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Resumo

Desenvolvimentos recentes em ferramentas de simulação de processos químicos baseadas
em modelos complexos de primeiros princípios, têm permitido a realização de experiências
simuladas avançadas, no âmbito de projeto, otimização e controlo de processos. Estas facilitam
a tomada de decisões nestes domínios e permitem a redução da quantidade necessária de ex-
periências físicas no processo, que muitas vezes são impraticáveis pela interferência com a sua
operação normal e segura. Deste modo, experiências simuladas permitem elevadas poupanças
económicas e ambientais, aumentando a segurança de bens e pessoas. No entanto, apesar do
aumento de recursos computacionais, estas simulações continuam a ser morosas. Além disso,
os modelos subjacentes a estas podem em alguns casos ser considerados como uma caixa-negra,
onde apenas existe acesso a informação de entrada e saída. Estes fatores dificultam o uso destas
ferramentas para tarefas como análise de sensibilidade ou otimização. Modelos substitutos
baseados em técnicas de aprendizagem de máquina podem oferecer uma aproximação com-
putacionalmente mais leve do modelo subjacente com base em dados de entrada e saída. Nesta
dissertação, explora-se o uso de modelos substitutos para otimização global em duas aplicações
relevantes na indústria, Otimização em Tempo Real (OTR) e sintonização de controladores
Proporcional-Integral-Derivativo (PID).

Na primeira aplicação, foram comparados métodos de Otimização com Base em Modelos
Substitutos (OBMS) com e sem uso de derivadas para OTR do reator químico Williams-Otto.
Duas abordagens de otimização baseadas em amostragem sequencial, a Otimização Bayesiana
(OB) e a Resposta de Superfície Estocástica (RSE), foram comparadas com o uso de diferentes
tipos de modelos substitutos e planos de amostragem estáticos. Após a seleção, validação e
otimização dos modelos susbtitutos, todos eles, tal como no caso da OB, permitiram encontrar
o ponto ótimo de operação. No entanto, OB provou ser mais eficiente no que toca ao número
de avaliações da função objectivo, evitando uma sobre-amostragem e fase extensa de seleção e
validação de modelos.

Na segunda aplicação, foi proposta uma nova metodologia baseada em métodos de iden-
ficação de sistemas e em OBMS multi-objectivo para sintonização de controladores PID. Esta
metodologia é recomendada para ambientes de simulação, permitindo a identificação de limites
dos parâmetros do controlador e diferenças de escala entre os diferentes objectivos do prob-
lema de otimização. Desta forma, reduz-se o esforço de tentativa e erro na otimização dos
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parâmetros do controlador. Esta metodologia, em conjunto com a OBMS, constitui uma abor-
dagem eficiente para sintonização controladores PID quer para modelos que requerem simu-
lações numéricas morosas ou modelos de caixa-negra. Neste estudo, um modelo dinâmico de
elevada ordem e altamente não linear é usado para comparar a OB e a RSE com abordagens de
afinação convencionais em dois controladores PID diferentes. No geral, OB obteve o melhor
desempenho. Como esperado de uma abordagem de otimização, este método de sintoniza-
ção levou a uma melhoria do desempenho do controlador quando comparado com metodolo-
gias tradicionais. No entanto, é de salientar que a metodologia proposta é simples e rápida
de usar, reduzindo a quantidade de tentativa e erro necessária. Testes de simulação em ciclo
fechado demonstraram uma robustez do controlador satisfatória para cenários com alterações
nos parâmetros do modelo e perturbações inesperadas. No entanto, o mesmo não se verificou
para mudanças nas condicões operatórias.

Palavras-chave: Modelos substitutos; Otimização de problemas de caixa negra; Otimiza-

ção e Controlo de processos; Sintonização de controladores PID; Otimização Bayesiana; Re-

sposta de Superfície Estocástica
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Abstract

Recent developments in chemical process simulation tools that based on complex first prin-
ciple models, have enabled the use of more advanced simulated experiments in the fields of pro-
cess design, optimization and control. These aid the decision making process in these domains
and can reduce the amount of physical experiments on the process, which many times are in-
feasible because they upset normal and safe operation. This way, simulated experiments enable
lower economic and environmental costs, increasing people and asset safety. However, despite
the advances of computational resources, these simulations remain time consuming. Moreover,
their underlying models can sometimes be considered a black-box, with access to only input and
output information. Both these factors difficult their use for tasks such as sensitivity analysis or
optimization. Machine learning based surrogate models can provide a computationally cheaper
approximation of the underlying simulation model based on input and output data. In this disser-
tation, the use of surrogate models for global optimization is applied to two industrially relevant
applications concerning Real Time Optimization (RTO) and Proportional-Integral-Derivative
(PID) controller tuning.

In the first application, surrogate-based optimization (SBO) was compared with derivative-
based and derivative-free optimization algorithms for RTO of the Williams-Otto chemical re-
actor. Two approaches based on adaptive sampling, Bayesian Optimization (BO) and Metric
Stochastic Response Surface (MSRS) were compared with different model types and static
sampling plans. After model selection, validation and optimization, all surrogate models, as
well as BO, allowed finding the optimum operating condition. However, BO proved to be more
efficient in terms of objective function evaluations, avoiding oversampling and an extensive
phase of model selection and validation.

In the second application, a new methodology relying on system identification and multi-
objective SBO was proposed for PID controller tuning. This methodology is applicable for
simulation environments, and enables the identification of bounds on the controller parameters
and scaling differences between multiple objectives in the optimization problem. This way,
the effort associated with trial and error in the optimization of the controller parameters is
reduced. In conjunction with surrogate models, this methodology provides an efficient approach
for tuning PID controllers for models that require time consuming numerical simulations or
black-box models. In this study, a high order and highly non-linear model is used to compare
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BO and MSRS to standard tuning methods for two different PID controllers. Overall, BO
displayed better performance. Although expected of an optimization-based tuning approach,
this was accomplished in a highly automatic fashion, being simple and easy to use. Closed-loop
simulations tests demonstrated a satisfactory controller robustness for scenarios with changing
model parameters and unexpected disturbances. However, the same was not verified for changes
in operating conditions.

Keywords: Surrogate models; Black-box optimization; Process optimization and control;

PID controller tuning; Bayesian Optimization; Metric Stochastic Response Surface
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Chapter 1

Introduction

1.1 Motivation and scope of the thesis

Nowadays, global competition in the process industries motivates chemical manufactur-
ing companies to design and operate production facilities with a tighter cost margin. Beyond
revenue increase, process industries also face increasingly stringent regulations regarding en-
vironmental pollution, motivating more efficiently operated processes able to minimize waste
production and meeting legal emission limits. This leads to considerable investment of time and
resources to optimal process design, operation and control. Process modelling and optimization
are indispensable tools to achieve these goals.

Models are abstract mathematical representations of a physical process and can be derived
using knowledge based on first principle laws from physics or process data. In recent years, the
advancement of computational resources and simulation tools based on complex first principle
models, such as Computational Fluid Dynamics (CFD) or Molecular Dynamics (MD), have
allowed engineers to use more advanced simulation-based experiments to gain knowledge and
solve increasingly complex problems. These simulations can greatly reduce the number of phys-
ical experiments required, especially in early design phases, and therefore result in a reduction
of costs, resources and time. However, in spite of advances in computing power and the use
of distributed parallel computers, such complex simulations are still time consuming, mainly
due to the solution of complex large scale systems of non-linear differential equation. Conse-
quently, in some cases, a single simulation may require minutes, hours or even days, rendering
tasks that require hundreds or thousands of simulations, such as optimization or Monte Carlo
simulations, impossible or infeasible in practice without high computing resources. Moreover,
in addition to being time consuming, the inner workings of the models used in these simulations
are complex and usually not available to the user. In these cases, the simulator can be thought
of as a black-box model, for which only input and output data is available. Explicit algebraic
expressions for the model derivatives are also not readily available, and expensive to estimate
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numerically, which renders traditional and well proven gradient based optimization strategies
ineffective (Rios and Sahinidis (2012)). Besides simulators relying on CFD or MD, this is also
the case for widely used commercial chemical process flowsheet simulators, like Aspen Plusr

or Aspen HYSISr. Despite being computationally less demanding, these simulators mainly use
a sequential-modular structure calculation that leads to numerical noise and reduces finite dif-
ference accuracy (Caballero and Grossmann (2008)). This is especially problematic when heat
or mass recycle streams are present (Straus (2018)). Due to this issue, optimization requires the
use of specialized algorithms to recover from convergence failures (Cozad et al. (2014)).

Because of these difficulties, systematic use of complex first principle simulators for tasks
such as sensitivity analysis, optimization or feasibility analysis is difficult, and the user is usu-
ally left to using intuition and highly specialized or time consuming approaches. A practical
solution to avoid the mathematical complexity in simulation is to use surrogate models.

Surrogate models (Bhosekar and Ierapetritou (2018), McBride and Sundmacher (2019)),
Response surface models or metamodels (Wang and Shan (2007)) provide an algebraic approx-
imation of a complex system or model based on input-output data. The underlying model is
treated like a black-box, assuming that little or no information about it is known. These sur-
rogate models offer the advantage of mimicking the behaviour of the black box model, while
being much faster to evaluate. Because of this, computationally cheaper surrogate models can
be used in situations whenever the simulation of a black-box type model is necessary, including
the use of a complex first principles based simulator or other simulation experiments that are
computationally demanding and with unknown or mathematically intractable inner structure.

Surrogate models can mainly serve tasks that require model approximation, optimization,
feasibility or sensitivity analysis. Therefore, they can be used in a wide range of fields in pro-
cess systems engineering including process and product design, optimization, control, planning
and scheduling and supply chain management. A few recent applications that require time con-
suming simulations include chemical reactor operational optimization (Yang et al. (2018), Kong
et al. (2020)) and design (Park et al. (2018)) through CFD and estimating molecular properties
(Kadupitiya et al. (2020)) or nanowire design (Mukhopadhyay et al. (2016)) using MD simu-
lations. In separation processes, surrogate models have been used for global optimization of
distillation columns with highly non-ideal mixtures (Keßler et al. (2019)), replacing compu-
tationally expensive thermodynamic models for phase equilibrium calculations (Nentwich and
Engell (2019)) and optimization of a CO2 adsorption process under uncertainty using an expen-
sive simulation model (Hüllen et al. (2020)). Beyond time consuming first principles models,
surrogate models have also been recently used to tune the hyper-parameters of the data-driven
part of a hybrid model (Bikmukhametov and Jäschke (2020)). A plethora of references to the
application of surrogate modelling in chemical engineering is available in recent surveys (Ka-
jero et al. (2017), McBride and Sundmacher (2019)).
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Figure 1.1: Representation of the surrogate model generation and applications

Industrial processes require that operating conditions are maintained within a given range
of values, either to maximize revenue, for safety reasons or to comply with environmental
regulations. This can only be achieved using process control, through the use of controllers that
are designed to maintain some process variables at their desired values by manipulating others.
A simplified representation of the classic hierarchical structure for process control is presented
in Figure 1.2 (Seborg et al. (2017)).

Planning and Scheduling (days-months)

Real-Time Optimization (hours-days)

Multi-variable control (minutes-hours)

Regulatory control (seconds-minutes)

Figure 1.2: Classic process control hierarchy

The top layer is where medium and long term decisions regarding production planning are
made. In the Real Time Optimization (RTO) layer, a detailed plant model, usually steady-state,
is used to find the economically optimum operating points whenever changes in product prices,
raw material costs and process disturbances occur. The optimum operating points are defined as
the setpoints for the subsequent control layers, which can include adavance multi-variable and
constraint control strategies such as Model Predictive Control (MPC). At the bottom layer, stan-
dard or advanced feedback and feedforward control strategies are used to maintain controlled
variables at their optimum setpoint, defined in the layers above. More information is available
in Seborg et al. (2017). Surrogate models can be used to solve problems concerning model
complexity or unavailable explicit equations across all these layers.

In this thesis, surrogate models are used for RTO when the plant model is a black-box and
for controller tuning in the regulatory layer. Additional uses for other layers are also identified.
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1.2 Thesis Objectives

The work developed in this thesis is guided by the following objectives:

• Introduce the concepts of surrogate modelling and surrogate-based optimization.

• Review applications of surrogate modelling in process control.

• Through a simple example compare the performance of different surrogate models, sam-
pling plans and strategies for RTO where the process model is a black-box. Demonstrate
the advantages of adaptive sampling strategies for surrogate-based optimization.

• Develop and apply a simple methodology to tune digital PID controllers in simulation sce-
narios using surrogate-based optimization. Demonstrate the advantages of this approach
by comparison with traditional benchmark tuning methods.

1.3 Thesis Outline

This thesis is composed by 7 chapters, organized as follows:

• In chapter 2 the concept of Design and Analysis of Computer Experiments (DACE) is
introduced, along with different sampling plans, surrogate models and validation tech-
niques.

• Chapter 3 discuses the use of surrogate based optimization for global optimization of
black-box problems. Different methods are reviewed, with an emphasis on those using
global surrogate models, where two different approaches using Radial Basis Function
(RBF) and kriging are introduced. In addition, strategies to deal with multiples objectives
when using surrogate models are briefly reviewed.

• In chapter 4, the state-of-the-art on different applications for surrogate models in the field
of process control is presented.

• Chapter 5 presents a simple case study regarding the use of surrogate models for RTO of a
chemical reactor when the model is unknown. In this example, different surrogate models
and sampling procedures are used. The performance of surrogate-based optimization is
compared with traditional optimization methods.

• In chapter 6, a methodology using surrogate-based optimization is applied to PID con-
troller tuning in simulation. A complex non-linear and high order dynamic model of the
reactor that shows open-loop unstable behaviour is used to demonstrate the advantages of
this approach when compared with traditional tuning approaches.

• Chapter 7 concludes the thesis work. Conclusions are summarized and opportunities for
future work are identified.
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Chapter 2

Design and Analysis of Computer
Experiments

In the first section of this chapter the concept of surrogate modelling is introduced, fol-
lowed by explanation of how to design experiments for surrogate models. Sections 3 presents
the most popular types of surrogates models. In section 4, methods to validate such models are
discussed.

2.1 Introduction to surrogate modelling

A black-box simulation refers to scenarios where the expressions of the underlying mathe-
matical model are either unknown or too complex to be analysed explicitly. Figure 2.1 presents
a representation of the information flow in these types of problems:

Figure 2.1: Black-box simulation

It is generally assumed that only information about the input, - , and output variables, . , is
known about these simulations, and that these are also time consuming. The systematic analysis
of these problems is referred as Design and Analysis of Computer Experiments (DACE), a
concept made popular by the article of Sacks et al. (1989). The main concepts of DACE are the
experimental design and the use of response surface, or surrogate models. These are machine
learning based models that are used to provide a computationally inexpensive approximation
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of the mathematical relationship between the input and output variables. Surrogate modelling
generally encompasses the following set of steps:

• Identify the design and output variables, as well as bounds on the design space

• Generate values for the design variables and simulate them on the black-box simulation

• Fit a surrogate model on the input and output data

• Validate the surrogate model

Depending on the application, modifications within each step or additional steps can be used.

2.2 Selecting variables and defining the design space

The first step in an experiment, whether physical or simulated, is to identify the variables
of interest. This includes choosing the independent variables G , also known as input or design
variables, that are going to be manipulated to cause an effect on other dependent, or output,
variables ~.

The selection of ~ should always be done with attention to the modelling objective. For
instance, to gain system knowledge, the goal may be to approximate several independent vari-
ables. Instead, for optimization, the goal is to generally approximate an objective function,
which can depend on these variables.

Several approaches have been taken to deal with the high dimensionality of the design vari-
ables. These achieve dimensionality reduction through the use of data-driven methods such as
variable selection using regression methods (Bhosekar and Ierapetritou (2018), Kim and Bouk-
ouvala (2020)), Zhai and Boukouvala (2019)), projection of variables into a lower dimensional
intrinsic space using non-linear manifolds (Lovelett et al. (2019)), Partial Least Squares (PLS)
regression (Straus (2018)) or even using concepts from process control such as Self-Optimizing
Control (SOC) (Straus and Skogestad (2018)), to name a few. Since the number of design
variables considered in the case studies of this thesis is low, concepts and approaches to vari-
able selection or reduction are not discussed in detail. Interested readers are referred to the
aforementioned references.

After selecting the design variables, lower and upper bounds within which they can vary
needs to be defined. This set of values may be referred to as the design space, and accurately
defining it beforehand is of high importance, since reducing the design space can lower the
problem complexity (Forrester and Keane (2009)). Domain specific knowledge should always
be used to define both variables and variable bounds (Straus (2018), Piga et al. (2019)).

2.3 Design of experiments for surrogate modelling

After the selecting the design variables, the next step is the generation of input data points,
or samples, within the design space to perform the experiments. Both quality and performance

6



Chapter 2. Design and Analysis of Computer Experiments

of a surrogate model depend strongly on a sufficient number of quality samples used to build
the model. This can be accomplished through a procedure to plan and define conditions for
experimental trials known as Design of Experiments (DoE).

