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Abstract

The evolution of FR systems enable the incorporation of 3 dimensions analysis
combined with the 2 dimensions methods already developed was largely a conse-
quence of the development occurred in the available data acquisition technology and
FR improved mechanisms such as the use of Machine Learning (ML) algorithms.

Despite FR systems recent achievements, new habits changes such as the gener-
alization of face covering, as a consequence of COVID-19 pandemic present a new
challenge to FR algorithms. The majority of the methods have not been tested in
this new reality making an updated survey over FR fundamental to understand if
they can be reused or appear obsolete.

In this work a classic feature extractor algorithm developed by Emambakhsh
& Evans et al. [1] based on spherical patches working along with a designed and
personalized NN is applied with the objective to demonstrate the importance of the
nasal region for 3D FR algorithms, as stated in the article.

In order to adapt the research to a new reality, tests were performed to prove that
algorithms focused on the ocular region reach similar values of success when com-
pared with the nasal region in order to overcome the nose occlusion consequence of
using face coverings due to the COVID-19 pandemic. A second version of the FR
system built for the first goal demonstration was implemented having been proved
that the ocular region effectively has comparable accuracy in the 3D domain.
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Resumo

A evolução dos sistemas de FR permitiu incorporar análises 3D combinadas
com os métodos 2D já desenvolvidos, foi em grande parte consequência do desen-
volvimento da tecnologia de aquisição de dados disponı́vel e mecanismos de FR
aprimorados, como o recurso a ML.

Apesar das últimas conquistas dos sistemas de FR, recentes mudanças de hábitos,
como a generalização da utilização da máscara como consequência da pandemia de
COVID-19, representam um novo desafio para os algoritmos de FR. A maioria
dos métodos não foi testada nesta nova realidade, tornando um estudo atualizado
sobre FR fundamental para entender se poderão ser reutilizados ou se encontram
obsoletos.

Neste trabalho um modelo clássico de deteção de features desenvolvido por
Emambakhsh & Evans et al. [1], baseado em patches nasais esfericos que combina-
dos com uma NN projetada e personalizada é projetado, com o objetivo de analisar
possı́veis aplicações sobre uma população multicultural e diversificada, como foi
proposto pelo artigo.

Para adequar a tese à nova realidade, foram realizados testes para comprovar
que algoritmos focados na região ocular alcançam valores de sucesso semelhantes
quando comparados com a região nasal de forma a superar a oclusão da mesma
como consequência da utilização de máscara devido à pandemia COVID. Uma se-
gunda versão do sistema FR inicialmente implementado para demonstrar o primeiro
objetivo foi projetada tendo sido demonstrado que estes efetivamente mantêm uma
precisão comparável no domı́nio 3D.

Palavras Chave
Reconhecimento Facial com máscara, Reconhecimento Facial 2D e 3D, Validação

Facial 3D, Verificação Facial 3D
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1. Introduction

1.1 Context

This master thesis was undertaken in the context of the TrustFaces project. This
project is financed by the Imprensa Nacional-Casa da Moeda (INCM).

The TrustFaces project aims at a partnership for research and development in
the area of reliable labels for the certification of products and identification (ID)
documents, namely in the authenticity certification area, more specifically in the
creation of stamps and encoded images of faces of people, with applications in
personal ID documents.

Developing a reliable Facial Recognition (FR) system, robust enough to main-
tain good scores despite environments variations or facial expression changes, has
become a point of interest for an increasing number of organizations. The cumula-
tive technological achievements based on new accuracy and precision levels made
Computer Vision (CV) a powerful, useful and widespread tool imposing itself as
one of the major areas in Computer Science nowadays. This growing popularity
makes possible to surpass the theoretical and research state to a practical one, re-
vealing itself as a new unexplored market.

The number of applications for solving real-world problems in scene reconstruc-
tion, event detection, object recognition, image restoration and machine learning
since the use of Neural Network (NN) with multiple processing layers to under-
stand representations of data from multiple levels of feature extraction [2], turn CV
an attractive investment field for public and private corporations as well as big com-
panies in the technological industry and official government entities.

FR application becomes almost universally useful, from surveillance systems
and tracking people searching for possible fugitives or abducted people, thus be-
coming an auxiliary tool to resolve criminal investigations. Business and finances
can also represent new applications areas with FR becoming a more popular choice
in payment services, maximizing security and minimizing fraud.

Notwithstanding the proved potential that FR technology presented the COVID-
19 pandemic has led to an unprecedented generalization of facial coverings while
concomitantly accelerating the use of digital surveillance tools focusing on those
that do not require any contact for biometric recognition. This new situation should
be used as an opportunity to enhance FR performance with dataset upgrades, new
algorithms and new test over the old ones. Taking these factors into account some
modifications were made to our tests where mask models were included to prove
our methodology performance.

On a social point of view FR manifest a good “status quo” between what is

2



1.2 Motivation

socially acceptable and secure against what is reliable. Questions such as whether
facial recognition should be used as legal evidence considering that all systems are
still flawed, are still unanswered by the academic community. This debate was
conducted by the Ethics and Governance of Artificial Intelligence project [3], re-
minding the general public for the problems attached to privacy invasion, exploring
technical and societal risks and ethics, and governance issues for Artificial Intelli-
gence.

The next question will be when the use of this technology by official government
institutions is scheduled after the private companies have taken the first step. Never
forgetting existing documents and procedures, facial validation undeniably has the
potential to lighten identity verification processes to a new level. To move towards
this goal, a study of the State-of-the-Art techniques recent developed is imperative.

1.2 Motivation
FR is the practical consequence of every human having a unique face. Nowa-

days we can use technological advancements to achieve a complete method that
uses it as an element of personal security in a reliably design. More than signature,
fingerprint or even voice, our face is a fundamental identification form. Advance-
ments in 2D or 3D methods make possible to capture, analyze and calculate data
with the desired precision and accuracy.

The research conducted by Shakir F. Kak & Firas Mahmood Mustafa & Pe-
dro Valente in the Eurasian Journal of Science & Engineering [4], present to the
academic community a quick recap on the FR technological applications.

3



1. Introduction

Table 1.1 FR practical scenarios applications.
Fields Scenario of applications

Security

Terrorist alert
Secure flight boarding systems

Stadium audience scanning
Computer security

Face ID
Driver licenses

Entitlement programs
National ID

Face Indexing Labeling faces in the video

Access Control
Border-crossing control

Facility and vehicle access

Multimedia Environment
Face-based search and video segmentation

Event detection

Smart Cards Application
Stored value security
User authentication

Face Databases
Face indexing and classification

Automatic face labeling

Surveillance
Advanced video surveillance and CCTV Control

Nuclear plant or Power grid surveillance
Park surveillance and neighborhood watch

Comparing the scan between face and iris, as an example, the iris scanning is
very invasive, even though the iris provides excellent accuracy and precision with
a quick validation. Even with 2D recognition having a very high success rate, it
would be interesting to improve the rates for particular cases of types of images,
since most algorithms are trained with non-representative populations.

When we focus on the 3D case, it is not fully known how much this type of
data improves recognition in specific populations, and this research seeks to answer
these questions directly.

Some of the proposed solutions still show drawbacks as consequence of the pa-
rameters that it will need to compute, such as processing and storing quality data,
3D model size and model position angle and environment conditions, and 3D data
acquisition extra sensors as Stereo System (a classic model of 3D cameras), Multi-
view, Structured-Light 3D Scanner, Time-of-Flight (ToF), Light-Field and Plenop-
tic cameras are been used to estimate the 3D model.

Analyzing the economic perspective on FR allied to the new applications devel-
oped, the perspectives are also positively expectant. The research complete by the
association UNLOCKING POTENTIAL in partnership with the University of Ex-
eter reveals that the global market for FR is consistently growing, estimated to be at
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1.3 Goals

around 4.05 billion USD as of November 2017 and estimated to increase to around
7.76 billion USD in 2022, an estimated 92 percent increase, with North America
and Europe countries showing on the largest market share, followed by Asia the
most rapidly growing market, with the world’s largest market in surveillance [5].

So the application and individual use as an official and certified element of secu-
rity and validation, in a utopic perspective it’s almost perfect. In this research area
accuracy becomes a superlative factor on the next algorithms developed. Even pas-
senger transportation will be positively affected with major benefits, as FR has al-
ready been deployed in airports and train stations to save travelers time from check-
ing in or helping travelers to pay for their fares.

