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Resumo 

Os recentes avanços nas tecnologias de sequenciação do transcriptoma humano levaram 

ao aumento de estudos baseados em dados de expressão genética, com notável impacto 

nas áreas da biologia e medicina. Tipicamente, o trabalho desenvolvido com base neste 

tipo de informação recorre a técnicas de redução de features para combater os problemas 

que advêm da curse of dimensionality e associados à extração de dados de expressão 

(como eventos de dropout, ruído, etc.), sobretudo em projetos com tarefas de classificação. 

Nesta dissertação apresenta-se um modelo de redução de dimensionalidade inspirado em 

redes neuronais, o Autoencoder Supervisionado, que acopla a arquitetura tradicional de 

autoencoders com uma camada de classificação SoftMax, para que as representações no 

espaço latente maximizem a separabilidade entre diferentes classes. De forma a 

considerar os recorrentes eventos dropout neste tipo de dados, foi usada uma camada 

Dropout na fase de treino, conferindo maior robustez ao modelo. 

 O estudo em causa foca-se em particular em reduções para duas dimensões, de forma a 

facilitar a visualização gráfica de informação. Além da análise do efeito da contabilização 

de classes no processo de redução de features (a priori de potenciais tarefas de 

classificação), explorou-se a possibilidade de o espaço latente obtido permitir aferir novos 

padrões de semelhança entre amostras. 

O modelo foi validado usando três conjuntos de dados, comparando os seus resultados 

com os obtidos através de Principal Component Analysis e do autoencoder simples 

equivalente, bem como através da análise do mapa de calor dos dados completos de 

expressão genética agrupados através do clustering hierárquico das features reduzidas. 

Os resultados mostram que o modelo é capaz de gerar representações adequadas dos 

dados originais, que permitem facilitar a tarefa de classificação quando comparadas com 

as resultantes das técnicas estado-da-arte. No entanto, não foi possível utilizá-las para 

estabelecer novos paralelos entre amostras. 

Palavras-Chave: Redução De Features; Expressão Genética; Autoencoder; 

Aprendizagem Supervisionada; Visualização De Dados 
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Abstract 

The recent advances in transcriptome sequencing technologies lead to the increase of gene 

expression studies, with significant impact in the fields of cellular biology and medicine. 

Typically, the work developed based on this type of data resorts to feature reduction 

techniques to combat the problems risen by the curse of dimensionality and from data 

extraction (such as dropout events, noise, etc.), especially in projects involving classification 

tasks.  

This dissertation presents a novel dimensionality reduction model inspired by deep neural 

networks, the Supervised Autoencoder, which combines the architecture of traditional 

autoencoders with a SoftMax classification layer, so the latent space maximizes different 

classes’ separability. To account for the recurring dropout events in this type of datasets, a 

Dropout layer was implemented during training, improving the model’s robustness.  

The present study focuses particularly on two-dimensional reductions to ease the 

information’s visualisation. In addition to an analysis of the effect of label usage in the 

feature reduction process (prior to potential classification tasks), the possibility of inferring 

new similarity patterns between samples through the latent space was explored. 

The model was validated with three datasets, comparing its results with those of Principal 

Component Analysis and the equivalent simple autoencoder, as well as by analysing the 

heatmap of the complete gene expression clustered based on the engineered features.  

The results show the model is capable of meaningful representations of the original data 

that ease the classification task compared to the ones resultant of state-of-the-art 

techniques. However, it is not possible to draw new parallels between samples based on 

those features.  

 

Keywords: Feature Reduction; Gene Expression Profiling; Autoencoder; Supervised 

Learning; Data Visualisation 
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1. Introduction  

1.1 Context 

The central dogma of molecular biology details the transfer process of sequential 

information in cells. Specifically, how genes that encode said information are transcribed 

into RNA to produce proteins, also referred to as gene expression [1]. 

Gene profiling techniques aim to measure gene expression levels at a given time, thus 

allowing researchers to obtain fundamental knowledge about cells' characteristics and 

regulation [2]. This understanding of cellular behaviour has shown a particularly significant 

role in medicine as it provides targeted molecular procedures [3]. 

Recently, Tang et al. (2009) [4] developed an innovative profiling technology, Single-cell 

RNA sequencing (scRNA-seq), capable of measuring the gene expression of individual 

cells. Thus, in the past decade, there was a growth in genomic studies that lead to a variety 

of discoveries about complex biological systems and health conditions [5] [6]. 

A significant portion of the mentioned progress lies in finding expression patterns within 

populations of cells, which was not possible using the outdated techniques [7]. 

The study of data similarities and differences, such as that of genetic research, usually falls 

under the scientific discipline of Pattern Recognition (PR).  PR is the field dedicated to object 

description and classification. Figure 1.1.1 shows the workflow of PR systems, which is 

independent of the approach followed to design them [8]. 
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Figure 1.1.1 The workflow of a PR system (independent of the model design). 

Note the optional steps, though not always necessary, play a crucial part in improving the 

task's performance. For example, dimensionality reduction, which could be accomplished 

through feature selection or feature reduction (which combines or transforms the features 

to originate new ones), helps to provide results with less information, avoiding redundancy 

and allowing a better understanding of the problem [9]. 

1.2 Motivation and Goals 

Sample classification based on gene expression profiling is a widely used task with several 

biomedical purposes [10]–[12]. However, there are several challenges associated with this 

type of data when using PR systems. The curse of dimensionality dictates that the number 

of samples required to determine an accurate classification function grows exponentially 

with the number of features [13]. 

Since there are dozens of thousands of genes in each cell, dimensionality reduction 

becomes an essential step in the experimental setup [14]–[17]. Considering that commonly 

the responsible genes for the phenomenon of study are unknown, feature reduction (FR) is 

preferable. 