Classic DoE methods for physical experiments include designs such as the full and half
factorial (Fisher (1926)), Box-Behnken (Box and Behnken (1960)), Central Composite and
Plackett-Burman (Plackett and Burman (1946)). These methods are designed to be robust
against the unavoidable variance due to the stochastic nature of physical experiments (Garud
et al. (2017a)). On the other hand, deterministic computer simulations, without added noise, do
not present experimental variance. In this regard, designs for simulated experiments diverges
from classic DoE, since common concerns due to randomness of physical experiments, such as
blocking and replications are not as important in the sampling procedure. Instead, the focus is
to accomplish the modelling goals while requiring the lowest amount of samples, considering
these usually require computationally demanding simulations. Sample generation can be di-
vided into either static, or one-shot, sampling or adaptive, or sequential, sampling. A simplified
flow diagram of both strategies is presented in Figure 2.2.

Generate input data X using DOE

Obtain output data Y by simulation

Fit surrogate model using X and Y

Validate surrogate model

Final surrogate model

Generate input data X using DOE

Obtain output data Y by simulation

Fit surrogate model using X and Y

Search adaptive sample x∗ and obtain y∗

Criteria met?

Final surrogate model

Add x∗ and y∗ to X and Y

Yes

No

Figure 2.2: Flowchart of static (on the left) and adaptive sampling (on the right)

In static sampling, a sample of predetermined size is generated through DoE and the model
is fitted to the data. In adaptive sampling, after the model is fitted, a new sample that enhances
its quality is searched according to a criterion that can include information provided by the
model. This sample is simulated to obtain the respective output data and added to the initial
dataset. This sequential procedure is then repeated until a pre determined stopping criterion is
met.
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2.3.1 Static Sampling

Monte Carlo (MC) sampling was the first formal method for sample generation for com-
puter based experiments and remains one of the most used methods to this day (Garud et al.
(2017a)). The MC method was proposed by Metropolis and Ulam (1949) and it uses a pseudo-
random number generator to generate sample points, with the hope that the inherent randomness
results in space filling. The shortcoming of these designs is that a sample of finite size may lead
to clustering and unrepresented regions of the design space, resulting in an ineffective space
filling design (Garud et al. (2017a)).

Quasi-Monte Carlo sampling methods use a Quasi-Random Low Discrepancy (QRLD)
sequences to generate samples. The quasi-random designation comes from the fact that these
sequences are of deterministic nature and low discrepancy implies a close to uniform distribu-
tion of points in the design space. Several quasi-random designs exist such as Halton (Halton
(1964)), Hammersley (Hammersley (1960)) and Sobol (Sobol (1967)). QRLD sequences use
the concepts of inverse radix numbers and prime numbers. Although these sampling methods
aim to achieve a space-filling design, they do not incorporate a formal quantification of space-
filling during the sample generation procedure (Garud et al. (2017a)). The following designs
consider space filling criteria explicitly to generate samples.

Intuitively, one would think to start with the simplest form of space filling, the classic
full factorial design, where the samples are arranged as in a regular grid, such as the one in
Figure 2.3.

Figure 2.3: Full factorial design with 121 samples

The total number of samples required for this design increases exponentially with the num-
ber of design variables, � , in the fashion =� , where = is the number of samples in each dimen-
sion. One can see how quickly this sampling design gets out of hand in terms of computational
complexity, even for functions cheap to evaluate, as the number of dimensions increases. This
is commonly known as the curse of dimensionality (Forrester et al. (2008)).

A number of space-filling criteria exist in the literature that can be divided into two general
categories: uniformity-based and distance-based.

8



Chapter 2. Design and Analysis of Computer Experiments

Uniformity-based criteria use a measure of discrepancy, which quantifies the departure of
a given design from a uniform design. An example based on this criteria is the Uniform Design
(Fang et al. (2000)), which places samples that minimize discrepancy.

Distance-based criteria, as the name implies, consider the distance between sample points
to quantify space filling. Two examples of distance-based designs are Maximin and Minimax
designs (Johnson et al. (1990)). Maximin designs generate samples such that the maximin
criteria, the minimum distance between any two points, is maximized. On the other hand,
Minimax design minimizes the maximin criteria.

For further details on the mentioned space-filling as well as other geometric criteria, such
as Voronoi tessalation or Delaunay triangulation, cf. Garud et al. (2017a) and the references
mentioned therein.

Latin-Hypercube Design (LHD) was proposed by McKay et al. (1979) to overcome issues
associated with MC sampling variations and is one of the most popular designs across various
fields (Garud et al. (2017a)). LHD divides a design space with� dimensions into = bins, placing
each sample into a bin such that no two samples are present in each row or column (in the case
of a 2 dimensional design). However, because the LHD configuration and sample placement
within the bins are random, this design may not result in adequate space-filling. A well known
worst case example of this shortcoming is presented in Figure 2.4.

(a) (b)

Figure 2.4: LHD with 10 samples: a) worst case design; b) space-filling design.

The space-filling ability of LHD can be enhanced using optimal-LHD designs. These opti-
mize the sample spatial arrangement in LHD according to a space-filling criterion, for example,
maximin. The reader is referred to Garud et al. (2017a) for a review of different approaches. The
main issue in these methods is that the optimization problem involved in the sample location
selection is computationally intensive (Liu et al. (2018), Garud et al. (2017a)).

All static designs reviewed so far are generic in nature, focusing only on spatial distribution
of the samples within the design space and ignoring the system under study. Designs that
consider information about the system have also been used in the literature (Sacks et al. (1989)).

Because of different systems and surrogate models, no definitive conclusion exists about
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the absolute best design. However, Garud et al. (2017a) compared the space filling abilities of
MC, LHD, and QRLD designs across several dimensions, including high dimensional design
spaces. Overall, a variation of the Sobol design showed the best performance.

2.3.2 Adaptive Sampling

In the previous section, the sampling procedures discussed generated all points at once, in
a one-shot or static manner. Despite popularity, these methods may lead to under-sampling or
oversampling (Crombecq et al. (2011), Garud et al. (2017a)). With under-sampling, the number
of samples is insufficient to build an accurate surrogate model. On the other hand, oversampling
may result in a waste of computational resources when the simulation output is too expensive to
obtain. These problems led to the development of adaptive sampling methods, that aim to build
an accurate surrogate model using only the necessary samples to do so (Liu et al. (2018)).

Two key concepts in adaptive sampling are design space exploration and exploitation. Ex-
ploration refers to placing sample points on unsampled regions of the design space where model
uncertainty is high, in a space filling manner, similarly to the static designs. On the other
hand, exploitation incorporates system information and aims to sample interesting, non-linear
or complex, regions of the design space near existing sample points. Because exploitation takes
different meanings for different goals, a preliminary clarification is important.

Surrogate models can generally be used for three distinct classes of problems including
modelling, optimization and feasibility analysis (Bhosekar and Ierapetritou (2018)). When dis-
cussing adaptive sampling approaches, it is important to clarify what the purpose of building
the surrogate model is because the adaptive search strategy is different for each situation. For
instance, when global approximation is the goal, exploitation means placing samples where
a measure of error is larger (e.g. Cozad et al. (2014)), while in the context of optimization,
exploitation means placing samples near points with better objective function values.

2.3.2.1 Adaptive sampling for global modelling

Surrogate models using adaptive sampling can be used to approximate and gain knowl-
edge of the underlying black-box model in the entire design space. Two types of strategies
for these situations include the use of pure exploration or a balance of exploration and ex-
ploitation. While the former strategy may be employed, the latter has been subject to higher re-
search focus, because sample placement is done in a more intelligent manner while avoiding the
curse of dimensionality (Garud et al. (2017a)). A few notable examples include LOLA-Voronoi
(Crombecq et al. (2009)) Automatic Learning of Algebraic Models for Optimization (ALAMO)
(Cozad et al. (2014), Wilson and Sahinidis (2017)), Smart Sampling Algorithm (SSA) (Garud
et al. (2017b), Garud et al. (2018)), and, more recently, an sampling procedure using Partial
Least Squares (PLS) regression as a termination criterion (Straus (2018), Straus and Skogestad

10



Chapter 2. Design and Analysis of Computer Experiments

(2019)). For a further discussion of adaptive sampling procedures for global approximation, the
reader is referred to the reviews of Crombecq et al. (2011), Garud et al. (2017a) and Liu et al.
(2018). Garud et al. (2018) also compared their SSA method against other popular adaptive
sampling procedures.

2.3.2.2 Adaptive sampling for optimization

Instead of gaining system knowledge, the goal of using surrogate models can be simply to
solve an optimization problem that requires an expensive simulation with unavailable derivative
information (Bhosekar and Ierapetritou (2018)). In this case, a surrogate model can be created
to approximate the relationship between the objective function and the decision variables. Two
adaptive sampling strategies can be considered for this purpose (Wang and Shan (2007)):

Sample the design space

Fit surrogate model

Validate surrogate model

Optimize surrogate model

Sample the design space

Fit surrogate model

Sample to find the optimum

Figure 2.5: Adaptive sample approaches for optimization

The first strategy, on the left, includes surrogate model validation and optimization in the
adaptive sampling procedure. Samples are searched to refine the surrogate model approxima-
tion, before it is optimized using an external optimization algorithm. The second strategy, on
the right, consists on using adaptive sampling to directly search for the optimum value of the
underlying function. In this approach, the demand on global model accuracy is lowered since it
is not a criterion for searching adaptive samples (Wang and Shan (2007)).

One important caveat has to be made about the use of an adaptive sampling procedure for
global approximation and further optimization. It is not guaranteed that a surrogate model that
globally approximates the original design space can lead to the global optimum of the under-
lying function when used for optimization. This is because the surrogate model is unlikely to
be sufficiently accurate, initially, in the global optimum region (Forrester et al. (2008)). Addi-
tionally, the optimization algorithm may exploit approximation errors of the surrogate model
(Eason and Biegler (2016)). Also, this approach leads to a inefficient use of time and computa-
tional resources, since samples are wasted on modelling regions with no optima (Forrester et al.
(2008), Liu et al. (2018)). However, the use of globally accurate surrogate models for opti-
mization goals may still be adequate in the cases when these models are made to replace single
units, or subprocesses, to be used in conjunction to solve a larger optimization problem (Straus
(2018), Straus and Skogestad (2018)). Because large scale optimization is not considered in this
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thesis, adaptive sampling methods for the purpose of optimization are preferred. Such methods,
along with strategies to balance exploration with exploitation are discussed in Chapter 3.

2.3.2.3 Adaptive sampling for feasibility analysis

Another application surrogate models is to identify the conditions under which a process
is feasible, ie. able to satisfy all constraints, when expensive black-box simulations are re-
quired (Bhosekar and Ierapetritou (2018), McBride and Sundmacher (2019)). In this problem,
the surrogate is used to approximate the feasibility function, which indicates if constraints are
violated, given a set of input parameters and output simulation data. Adaptive sampling can be
used to reduce the amount of samples, which is usually high due to the presence of multiple
constraints. In contrast to optimization, the objective is to define the boundary of the feasible
space. For more information is referenced to Bhosekar and Ierapetritou (2018) and McBride
and Sundmacher (2019), where references to different approaches are available.

2.3.2.4 Remarks on adaptive sampling difficulties

Adaptive sampling may appear as a definitive answer to sampling for surrogate model
construction. However, their use for high dimensional problems remains a challenge and in
some cases the adaptive search is still computationally expensive (Liu et al. (2018), Garud et al.
(2017a)). Another disadvantage is that both the initial sample size and design are left to be
chosen by the user and, to the best author’s knowledge, no definitive conclusions exist in this
regard.

Through a literature review, it seems that the most popular design is LHD, but in most
cases, its use is not justified. The initial sample size is a compromise between sufficient space
filling samples and a sufficiently large budget of adaptive samples. While a initial sample too
small can lead to poor surrogate model approximation and thus, misguide the adaptive sample
search (Liu et al. (2018)), a large number of initial samples may be a waste of space-filling
function evaluations that could be better spent on adaptive samples. The adequate selection of
the initial sample size depends on the problem dimensionality and complexity, computational
budget and surrogate model characteristics. A set of empirical recommendations considering
these factors is available in Liu et al. (2018). In this work, two heuristics regarding the number
of design variables are considered: a initial sample size with 10� (Loeppky et al. (2009)) and
with 5� samples (Liu et al. (2016)).

2.4 Surrogate models

After variable selection and the generation of samples, a surrogate model is built (or
trained) on the set of input and output variable values, ir order to approximate the function be-
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tween these two sets of variables. There is also the possibility of using a combination of multiple
surrogate models (Bhosekar and Ierapetritou (2018)), but, for brevity sake, these methods will
not be discussed in this work. A variety of machine learning models can be used as surrogates,
from a simple linear regression model to a complex deep neural network. In this section the
most commonly used models are discussed, including interpolation techniques, such as Krig-
ing and Radial Basis Function (RBF), and regression techniques like polynomial regression,
Artificial Neural Networks (ANN) and Support Vector Regression (SVR).

2.4.1 Polynomial Regression

Polynomial regression models are the simplest and perhaps the most widely used surro-
gate model in practice (Forrester and Keane (2009)). A common model example is one with
quadratic effects and linear interactions for two input variables:

.̂ (G1, G2) = V0 + V1G1 + V2G2 + V3G12 + V4G22 + V5G1G2 (2.1)

Despite modelling non-linear effects in the design variables, the advantage of these models is
that they linear in regards to the model parameters, V8 :

.̂ = VΦ (2.2)

Where .̂ is the vector of observed response, Φ(.) is the Vandermonde matrix, and V the vector
of model parameters. These are estimated by Ordinary Least Squares (OLS) which has an
analytical solution, for which Maximum Likelihood Estimate (MLE) is given by:

V = (Φ)Φ)−1Φ). (2.3)

Choosing the polynomial degree is not a simple task. While increasing the model order,
and thus, the number of model parameters, usually results in better approximation, there is a risk
of overfitting, and poor generalization. These models are usually unsuited for highly non-linear
or high dimensional design spaces and may present limited use for more complex engineering
problems, unless restricted to local regions (Forrester and Keane (2009)). For more information
on polynomial models, the reader is referred to the book by Box and Draper (1987).

2.4.2 Gaussian process regression (Kriging)

Gaussian Process (GP) regression (Rasmussen and Williams (2006)), or Kriging (Sacks
et al. (1989), Forrester et al. (2008), Bhosekar and Ierapetritou (2018)), is a non-parametric
probabilistic model that approximates the function as a polynomial trend with residuals mod-
elled by a zero-mean GP:
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~̂ (G) = ℎ(G)) V + 5 (G) (2.4)

Where ℎ(G) is a vector of linear independent basis functions which define the underlying trend,
V the coefficients of these functions. The second term is a GP, which is formally defined as
a collection of random variables, with a joint Gaussian distribution among a finite number of
them (Rasmussen and Williams (2006)). It is completely specified by its mean, which in this
case is considered zero, and covariance function, : (., .):

5 (G) ∼ GP(0, : (G, G′)) (2.5)

In the literature three variants of Kriging can be distinguished by differences in the trend
(Bhosekar and Ierapetritou (2018)). Simple Kriging assumes the trend to be a known constant,
while Ordinary Kriging (OK) assumes this trend is constant but unknown. Universal Kriging
approximates the trend as low order polynomial regression. For simplicity sake, the mathe-
matical derivations are presented for the case of a zero mean constant trend and, considering
deterministic simulations, noise free observations. The covariance function, also referred as
kernel or correlation function, specifies the covariance between two random variables G and G′:

: (G, G′) = f5 2 exp

(
−‖G − G

′‖
;

)
(Exponential) (2.6)

: (G, G′) = f5 2 exp

(
−‖G − G

′‖2
2;2

)
(Squared Exponential) (2.7)

: (G, G′) = f5 2
(
1 +
√
3‖G − G′‖

;

)
4G?

(
−
√
3‖G − G′‖

;

)
(Matérn 3/2) (2.8)

: (G, G′) = f5 2
(
1 +
√
5‖G − G′‖

;
+ 5‖G − G

′‖2

3;2

)
4G?

