contractile cells represent 99% of

the cells in the atria and ventricles. As the name suggests, this cells are responsible for producing

impulses and contractions that pump blood into the arteries. The myocardial conducting cells

act similarly in many aspects to neurons, although they’re specialized muscle cells, forming the

conduction system of the heart. These cells are responsible for starting and conducting the electrical

impulse (action potential) that propagates throughout the heart and triggers the contractions.

The cardiac conduction system includes the sinoatrial (SA) node, the atrioventricular (AV) node,

the AV bundle, the AV bundle branches, and the Purkinje fibers.

Figure 2.3: Illustration of the anatomy of the heart with specialized conducting components in-
cluding the sinoatrial node, the internodal pathways, the atrioventricular node, the atrioventricular
bundle, the right and left bundle branches, and the Purkinje fibers. Adapted from [1]

The SA node consists of a clump of specialized myocardial conducting cells found in the superior

and posterior walls of the right atrium near the cavoatrial junction. The SA node has the highest

inherent rate of depolarization and is recognized as the pacemaker of the heart. It initiates the

standard electrical pattern followed by the contraction of the heart [117]. The impulse is transmit-

ted throughout the atria by specialized internodal pathways, to the atrial myocardial contractile

cells and reaches the atrioventricular node. The connective tissue of the cardiac skeleton prevents

the impulse from spreading into the myocardial cells in the ventricles except at the AV node. Ad-

ditionally, a specialized pathway called Bachmann’s bundle or interatrial band leads the impulse

directly from the right atrium pathway to the left atrium.[117]

The AV node also consists of a bunch of specialized myocardial conductive cells, located in the

inferior portion of the right atrium within the atrioventricular septum, that provoke a delay in

the electric impulse transmission. This pause before the AV node depolarizes and conducts the

signal to the atrioventricular bundle is fundamental to the heart activity, because it allows the

atrial cadiomyocytes to complete their contraction that pumps blood into the ventricles before the
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impulse is transmitted to the cells of the ventricle. [117]

The impulse is then conducted by the AV bundle, or bundle of His, throughout the interventric-

ular septum before dividing into two branches that supply each ventricle. These branches reach

the apex of the heart and link with the Purkinje fibers, which are accountable for propagating

the impulse from the myocardial conductive fibers to the myocardial contractile cells. These cells

cover the inner ventricular walls of the heart and transmit the impulse from the apex of the heart,

progressing upwards to eject blood into the great arteries.

Pressure and volume variations inside the heart are some of the most relevant characteristics

when analyzing the cardiac muscle physiology. Systole (contraction and ejection) and diastole

(relaxation and filling) are the main stages of the cardiac cycle. These mechanical events are

accountable for pressure fluctuations inside the ventricles, which cause the heart valves to open

and the blood to flow from high to low-pressure areas. Thus, we can describe the cardiac cycle

by monitoring changes in pressure and volume inside each heart chamber. Figure 2.4 represents

the cardiac cycle of the left part of the heart in terms of ventricular volume (LVV), ventricular

pressure(LVP), atrial pressure (LAP) and aortic pressure (AoP) as a function of time. It also

correlates with electrocardiogram (ECG) and phonocardiogram (PCG) signals and known events.

Figure 2.4: Wiggers Diagram, showing the cardiac cycle events occurring in the left atria and
left ventricle. Adapted from [20]

During the filling stage, the LVP and LVV are relatively uniform and AoP is gradually decreasing.

Meanwhile, the heart is in its relaxed state (diastole); The isovolumic contraction initiates with the

electrical impulse arriving to the ventricles and pressure increases within the chamber. Early after

contraction starts, LVP increases to be bigger than the left atrial pressure and the mitral valve

closes. Since LVP is less than AoP, the aortic valve keeps itself closed. As the name suggests, during

this phase the ventricle is contracting isovolumically (i.e., at a constant volume). Eventually, LVP

surpasses AoP and the aortic valve opens. The ejection phase begins and blood is pumped from the
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ventricle into the aorta and LVV decreases. While the contraction process of the cardiac muscle

gets to its maximal effort, ejection slows down and ultimately, as the muscles begin to relax, LVP

drops below AoP provoking the aortic valve to close and initiating the isovolumic relaxation phase.

During this stage all valves are closed and LVP drops owing to the repolarization. Eventually,

LVP drops below LAP and the mitral valve opens, initiating the filling stage again and the process

repeats [117].

Another way for visualizing these events is to display LVP as a function of LVV on a ”pressure-

volume loop diagram” (presented in Figure 2.5). The same mechanical events previously described

are represented in this diagram.

Figure 2.5: The left ventricular pressure–volume loop through the cardiac cycle. Adapted from
[20]

2.1.2 Blood Vessels and the Arterial Blood Pressure Waveform

Blood vessels are the channels through which blood flows until it reaches body tissues. These

vessels make up two closed systems of tubes that start and finish in the heart. The pulmonary

circulation transports blood from the right ventricle to the lungs and back to the left atrium and

the systemic circulation carries blood from the left ventricle to the tissues in all parts of the body

and back to the right atrium. Based on their structure and function, blood vessels are classified as

arteries, capillaries or veins.

The systemic circulation starts with the aorta artery at the exit of the left ventricle and branches

into smaller arteries along the path until the branching results in microscopic arteries called arte-

rioles. Arterioles play a key role in regulating blood flow into the tissue capillaries. Capillaries are

the smallest and most numerous of the blood vessels and form the connection between the vessels

that bring blood from the heart (arteries) and the vessels that return blood to the heart (veins).

Their primary function is the exchange of gases and materials between the blood and tissue cells.
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Veins carry blood towards the heart after it passes through the capillaries. The smallest ones are

called venules and from here, blood flows into progressively larger veins until it reaches the heart

through the superior and inferior vena cava.

The achievement of the primary functions of the circulatory system is guaranteed by anatomical

arrangements of the vasculature and by control mechanisms that act directly in the vessels, includ-

ing local, neural and humoral mechanisms. They can work independently of each other, but there

are also interactions among them. These systems will be further described in more detail.

Every heartbeat creates an impact with the stroke volume ejected into the arteries, that cre-

ate a wave of vascular distention and results in the arterial pulse wave. The wave is reflected

back mostly by the arteriole, which provides the majority of the peripheral vascular resistance

[120]. Peak aortic blood flow acceleration produces the initial rise of the pressure pulse, while the

ejection of the ventricular volume fills out and upholds the pulse waveform [105]. Understanding

the arterial blood pressure waveform from the central arterial tree to the periphery has been the

focus of several studies [15, 134, 164, 177, 88, 68, 78, 169, 75].

Studies [169, 75, 78] confirmed the existence of two major reflection sites in the central arteries.

The first reflection site is the juncture between thoracic and abdominal aorta, which is marked by

a significant decrease in diameter and a change in elasticity, and the second site arises from the

juncture between abdominal aorta and common iliac arteries. These reflection sites cause reflected

arterial pressure pulses that counter-propagate to the direction of the single arterial pressure pulse,

due to left ventricular contraction, that gave rise to them. As these reflected pressure pulses reach

the aortic arch from below, they enter the subclavian arteries and head into the arterial periphery

of the arm, following the first pressure pulse that, besides traveling down the aorta, also entered

the arm complex arteries. Figure 2.6 illustrates the process described, where a main pressure wave

(P1) passes the aortic arch and propagates both downwards and upwards. Upwards, the pulse

travels through the subclavian artery, the axillary artery until it reaches the brachial artery where

blood pressure measurements are commonly extracted. Eventually, the pulse reaches the radial

artery and, finally, the digital artery where it is usual to place a light sensor - photoplethysmo-

graph. Downwards, the pressure wave meets two major reflection sites in the arterial pathway that

exhibit significant changes in arterial resistance and compliance. The first site, at the juncture be-

tween descending thoracic and abdominal aorta, causes the pressure wave to be reflected upwards,

causing the first reflection wave (P2). The second reflection site, located between the abdominal

aorta and the common iliac arteries, creates the second reflection wave (P3). These waves travel

upwards, in the opposite direction of the main pulse (P1) and eventually reach the brachial, radial

and digital arteries. It is possible to decompose the obtained arterial blood pressure waveform at

the radial artery in these different identified pulses.

The arterial pulse provides important information on the cardiovascular prognosis. There is sub-

stantial evidence that the aortic pulse wave velocity (PWV) and augmentation index predict cardio-

vascular morbidity and mortality in a variety of populations, as confirmed by recent meta-analysis

studies [175, 176]. The vascular properties of the central and peripheral arteries can cause pulse

abnormalities and cardiovascular disease progression including elevated central pressure leading to

an increase in cardiac afterload [55, 138] and widened pulsatile pressure causing circumferential

tensile stress that damages the vulnerable microvasculature in brain and kidney [121, 142, 165].
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Figure 2.6: Sketch of the aorta/arm complex arterial system and its effect on the arterial pressure
pulse wave shape that is observed at the radial/digital artery. Two reflection sites, one at the height
of the renal arteries (3), the other one in the vicinity of the iliac bifurcation, give rise to the first
and second reflected pulses (P2 and P3, respectively) that trail the primary left ventricular ejection
(P1). Adapted from [7]

2.2 Multi-system interactions and Blood Pressure Regula-

tion Mechanisms

The control of hemodynamics requires a complex system to maintain an ”optimal” arterial blood

pressure in order to ensure the perfusion of blood in the tissues, meeting their metabolic require-

ments. Arterial Blood Pressure (BP) is often considered to be directly proportional to the product

of cardiac output (CO) and total vascular resistance (TVR). Acute regulatory mechanisms are

coordinated in the cardiovascular control centers in the brainstem, which, in turn, are influenced

by other neural centers that include sensors both intrinsic and extrinsic to the circulation. Figure

2.7 illustrates the processes involved in BP regulation.

2.2.1 Cardiovascular Control Centers

The cardiovascular control centers of the central nervous system (CNS) are found in the medulla

oblongata and have two major subdivisions that innervate the heart and the peripheral vasculature.

The cardiac control center can be further subdivided into the cardioinhibitory center and the

cardiostimulatory centre. The cardioinhibitory center has parasympathetic vagal efferents to reduce

heart rate (HR) and, to a lesser extent, atrial contractility. Activation of the cardiostimulatory

center increases myocardial contractility (inotropy) and HR (chronotropy) via activation of the

sympathetic nervous system (SNS) [155]. The vasomotor centre has both vasoconstrictor and
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Figure 2.7: Schematic representation of interactions between the subsystems involved in cardiac
activity and different monitoring technologies. ECG (electrocardiography), PCG (phonocardiog-
raphy), ECHO (echocardiography), CMR (cardiac magnetic resonance), ICG (impedance cardiog-
raphy), PPG (photoplethysmography) and PPW (pulse pressure wave). Adapted from [32]

vasodilator areas: the first containing a high concentration of neurons secreting noradrenaline [52],

that is sent to the periphery via the sympathetic nervous system; the second inhibits the activity of

the vasoconstrictor area. A sensory area receives input from cranial nerves IX and X, and efferent

neurons project to vasoconstrictor and vasodilatory areas and hence modulate the output.

The cardiovascular control centers also receive modulatory neural input from other regions within

the brain, including the motor cortex, frontal cortex and limbic system.

2.2.2 Vasomotor Tone

The vasomotor tone is the sum of the muscular forces intrinsic to the blood vessel opposing an

increase in vessel diameter [92]. Vascular smooth muscle cells (VSMCs) located in the vessels walls

mediate the vasomotor tone. VSMCs contain larger numbers of actin filaments and lower numbers

of myosin filaments, compared with skeletal muscle, which gives them the ability to contract more

slowly but generating higher forces with sustainable activity [60]. The conduction of the action

potential between VSMCs is done via gap junctions like in the myocardium.

Just like any other muscle, the interaction between actin and myosin is regulated by intracellu-

lar calcium concentrations, but VSMCs lack toponin and fast sodium channels [13]. Voltage-gated

channels and receptor-mediated channels in the sarcolemma, and the sarcoplasmic reticulum change

the concentration of intracellular calcium with influence of several agents such as nitric oxide (NO),

acetylcholine (Ach), catecholamines and angiotensin II [5]. The free calcium binds to calmodulin,

which in turn binds to myosin light chain kinase. This activated complex phosphorylates myosin
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cross bridges and initiates contraction. Dephosphorylation of cross bridges and reductions in in-

tracellular calcium provoke relaxation.

The authonomic nervous system (ANS), humoral agents (e.g., angiotensin) and autacoids (e.g.,

NO, kinins and vasodilator eicosanoids) have the ability to regulate the vasomotor tone [135].