As previously mentioned, the main purpose of FR is to improve the classifier's performance, 

as well as its learning efficiency. Noticeably, it also reduces the computational complexity, 

as more features translate into more classification parameters (like the weights in neural 

networks) [18]. Furthermore, feature reduction helps avoiding overfitting (it often happens, 

when the number of instances is too small, that the model learns the specific data 

characteristics and loses its generalisation ability); and dealing with noise (any property of 

the pattern due to extraction methods) [19]. 

Thus, the presented dissertation focuses on the development of a novel feature reduction 

model, the Supervised Autoencoder, designed to aid the pre-processing of gene expression 

data. This research should achieve the following goals: 

• Enable the visualisation of gene expression data in 2 dimensions, easing its 

representation; 
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• Facilitate a posteriori classification; 

• Study the effect of weighting the data's true label in the feature engineering process 

in addition to classification; 

• Maximise separability between different classes in the two-dimensional space to 

optimise classification; 

• Find new similarities between samples based on the engineered features and infer 

meaningful biological conclusions. 

 

1.3 Document Structure 

The remainder of this document is organised in 6 chapters. Chapter 2 – Background 

Knowledge provides an overview of the base concepts required to understand the project. 

Firstly, the notions of gene expression and its characteristics are better detailed. Then, a 

brief explanation of machine learning and neural networks, the algorithms used in this 

experiment and a practical analysis of Heatmaps and hierarchical clustering (used for the 

model validation) are provided. 

Chapter 3 – State of the Art presents a summary of the main literature regarding feature 

reduction, autoencoders and the specific models developed for handling FR of gene 

expression data. 

Chapter 4 – Data Description and Pre-processing credits the datasets used for this study, 

provides a short description of the data labels and introduces the first step of pre-

processing, data normalisation. 

Chapter 5 – Model and Experimental Setup schematises the proposed architecture and 

details the experimental setup, while providing a short reasoning behind its design. 

Chapter 6 – Results and Discussion displays the results and their assessment. 

In Chapter 7 – Conclusion the final takeaway from this project is summarised and future 

steps towards optimising the model are discussed. 
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2. Background Knowledge 

2.1 Gene Expression 

2.1.1 Basic Concepts 

Nucleic Acids, named as such for being first discovered in the nucleus of cells, are biological 

polymers responsible for the storage and encoding of information essential to life. They are 

formed by a chain of units (monomers) called nucleotides. 

There are two types of Nucleic Acids, Deoxyribonucleic acid (DNA) and ribonucleic acid 

(RNA).  Both have similarly structured nucleotides, composed of a pentose, a nitrogenous 

base, and a phosphate group (illustrated in Figure 2.1.1.1 B). The differences between the 

two are the pentoses - a Deoxyribose in DNA and a Ribose in RNA - and the fact that DNA 

is structured in a double helix, contrasting with RNA's simple chain.  

It is also relevant to note that some nitrogenous bases are exclusive to each polymer. There 

are five different nitrogenous bases – Adenine (A); Guanine (G); Cytosine (C); Thymine (T), 

only present in DNA; and Uracil (U), exclusive to RNA (Figure 2.1.1 A) [20]. 

 

Figure 2.1.1.1 - A) Nitrogenous bases, B) Basic structure of a nucleotide [21]. 

Due to their chemical composition, hydrogenic bonds are formed between the nitrogenous 

bases of the two DNA strands that comprise the helix (or temporarily in RNA strands). These 

bonds only occur for G – C pairs and A – T or A – U pairs depending on whether the chain 

is DNA or RNA, respectively. Thus, the information in the two DNA strands of the double 
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helix is redundant and can be fully encoded by a simple RNA strand with the pair bases 

[22]. 

2.1.2 Proteins Production 

The information encoded in a DNA strand is tied to protein production. Proteins have a vital 

role in a cell's life. They monitor and execute all its functions, both general (e.g. intracellular 

digestion) and specific to the cell's type (e.g. Production of mucus in caliciform cells). 

Figure 2.1.2.1 shows a simplified model of protein synthesis in eukaryotic cells.  A portion 

of DNA is encoded into a messenger RNA (mRNA) strand with pairing nitrogenous bases 

(Transcription). The strand then undergoes a process called Translation, resulting in a 

protein. To the portion of DNA containing information to synthesise a protein, we call a gene 

[23]. Genes are said to be expressed when transcribed to RNA molecules. 

 

Figure 2.1.2. 1 - Protein synthesis in eucaryotic calls. Adapted from [23].  

 

2.1.3 Gene Expression Profiling 

The gene expression profile, also designated transcriptome, corresponds to the set of 

mRNA molecules present in a cell [23]. Since it is quite dynamic and sensitive to 

environmental perturbations or cellular events, the transcriptome provides significant 

information about morphological and phenotypic characteristics of the cell [24]. 

Comparisons between gene expression profiles of different cells or of the same cell in 

distinct stages may also present knowledge about the function and role of certain genes 



Neural Networks For 2D Representations of Cell Expression 

 7 

[25], the causes and development of diseases [26], how drugs affect said disease and cell, 

and what genes are appropriate targets for the drugs [27]. 

Current technology allows profiling the genome, epigenome and transcriptome of individual 

cells. This is called single-cell sequencing and, though it may lead to a deeper 

understanding of individual cells’ responses to pathologies and phenomena [28], is still a 

rather flawed process. Gawad et al. (2016) [29] noted the physical isolation of individual 

cells and the amplification of the genetic material to sufficient proportions for sequencing 

create a challenge in analysing the data due to the biases and errors that are introduced 

during these procedures. 

In fact, profiling methods are often prone to noise, dropout events or missing values for 

several reasons (e.g. contamination of samples or poor resolution). The quantity of mRNA 

extracted, reverse transcription biases and ambient conditions also cause systemic errors 

in the expression intensity measurements [20]. Thus, when experimenting on 

transcriptomes, it is essential to account for these problems, through data normalisation and 

the model design. 