1.3 Goals

Future FR systems are expected to bring improvements in the way data are pro-
cessed and the search engines are designed. Such improvements are related to
higher data quality, bigger datasets, improved algorithms, and advanced machine
learning classifiers brought by the need to upgrade the score results over hostile
environments aligned with the 3D FR algorithm’s benefits.

Most FR software in use today relies on two dimensional technology, namely
photographs or video images. These images are easy to obtain, by a simple picture
or using frame from a security camera video, per example.

As previously exposed, with the need to have more clear idea over the potential
of 2D and 3D FR techniques and respective advantages and disadvantages, the first
goal set for this research project is to structure a robust FR system based on Mehryar
Emambakhsh & Adrian Evans article [1] in order to prove the importance of the
nose region in 3D FR systems. To achieve this goal, two altered versions of the
algorithm provided in the article were tested in order to compare the results of the
method stated in the research with the entire 3D model of the face

As a direct consequence of the current pandemic reality, it was decided to extend
the objectives of our research in order to test a method that was not compromised
by the use of a mask. The proposal presented in this work is to shift the focus from
the nasal area, now being often covered, to the ocular zone in terms of analysis
according to 3D algorithms.

Therefore, to achieve the objectives set out above, it is proposed to develop com-
parative methods and register all variables in the model environment that may affect
the desired results, and then study how to overcome the problems they represent.

5



1. Introduction

1.4 Chapter outline
This chapter introduces the topic of the thesis, the motives that led to investigate

and enhance the knowledge in this particular theme and describes the main goals
proposed to achieve with this work. Chapter two introduces the current state of the
art in which recent 2D and 3D FR algorithms are analyzed. The datasets consid-
ered for the practical approach are quickly summarized in the next chapter. It is in
the last three chapters where our practical methodology, experimental results and
conclusions of this master thesis report is outlined.
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2. Facial Recognition Fundamentals

The process of labeling a face as recognized or unrecognized is the simplest
description for a FR system, going through detection, feature extraction and recog-
nition stages defining the process pipeline. This chapter initially presents a brief
resume of the essential steps of FR systems followed by a research over the state of
the art methods used in the feature extraction and Machine Learning (ML) stages
present in FR algorithms, as these were the stages where we focused on most of our
research.

2.1 Facial Recognition Process
2.1.1 Detection

The majority of FR system process begin with the detection of the face on the
input data. The ability to locate the facial region is critical to every FR system so
variables as multiple facial expressions and head orientations, different ethnicity or
gender and illumination variations must be considered when FR system are devel-
oped. To overcome such problems a multiple set of sensors incorporating RGB,
depth and thermal are used to collect new data and delivering extra information to
FR methods improving robustness and reliability of the system.

A major breakthrough in face detection appeared with the Viola-Jones detec-
tion framework, motivated primarily by the problem of face detection. Viola Jones
classified the images according with simple features using three different types of
features: square features, three-square features, and a four-square feature. The fea-
tures value’s is set as the difference between black and white regions.

Figure 2.1: Example rectangle features shown relative to the enclosing detection
window.

For the classifier to work properly, the size of the image in the training set must
be the same as the size of the input image used for object detection.

Histogram of Oriented Gradients (HOG) algorithms were first proposed by N.
Dalal et al. [6] and have been pioneered in face detection in the recent decade. In
this article it is present a window-based feature set in which HOG feature vectors
are extracted and used in a pre-trained binary classifier depending on face detection
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2.1 Facial Recognition Process

success.

Figure 2.2: Overview of the feature extraction and object detection pipeline, in this
particular case for people detection.

The HOG representation has several advantages. It is capable of capture edge
or gradient structure very characteristic of local shape with an easily controllable
degree of invariance to local geometric and photometric transformations as transla-
tions or rotations make little difference if they are much smaller that the local spatial
or orientation bin size.

The Principal Component Analysis (PCA) is also one of the most successful
techniques that have been used in image recognition and compression after Sirovich
et al. [7] exploit a PCA based classifier to represent the images of human faces. It
is a statistical method with the purpose to reduce large dimensionality of the data
space to smaller intrinsic dimensionality feature space , by compute large 1-D vector
of pixels constructed from 2-D facial image into the compact principal components
of the feature space.

2.1.2 Feature Extraction
As stated previously FR algorithms are susceptible to head orientation, partial

occlusion, facial expression, and light condition denominated external effects. To
minimize these effects on the performance of the algorithm, removing unwanted
features such as shadow or excessive illumination and to reduce error, facial images
are pre-processed to make their recognition friendly.

The principal objective of this stage is to extract features from images or 3D
models. It is based on the principle that each face is unique and characterized by
its structure, shape and size. Several techniques such as HOG [8] , Eigenface, in-
dependent component analysis, linear discriminant analysis [9], scale-invariant fea-
ture transform [10], Haar wavelets, Fourier transforms and local binary pattern [11]
techniques are widely used to extract the facial features.

2.1.3 Machine Learning Algorithms
ML can be defined as a branch of Artificial Intelligence and Computer Science

that is an ever-evolving method with the goal of understand the structure of data
by fitting it into understandable models while increasing its own performance with

9



2. Facial Recognition Fundamentals

each iteration. In ML in general, tasks are classified into categories describing how
learning part is processed.

Supervised Learning is a type of ML algorithm that is used to discover known
patterns on unknown data. If someone gives a ML algorithm some images of differ-
ent objects with the classification of the objects on each image sample, it is expected
the algorithm learn how to say which type of object is in a given image that was not
presented to the algorithm during its training stage.

On the other hand Unsupervised Learning is another type of ML algorithm
used to discover unknown patterns on known data. For instance, if someone have
a database with the shopping list of every client that shops on that supermarket,
they could apply an unsupervised learning to understand what kind of products the
clients are more likely to buy together.

2.1.3.A Neural Networks

Artificial NN is one group of algorithms used for ML that models the data using
graphs of Artificial Neurons. Those neurons are a mathematical model that simu-
late the process of the neurons work inside a brain, connected to each other, and
the strength of their connections to one another is assigned a value based on their
strength: inhibition (maximum being −1.0) or excitation (maximum being +1.0).
There are three types of neutrons in an ANN denominated input, hidden and output
nodes.

Figure 2.3: NN minimalist diagram, present in Matlab NN Toolbox user’s guide.

Commonly Neural Networks (NN’s) are adjusted or trained, so that a particular
input leads to a specific target output following a learning algorithm. The first
layer has input neurons which send data via synapses to the next layer of neurons,
and then via more synapses to the following layers until the signal reach the output
neurons. More complex systems will have more layers of neurons with some having
increased layers of input neurons and output neurons. These synapses parameters
are called ”weights” with responsibility to manipulate the data in the calculations. A

10



2.2 Sate of the Art

NN is typically defined by the interconnection pattern between the different layers
of neurons, the learning process for updating the weights of the interconnections
and the activation function.

Back-propagation methods are one of the most popular learning algorithm class,
responsible to find the optimal weights among neurons. Every learn algorithm has
unique characteristics that must be reminded when the NN is being designed as
every class is suitable for certain specific tasks. Descending gradient is a classical
back-propagation algorithm for training neural networks.

It is one of the most used in FR state of the art systems. If E(ω) is defined as
the error function as function of the weights ω of the NN, the learning algorithm
looks for a global minimum of this error function. It can be expressed as given
the weights of the network ω(0) for the instant n = 0 and a learning factor µ , the
direction of greatest variation of the error function is calculated, which is given by
the gradient ∆E(ω).

ω (n+1) = ω (n+1)−µ ·∆E(ω) (2.1)

In the next section it will be presented a state of the art survey of the existing
FR techniques and ML algorithms describing the related advanced research of deep
learning and FR.

2.2 Sate of the Art
In this section the research advancements of FR algorithms and ML methods

will be described. We followed the research conducted by Jin Bo et al. [12]:

2.2.1 Face Recognition
FR refers to the identity’s identification or verification of the subjects collected

from faces in images or videos in the case of 2 dimension or point clouds or mesh-
grids in 3D case. Face identification is the task of matching a given face image
to one in a database of faces represented by a one-to-many mapping while face
verification, on the other hand, is the task of comparing two candidate faces and
verifying if the result is a match represented by a one-to-one mapping

The 2D FR strand can use recognition algorithms to identify facial features by
analysing relative position, size, and/or shape of the eyes, nose, cheekbones, jaw
and extracting landmarks or texture information from an image of the subject’s face.
Another possibility will be normalizing a gallery of images and then compress the
data, only just saving the one that is useful. On the other hand, 3D image process-
ing reveals the potential to improve the recognition and validation performances
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2. Facial Recognition Fundamentals

presented by 2D FR when it is keep in perspective the principal problems faced by
2D FR technology.