Basal vascular tone is mediated by low level, continuous impulses from the SNS (1 per seconds, ap-

proximately) and partial arteriolar and venular constriction via VSMCs contraction, complemented

by circulating adrenaline from the adrenal medulla. Basal tone is maintained at around 50% of

maximum constriction, meaning that vasodilatation can be caused by a reduction in tonic SNS

activity without a direct influence of increased parasympathetic nervous system (PNS) activity.

Considering that the blood flow in the venules faces little resistance compared with arteries, one

can conclude that the ANS effects mediate capacitance which has direct effects on venous return

and preload [14].

2.2.3 Autonomic Nervous System

As stated, the cardiovascular control centers modulate the ANS which innervates the cardiac muscle

and VSMCs. The pre-ganglionic neurons originate in the brainstem or the spinal cord and connect

to the autonomic ganglions of the ANS, releasing Ach, while the post-ganglionic neurons connect

the autonomic ganglions with effector organs and release NA for the SNS and Ach for the PNS.

In the heart, the ANS regulates chronotropy, inotropy and coronary perfusion. The SNS has

greater innervation of the ventricular myocardium, mediated via the left stellate ganglion [42]

and the stimulation of SNS results in increased HR via β1-adrenergic receptors, and increased

stroke volume (SV) via the stellate ganglion. Normal basal sympathetic activity maintains cardiac

contractility around 20% greater than that of a denervated heart. PNS fibers are present mainly in

the SA and AV nodes, and the atria. Stimulation results in a decreased SA/AV nodes excitability,

hence decreasing HR. PNS has little influence on inotropicity, since it lacks efferent distribution to

the ventricles.

Regarding the influence of the ANS in the peripheral circulation, it was shown that the SNS has

the greater importance in regulation of vascular tone. In fact, the distribution of parasympathetic

nerves is limited and PNS effects mediate dilatation mainly via endothelial mechanisms, while the

SNS causes vasoconstriction by stimulation of α-1 adrenergic receptors.

2.2.4 Baroreflex Mechanism

The baroreflex mechanism provides a quick negative feedback loop that helps maintaining the blood

pressure values constant. Pressure-responsive nerve endings, known as baroreceptors, are located

at the atria of the heart and vena cava, but the most sensitive baroreceptors are in the walls of the

aortic arch and internal carotid artery and relay to the CCC, in the medulla oblongata. While the

carotid sinus baroreceptor axons travel within the cranial nerve IX, the aortic arch baroreceptor

axons travel within the cranial nerve X. When the receptor endings detect an elevated BP, by

induced stretching of the blood vessel, action potential generation rates increase proportionally to

the BP change and results in negative chronotropic and inotropic effects, in addition to a reduction

in vasoconstriction. The effects of the baroreflex mechanism is evident in the acute setting such as

when standing from a sitting position. The performance of this mechanism can be influenced by

age, hypertension and coronary disease.
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2.2.5 Humoral Control Mechanism

Humoral mechanisms act to control blood pressure through vasodilatation, vasoconstriction and

alteration of blood volume.

Cathecolamines are produced in large quantities by the sympathetic adrenal system in response to

stimulation and released by two effector subunits constituted by the sympathetic neurons and the

adrenal medulla. These two structures are not always activated to the same extent. Some stimuli

cause preferential activation of the sympathetic neurons, mainly driven by the nervous activity of

higher centers, (e.g., posture change), while others that of the adrenal medulla, mainly driven by

splanchnic nerves, (e.g., emotion, hypoglycemia) [136]. Norepinephrine (NE) is a neurotransmitter

released by sympathetic-nerve endings and stimulates post-synaptic receptors, while epinephrine

(E) is mainly produced by the adrenal medulla and is released directly into the blood stream. The

cardiovascular response to this mechanism depends on the balance between α- (vasoconstrictor)

and β- (vasodilating) receptors, since both NE and E can activate these receptors. Catecholamines

are associated with increased heart rate and blood pressure, increased blood going to major organs

such as the brain, heart and kidneys and lower amount of blood going to the skin and intestines.

The Renin-angiotensin-aldosterone (RAA) system is another hormone system that regulates blood

pressure. When renal blood flow is reduced, juxtaglomerular cells in the kidneys convert the pre-

cursor prorenin (already present in the blood) into renin and secrete it into circulation. Plasma

renin then carries out the conversion of angiotensinogen, released by the liver, to angiotensin I. An-

giotensin I is subsequently converted to angiotensin II by the angiotensin-converting enzyme (ACE)

found on the surface of vascular endothelial cells, predominantly those of the lungs. Angiotensin

II is a potent vasoconstrictive peptide that causes blood vessels to narrow, resulting in increased

blood pressure. Angiotensin II also stimulates the secretion of the hormone aldosterone from the

adrenal cortex. Aldosterone causes the renal tubules to increase the reabsorption of sodium which

in consequence causes the reabsorption of water into the blood, while at the same time causing the

excretion of potassium (to maintain electrolyte balance). This increases the volume of extracellular

fluid in the body, which also increases blood pressure [6]. Angiotensin II also activates the secretion

of antidiuretic hormone (ADH), known as vasopressin, which induces translocation of aquaporin-2

channels in collecting ducts to enhance free water permeability and resolption (anti-diuresis) and

also has direct vasoconstrictory effects.

Nitric oxide (NO) is considered on of the most important mediators of vascular hearth. Within

the vascular endothelium, the production of NO is responsibility of the activated endothelial nitric

oxide synthase and requires the amino acid L-arginine as the main subtrate for synthesis. Once

synthesized, NO diffuses across the cell membrane of endothelial cells and enters VSMCs where

activation of guanylate cyclase occurs, known to elicit vascular smooth muscle relaxation through

several mechanisms [89].

Atrial natriuretic peptide is another hormone involved in hemodynamics control. It’s synthe-

sized by atrial myocytes in response to chamber distension and hormones such as adrenaline and

ADH [90]. It directly relaxes VSMCs and inhibits renin, therefore having an overall natriuretic

effect to reduce BP.
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2.3 Conclusion

In this chapter, the main anatomic and physiological aspects that are relevant for the understanding

of the objective of this thesis were outlined. It started with a brief description of the anatomy

and physiology of the cardiac system, including a picture of the heart and blood vessels. It

ended up with an overview of the different mechanisms that affect and regulate the hemodynamics

in different ways, outlining the complexity of actions and interactions of these systems. This

knowledge is crucial for understanding the problems of hemodynamics management in critical care

addressed in the next chapters.
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Blood Pressure Monitoring In

Critical Care: Review

Monitoring the blood pressure (BP) is among the foremost procedures for hemodynamic evalua-

tion in acutely or critically ill patients. The principles for routine and regular BP monitoring in

perioperative care is predicated on the subsequent arguments: BP can be exceptionally volatile,

abnormal BP and unfavorable outcomes are associated, BP may be promptly treated, and protocol-

guided BP management improves outcomes supported by some randomized controlled trials [10].

Although systematic BP monitoring is mandatory in perioperative care, the appropriate BP tar-

get for a specific patient receiving anesthesia and surgery is not consensual [98]. As an example,

a systematic literature review of 130 studies found 140 different definitions of intraoperative hy-

potension [10].

It is known that hypotension and hypertension in intraoperative environments can impair the

function of important organs, like the brain [9], the heart [172], and the kidneys [178]. Also,

intraoperative hypotension and hypertension seems to be correlated with higher morbidity and

mortality rates [9, 11, 103] with special attention to the depth of hypotension and the cumula-

tive time spent on hypotension influencing the outcomes. Some studies suggest that minor but

prolonged and major but brief BP changes can both impact the surgery outcomes [98]. In 1990,

Charlson et al. showed that prolonged changes in MAP of more than 20 mmHg or 20% from the

patient’s preoperative levels were associated with postoperative complications [24]. More recently,

Monk et al. found that intraoperative SBP < 67 mmHg for more than 8.2 minutes, mean arte-

rial pressure (MAP) < 49 mmHg for more than 3.9 minutes and diastolic blood pressure (DBP)

< 33 mmHg for more than 4.4 minutes were associated with 30-day mortality [103]. But most

up-to-date studies present different definitions for BP targets and existing controversy raises the

question whether patients with different baseline BP (e.g., Normotensive vs Hypertensive) would

equally benefit from identical BP targets (e.g., MAP < 60 mmHg for hypotension).

A recent survey analyzed the best available evidence and clinical experience and suggests that

intraoperative hemodynamic management should consider the baseline BP of each patient, classi-

fying patients as low baseline BP (SBP < 90 mmHg or DBP < 50 mmHg), normal baseline BP

(SBP 90–129 mmHg and DBP 50–79 mmHg) and high baseline BP (SBP > 130 mmHg or DBP

> 80 mmHg) [98]. Baseline BP is obtained as the average of multiple measurements taken with

the patient unstressed, pain free, and awake (or lightly sedated). Then, reckoning on the sort of

surgery and risks of hypotension-related organ ischemia and hypertension-related bleeding, differ-

ent BP targets are defined in order to improve the surgery outcomes, as shown in figure 3.1.
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Figure 3.1: Considerations during the determination of BP targets in perioperative care based
on the available evidence and clinical experience. The main considerations are type of surgery,
patient’s baseline BP, and risks of organ ischemia and surgical bleeding. CPB indicates cardiopul-
monary bypass. From [98]

3.1 Blood Pressure Monitoring Techniques

Intraoperative Blood Pressure (BP) measurements can be either intermittent or continuous, inva-

sive or non-invasive [18]. Most anesthesiology societies recommend BP monitoring at worst once

every 5 min in anesthetized subjects undergoing surgical procedures while invasive BP monitoring

is usually indicated only within the case of high-risk patients or in complex surgical procedures

[119].

The direct measurement of BP via arterial cannulation is considered the clinical reference method.

This technique has several critical advantages like continuous ‘beat-to-beat’ BP monitoring, ac-

curate BP reading at low pressures (p.e.: shocked patients), possibility to estimate intravascular

volume status from the contour of the ABP signal, accurate measurements in specific patients

where non-invasive technologies fail (p.e.: patients with gross peripheral edema in ICU or mor-

bidly obese patients) and permits blood sampling through the arterial catheter [51]. In clinical

routine, it is usually performed during high-risk surgery and in intensive care medicine. The

cannulation of an artery, however, might be time-consuming, is expensive, has to be done by a

trained operator, and is associated—although very rarely—with potential major complications like

embolism, lesion of nerves or vessels, or ischemia [51, 149]. For these reasons, BP is commonly

measured non-invasively.

Intermittent non-invasive BP (NIBP) monitoring is considered to be the standard-of-care during
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low and intermediate risk anesthesia, yet commonest devices using the oscillometric method tend to

overestimate hypotensive BP values and to underestimate hypertensive BP values and could result

in delayed recognition of BP fluctuations [181, 80]. Despite this, a survey from 2010 reported that

the employment of oscillometric NIBP measurements in critically ill patients is common despite

the paucity of evidence validating its accuracy in critically ill patients [25]. These results could

also be justified by the fact that cuff based NIBP measurements are inexpensive, easy and fast to

use.

Continuous NIBP monitoring is a long-awaited solution that will join the best of both worlds:

‘beat-to-beat’ BP readings and high accuracy while being easy and fast to deploy, cheap and with-

out the requirement of special trained operators. Most of the research in this area is predicated

on two different approaches: arterial applanation tonometry, the volume clamp method and pulse

wave velocity. The first one was addressed by Pressman and Newgard [131], who obtained the ar-

terial pulse wave with a transducer strapped to an artery with a bone underneath. Most recently,

this system has been refined and results suggest that it allows the accurate reading of mean arterial

pressure (MAP) and diastolic blood pressure (DBP) [95]. Also, it’s been tested in cardiology to

assess central vascular pressures [113], where the pulse wave obtained by applanation tonometry

was analysed. A device using this system for BP prediction is the T-Line system (Tensys Medical,

San Diego, CA, USA) [147, 40].

The second technique for non-invasive continuous BP measurement - volume clamp method (or

vascular unloading technology) - relies on the work of Penaz et al. [127]. The BP is measured

at the finger with an inflatable cuff combined with a photodiode. The volume fluctuation within

the finger is caused by blood flow and is detected by the photodiode; the pressure in the cuff is

adjusted to keep the diameter constant [127]. From the pressure changes in the cuff, a BP curve

may be calculated. Devices based on this technique are ClearSight (Edwards, Irvine, CA, USA)

and CNAP (CNSystems Medizintechnik AG, Graz, Austria). In case of severe vasoconstriction,

peripheral vascular disease, or distorted fingers as a result of arthritis, clinical trials have shown

that it can be difficult to obtain a valid waveform using finger cuffs. Additionally, compared to

standard intermittent devices for NIBP measurement, this solutions for continuous BP monitoring

are relatively expensive [96].

In 2014, a review of several available devices, including CNAP and T-line, suggests that they might

not satisfy the standards of the AAMI guidelines, but also addresses the necessity of a better def-

inition of how these devices should be evaluated and what should be their purpose [69].