 

2.2 Neural Networks 

2.2.1 Neurons 

Artificial neural networks (NNs) are computational models inspired by the structure of the 

brain. Their processing units, the artificial neurons (ANs) (Figure 2.2.1.1), may be connected 

and transmit signals between themselves. However, similarly to their biological equivalents, 

not all signals stimulate the same neurons. The implementation of activation functions 

simulates this all-or-nothing effect. If activated, the neuron processes the signal, otherwise 

it returns zero [30]. The activation function is applied to the sum of the weighted input signals 

(with an added bias), resulting in an output that may serve as input to other neurons.  
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Figure 2.2.1. 1 - Neuron Structure [30]. 

 

The activation functions used in this project are described below: 

• Sigmoid Function: The sigmoid function, presented in Figure 2.2.1.2, returns a value 

between 0 and 1. 

 

Figure 2.2.1. 2 - Sigmoid Function [31]. 

• Linear Function: The linear function, shown in Figure 2.2.1.3, returns its input value. 

 

Figure 2.2.1. 3 – Linear Function [31]. 
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• SoftMax Function: SoftMax activation functions, explained in Figure 2.2.1.4, are 

typically used for classification tasks. They return a categorical vector of values 

between 0 and 1 that sum to 1. Thus, their result could be interpreted as a probability 

distribution [32]. 

 

 

Figure 2.2.1. 4 - SoftMax function [33]. 

2.2.2 Layers 

Figure 2.2.2.1 displays a simple NN.  

 

Figure 2.2.2. 1– Neural Network Architecture [34]. 

The neurons are organised in layers that can be categorised into three groups [35]: 

• Input Layer - responsible for receiving the data. It does not transform the instances. 

Each node (i.e. neuron) corresponds to a feature, allowing the rest of the model to 

infer the data's shape; 
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• Hidden Layer(s) - any layer between the Input and Output layers. They perform most 

of the internal processing; 

• Output Layer - returns the final network output (for example, a categorical vector 

with classifications resulting from a SoftMax function). 

There are several types of layers. The ones represented in Figure 2.2.2.1 and mostly 

implemented throughout this research are designated Fully Connected layers because all 

outputs from a hidden layer are connected to each neuron of the next layer. Other examples 

are Dropout layers, which will be furthered detailed in future sections. They randomly set 

input units to 0 [36]. 

2.2.3 Parameter optimisation and learning strategies 

The purpose of neural networks is to transform input data into a significant output. To learn 

the relationship between inputs and the desired output, the parameters (weights and biases) 

are tuned during a process called training (or learning).   

There are three learning strategies, supervised learning (all desired outputs are labelled), 

unsupervised learning (there is no knowledge about the outputs) and semi-supervised 

learning (part of the labels is known). The present section focuses on parameter 

optimisation using the supervised learning approach [37]. 

The training process is iterative. In each iteration (epoch), a loss function is computed. Loss 

functions compare the output of the model with the true known labels, resulting in a similarity 

score. Thus, the weights and biases optimisation may be perceived as a minimisation 

problem of the loss function [38]. The Categorical Cross-Entropy (CCE) loss, ideal for multi-

class classification, is shown in equation 1. For regression problems, the Mean Squared 

Error (MSE) (equation 2) is often chosen. 

𝐶𝐶𝐸 = − ∑ 𝑦𝑖,𝑐𝑙𝑜𝑔(𝑝𝑖,𝑐)𝑀
𝑐=1         (1) 

Where M is the number of classes, yi,c the indicator (0 or 1) if c is the true class and pi,c the 

predicted probability of c. 

𝑀𝑆𝐸 =
1

 n
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑛
𝑖=1         (2) 
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Where n is the number of samples, y the predicted labels and 𝑦̃ the true class. 

At the end of each epoch, the parameters are updated based on the iteration's loss through 

a gradient descent method. Figure 2.2.3 illustrates the training process. The data goes 

through the model (forward propagation), resulting in a loss, which is used to calculate the 

updated weights (backpropagation). 

 

Figure 2.2.3. 1 - Training Process [39]. 

2.3 Hierarchical Clustering and Heatmaps 

Heatmaps are a powerful visualisation method for high-dimensional data [40]. Eisen et al. 

(1998) [41] proved them to be particularly well suited for gene expression data analysis 

when associated with hierarchical clustering. Figure 2.3.1 presents a simple heatmap, 

where each column represents a gene and each row a sample. The provided legend shows 

that light, bright colours mean higher expression levels and dark colours lower expression 

levels. 
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Figure 2.3.1 A simple heatmap of gene expression data. The red, blue and green strips 

identify the samples as three different types of cells. 

It is worth emphasising the data was scaled. Scaling techniques will be further discussed in 

future sections. However, it is relevant to understand what they mean in terms of 

interpretability and their importance when visualising data [42]. Figure 2.3.2 illustrates the 

same data set without scaling. Notably, it is much more challenging to make any distinctions 

between samples. This is typically due to the presence of outliers - the first few columns of 

genes have significantly lower expression levels than the rest.  
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Figure 2.3. 2 - A simple heatmap without scaling. 

 

The data displayed in Figure 2.3.1 was normalised per gene, i.e. each column was scaled 

independently. Consequently, the heatmap eases comparisons between samples but 

prevents drawing any conclusions within them (evaluate if a certain gene in the considered 

cell is more expressed than others). There are alternative scaling approaches [43], but they 

will not be detailed, since, in the context of this project, heatmaps were explored to compare 

instances, not features.  

Figure 2.3.3 depicts the heatmap for the scaled dataset previously presented reassembled 

after hierarchical clustering. Each sample is a cluster of its own, which merges with the most 

similar one. This is repeated successively until all clusters are grouped in one. The result is 

represented in a dendrogram [42]. 
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Figure 2.3. 3 – Heatmap with hierarchical clustering. 