(
−
√
5‖G − G′‖

;

)
(Matérn 5/2) (2.9)

Where ‖.‖ is the Euclidean norm, f5 the input signal standard deviation and ; the length-
scale, which can be thought as the correlation strength between input variables. These covari-
ance functions are stationary because their value is only a function of ‖G−G′‖. It is also possible
to consider a different ; for each input variable, thereby implementing Automatic Relevance
Determination (ARD) (Rasmussen and Williams (2006)). Considering a matrix of �×= of �
variables with = training points, ~ and ~∗ vectors of training and testing outputs, respectively,
their joint distribution is:

[
~

~∗

]
∼ N

(
0,

[
 (-,- )  (-,-∗)
 (-∗, - )  (-∗, -∗)

] )
(2.10)
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The conditional probability, % (~∗ | -∗, -,~), indicates how likely the response ~∗ is, given the
training data - , ~ and the observed data -∗:

% (~∗ | -∗, -,~) ∼ N ( (-∗, - ) (-,- )−1~,  (-∗, -∗)− (-∗, - ) (-,- )−1 (-,-∗)) ) (2.11)

The best estimate is given by the mean of this predictive distribution, ˆ̀ and the uncertainty of
this estimate is given by its predicted variance f̂2:

~̂ = ˆ̀(G) =  (-,-∗) (-,- )−1~ (2.12)

f̂2 =  (-∗, -∗) −  (-,-∗) (-,- )−1 (-,-∗)) (2.13)

Where  (-∗, - ) denotes the =×=∗ matrix of covariances evaluated at all pairs of training and
test points, and similarly for  (-,- ),  (-∗, - ) and  (-∗, -∗). The model parameters are
estimated from training data, most commonly using Maximum Likelihood Estimate (MLE) or
Cross Validation (CV). For convenience, the log marginal likelihood in MLE is used:

;>6? (~ | -, \ ) = −1
2
~) (-,- | \ )−1~ − 1

2
;>6 |  (-,- | \ ) | −=

2
;>62c (2.14)

Where \ is the vector of model parameters. For a large amount of training data, the com-
putation complexity of Equation (2.14) is high, due to the inversion of the covariance matrix.
Equation (2.14) may present local optima, although this is generally not a significant problem
(Rasmussen and Williams (2006)). For further details on GP regression, the reader is referenced
to Rasmussen and Williams (2006). Other types of kriging models are also available in the lit-
erature, including co-kriging, which uses information of cheaper and more plentiful data from
a lower fidelity source, and gradient-enhanced kriging, that incorporates gradient information
from the black-box function if it is cheaply available. More details can be found in Forrester
and Keane (2009) and Forrester et al. (2008).

2.4.3 Artificial Neural Networks

The development of Artificial Neural Networks (ANN) was motivated by the workings of
the biological brain, which is capable of highly non linear processing, fast pattern recognition
and high parallel computing (Haykin (2009)). ANN can be used for a multitude of different
tasks but in chemical process engineering are mainly used for non linear regression and clas-
sification problems. These models present several advantages such as the ability to represent
highly non linear processes with accuracy, model flexibility and robustness to measurement
noise. Their importance and widespread acceptance in the chemical engineering field is indis-
putable, with already 200 plus references about their use cited by Himmelblau (2008), more
than a decade ago. McCulloch and Pitts (1943) first introduced the single neuron as a comput-
ing machine and based on his work, Rosenblatt (1957) developed a single layer with a single
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neuron for classification problems. ANN can be mainly divided into three different classes
of networks: single-layer feedforward, with no hidden neuron layers, multilayer feedforward,
with one or more hidden neuron layers, and recurrent (Haykin (2009)). In this work, only feed-
forward networks with multiple layers are considered, for which a graphical representation is
presented in Figure 2.6:

bobh

φh

φh

φh

φh

φh

φo

φo

x1

x2

y1

y2

Hidden layerInput layer Output layer

Figure 2.6: Neural network with one hidden layer with 5 neurons, 2 inputs and 2 outputs

Contrary to the previous model types, the flexibility of ANN enables the approximation of
Multiple Input Multiple Output (MIMO) processes. For simplicity, mathematical expressions
are provided considering a network with only one hidden layer:

~̂8 = q> (�qℎ (�G8 + 1ℎ) + 1>) (2.15)

Where ~̂ is the output vector corresponding to input vector G8 , q> and qℎ the activation
functions of the output and input layers, respectively. � and � are the matrices of weights of the
connections between layers, and 1ℎ and 1> are the bias vectors of the hidden and output layer,
respectively. Usually, the activation functions of the output layer are linear, while those of the
hidden layer are sigmoid functions, graphically represented by an S-shape curve:

q (E:) =
1

1 + 4−0E: (Logistic) (2.16)

q (E:) = C0=ℎ(E:) (Hyperbolic Tangent) (2.17)

Where 0 is a slope parameter and E: is the input to the : − Cℎ neuron:

E: =

<∑
8

F8:G8 + 1: (2.18)

F is the connection weight of the input 8 to the neuron : , G8 is a vector of the input variable
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8 values and < is the total number of input variables. These are the most popular activation
functions, but others can also be used, as long as they are differentiable (Haykin (2009)). The
first step in designing an ANN is choosing its architecture, that is, the number of hidden layers
and neurons in each layer, the type of activation function and the connectivity between layers.
This in an inherent downside to the flexibility of ANN, as the number of possible architectures
is very high. It was shown that a network with a single hidden layer can approximate any con-
tinuous function, given enough individual neurons. However, it may require long training times
and lead to poor generalization ability (Haykin (2009)). On the other hand, while increasing
the number of layers can increase the network predictive ability, it requires larger training data
sets and fitting times, due to the larger amount of parameters. There are no general rules for
selecting the number of neurons and layers, so this choice is usually problem dependant and
done by trial and error until model accuracy improves (Himmelblau (2008)). An alternative
approach is to treat these hyper-parameters as decision variables in an optimization problem,
which can be solved through sampling procedures based on extensive evaluating a regular grid,
i.e. grid search, MC sampling or optimization algorithms, even including ones based on surro-
gate models (Bikmukhametov and Jäschke (2020)). After the network architecture is chosen,
its parameters, weights and biases, are estimated by an error backpropagation algorithm which
relies on optimization, usually derivative-based, to determine the weights,F , and biases, 1, that
minimize a loss function � , such as the Mean Squared Error (MSE):

min
F,1

� =

∑=
8=1 (~̂8 − ~8)2

=
(2.19)

This objective function is usually highly non-convex (Himmelblau (2008)), which makes
the optimization problem difficult and computationally expensive to solve, especially with big-
ger networks. For more information regarding ANN cf. Haykin (2009).

2.4.4 Radial Basis Function Network

A Radial Basis Function (RBF) model approximates a function as a linear combination of
basis functions with weight coefficients:

~̂ (G) =
=∑
8=1

_8q (‖G − G8 ‖) (2.20)

Where = is the number of sampling points, G is a n-dimensional vector of design variables, G8
is a n-dimensional vector of design variables at i-th sampling point, called the centre of the
basis function, and _ is the weight coefficient for the i-th basis function. This model can be
interpreted as a special type of multilayer feedforward neural network with no input weights
and a single hidden neuron layer where the centres are the neurons. Each training data point is
a centre, so the layer has size equal to the number of training points. The activation function is

17



2.4. Surrogate models

a radial basis function, for which there are several options:

q (‖G − G8 ‖) = ‖G − G8 ‖ (Linear) (2.21)

q (‖G − G8 ‖) = ‖G − G8 ‖3 (Cubic) (2.22)

q (‖G − G8 ‖) = ‖G − G8 ‖2;>6(‖G − G8 ‖) (Thin-plate spline) (2.23)

q (‖G − G8 ‖) = exp−W ‖G−G8 ‖
2

(Gaussian) (2.24)

q (‖G − G8 ‖) =
√
‖G − G8 ‖2 + W2 (Multi-quadratic) (2.25)

In the equations above, W is a positive used defined constant. This is a hyper-parameter that
improves generalization properties at the expense of model fitting complexity (Forrester and
Keane (2009)). If each training data point is chosen as a centre, the coefficient _ can be esti-
mated considering the interpolation condition:

~ = ~̂ ↔ _ = Φ−1~ (2.26)

Where ~ is a vector of = observations and Φ an =×= interpolation matrix Φ8, 9 = q (‖G8 −
G 9 ‖), 8, 9 = 1, 2, ..., =. Because of this RBF models are exact interpolators. The RBF function
can also be augmented to include a polynomial term (Gutmann (2001),Fang and Horstemeyer
(2006),Bhosekar and Ierapetritou (2018)):

~̂ (G) =
=∑
8=1

_8q (‖G − G8 ‖) +
<∑
9=1

V 9? 9 (G) (2.27)

Where ? is a polynomial function, V the vector of polynomial coefficients and< the total num-
ber of terms in the polynomial. Since the equation is undetermined, orthogonality is imposed
between the vectors _ and V. By combining this condition with the equation above we have the
following system of equations: (

Φ %

%) 0

) (
_

V

)
=

(
~

0

)
(2.28)

Where %8, 9 = ? 9 (G8), 8 = 1, ..., =, 9 = 1, ...,< is a matrix with the values of the polynomial
terms. The weights, _, and polynomial coefficients, V, can be determined by solving the linear
equation system above.

2.4.5 Support Vector Regression

Support Vector Regression (SVR) arises from theory of Support Vector Machine (SVM),
mainly used for classification problems (Haykin (2009)). The SVR prediction takes a form
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similarly to that of kriging or RBF:

ˆ~ (G) = ` +
=∑
8=1

F8k (G, G8) (2.29)

Where ~̂ is the predicted value, ` is a bias, F is the weight coefficient, k (.), which can take
several forms (Haykin (2009), Forrester and Keane (2009)):

k (G8, G 9 ) = G8)G 9 (Linear) (2.30)

k (G 9 , G 9 ) = (G8)G 9 + 1)
3

(Polynomial) (2.31)

k (G8, G 9 ) = 4G?
(
−‖G8 − G 9 ‖2

W

)
(Gaussian) (2.32)

Where 3 is a polynomial degree and W is a user defined constant. Despite the similarities with
other models, the SVR parameters,F , and `, are estimated by solving a quadratic optimization
problem:

min
(U+−U−)

1

2

=∑
8, 9=1

(U+(8) − U−(8)) (U+( 9) − U−( 9))Ψ(G8, G 9 ) + n
=∑
8=1

(U+(8) − U−(8)) −
=∑
8=1

~8 (U+(8) − U−(8))

(2.33a)

s. t.
=∑
8=1

(U+(8) − U−(8)) = 0 (2.33b)

0 ≤ U+, U− ≤ �
=

(2.33c)

The use of a kernel enables that mapping its inner product into a feature space, so the objective
function remains linear and the optimization problem becomes convex. n is a constant that
indicate the approximation error tolerance, which means that samples with an error smaller
than this value will have no loss associated with them. � is a constant that regulates the trade-
off between model complexity and the degree to which errors larger than n are tolerated. The
decision variable is the difference between the values of U , which are Lagrange multipliers. If
this difference is different than zero for a given sample, that point is considered a support vector
and used to define the margins between +n and -n. By substituting the initially defined F for
this value, the SVR prediction is:

ˆ~ (G) = ` +
=∑
8=1

(U+(8) − U−(8))k (G, G8) (2.34)
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` can be calculated by one of two equations:

U+(8) = 0 and ` =
=∑
8=1

(U+(8) − U−(8))k (G8, G 9 ) + n, if 0 ≤ U−(8) ≤ �
=

(2.35)

U−(8) = 0 and ` =
=∑
8=1

(U+(8) − U−(8))k (G8, G 9 ) − n, if 0 ≤ U+(8) ≤ �
=

(2.36)

The main hyper-parameters of SVR are the kernel, and constants n and �. The value of n can
be determined considering the standard deviation of the training data noise, when it is known
(Forrester and Keane (2009)). However, considering a deterministic simulation scenario, in
the present work this parameter is considered to be zero. While there is usually an optimum
value for �, the exact choice is not overly critical, so it is sufficient to test several values of
different magnitudes and see their impact on the prediction error (Forrester and Keane (2009)).
The selection of these hyper-parameters can also be done in the same way as mentioned for
ANN. For more details regarding mathematical derivations and recommendations c.f. Smola
and Schölkopf (2004) and Forrester and Keane (2009), respectively.

2.5 Surrogate model validation

After training the model, a critical step is deciding if it has sufficient quality to accomplish
the objectives for which it was created. The procedure to assess the model quality is referred to
as validation (Bhosekar and Ierapetritou (2018)). Beyond testing the accuracy of the surrogate
model, validation techniques can also be used to tune its hyper-parameters (e.g. number of
layers in ANN, kriging or SVR kernel). The validation procedure requires an additional set of
data, referred to as the test set. When the possibility of acquiring more data is not available,
resampling strategies such as cross validation or bootstrapping can also be used (Bhosekar and
Ierapetritou (2018)). The error between the output variable values in this set and the predicted
output variables is used as a validation metric. In this work, model validation is accomplished
by using an additional test data consisting of =∗ samples and calculating the Root Mean Squared
Error (RMSE):

'"(� =

√∑=∗
8=1
(~∗8 − ~̂8)2

=∗
(2.37)

For additional surrogate model validation metrics and resampling procedures, cf. Bhosekar
and Ierapetritou (2018).
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Chapter 3

Global optimization of black-box problems
using surrogate models

In the first section of this chapter, the concept of Derivative Free Optimization (DFO) is
introduced along with references to some commonly used methods. The following section de-
scribes DFO methods that rely on both local and global surrogate models, describing in detail
two methods used in this work. A brief introduction to multi-objective optimization is made in
the third section. The case studies considered in this work only include non-constrained opti-
mization problems with continuous decision variables. Therefore, for the sake of brevity, topics
such as how to incorporate inequality constraints and integer design variables in Surrogate-
Based Optimization (SBO) are not discussed. The reader is referred to Forrester and Keane
(2009), Gelbart et al. (2014), Boukouvala et al. (2016) and Greenhill et al. (2020).

3.1 Derivative free optimization of black box functions

A black-box, or when partial information is available, grey-box, optimization problem can
be defined as (Boukouvala et al. (2016)):

min
G

5 (G) (3.1a)

s.t.

ℎ: (G) = 0 (3.1b)

6: (G) ≤ 0 (3.1c)

ℎD: (G) = 0 (3.1d)

6D: (G) ≤ 0 (3.1e)

G;1 ≤ G ≤ GD1, G ∈ R� (3.1f)
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Where 5 (G) is the objective function to minimize, G is the vector of �-dimensional deci-
sion variables, with upper and lower bounds GD1 and G;1 , respectively, ℎ and 6 are the equality
and inequality constraints. The subscripts : and D: indicates if their algebraic expressions are
known or unknown, respectively. No assumptions can be made in regards to the form of 5 (G)
including convexity properties, and explicit closed form derivative expressions with regards to
the design variables are unavailable. When the underlying system is also considered computa-
tionally expensive, estimating them numerically is prohibitive. Discontinuities may also exist,
causing derivative information to be unreliable (Boukouvala et al. (2016)). Because of this,
using methods based on finite differences are generally of little or no use in these situations
(Rios and Sahinidis (2012)). A solution for this type of problems is the use of Derivative Free
Optimization (DFO) methods. One important note must be made, contrary to what the previ-
ous designation may imply, algorithms used to solve this class of problems may use derivative
information of another function other than the original.

DFO methods usually rely on direct search, through objective function evaluations, to find
the optimum and can be classified into several categories: the ones that use either local or global
search, deterministic or stochastic methods and model-free or model-based methods (Rios and
Sahinidis (2012)).

Global deterministic methods include the DIRECT method (Jones et al. (1993)), while lo-
cal methods include the Nelder and Mead simplex (Nelder and Mead (1965)), and commonly
used global stochastic include evolutionary algorithms such as Genetic Algorithm (GA) (Hol-
land (1975)) and Particle Swarm Optimization (PSO)(Kennedy and Eberhart (1995)). An in
depth review of the state of the art on DFO is out of the scope of this thesis, so the reader is
referred to Rios and Sahinidis (2012) or (Boukouvala et al. (2016)) for further information.

The main disadvantage of popular DFO methods such as GA or PSO is that they typically
require a significant number of objective function evaluations to converge (Boukouvala et al.
(2016)). This can make their use impractical for expensive simulations. In these cases, the
use of model-based methods to solve expensive DFO problems is advantageous, since these
methods usually require less objective function evaluations to find the global optimum.

The problem with optimization of black-box functions is that because no derivative infor-
mation is available, theoretical optimality properties such as the Karush-Khun-Tucker (KKT)
conditions cannot be applied directly to determine if a point is a local optimum. In addition,
when using global DFO methods convergence to the global optimum is also not guaranteed.
However, the motivation is usually to find a "good enough", or close to optimal, solution given
enough computational resources (Yang et al. (2018)).
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3.2 Derivative Free Optimization using Surrogate Models

Model-based methods or Surrogate-Based Optimization (SBO) as the name implies, rely
on a surrogate model of the original objective function that is used to guide the search for the
global optimum in a pre determined bounded domain or design space. There are two main
approaches to using model-based methods in optimization: using local or global models (Rios
and Sahinidis (2012), Boukouvala et al. (2016), Bhosekar and Ierapetritou (2018)).

In local, or trust-region, model-based methods, a surrogate model is built in the neigh-
bourhood, referred to as a trust region, of a sample in the design space, where it is expected to
be accurate. The radius of this trust region is iteratively refined by contraction or expansion,
according to a defined metric, taking into account the current iteration optimum value. When
this radius decreases below a given threshold, the algorithm terminates. Because these meth-
ods are general, several model types can be used, such as linear interpolations (Powell (1994)),
quadratic interpolations (Powell (2009)) or even RBF (Regis and Wild (2017)). A kriging based
Efficient Global Optimization (EGO) method was also used in a trust-region framework (Regis
(2016)). It has been shown that these local-search methods can guarantee first-order Karush-
Khun-Tucker (KKT) conditions under certain assumptions, as the gradients of the surrogate
model approach those of the black-box function and the trust region radius tends to zero (cf.
Biegler et al. (2014), Eason and Biegler (2016) and references therein). However, despite their
attractiveness, trust-region methods only guarantee local optimality at best, as they do not in-
corporate exploration (Jones (2001), Forrester and Keane (2009)). They can still be used for
global optimization if a multi-start approach is employed (Regis and Shoemaker (2007)), but an
alternative is to use model-based methods that aim to approximate the entire design space.