Nowadays, many research projects are focused on the photoplethysmography (PPG) and its rela-

tionship with BP. PPG technology is becoming more readily available, inexpensive, convenient and

easily integrated into portable devices, like smartphones and smart watches. With the advance-

ment of digital sensors, signal processing techniques, machine-learning algorithms and improved

physiologic models, the usage of PPG’s pulse waveform for the assessment of BP has become more

feasible [83, 84, 79, 23].

3.2 Photoplethismography and BP Surrogates

Hertzman and colleagues first introduced the term “photoplethysmography” in 1938 and suggested

that it represented the volumetric changes within the dermal vasculature [57, 58]. Since the early

1990s, the pulse oximetry – obtained via PPG – is a global standard for monitoring during anes-
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thesia [118].

Figure 3.2: Illustration of PPG signal AC and DC components. From [161].

The PPG device consists of a light emitting diode (LED) and a photodiode and is often placed in

the patient’s finger. By measuring the amount of light that’s absorbed or reflected by the blood

that exists in the optical path, the PPG signal becomes responsive to changes in the volume of

blood in that area. The PPG signal ends up being a complex mixture of the blood flow in veins,

arteries and capillaries, with a pulsatile and a non-pulsatile component. The first component is

related to changes in blood volume inside arteries and is synchronous with the heartbeat, while the

non-pulsatile component is related to the basic blood volume, respiration, the sympathetic nervous

system and thermoregulation [171].

In clinical practice, PPG is routinely used to track cardiac-induced blood volume fluctuations

within microvascular beds at peripheral body sites, like the finger, forehead, earlobe, and toe [41].

The red (680 nm) or near-infrared (810 nm) light is commonly used for transmissive PPG devices,

with the infrared emission having the deepest penetration [86, 145]. Given that the absortion

of light by hemoglobin is a function of oxygenation and optical wavelength, the use of PPG at

multiple wavelengths is also routinely employed in pulse oximetry [41].

The research with PPG technology suggests its potential for the monitoring of blood oxygen satu-

ration, heart rate, blood pressure, cardiac output, respiration, arterial aging, endothelial function,

microvascular blood flow and autonomic function [4, 100, 123]. Also, the PPG signal produces

pulse waveforms that are very similar to pressure waveforms obtained with tonometry.

3.2.1 Pulse Wave Velocity

The focus of several recent studies on continuous non-invasive blood pressure (cNIBP) monitoring

is the analysis of the pulse wave travelling from the heart to peripheral sites and the electrome-

chanical timings of the heart [115, 47, 44, 129, 30, 87, 167, 106, 185, 187, 132, 76, 183, 26, 97, 45, 77,

111, 188, 35]. Regarding the analysis of the pulse wave, the main approaches rely on the estimation
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of the pulse wave velocity (PWV) or, inversely, pulse transit time (PTT), that represents the time

taken by the pulse wave to propagate through a certain length of the arterial tree and is correlated

with BP. It is important to note that this procedure does not account for changes in the vascular

structure properties, since it assumes that the pulse wave travels through an homogeneous arterial

segment, resulting in a constant need of external calibration procedures. This characteristic is of

great importance when we’re estimating the BP during transient events (e.g.: physical exercise,

administration of vaso-active drugs and posture changes).

The definition of PTT presented above would make it hard to measure this metric, since it would

need two sensors positioned in two locations of the analyzed arterial segment that would record

the pulse wave [35, 76, 37]. In practice, having two sensors at a small distance apart would be

difficult and uncomfortable, leading to alternative approaches. The most common approach is

to assess PTT based on the simultaneous detection of the electrocardiogram (ECG) R-peaks and

the beginning of the pulse wave inflection measured at a peripheral site (PPG), representing the

pulse wave travelling through arteries with significantly different elastic properties [132]. Also, this

metric corresponds to an approximation of PTT, called pulse arrival time (PAT) and its relation

to PTT is described by equation (3.1):

PAT = PEP + PTT (3.1)

where PEP represents the Pre-Ejection Period, the time between the electrical depolarization of

the left ventricle and the beginning of ventricular ejection and cannot be measured with pulse

propagation approaches. PEP can be estimated with the time distance between the ECG R-wave

and a reference point in the Impedance Cardiography (ICG), as shown in figure 3.3

Figure 3.3: Illustration of PAT, PTT, dPTT and PEP. PPG1 and PPG2 refer to different arterial
segments. From [32].

PAT-based approaches are the most common [115, 44, 76, 183, 26, 97, 45, 77, 111, 188, 189, 129, 30,

87, 167, 35, 106, 186, 187], but different techniques have been proposed to extract additional BP

surrogates. Some researchers used impedance cardiography (ICG) for the assessment of PEP and

then an estimation of PTT is obtained subtracting the extracted PEP from the PAT measurements

[186, 187, 132, 126, 124, 34]. Other approaches include the subtraction of two PAT measures
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(DPTT – differential pulse transit time) from distinct arterial pathways [47, 132], or in the same

arterial pathway [46, 173, 191]. Furthermore, PAT and PTT have been defined using different

characteristic points in the PPG pulse wave (e.g.: onset of the pulse wave, or the systolic inflection

point, or the peak of the pulse wave) [30, 87, 187, 76, 45, 77, 111, 188] and the identification of

this reference points has been done with different methods (e.g.: Hilbert-Huang transform [27],

time delay methods [174] and multi-gaussian fitting [33]). It was expected that changes in BP

would affect PTT/PAT extracted measures which was indeed observed by many researchers [115,

47, 132, 76, 183, 26, 97, 45, 77, 188, 189, 91, 185, 44, 129, 30, 87, 167, 35, 106, 187]. However, PTT

and PAT only reflect a part of a more complex integrated system that regulates BP and assuming

a linear relationship between PTT/PAT and BP leads to contrasting results, with correlation

coefficients ranging from -0,1 to -0,99 [38], which can be due to different measuring conditions

and physiological properties of the patient. The Moens-Korteweg equation aims to represent the

non-linear relationship between PTT and BP by linking the velocity of the pulse wave and the

elastic and geometric properties of a short elastic vessel. Many BP surrogates using PTT/PAT

employ this equation and it is given by (3.2):

PWV =
distance

PTT
=

√
Eh

ρ2r
(3.2)

where E is the Young elasticity modulus of the vessel’s wall, ρ is the blood density, h is the wall

thickness and r is the vessel radius. It is assumed that ρ, r and h suffer changes small enough to be

ignored and the main variations are expected to come from the elasticity modulus. The following

equation (3.3) was proposed by Hughes [62] and represents the relationship between PWV and

BP:

E = E0eαP (3.3)

where α ≈ 0.017mmHg−1 and P is the mean arterial pressure (MAP). The combination of the

equation (3.2) with the linearization of the equation (3.3) (E ≈ E0(1+αP )) provides the quadratic

dependency that relates PTT with MAP:

P = A(
1

PTT
)2 +B (3.4)

Bramwell and Hill [16] derived yet another expression (Bramwell-Hill equation), from the Moens-

Korteweg equation, which relates the velocity of the pulse wave with the vessel compliance and is

given by (3.5):

PWV =

√
A

ρCA
=

√
V ·∆P

ρ ·∆V
(3.5)

where A is the lumen area, CA = ∇A
∇P is the compliance area and ρ is the blood density. Modeling

the pressure-volume relationship with a sigmoidal curve [151, 61] provided a link between BP and
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PWV. Following this relationship, Shaltis et al. [151] proposed the following equation:

V =
a

1 + e−bP
(3.6)

Where a and b are parameters needing for fitting during a training phase with experimental data.

Substituting the volume (V ) in (3.5) with equation (3.6) and rearranging the equation with Taylor’s

expansion, one obtains the following equation:

PWV =

√
e−bP + 1

ρb
≈ 1√

ρb

√
2(

1− bP
4

) ≡ 1

cP− c
4

↔ PTT = L(cP− c

4
) (3.7)

Where L is the distance travelled by the pulse and c is obtained by fitting the algorithm with

experimental data.

Both Moens-Korteweg and Bramwell-Hill equations are the basis for several research work relat-

ing BP and PWV. Different authors derived calibration functions that differ on the number of

unknown parameters, linearity vs non-linearity and additional parameters. Chen et al. [26] com-

bines two separately obtained components to predict the systolic blood pressure (SBP), one higher

frequency component obtained with a specific frequency band of PAT and other lower frequency

component obtained with cuff measurements intermittently. The equation describing the process

is the following:

Pe = Pb −
2

γTb
∆T (3.8)

Where Pe is the estimated SBP, Pb is the last measured SBP, Tb is the PAT corresponding to Pb,

∇T is the change in PAT and γ is an unknown fitting parameter. Poon et al. [129] proposed two

dependent functions, one for SBP and the other for DBP estimations:

DBP = SBPo

3 + 2DBPo

3 +A ln
(
PTTWo

PTTW

)
− (SBPo−DBPo)

3
PTT 2

W

PTT 2
W

SBP = DBP + (SBPo −DBPo)
PTT 2

Wo

PTT 2
W

(3.9)

Where SBP0, DBP0, PTTW0 are measured SBP, DBP and PTT values and PTTW is a weighted

PTT. A is the unknown parameter that is fitted to experimental data. Gesche et al. [49] proposed

a calibratton function with 3 terms: : (1) an exponential term, (2) a second non-linear term, and

(3) a correction constant:

BPPTT = P1× PWV × e(P3×PWV) + P2× PWVP4 − (BPPTT,cal − BPcal) (3.10)

Where P1, P2 and P3 are unknown fitting parameters, BPPTT,cal is the predicted BP in the

calibration instance and BPcal is the value obtained with the cuff in the same instance. PWV is

estimated from PTT, patient’s height and a body correlation factor.

These models don’t consider continuous changes in the vascular properties, like the diameter of

blood vessels, which implies an intermittent re-calibration of the model parameters in long term

measurements [187]. Poon et al. [130] and McCombie et al. [93] addressed this issue by mapping
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PTT changes associated with changes in the hydrostatic pressure provoked by the lifting of the

hand above the level of the heart. The discussion whether PAT may be a reliable parameter to

describe BP variations has led researchers to gauge the influence of PEP and PTT during transient

events such as physical exercise [35, 186, 132, 107], posture change [44, 106, 108] and administration

of vaso-active drugs [126]. Muehlsteff et al. [108], Deb et al. [35], Wong et al. [186] and Proenca

et al. [132] concluded that BP is most consistently correlated to PAT rather than PTT or DPTT

during intermittent short-term physical exercises. Moreover, Proenca et al. [132] showed that an

accurate estimation for PEP was required to estimate PTT precisely and that wasn’t possible.

Regarding the context of posture changes, Muehlsteff et al. [106] proved that PAT-based models

were not suitable for the prediction of BP changes, showing that PAT is strongly affected by

posture changes at almost constant values of SBP and DBP. The determination of BP through

PAT during vaso-active drugs administration was addressed by Payne et al. [126], who showed

that PAT is comparatively unaffected by different drugs within the overall studied population and

obtained a better correlation with SBP than DBP and MAP. The author states in conclusion that

PAT should be avoided as a purely vascular function surrogate but did not reject its potential in

the assessment of BP variability and rapid pressure changes. Baruch et al. [7] proposed a novel

pulse decomposition analysis (PDA) of the pulse pressure that assumes that the peripheral arterial

pressure pulse is a superposition of 5 individual component pressure pulses, the first of which is

due to the left ventricular ejection from the heart while the remaining component pressure pulses

are reflections and re-reflections that originate from only two reflection sites within the central

arteries. From the PDA, the authors extracted several parameters that were then compared with

SBP and PP, from which two were highlighted: P2P1 (the amplitude ratio of the first reflection

wave and the main pulse) and T13 (the time span between the main pulse and the second reflection

wave) that were strongly correlated with aortic SBP and PP.

3.2.2 Other Vascular Function Surrogates

A few more cardiovascular function surrogates have been proposed in literature, which include the

augmentation index (AI), the stiffness index (SI), the reflection index (RI) and the left ventricular

ejection time (LVET). In order to extract this metrics, Takazawa et al. [159] proposed the identi-

fication of five consecutive waves, located at the systolic (a, b, c and d waves) and at the diastolic

(e wave) phases of the PPG pulse.