A smart integration between the texture image and facial surface is the next step.
As new methods are being developed, Deep Neural Network (DNN) have marked
themselves as one of the principal classification techniques [2]. DNN have scored
top performers on a wide variety of applications including image classification and
FR.

2.2.2 Appearance based
Appearance based algorithms use image pixel data as a whole for recognition.

Direct Correlation, Eigen-face and Fisher-face belong to this class of methods. Di-
rect correlation uses direct comparison of image pixels of two facial images. Unlike
direct correlation algorithm Eigen-face and Fisher-face do not use facial images in
their original image space, these algorithms reduce the image to the most discrim-
inating factor and make their comparison between images in a reduced dimension
image space.

Usually the information of interest can be found in a lower dimension than the
original dimension. The dimensionality reduction approach brings out useful infor-
mation that can be revealed in lower dimensions.

2.2.3 Active appearance
Active Appearance Model algorithms contain statistical information of an image

shape and texture variation, built during a training phase. Is a FR algorithm class
for matching a statistical model of object shape and appearance to a new image. A
set of images, together with coordinates of landmarks that appear in all the images,
is provided to the training supervisor algorithm.

This algorithm class uses the difference between the current estimate of appear-
ance and the target image to drive an optimization process. By taking advantage of
the least squares techniques, it can match to new images very quickly.

2.2.4 Bayesian model
The Bayesian Model algorithms compute a real-valued function defined on a set

of events in a probability space of similarity derived from a Bayesian Analysis of
the difference between face images. They are among the simplest Bayesian network
models.

Naı̈ve Bayes classifiers are a group of probabilistic classifiers based on Bayes’
theorem with strong independence assumptions between the features. The assump-
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2.2 Sate of the Art

tions may be naive at some point, presenting a drawback to the classifier perfor-
mance. The next equation present the Bayes’s theorem where theorem A and B are
events and P(B) 6= 0:

P(A | B) = P(B | A)P(A))
P(B))

(2.2)

P(A | B) represent a conditional probability: the probability of event A occurring
given that B is certain. P(B | A)P(B | A) is also a conditional: the likelihood of event
B occurring given that A is certain. P(A) and P(B) are the marginal probabilities of
observing A and B.

2.2.5 Texture based
Texture based algorithms extract textual features from face images by separate

the face into several regions. Local Binary Pattern (LBP) is an example of Texture
based algorithms, where LBP features are extracted to generate a feature vector.

The LBP operator was originally designed for texture description. The operator
delivers a label to every pixel of the image by thresholding the 3x3 neighborhood of
each pixel and considering the result as a binary value. The histogram of the labels
can be used as a texture descriptor

T. Ahonen & A. Hadid & M. Pietikainen present at el. [13] a novel and efficient
facial image representation based on LBP texture features where the face image is
divided into several regions from while the LBP feature distributions are extracted
and concatenated into an enhanced feature vector to be used as a face descriptor.

Figure 2.4: The basic LBP operator.

New FR systems have been proposed such as DeepID [14] for face verifica-
tion was proposed by Yi Sun. The network input’s size is 39×31×k for rectangle
patches, and 31×31×k for square patches, where k = 3 for color patches and k =
1 for gray patches. The features are built on top of the feature extraction hierar-
chy of deep ConvNets and are summarized from multi-scale mid-level features. It
is trained on the CelebFaces+ dataset, which contains 202,599 face images sam-
ples of 10,177 subjects. It achieved 97.45 percent verification accuracy with only
weakly aligned faces on Labeled Faces in the Wild dataset. DeepID2 [14] and
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2. Facial Recognition Fundamentals

DeepID2+ [15] proposed in the same year added verification supervisory signals to
reduce interpersonal variations. DeepID3 networks proposed at 2015 rebuilt from
basic elements of the VGGnet [16] and GoogLeNet. During training, joint face
identification-verification supervisory signals are added to the final feature extrac-
tion layer as well as a few intermediate layers of each network. In order to learn a
richer pool of facial features, weights in higher layers of some of DeepID3 networks
are unshared. In the testing process, DeepID3 [17] is trained on the same dataset
as DeepID2+. As a result, DeepID3 improves accuracy for face verification from
99.47 to 99.53 percent and rank-1 accuracy for face identification from 95.0 to 96.0
percent on Labeled Faces in the Wild dataset.

In 2015 VGG-Face was proposed by Omkar M. Parkhi et al. [18]. This model
is trained with 2.6 million images of 2.6 thousand people for FR and verification.
VGG-Face is based on the VGG-Very-Deep-16 CNN architecture to represent a face
image as a vector of scores. The first eight blocks are convolutional layers followed
by ReLU rectification layers and max-pooling layers, and the last three blocks are
called Fully Connected layers also followed by ReLU rectification layers.

2.2.6 Neural Networks
FR techniques have shifted from traditional methods to deep learning methods

in these years. Two different typologies of NN according with the directions where
information flow inside the network.

A feed-forward network is a non-recurrent network where the signals can only
travel in one direction. Input data is delivered onto a process layer. Each processing
element makes its computation based upon a weighted sum of its inputs as previ-
ously described. The new calculated values then become the new input values that
feed the next layer. This process continues until it has gone through all the lay-
ers and determines the output. A threshold transfer function is sometimes used to
quantify the output of a neuron in the output layer.

Figure 2.5: Simple feed forward topology where the information flows from inputs
to outputs. Each black dot represents a single neuron.
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2.2 Sate of the Art

On the other hand, Recurrent NN represent a simple and recurrent topology
where some of the information flows in both directions. They are similar to feed
forward NN with no limitations regarding back loops. In these cases, information
is no longer transmitted only in one direction, but it is also transmitted backwards.
This creates an internal state of the network which allows it to exhibit dynamic
temporal behavior.

Figure 2.6: Simple recurrent NN topology where the information flows from inputs
to outputs. Each black dot represents a single neuron.

2.2.7 Types of Artificial Neural Networks
In terms of architecture there are three main types of artificial NN’s. They

are Single and Multi-Layer Feed Forward Network, both following a feed-forward
topology. The last one is Recurrent Network type. Other types of networks are
Delta-Bar-Delta, Hopfield, Vector Quantization, Counter Propagation, Probabilis-
tic, Hamming, Boltzman, Associative Memory, Spacio-Temporal Pattern, Adaptive
Resonance, Self Organizing Map, Recirculation, among others [19].

Single Layer Feed Forward represent all the networks in which the input layer of
source nodes is connected to an output layer of neurons. In this type of NN single
layer is a reference to the output layer of computation nodes as the next figure
illustrates:

Figure 2.7: Single Layer Feed Forward Network.
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2. Facial Recognition Fundamentals

The second type of network presented contains of at least one hidden layer
whose nodes are denominated as hidden neurons. They have the function to in-
teract between the external input and network. The output of the neurons in the
output layer of network constitutes the overall response of network to the activation
pattern supplied by source nodes in the first layer.

Figure 2.8: Multi-layer Feed Forward Network.

Recurrent Network are feed forward NN having one or more hidden layers with
at least one feedback loop. The feedback may be a self feedback. In this case the
output of neuron is given back to its own input.

Figure 2.9: Recurrent Connected Network.

Beside the structure there are five characteristics of Artificial NN which are
basic and important for this technology which are the ability of parallel processing,
distributed memory, fault tolerance, ability collective solution and learning ability.

Beyond classify subjects NN can also be applied on the pre-processing stage
by estimating depth from single images with DNN. In order to estimate monocular
depth based on focal length Lei He propose on et al. [20] an effective NN to predict
accurate depth, which achieves competitive performance as compared with the state
of the art methods, and further embedding the focal length information into the pro-
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2.2 Sate of the Art

posed model. In addition, focal length is embedded in the network by the encoding
mode.

Figure 2.10: Lei He proposed network architecture.

The proposed network is composed of four parts: the first part is built on the
pre-trained VGG models, followed by the global transformation layer and upsam-
pling architecture to produce depth with high resolution, the third part effectively
integrates the middle-level information to infer the structure details, converting the
middle-level information to the space of the depth, and the last part embeds the
focal length into the global information.

The deep learning success was recognized by the scientific community as con-
sequence of the flattening of manifold-shaped data in higher layers of neural net-
works [21]. Euclidean distance miss to capture the relation between two points on
a manifold. As a direct result high-dimensional data relay in the proximity of a low
dimensional manifold. Deep learning enables the extraction of hidden variations
factors and unfold manifold-shaped data.