There are several algorithms and metrics when performing hierarchical clustering for 

assessing the similarity between clusters. The most common are described below: 

• Single Linkage: the distance between two clusters is calculated using their two 

closest members [43]. 

• Complete Linkage the distance between two clusters is calculated with the two 

farthest-apart members [43]. 

• Group Average: the most used. The distance between two clusters is calculated 

using the average distance between each of their members [43]. 

• Euclidean Distance:  

It´s the most used metric [43]. Let d(p,q) be the Euclidean Distance between the two 

data points p and q with n features: 

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=0         (3) 

• Manhattan Distance: 
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Let d(p,q) be the Euclidean Distance between the two data points p and q with n 

features: 

𝑑(𝑝, 𝑞) = ∑ |𝑝𝑖 − 𝑞𝑖|
𝑛
𝑖=0         (4) 

 

 

  





Neural Networks For 2D Representations of Cell Expression 

 17 

 3. State of the Art 

 

3.1 Principal Component Analysis 

Harold Hotelling (1933) [44] introduced Principal Component Analysis (PCA) as the 

orthogonal projection of data onto a low dimensional linear space that maximises the data 

variance.  

Figures 3.1.1 through 3.1.4 provide a simple explanation of this process for a scenario with 

five samples and two features, X1 and X2. 

Figure 3.1.1 is a plot of the data and its first principal component (PC1), i.e., the linear 

projection that maximises the instances variance. 

 

Figure 3.1. 1 - First Principal Component [45] 

Since PCA uses variance as a criterion, it depends on units of measurement. Therefore, it 

is common practice standardise the variables [46]. Each data value xij is subtracted to the 

mean xj̅ and divided by the standard deviation of variable j, sj, (equation 5).  

𝑧𝑖𝑗 =
𝑥𝑖𝑗−𝑥𝑗

 sj
        (5) 

The result is illustrated in Figure 3.1.2. 
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Figure 3.1. 2  – Data standardisation. Adapted from [45]. 

Note that finding the slope of the line that maximises the variances (i.e. of the principal 

component) corresponds to finding the slope of the line that maximises the sum of square 

distances (SSD) from the projected points to the origin (Figure 3.1.3). The singular vector 

that describes PC1 is then given by a linear combination of x1 and x2 (equation (6) and 

Figure 3.1.4) [47]. 

 

Figure 3.1. 3 - Criteria for finding Principal Components. Adapted from [45]. 

 

Figure 3.1. 4 – vector decomposition of PC1. Adapted from [45]. 
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Let e1 be the singular vector for PC1, 

 𝑒1 =  𝑎1 𝑥1  +  𝑎2 𝑥2         (6) 

Where a1 and a2 are loading scores. Notably, e1 corresponds to the eigenvector and SSD 

to the eigenvalue of the correlation matrix between the data points and the features – an 

alternative calculus for PCA [48]. 

Lenz et al. (2016) [49] summarised in their work an evaluation of PCA and its suitability to 

gene expression data. They showed the intrinsic value of its representations to be higher 

than previously estimated. Moreover, they demonstrated the PCA's biological meaning to 

be proportional to the size of the relevant signal and the portion of samples containing it. 

3.2 t-Distributed Stochastic Neighbour Embedding 

Laurens van der Maaten and Geoffrey Hinton (2008) [50] developed a feature reduction 

technique, the t-Distributed Stochastic Neighbour Embedding (t-SNE), suited for the 

visualisation of high-dimensional data. The model was validated with five diversified 

datasets through a comparison of its results to those of seven state-of-the-art visualisation 

methods. Their model outperformed every other one for all datasets. 

t-SNE uses random walks on neighbourhood graphs so that the underlying structure of all 

data influences the projections of its subsets. A detailed summary of the method along with 

the didactic example of a 2D to 1D reduction follows.  

Consider the data represented in Figure 3.2.1, which is divided into 3 clusters.  

 

Figure 3.2. 1 – High dimensional space with three clusters. 
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Firstly, the algorithm calculates the instances similarity based on the Euclidean distances 

between them. To this intent, let us consider a data point (xi) and centre a Gaussian 

Distribution around it (illustrated in Figure 3.2.2). By projecting the Euclidean Distance 

between xi and another datapoint, xj, onto the Gaussian's curve, we obtain the conditional 

probability pj|i. Laurens van der Maaten and Geoffrey Hinton (2008) [50] described pj|i as the 

probability that 'xi would pick xj as its neighbour'. 

 

Figure 3.2. 2 – Converting Euclidean Distances to Similarities. 

This process must be repeated for all potential neighbours of xi (Figure 3.2.3). Note that due 

to the normal distribution, close points have higher probability values, i.e., higher similarity 

values. 

 

Figure 3.2. 3 – First step of the t-SNE method. 

The process described must be repeated for all (k) data points and the conditional 

probabilities normalised so that their sum is 1. Thus, pi|j is given by equation 7. 
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Figure 3.2.4 illustrates the importance of normalising the probabilities. The algorithm 

calculates the width of each normal curve (determined by the variance σ) in dependency 

with points' density around the centre instance.  Hence, sparser regions would mistakenly 

lead to lower similarities. 

 

Figure 3.2. 4 – Importance of data normalisation. At the left, pj|i for a given data point. At 

the right, pj|i for a point at the same Euclidean Distance when the centre instance is in a 

sparse region. 

Let Pij be the set of probabilities previously obtained. The second step of this method is to 

randomly project the point onto the low dimensional space and repeat the process, replacing 

the Gaussian by a Student t-distribution (also known as a Cauchy distribution) with one 

degree of freedom (Figure 3.2.5). Let Qij be this new set of probabilities. 

 

Figure 3.2. 5 - Normal vs Student t-distribution [51]. 