Figure 3.4: Reference points proposed by Takazawa et al. From [160].
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The augmentation index (AI) is a recognized parameter for evaluating arterial stiffness and wave

reflection. It corresponds to the percentage of central pulse pressure imputable to the secondary

systolic pressure increase resulting from the overlap of the forward and reflected pressure waves

[102]. Three main factors affect wave reflections: the distance to the reflecting site, the speed of

wave transmission, and the magnitude of the reflection coefficient [102]. Takazawa et al. defined

AI as the ratio between the late and early systolic components (AItak = Pc

Pb
) derived from the

PPG second derivative [159], while Rubins et al. proposed two definitions of AI depending on

the PPG morphology (type A: AIrub = 1 − P1
Pmax

and type C: AIrub = 1 − P2
Pmax

) [139]. AI

is commonly associated with ageing [122]. Stiffness index (SI) is a measure of the timing of

the diastolic component relative to the systolic component of PWV in the large arteries [100]

and was defined in [29] as the time delay between the direct and the reflection waves (SI =

Tdias − Tmax). Millesseau et al. [100] proposed the correction of SI with relation to the subject

height h (SI = h
Tdias−Tmax

) and suggested that this index increases with age. In [7], it was shown

that SI also correlates with PP. The reflection index (RI) has been associated with small artery

stiffness [101, 36] and changes in vascular tone and is determined by the ration between the height

of the diastolic wave to the maximum pulse height (RI = Pdias

Pmax
) [29, 101]. The left ventricular

ejection time (LVET) is defined by the time between opening and closing of the aortic valve during

the cardiac cycle. In an unhealthy heart, the LVET will change during disease progression as

previously demonstrated in patients with ischemic heart disease, heart failure, hypertension and

aortic stenosis [54, 74, 70]. Chan et al. [21] proposed a method to ascertain the LVET based on

the analysis of successive derivatives of the PPG. In this study, several characteristic points are

extracted in each derivative based on waveform features (e.g., amplitude, slope and curvature).

Using these characteristic points, three estimations of LVET are extracted which are then used

to assess a final LVET estimation based on a rule-based decision logic approach. More recently,

Couceiro et al. proposed a new method for the estimation of LVET based on the analysis of the

systolic model of the decomposed PPG pulse [33]. The PPG pulse is decomposed into multiple

Gaussian functions corresponding to the systolic and diastolic phases of the PPG pulse, and the

LVET is assessed from the 3rd derivative of the functions corresponding to the systolic phase.

The analysis of the systolic model rather than the whole PPG pulse was motivated by the need

of reducing the influence of noise and pulse wave reflections in the estimation of LVET. Also,

the relative heights of the proposed pulse wave reference points (b/a, c/a, d/a and e/a ratios),

particularly the c/a ratio, have been related to arterial stiffness and aging [160, 65] and essential

hypertension [154]. All these ratios were used to propose an “ageing index” (b− c− d− e)/a [160].

3.3 Conclusion

In this chapter, the problem of BP monitoring in critical care was addressed starting with the

difficulty of defining BP targets (e.g.: hypotension/hypertension) and the need for personalized

BP management for patients with different baseline BP, hypotension-related organ ischemia and

hypertension-related bleeding, and different types of surgeries. The work presented by Meng et al.

[98] helps understanding the difference between primary care and perioperative care BP manage-

ment, citing relevant randomized and nonrandomized studies that helped defining new and more

accurate BP targets that positively affect surgeries outcomes.

Moreover, different BP monitoring were presented including the arterial cannulation, intermittent

NIBP (cuff-based methods) and recently proposed techniques for continuous NIBP: arterial appla-
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nation tonometry, the volume clamp method and the pulse wave velocity. It ends with a detailed

description of BP surrogates extracted from the PPG and ECG signals with the main focus on the

pulse wave velocity and the pulse arrival time (PAT).
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Evaluation of Continuous

Non-Invasive Blood Pressure

Estimation Algorithms Based on

Photoplethysmography and

Electrocardiography

4.1 Introduction

Different BP monitoring techniques available in the ICU include intermittent NIBP (e.g., oscillome-

try) and continuous invasive BP monitoring (e.g., radial arthery catheterization). The intermittent

NIBP is the most common procedure during low and intermediate risk anesthesia, since it’s readily

available and inexpensive, but has been widely used in high-risk surgeries also [25]. The direct BP

measurement via arterial cannulation is regarded as the clinical reference method and is mainly

used in high-risk surgeries and in intensive care medicine, but it is expensive, time-consuming and

requires a trained operator [51]. Another BP monitoring technique is expected to become widely

available soon by using continuous non-invasive technologies such as the volume clamp method,

the arterial applanation tonometry and the pulse wave velocity.

The most suitable method of BP monitoring for patients undergoing surgical procedures should

be identified using a perioperative cardiovascular risk stratification. Several types of hypoten-

sion have been identified during general anaesthesia and surgery (e.g., post-induction hypotension,

early intraoperative hypotension and late intraoperative hypotension) [156]. Walsh et al. showed

that hypotension events lasting just a few minutes could adversely affect organ function [179].

Therefore, it is of utmost importance for the clinician to maintain the BP steady and continuous

monitoring would help a lot. Benes et al. demonstrated that continuous BP monitoring outper-

formed intermittent NIBP measurements taken every 5 minutes helping to keep BP stable during

surgery [8]. Ilies et al. presented improvements in the detection of hypotensive episodes using

continuous monitoring in patients undergoing planned cesarean section against intermittent NIBP

[63].

In the perioperative setting, the likelihood for intraoperative hypotension and the patient’s risk
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to develop hypoperfusion-induced organ failure should be considered when choosing which BP

monitoring to use, according to [96]. The idea is illustrated in figure 4.1.

Figure 4.1: Choice of adequate blood pressure monitoring equipment in ICU and OR according
to patient and procedural risk (OR) (45) or chronic and acute disease (ICU). From [96].

Currently, the arterial tonometry method, vascular unloading technique, pulse wave velocity (PWV)

method, and pulse waveform characteristics method are the main non-invasive continuous BP mea-

surement methods being developed. The arterial tonometry method is applicable to superficial

arteries like the radial artery [131, 95, 113, 147, 40] and calibration isn’t needed whenever, making

it possible to achieve long-term BP monitoring. However, the sensor is sensitive to displacement

and pressure [39]. The vascular unloading technique is able to estimate BP using the mechanical

properties of the blood vessel [127], but long-term monitoring may cause venous congestion and

affect the estimations accuracy.

The PWV method relies on the Moens–Korteweg equation (3.2). Gribbin tested the variation of

the arterial dilatation pressure of the limb in a large range by applying external pressure, moni-

tored the PWV, and observed that PWV was correlated to blood pressure [50]. In 1984, Tanaka

estimated the BP values from the PWV for the first time; however, the predicted values had big

standard errors [162]. Suchlike the idea of PWV, Payne et al. verified that the pulse wave transit

time (PTT) was associated with blood pressure [126] and the correlation between PTT and systolic

blood pressure (SBP) was stronger than that between PTT and diastolic blood pressure (DBP).

More recently, different studies address features of the pulse wave signals within the time and

frequency domains and analyzed multivariate regression models [144, 153, 81, 166]. The regres-

sion models weren’t much different than the PTT-based models, while the features changed from

univariate to multivariate and the accuracy improved. With the development of machine learn-

ing, the characteristic parameters of models were further enriched, including the amplitude, phase

characteristics of pulse waves calculated with fast Fourier transform [190], spectral characteris-

tics [180], and the features of the photoplethysmography (PPG) waveform and related first and

second (time) derivatives [140, 141]. Additionally, scholars used more complex machine learning

models, such as neural networks [65], [180, 140, 141, 137], support vector machines [193], adap-
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tive boosting regression [104], and random forest algorithm [56]. Although machine learning and

big data covered more BP information and improved the performance for BP estimation, various

factors that affect blood pressure were not properly covered. During modeling, coming up with

an appropriate feature set can undoubtedly reduce the complexity of the BP estimation models

and contribute to a comprehensive real-time monitoring of blood pressure device. Table A.1 shows

the most relevant BP estimation models studied during the elaboration of this thesis. It is clear

that there is inconsistency in approaching this challenge, in terms of sample size, number and

type of features, reported evaluation metrics, estimation models (linear regression, ANNs, etc. . . ),

BP data acquisition (A-line vs sphygmomanomether), recalibration/no recalibration, environment

(ICU, lab tests) and training/testing settings. However, despite these challenges, this line of re-

search seems encouraging with many different approaches available for analysis.

This thesis focuses on BP monitoring of patients during different types of surgery. Thus, our goal

for this chapter is to analyze how state-of-the-art BP estimation models based on PPG and ECG

signals perform under these specific conditions. A detailed analysis is employed in order to extract

useful information about the pros and cons of these models in a real world intraoperative appli-

cation. Since most of the recently proposed algorithms in the literature are highly complex, not

available for simple implementation and require further testing for validation, an approach similar

to [152] was taken in order to evaluate different more simple mathematical models.

4.2 Methods

4.2.1 Data collection

The MEC-U ethical committee approved the data collection for this study (St. Antonius Zieken-

huis, Koekoekslaan 1, 3430 EM Nieuwegein, NL. Approval W19.046), and it was carried out at the

Elisabeth-Tweesteden Ziekenhuis hospital in Tilburg, NL. All patients gave their written informed

consent for the investigation. Data was collected from 9 patients during surgery in the OR with

an arterial line as standard of care.

These patients had an age range from 23 to 91 years (µ = 59.1, σ = 20,0). The surgeries were

vascular (5) and neuro (4) with lengths between 1.97 and 7.29 hours (µ = 4.26, σ = 1.89). The

ABP waveform was obtained at the radial site with an Edwards Lifesciences TruWave dispos-

able pressure transducer (Edwards Lifesciences, Irvine, CA) and a Philips MP50 patient monitor

(Philips Medizin Systeme, Böblingen, Germany). The data were recorded at a sampling rate of

125Hz on a laptop with custom data logger software. The recordings were started immediately

after the arterial line was placed, when the patient was fully anesthetized and ventilated. The ABP

waveforms span the duration of the entire surgery until the patient is either woken up, extubated,

undraped, or prepared for transport to the recovery room, whichever occurred first.

4.2.2 Pre-processing

The PPG is known for considerable advantages, but it is prone to certain well-known sources of

error which may lead to inaccurate readings: the introduction of ambient light at the photoreceptor,

wearing nail polish, poor blood perfusion of the peripheral tissues and motion artifacts [157]. In

order to deal with this limitation, a pre-processing stage is required. At this stage, high frequency

and low frequency components of the acquired signal were removed using a bandpass Chebyshev
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II filter with a 18 Hz and 0.5 Hz high and low cut-off frequencies [85], ensuring the preservation of

the physiological relevant information (usually below 15 Hz [157]).

During surgery, several major sources of error may occur and affect the readings of ECG, PPG

and A-line devices independently. Also, our setup includes cuff measurements that are triggered

frequently, and the cuff is placed in the same arm as the A-line’s catheter and the PPG sensor.

In order to ensure integrity between these 3 different signals, a simple quality assessment tool was

designed. First, systolic peaks are extracted from the ECG signal, using the Pan and Tompkins

algorithm [125], then a similar approach is taken in order to extract the systolic peaks from the

PPG signal. Then, using a 20 seconds sliding window, the heart rate (HR) is calculated inside the

given window (HR[t − 20s : t]) for each time instance t using the PPG and ECG systolic peaks

previously detected. If the heart rates obtained with the PPG and ECG differ for more than 30%,

the given instance t is discarded. Figure 4.2 shows an example of this tool in action.

Figure 4.2: Plot showing the quality assessment tool (bottom sub-plot) triggering the impairment
between ECG and PPG signals during cuff inflation (represented as the orange line in the top sub-
plot).

4.2.3 Segmentation

The main objective in this step is to segment the PPG signals into individual PPG pulses per

heartbeat. From each PPG pulse, several features will be extracted afterwards. To detect the

PPG pulses, an approach similar to [158] was applied. Initially, the PPG signal is differentiated

using a five-point digital differentiator [2] (from (4.1) to (4.4)), resulting in first to fourth order

derivatives (d1ppg, d2ppg, d3ppg and d4ppg).

d1ppg = f ′(t) =
f(t− 2h) − 8f(t− h) + 8f(t+ h) − f(t+ 2h)

12h2
(4.1)

d2ppg = f ′′(t) =
−f(t− 2h) + 16f(t− h) − 30f(t) + 16f(t+ h) − f(t+ 2h)

12h2
(4.2)

d3ppg = f ′′′(t) =
−f(t− 2h) + 2f(t− h) − 2f(t+ h) + f(t+ 2h)

2h3
(4.3)
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d4ppg = f ′′′′(t) =
f(t− 2h) − 4f(t− h) + 6f(t) − 4f(t+ h) + f(t+ 2h)

2h3
(4.4)

Figure 4.3: Plot of PPG signal and 1st and 3rd derivatives (order top to bottom) with charac-
teristic points for the detection of the onset of each individual pulse.