By 2012, the deep convolutional NN structure AlexNet [22] was proposed by
the University of Toronto team at the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). AlexNet is structured with five convolutional layers and three
fully connected layers. It integrates multiple technologies such as data enhancement
and ReLU which is linear for all positive values, and zero for the negative ones.
Data enhancement includes create new test images by translations and horizontal
reflections and altering the intensities of the RGB channels applied over the original
training images.
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2. Facial Recognition Fundamentals

Two years later GoogleNet [23] of Google Inc. introducing Inception Module
with 22 layers achieved excellent results in ILSVRC, their structures are more com-
plex in structure than AlexNet.

Due to the expense of data acquisition and costly annotation, it is very difficult
to construct a large-scale dataset. The idea of transfer learning is overcoming the
isolated learning methods and utilizing knowledge acquired for one task to solve
similar ones.

Many details of how Deep Convolutional NN models work still remain a mys-
tery. Matthew D. Zeiler and Rob Fergus [24], from New York University, let us
aware that the lower layers are to capture generic features, while the higher ones
learn source task specific features through deconvolution method in 2014.
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3. Databases

3.1 Generic Database Characteristics
In order to train new FR algorithms that will be designed to validate the sub-

jects the use of training and test samples present on databases is imperative. The
results will improve proportionally depending on the number and variety of samples
present in it.

This samples are available on multiple databases. An interpersonal variabil-
ity database need to be carefully design in order to achieve a flawless FR pro-
gram. Raphaël Weber, Catherine Soladié and Renaud Seguier on the VISAAP 2018
present a conference paper where the main points for a reliable database are de-
bated [25].

Table 3.1 Characteristics of a database.
Category Characteristic

# of subjects
. Population women/men %

Age range
Ethnic group(s)

. Modalities Available modalities
. Data # of cameras

acquisition Resolution
hardware FPS

Background
. Experimental Lightning

conditions Occlusions
Head pose

. Experimental Method of acquisition
protocol Available expressions

Facial features
. Annotations Action units (FACS)

Emotional labels
Emotional dimensions

Following the survey carried out by this FAST team members it is defined char-
acteristics of population as the number of subjects, gender and ethnic group dis-
tribution and age range of the subjects. The choice of population influences the
interpersonal variability: shape and texture of the face varies with identity, gender,
age and ethnic group. The mean opening of the eyes differs between Asians and
Caucasians is one illustrative example.

Modalities refer to the nature of the acquired signals. Databases can be distin-
guished according to the number of modalities: uni-modal vs. multi-modal (for two
or more). Historically, the first databases are uni-modal with 2D video or images
of the face. The available modalities are facial expression (2D or 3D), audio, body
movement and physiological signals.
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The focus here is the data acquisition hardware for image and video. The three
characteristics consider are the number of cameras, camera resolution and frame per
second. Experimental conditions include the background and lightning condition as
well as head pose variation and occlusions cases.

Experimental protocol describes the expressive/emotional content available of
the database and the method of acquisition of the samples from the subjects. Is
possible to distinguish three kinds of databases: posed, spontaneous and in the wild
where the experimental protocol varies from one kind to another.

The annotations are meta-data provided with the database giving low-level infor-
mation (facial features or action units) or high-level (emotional labels or emotional
dimensions) to FR system. The choice of annotations depends on the problem the
database is meant to tackle since they will be used as ground truth as emotional
labels are aimed at facial expression recognition and action units annotations are
aimed at action units recognition and emotional dimensions are aimed at emotional
dimension estimation.

Facial features such as facial landmarks or LBP could make a database more
efficient since they may be used to quickly compute a specific point without com-
puting it.

3.2 3D Databases Specifications
During the last decade research about FR has shifted from 2D to 3D face rep-

resentations. The need for 3D data has resulted in various databases available for
3D FR and occasionally 3D expression analysis focused on recognition, contain-
ing a limited range of expressions and head poses. After the analysis carried out,
it was determined that Bosphorus Database will be the one selected for comparing
all the methods on our practical approaches. This database was analyzed in [26], a
conference paper present in Biometrics and Identity Management in 2008.

Table 3.2 3D Databases content details
Database Subjects Samples Total Expressions Pose Occlusion
FRGC v.2 466 1-22 4007 Available NA NA
BU-3DFE 100 25 2500 Available NA NA
ND2006 888 1-63 13450 Available NA NA
YORK 350 15 5250 Available Available NA
CASIA 123 15 1845 Available NA NA

GavabDB 61 9 549 Available Available NA
3DRMA 120 6 720 NA Available NA

Bosphorus 105 31-53 4666 Available Available Available
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3. Databases

Bosphorus is a wildly used database in 3D FR. Composed by 105 subjects,
where 18 subjects have a large beard or mustache and 15 subjects with short facial
hair. The majority of the subjects are aged between 25 and 35.

There are 60 men and 45 women in total, and most of the subjects are Caucasian.
Also, 27 professional actors/actresses are incorporated into the database. Up to 54
face scans are available per subject, but 34 of these subjects have 31 scans. Thus,
the number of total face scans is 4652 with each one been manually labeled for 24
facial landmark points such as nose tip, inner eye corners and some others.

3.3 Bosphorus Database
Bosphorus follow the basic emotions theory created by Paul Ekman. This theory

assumes the existence of six discrete basic emotions. The emotions mention et
al. [27] are anger, fear, disgust, surprise, joy and sadness at different levels of facial
expression. Occlusions are also present, as previously mentioned, the types present
are simulated with hands glasses and hair.

Figure 3.1: 6 emotions types present on Bosphorus.

For occlusion with glasses, multiple eyeglasses were used so that each subject
could select at random one of them. Finally, if the subject’s hair was long enough,
their faces were also scanned with hair partly occluding the face. The subject to
subject variation of occlusions is more pronounced when compared to expression
variations as while one subject occludes his mouth with the whole hand, another
one may occlude it with one finger.

Figure 3.2: Occlusions examples present on Bosphorus.

Bosphorus contain 18 subjects with beard/moustache and short facial hair is
available for 15 subjects. The majority of the subjects are aged between 25 and
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3.3 Bosphorus Database

35. There are 60 men and 45 women with most percentage of the subjects being
Caucasian. Up to 54 face scans are available per subject, but 34 of these subjects
have 31 scans. Thus, the number of total face samples is 4652.

Figure 3.3: Lower face action units example with lower lip part highlighted present
on the first article.

Figure 3.4: Head poses with rotations on yaw axis: +10◦, +20◦, +30◦,+45◦, +90◦,
-45◦ and -90◦ present on the first article.

Figure 3.5: Head poses with rotations on pitch axis upwards, slight upwards, slight
downwards, downwards; right-downwards and right-upwards present on the first
article.

There are three types of head poses which correspond to seven yaw angles, four
pitch angles, and two cross rotations which incorporate both yaw and pitch.
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4.1 3D Methodology

After some consideration it was defined that an algorithm divided in 4 parts:
pre-processing, feature extraction, training and classification will be implemented,
following all the considerations mentioned until this point over the multiple pro-
gram stages.

4.1 3D Methodology
A FR hybrid approach was designed in order to identify all the subjects present

on Bosphorus facial database containing 3D face database that includes a rich set
of expressions, systematic variation of poses and different types of occlusions pre-
sented. This database present facial expressions composed of judiciously selected
subset of Action Units as well as six basic emotions simulation samples. Finally a
rich set of head pose variations are available with different types of face occlusions
included [28].

4.1.1 Pre-Processing
The quality of the acquired data is a critical point in a FR system. Due to 3D

digitizing system and setup conditions, significant noise may occur as documented
et al. [28]. To reduce noise the solution found was filtering with three different
filters the data collected from the facial database. Commonly occurring problems
during image acquisition and face reconstruction are noise due to movement and
depth errors present on beard and eyebrows causing spiky noise.

4.1.1.A Filtering
In this work, the data collected is filtered in cascade by Savitzky–Golay, Gauss

and bilateral filters. The next four models will represent the filter effect over the
subject’s 3D facial model. In the first sample it is possible to notice some of the
previous errors mentioned in the previous chapter.

Figure 4.1: 3D generic original facial model.

The filter technique proposed in this thesis uses Savitzky–Golay filter in the
first place. A Savitzky–Golay is a digital filter which can be applied to a set of
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4. Methodology

digital data points to smooth the data while increasing the precision of the data
without distorting the data values. This is achieved with a convolution by fitting
successive sub-sets of adjacent data points with a low-degree polynomial by the
method of linear least squares. When data points are equally spaced, an analytical
solution to the least-squares equations can be found, in the form of a single set of
”convolution coefficients” that can be applied to all data sub-sets, to give estimates
of the smoothed data values at the central point of each sub-set.