(7) 
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Finally, the Kullback-Leibler (KL) divergences between Pij and Qij must be minimised, so 

that the instances on the lower space approximate the original distances represented by Pij. 

t-SNE uses Gradient Descent to accomplish this. 

Li et al. (2017) [52] studied this technique's suitability for human genetic data and compared 

it to PCA. They concluded t-SNE can accurately separate samples, is more robust in the 

presence of outliers. 

However, it is worth mentioning that because the calculus of probabilities is computationally 

heavy, PCA is often preferred when dealing with high numbers of features. 

3.3 Autoencoders 

Autoencoders are unsupervised neural networks trained to learn efficient representations 

of the input data. Their architecture, depicted in Figure 3.3.1, can be perceived as two 

components: an encoder, formally described by function h=f(X) that converts X inputs to h 

codings; and a decoder, represented by X'=g(h), where X' is the inputs' reconstruction.  

The goal of this process is not tied to X', but to the encoded layer h. When h has a smaller 

dimension than X, it captures the input's most dominant features, and the autoencoder is 

said to be 'undercomplete’ [53], [54]. 

 

Figure 3.3. 1 - Autoencoder architecture [55] 



Neural Networks For 2D Representations of Cell Expression 

 23 

The training process of an undercomplete autoencoder (AE) consists of minimising a loss 

function L(x, g(f(x))) that penalises X' (or g(f(x))) for being dissimilar from X.  

Note that should the loss function be the mean squared error (MSE) and the activation 

functions linear, the autoencoder will generate the same subspace as PCA [56]. Thus, the 

use of non-linear activation functions tends to be more relevant when using AEs as a feature 

engineering technique. 

Lei Le and Andrew White (2018) [57] proposed a model they named Supervised 

Autoencoder (SAE), that produces features that help improving generalisation performance. 

The examples displayed in Figure 3.2.2 illustrate the structure of two SAEs for linear (Figure 

3.3.2 (a)) and deep (Figure 3.3.2 (b)) architectures. This model is suitable when data labels 

are known. The encoded layer, i.e. the codings, undergo a task (classification or 

regression). The learning loss is, then, given by the sum of a reconstruction loss (as is 

standard for all AEs) and a classification loss (for example, cross-entropy).  

 

Figure 3.3. 2 - Two examples of Supervised Autoencoders [57]. 

Autoencoders are also often used for denoising purposes, to do so the input must go 

through a 'corruption' process.  Vincent et al. (2008) [58] suggested setting random input 

values to 0 (manually, or adding a dropout layer) and training the model to reconstruct the 

original input. Thus, statistical dependencies between the altered and accurate signals are 

captured, and the learnt representations are robust to partial input corruption.  
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3.3.1 Autoencoders Applied to Gene Expression Data 

Gupta et al. (2015) [59] showed denoising autoencoders to be suited options to learn 

compact representations of gene expression data. The model was evaluated by performing 

cluster on the encoded data. 

Xiao et al. (2018) [60] developed a semi-supervised deep learning method for cancer 

prediction entitled 'stacked sparse auto- encoder'. Several autoencoders learn to reproduce 

one another's output. Their encoder and decoder portions are then reassembled as seen in 

Figure 3.3.1.1. Finally, the latent space of the overall model is connected to a classification 

neural network. The model was validated using three RNA-seq datasets of different types 

of cancer and comparing the classification performance to that of three standard methods. 

 

Figure 3.3.1. 1 - Stacked autoencoder architecture [61]. 

Aga Lewelt (2015) [62] encoded cancer transcriptomes using a variational autoencoder 

(VAE). The biological relevance of the engineered features was assessed comparing their 

2D projections to those of other standard methods and by analysing the heatmap resulting 

from hierarchical clustering of the codings, showing these types of models are suited for 

gene expression data. 

Variational Autoencoders, shown in Figure 3.3.1.2, are generative neural networks. They 

learn the distribution model of data points in a high-dimensional space, which allows them 

to create new instances with similar characteristic to those of the original input [63]. Figure 

3.3.1.3 illustrates the difference between VAEs and AEs. VAEs train to encode a distribution 
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over the latent space (an encoded vector of means and an encoded vector of variances), 

which is sampled and decoded [64]. The reconstruction error has a regularisation term 

between the returned distribution and a standard Gaussian, the Kulback-Leibler divergence. 

This avoids overfitting [63]. 

 

Figure 3.3.1. 2 – Variational Autoencoder Architecture [65]. 

 

 

Figure 3.3.1. 3 5 - Difference between simple autoencoders and variational autoencoders 

[66]. 

 

Dongfang Wang and Jin Gu (2018) [67] applied a deep variational autoencoder they 

designated VASC to Single-cell RNA sequencing data. VASC (Figure 3.3.1.4) uses a 

Dropout layer and explicitly models its dropout events with a Zero-Inflated layer, designed 

based on a double-exponential distribution. The model was tested on 20 datasets and its 

performance measured by comparing the clustering results of the encoded features and 

four state-of-the-art dimension reduction methods. VASC achieved superior performances 

in most datasets. 
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Figure 3.3.1. 4 - VASC workflow [67]. 

Geddes et al. (2020) [68] proposed an autoencoder-based cluster ensemble framework.  A 

simple autoencoder reduces the data dimensions, the output is then classified by several 

clustering algorithms, and the final label being selected by a consensus equation. The 

model was validated using four different metrics.  It showed better performances than using 

a single clustering method and than in the absence of the AE as a feature reduction 

technique.  
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4. Data Description and Pre-processing 

To assess if the proposed architecture is suited for human gene expression data and meets 

the goals described in Section 1, three different datasets were used. Since the learning 

process relies on a classifying layer, they were filtered so that all the samples included 

proper labels and were from one of three classes. The following subsections describe each 

of the resulting subsets. 