From the analysis of the d1ppg, the local maxima (d1 ppg lmax) with absolute amplitude greater

than a threshold (ThR) are detected. Here, the ThR is selected based on an adaptive thresholding

of the d1ppg data cumulative histogram (calculated within 10 seconds time windows) and was

defined as the greater value bellow which 90% of the observations are found. Following the work

proposed by Chan et al. [22], the PPG pulse onset was considered to be the point d1ppg presenting

a rapid inflection (just before d1 ppg lmax), which corresponds to a maximum in the d3 ppg

(d3 ppg lmax). The motivation behind this approach was firstly reported by L.B. Cook [184, 31],

who observed a significant resemblance between the PPG signal first derivative and the arterial

flow waveform. The detection of the d3 ppg lmax characteristic point was accomplished in two

phases: 1) detection of the d3ppg local minima (d3 ppg lmin) corresponding to the d1ppg local

maxima (see 4.3) and; 2) identification of the peak with greater amplitude (d3 ppg lmax) prior to

the previously identified most relevant valley.

4.2.4 Features Extraction

One of the goals of this chapter is to analyze the relationship between different proposed cardio-

vascular surrogates and blood pressure, thus it is described which features are being considered

and how they are calculated.

The pulse arrival time (PAT) is perhaps the most studied feature in this field and has been com-

monly assessed with a few location definitions, including the diastolic minimum time [27, 3, 114],

(b) intersecting tangent method [126], (c) times of maximum derivatives with respect to time

[186, 49, 168, 64], and (d) time to reach a fraction of the pulse height [27, 168]. The studied PAT

definitions are shown in Figure 4.4:

The left ventricular ejection time (LVET) is commonly associated with stroke volume and has

been indicated as a valuable prognostic parameter related to hypovolemia [48]. Using the PPG
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Figure 4.4: Plot of PPG pulse and different reference points for PAT definition and extraction.

waveform, LVET inference was firstly introduced in a study on the analysis of the ear densitogram

[133], were it was suggested that the onset and offset of the systolic ejection could be recognized in

the morphology of the first derivative. Based on this study, Chan et al. [22] proposed an algorithm

for the assessment of LVET based on a rule-based combination of three LVET measures extracted

from a multi-derivative analysis of the finger photoplethysmogram. However, some problems can

be found on these high-order derivatives-based analysis, where noise can be a critical factor [22].

Later, Ricardo et al. [33] proposed a method for the assessment of cardiovascular surrogates,

including LVET, based on the decomposition of the PPG pulse into its forward and reflection

waves, using a multi-gaussian (MG) model formulation. The proposed methodology resorts on the

segmentation of the PPG pulse into systolic and diastolic phases and consequent modeling of the

segmented phases into a sum of three and two Gaussian functions motivated by the underlying

physiology of the PPG pulse. For this study, we consider the LVET definition by Chan et. al. as

represented in Figure 4.5.

Figure 4.5: Plot of PPG pulse reference points for LVET definition and extraction.

The stiffness index (SI) is associated with the velocity of a pulse wave in large arteries [36], large

artery stiffness [101] and it also correlates with pulse pressure [7]. The reflection index (RI) is

associated with small artery stiffness [36] and changes in vascular tone [29]. Ricardo et al. [33]
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also proposed a definition of RI with the time span between the forward (Ps) and reflected waves

(Pd), using his MG model: SI = Bd – Bs. In the same article, a definition for the RI is proposed

as the ratio between the amplitudes of the forward and reflected waves: RI = Ad/As. The heart

rate (HR) is also studied.

The rationale for studying all this features is the different mechanisms affecting the regulation of

BP and that can be identified with these features. It would be expected that chronotropic (HR),

inotropic (LVET), vascular blood pressure (PAT, SI, RI) changes would be represented by changes

in each of these features.

4.2.5 Features Post-processing

In order to ensure the data integrity, a post-processing step is needed, and it consists of an outlier

removal approach similar to [143, 99]. The difference between each feature (FTi) and its corre-

spondent smoothed version (FTsi), calculated using a moving median filter (5 minutes window),

is defined by (4.5):

FTi(t) = FTsi(t)− FTi(t) (4.5)

Let FTwi (t) = FTi(t− w), . . . , FTi(t+ w) be a temporal sliding window over the derived time

series FTi with length 2 ∗ w + 1 and centered in the instant t, for the ith feature. For each

window, the lower quartile (Q1: 25th percentile), the upper quartile (Q3: 75th percentile) and the

interquartile range (IQR = Q3 – Q1) are identified and the measurement of FTi(t) is classified as

an outlier if the following condition is satisfied:

FTi(t) < Q1− 3 ∗ IQR ∨ FTi(t) > Q3 + 3 ∗ IQR (4.6)

The rationale behind this approach is that the sporadic parameter values resulting from artifacts

and noise can be detected as outliers, which greatly differ from the parameter main trend. Finally,

the parameters time-series were linearly interpolated at a 1Hz frequency.

4.2.6 Features Evaluation

In order to evaluate the different features, first one looks at the distributions and correlation

between these features and the different targets (SBP, DBP and MAP) for all the data points.

After, the Pearson’s correlation coefficient is calculated inside 10 minutes windows with 50% overlap

between each surrogate (HR, PAT, RI, SI, LVET) and blood pressure (SBP, DBP and MAP). The

goal with this analysis is to address the problem of generalization and the conditional correlation

between these features and blood pressure as noted by [38]. From this analysis, the best features

are selected. The correlation coefficient is given by (4.7):

r =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(4.7)
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4.2.7 Mathematical Models

Arterial pressure varies on a beat-to-beat basis and directly corresponds to cardiac output, ar-

terial elasticity, and peripheral vascular resistance. Physiologically, it’s regulated by vasomotion,

neural regulation and arterial mechanisms [150]. Given the fluid is contained within an elastic

conduits system, energy is transmitted predominantly to the arterial wall rather than through

the in-compressible blood. The material properties, thickness, and lumen diameter of the arterial

wall thus become the main determinants of the pressure wave velocity (PWV). Vascular elasticity

models assume that the Moens–Korteweg equation [110] models a relationship between the wave

speed or PWV and the incremental elastic modulus (a coefficient of elasticity) of the arterial wall

[71]. Combining it with an exponential arterial elasticity model [26, 62], a BP-PAT model, called

the MK-EE model, is obtained. It gives a logarithmic relationship between BP and the PAT. For

the MK-EE model, assuming there’s a negligible change in the arterial thickness and diameter with

pressure variations, BP and the PAT can be linearly related by differentiating the M-K equation,

called the L-MK model [26]. To get over the bad linear correlation of DBP in the L-MK model,

the Bramwell–Hill equation [194] is introduced in estimating BP to make it have a high correla-

tion, which is named the MK-BH model [163]. Recently, Poon et al. established a mathematical

relationship between MAP and a factor that the change in elasticity is caused by pressure wave

variations. It could be regarded as the development model of MK-BH, called the dMK-BH model

[130].

The mathematical models are described in table 4.1.

Models SBP DBP Category

MK-EE [193] a1 = lnPAT + b1 a′1 ∗ lnPAT + b′1 Non-Linear
L-MK [26] a2 + b2 ∗ PAT a′2 + b′2 ∗ PAT Linear

MK-BH [163] SBP0 − (2/ (γ ∗ PAT0)) ∗ (PAT − PAT0) SBP − PP0 · (PAT0/PAT)2 Non-Linear

Table 4.1: Note: γ denoted a vascular information parameter which might be altered with age and
the development of cardiovascular diseases. For the healthy subjects, it was set as 0.031mmHg−1.
SBP0, PAT0, PP0 are measured samples for calibration. a1, a

′

1, a2, a
′

2, b1, b
′

1, b2, b
′

2 are fitting pa-
rameters.

4.2.8 Model’s Performance

In this chapter, a comparison between the aforementioned mathematical models and BP is done by

assuming the ABP-line signal as the ground BP values. Also, a comparison between these models

and a 5 minutes sampling interval zero-order hold (ZoH) is performed in order to evaluate the use-

fulness of these models against intermittent NIBP, assuming that this modality only provides the

value of the last measurement between the measurements. Intermittent NIBP is usually performed

with cuff-based methods, such as oscillometry, that are associated with a certain degree of error

compared with ABP-line measures, but this analysis is focused on the intermittent characteristics

and different sampling definitions and not on cuff-associated errors.

During the training phase, training data is down sampled in order to obtain 1 sample per minute.

This is done in order to simulate real-life applications where the ABP line wouldn’t be available

and measurements are taken with a cuff. The overall process is described in figure 4.6.
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Figure 4.6: Diagram illustrating the analysis of BP estimation algorithms.

Initially, one performs the analysis of the given mathematical models with an initial calibration

lasting 10 and 20 minutes. The goal is to analyze the impact of calibration conditions and the

effect on long-term predictions. Secondly, static recalibration is performed, with time intervals

ranging from [5, 10, 15, 20, 30] minutes. At last, a dynamic recalibration is proposed.

The dynamic recalibration process is based on the variability of true SBP, where a threshold is

defined in order to trigger the recalibration process. Although there’s no clear definition of a BP

event, some studies showed that minor but prolonged and major but brief BP changes can both

impact the surgery outcomes [98]. In 1990, Charlson et al. showed that prolonged changes in

MAP of more than 20 mmHg or 20% from the patient’s preoperative levels were associated with

postoperative complications [24]. More recently, Monk et al. found that intraoperative SBP < 67

mmHg for more than 8.2 minutes, mean arterial pressure (MAP) < 49 mmHg for more than 3.9

minutes and diastolic blood pressure (DBP) < 33 mmHg for more than 4.4 minutes were associated

with 30-day mortality [103]. Regarding the impact of a dynamic recalibration procedure in the

mathematical model’s outcomes, Chen suggested that a proper calibration interval should be a

trade-off between patient comfort and estimation error and that no calibration should be triggered

when BP shows no significant changes [26]. Assuming that minor and prolonged BP changes can be

identified with current intermittent NIBP monitoring, one searches for sharp BP changes inside the

most common 5 minute sampling interval. One proposes a simplified BP instability evaluation tool

where the intervals for recalibration are defined based on the SBP max−min difference, decreasing

when SBP instability increases. The intervals were chosen in order to maintain approximately the

same total number of samples comparing with the 5 minutes static recalibration for all of the

patient’s data.

At each instance t we look at the SBP for the last 5 minutes (w = 5minutes) and the process is

performed as described in Algorithm 1.

49



4. Evaluation of Continuous Non-Invasive Blood Pressure Estimation Algorithms Based on
Photoplethysmography and Electrocardiography

Algorithm 1 Adaptive Recalibration Procedure

for t in range(SurgeryDuration) do
if max(SBP [t− w : t])−min(SBP [t− w : t]) > 20 then

recalibration each 2.5 minutes
else if 15 < max(SBP [t− w : t])−min(SBP [t− w : t]) < 20 then

recalibration each 5 minutes
else if 10 < max(SBP [t− w : t])−min(SBP [t− w : t]) < 15 then

recalibration each 10 minutes
else

recalibration each 20 minutes
end if

end for

The chosen evaluation metrics are the mean error (4.8) ± standard deviation (4.9) (ME ± SD)

and the mean absolute error (4.10) (MAE).

ME =
1

n
Σ(y − ŷ) (4.8)

SD =

√
Σ ((y − ŷ)−ME)

2

n
(4.9)

MAE =
1

n
Σ(|y − ŷ|) (4.10)
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4.3 Results and Discussion

4.3.1 Data Analysis and Feature Selection

In order to evaluate the relationship between HR, LVET, SI, RI and different definitions of PAT,

and BP, one looks at the global and local correlation between these features and the targets.

Tables 4.2 and 4.3 show the Pearson’s correlation coefficients obtained within all the data points

and tables 4.4 and 4.5 show the local Pearson’s correlation coefficients. The results show that higher

correlation between PAT appear when one looks at local correlation inside 10 minutes windows

with 50% overlap, confirming the conditional correlation between PAT and BP that results in the

need for initial calibration for each patient and continuous recalibration.

The relation between features other than PAT and BP is not linear, since the values swing between

positive and negative values, so it’s difficult to build a simple mathematical model that relies on

these features. PATonset has the best overall local correlation (R = -0.743 ± 0.220 for SBP, R

= -0.730 ± 0.214 for MAP and R = -0.721 ± 0.228 for DBP), meaning that this PAT definition

is the most appropriate to infer BP. Figure 4.10 shows a more detailed distributions of the local

correlation values that support this idea. Therefore, PATonset was chosen for future BP estimation

algorithms implementation.

Figure 4.7: Blood pressure distributions with SBP (η = 106.2, σ = 15.3); MAP (η = 70.7, σ =
9.0);DP (η = 52.9, σ = 6.9).
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Figure 4.8: Pulse arrival time distributions with PATonset (η = 0.23, σ = 0.02); PAT20% (η =
0.29, σ = 0.01); PAT50% (η = 0.32, σ = 0.02); PAT80% (η = 0.36, σ = 0.02); PATderiv (η =
0.33, σ = 0.02); PATpeak (η = 0.41, σ = 0.03) (s).