Figure 4.2: 3D facial model filtered with Savitzky–Golay Filter.

The second filter to be applied to the 3D model is the Gaussian. It is a widely
used effect in computer graphics algorithms, typically to reduce image noise. The
output model is the result of blurring a model by a 3D Gaussian smoothing kernel.
Gaussian smoothing is also used as a pre-processing stage in computer vision al-
gorithms in order to enhance image structures at different scales—see scale space
representation and scale space implementation.

Figure 4.3: Golay and Gaussian Filter.

Bilateral filter is the last filter to be applied on this algorithm. It is a non-linear,
edge-preserving and noise-reducing smoothing filter for images. Bilateral filter re-
places the intensity of each pixel with a weighted average of intensity values from
nearby pixels preserving sharp edges. This weight can be based on a Gaussian dis-
tribution. Crucially, the weights depend not only on Euclidean distance of pixels,
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4.1 3D Methodology

but also on the radiometric differences such as color intensity, depth distance among
others.

Figure 4.4: Golay + Gaussian + Bilateral Filters.

The bilateral filter follows this equation:

Ifiltered(x) =
1

Wp
∑

xi∈Ω

I(xi) fr(‖I(xi)− I(x)‖)gs(‖xi− x‖) (4.1)

where Wp, representing the normalize term, is defined as:

Wp = ∑
xi∈Ω

fr(‖I(xi)− I(x)‖)gs(‖xi− x‖) (4.2)

Although the filters used can cause changes on the data initially collected, we
consider the advantages they present after calculating the new 3D models, such as
the correction of certain three-dimensional models with facial hair, represent an
added value for the FR system developed .

4.1.1.B Dataset Preparation

To have a better way to evaluate our 3D approach in a real-world scenario it was
decided to expand the method on three different approaches instead of the original
two initial idealized. The first one is a replica of the algorithm emphasizing the nasal
zone [1]. The second methodology developed was an extension of the previously
mentioned method for the entire facial region in order to evaluate this method as a
global method.

Due to the most recent world pandemic crisis we decided to develop a new
methodology. In order to simulate face occlusions derived from wearing a mask,
models were manipulated in order to simulate a mask, denying the algorithm and
subsequently to the NN potentially critical information for the classification of sub-
jects and validation of their identity. Although Bosphorus Database already includes
facial occlusions, these cases were not present in the dataset.
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Figure 4.5: Facial landmarks detected by Dlib.

In order to remove unwanted facial regions a Dlib face detection and alignment
algorithm adapt to MATLAB was applied. Dlib is a general purpose cross-platform
software library written in C++. It is a cross-platform package for threading, net-
working, numerical operations, machine learning, computer vision, and compres-
sion, placing a strong emphasis on extremely high-quality and portable code devel-
oped by Davis E. King [29], where we took advantage of 68-point facial landmark
classifier model to detect specific facial landmarks.

Figure 4.6: 68 facial landmark coordinates from the iBUG 300-W dataset.

The final image will be used as texture of the 3D facial model of the same
subject, delimiting the 3D nose region that will be used on the feature extraction
section.

Figure 4.7: Texture applied over the 3D model.
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4.1 3D Methodology

The 3D models resultants of the three methodologies are exposed in the follow-
ing figures. The first set of models is the complete facial model of the subjects. Is
followed by the facial model that simulate region of interest of the example pro-
vided by Emambakhsh & Mehryar et al. [1]. The last group represent the mask
models.

Figure 4.8: Complete Face Version 3D model overview.

(a) 3D Facial Model (Nose
Region Version).

(b) Regular Grid Displayed
over 3D Facial Model.

(c) Spheres centered over ev-
ery grid point.

Figure 4.9: Nose Region Version 3D model overview.

Figure 4.10: Ocular Version 3D model overview.

4.1.2 Feature Extractions
We used a similar approach of Emambakhsh & Mehryar article et al. [1] for the

feature extraction based in the wavelet filter. The model face input was loaded using
the function provided by Bosphorus, prepared to deal with RGB-D input data.

Based on previous work [1], Emambakhsh & Mehryar continue their survey,
resulted in the article published in 2017, with a statement proposition of a new
local-approach focused on the nose region for 3D FR et al. [30]. A coarsely nose tip
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location detected is the first goal. This step was described in the previous section,
were an independent approach was designed.

The second step is to apply a regular grid to the resized 3D model. A set of
spherical patches are localized over the nasal region to providing feature descriptors
to the classification and validation algorithm. These feature descriptors provide the
ability to evaluate the potential of overlapping spherical regions on the nasal surface,
when used as feature vectors making them more robust against facial expressions.

Figure 4.11: Regular Grid over complete facial model.

Figure 4.12: Regular Grid over the nasal region.

Figure 4.13: Regular Grid over the ocular region.

The feature space creation procedure is initialized by applying the wavelets in
different orientations and scales. Subsequently all normals are computed on the
maximum of absolute values of the filtered images per scale. At this stage, the
feature descriptors are applied and normalized histograms are concatenated for all
descriptors.
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4.1 3D Methodology

N = [Nx,Ny,Nz] (4.3)

the normals are

n = [nx,ny,nz] =5N (4.4)

where

nx ◦nx +ny ◦ny +nz ◦nz = 1 (4.5)

with ◦ and 1 representing the Hadamard product operator that is a binary operator
and a matrix of ones. In order to reduce noise sensitivity of the normal vectors and
enable the extraction of multi-resolution directional region-based information from
the nasal region, instead of calculating the normal vectors directly from the nose
surface, they are derived from the Gabor wavelet filtered depth map.

The feature descriptors are used to define the region of interest containing a set
of normal vectors from the Gabor wavelets filters. The resulting feature vectors
histograms for the X , Y and Z maps are concatenated to create the feature space.

Figure 4.14: Spherical patches applied over the grid (first methodology).

Figure 4.15: Spherical patches applied over the nose region cropped (second
methodology).
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Figure 4.16: Spherical patches applied over the ocular region (third methodology).

This approach selects the normals with maximal concentration of within-class
scatter while at the same time maximize between-class distribution by using spher-
ical patches as feature descriptors to extract histograms of the normal maps com-
puted over the Gabor-wavelet images. Emambakhsh & Mehryar develop a function
with the objective to compute the Gabor-wavelets using, with different orientations
and scales, values of the 3D nose model represented by a [M*N*3] matrix of multi-
resolution directional region-based information, instead of calculating the normal
vectors directly from the surface, they are derived from the Gabor wavelet filtered
depth map et al. [31].

The discrete Fourier transform of the resampled Gabor wavelet Gs,o for the sth

scale and oth orientation level (s = 1, 2, ..., sm and o = 1, 2, ..., om) is calculated
and its zero frequency component is set to zero. The result Hadamard product of
G f

s,o and the Fourier transform of Nz is calculated after and the absolute value of its
inverse Fourier transform is calculated for each scale and orientation, i.e.

N f
zs,o

= |F−1{F ◦G f
s,o}| (4.6)

The maximum of all the corresponding elements of the filtered images is computed
over all orientations for each scale s:

s : {NGms|∀i, j,o : NGms (i, j)> N f
zs,o

(i, j)} (4.7)

(a) Scale = 1. (b) Scale = 2. (c) Scale = 3. (d) Scale = 4.

Figure 4.17: Gabor-wavelet images.

32



4.1 3D Methodology

Finally, the normal vectors of the resulting per scale maximal map NGms is
calculated using the aligned nose coordinate maps Nx and Ny,{

ns =5 [Nx,Ny,NGms]

s = 1,2, ...,sm
(4.8)

with ns = [Nxs , Nys , Nys] representing a block matrix containing the normal vectors
for the sth scale level.

This specific function developed by Emambakhsh & Mehryar gets the matrices
containing the horizontal and vertical resolution and computes the normal maps for
each Gabor wavelet scale maps.

(a) Scale = 1. (b) Scale = 2. (c) Scale = 3. (d) Scale = 4.

Figure 4.18: Normal maps for each Gabor wavelet scale maps.