4.1 E-MTAB-62 

The E-MTAB-62 dataset, provided by Lukk et al. (2010) [69], was retrieved from the 

ArrayExpress archive in February 2020. The selected samples were labelled as adipose 

tissue, bronchial epithelium, and bladder cells (displayed on Table 4.1.1).  

Table 4.1. 1 – Number of samples per class in the E-MATB-62 dataset. 

 

 

 

To infer the biological significance of the 2D representations, other data annotations 

(referred to as descriptors) were collected, namely, the development stage; the location of 

the adipose tissue (from the thigh, abdomen or not specified); the type of bladder cell (from 

the mucosa or other); and the characteristics of the bronchial epithelium (from a current 

smoker, a former smoker or a non-smoker). These characteristics are described on Table 

4.1.2 through 4.1.5. 

Table 4.1. 2 – Number of descriptors in the E-MATB-62 dataset for the disease state. 

Descriptor Possible Values 
Adipose 

Tissue 

Bladder 

Cells 

Bronchial 

Epithelia 

Disease State 

Normal 14 7 33 

Disease 33 41 - 

Not available 3 - - 

Class Adipose 
Tissue 

Bladder 
Cells 

Bronchial 
Epithelia 

Total 

Number of 
Samples 

50 48 33 158 
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Table 4.1. 3 – Number of descriptors for the adipose tissue. 

Descriptor Possible Values Number of Samples 

Cell Type 
Preadipocytes 24 

Not Specified 26 

Development 
Stage 

Adult 9 

Not Specified 41 

Location 

Abdomen 29 

Thigh 4 

Not Specified 17 

 

Table 4.1. 4 – Number of descriptors for the bladder. 

Descriptor Possible Values Number of Samples 

Cell Type 
Mucosa 4 

Not Specified 44 

 

Table 4.1. 5 – Number of descriptors for the bronchial epithelium. 

Descriptor Possible Values Number of Samples 

Characteristics 
Current Smoker 20 

Non-Smoker 7 

Former Smoker 6 

 

4.2 E-GSE81608 

The E-GSE81608 dataset, provided by Xin et al. (2016) [70], was retrieved from the GEO 

repository in April 2020. The selected samples were from alpha cells, beta cells, and 

pancreatic polypeptide (PP) cells. The descriptor considered was the presence or absence 

of diabetes type II (Table 4.2.1). 
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Table 4.2. 1 – Number of samples per class in the GSE81608 dataset. 

 

 

 

 

 

4.3 E-TABM-185 

The E-TABM-185 dataset, provided by Lukk et al. (2007) [71], was retrieved from the 

ArrayExpress archive in May 2020. The selected samples were labelled as Skeletal Muscle 

cells, lung cells, and cerebellum cells (see Table 4.3.1). The descriptors considered were 

the development stage and disease state, described in Table 4.3.2, 4.3.3 and 4.3.4. 

Table 4.3. 1– Number of samples per class in the E-TABM-185 dataset. 

 

 

 

 

Table 4.3. 2 – Number of descriptors for the lung. 

Descriptor Possible Values Number of Samples 

Disease Type 

Adenocarcinoma  
(four different stages) 

49 

Normal 9 

Other 1 

Not Specified 8 
 

Class Alpha Cells Beta Cells PP cells Total 

Number of Samples 765 402 66 1233 

Normal Cells 377 207 12 596 

Diabetes type II 388 195 54 637 

Class Skeletal 
Muscle 

Lung Cells 
Cerebellum 

Cells 
Total 

Number of 
Samples 

194 67 65 326 
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Table 4.3. 3 – Number of descriptors for the cerebellum. 

Descriptor Possible Values Number of Samples 

Disease Type 
Huntington's disease 38 

Not Specified 27 

 

Table 4.3. 4 – Number of descriptors for the skeletal muscle. 

Descriptor Possible Values Number of Samples 

Disease Type 

Dystrophy  63 

Myopathy 5 

Sclerosis  9 

Calpainopathy 10 

Dermatomyositis 26 

Methabolic Problem 39 

Other 54 

Not Specified 16 

 

 

4.4 Data Scaling  

Data scaling is an indispensable part of data pre-processing when training neural networks, 

as they use gradient descent as an optimisation technique [72]. Large input values and 

differences in ranges of features (common in gene expression) lead to large weight values, 

which often result in unstable models with poor performances [73]. 

The most popular scaling techniques are normalisation (also known as Min-Max scaling) 

and standardisation. Generally, standardisation is preferred when the data follows a normal 
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distribution [72], [73]. Hence, the three datasets were normalised using the scikit-learn 

package [74]. 

Equation 8 shows how to obtain the normalised vector X’, with Xmin being the minimum value 

of the feature and Xmax the maximum value. Note that normalisation forces the data to range 

between zero and one.  

𝑋′ =
𝑋 −𝑋𝑚𝑖𝑛

 𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
        (8) 
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5. Model and Experimental Setup  

 

5.1. Proposed Model 

The work developed by Lei Le and Andrew White (2018) [57], described in section 3, 

inspired the development of a model capable of embedding gene expression 

measurements in a 2D space while taking into account the cells' characteristics.  

The proposed architecture, illustrated in Figure 5.1.1, combines a SoftMax classification 

layer with a simple autoencoder so that the total model loss is given by the sum of the 

reconstruction and the classification losses (equation 9). The Dropout Layer, used for the 

learning process, avoids overtraining. 

 

Figure 5.1. 1 – Scheme of the proposed architecture. 