Figure 4.9: Other features distributions with HR; LVET, RI and SI.
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PATonset PAT20 PAT50 PAT80 PATderiv PATpeak

SBP -0,359 -0,266 -0,095 0,077 -0,147 0,259

MAP -0,191 -0,135 -0,202 -0,238 -0,223 -0,252

DBP 0,091 0,092 0,164 0,225 0,145 0,297

Table 4.2: Global correlation values between PAT and BP.
HR LVET RI SI

SBP -0,360 0,230 0,448 -0,231

MAP 0,212 -0,498 -0,123 -0,227

DBP -0,178 0,242 0,324 0,014

Table 4.3: Global correlation values for HR, LVET, RI and SI, and BP.

PATonset PAT20 PAT50 PAT80 PATderiv PATpeak

SBP -0.743± 0.220 -0.517 ± 0.377 -0.632 ± 0.308 -0.577 ± 0.372 -0.727 ± 0.238 -0.398 ± 0.506

MAP -0.730 ± 0.214 -0.463 ± 0.402 -0.601 ± 0.319 -0.550 ± 0.380 -0.703 ± 0.240 -0.389 ± 0.498

DBP -0.721 ± 0.228 -0.449 ± 0.405 -0.582 ± 0.326 -0.537 ± 0.376 -0.691 ± 0.254 -0.382 ± 0.489

Table 4.4: Local correlation values for PAT and BP, calculated inside 10 minutes windows with
50% overlap and displayed as mean ± standard deviation.

HR LVET RI SI

SBP 0.039 ± 0.513 -0.061± 0.419 0.210 ± 0.508 -0.045 ± 0.465

MAP 0.141 ± 0.510 -0.127 ± 0.402 0.234 ± 0.512 -0.096 ± 0.453

DBP 0.190± 0.516 -0.144 ± 0.401 0.226 ± 0.506 -0.112 ± 0.449

Table 4.5: Local correlation between HR, LVET, RI and SI, and BP. Displayed as mean ±
standard deviation.
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Figure 4.10: Boxplots for each PAT definition showing correlation coefficient’s distribution.

4.3.2 Model’s Performance

4.3.2.1 No Recalibration

The first step for the analysis of the different addressed models (MK-EE, L-MK and MK-BH)

includes an analysis of the importance of initial calibration for each patient in the model’s ability

to fit the target values. For the initial calibration process, a number of samples are taken from the

data (PAT and BP) and these samples are obtained with the past 30 seconds averaged and in such

way that we obtain 1 sample per minute, in order to simulate real-world applications where the

ABP line isn’t available. Two approaches were taken, the first with an initial calibration lasting

10 minutes, consisting of 10 samples, and the second with an initial calibration lasting 20 minutes,

consisting of 20 samples. The results shown in tables 4.6 and 4.7 support the need of a long

enough initial calibration process so that the BP dynamics are captured by the aforementioned

mathematical models. Therefore, the 20 minutes initial calibration duration was chosen for the
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following analysis.

Systolic BP Diastolic BP
ME ± SD MAE ME ± SD MAE

MK-EE 17.05 ± 18.78 19.83 9.63 ± 11.56 10.92

L-MK 17.85 ± 19.46 20.52 10.06 ± 12.07 11.29

MK-BH 18.38 ± 20.24 20.85 15.66 ± 17.98 18.29

Table 4.6: Performance of each model (MK-EE, L-MK and MK-BH) with 10 mins (10 samples)
initial training and no recalibration.

Systolic BP Diastolic BP
ME ± SD MAE ME ± SD MAE

MK-EE 5.41 ± 10.53 8.60 3.33 ± 5.93 4.91

L-MK 5.63 ± 12.97 8.63 3.47 ± 5.90 4.97

MK-BH 11.63 ± 11.58 13.83 8.91 ± 9.15 10.62

Table 4.7: Performance of each model (MK-EE, L-MK and MK-BH) with 20 mins (20 samples)
initial training and no recalibration.

4.3.2.2 Fixed Time Interval Recalibration

Figure 4.11: Performance in terms of MAE for each model and different fixed time interval
recalibrations with SBP (top) and DBP (bottom) as targets.

In order to evaluate different fixed time interval recalibration processes with different frequencies,

one starts by looking at the global MAE for SBP and DBP estimation as a function of different time

intervals ranging from 5 to 30 minutes, including the Zero-order Hold (ZoH) that represents the

intermittent NIBP, as shown in figure 4.11. It is noticeable that the mathematical models clearly

outperform the ZoH when they are recalibrated each 5 minutes, and the results are presented in

table 4.8, with the MK-BH model achieving ME values of 0.55± 5.94 for SBP and 0.42± 4.17 for

DBP while the ZoH achieved 0.10 ± 11.66 for SBP and −0.01 ± 5.44 for DBP. In terms of MAE,

the MK-BH model achieved 3.50 for SBP and 2.39 for DBP while the ZoH obtained 6.58 for SBP

and 3.20 for DBP.

Figure 4.15 provides useful information about the dispersion of ME and MAE for the different

models and ZoH estimating SBP and DBP, showing that the MK-BH model achieves less error

dispersion for both SBP and DBP estimation than the other models and ZoH and further sup-

porting that this model is the best solution for BP estimation. In order to further investigate the

applicability of these models in practice, one looks also at the number of samples extracted during

the process for the mathematical models and ZoH and the results show an increase of 30% with

the use of these models, caused by the number of samples for the initial calibration.
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Only 5% of the MK-BH model SBP estimates have absolute errors above 11.9 mmHg while this

number rises to 24.6 mmHg for the ZoH; 99% of the MK-BH model SBP predictions have absolute

errors below 24.2 mmHg while the ZoH achieves 50.2 mmHg. This numbers suggest that the ZoH

is much more prone to bigger outliers than the MK-BH model, which highly affects the detection

of relevant BP changes in critical settings.

Figures 4.12 and 4.13 show one patient’s ground truth SBP and predictions achieved with the

MK-BH model and ZoH. Here, the advantage of having a mathematical model predicting SBP in

real-time against ZoH is highlighted, since it can successfully describe SBP dynamics inside the 5

minutes sampling interval that wouldn’t be possible with the intermittent NIBP solution. Zooming

in one specific segment (280 - 320 minutes, figure 4.14), this example suggests how the use of the

MK-BH model in this specific conditions could identify in real-time a quick and sharp drop in

SBP leading to hypotension (SBP < 90 mmHg) and how ZoH (intermittent measurements) could

completely miss an hypotension episode.

Figure 4.12: Example of one patient comparing ground truth SBP (blue) with MK-BH model’s
predictions with recalibration performed each 5 minutes (red) with the samples identified with
black dots. First 20 minutes correspond to the intial calibration.

Figure 4.13: Example of one patient comparing ground truth SBP (blue) with ZoH predictions
with samples extracted each 5 minutes (red) with the samples identified with black dots.
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Figure 4.14: Zoom in specific segment of one of the patients. Left: MK-BH model predictions
(red) on top of ground truth SBP (blue) with samples identified with black dots. Right: ZoH (red)
on top of ground truth SBP (blue) with samples identified with black dots.

Systolic BP Diastolic BP
ME +- SD MAE ME +- SD MAE No. Samples

MK-EE 2.40 +- 7.95 5.55 1.89 +- 4.54 3.09 599

L-MK 2.49 +- 7.90 5.54 1.23 +- 4.53 3.09 599

MK-BH 0.55 +- 5.94 3.50 0.42 +- 4.17 2.39 599

ZoH 0.10 +- 11.66 6.58 -0.01 +- 5.44 3.20 464

Table 4.8: Performance of each model (MK-EE, L-MK, MK-BH and Zero-order Hold (ZoH))
with 20 mins (20 samples) initial training and recalibration performed each 5 minutes. The last
(right) column shows the number of samples extracted from the time-series data.

Another analysis represented in table 4.9 shows the performance that these models achieve when

they are recalibrated every 15 minutes, and compares with the ZoH performed each 5 minutes.

While decreasing the number of samples by 47%, the MK-BH models was able to outperform the

ZoH model in terms of ME and MAE for SBP, obtaining ME values of 0.47 ± 8.94 versus the

0.10± 11.66 obtained by the ZoH and a slight loss of the MK-BH model against ZoH in terms of

DBP, obtaining 0.76± 6.83 versus −0.01± 5.44. The same thing for MAE values. This results are

corroborated by the error dispersion shown in figure 4.16 where the MK-BH model outperforms

the ZoH for SBP estimation, but is overtaken by the ZoH for DBP estimation. Only 5% of the

MK-BH model SBP estimates have absolute errors above 20.8 mmHg while this number rises to

24.6 mmHg for the ZoH; 99% of the MK-BH model SBP predictions have absolute errors below

34.0 mmHg while the ZoH achieves 50.2 mmHg. This numbers support that the ZoH is much more

prone to bigger outliers than the MK-BH model, even with less recalibrations performed.

Systolic BP Diastolic BP
ME ± SD MAE ME ± SD MAE No. Samples

MK-EE 4.47 ± 10.20 8.21 2.67 ± 5.99 4.64 316

L-MK 4.61 ± 10.22 8.27 2.73 ± 6.02 4.67 316

MK-BH 0.47 ± 8.94 5.59 0.76 ± 6.83 4.09 316

ZoH 0.10 ± 11.66 6.58 -0.01 ± 5.44 3.20 464

Table 4.9: Performance of each model (MK-EE, L-MK, MK-BH and Zero-order Hold (ZoH))
with 20 mins (20 samples) initial training and recalibration performed each 15 minutes. The last
(right) column shows the number os samples extracted from the time-series data.

These results show the potential for improving the NIBP monitoring with simple mathematical

models while slightly increasing the number of cuff measurements. Also, reducing the number of

cuff measurements, thus increasing the patient’s comfort, it is possible to achieve similar perfor-

mance with these models.
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Figure 4.15: Boxplots showing distributions of absolute error (top) and error (bottom) for DBP
(left) and SBP (right) for models with fixed time interval recalibration of 5 minutes.
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Figure 4.16: Boxplots showing distributions of absolute error (top) and error (bottom) for DBP
(left) and SBP (right) for models with fixed time interval recalibration of 15 minutes.

4.3.2.3 Dynamic Recalibration

Figure 4.17: Example of one patient’s categorical definition of BP events using SBP max−min
difference inside 5 minutes windows

In this section, an approach for dynamic recalibration (Algorithm 1) is analyzed. Since the critical-

ity in BP monitoring refers to the events that happen during surgeries that lead to highly increased

or decreased BP in short periods of time, one tests the performance of the aforementioned math-

ematical models and ZoH with dynamically defined sampling frequencies against state-of-the-art

5 minute fixed interval ZoH. Figure 4.17 shows an example of the events definition proposed here

and one can identify different relevant BP events categorized based on the amplitude of the change

that will trigger different sampling intervals.

The results shown in table 4.10 suggest that this approach would improve the performance of
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Systolic BP Diastolic BP
ME +- SD MAE ME +- SD MAE No. Samples

MK-EE 2.90 +- 8.14 6.05 1.52 +- 4.58 3.32 571

L-MK 2.94 +- 8.07 6.02 1.54 +- 4.55 3.30 571

MK-BH 0.68 +- 4.88 3.23 0.46 +- 3.86 2.40 571

ZoH* 0.10 +- 11.66 6.58 -0.01 +- 5.44 3.20 464

ZoH 0.69 +- 8.67 5.72 0.35 +- 4.28 2.88 391

Table 4.10: Performance of each model (MK-EE, L-MK, MK-BH and Zero-order Hold (ZoH))
with 20 mins (20 samples) initial training and recalibration performed dynamically. The last (right)
column shows the number os samples extracted from the time-series data. * ZoH performance from
5 minutes fixed sampling interval.

both MK-BH model and ZoH against state-of-the-art 5 minute fixed sampling interval in terms

of MAE and ME, while increasing the number of samples by 23% (180 initial calibration samples

+ 391 recalibration samples). Figure 4.18 shows the error dispersion for the different models,

further supporting that the MK-BH model clearly outperforms the other methods in both SBP

and DBP estimation. Comparing the error dispersion of the MK-BH model and ZoH dynamically

recalibrated with the 5 minutes static recalibration, as shown in figure 4.19, one can identify a

slight increase in the error dispersion for the dynamic recalibration approach, except for the SBP

estimation MAE metric.