4.1.3 Feature Selection
The feature selection step selects subsets of feature vectors extracted more ro-

bust against facial expressions from the spherical patches. For a generic feature
descriptor and n different Gabor wavelets scales s1, s2, . . . , sm, the feature vector
is calculated by

{
F = [Fs1,Fs2, ...,Fsn] ,

Fsk =
[
Fxsk

,Fysk
,Fzsk

]
,

(4.9)

where Fxsk
, Fysk

and Fzsk
are features of the sk

th scale, for the x, y and z surface
normal components. For K feature descriptors the feature set of the normal maps
are represented by the concatenation of K different histograms, of length hl from
the feature descriptors, giving


Fxsk

=
[
Hx1,sk ,Hx2,sk , ...,Hxk,sk

]
Fysk

=
[
Hy1,sk ,Hy2,sk , ...,Hyk,sk

]
Fzsk

=
[
Hz1,sk ,Hz2,sk , ...,Hzk,sk

] (4.10)

In previous equation, Hxi,sk , Hyi,sk and Hzi,sk are the normalised histograms com-
puted using the ith feature descriptor (i = 1, ..., K) for the sk

th scale (k = 1, ..., n) on
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the normal map nth
sk

, which is computed using the previous equation.

4.2 2D Methodology
A 2D classic HOG based FR system was designed in order to understand how

different local features methods performed in two dimensions FR and compare them
with the 3D scores obtained in the first part of our practical methodology. The
next figure shows the overall system design which covers the entire workflow that
includes setting up of the database, feature extraction using HOG features, building
up of classifier model and feature matching.

Figure 4.19: 2D FR pipeline.

The approaches to solve the FR problem have been diverse and numerous. HOG
features are one of the famous handcrafted features extraction methods in use on
2D FR systems. It has proven to be an effective descriptor for pattern recognition
in general and in human detect by N. Dalal et al. [32] and FR in particular [33] as
demonstrated by O. Déniz. HOG descriptors are extracted from a regular grid to
compensate for errors in face feature detection due to occlusions, pose and illumi-
nation variations.

In order to obtain uniform feature vectors and consequence of HOG features
being variance to the input image size, an initial resize of all images set is necessary.
The image dataset is composed with three different 2D models, simulating once
more the tree cases that our survey explore: complete facial model, ocular or nasal
region based. To simulate the mask model, in the 2D modality, a separate set of
inputs was created. First a set of facial landmarks was computed using a Dlib face
detection algorithm and with this set of points a polygon was created. The last part
of the algorithm is responsible for fill up the area marked. The next figure illustrate
the mask simulation process of the algorithm.
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Figure 4.21: Mask training subjects creation process.

The pre-processing stage of the FR 2D version system is finished when all
dataset is resized as consequence of HOG features being proportional variant to
different images sizes.

Figure 4.22: HOG feature localization.

HOG features are based in the sum of gradient directions over the pixel of a
small spatial region and in the subsequent construction of a 1D histogram whose
concatenation supplies the features vector to be considered for further purposes.
Let L be the intensity of gray-scale level function describing the image analyzed.
The image is divided into cells of size N×N pixels and the orientation θx,y of the
gradient in each pixel is computed by the following equation:

θx,y = tan−1
(

L(x,y+1)−L(x,y−1)
L(x,y+1)−L(x,y−1)

)
(4.11)
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The orientation of all pixels is computed and accumulated in an M-bins his-
togram of orientations. Finally, all cell histograms are concatenated in order to
create the final features vector that will be used by the NN.

4.3 Training and Process
Classification is defined by A. Hajraoui et al. [34] as the step that enable the

classification of the feature vector of the person to recognize. It is treatment requires
the introduction of a comparison algorithm or classification which provides at its
output a score of similarity or distance between this characteristic vector and the
reference features vector of the database. This score is compared subsequently to a
decision threshold fixed in advance to provide a final decision on identity.

The automatic data classification is a branch of the data analysis which has
resulted in numerous and diverse algorithms. It is used to group data into classes so
that the data of the same class is as similar as possible and the classes are the most
distinct possible.

Although the objective of this research is not to exhaustively present the existing
methods for multi-class classification in the context of FR, the main methodologies
will briefly present in the next sub-chapter.

4.3.1 Neural Network
As previously mentioned a NN is a complex combination of basic objects called

formal neurons. These have an activation function that allows to influence other
neurons. The connections between the neurons, which is called synaptic con-
nections, spread the activity of neurons with a characteristic weighting connec-
tion. With their machine learning capability from data modeling the problem to
solve NN’s have proven themselves as proficient classifiers and are particularly well
suited for addressing non-linear problems. Given the non-linear nature of real-world
phenomena, like processing chain of automatic face recognition system, NN’s are
certainly a good candidate for solving the problem.

4.3.2 Preparing the Data
When training multi-layer NN, the general approach is to first divide the data

into three subsets. The first subset is the training set representing 70 percent of the
overall subjects, which is used for computing the gradient and updating the network
weights and biases. These are presented to the NN during training and the NN is
adjusted according to its error.

The second subset is the validation set representing 15 percent of the overall
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subjects, used to measure the NN generalization and to halt training when general-
ization stops improving. This subgroup is presented to the NN during training and
the NN is adjusted according to its error. The validation error normally decreases
during the initial phase of training, as does the training set error. However, when the
NN begins to overfit the data, the error on the validation set typically begins to rise.
The NN weights and biases are saved at the minimum of the validation set error.

The test subset represent 15 percent of the overall subjects. It is not used during
training process, but it is used to compare different models by measuring the NN
performance during and after training. It is a completely independent test of NN
generalization.

4.3.3 Building the Neural Network Classifier
After the data has been collected and divided the next step is to create a NN

that will learn to identify and classify all of 104 subjects. A feed-forward NN that
depend on a softmax activation function in an output layer that assigns a probability
for each class, was designed to accomplish this objective. Feed-forward NN is
a NN where the connections between the nodes do not form cycles or loops so the
information only flow in one direction, from the input nodes forward through hidden
nodes and finally to the output nodes.

A multi-layer perceptron is a subclass of feed-forward artificial NN consisting
of at least three layers sets of nodes where the first correspond to an input layer,
followed by a variant number of hidden layers that converge all the data over an
output layer who is represented at the last set. Except for the input nodes, each
node is a neuron that uses a nonlinear activation function.

To train the customized NN by updating weight and bias values it was used as
a resource a Scaled Conjugate Gradient which is a supervised learning algorithm
for feed-forward NN based on the idea to combine the model-trust region approach
with the conjugate gradient approach. It is a training algorithm representing the
class of conjugate gradient methods, developed by Moller [35] and was designed to
avoid the time-consuming line search at each iteration

For classification problems the softmax layer and then a classification layer must
follow the final fully connected layer. The output unit activation function is the
softmax function:

yr(x) =
exp(ar(x))

∑
k
j=1 exp(a j(x))

(4.12)

where 0≤ yr ≤ 1 and ∑
k
j=1 y j = 1.

37



4. Methodology

The softmax function is the output unit activation function after the last fully
connected layer for multi-class classification problems:

P(cr|x,θ) =
P(cr|x,θ)P(cr)

∑
k
j=1 P(cr|x,θ)P(cr)

=
exp(ar(x,θ))

∑
k
j=1 exp(ar(x,θ))

(4.13)

where 0≤ P(cr|x,θ)≤ 1 and ∑
k
j=1 P(cr|x,θ) = 1.

This training routine may require more iterations to converge when compared
with other conjugate gradient methods but the number of computations in each
iteration is significantly reduced because no line search is performed. Also, the
conjugate gradient method require only a little more storage than simpler training
algorithms, so they are often chose for networks with a large number of weights.
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5. Experiments and Discussion

This section explains first how the test environment was set up followed by
the experimental observations recorded depending on the 3D or 2D modality and
configuration of the NN. In order to prove the importance of the nasal zone and then
the ocular region in 3D FR system, a multiple dimension analyses was performed
with various NN designs, with the goal to understand how every process stage can
influence our overall success to validate a subject identity.

The first test were performed in order to understand our method performance
in three dimensions, with the NN input sets being exclusive to one of the three
modalities presented in the previous chapter. In the second section is presented the
2D research of our FR system with two different NN training modes with the first
test performed under the same circumstances of the 3D modality and the last ones
with different percentages of mask wearing subjects present in the training set.

5.1 3D Experimental Results
The first experimental results are focused on the nasal region with the intention

to simulate and reproduce the Emambakhsh & Evans thesis in [1]. In this article it
is proposed that the nasal region can be used to extract features with similar success
level when compared with algorithms that use the complete face model. The second
model represent the complete 3D model of the face. In this specific case the algo-
rithm proposed on [1] was applied over the entire face. The third example highlight
the ocular region. The purpose of this experiment is to quantitatively evaluate the
performance of a FR system based on the ocular region when compared with the
first two models.