 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 =
1

 n
∑ (𝑦𝑖 − 𝑦̃𝑖)

2𝑛
𝑖=1 −  ∑ 𝑦𝑖,𝑐𝑙𝑜𝑔(𝑝𝑖,𝑐)𝑀

𝑐=1                        (9) 

Where M is the number of classes, , n is the number of samples, yi,c the indicator (0 or 1) if 

c is the true class and pi,c the predicted probability of c, y the predicted labels and 𝑦̃ the 

true class 
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5.2 Random Search and Hyperparameter Optimisation 

Random search (RS) is a simple hyperparameter optimisation (HPO) method often used as 

an alternative to grid search. It samples configurations at random within a given search 

budget, selecting the best one [75].  Bergstra et al. (2012) [76] demonstrated this approach 

is more efficient when training neural networks than grid search, for it achieves the same 

(or better) results within a small fraction of the computation time. Figure 5.2.1 shows a 

comparison between the two HPO methods when some hyperparameters are more relevant 

than others, which is the case of neural networks [75], [76]. 

 

Figure 5.2. 1 - Grid and random search for optimising a function given by the sum of g(x), 

represented in green above the squares, and h(y) represented in yellow at the left [76]. 

 

The hyperparameters registered in Table 5.2.1., obtained through RS, describe the models 

used for each dataset. Note for each model the number of neurons in the input layer 

corresponds to the number of genes in the dataset. 
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Table 5.2. 1 Optimal hyperparameters resultant from grid search optimisation. *Not 

including the SoftMax Classification Layer or the Dropout Layer 

 

5.3 K-Fold Cross-Validation  

Cross-validation is a practice widely adopted to evaluate the generalisation ability of 

predictive models. The data is resampled to form a training and test set. In k-fold cross-

validation, the training set is then randomly divided into k subsets of equal size, referred to 

as 'folds' [77]. 

As seen in Figure 5.3.1, the learning process is repeated k times, using each fold as a 

validation set. The final model is evaluated using the test set. This method is advantageous 

as it means all training data is used for validation and prevents overfitting [74]. 

Parameter/dataset E-MTAB-62 GSE81608 E-TABM-185 

Number of Layers* 7 7 7 

Number of Neurons 
[22283, 300, 20, 2, 20, 

196, 22283] 
[39851, 100, 20, 2, 20, 

100, 39851] 
[22283, 196, 20, 2 20, 

196, 22283] 

Activation Function 
[sigmoid, sigmoid, 

sigmoid, linear, sigmoid, 
linear] 

[linear, sigmoid, linear, 
sigmoid, linear, linear] 

[sigmoid, sigmoid, linear, 
, linear] 

Epochs 20 20 20 

Batch Size 2 2 2 

Optimiser adadelta adadelta adadelta 
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Figure 5.3. 1 - Data division using K-fold Cross Validation [74]. 

 

To determine the optimal parameters and hyperparameters, 20% of the data served as a 

test set. The rest was split into five folds. Tables 5.3.1 through 5.3.3 describe the divided 

datasets. 

 
Table 5.3. 1 - Train and test sets for E-MATB-62. 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 

Number of Samples 

Adipose 
Tissue 

Bladder 
Cells 

Bronchial 
Epithelia 

Total 

Train Set 36 43 25 131 

Test Set 14 5 8 27 

Total 50 48 33 158 
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Table 5.3. 2  - Train and test sets for GSE81608. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 5.3. 3 - Train and test sets for E-TABM-185. 

 
 
 
 
 
 
 
 
 
 
 

 

 

5.4 Model Evaluation 

After training, the model can be used to predict the test set's 2D representation. By plotting 

these results, it should be possible to observe the classes' separability and compare it to 

that obtained through standard-use methods such as PCA or AE. As mentioned in Section 

3, a comparison between the classification accuracy using the encoded features and the 

standard methods projections is often used as a validation metric.  However, because the 

proposed architecture already contains a supervised classification layer, this metric is not 

applicable.   

 

Number of Samples 

Alpha Cells PP Cells  Beta Cells Total 

Train Set 765 66 402 1233 

Test Set 181 27 101 309 

Total 946 93 503 1542 

 

Number of Samples 

Skeletal 
Muscle 

Lung Cells 
Cerebellum 

Cells 
Total 

Train Set 157 51 52 260 

Test Set 37 16 13 66 

Total 194 67 65 326 
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Thus, to further investigate the biological meaning of this representation, and whether it 

allows inferring samples' properties, we examine the relationship between the samples' 

position in the encoded 2D space and their descriptors. 

Finally, the two engineered features were used to perform hierarchical clustering. To easily 

visualise the outcome, a heatmap with complete genetic information was considered. 

The clustering used the Euclidean Distance as metric, the group average as comparison 

criteria and the data was standardised per gene to avoid the effect of outliers. 
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6. Results and Discussion 

6.1 The learning Process 

Figure 6.1.1 shows the models’ learning curves using the optimal hyperparameters 

described in Section 5.2. 

 

Figure 6.1. 1 - Models’ learning curves. Each curve represents the loss for the training (train) 

or validation (val) set when a given fold is left out. (A) E-MTAB-62 (B) GSE81608, (C) E-

TABM-185. 

 

The loss values of the validation sets converge with those of the corresponding train sets, 

suggesting the models are not overfitted. Furthermore, the losses progressively decreased 

for both test and training data to values near zero, implying the latent spaces may be 

meaningful representations of the original inputs. A further analysis based on the test set 

follows. 

(B) (A) 

(C) 
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6.2 Comparison with PCA and the AE 

The 2D spaces generated for the test data using the SAE are presented in Figure 6.2, 

alongside the PCA and equivalent (i.e. with the same hyperparameters) unsupervised AE 

results for comparison purposes. Such analysis should determine if the model achieves its 

first goal – maximising class separability. 

 

 

Figure 6.2. 1 – 2D representation of the gene expression data per class. At the right, the 

latent space generated from the Supervised Autoencoder (SAE) using the test data. At the 

centre, Principal Component Analysis (PCA) of the same data; At the right, the results 

 

With the features engineered through PCA or the AE, classes are not always linearly 

separable or the distances between them not maximised. Figure 6.2.1 (A) shows the 

proposed model perfectly classifies every sample from the E-MATB-62 dataset, with the 

(B) 

(A) 

(C) 
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instances within each class overlapping, whereas both PCA and the AE would lead to 

several misclassifications. 