Only 5% of the MK-BH model SBP estimates have absolute errors above 10.0 mmHg while the

number rises to 16,6 mmHg for the ZoH. Also, 1% of absolute errors are above 16.9 mmHg for

the MK-BH model and 34.0 mmHg for the ZoH, once again suggesting that the MK-BH model is

also able to avoid relevant outliers with the dynamic solution compared with the ZoH. Comparing

these results with the 5 minutes fixed recalibration interval, one identifies relevant improvements,

with top 5% of absolute errors decreasing from 11.9 mmHg to 10.0 mmHg for the MK-BH models

and from 24.6 mmHg to 16.6 mmHg for the ZoH. Looking at the top 1% the errors, it decreased

from 24.2 mmHg to 16.9 mmHg for the MK-BH model and from 50.2 mmHg to 34.0 mmHg for

the ZoH. This results suggest that the dynamic recalibration approach would highly improve both

MK-BH model and ZoH performance, avoiding major outliers.

Figures 4.20 and 4.21 show how the MK-BH model and the ZoH behave in one of the patients

regarding the estimation of SBP. It’s noticeable that the BP samples are mostly triggered in the

presence of relevant BP events and avoided when BP is steady. The advantages of having a dy-

namic sampling solution are highlighted and the MK-BH model proves to be a good solution for

non-invasive BP monitoring, capturing relevant BP dynamics between samplings.
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Figure 4.18: Boxplots showing distributions of absolute error (top) and error (bottom) for DBP
(left) and SBP (right) for models with dynamic recalibration.

Figure 4.19: Boxplots showing distributions of absolute error (top) and error (bottom) for DBP
(left) and SBP (right) for models with 5 minutes static and (*) dynamic recalibration.
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Figure 4.20: Example of one patient comparing ground truth SBP (blue) with MK-BH model’s
predictions with recalibration performed dynamically (red) with the samples identified with black
dots.

Figure 4.21: Example of one patient comparing ground truth SBP (blue) with ZoH predictions
with samples extracted dynamically (red) with the samples identified with black dots.
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4.4 Conclusion

In this chapter, the performance of different models for continuous BP estimation under distinct

circumstances was analyzed, with the focus on real life application in the OR.

It started with an analysis of different proposed time-domain features for cardiac function evalua-

tion that proved that the relationship between radial ABP and these features is conditional with

low absolute global correlation coefficients, something that has been previously addressed in the

literature [130, 49]. A screening of local correlation coefficients calculated inside 10 minutes win-

dows with 50% overlape showed that the relationship between BP and HR, LVET, SI and RI is not

linear, with local correlation coefficients ranging between positive and negative values. PATonset

proved to be the best BP surrogate to correlate with ABP with R = -0.743 ± 0.220 for SBP, R =

-0.730 ± 0.214 for MAP and R = -0.721 ± 0.228 for DBP.

Our assessment evolved around the test of 3 different BP estimation models against invasive ABP

measurements (assumed as ground truth) and ZoH (intermittent NIBP measurements assumed

as cuff measurements without associated errors) under different scenarios. First, different initial

calibration settings, with a first initial calibration lasting 10 minutes (10 samples) and a second

lasting 20 minutes (20 samples) were tested. The second calibration setting provided significantly

better results, as shown in tables 4.6 and 4.7. The second analysis referred to different recalibration

fixed intervals and opposed the mathematical models to the 5 minute sampling time ZoH, showing

that the use of these models could highly improve the quality of BP monitoring in the OR with a

continuous BP estimation solution that highly reduces the error between measured BP and ground

truth BP, allowing a real-time BP monitoring and events detection. The MK-BH model proved

to be the best mathematical model in terms of ME and MAE with the best error distribution,

avoiding outliers and showing high versatility for adapting to changes in the cardiovascular struc-

ture properties during surgery, captured by recalibration samples. This is an extremely important

feature, given that intraoperative hemodynamic perturbations are common due to the effects of

anesthetic agents and techniques, surgical manipulations, and the patient’s medical comorbidities.

Also included in this analysis, one compares the performance of 5 minutes interval ZoH and the

models with recalibration each 15 minutes, with the MK-BH model performing similarly to the

ZoH. These promising results suggest that the MK-BH model might be used in less critical surgeries

with less recalibration samplings, providing real-time BP estimation and detection of BP events

while reducing the number of samples by almost an half.

The last step of this chapter includes the proposal of a dynamic sampling time that would adapt

to BP variability, increasing the BP sampling in the presence of relevant events. For the definition

of BP events, a simple approach that categorizes BP events based on max−min differences inside

5 minutes windows is proposed. The idea behind this proposal is the utmost importance of de-

tecting quick and wide BP changes of patients undergoing surgery aligned with the constant need

for recalibration of the mathematical models that becomes more relevant in the presence of high

cardiovascular instability. Also, one tests how the dynamic sampling would influence intermittent

NIBP. The results support the idea that both continuous and intermittent NIBP would highly ben-

efit from a dynamic BP sampling solution, with global ME and MAE dispersion highly reduced in

the ZoH, in line with with the results presented by [12] in his offline analysis. Since the data being

analyzed comes from patients undergoing delicate surgeries, such as cardiovascular interventions,

the BP is highly unstable in some of the patients, and the dynamic approach considers the BP

variability, resulting in an elevated number of BP samples. In a real-life application, this solution
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would fit best in less critical interventions, as proposed by [95], resulting in less BP samples while

maintaining a real-time BP monitoring and triggering increased number of samples only in the

presence of relevant BP events. Also, this approach could fit to other scenarios such as the general

ward, where BP measurements are often taken only every 4 to 6h and events of hypotension and

hypertension are common, many of them going undetected [170]. With a solution like the one

proposed, measurements could be triggered when a relevant BP change occurs.

Although the results for the dynamic sampling BP monitoring approach support the idea, the BP

variability that is used to categorize BP events was extracted directly from the ABP signal, thus

opening the door for a solution that would infer the BP variability non-invasively. This solution

should be able to generalize for different patients, since there’s no way to guarantee that relevant

BP changes are captured during initial calibrations. In chapter 5, a solution for BP events detec-

tion and categorization is proposed based on the definition proposed here.

Overall, the analysis presented in this chapter suggests that the different mathematical models

(L-MK, MK-EE and MK-BH), although very simple, are capable of estimating accurate real-time

BP values compared with invasive measurements in the intraoperative environment, with a proper

recalibration procedure requiring cuff measurements. The proposed strategy is described in figure

4.22. Since cuff-associated errors are not considered in this study, a future analysis is required

in order to better estimate the performance of this models in real-life applications and compare

with currently available continuous NIBP solutions such as the CNAP (CNSystems Medizintechnik

AG, Graz, Austria). Different more complex models for BP estimation based on PWV have been

proposed, as shown in table A.1, but non of them has been developed in an environment like the

intraoperative scenario with continuous BP estimations compared with invasive ABP monitoring

and designed for real-life applications.

Figure 4.22: Diagram illustrating the proposed BP estimation algorithm.
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Algorithm for Blood Pressure Fast

Events Detection

5.1 Introduction

This thesis addresses the relevance of BP monitoring in clinical practice, showing that in the op-

erative room (OR) or in the intensive care unit (ICU) the most accurate technique is the arterial

line with a pressure transducer. This method provides a continuous ABP waveform signal that

enables instantaneous analysis and allows quick clinical interventions with the major drawbacks

being the fact that it is invasive, thus related to infections and requiring delicate procedures, and

requires specially trained operators. The most common BP assessment method in the hospitals are

cuff-based methods such as oscillometry or auscultation, which represent intermittent non-invasive

BP (NIBP) monitoring solutions that are cheap and easy to employ. This methods are often used

in situations of low to intermediate criticality and measurements can be triggered automatically

in fixed time intervals ranging from several minutes (e.g., surgeries) to several hours (e.g., general

ward) [146]. Given that the intermittent NIBP is such a widely available and simple application

solution, an optimized non-uniform sampling solution could highly improve the intermittent NIBP

monitoring performance [12].

In the previous chapter, continuous NIBP estimation solutions were addressed and the potential

and limitations of some of the most simple mathematical models based on the pulse wave velocity

(PWV) found in the literature were described, suggesting the need for several recalibrations during

the procedure. One potentially interesting approach is the design of an events detection algorithm

that triggers measurements based on the variability of BP, creating a personalized online solution

that adapts to the patient condition at any given point in time. In fact, a recent study by Bresch

et al. consisting of the analysis of an offline reconstruction of the ABP data as a ZoH with uniform

versus optimized non-uniform sampling and evaluating the root mean squared error (RMSE) be-

tween the reconstruction and the original BP time series suggested improvements of approximately

50% with respect to the optimized non-uniform solution [12].

BP changes in a patient during the perioperative and intraoperative care can be either minor,

but prolonged, or major, but brief, and both have impact in the surgery’s outcome [98]. While

the slower changes can be detected with a fixed interval cuff-based BP measurements and other

monitoring techniques, faster and sharper BP changes can occur in a matter of seconds and drive

the BP to certain values found to be correlated with worse outcomes, even if it lasts only a few

minutes [103].
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In this chapter, we propose a non-uniform sampling method based on the SBP variability inside

5 minutes windows and look at the max −min SBP difference. Then, 3 thresholds were defined

in order to categorize the BP instance as ”No Event”, ”Small Event”, ”Medium Event” and ”Big

Event”. Since this definition is based on the direct analysis of the BP time series, it was used as

a target for a Logistic Regression classifier based on BP surrogates extracted with ECG and PPG

signals, in order to create a non-invasive online solution for quick and sharp BP events detection.

This solution would ideally provide real-time information to clinicians about relevant changes in a

patient’s hemodynamics that wouldn’t be possible with traditional intermittent NIBP monitoring.

Several features have been studied and analyzed in the previous chapter. The same features (PAT,

HR, LVET, RI, SI) are expected to provide useful information in order to detect BP changes and

will be analyzed.

5.2 Methods

5.2.1 Data Collection

Data collection was performed as described in 4.2.1.

5.2.2 Parameters Extraction

The different parameters used as BP surrogates (PAT, LVET, RI, SI and HR) were extracted as

described in Sections 4.2.2, 4.2.3, 4.2.4 and 4.2.5. The chosen PAT definition was PATonset since

it suggested the best relationship with BP from all the different PAT definitions.

5.2.3 Events Definition

The BP events definition consists of the categorization of the SBP in 4 classes (y), depending on

it’s variability as described in Algorithm 2.

Algorithm 2 Adaptive Recalibration Procedure with Class Definition.

for t in range(SurgeryDuration) do
if max(SBP [t− w : t])−min(SBP [t− w : t]) > 20 then

y[t] = 3
else if 15 < max(SBP [t− w : t])−min(SBP [t− w : t]) < 20 then

y[t] = 2
else if 10 < max(SBP [t− w : t])−min(SBP [t− w : t]) < 15 then

y[t] = 1
else

y[t] = 0
end if

end for

5.2.4 Feature Extraction

In order to extract features that reflect BP events as described, a similar approach as the events

definition is taken and at each instance t one looks at each parameter for the last 5 minutes

(w = 5min) FTi[t−w : t] and the max−min difference is calculated and normalized by the mean
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(5.1). In the following analysis FT1 : HR, FT2 : LVET, FT3 : PAT, FT4 : RI and FT5 : SI.

FTi[t] = (max(FTi[t− w])−min(FTi[t− w]))/mean(FTi[t− w]) (5.1)

5.2.5 Features Evaluation

Features evaluation is performed with an analysis of its’ distribution for the different defined

classes. Also, a linear discriminant analysis (LDA) is performed. LDA is a well-known scheme for

feature extraction and dimension reduction and projects the data onto a lower-dimensional vector

space such that the ratio of the between-class distance to the within-class distance is maximized,

thus achieving maximum discrimination. The optimal projection (transformation) can be readily

computed by applying the eigen decomposition on the scatter matrices. LDA ends up creating one

or more linear combinations of predictors, creating a new latent variable for each function. These

functions are called discriminant functions. Here, the LDA is performed given all the features as

inputs and one discriminant function maximizing the differences between groups is obtained.

5.2.6 Classification Model

The chosen statistical model for the events detection and classification is the multinomial logistic

regression (MLR) that can be used to predict a nominal dependent variable given one or more

independent variables. The logic of the MLR with a single predictor (X) and one categorical

varaible (Y ) is expressed as (5.2)

logit(Y ) = α+ βX (5.2)

Therefore (5.3),

π = Probability (Y = y|X = x) =
eα+βX

1 + eα+βX
(5.3)

where π is the probability of the event, α is the Y intercept, β is the regression coefficient, and

X is the set of predictors. α and β are estimated by the negative log likelihood method. MLR,

by default, is not effective with imbalanced classification so the optimization method (negative log

likelihood) was modified in order to adjust the error penalty for the different targets based on their

frequency, so that the more frequent classes have less weight, resulting in smaller error value thus

less update to the model coefficients. The strategy to find the best weights is using the inverse of

each class distribution in the training data set.