Global model-based methods rely on a surrogate model that approximates the entire design
space or multiple parts of the design space. An adaptive sampling procedure is used to refine
the surrogate model and guide the search for the optimum. As demonstrated by Jones (2001),
using pure exploitation by simply minimizing the surrogate model and iteratively using the
predicted optimum as an adaptive sample does not necessarily lead to convergence to even a
local optimum. A better alternative is to, as described in Chapter 2.2.2, use a balance of local
exploitation, to improve the current optimum and global exploration, to escape local optima and
to not disregard regions where the global optimum might be located. The most popular global
model-based methods use either a kriging or a RBF surrogate model, due to their interpolating
ability. The former methods usually consider the optimization of an acquisition function that
balances exploration and exploitation (Jones et al. (1998), Jones (2001), Brochu et al. (2010),
Frazier (2018)).Those using RBF usually rely on the minimization of a bumpiness function
(Gutmann (2001)) or a merit function and MC sampling (Regis and Shoemaker (2007), Wang
and Shoemaker (2014)).

Also worth mentioning is GLIS, recently developed by Bemporad (2020), uses a combi-
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nation of RBF and Inverse Distance Weighting (IDW). It showed comparable performance to
a commercial (MATLABr) implementation of BO for a variety of test functions and a hyper-
parameter tuning problem, while being computationally lighter.

For simplicity sake, only the methods used in this work, BO and MSRS, will be discussed
in further detail. These methods were chosen due to popularity and the availability in user
friendly commercial implementation in MATLABr toolboxes. Specifically, BO is implemented
in bayesopt in the Statistics and Machine Learning Toolbox)" and MSRS in surrogateopt in
the Global Optimization Toolbox)" .

3.2.1 Bayesian Optimization using Gaussian process regression

The term Bayesian Optimization (BO) (Brochu et al. (2010)) is typically used to describe
methods that employ a kriging surrogate model on the objective function and an acquisition
function with the purpose of finding the global optimum in a bounded domain. The estimated
prediction variance is used to formulate a probabilistic framework in the adaptive sampling
procedure. It was first popularized through the Efficient Global Optimization (EGO) algorithm,
developed by Jones et al. (1998). A short general algorithm is presented in 1.

Algorithm 1: Pseudo Algorithm for Bayesian Optimization
Result: Value G∗that minimizes 5 (x)
1. Generate initial samples -
2. Evaluate the objective function 5 (x) for each sample in -
3. Fit a Kriging model on 5 (x)
while # < #<0G do

4.1. Find the value G∗ that optimizes the acquisition function
4.2. Evaluate the objective function on G∗ and obtain 5 (G∗)
4.3. Augment the training dataset with G∗ and 5 (G∗) and refit the kriging model

end
5. Return best found value G∗

A initial set of samples is generated using a design such as the ones mentioned in Chapter
2. The objective function is evaluated on those samples and a kriging model is then fitted to
approximate the input-output relationship. The kriging trend and kernel are not fixed and can be
chosen based on user preference or underlying system information. The algorithm then begins
an iterative search for the next sample point that relies on the optimization of an acquisition
function, or infill criteria (Rojas-Gonzalez and Van Nieuwenhuyse (2019)). This step is the
core of BO. The most common acquisition functions are the Lower Confidence Bound (LCB),
Probability Of Improvement (POI) and Expected Improvement (EI). Other entropy-based infill
criteria (Hennig and Schuler (2012), Hernández-Lobato et al. (2014)), can also be used, but
these are not considered in this work. Since the acquisition function formulation depends on
whether the goal is maximization or minimization, is important to clarify that this work consid-
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ers a minimization problem.

Cox and John (1997) introduced a method for selecting evaluation points based on the
minimization of a statistical Lower Confidence Bound (LCB) of the prediction:

!��(G) = ˆ̀(G) − :f̂ (G) (3.2)

Where ˆ̀ and f̂ are the predicted mean and standard deviation, respectively. : is a user
positive constant that controls the exploration-exploitation trade-off. A larger value favours
exploration while a lower one favours exploitation. Choosing an adequate value for : presents a
disadvantage in using this acquisition function (Forrester et al. (2008)). In bayesopt, this value
is set to 2 by default.

The following acquisition functions consider a measure of improvement, � , over the current
best value, 5<8=, to select the next sample, G :

� (G) = 5<8= − 5 (G) (3.3)

Given � , the Probability Of Improvement (POI) criterion is used to maximize the probabil-
ity that the next sample G results in a improvement below a target, Z<5<8=:

% [� (G) ≤ Z ] = % (5 (G) < � (G)) =

Φ

(
5<8=−ˆ̀(G)−Z

f̂ (G)

)
, f̂ (G) ≠ 0

0, f̂ (G) = 0
(3.4)

Where Φ(.) is the normal Cumulative Distribution Function (CDF). While the use of this
criterion can result in global convergence (Forrester et al. (2008)), the main disadvantage is that
no quantitative measure of the improvement is considered, only the probability that G provides
one, which is highly sensitive to the choice of the target (Jones (2001)). A low Z can result in
highly local search being done in the vicinity of a local optimum before exploring other regions
while a high Z can result in excessive global search before improving promising solutions. To
avoid these issues, it is suggested to cycle through several values of Z (Jones (2001)), however, a
more practical approach may be to use the an infill criterion that directly considers a magnitude
of the improvement.

Instead of maximizing the probability of an improvement existing, POI, Jones et al. (1998)
suggests maximizing the expectation of � , which can be evaluated analytically by:

� [� (G)] =

(5<8= − ˆ̀(G))Φ

(
5<8=−ˆ̀(G)
f̂ (G)

)
+ f̂ (G)q

(
5<8=−ˆ̀(G)
f̂ (G)

)
, f̂ (G) ≠ 0

0, f̂ (G) = 0
(3.5)

Where q (.) is the normal Probability Density Function (PDF). The advantage of EI is
that, contrary to the other acquisition functions, no parameter needs to be tuned and because a
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high ˆ̀ results in exploitation and a high f̂ favours exploration, the trade off between the two
is automatically established. However, difficulties arise when using the EI criteria, because
Equation (3.5) can present local optima that difficult the adaptive sample search (Bhosekar and
Ierapetritou (2018)). Due to this, the acquisition function optimization may itself become the
limiting step in some cases.

The optimization algorithm used for the acquisition function maximization impacts both
optimum search results and required time. Since the kriging model is assumed to be evaluated
cheaply, an algorithm that requires many evaluations can be used. Brochu et al. (2010) recom-
mends DIRECT, while algorithms referenced in Rojas-Gonzalez and Van Nieuwenhuyse (2019)
use GA. MATLABr’s bayesopt uses the Nelder and Mead Simplex through fminsearch.

The objective function is evaluated at the optimum value of the acquisition function, this
sample is added to the initial set and the model is refitted. A new iteration begins, until a pre-
determined stopping criterion is met. This can be related to time spent or maximum number
of objective function evaluations. Jones et al. (1998) also suggested stopping the search when
the difference of the value of EI is less than a given tolerance than the current best objective
function value. Because of the possibility of over exploitation in a local minimum, defining
convergence based on the acquisition does not guarantee that the global optimum is found. This
means that defining a convergence stopping criterion is subjective (Forrester and Keane (2009)).

Despite the advantages of BO, this approach suffers from practical limitations in high
dimensional problems, with more than 20 decision variables (Greenhill et al. (2020)). This is
shown in Wang and Shoemaker (2014), where EGO resulted in worse performance against other
algorithms for test problems with more than 30 design variables.

3.2.2 Stochastic Response Surface using Radial Basis Functions

Metric Stochastic Response Surface (MSRS) was developed by Regis and Shoemaker
(2007) and similarly to BO, refines a surrogate model using an auxiliary function to deter-
mine the selection of adaptive points. The two main differences is that this method uses a non
probabilistic RBF model, and instead of solving an auxiliary optimization problem to find the
adaptive sample, MSRS uses MC sampling to generate a large number of candidate points, eval-
uating them on a merit function. The one with the best value is then selected as the next value
to sample the objective function. The assumption is that RBF model is fast to evaluate on a high
number of candidate points and can therefore result in time efficiency when compared to an op-
timization based search approach such as BO (Regis and Shoemaker (2007)). The MATLABr

implementation, surrogateopt, used in this work uses the Multistart Local MSRS algorithm,
which showed superior results in problems up to 14 dimensions compared to other algorithms
(Regis and Shoemaker (2007)). A description of the algorithm is made in 2.
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Algorithm 2: Pseudo Algorithm for Local MSRS
Result: Value G∗ that minimizes 5 (x)
1. Generate initial samples -
2. Evaluate the objective function 5 (x) on each sample in -
3. Fit a RBF model on 5 (x)
while # < #<0G do

4.1. Generate thousands of pseudo-random normally distributed candidate points
around best found value of G∗, or incumbent

4.2. Estimate output data values using the RBF approximation of the objective
function

4.3. Calculate merit function value for each candidate point
4.4. Evaluate original objetive function on the candidate with highest merit
function value 5 (G∗)

4.5. Augment the training dataset with G∗ and 5 (G∗) and refit the RBF model
if All x are whitin minimum distance then

Go back to step 1
end

end
5. Return best found value G∗

Similarly to BO, a set of initial samples is generated using DoE, evaluated on the objective
function and a surrogate model is fitted. surrogateopt uses a cubic RBF model with a linear
polynomial term. The algorithm begins a loop where, at each iteration, a set of hundreds or
thousands of candidate points is generated. Contrary to the Global MSRS algorithm, which
randomly generates these candidates uniformly across the whole design space, the Local MSRS
generates these points by adding normally distributed perturbations around the best current
solution, or incumbent. Those candidate points are evaluated on a merit function that considers
both a weighted sum of two scaled criteria:

5<4A8C (G) = F
5̂ (G) − 5̂<8=
5̂<0G − 5̂<8=

+ (1 −F)3<0G − 3 (G)
3<0G − 3<8=

(3.6)

In the first term of the above equation, 5̂ (G) is the estimated objective function value of the
candidate point and 5̂<0G and 5̂<8= are the estimated maximum and minimum objective function
values of all the candidate points, respectively. The second term is a distance criterion where
3 (G) is the minimum distance between the candidate point and previously evaluated samples,
3<0G is the maximum minimum distance and 3<8= and the minimum value of 3 (G). F is a weight
that varies between 0 an 1 and determines the trade-off between exploration and exploitation. A
higher value gives more importance to exploitation while a lower value assigns favours explo-
ration. The point with the minimum merit function value amongst all candidates is selected as
the next sample to evaluate on the objective function. The dataset is then augmented with both
values, a RBF model is refitted to that dataset and a new iteration begins.

The Local MSRS can be thought as a local search algorithm, exploring the neighbourhood
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of the current best solution, which can result in convergence to a local minimum. To avoid this
situation, global search can be achieved by restart the algorithm when it appears to have locally
converged. The algorithm restarts by generating a new set of initial samples completely, as to
avoid bias in the optimization trajectory (Regis and Shoemaker (2007)). surrogateopt generates
this new set of samples using a QRLD sequence. The algorithms ends when a maximum number
of objective function evaluations is achieved.

MSRS was extended to handle higher dimensional (above 30 design variables) problems
with the algorithms DYCORS (Regis and Shoemaker (2013)) and SO-SA (Wang and Shoe-
maker (2014)). In the latter reference, a comparison between different algorithms for high
dimensional test problems was made.

3.3 Multi-objective surrogate based-optimization

Multi-objective optimization refers to problems where two or more objectives are simulta-
neously present:

min
G
[5 1(G), 5 2(G), ..., 5< (G)] (3.7a)

s.t.

G;1 ≤ G ≤ GD1 (3.7b)

Where< is the total number of objectives. Generally, these can be conflicting, i.e., a solu-
tion may improve one objective while worsening another. In these problems there is no single
global solution, but instead a set of optimal solutions to choose from. The concept of Pareto
optimality is used to define these optimal solutions (Marler and Arora (2004)). A point is Pareto
optimal if there is no other point that improves all of the objective functions simultaneously and
the set of Pareto optimal points forms the Pareto set. The solution is chosen from this set by
articulating the preference, or relative importance, of the different objectives, which can be ar-
ticulated a priori, a posteriori or even not at all (Marler and Arora (2004)). In the first category
of methods, the user specifies a preference function beforehand that aggregates the multiple ob-
jectives into a single one, which is solved by traditional single objective optimization methods.
In a posteriori methods, the Pareto set is approximated and the solution is chosen from this
representation based on the user preference. For additional information, the reader is referred
to Marler and Arora (2004) for review of multi-objective optimization methods and Rangaiah
et al. (2020) for applications and recommendations in chemical engineering.
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When the multiple objectives are converted into a single one, standard optimization algo-
rithms can be used. However, the approximation of the Pareto front is commonly done using
evolutionary algorithms, such as GA or PSO(Marler and Arora (2004), Rangaiah et al. (2020)).
Since these require a high number of function evaluations, their use for multi-objective opti-
mization problems that require expensive simulations can lead to a large computational burden,
motivating the use of surrogate models. These can be used as a standalone optimization ap-
proach or in conjunction with evolutionary algorithms, see Díaz-Manríquez et al. (2016) or
Chugh et al. (2017) for a review.

When using BO for multi-objective optimization problems, two approaches can be taken
(Rojas-Gonzalez and Van Nieuwenhuyse (2019)): either considering the previously mentioned
single objective infill criteria and aggregating the multiple objectives into a single one, or con-
sidering specific criteria for multiple objectives. An extensive discussion on BO algorithms
for multi-objective optimization of is made by Rojas-Gonzalez and Van Nieuwenhuyse (2019).
When dealing with multi-objective optimization, contrary to BO, the MSRS method can only
be used by scalarization of the multiple objectives into a single objective function.

In this work, the multi-objective problem is transformed into a single objective by defining
the preference a priori. While several methods exists, the most common, straightforward and
simple is the weighted sum:

min
G

<∑
9=1

F 9 5 9 (G) (3.8)

F represents the objective weight vector of length <, and the choice of these values reflects
the preference of the decision maker towards each objective. A larger weight reflects higher
importance. Despite the simplicity of this method, it possesses several drawbacks (Marler and
Arora (2004)). Selecting the weights to reflect desired preference is non-trivial and one may
have to re-solve the optimization problem with new weights to find an acceptable solution. Ad-
ditionally, differences in objective scales may result in the weights being used to mask a scaling
problem, instead of assigning preferences. This is especially problematic when considering
ranking methods, which order the weight values according to preference (Marler and Arora
(2010)). Another drawback is that if the Pareto set is not convex, there are no guarantees that
the weighted sum method finds all Pareto optimal points. Finally, even if the weights are con-
sistently varied, an uneven distribution of the Pareto front may arise. Nonetheless, this method
is easy to use and applicable for situations where the preference does not need to be precisely
defined. For more information on the method, cf. Marler and Arora (2004), Marler and Arora
(2010) and references therein.

It is important to state that while specific BO algorithms that use scalarization exist, in
this work, this is done outside the bayesopt algorithm, to make performance comparison with
surrogateopt fair.

29



3.3. Multi-objective surrogate based-optimization

30



Chapter 4

State of the art on surrogate modelling in
process control

In this chapter, applications of surrogate models, with an emphasis on surrogate-based
optimization, for process control will be reviewed in detail. Surrogate models have recently
been used to reduce complexity in optimization frameworks for process control and related
fields, such as integration of control with planing and scheduling (Dias and Ierapetritou (2020))
and process design (Rafiei and Ricardez-Sandoval (2020)). However, in this thesis the focus is
restricted to controller design and tuning, so the aforementioned topics are out of the scope of
this work. Also, special emphasis is given to PID and MPC tuning, and less to explicit-MPC.

4.1 Optimal controller tuning and design

4.1.1 Proportional Integral Derivate (PID) control

Proportional integral derivative (PID) controllers are linear, parametric controllers widely
accepted in industrial process control applications and have been so for decades (O’Dwyer
(2009), Yu (2006)). However, despite their long time application, surveys have shown that their
performance in practice is still subpar, with only a fraction of the controllers displaying good
or even acceptable control performance (cf. O’Dwyer (2009) and Yu (2006) and references
therein). Lack of controller performance can be attributed to several factors, one of which
is poor tuning. Because the majority of regulatory layer controllers is of the PID type and
these also serve as the foundation of more advanced control strategies such as Model Predictive
Control (MPC) (Figure 1.2), their optimal design is a relevant concern in the process industries.
PID controllers can generally be tuned using either model-based or model-free methods (Seborg
et al. (2017)).

Model-based methods rely on the use of a dynamic model of the process, generally a lin-
ear model, such as a low order transfer function, to estimate the controller parameters. These
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parameters are typically determined by deriving an analytical expression for the controller con-
sidering the desired closed-loop response (Direct Synthesis (DS)), by considering an internal
process model within the closed loop model (Internal Model Control (IMC)) or by analytical
expressions that relate the controller parameters with those of the process model, known as
controller tuning relations (O’Dwyer (2009)). Additionally, the model could be used to ob-
tain the system frequency domain response, which can be used to tune the controller, but these
techniques are not considered in this work.