(a) Complete Face Version
3D model overview

(b) Regular Grid Displayed
over 3D Facial Model.

(c) Ocular Version 3D model
overview.

Figure 5.1: Nose Region Version 3D model overview.

Multiple configurations were applied to the neuronal network with the numbers
of neurons varying between 100 and 1000 and the layers 5 and 10 in order to un-
derstand the best possible design. Finally, the number of subjects was changed in
order to understand if in any way the network could be affected by an over fitting of
input data.
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5.1 3D Experimental Results

The FR system evaluation method used to compare multiple NN designs perfor-
mance is the percentage fraction values of correct classified NN predictions of the
subjects identities. The experimental results are summarized in Tables 5.1 to 5.4,
detailing the portion of subjects correctly classified by the FR system.

Table 5.1 Experimental results for 105 and 90 subjects
105 Subjects 90 Subjects

Neurons Layers Nose All Face Ocular Nose All Face Ocular
100 5 91.92 90.53 92.19 92.36 90.78 91.71
100 10 90.36 87.13 90.00 89.96 85.38 87.38
1000 5 93.34 90.35 91.59 89.88 91.33 89.86
1000 10 91.61 89.48 92.21 91.1 90.75 91.42

An evaluation of the tables shows first that the nose region can be used as effec-
tively as the whole 3D face model since it is noticeable that in front of the battery
of tests performed it has a higher success rate in most test cases, confirming of
Emambakhsh & Evans cited article conclusion and highlighting the importance of
the nasal region in face of 3D FR systems.

Table 5.2 Experimental results for 75 and 60 subjects
75 Subjects 60 Subjects

Neurons Layers Nose All Face Ocular Nose All Face Ocular
100 5 93.41 92.31 92.49 93.32 92.10 92.89
100 10 90.89 84.95 89.93 91.97 89.11 90.79
1000 5 91.78 89.12 91.23 91.43 89.66 92.05
1000 10 91.10 85.54 91.89 91.80 91.64 92.58

The analysis of the 3D methodology was finished with the introduction of the
ocular model. As initially mentioned, this specific model was added in order to
understand how the NN would react to the fact that the nasal zone and a large
percentage of the face are hidden, and also in order to understand how important
is the ocular zone to 3D algorithms. An evaluation of tables of experiments shows
that, for the majority of the NN configurations, better results were achieved with
ocular zone than with all face model.

When compared to the nasal model, the ocular region presents a similar per-
formance, even superior in some cases. This fact is a result of the variation of the
model’s texture and depth in the ocular zone as it happens with the nasal zone.
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Table 5.3 Experimental results for 45 and 30 subjects
45 Subjects 30 Subjects

Neurons Layers Nose All Face Ocular Nose All Face Ocular
100 5 94.82 93.69 94.47 95.36 94.07 96.14
100 10 93.32 92.94 93.87 95.14 93.47 95.45

1000 5 94.60 91.87 92.77 94.53 94.21 88.11
1000 10 93.44 92.63 92.57 93.80 93.00 93.25

As a consequence of the evaluation of the ablation studies we performed, it
can be observed that the best possible configuration is close to 100 neurons in 5
layers. This result was consistently obtained for the different 3D modalities and
NN configurations. Such conclusion is based on the fact that in 21 tests performed,
17 have been with this configuration, corresponding approximately to a total of
80.95 percent of the tests presented in this chapter.

The number of subjects and the way they influence the system was also a point
of interest during this research. With the view to understand the effect that different
populations of tests have on the NN, we reduced the subjects by 15 for each test
set, corresponding to an approximate variation of minus 15 percent of the original
dataset size in each set.

Table 5.4 Experimental results for 15 subjects
15 Subjects

Neurons Layers Nose All Face Ocular
100 5 96.89 94.44 96.29
100 10 95.81 94.03 96.29
1000 5 96.51 94.31 95.21
1000 10 95.35 92.82 96.29

It is in the last table that the best results are found in 11 of the 12 possible con-
figurations of the NN when comparing the different subjects tested. This percentage
values, representing the percentage of samples correctly classified, could be result
of overfitting caused due to an overly complex model with too many parameters.

5.2 2D Experimental Results
After performing the 3D analysis of our practical approach a 2D FR system

was designed in order to have a 2D performance baseline to compare with the first
results. As stated before it is based in 2D HOG features FR system using the same
NN configurations presented in the previous section. Another resemblance when
compared with the first experiment is the three 2D model used in this FR system
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version simulating again the complete model of the face followed by a nose region
and an ocular zone approaches.

Table 5.5 Experimental results for 105 and 90 subjects
105 Subjects 90 Subjects

Neurons Layers Nose All Face Ocular Nose All Face Ocular
100 5 96.02 91.77 93.38 96.72 91.88 93.1
100 10 94.94 90.12 91.73 94.61 87.04 89.53
1000 5 94.39 90.59 92.94 96.78 90.61 91.9
1000 1000 94.71 92.22 92.42 94.97 91.83 92.35

In the 2D test set contrary to what happened in the 3D experiments, with the
best results scored being split between the nose and ocular modalities, the better
scores are present every time in the nose region dedicated modality, demonstrating
again the importance of this specific region in FR systems in both dimensions.

Table 5.6 Experimental results for 60 and 30 subjects
60 Subjects 30 Subjects

Neurons Layers Nose All Face Ocular Nose All Face Ocular
100 5 96.76 93.73 94.52 97.9 94.71 97.21
100 10 96.12 88.84 93.36 97.62 93.06 94.58
1000 5 96.76 91.28 92.69 96.97 92.61 94.12
1000 1000 96.58 90.99 91.11 94.95 93.47 89.62

The new analysis of the same ablation studies previously performed show once
more that the best possible configuration is close to 100 neurons in 5 layers with 11
of the 15 different tests consistently reaching a better score in this NN configuration.

When the number of subjects and its influence over 2D FR systems was consid-
ered nose regions and complete face models show once again the best performance
for 15 subjects while the ocular zone shifted his better score for the 30 subjects case.

Table 5.7 Experimental results for 15 subjects
15 Subjects

Neurons Layers Nose All Face Ocular
100 5 97.78 95.46 97.17
100 10 98.26 94.47 96.06

1000 5 97.62 95.17 96.69
1000 1000 97.31 94.47 90.24

Differently to our initial expectation, the best performance was achieved by us-
ing the 2D face images when the subjects wear face masks when compared with 2D
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face images with the all face, as it was expected after our literature review that face
mask test subjects would worsen the results achieved by generic FR systems.

5.3 Further 2D Experiments
In order to understand why our NN presented such scores a new test set was de-

signed. This time the training population was changed to understand how different
NN training could lead to different scores. This time the training population start
just with complete 2D face models to be applied both on mask and all face 2D mod-
els. During the follow-up of the tests, we reduced the percentage of complete 2D
facial models’ subjects used for training the NN by 25 percent while mask models
were added to the training set in the same proportion. The test population used is
exclusively 100 percent of All Face or Mask models. The results are present in the
next tables.

Table 5.8 Experimental results
Success

Training Neurons Layers Test All Face Test Mask

100% All Face

100 5 91.77 94.79
100 10 90.12 93.12

1000 5 90.59 94.23
1000 10 92.22 94.41

75% All Face
+

25% Mask

100 5 96.54 96.83
100 10 95.67 94.82

1000 5 96.75 96.49
1000 10 96.54 96.49

50% All Face
+

50% Mask

100 5 95.99 92.64
100 10 95.02 90.73

1000 5 94.09 92.06
1000 10 95.63 92.16

25% All Face
+

75% Mask

100 5 92.29 85.27
100 10 89.35 16.18

1000 5 92.00 85.08
1000 10 91.41 85.69

Once again the best results are presented in the Mask modality, when the train-
ing population is composed with only All Face models and for the first case of
training population being constituted by 75% of complete 2D facial model and 25%
of subjects with simulated masks. However, this time a change occurs for the last
test cases with the best results to be presented in the column where the test subjects
are composed of complete 2D facial models.
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On an overall analysis over these tests it can be stated that the bests results are
presented with the All Face test population as initially was expected although the
results presented in the initial part of the last tests show a better rate according to
the initial 2D tests. This point will be further analyzed in the next chapter.

After finishing the set of previous tests, two questions continued over the in-
fluence of the size of the NN and on whether it would be able to extract any more
non-intuitive features from the masked 2D model that could be altering the results
initially envisioned. With this objective in mind, we changed our FR algorithm at
two different points: A new kind of simulated mask was adapted to the models
present in Bosphorus dataset, as shown in the next image.