5.2.7 Model Evaluation

Since one of the goals for this analysis is to test a solution capable of generalizing for different

patients, the chosen technique for the model evaluation is the 5-fold cross validation (5-CV). The

5-CV consists of 5 rounds involving the partitioning of each patient’s data in 5 subsets and choosing

4 of them for training (fitting the MLR model) and the other for testing (evaluation). The training

subsets of the different patients are merged and the same thing happens for the test subsets. At each

round, one different test subset from each patient is chosen. At the end, the different evaluation

metrics are averaged. Figure 5.1 illustrates the proposed algorithm and how it is evaluated.
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Figure 5.1: Diagram illustrating the proposed algorithm and evaluation.

The evaluation metrics include macro-average precision (maP), recall (maR) and F-score (maF),

the precision (P), recall (R) and F-score (F) for each class. Ultimately, one looks at classes equal

to zero (C = 0) and classes different than zero (C 6= 0) and calculate the precision (Pb), recall

(Rb) and F-score (Fb) in order to evaluate the performance of this model in distinguishing between

events and no-events and the time it takes the model to detect a transition between a no-event

state (C = 0) to a event state (C 6= 0) is evaluated with the detection time (DT) metric. In the

end, the confusion matrix for each of the 5-CV iterations are summed and presented.
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5.3 Results and Discussion

5.3.1 Features Evaluation

Looking at each feature distribution (FT1...5) in figure 5.2, one concludes that it is difficult to

separate each feature in the different classes (y = 0, 1, 2, 3, 4, except for FT3 extracted from PAT.

Using the linear discriminant analysis, it was expected to obtain a discriminant function capable

of maximize the differences between the different groups and a slight improve is observed (T1).

This new feature will be used as input by the MLR. One important consideration in the following

analysis is the frequency of each outcome (y = 0, 1, 2, 3) in the data available as shown in table 5.1.

The data-set is unbalanced in terms of the different classes, thus the need for a modification in the

MLR’s optimization method as described in Section 5.2.6. Considering non-event (y = 0) and event

(y 6= 0) states, the problem is attenuated with relative frequencies of 58.9% and 41.1%, respectively.

Class
Relative

Frequency
(%)

0 58.9
1 14.3
2 8.8
3 18.0

Table 5.1: Relative frequency of each class in the data
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Figure 5.2: Features distributions (FT1 : HR, FT2 : LVET, FT3 : PAT, FT4 : RI and FT5 : SI)
and LDA (T1) for each class.
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5.3.2 Models Performance

The MLR performance for each class and macro-average is shown in table 5.2. The results show

that the model struggles to properly distinguish the different events with y = 3 being the event

state, corresponding to SBP changes bigger than 20 mmHg inside 5 minutes windows, that is better

classified. Looking at figure 5.4, corresponding to the normalized confusion matrix of the 5-CV test

subsets merged, one concludes that each feature is often misclassified as one of it’s neighbours and

small events (y = 1) are misclassified as non-events (y = 0) 26.62% of the time while only 6.41%

of medium and 7.50% of large events (y = 2 and y = 3) are misclassified as non-events. Also,

only 23.05% of no-event states are misclassified as events, with 82.47% of these classified as small

events (y = 1). Addressing this problem as a binary classification problem, considering non-event

states (y = 0) and event states (y 6= 0), one can calculate the different evaluation metrics as shown

in table 5.3. The results suggest that the MLR model can distinguish between the different states

with accuracy of 80.7 ± 2.7 %, while struggling most to distinguish false positives with precision

of 72.4 ± 6.5.

Transition between no-event states to event states is detected in 21.27 ± 54.17 seconds, suggesting

that this tool would detect BP events in short time intervals, although it is difficult to compare

this results with other available solutions, since there’s no clear definition of BP events as the one

presented here.

Figure 5.3 compares the categorical targets with the predictions from the 5 combined test subsets

that results from the 5-CV in one of the patients. The results show that major events are detected,

except for an event occurring between minutes 250-280. A wide region between minutes 100-200

defined as no-event are detected as small events (10 mmHg < max−min < 15 mmHg).

Metric
Class Macro

Average0 1 2 3
Precision (%) 88.9 ± 2.9 31.9 ± 5.4 26.5 ± 8.3 83.0 ± 7.0 57.4 ± 29.4
Recall (%) 76.6 ± 8.5 49.9 ± 11.3 38.3 ± 10.2 58.1 ± 13.0 55.7 ± 17.7

F1-Score (%) 81.9 ± 4.6 38.2 ± 7.4 30.9 ± 8.7 67.0 ± 8.4 54.5 ± 22.1

Table 5.2: Performance of 5-CV MLR with T1 as input.

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Detection Time (s)
80.7 ± 2.7 72.4 ± 6.5 85.7 ± 4.4 78.2 ± 3.4 21.27 ± 54.17

Table 5.3: Performance for 5-CV MLR considering targets binary (y = 0 or y 6= 0). Detection
time defined as transition from no-event state (y = 0) to event state (y 6= 0).
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Figure 5.3: Example of events categorical targets (top) and the detection in one of the patients
resulting from the 5 test subsets merged (bottom).
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Figure 5.4: Normalized confusion matrix with all test subsets merged.
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5.4 Conclusion

Along this chapter, an algorithm for blood pressure fast events detection is proposed. First, a

definition of fast BP events is proposed, based on the previous description in chapter 4.2.8. As

suggested by [98, 103], not only long lasting BP events can affect surgery outcomes, but also sharp

and brief events. The definition of BP events here proposed is based on the SBP max − min

difference inside 5 minutes windows. In our data extracted from patients undergoing surgery, 5

out of 9 undergoing cardiovascular interventions, events bigger than 10 mmHg were found 41.1%

of the time, while events bigger than 20 mmHg were found 18% the time, suggesting that sharp

BP changes inside small time windows are common.

The approach for features extraction from non-invasive signals follows the strategy of the previous

chapter, with the different parameters being PAT, HR, LVET, RI and SI. From each parameter,

one applies a similar strategy as the BP the events definition, calculating the max−min difference

of each parameter inside 5 minutes windows. From here, a MLR model is tested with a 5-CV

approach.

The results suggest that the simple MLR model can effectively distinguish between non-event and

event states (table 5.3) while struggling to distinguish between the different event states (table

5.2). Also, one important conclusion is that this model is able to generalize for different patients,

since it was tested with a 5-CV approach involving all the patients studied. Thus, it wouldn’t

require calibration procedures for each patient.

A model like the one described here could be applied in the OR, providing real-time variability-

related information about BP with 3 different alarms and could be used in an optimized non-

uniform BP sampling definition, triggering samples based on the amplitude of SBP change, as

studied in chapter 4.

For future work, the study of different BP surrogates and different techniques for features extraction

may provide useful insights about the BP events state. Also, since it was proved that the MLR

model is able to generalize for different patients, no calibration procedures are required and more

complex machine learning models can be used in order to classify BP events.
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This thesis outlines the importance of accurate real-time BP monitoring of a patient during hospital

stay, analyzed different BP surrogates extracted from PPG and ECG signals and proposes a simple

yet effective solution based on the pulse wave velocity able to track BP even in the most critical

scenarios (e.g., cardiovascular surgeries), while highlighting the major challenges. The continuous

estimation of BP via surrogates (PAT) is compared with the invasive BP (A-line), the ground truth

values, and intermittent fixed interval sampling from the invasive BP (zero-order hold (ZoH)) in

order to simulate cuff measurements. The 5 minutes sampling interval was chosen for the ZoH to

be used as reference, since it is the most common approach in less critical interventions where the

A-line is not available [119].

With ECG and PPG signals from patients undergoing surgery, one could successfully extract rele-

vant cardiovascular time intervals such as the pulse arrival time (PAT) that was highly correlated

with invasive BP. The implementation of simple regression models (MK-EE, L-MK and MK-BH)

revealed promising results for continuous BP estimation, but also the need for initial calibration

and a systematic re-calibration strategy during the procedure for each patient. The first objec-

tive addressed in this thesis suggests that using 20 minutes (20 samples) initial calibration and 5

minutes fixed sampling time to extract new BP samples and update the regression models, would

enable the models outperform the ZoH (reference NIBP) in terms of ME ± SD and MAE. The

MK-BH model presented the best results achieving ME ± SD (mmHg) values of 0.55 ± 5.94 for

SBP and 0.42 ± 4.17 for DBP while the ZoH achieved 0.10 ± 11.66 for SBP and −0.01 ± 5.44 for

DBP. In terms of MAE, the MK-BH model achieved 3.50 for SBP and 2.39 for DBP while the

ZoH obtained 6.58 for SBP and 3.20 for DBP. An analysis of the top 5% and 1% absolute errors

suggested that this model is able to highly decrease the amplitude of outliers with only 5% of the

MK-BH model SBP estimates with absolute errors above 11.9 mmHg while the ZoH resulted in

24.6 mmHg and only 1% of SBP estimates with absolute errors above 24.2 mmHg while the ZoH

resulted in 50.2 mmHg. Increasing the sampling interval up to 15 minutes would still guarantee

better performance from the MK-BH compared with the ZoH, suggesting that one could improve

the patient’s comfort while maintaining accurate BP estimations. This results suggest that a sim-

ple solution with widely available ECG and PPG signals, a simple real-time BP estimator like the

MK-BH model and automatic cuff measurements could highly improve the BP monitoring during

low and intermediate risk surgeries where only cuff measurements are usually performed. The use

and implementation of this technology seems simple and reliable.

Furthermore, an optimized non-uniform BP sampling solution based on ground truth BPmax−min
differences inside 5 minutes windows is proposed and it’s impact on both regression models and

ZoH is analyzed. The results showed once again that the MK-BH model performed best in terms of
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ME±SD and MAE. The MK-BH model with non-uniform BP sampling and calibration achieves

ME ± SD (mmHg) of 0.68 ± 4.88 for SBP and 0.46 ± 3.86 for DBP while the ZoH achieved

0.69± 8.67 for SBP and 0.35± 4.28 for DBP. In terms of MAE, the MK-BH model achieved 3.23

for SBP and 2.40 for DBP while the ZoH obtained 5.72 for SBP and 2.88 for DBP. Both MK-BH

model and ZoH seem to benefit from a non-uniform BP sampling solution and that also reflects on

the top 5% of absolute errors that decrease from 11.9 mmHg to 10.0 mmHg for the MK-BH model

and from 24.6 mmHg to 16.6 mmHg for the ZoH. Looking at the top 1% the errors, it decreased

from 24.2 mmHg to 16.9 mmHg for the MK-BH model and from 50.2 mmHg to 34.0 mmHg for

the ZoH.

The previous results show an improvement for both continuous BP estimator and ZoH with the

non-uniform BP sampling solution, but the information about BP variability was extracted directly

from the invasive BP data and the objective would be to have this information from non-invasive

sources such as the PPG and ECG signals. Thus, one proposes an Algorithm for Blood Pressure

Fast Events Detection consisting of several parameters (PAT, HR, LVET, RI and SI) where the

max−min difference inside 5 minutes windows is calculated and a Multinomial Logistic Regression

(MLR) that fits the input data to the BP events targets defined previously. The MLR model is

evaluated with 5-fold cross validation in order to ascertain if this solution would be able to general-

ize for different patients, therefore not needing calibration procedures for each patient. The results

show that the MLR model struggles to distinguish between the different BP events categories, but

is able to distinguish between no-event and event states, performing worst in terms of precision

(72.4± 6.5 %) which means there are many false positives.

As the main suggestions for future improvements of the described work, one highlights the need

to study the influence of cuff-related errors in both NIBP monitoring performance and regression

models calibration and performance, the study of different BP surrogates and their relationship

with BP, more complex regression models and the study of different BP sampling optimization

techniques such as the locally adaptive sampling described by [43] with the help of BP surro-

gates such as PAT. Alongside the development of technological tools, a better understanding of

the volatility of BP in the perioperative care and its impact in the outcomes is needed in order

to create personalized BP management solutions that minimize the patients exposure to harmful

hemodynamic conditions. Randomized controlled trials with low- and intermediate-risk patients

during perioperative and primary care being monitored with continuous versus intermittent NIBP

monitoring solutions should be performed in order to ascertain if the continuous BP estimation

solution based on BP surrogates, via ECG and PPG, would improve outcomes. The reported

analysis has a prototypical nature, meaning that these concepts and strategies are worth further

study.
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tive of the Finger Arterial Pressure Waveform: An Insight into Dynamics of the Peripheral

Arterial Pressure Pulse. Physiol. Res, 54:505–513, 2005.

[155] K. M. Spyer. Annual review prize lecture. Central nervous mechanisms contributing to

cardiovascular control. The Journal of Physiology, 474(1):1–19, jan 1994.
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