Because a mathematical process model always presents at least some degree of inaccu-
racy, plant physical tests are always required. Model-free methods do not require a process
model and estimate the controller parameters based on the system closed loop response sub-
ject to different experimental tests, some times requiring extensive manual tuning. Because
the system’s real time response is used to tune the controllers, these methods are also referred
as on-line or field-tuning (Seborg et al. (2017)). In an effort to reduce the amount of manual
tuning, systematic approaches were developed, including the Continuous Cycling (Ziegler and
Nichols (1942)) and the Relay feedback auto-tuning (Åström and Hägglund (1984)). These
methods use a controller to induce an sustained oscillatory response of the system, from which
ultimate frequency parameters are estimated and used in heuristic tuning relations to determine
the controller parameters. In the first method, the controller is placed on Proportional (P) mode
and, after a small setpoint change, the controller gain is iteratively increased until a sustained
oscillation occurs. In the second method, this oscillatory response is obtained by temporarily
replacing the PID with an on-off controller, or relay. The latter method has been favoured in
an industrial setting because of its simple implementation, ability to be easily automated and
the requirement of a single experiment (Yu (2006)). In addition, the process is not pushed to a
stability limit (Seborg et al. (2017)). The ability to provide automatic tuning is especially rele-
vant when there are hundreds or thousands of control loops, since manually tune each controller
would require a great deal of time and effort.

If a model of the process is not available, one suitable for the purpose of controller tuning
can be derived though an open loop step test on the physical plant. In this test, the controller
is changed to manual operation, a step change is made on the manipulated variable, and the
process model parameters are estimated based on the response, or reaction curve (Ziegler and
Nichols (1942), Seborg et al. (2017)). The main disadvantage of this procedure is that due to
open loop operation, it is not applicable for open-loop unstable processes. Also, the process
may deviate significantly from the desired nominal operating range.

It is relevant to note that there has been an effort to establish methodologies that enable the
estimation of a low order linear model of the system based on closed-loop experimental tests.
The motivation is to gain system knowledge with smaller induced deviations from nominal
operation conditions and to avoid safety issues due to instability caused by the experiments,
especially when the system is open-loop unstable (Liu et al. (2013)). This can generally be
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done either through a closed-loop step test or the Relay feedback method.

In the first test, a step change is made in the controlled variable setpoint and knowing the
response and the controller structure, a process model is then estimated. In the second method,
the characteristics of the oscillatory response under relay control are used to estimate the model.
Once an approximate model is available, model-based controller tuning relations can be used
(Marchetti et al. (2001), Yu (2006), Berner et al. (2016)). For an extensive review of closed-loop
system identification methods using step and relay tests, consult Liu et al. (2013).

Also worth mentioning is the article by Berner et al. (2018), were the performance of two
commercially available and widely used PID autotuners are compared with recently developed
methods. These rely on system identification trough a relay test on the physical process, fol-
lowed by model-based tuning methods. It was shown that present day computing resources
allow an opportunity for improving the current performance of industrial autotuners, which are
largely based on ideas derived decades ago, when such resources were not available.

A dynamic process model can also be used in computer simulation to gain insight on the
process dynamic behaviour, to test different control scenarios and structures or to compare be-
tween controller tuning strategies, including, but not limited to, the previous methods. If this
model is highly complex or its mathematical structure is unknown such that a low order lin-
ear model is difficult to derive mathematically, the previously mentioned system identification
techniques can also be used in simulation.

When an sufficiently accurate process model exists, computer simulation can also be used
to tune controllers through a more systematic and automated approach that relies on optimiza-
tion (Åström and Hägglund (2006)). This is the general idea behind controller tuning relations
based on the minimization of an integral error criteria. The controller parameters are optimized
for a set of different low order transfer function process models with varying parameter values.
Tuning relations are then developed by regressing the optimum controller parameters as a func-
tion of the process model parameters (Visioli (2001), Åström and Hägglund (2006), O’Dwyer
(2009)). Despite providing useful benchmarks, these tuning relations are generally not robust
(Seborg et al. (2017)). Lack of robustness arises due to several reasons, including uncertainty in
the model parameters or process non-linearity. While the former can be reduced by including
quantitative robustness metrics as constraints in the optimization problem, a practice commonly
disregarded (Åström and Hägglund (2006)), non-linearity can be taken into account by consid-
ering a non-linear process model in the simulated closed-loop response. This can include a data
driven, a first principles model or a combination of the two. An optimization problem can be
then formulated where the controller parameters are optimized to minimize an objective func-
tion considering a combination of suitable quantitative metrics. A simplified block diagram of
this approach is presented in Figure 4.1.
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Optimization algorithm

Closed-loop simulation

K(i+ 1) J(K(i))

Figure 4.1: Flowchart of simulation optimization tuning (K - vector of controller parameters, J
- performance function, i - current iteration)

The advantage of using simulation based optimization is that the controller parameters
are optimally and automatically determined according to the desired criteria. The flexibility
to consider multiple objectives also enables tuning other types of controllers such as cascade
controllers or multiple interactive single loop controllers. This while enabling the use of a
simulated response from a more rigorous process model, including those available in external
commercial simulation platforms such as Aspen Plusr. This approach can therefore reduce
trial and error while using higher fidelity simulation experiments, inevitably saving time and
reducing engineering effort. There are, of course, disadvantages. Because multiple objectives
are simultaneously considered, making this a multi-objective optimization problem, the objec-
tive function and the trade-off between different conflicting objectives is difficult do formulate.
Also, because no explicit derivative information is available, DFO methods are recommended.
Popular stochastic algorithms can be found in the literature, including GA (Visioli (2001)) and
PSO (Latha et al. (2013)). However, these methods are usually inefficient in terms of objective
function evaluations, which can be costly when the simulation experiment is time consuming.
This is especially the case when the process non-linear model is high order and complex, de-
scribed by a high number of differential equations. Recent years have shown an increase in the
use of surrogate-based optimization, especially BO, to optimally tune and design controllers.

Yang et al. (2015) compared two multi-objective BO algorithms, EHVI-EGO and SMS-
EGO, with an evolutionary algorithm to optimally tune a PID controller for two linear plant
models. The optimization objective was to minimize both settling time and percentage of over-
shoot in a servo control problem. Both surrogate based algorithms, particularly EHVI-EGO,
out-performed the evolutionary algorithm for a fixed maximum number of function evaluations,
both dominating the average and best Pareto front. This means that surrogate based algorithms
can converge faster to the "ideal" Pareto front with fewer evaluations.

In addition to single-loop PID, BO has also been applied to tune cascade controllers by
Khosravi et al. (2020) for a axis drive model obtained using first principles and system iden-
tification. The controller structure consisted of a cascade sequence, with a PI and P controller
in the inner and outer loops, respectively. The tuning procedure was sequential, first tuning the
inner loop controller, then fixing its parameters and tuning the outer loop controller. The tun-
ing problem was formulated as a multi-objective optimization scalarized by the weighted sum
method. BO was compared with grid search, Z-N method, Relay autotuning and ITAE criterion.
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Controllers tuned by BO displayed superior performance than traditional tuning methods and
with almost identical gains as those obtained by grid search, which requires extensive function
evaluations. It was also shown that the size of the initial sample had an impact on the number
of iterations needed for BO to converge.

It is important to state that while the use of simulation optimization methods for control
system tuning can reduce time and aid the decision-making process, it does not exclude tests
on the physical system. At best, these methods can provide a good first estimate for fine tuning
the controller parameters on site, if necessary. Also, the process model must be sufficiently
accurate for the simulations to provide meaningful results.

Interestingly, surrogate-based optimization, especially BO, has also been used as an al-
ternative to conventional physical experiments in on-line automatic controller tuning. In this
model-free method, the relation between controller parameters and the objective function is
approximated using surrogate models based on the direct measurements of the closed loop
response of the physical process. Adaptive sampling is then used to suggest new controller pa-
rameters to be tested. Because the algorithm is efficient in regards to used data, the assumption
is that it can optimize the controller performance given a limited number of costly physical ex-
periments. However, due to the exploratory nature of the algorithms, the optimization procedure
has to be adapted in order to maintain safe operation throughout the experiment.

Sui et al. (2015) proposed SafeOpt, where safety constraints were added to the BO al-
gorithm. Berkenkamp et al. (2020) later extended this method for multiple constraints with
SafeOpt-MC. An alternative approach is Safe Active Learning (SAL) (Schreiter et al. (2015))
for control, where a GP model of the objective function depending on the controller parameters
is actively learned by iteratively placing samples that maximize entropy. The model is then used
in off-line optimization to find the optimal parameters. The design space is divided into safe
and unsafe sets, and an additional discriminative model is trained to determine to which set a
sample belongs. Safety constraints regarding the discriminative model are included in the active
learning optimization problem, to probably avoid parameter regions that are known to lead to
unsafe operation.

Schillinger et al. (2017) modified BO to include a discriminative model as a constraint in
the acquisition function optimization. Their approach, Safe BO, was compared with standard
SAL to tune a PI controller of a high pressure engine fuel supply system in a test vehicle. Safe
BO required fewer function evaluation to converge to a better result, while SAL lead to higher
exploration.

Khosravi et al. (2019) compared SAL with SafeOpt-MC to tune a heat pump digital PI
controller based on a first principles model with parameters estimated using historical data. The
tuning objective was to minimize both the overshoot and settling time, using the weighted sum
method. Safety constraints were added to reflect concerns on using the procedure in the real
process. Both algorithms converged to a solution identical to the one obtained using grid search,

35



4.1. Optimal controller tuning and design

although SafeOpt-MC displayed much faster convergence with less exploration.

After performing a literature review, it is noted that applications of surrogate-based op-
timization to tune PID controllers in chemical process case studies appears to be relatively
unseen, in simulation experiments or otherwise. While testing the benefits of these methods,
especially SafeOpt-MC or safe BO, as an alternative for model-free autotuning of industrial
controllers is an interesting idea, there are still advantages to investigate their use in a simu-
lation scenario. This is especially the case when testing preliminary control structures after
process design, when simulations are the only source of data available.

4.1.2 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an advanced control strategy that uses a process model
to predict its future behaviour and determine the optimal sequence of control actions by solving
an optimization problem on-line. The model can be either linear, usually in the form of a
state-space matrix, or non-linear, in the case of Non-linear Model Predictive Control (NMPC).
For more details the reader is referenced to reviews by Morari and Lee (1999) or Forbes et al.
(2015) and the book by Rawlings et al. (2017). In addition to the quality of the prediction
model, MPC performance of an MPC controller is dependent on the selection, or tuning, of
several parameters. Beyond trial and error, methods to select these parameters are divided
into heuristics, pole-placement or optimization, usually multi-objective (Alhajeri and Soroush
(2020)). The latter is the focus of this section. A recent extensive review of tuning guidelines
and methods for linear MPC controllers is provided in Alhajeri and Soroush (2020).

Because this tuning is a black-box optimization problem, without closed-form derivative
expressions, similarly to PID tuning, it is usually solved using GA (Feng et al. (2018), Ra-
masamy et al. (2019)) or PSO (Nery Júnior et al. (2014)). The same motivation to use surrogate-
based optimization in PID tuning also applies to MPC, however, it can be argued that using it
for the latter offers more benefits. This is due to the manual effort associated with MPC tun-
ing, lack of systematic approaches and especially since closed-loop simulations are more time
consuming, because they require repeated solutions of an optimization problem. MPC design
and tuning using computer simulation is usually a necessary pre-commissioning activity (Se-
borg et al. (2017)). Therefore, less trial and error and time spent in this stage leads to quicker
deployment.

It is noted that BO has also been used in the field of robotics to solve black-box optimiza-
tion problems in optimal control, Linear Quadratic Regulator (LQR), to optimize the weights
(Marco et al. (2016)) and to actively learn the state-space model (Bansal et al. (2017)) based on
closed-loop physical experiments on the real system. However, cases regarding MPC applica-
tions are discussed in more detail.

Instead of only optimizing the MPC parameters, similarly to Bansal et al. (2017), Piga et al.
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(2019) propose using BO to derive the prediction model based on closed-loop performance.
The rationale was that instead of treating system identification and control as two separate
tasks, the process model should not necessarily be the one that minimizes a prediction error
metric, but instead the one which provides the best closed-loop performance. A hierarchical
control structure consisting of an inner loop digital PID controller and an outer loop MPC
was considered. The approach was tested on a numerical example consisting of an inverted
pendulum, optimizing the state-space model matrix entries, the prediction horizon and the PID
controller gains. It was shown that the approach resulted in acceptable control performance
with no previous knowledge of the system dynamics or prediction accuracy requirements.

Forgione et al. (2019) used GLIS to optimize the parameters of a linear MPC with embed-
ded hardware to ensure real-time implementation constraints on a simulated inverted pendulum.
The goal was to optimize the weights, control and prediction horizons, the state observer noise
covariance matrices and soft constraints tolerances, for a total of 14 parameters. The method
was successfully applied using two hardware platforms of different capability.

One considerable difficulty with using optimization methods to tune MPC controllers is to
define the objective function to reflect the preference between different objectives. For multi-
objective optimization this includes defining preferences a priori. This could be a considerable
problem when the user does not possess extensive knowledge on MPC (Zhu et al. (2020)). The
problem could be avoided by defining the preference by choosing a solution after approximating
the Pareto set. However, this could be problematic when many objectives are present. Also,
approximating this set could be impossible when performing tests on the real process.

Ramasamy et al. (2019) suggests iteratively cycling through weights when using the weighted
sum method for multi-objective optimization. Their procedure uses an interactive decision tree,
queuing the user at each iteration if closed-loop performance is improved. In their work, a GA
was considered.

Zhu et al. (2020) proposed that instead of using a completely automated search relying
on a single quantitative objective, a semi-automated approach based on qualitative pairwise
comparisons of closed-loop responses could be used. The motivation is that often simply stating
that response "A" is better than response "B" is easier to reflect user preference. Based on two
close-loop responses, the user is queued to which one is better, and a GLIS based algorithm
is used to suggest new combinations based on that classification, until a maximum number of
function evaluations is met. Simulations on a simple chemical reactor case study showed the
approach led to comparable performance with surrogate-based optimization using a quantitative
objective function, defined by trial and error, while using a limited number of experiments.
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4.2 Surrogate-based optimization for NMPC

Non-linear Model Predictive Control (NMPC) considers the use of a non-linear prediction
model for MPC, which turns the on-line optimization problem into a complex non-convex NLP.
Derivative-based algorithms are commonly used. However, these require gradient information,
which can be unavailable or unreliable to estimate using finite differences in some cases. These
include situations when the prediction model is not explicitly known, embedded in an external
simulator or a variable-step ODE solver, is used for numerical simulation, thereby leading to
numerical noise (Dæhlen et al. (2014)). This motivates the use of DFO methods. Their use
for NMPC and when the prediction model is embedded in an external simulator can be cate-
gorized as a single-shooting method, because only the manipulated variables are parametrized
(Dæhlen et al. (2014)). Surrogate-based optimization can be used to provide faster convergence
than other model-free DFO in terms of objective function evaluations, and therefore better con-
trol performance. To the best of the author’s knowledge, references about of surrogate-based
optimization in NMPC are very scarce.

Marzat and Piet-Lahanier (2012) introduced a BO algorithm within an on-line NMPC
framework for guidance control of a Unmanned Air Vehicle (UAV). EGO was used at each
sampling time to determine the optimal control actions, based on an initial set of samples gen-
erated by LHD, until a maximum number of objective function evaluations is achieved. Because
of this stopping criterion, the solution remained sub-optimal. BO could solve the optimization
problem within the controller sampling time and was able to deal with non-quadratic and dis-
continuous cost functions.

Dæhlen et al. (2014) tested several trust-region methods against a derivative-based algo-
rithm, SQP, in single-shooting NMPC for a subsea oil-gas separation process, described by
highly non-linear, non-smooth model with stiff dynamics. Trust-region methods showed better
closed-loop performance and higher robustness to numerical issues than SQP, which failed to
converge when a variable-step ODE solver was used. A warm start strategy, where a part of
the final model approximation in one iteration is kept the same for the next, also resulted in
improved computational efficiency for one of the methods.

Yang et al. (2015) used two multi-objective BO algorithms, EHVI-EGO and (SMS-EGO
within a NMPC framework to control a biogas plant, using a time consuming model for simula-
tion. The algorithms were tested against an evolutionary algorithm (SMS-EMOA). The NMPC
problem was defined as a minimization of two objectives, solved by approximating the Pareto
front. EHVI-EGO slightly also out-performed the other algorithms and it was shown that the
reference point value greatly influences the performance of the EHVI algorithm.

Negrellos-Ortiz et al. (2018) used a trust region method, BOBYQA, in the NMPC of an air
separation unit. The prediction model was embedded in the Aspen Plusr Dynamics simulation
environment, motivating a DFO approach. Different scenarios, including multivariate setpoint
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changes, were tested. The method could be used effectively in NMPC when the prediction
model is embedded in an external simulation environment. However, no comparisons with
other methods were made.