The discrepancy between class separability across models is most noticeable in Figure 

6.2.1 (B). Both state-of-the-art methods failed to distinguish delta cells representations from 

the remaining classes. Therefore, despite the four outliers produced by the SAE, it is fair to 

conclude it performs better. 

The E-TABM-185 validation set contains two outliers across all reduced spaces, according 

to Figure 6.2.1 (C). Even so, the SAE is the only method that displays those instances as 

such (with PCA and the AE these samples are completely blended with skeletal muscle 

cells). Apart from said detail, all models’ features result in reasonable class separability with 

our model maximising the distances between them.  

Thus, in the presence of labels, the proposed model is preferable, as it facilitates the 

classification problem and eases the visualisation of each sample's properties. However, 

this analysis does not suffice as it is predictable that a supervised method generates such 

results when compared to unsupervised alternatives. Since there are no standard 

supervised methods when dealing with gene expression information, to assess if the SAE 

can capture relevant biological characteristics, the samples' descriptions were examined. 

 

6.3 Descriptor Analysis and Heatmap Visualisation 

Figure 6.3.1 exemplifies the observations made. The known descriptors of the cells do not 

correlate to the spatial distribution of their representations, i.e. they do not confirm the two 

dimensions are biologically interpretable. Though this is true for the four datasets, there are 

few descriptors (some are even missing for several samples), and they are too vague to 

reject the hypothesis that samples with similar representations have similar expression 

patterns or phenotypes. Therefore, Figures 6.3.2, 6.3.3 and 6.3.4 show the heatmap of the 

test samples' expression levels, clustered based on the encoded features. 
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Figure 6.3. 1 Illustration of descriptors analysis. At the right, the hypothesis - the points 

scattering is related to the cells' phenotypes. At the left, the observations - the descriptors 

do not correlate to the dispersion of points. 

 

Figure 6.3.2 further confirms the observations previously made. The encoded space allows 

to perfectly separate each class of cells. However, since all the data points in the encoded 

space overlap, the representation does not allow any further distinctions between instances 

of the same class. Unfortunately, this indicates the second goal – inferring new biological 

patterns through the latent space - may be undertaken by the effect of the SoftMax layer.  

 

Figure 6.3. 2– Heatmap of the gene expression of the test set from E-MATB-62. The 

hierarchical clustering is based on the engineered features. 
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Figure 6.3.3 is significantly harder to analyse, exemplifying the importance of simpler 

visualisation techniques for large datasets of gene expression data. Due to the amount of 

information displayed, it is not possible to assess the biological meaning behind the data 

relative location. 

 

Figure 6.3. 3 – Heatmap of the gene expression of the test set from GSE81608. The 

hierarchical clustering is based on the engineered features. Note the white rows 

correspond to genes that share the same expression levels in all samples. 

 

The clustering resulting from the encoded space using the E-TABM-185 dataset (Figure 

6.3.4) is reasonably homogeneous within each class, although there are some outliers, and 

there is a clear separation between classes. Furthermore, the two misclassified samples 

have a notably different expression pattern than the other samples of their class, resembling 

the class they were misclassified has. Since the two samples have no further annotations, 

it is not possible to find a biological explanation for this. However, it is fair to conclude the 

model’s classification to be reasonable. 
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Figure 6.3. 4 – Heatmap of the gene expression of the test set from E-TABM-185. The 

hierarchical clustering is based on the engineered features. 

In conclusion, the model does not provide a representation capable of capturing data 

patterns beyond the ones characterised by the labels. This is mostly because there seems 

to be a trade-off between maximising the separability between classes and the separability 

between diverse instances within classes. Hence the suitability of the proposed feature 

reduction method depends on the researcher’s priority. 
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7. Conclusion  

This dissertation focused on a supervised deep learning model, the SAE, designed to 

engineer gene expression features. Two goals were set for the model. The representation 

of data in the 2D latent space should maximise class separability, easing the visualisation 

of different labelled samples and optimising a posteriori classification. Furthermore, the 

relative position of instances in the latent space should show meaningful patterns, allowing 

to infer similarities between cells’ genotypes. 

The model’s performance was validated on 3 datasets. The first objective was evaluated by 

visualising the encoded features and those of state-of-the-art methods such as PCA and 

simple AEs. The SAE performed better than the other techniques despite some 

misclassification errors and the classes’ imbalance, proving that weighting the true labels 

during the pre-processing phase can enhance and facilitate the task of supervised learning 

algorithms. 

To analyse how samples’ relative distances related to their genotype and phenotypical 

dissimilarities, the instances annotations were studied as well as the expression heatmap 

based on the encodings hierarchical clustering.  

The former study was inconclusive mainly due to scarcity of descriptors, incomplete 

information and vague labels, emphasising the need for better organised datasets in this 

field and for investment in more effective sequencing technologies. 

The latter showed some of the outliers in the 2D representations better resembled the 

classes they were misclassified as. These results indicate the latent space does have some 

biological interpretability that may be used to infer patterns between data. However, it 

doesn’t fully achieve this purpose, which can be explained by the plot of encodings. Notably, 

the classification loss often endorsed the overlap of same labelled samples. Thus, the two 

goals seem conflictive and a compromise between the two must be made when using this 

method. 

 

7.1 Future Work 

To better understand this architecture’s robustness, compatibility with different datasets and 

protocols, and generalisation capability, further work exploring a semi-supervised learning 
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approach should be considered. Moreover, as accessing datasets with detailed and 

complete annotations proved to be a challenging problem and learning algorithms’ 

performance tends to improve with more instances, a semi-supervised approach would 

facilitate training and lead to broader practical application in gene expression research. 
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