Figure 5.2: HOG feature localization on new 2D model.

With this model it was hopped to exclude the hypotheses of non-intuitive fea-
tures being computed by the NN. To resolve the first point, our NN was resized
so that it is possible to exclude network overfitting since 2D data is smaller in size
when compared with the 3D case, as a possible cause of unexpected values in the
success rate for the two modalities under analysis. This time the NN vary in size
between 1 to 5 layers and between 10 to 100 neurons. The success rate is detailed
in the next tables.

Table 5.9 Experimental results for training with 100% All Face 2D models.
Success

Training Layers Neurons Test All Face Test Mask

100% All Face

1 10 71.97 80.78
3 10 62.51 74.74
5 10 1.97 5.32
1 50 94.02 96.40
3 50 91.86 95.21
5 50 89.69 93.68
1 100 94.75 96.54
3 100 93.59 95.05
5 100 92.93 94.87
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Once again the best results are presented in the Mask modality, when the training
population is composed with only complete 2D facial models and for some punctual
cases on the next configurations presented, confirming the results observed in the
initial mask simulation version and NN design.

Table 5.10 Experimental results for training with 75% All Face and 25% Mask
2D models.

Success
Training Layers Neurons Test All Face Test Mask

75% All Face
+

25% Mask

1 10 77.89 89.41
3 10 78.42 83.32
5 10 37.54 31.83
1 50 98.14 97.60
3 50 97.21 96.89
5 50 96.41 94.13
1 100 98.06 98.09
3 100 97.82 97.71
5 100 97.58 97.19

Another parallel analysis between the extra 2D experimental results, we can
see that again the best results are present for the training combination composed
of 75% of the subjects with the full face and 25% who use a mask, reinforcing the
importance of training diversified even when applied to specific test cases.

Table 5.11 Experimental results for training with 50% All Face and 50% Mask
2D models.

Success
Training Layers Neurons Test All Face Test Mask

1 10 91.51 72.76
3 10 52.33 38.45
5 10 26.96 11.07
1 50 96.83 94.86
3 50 95.41 93.44
5 50 95.30 80.10
1 100 96.72 95.45
3 100 96.79 94.30

50% All Face
+

50% Mask

5 100 96.32 91.96

One more point of agreement between both analyzes was the deterioration of
performance as number of hidden layers is increased while, on the other hand,
when comparing different numbers of neurons with an equal number of layers it
is observed that the FR system improves the success rate as neurons are added.
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Table 5.12 Experimental results for training with 25% All Face and 75% Mask
2D models.

Success
Training Layers Neurons Test All Face Test Mask

1 10 85.12 56.80
3 10 10.47 17.95
5 10 18.23 2.00
1 50 94.47 91.72
3 50 91.82 88.34
5 50 90.47 75.11
1 100 94.59 91.42
3 100 93.47 91.18

25% All Face
+

75% Mask

5 100 92.53 87.13

As it is possible to observe in the previous tables in a general evaluation the
results agree with the first set of extra 2D experiments, being possible to exclude
the possibility of the network overfitting influence performance. As for the mask
case, we can state that it is not the shape of the mask that may be manipulating the
success results, since in the examples where both were tested with the same NN
design [100 Neurons with 5 Layers], 3 in 4 cases the value was not lower. Finally,
if we take the color into account, future tests should be carried out to understand
how it can influence the system. Some of these details will be debated in the next
chapter.
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This thesis addresses a modified version of the Emambakhsh & Evans algorithm
[1], with the aim of questioning the importance of the nasal zone in 3D algorithms
first and reproduce the results that confirm the statement proposed in the article.

With the course of the research and taking into account the current context of
pandemic it was decided to expand our objectives. Although we have effectively
confirmed the importance of the nose region in FR with the widespread use of the
mask, most of it is obstructed by face coverings for data collection instruments. The
solution found to fit this new pandemic reality was to shift the focus from the nasal
area to the ocular area.

This new approach proved that it can compete with the approach initially tested,
both in 2D and 3D, managing to compete with the nasal zone in terms of percentage
of success with the advantage that it can be used today even if the subject to be tested
has a mask.

As referred in the end of the last chapter contrary to what it was initially ex-
pected, NN with test populations composed exclusively with subjects wearing sim-
ulated masks should present a lower score when compared with complete 2D mod-
els tests. As presented in a recent report of NIST [36] masked subjects can influence
in some cases the overall performance of the FR system when it is taken in account
different mask models and mask colors.

It is also important to mention that the NN applied to the 2D features extracted
was the same as in the 3D case in order to maintain the same specifications in
first two tests although in the 2D test it could lead in some cases the NN to overfit
and not reach the best possible results in unseen data, as the feature vectors were
considerably smaller.

A feature that we wanted to test was the scalability of our FR system. Given this
idea, we can say that the difference found between 15 subjects and 105 is significant
but it is not expressive. Furthermore, when we took in consideration the cases where
the number of neurons is equal to 1000 the difference stays between 3 to 4 points in
the 3D scenario and 2 to 3 points for the 2D.

Although the overall results were satisfactory and according to the theories ini-
tially conceived, it is not possible to hide that the percentage of success would be
expected to improve when applied to a database with a higher ratio of samples per
subject as some FR algorithms success rate are based trained and tested models us-
ing datasets several times larger than Bosphorus dataset, furthermore if taking into
account the fact that the tests involve models containing facial occlusions and ex-
pressions changes, escaping the stigma of trained and tested FR systems in ideal
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environment conditions.

6.1 Future Work
Although some interesting results were achieved with the 3D results it should

be noted that these tests were performed separately by the NN, that is, the network
only tests the modality for which it was trained.

It would be interesting to complete the tests where the network would train with
a modality and tested against a different set of 3D models in order to prove whether
the current FR systems could be reused, or whether they would have to undergo
a new training phase with 3D models adapted to the current pandemic reality as a
consequence of COVID-19.

A detail worthy of future interest is that it was only tested for the two versions
of the 2D simulated masks, in the sub-chapter 5.3, with an equal design of the NN,
in order to form a more detailed conclusion on FR systems that ignore the hidden
area as consequence of mask cover or take advantage of the jaw line for features
extraction stage, and if possible expand the research to 3 dimensions.

More than testing the adaptability of systems to changes in routines caused by
recent pandemic events, the different masks must undergo an analysis process by
the FR algorithms, since different designs and colors can lead to variable results.

Another suggestion for future work is the construction of a larger and robust
comparative model between 2D and 3D algorithms in order to register the benefits
that we can derive from this new technology in comparison with the classic methods
currently implemented.

Currently, FR is in exponential evolution. We can say that machine learning al-
gorithms are largely responsible for this upgrade in the results obtained. If possible,
to complete the set of research on FR systems, start testing with different machine
learning algorithms to understand what is the best method we can use taking into
account parameters such as accuracy and speed.
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and L. Akarun, “Bosphorus database for 3d face analysis,” in Biometrics and

Identity Management, B. Schouten, N. C. Juul, A. Drygajlo, and M. Tistarelli,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 47–56.

[29] “matlab-dlib-facetrack,” https://github.com/davisking, accessed: 2020-07-06.

[30] M. Emambakhsh, A. N. Evans, and M. Smith, “Using nasal curves matching
for expression robust 3d nose recognition,” in IEEE Sixth International Con-

ference on Biometrics: Theory, Applications and Systems (BTAS), 2013, pp.
1–8.

53

https://github.com/davisking


Bibliography

[31] Tai Sing Lee, “Image representation using 2d gabor wavelets,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 18, no. 10, pp.
959–971, 1996.

[32] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), vol. 1, 2005, pp. 886–893 vol. 1.

[33] O. Déniz, G. Bueno, J. Salido, and F. De la Torre, “Face recognition
using histograms of oriented gradients,” Pattern Recognition Letters,
vol. 32, no. 12, pp. 1598 – 1603, 2011. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0167865511000122

[34] A. Hajraoui, M. Sabri, and M. Fakir, “Face recognition: synthesis of classifi-
cation methods,” International Journal of Computer Science and Information

Security, vol. 14, 03 2016.

[35] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learn-
ing,” Neural Networks, vol. 6, no. 4, pp. 525 – 533, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608005800565

[36] K. K. H. Mei L. Ngan, Patrick J. Grother, NIST Interagency/Internal Report

(NISTIR), 7 2020.

54

http://www.sciencedirect.com/science/article/pii/S0167865511000122
http://www.sciencedirect.com/science/article/pii/S0167865511000122
http://www.sciencedirect.com/science/article/pii/S0893608005800565