4.3 Approximate Explicit MPC

In explicit-MPC, the control optimization problem is solved off-line for a high number of
different system states and the solutions are stored in a look-up table (Bemporad et al. (2002)).
In the on-line phase, the optimal control input is selected according to the current system state,
avoiding the need for on-line optimization. This approach is more adequate for systems with
fast-dynamics, where the optimal control problem must be solved fast. Surrogate models can
be used to approximate the control law between system state and optimal control input. The
advantages of using surrogate models is that an explicit model is used instead of the look-up
table and when combined with DoE, a lower number of samples can be used to approximate
the entire region of the system states, thus lowering the number of optimization problems to be
solved off-line.

Shokry et al. (2016) compared the use of Ordinary Kriging (OK), Support Vector Regres-
sion (SVR) and Artificial Neural Networks (ANN) for explicit-MPC. Training and test samples
were generated combining a Hammersley sequence and a fractional factorial design. Surrogate
model performance was compared against on-line MPC in two case studies, showing a reduc-
tion from 78% up to 99% in computational time, with high accuracy and simplicity, avoiding
the need to use a look-up table. OK showed the highest accuracy and flexibility, with the advan-
tage of providing an estimated variance that can be used to assess the uncertainty of the control
action.

Chakrabarty et al. (2017) combined SVM and sparse-grid interpolation for explicit-NMPC.
A set of initial states was generated within the desired operating region using a low-discrepancy
sequence and the MPC problem solved for each sample. A SVM classifier was used to ap-
proximate the feasible region boundaries, where constraints are not violated. Sparse-grid in-
terpolation is then used to approximate the optimal control actions as a function of the system
state within the feasible region, thereby approximately assuring that the control action does not
violate constraints. The method was effectively applied to two case studies.
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Chapter 5

Application 1: Real-time optimization
using surrogate models

In this chapter, Surrogate-Based Optimization (SBO) is used for Real Time Optimization
(RTO). Although RTO comprises several steps, including steady-state detection, data reconcili-
ation, model parameter estimation and steady-state optimization (Seborg et al. (2017)), only the
latter is considered in this chapter. The use of surrogate models for this task could be advan-
tageous whenever the process model is embedded in an external simulation platform with no
explicit model equations or derivative information. In addition to providing a simple benchmark
to differentiate between optimization methods, this example serves the important objective of
defining the optimum operating conditions for the subsequent case study, in the fashion of the
previously mentioned hierarchic control structure.

5.1 Problem definition

To illustrate SBO approaches for RTO, the reactor from the well known Williams-Otto
plant (Williams and Otto (1960)), widely used as a benchmark for RTO, (Forbes (1994), Navia
et al. (2013), Singhal et al. (2016)), is considered as a case study. The reactor is an ideal CSTR
with two pure reactant feed streams, �� and ��, and a single exit stream, �' . In the reactor 3
parallel irreversible and exothermic reactions occur, all in the liquid phase:

A + B −−−→ C (Reaction 1) (5.1)

B + C −−−→ P + E (Reaction 2) (5.2)

C + P −−−→ G (Reaction 3) (5.3)

In this problem, C is an intermediate compound, P and E are desired products and G is an
undesired by-product. The reactor has two sets of coils, from which heat is removed or provided
by water or steam, respectively, according to operational demands. As in Forbes (1994), several
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simplifications are considered:

• Product prices and reactant costs remain constant

• Steady-state operation is considered

• ��, is kept at a fixed value, 1,8275 :6/B
• Isothermal operation

• The only decision variables are �� and the reactor temperature, )'
• Only inequality constraints are bounds on manipulated variables

• The recycle stream is the original plant is set to zero

• The reactor liquid mass hold-up is kept at a constant amount

• Utility costs regarding cooling water or steam consumption are not considered

• No noise is considered, state variables are fully measured

• The model perfectly represents the plant, no plant-model mismatch exists

The detailed dynamic reactor model and parameter values are presented in Appendix A.
The steady-state model used for this example was derived by neglecting the reactor mass, reac-
tor temperature, and cooling water dynamics. The RTO objective is to maximize the economic
profit, in $/B (Forbes (1994), Navia et al. (2013)):

max
��,)'

%A> 5 8C = 1143, 38-% (�� + ��) + 25, 92-� (�� + ��) − 76, 23�� − 114, 34�� (5.4a)

s. t.

-% = 5 (��,)') (5.4b)

-� = 5 (��,)') (5.4c)

3 ≤ �� (:6/B) ≤ 6 (5.4d)

343, 15 ≤ )' ( ) ≤ 373, 15 (5.4e)

-� and -% are the mass fractions of � and % , respectively. Despite being an NLP, in this
operating range, the profit surface is strictly concave (Figure 5.1), with an unique local optimum,
which makes it a useful case study for comparing different optimization approaches.

In this optimization problem the partial mass balance equations to � and % are the non-
linear equality constraints, which, in this case, are explicitly known. However, when consid-
ering black-box models, these equations are usually not available. To test SBO approaches, it
is considered that these represent unknown constraints. To solve this black-box optimization
problem a surrogate model could be used to approximate each of the two equality constraints
and the profit would be a function of the output of these models. With the exception of ANN,
this would require fitting two models. Another option is to approximate directly the profit as a
function of the input variables, as shown in Figure 5.2. The latter option was considered more
efficient for the purpose of optimization, without the need to fit several surrogate models.
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Figure 5.1: Profit surface of the Williams-Otto reactor

Figure 5.2: Diagram for steady-state optimization

5.2 Model selection and validation

The objective of surrogate based optimization is to find the optimum with the minimum
number of objective function evaluations. So the first step considered in this case study is the
development of a surrogate model that can accurately approximate the objective function in
the operational range with the least amount of training points needed. The models considered
are polynomial regression, Kriging, ANN, RBF and SVR.LHD, Sobol and Halton sequences
are used to generate the training data. All models and sampling strategies are implemented
using the Statistics and Machine Learning ToolboxTM and the Deep Learning ToolboxTM from
MATLABr. The reactor steady-state values are determined by solving the system of algebraic
non linear equations using numerical optimization, trough the MATLABr function fsolve. In
this analysis, several factors are changed for comparison:

• Surrogate model hyper-parameters (kernel on kriging and SVR, number of layers and
nodes in ANN, etc)

• Initial sample size

• Initial DoE scheme

Training data consisted of samples with three different sizes: 20 (10�), 30 and 50 points.
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LHD designs are obtained using lhsdesign, Sobol designs using sobolset and Halton designs us-
ing haltonset. In quasi-random designs, for simplicity sake, the first values of the sequence were
considered, so that no points were skipped. Due to the randomness of LHD, each sample size
was generated 10 times and the median of the prediction RMSE was considered representative.

The test data consisted of a 10201 point (1012) regular grid (Figure 5.1). Usually, if using
this number of test points was viable, there was no motivation to use a surrogate model. How-
ever, since the objective function in this case is cheap to evaluate, the approach was considered
useful to thoroughly evaluate each model ability for global approximation. Because the testing
sample remains the same for all models, the prediction error is not normalized.

It must be noted that the hyper-parameter selection for these models can be done automat-
ically, for example, formulating an optimization considering the minimization of the CV error,
where the decision variables are the model hyper-parameters. However, in this work, these were
selected based on a visual inspection of the prediction error. Details regarding this selection are
presented in Appendix B.

5.2.1 Comparison between different initial sampling designs

After selecting the surrogate model hyper-parameters (cf. Appendix B), the impact of
different sampling designs on model approximation is assessed. In each of those cases, because
the model which performed better than others across all sampling designs was chosen, a biased
choice towards a sampling design can be neglected. With this consideration, the same data used
before can be used to determine the best design plan, which is considered to be the one which
leads to a consistently lower error for most models.
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Figure 5.3: Comparison between different initial sampling designs (logarithmic scale used to
ease comparison between plans)
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Observing Figure 5.3, it becomes apparent that despite existing a gap between the per-
formances of different designs for the smallest initial sample, that gap diminishes when the
size is increased. This could mean that beyond a certain point, for a large number of samples,
differences in performance between design plans could be relatively low. Regarding different
designs, it can be seen that the Sobol design leads to lower error when using either the smallest
and largest sample size for almost all cases. For these reasons, this design is considered the one
with the best performance.

5.2.2 Comparison between different surrogate models

Comparing between surrogate models, it can be seen that for when using a smaller amount
of data, a polynomial regression model generally shows the best accuracy, followed by OK
with the squared exponential kernel. However, RBF show very good accuracy with a lower
sample size when a Sobol design is used. When a larger sample is used, SVR and Artificial
Neural Networks (ANN) stand out as the most accurate models. Considering the best results
of an initial Sobol design with 50 samples, the prediction error for all models is compared in
Table 5.1. Because time required to build and evaluate a surrogate model is also of importance,
especially if that model is to be used on-line, such as in RTO, fitting and prediction times are
also compared. These times are obtained repeating the fitting and prediction process 15 times
for each model and taking the median value.

Table 5.1: Comparison between performance of different surrogates for an initial Sobol design
with 50 samples

Model RMSE validation ($/B) Fitting time (s) Prediction time (s)

Polynomial Regression 0,1171 0,0118 0,0051
Kriging (Matérn 5/2) 0,1001 0,0228 0,0080

ANN 0,0220 1,8500 0,0108
RBF 0,0898 0,0223 0,0133
SVR 0,0468 1,6098 0,0016

*Run on an Intel Core(TM) i7-8550U @1.8 GHz, 8GB RAM, Windows 10 64 bits

The polynomial regression model shows the lowest accuracy. However, because of its sim-
plicity, the expectation was that it performed much worse than other models. This unexpected
performance can be due to the fact that this problem is low dimensional, with only two design
variables, and the underlying model of the objective function, despite non-linear, does not have
peaks and valleys, i.e., is convex. Despite the lower accuracy, the training time is the lowest of
all models, due to parameters being estimated using OLS. Prediction times are also low.

RBF models, despite not having the highest prediction accuracy for this sample size, con-
sistently show a low prediction error across lower sample sizes, while having low fitting times.
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The use of a parametric Gaussian kernel also allowed some flexibility and enabled better pre-
dictions.

Kriging models despite not being as accurate, are also relatively quick to train and offer
a measure of confidence in prediction by also providing the predicted variance, which can be
used to make a decision about the model quality.

ANN shows by far the highest accuracy, followed by SVR. However, this comes at the
cost of very large training times, almost two orders of magnitude greater than the remaining
models. This is because the fitting process requires solving a highly non-linear optimization
problem with many local minima for ANN and a constrained quadratic optimization problem in
the case of SVR. Despite the high training times, predictions with a SVR model are extremely
fast, even faster than a polynomial model. ANN requires a larger sample size, which may be
prohibitive for more expensive simulations, the fitting times are very large. Also, despite the fact
that different architectures provide a higher flexibility for ANN, because of the high number of
possibilities, manually selecting the best one is a difficult task. However, automatic procedures
such as the ones mentioned in chapter 2.4.3 could ease this selection.

SVR models also requires more training data and fitting time, but are accurate and fast to
predict, making them useful when cheap data is available, training time is not a problem and
fast and accurate predictions are needed.

5.3 Surrogate-based optimization using static sampling

In this section, the surrogate models built with a Sobol design of 50 samples are used for
optimization. These models are optimized using derivative-based and DFO methods. Because
the assumption is that the surrogate models can be cheaply evaluated, no limit was imposed on
the number of evaluations of these functions, keeping the stopping criteria for all the solvers at
default values. Because the surrogate models are an approximation of the objective function,
the predicted optimum values need to be validated on the original objective function, so an extra
evaluation was needed.

To assess the surrogate optimization approach using static sampling, these models are com-
pared with other popular optimization algorithms in MATLABr, including a local search gra-
dient based algorithm using Sequential Quadratic Programming (SQP) (fmincon), a local search
DFO algorithm that uses the Nelder-Mead Simplex (fminsearch), and a stochastic DFO Genetic
Algorithm (GA) (ga). An initial guess of 4 :6/B and 353,15  and a budget of 51 total objective
function evaluations was supplied for both fmincon and fminsearch. For ga, only one genera-
tion with 50 individuals, resulting in 50 total function evaluations, was used. For convenience,
the optimization problem was solved as a minimization problem, minimizing the negative of
Equation (5.4a). The results are presented in Table 5.2.
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Table 5.2: Optimum profit value ($/B) obtained using SBO and static sampling

Algorithm Black-box model Polynomial Kriging SVR ANN RBF

fmincon (SQP) 190,9906 190,9906 190,9906 190,9906 190,9906 186,1710
fminsearch 190,9551 190,9906 190,9906 190,9906 190,9906 190,9905

GA 190,7142 190,9906 190,9906 190,9906 190,9906 190,9906

For optimization algorithms without surrogate models, only fmincon was able to find the
optimum. This could mean that even if closed-form derivative expressions are not available,
but the objective function is fast to evaluate and smooth, so that finite-differences can be used,
derivative-based algorithms can still be of use. The result of GA was expected because this
algorithm usually requires many objective function evaluations to converge.

Regarding the use of surrogate models, it can be seen that, with exception for the RBF,
all algorithms find the optimum within a tolerance of 1 × 10−5$/B. Also, differences between
optimizing surrogate models with different algorithms appear to be negligible, except for the
RBF model, which does not appear to handle derivative-based algorithm, such as fmincon.

5.4 Surrogate-based optimization using adaptive sampling

The optimization based strategies discussed in chapter 3, MSRS and BO are used to com-
pare the performance of static and adaptive sampling. A maximum number of 51 objective
function evaluations was considered for both methods, using two initial samples of different
sizes, 5� , and 10� . These were generated with a Sobol sequence. BO was used with the EI
criteria. The convergence plots are shown in Figure 5.4.
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Figure 5.4: Bayesian optimization and SRS convergence plot (Negative profit value shown due
to minimization)

BO shows better performance than MSRS, which does not find the optimum. The use
of a smaller initial sample seems to increase convergence, specially in BO. This could mean
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that is it better to begin with a lower sample size and a lower model approximation and spend
more function evaluations on adaptive points. However, this remains to be assessed on a more
difficult, non-convex, problem.

BO found the optimum within a tolerance of 1 × 10−5, the same as when using surrogate
models and static sampling. However, it is important to state that only 21 total function eval-
uations were required, less than half the ones used in static sampling. In this case, 50 samples
clearly represent oversampling. This illustrates the difficulty in determining the training sample
size when using static sampling approaches. Moreover, the hyper-parameter selection is also
not an easy task, especially for ANN. Therefore, the tasks of selecting a surrogate model, sam-
pling plan and sample size require additional time and effort, which can be prohibitive when
considering the optimization is to be performed on-line, as is the case in RTO. Thus, SBO using
adaptive sampling is considered more efficient for lower dimensional RTO problems.

5.5 Optimization considering plant disturbances

In the previous sections, the optimal operating point was determined for a nominal opera-
tion scenario, without disturbances. In this section, the optimization problem of Equation (5.4a)
is solved considering measured disturbances, which take the form of step changes with a mag-
nitude of 0, 2647:6/B to ��, that can occur approximately every 20 minutes (Forbes (1994)). All
other details are kept the same as before. The optimization problem is solved with the algo-
rithms that displayed better performance, BO with 10 initial samples generated using a Sobol
sequence and fmincon. A limit of 50 objective function evaluations was imposed for both.

Table 5.3: Optimum profit and input variable values for each scenario

Algorithm �� (:6/B) Profit ($/B) �� (:6/B) )' ( )
1,5628 177,8999 4,1605 361,0741

BO 1,8275 190,9906 4,7893 362,8608
2,0922 202,0214 5,3952 364,3278

1,5628 177,8999 4,1624 361,0930
fmincon (SQP) 1,8275 190,9906 4,7875 362,8528

2,0922 202,0217 5,3979 364,3689

Contrary to BO, fmincon was able to find the optimum for all three scenarios, achieving
convergence within the function evaluation budget. This confirms that when the objective func-
tion is smooth, convex and derivative information cheap to obtain, derivative-based methods
are efficient. However, these assumptions usually do not apply to time consuming black-box
functions. Also, in the single case when BO finds a worse optimum than fmincon, the difference
is negligible. Nonetheless, the optimum �� and)' values obtained with fmincon are considered
better and used to determine the optimum operating points the next case study.
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Chapter 6

Application 2: Optimal PID tuning using
surrogate-based optimization

In the previous chapter, optimization using different surrogate models and sampling strate-
gies was applied to a RTO problem. In that example, the objective function to be approximated
was simple, fast to evaluate and with known and convex shape. In this chapter a more complex
problem is considered, which involves tuning two PID controllers trough the use of simulation
based optimization, as introduced in chapter 4. Contrary to the previous application, the un-
derlying model between controller parameters and quantitative metrics based on the system’s
closed-loop response is a true black-box model, with unknown closed-form. Additionally, sim-
ulation experiments are more time consuming since each run involves solving a large system
of non-linear ODEs and the need to link MATLABr to the simulation model. SBO, using the
adaptive sampling methods described in chapter 3, are used to solve this black-box optimiza-
tion problem and compared with other DFO approaches and traditional PID tuning methods.
MATLABr and Simulinkr are used to perform the closed-loop simulations and optimization.

6.1 Williams-Otto reactor control structure and objectives

The Williams Otto reactor (Williams and Otto (1960)) is again considered as a case study,
using a first principles model to simulate the system dynamic behaviour. The original model
presented in Williams and Otto (1960) was modified to include a mass balance to the reac-
tor and an energy balance to the cooling water, described by a PDE. After discretization, this
dynamic model is composed of 208 ODEs, 208 state variables, 7 input variables and 12 pa-
rameters. A simplified Piping and Instrumentation Diagram (PI&D) of the reactor, along with
details regarding model development, modelling assumptions and input variables and model pa-
rameters values are presented in Appendix A. This model is implemented in Simulinkr using
a MATLABr function block (Appendix C).

The pairings of control and manipulated variables are kept as the ones originally described
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by Williams and Otto (1960), with the exception of the heating coils, which are disregarded
in this work. The tuning of the ��, flow controller is also not considered. The reactor liquid
mixture level, !' , is controlled by manipulating the reactor exit stream volumetric flowrate,&',
and )' is controlled though the manipulation of cooling water entry volumetric flowrate, &28=.
Both controlled variables are under feedback control, represented by a simplified block diagram
for a single controlled variable in Figure 6.1.

Controller Actuator Process

Disturbances

p(t) u(t)

Sensor

ysp(t) e(t) y(t)

−

ym(t)

Figure 6.1: Block diagram of a single loop negative feedback control structure.

In the diagram above, ~B? is the controlled variable desired value, or setpoint, ~< is the
measured value of this variable, 4 the difference between these two values, or error,~ the process
output, D the process input and ? the controller output, or signal.

In this case study, a simplified scenario is considered where the dynamics of both the sen-
sor and final control element are considered negligible. Also, the models of these components
are assumed to be described by a unitary gain. With these considerations in mind, the notation
~<=~ and ?=D is used from here on out. Additionally, it is considered that the controlled vari-
ables signal is perfectly filtered, so no measurement noise is present, and that measurements
are available in continuous time. However, the control element is a digital, discrete-time con-
troller, where feedback information and control action is received and sent, respectively, at a
pre-determined time interval, or sampling time, ΔC . It must be emphasized that this value re-
gards the sample period used in the control calculations, and that process data can be sampled at
faster rates for monitoring purposes. This example considers the use of a Proportional integral
derivative (PID) controller with the expanded, or non-interacting form ((Seborg et al. (2017)))
of the control algorithm:

D (C) = D̄ +  %4 (C) +  �
∫ C

0

4 (C∗)3C∗ +  �
34 (C)
3C

(6.1)

Where D̄ is the steady-state value of the control signal, or bias,  % the proportional gain,  � the
integral gain and  � the derivative gain. Since each gain independently influences only one
control mode, this controller form is well suited for optimization-based tuning approaches. The
corresponding discrete-time transfer function version of Equation (6.1) can be derived using a
z-transform and considering a backwards Euler formula, which usually leads to higher stability,
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for the integrator and derivative terms (Seborg et al. (2017):

D (I)
4 (I) =  % +  �ΔC

I

I − 1 +
 �

ΔC

I − 1
I

(6.2)

After manipulation, the controller output at each time interval : is given by:

D (:) − D (: − 1) =  % (4 (:) − 4 (: − 1)) +  �ΔC4 (:) +
 �

ΔC
(4 (:) − 24 (: − 1) + 4 (: − 2)) (6.3)

Clamping, where upper and lower limits are imposed on the rate of control action (D (:) −
D (: − 1)), is added to prevent overrange and controller output saturation. The controller is
implemented using the PID controller block in Simulinkr (Appendix C).

Controller performance depends on a careful and thoughtful selection of both the con-
troller gain and sampling time values, in a procedure known as controller tuning. While much
discussion and a variety of methods exist to select controllers gains, the selection of a controller
sampling time remains more of an art than science (Seborg et al. (2017)). The exact choice of
this parameter depends on several factors such as the dynamic characteristics of the system and
available hardware. While a high sampling time leads to loss of information and deterioration
of control performance (Seborg et al. (2017)), a very low sampling time may increase com-
putational requirements without increasing control performance. One guideline regarding the
process dominant time constant, g , is recommended by Åström and Wittenmark (2011):

0, 01 ≤ ΔC

g
≤ 0, 05 (6.4)

The introduction of an analogue-to-digital converter, the controller sampler, adds an effective
delay to the system response. In order to use available tuning relations Seborg et al. (2017)
recommend adding half the sampling time value to the process model time delay. A properly
tuned controller should ideally:

• Provide closed-loop stability to the process

• Enable fast and accurate setpoint tracking, with minimal or no steady-state error

• Reject the effect of disturbances on the controlled variable

• Avoid excessive control action

• Be robust to modelling errors (plant-model mismatch) and variable operating conditions

Controller tuning is a compromise between performance and robustness (Seborg et al. (2017)).
After tuning a controller, its performance can be assessed trough a variety of quantitative met-
rics, such as the steady-state error, or offset, integral error, overshoot, settling and rise time.
Qualitative information regarding the graphical analysis of the closed-loop system response,
for instance, the amount of oscillation, is also important.
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The control objectives are to maintain as close to economically optimal operation as possi-
ble, considering a simulation scenario with a time window of 60 minutes. The process variables
are initially on the nominal operating point and two step changes in �� occur, one to 1,5628 :6/B
and the other to 2,0922 :6/B, after 20 and 40 minutes of simulation, respectively. Because of
these disturbances, the setpoints of the controlled variables are no longer optimal, and new ones
must be calculated. In traditional steady-state RTO, new setpoints would only be recalculated
once the system is considered to be at its previous steady-state (or approximately), stabilized
by the regulatory controllers after the disturbance occurs (Seborg et al. (2017), Straus (2018)).
However, to simplify the analysis, it is considered that the optimal setpoints for each value of
�� have been previously computed off-line, in an open-loop manner, considering the optima
obtained with fmincon in Chapter 5. Therefore, no wait for a return to steady state is necessary,
and new setpoints are sent to the controllers immediately once the disturbance in �� is mea-
sured. Assuming that the �� flow controller is well tuned and that the typical response of these
loops is in the order of seconds (Seborg et al. (2017)), it is also considered that this controller
moves �� to its setpoint instantaneously and with perfect control, once �� changes. Since the
steady-state optimization was performed considering a constant mass holdup in the reactor, the
level setpoint remains constant. The optimum operating points are presented again in Table 6.1.
Because component mass fractions are not directly controlled variables, their values are not
shown.

Table 6.1: Operating points considered in closed-loop simulations

Variable Nominal operating point Operating point 1 Operating point 2

�� (:6/B) 1,8275 1,5628 2,0922
�� (:6/B) 4,7875 4,1624 5,3979
)'B? ( ) 362,8528 361,0930 364,3689
!'B? (<) 2,3897 2,3897 2,3897

Profit ($/B) 190,9906 177,8999 202,0217

Achieving close to optimal economic operation requires that both the level and temperature
controllers are properly tuned. In this work, the tuning procedure is treated as an optimization
problem. While the level controller is tuned for disturbance rejection, the temperature controller
is tuned to provide both setpoint tracking and disturbance rejection. In this regard, common
metrics to assess controller performance in the time domain, namely, overshoot, rise or settling
time were not considered to be adequate for direct optimization. In lieu of these metrics, the
Integral of the Squared Error (ISE), which penalizes large deviations from setpoint (Seborg et al.
(2017)) is considered: ∫ C5

0

(4 (C))23C =
∫ C5

0

(~ (C) − ~B? (C))23C (6.5)
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This integral is approximated numerically using the trapezoidal rule. Another important tuning
objective is to reduce control effort, so the controller output is smooth. This serves the important
task of reducing wear and tear on the final control element and can be quantified as:

#∑
:=1

| ΔD: |=
#∑
:=1

| D: − D:−1 | (6.6)

Where # is the total number of control actions. The optimization objectives are made dimen-
sionless:

5 1 =

∫ C5

0

(
~ (C) − ~B? (C)

~B? (C)

)2
3C (6.7)

5 2 =

#∑
:=1

| D: − D:−1 |
D<0G − D<8=

(6.8)

The controller tuning problem is formulated as a box-constrained bi-objective optimization
problem, by minimizing both 5 1 and 5 2 simultaneously. As described in Chapter 3, this problem
is transformed into a single-objective problem by the weighted sum method:

min
G
[51(G), 52(G)] = F1

∫ C5

0

(
~ (C) − ~B? (C)

~B? (C)

)2
3C +F2

#∑
:=1

| D: − D:−1 |
D<0G − D<8=

(6.9a)

s.t.

~ (C) = 5 (G, C) (6.9b)

D: = 5 (G, C) (6.9c)

G;1 ≤ G ≤ GD1 (6.9d)

G = [ % ,  � ,  � ,ΔC], G ∈ R4 (6.9e)

Where C 5 is the total simulation time, and G is the vector of controller parameters to be op-
timized, which includes its gains and ΔC . Commonly, this last parameter is set to a fixed value
before solving the optimization problem. However, since the optimum controller gains depend
on the sampling time (Laskawski and Wcislik (2016)), choosing this value before performing
the optimization could require some trial and error. In addition, if closed-loop performance
when using the optimum controller gains proves to be undesirable, the optimization problem
would have to be solved for a different ΔC , which would require re-defining bounds on the con-
troller gains. Thus, to reduce trial and error, ΔC is treated as an additional continuous decision
variable. F1 and F2 are the weights assigned to the first and second objective, according to
their relative importance. Equation (6.9b) and Equation (6.9c) are the equality constraints with
unknown closed-form. It is also noteworthy that the use of an absolute operator introduces a
discontinuity in the objective function, which favours the use of DFO methods.
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6.1. Williams-Otto reactor control structure and objectives

It must be emphasized that these metrics represent the authors choice, and are only two in
a multitude of different ones that can be considered. The advantage of using an optimization
approach for controller tuning is that the objective can be changed to reflect the preference of
the decision maker. For instance, if the controller is required to have fast setpoint tracking, the
rise-time could be used as one objective to minimize. Another example could be to optimize
controller performance, while also reducing utility consumption.

Standard model-based and model-free PID tuning methods are used to compare the per-
formance of SBO. The former category includes tuning relations based on IMC methods, opti-
mization of an error criteria and other miscellaneous relations. The latter includes the Ziegler-
Nichols (Z-N) (Ziegler and Nichols (1942)) and Tyreus-Luyben (T-L) (Tyreus and Luyben
(1992)) tuning relations, based on the ultimate gain,  2D and the ultimate period, %D . These
last values are obtained using the Relay autotuning method (Åström and Hägglund (1984)),
in which the PID controller is temporarily switched to an on-off controller, or relay, with the
following output:

D (C) =
{
3 , if 4 (C) ≥ )
−3 , if 4 (C) < −)

(6.10)

A positive threshold value, ) , is added to the error to prevent excessive switching due to high
frequency measurement noise. This is known as a relay with hysteresis (Åström and Hägglund
(1984), Yu (2006)). In this example, no noise is considered, ) is set to zero, and the relay
is ideal. After the switch to on-off control, the controlled variable exhibits a response with a
characteristic sustained oscillation. Based on this response, %D is determined as the time interval
between the highest oscillation peaks and  2D can be approximated as (Åström and Hägglund
(1984)):

 2D =
43

c0
(6.11)

Where 3 is the amplitude of the controller, or relay, output and 0 the amplitude of the con-
trolled variable oscillation. The relay tests are implemented using the relay block in Simulinkr

(Appendix C). The Relay-feedback test will also be used for closed-loop system identification,
a procedure described further in section 4. Due to the fact that controller tuning relations used
in this work are usually presented for an ideal version of a PID controller, when necessary, the
following expressions are used:

 % = 2 (6.12)

 � =
 2

g�
(6.13)

 � = 2g� (6.14)

All closed-loop simulations are implemented in Simulinkr, solving the system of ODEs
with the variable-step MATLABr solver, ode45, based on a explicit Runge-Kutta formula, with
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a relative tolerance of 10−6 and a maximum step size of 0,1 seconds. A simplified description
of the MATLABr function used to run and extract information from Simulinkr simulations is
presented in Appendix C. That function is then called by an external MATLABr optimizer, in
this case, bayesopt, surrogateopt or ga.

6.2 Proposed methodology for simulation optimization-based
tuning

In addition to the selected optimization algorithms, the success of the controller tuning
approach based on the optimization of Equation (6.9a), depends on two critical factors: the
definition of lower and upper bounds of the decision variables, or design space, and the selection
of the objective function weights. To reduce trial and error, a simple systematic methodology is
presented.

The definition of the design space should include system knowledge. The gains of a digital
controller can be obtained by using tuning relations for different ΔC . This last parameter can also
be defined using heuristics related to the process dynamics, such as the dominant time constant,
in the desired operating region. It becomes apparent that a process model, in the form of a low
order transfer function, is valuable to aid in this task. In addition, a model can indicate a need
to select different controller structures, for example, if the use of derivative action is needed. If
not available, this model can be obtained using two different strategies: by linearisation of the
non-linear dynamic model or through system identification using dynamic simulations.

The first strategy is straight-forward if the non-linear model structure is known and of
relatively low order. If the model is high-order, a lower order version can be obtained us-
ing model-based order reduction, for instance balanced truncation (see Gugercin and Antoulas
(2004)). However, this can prove difficult if there are a high number of unstable states or the
model is of very high dimension. In addition, an explicit model is required, which may not be
always available for some situations. An alternative is to use system identification techniques
based on a simulated response.

If the system is open-loop stable, model identification can be easily accomplished by per-
forming a step test. However, if the system is open-loop unstable, closed-loop identification
techniques such as the ones mentioned in chapter 4 are required.

It is important to state that the identification procedure goal should not be to obtain a pro-
cess model with a high degree of accuracy, because a non-linear process model already exists.
Instead, the goal is to obtain an approximate model only to get a notion of the design space
range so that optimization can lead to better results with fewer function evaluations and time.
Moreover, the ultimate goal of using simulation optimization is to automate the controller tun-
ing procedure. Therefore, more complex identification procedures requiring several tests, more
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computations or control theory knowledge, should in principle be avoided. With this in mind, a
single experimental test should be sufficient to obtain the model and in this thesis, a relay test,
which requires fewer computations, is recommended over the closed-loop step test. Because the
system is open-loop unstable and the identification procedure requires an initial steady-state, a
controller must be previously specified and because the system is unknown, choosing the con-
troller parameters some requires manual. A simple Proportional or PI controller is sufficient for
this task. In this regard, the approach is not completely void of trial and error in some cases.

The identification procedures, both open and closed-loop should be performed without in
continuous time. Additionally, if confidence in the process model accuracy is low, controller
tuning relations that incorporate robustness are recommended and the design space limits should
be extended.

The step of system identification can be avoided either if a controller is already specified in
simulation and needs to be retuned or if a continuous time controller is to be tuned. In this last
case, a relay test followed by Z-N type tuning relations can be used to define the design space.

The objective function weights must be selected to reflect the decision maker preferences.
If the objectives scales are of different magnitudes, the weights can mask a scaling problem and
compromise the attribution of preferences (Marler and Arora (2010)). Therefore, the objectives
should be made of similar scale before assigning values for the weights. This can be a difficult
task if the range of values that these objectives take is not known a priori, as is the case in
dynamic simulations. A simple solution is to use the initial sample obtained through DoE,
required to initialize the SBO procedure, to obtain a distribution of the different objectives
values in the chosen design space. Because the designs are inherently space-filling, they should,
in principle, serve to obtain a representative distribution. In the case of two objectives, the ratio
between these values can be calculated for each sample. The median of this ratio distribution can
be used as the weight for one of the objectives. The scales of the two objectives should become
similar and the other weight can be used to reflect the decision maker preference. Summarizing,
the proposed approach consists of the following steps:

1. Define control objectives, performance metrics and simulation scenario ;

2. If not available, obtain a transfer function model either by linearisation or system identi-
fication ;

3. Use heuristics to define the controller sampling time range and add half that value to the
process model delay ;

4. Use tuning relations to obtain controller gains for different sampling times and perform
initial simulations ;

5. Define the design space based on the information provided by the last step ;

6. Generate initial samples with DoE to obtain a distribution of the different objectives val-
ues ;

7. Use a statistical measure (e.g. median) to define the objective scales ;

56



Chapter 6. Application 2: Optimal PID tuning using surrogate-based optimization

8. Assign weights that reflect preferences ;

9. Solve the optimization problem using Surrogate-Based Optimization and the initial sam-
ples generated by DoE.

6.3 Level PI controller tuning

The liquid level controller tuning serves as a simple example to illustrate the proposed
approach. This process transfer function can be easily deduced analytically by setting the vari-
ables in Equation (1) to deviation variables, considering a steady state operating point, taking
the Laplace transform and considering &' as the manipulated variable:

!'
′(B) = −1

�'B
&'
′(B) ⇔ !'

′(B)
&'
′(B) =

 

B
(6.15)

Where  is the process gain and takes the value of -0,8901 (<.B)/<3. Processes described by a
model of this type are known as integrating processes and present several unusual closed-loop
characteristics. In addition to not being self-regulating processes, an increase in controller gain
can reduce oscillation, instead of increasing it (Seborg et al. (2017)). As previously mentioned,
half the value of ΔC is added to process model, changing it to a Integrator-plus-time-delay
(IPTD) model:

!'
′(B)

&′
'
(B) =

 

B
4−

ΔC
2
B (6.16)

Guidelines to determine a suitable range for ΔC based on the process time constant, for
instance Equation (6.4), are not adequate for pure integrating processes, such as this one. Thus,
as a base example, this parameter is assumed to be between 6 and 120 seconds. Because no
disturbances to the level occur until 20 minutes of simulation and disturbance rejection proved to
be relatively fast, all level closed-loop simulations were performed considering only 30 minutes
of operation, instead of 60. Because the reactor mass needs to remain at a constant value, and
deviations such as steady-state offset are not wanted, a Proportional Integral (PI) controller is
considered for the control of the reactor liquid level.

6.3.1 Standard model-based and model-free methods

Three different model-based methods were used to tune the level controller, including the
SIMC method (Skogestad (2003)), the minimization of the ITAE criterion for disturbance rejec-
tion (Poulin and Pomerleau (1996)) and the AMIGO method (Åström and Hägglund (2006)).
The controller tuning relations are presented in Table 6.2.
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Table 6.2: Tuning relations for a PI controller and IPTD process model

Method  2 g�

SIMC 1
 (g2+\ ) 4(g2 + \ )

ITAE (disturbance) 0,5264
 \

4, 5804\

AMIGO 0,35
 \

13, 4\

Tyreus-Luyben* 0, 31 2D 2, 2%D

Ziegler-Nichols* 0, 45 2D
%D
1,2

*General, not based on any process model

Closed-loop simulations were performed considering these relations and several values of
ΔC (Appendix E). As the value of this parameter increases, controller performance degrades,
as expected. Considering these results, a ΔC of 6 seconds is chosen. When implementing a
Relay-feedback test using a digital controller, the experiment sampling time should be as low as
possible, to enable accurate identification (Berner et al. (2016)). Therefore, a ΔC of 6 seconds
was also chosen for the test. Also, no disturbances are considered during this test. The test
was implemented using a Relay block and a zero-order hold block in Simulinkr (Appendix C).
Considering a relay amplitude of 3,741 ×10−3<3/B, the results are shown on Figure 6.2.
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Figure 6.2: Level Relay test

Based on the response in Figure 6.2, 0 is approximately 0,01 < and %D is 12 B. For these
values, Equation (6.11) gives a 2D of 0,4763</(<3/B). A negative controller gain is considered
to ensure negative feedback.
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6.3.2 Comparison between standard tuning and optimization-based tun-
ing

In the optimization-based tuning approach the performance of both BO and MSRS was
compared with that of GA. A maximum budget of 100 total objective function evaluations was
imposed. For BO the EI criteria was chosen. GA used 4 generations with a population of 25
individuals. Because all the traditional tuning methods displayed competitive performance, the
design space was considered to be contained inside the domain defined by the maximum and
minimum values of the controller gains for the various tuning relations, for sample times of 6
and 30 seconds:

6 ≤ΔC (B) ≤ 60 (6.17)

−0, 22 ≤  % ≤ −0, 026 (6.18)

−0, 022 ≤  � ≤ −1, 3 × 10−4 (6.19)

For SBO, 30 initial samples (10�) were generated within the variable bounds above using a
Sobol design. As previously mentioned, these samples are used to obtain a notion of the magni-
tude between the two objectives. From this sample, the median of the ratio between 5 1 and 5 2
was approximately 0,0065. Setting F2 to 0,0065, the objectives should present approximately
similar scale. F1 then is chosen to be 10, which means that control performance is considered
to be approximately 10 times more important than smooth control action. It must be noted that
since these weights are chosen a priori, their values may not reflect this exact relative impor-
tance. For all algorithms, the random number generator was set to default, for reproducibility.

Table 6.3: Level controller tuning optimization results for 100 total function evaluations

Algorithm Objective function value (×103) Time (s)

GA 8,8373 184,14
SRS 5,8278 171,45
BO 5,0481 226,99

*Run on an Intel Core(TM) i7-8550U @1.8 GHz, 8GB RAM, Windows 10 64 bits

For a fixed number of function evaluations, GA showed the worst performance and BO
the best, followed by MSRS. BO required more time than the other algorithms due to the aux-
iliary acquisition function optimization problem at each iteration. Nonetheless, it was able to
find the lowest objective function value given the same evaluation budget. The controller pa-
rameters obtained for different methods are shown in Table 6.4 and the respective closed-loop
simulations in Figure 6.3. To enable a quantitative comparison, the two metrics considered as
optimization objectives and the normalized Integral of the Absolute Error (IAE) for each closed
loop simulation are are also shown in Figure 6.4.
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Table 6.4: Parameters for reactor level PI controller

Method ΔC (s)  %  � (×102)
SIMC (g2 = \ ) 6,0000 -0,1872 -0,7802

ITAE (disturbance) 6,0000 -0,1971 -1,4346
AMIGO 6,0000 -0,1311 -0,3360

T-L 6,0000 -0,1477 -0,5593
Z-N 6,0000 -0,2143 -2,1433

BO (EI) 6,0177 -0,2184 -1,2501
SRS 6,0462 -0,1749 -0,9159
GA 8,3559 -0,1660 -0,6559

Figure 6.3: Level closed-loop response for different tuning methods
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Figure 6.4: Level closed-loop performance metrics for different tuning methods
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It can be seen that both standard model-based and model-free tuning methods show good
disturbance rejection. Out of the first category, the ITAE tuning relation and the AMIGO method
show the best and worst performance, respectively. This can be explained by the fact that the
process model used in the tuning relations is perfect, because it was derived from the linear
model (reactor mass balance equation) used to simulate the response. Because the AMIGO
method explicitly includes robustness criteria (Åström and Hägglund (2006)), it considers the
process model parameters as uncertain. On the other hand, the ITAE criterion tuning relation
considers the process model to be accurately known, which is the case in this example. For
model-free relations, Z-N show the lowest tracking errors of all the tuning methods. This comes
at the expense of smooth control action, since the resulting controller is the most aggressive of
all. T-L relations, which are more conservative, result in a compromise between performance
and control action smoothness.

Regarding the proposed optimization-based tuning approach, it can be seen that of the three
algorithms, GA shows the worst performance, both in terms of error and control action. The
controller tuned by BO showed lower error, with slightly higher control action than MSRS. Both
surrogate-based algorithms, especially BO, lead to controllers with performance comparable
with ITAE and Z-N, however, with a less aggressive control action. This is the reflection of
explicitly considering the trade-off in the optimization procedure.

6.3.3 Refinement of optimization-based tuning

After demonstrating the value of using SBO to tune the liquid level controller, the con-
vergence properties of the two methods, BO and MSRS, are analysed. The maximum number
of function evaluations is extended to 300 and the effect of initial sample size on convergence
is determined. Two heuristics regarding the number of design variables, 10� (Loeppky et al.
(2009)) and 5� (Liu et al. (2016)), are considered. In BO, the use of different acquisition
functions is also compared.

It is important to state the goal of this analysis is not to thoroughly assess the convergence
properties of these algorithms, but to refine the optimization procedure in order to find a better
objective function value. A detailed analysis would require, for instance, a non-convex test
problem with known optima and since the algorithms have stochastic properties, solving the
optimization problem several times to obtain a distribution of objective function values. This
analysis would require a great deal of time and since the goal was to refine the optimization
procedure, a single solution was considered sufficient. Nonetheless, some remarks are able to
be made from this analysis. The convergence of the algorithms is shown in Figure 6.5.
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Figure 6.5: Convergence plot for the level controller parameter SBO

The use of an initial sample with a lower size generally leads to a lower objective function
value within fewer function evaluations, with the exception of EI and LCB infill criteria. This
could indicate that by initializing the adaptive sampling with a surrogate model with better ap-
proximation may condition the procedure to higher exploitation, by searching more locally near
lower values, instead of exploring regions where better objective function values can be found.
The effect of using a lower sample size seems to be less relevant when using EI instead of other
criteria. This can perhaps be attributed to the fact that the use of this criterion automatically
considers a trade-off between exploitation and explorations. As before, BO generally leads to
finding a better objective function than MSRS, and the best controller parameters are considered
to be the ones found with the EI criteria and 30 samples: ΔC = 6,0209 s,  % = -0,2197 and  � =
-0,0186. Therefore, the level controller with these parameters is used for the consequent closed
loop simulations involved in the temperature controller tuning.

6.4 Temperature PID controller tuning

The temperature controller tuning serves as a more complex example. The system describ-
ing the reactor temperature is high order interactive, since the model has over 200 states and
the reactor temperature affects the temperature of the cooling water and vice-versa. Because
of multiple exothermic reactions, the temperature dynamic model is also highly non-linear. In
addition, preliminary simulations showed that the reactor is open-loop unstable at the nomi-
nal operating point. This poses several difficulties, the most prominent being the derivation
a linear transfer function process model to define the design space. Obtaining this model by
linearisation proved difficult because the obtained linear model possessed a order of 208, with
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numerator dynamics and a high number of unstable poles. Model-based order reduction tech-
niques such as balanced truncation, were not useful. The chosen solution was to instead use
system identification methods based on relay feedback.

When using relay feedback method for system identification, Liu et al. (2013) categorizes
approaches into either Describing Function (DF) approximation, curve fitting or frequency re-
sponse fitting. The latter method involves more extensive knowledge on control theory and
requires more complex calculations (Liu et al. (2013)), so the choice was between the first two
methods. To provide a simple and time efficient solution, the identification procedure must
meet several requirements. The first is that it should, ideally, be simple to use and require only
a single experimental test. The second is that no additional system knowledge, namely, process
gain or delay, must be known in advance. Finally, the identification method should be applica-
ble to unstable systems. Because of these requirements, several methods were ruled out. After
searching different approaches, the Biased Relay method (Shen et al. (1996)) which meets all
off these requirements, stood out. This method introduces an asymmetric oscillation by consid-
ering a relay with hysteresis. The asymmetry enables estimation of the process gain, which in
other methods, is required to be known. The method only requires solving two simple equations
to estimate the parameters of a First Order Plus Time Delay (FOPTD). These, along with the
identification procedure results, are detailed in Appendix D. The identified parameters of the
FOPTD model are  = 2, 5839 × 105 .B/<3, g = 2, 1377 × 104B and \ = 13,4 s. As before, half
the sampling time value is added to the First Order Plus Time Delay (FOPTD) process model:

)'
′(B)

&28=
′(B) =

 

gB − 14
−(\+ ΔC

2
)B (6.20)

According to Equation (6.4), the recommended sampling time range considering the identified
process model is between 214 and 1070 seconds. Taking into account modelling errors and
because these values seem very large and may lead to loss of information, or aliasing, these rec-
ommended values were not applied. Instead, ΔC is assumed to be between 30 and 120 seconds.
To provide a faster response, a PID controller is considered for the temperature control.

6.4.1 Standard model-based and model-free methods

Three model-based tuning relations were used, including the Rotstein-Lewin (RL) rules,
based on a modified IMC method for unstable systems (Rotstein and Lewin (1991)), a criteria
based on the minimization of the ISE criterion (Jhunjhunwala and Chidambaram (2001)) and a
miscellaneous one (Sree and Chidambaram (2006)). These relations are presented in Table 6.5,
considering:

W = _(_
g
+ 2) (6.21)
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Table 6.5: Tuning relations for a PID controller and unstable FOPTD process model

Method  2 g� g�

RL 1
 
g
_2
(W + 0, 5\ ) W + 0, 5\ 0,5W\

W+0,5\

ISE 1
 
(13 − 39, 712\

g
) 0, 856g42,044

\
g g (0, 5643\

g
+ 0, 0075)

Sree 1
 
(4282( \

g
)2 − 1334, 6\

g
+ 101) g (36, 842( \

g
)2 − 10, 3\

g
+ 0, 8288) 0, 5\

In the RL method, _ is a tunable parameter, related to the closed loop time constant. The
value for this parameter can be chosen to guarantee closed-loop stability considering robust-
ness to error in the process gain (Rotstein and Lewin (1991)). As recommended by Marchetti
et al. (2001), since the real process gain is considered unknown, _ is determined graphically by
choosing a value that maximizes worst-case relative gain uncertainty for a given value of \ /g .
Considering this ratio is approximately 0 for this process, _ was chosen as 0,01 g .

After several trials using different sampling times for the relay tests, a sustained reactor
temperature oscillation was not able to be achieved. This can be due to the fact that the sampler
introduces an effective delay to the response and conditions regarding the value of \ /g that are
necessary to achieve sustained oscillation (Marchetti et al. (2001), Yu (2006)) are not met. How-
ever, because the true linear process model is not known, this assumption can not be confirmed.
Nevertheless, this resulted in neglecting the use of model-free tuning methods.

Similarly to the level controller tuning, the effect of the sample time on controller perfor-
mance was determined (Appendix E). As before, increasing the value of this parameter leads
to worse controller performance. However, for this case, the difference between using a sam-
ple time of 30 or 60 seconds seems to be negligible for the RL method and the one by Sree
and Chidambaram (2006). The controller tuned using the ISE relation resulted in poor perfor-
mance. This may be due to the method not considering robustness directly in the optimization
and the model used in this case is only a rough approximation. Because of the great difference
in performance, this method is left out of the following analysis.

6.4.2 Comparison between standard tuning and optimization-based tun-
ing

For the temperature controller, the optimization-based tuning approach remains the same
as the one for the level controller, with the difference of using an initial design with 40 samples.
Taking into consideration the results from the model-based methods, the design space is defined
as:
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30 ≤ΔC (B) ≤ 60 (6.22)

−1 × 10−3 ≤  % ≤ −1 × 10−4 (6.23)

−5 × 10−6 ≤  � ≤ −5 × 10−8 (6.24)

−5 × 10−2 ≤  � ≤ −1 × 10−3 (6.25)

Based on the initial sample in this design space, the median between the two objectives, 5 1 and
5 2, was approximately 0,0112. As before, F2 is set equal to this value and F1 is chosen to be
10.

Table 6.6: Temperature controller tuning optimization results for 100 function evaluations

Algorithm Objective function value Time (s)

GA 0,1937 328,9
SRS 0,1968 337,3

BO (EI) 0,1922 405,6

*Run on an Intel Core(TM) i7-8550U @1.8 GHz, 8GB RAM, Windows 10 64 bits

The results are similar to the ones for the level tuning, however, in this case GA was able
to find a better value than MSRS, which is unexpected since SBO should be more efficient for
the same number of objective function evaluations. However, due to the stochastic nature of
the algorithm and since only one optimization run was performed, this result could be unrepro-
ducible. The controller parameters for the different tuning methods are presented in Table 6.7.

Table 6.7: Parameters for reactor temperature PID controller

Method ΔC (s)  % (×104)  � (×106)  �

RL (_ = 0, 01g) 30,0000 -8,0360 -1,8104 -0,0110
Sree 60,0000 -3,7690 -0,0022 -0,0110

BO (EI) 30,0195 9,2362 -4,8362 -0,0369
SRS 57,1495 4,6603 -0,2258 -0,0331
GA 37,5325 9,1221 -4,1526 -0,0256

The temperature closed-loop response for the different controllers is presented in Fig-
ure 6.6 and the respective quantitative performance metrics in Figure 6.7. Considering the
manipulated variable is the cooling water flowrate, a process utility with associated costs, the
total use in cubic meters of cooling water during the simulation test is also quantified. This value
is estimated considering the integral of &28= over the total simulation time, calculated using the
trapezoidal rule.
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Figure 6.6: Temperature closed-loop response for different tuning methods
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Figure 6.7: Temperature closed-loop performance metrics for different tuning methods

It can be seen that despite using a process model with low accuracy for the model-based
tuning methods, both result in somewhat acceptable closed-loop performance, taking into ac-
count modelling errors. Of these two methods, the controller tuned by the RL rules shows
superior performance, with faster settling times and lower overshoots, albeit with higher con-
trol action. For the optimization based methods, the controller tuned by the MSRS algorithm
shows the worse performance, with greater error and settling times. Controllers tuned by BO
and GA show similar values for ISE and IAE. Although the controller tuned by BO shows
higher oscillation, and consequent increase in control action, it results in lower overshoots and
a slight reduction in used cooling water. Regarding this last metric, one interesting observa-
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tion is that despite differences in performance, the use of cooling water does not vary much
for the different closed-loop simulations. This can be due to the temperature deviations from
the different closed-loop simulations being relatively low coupled with the high heat removal
capability provided by the cooling water lower temperature and high cooling coil heat transfer
area. Overall, the controller tuned by BO shows the best compromise between performance and
smooth control action.

6.4.3 Refinement of optimization-based tuning

Similarly to the level tuning procedure, the SBO approach is refined by increasing number
of evaluations and using different initial sample sizes and acquisition functions.
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Figure 6.8: Convergence plot for the temperature controller parameter SBO

Contrary to previous results, MSRS displays better convergence and objective function
values using a larger initial sample, while BO leads to better results using less samples. For BO,
the POI criterion seems lead to higher exploitation, appearing stuck in local minima, spending
many function evaluations with the same best objective function value. The same can also
be said for the LCB criterion, when a larger initial sample is used. On the contrary, EI does
not overly exploit. Similarly to the level results, best value was obtained for BO using the EI
criterion, however, in this case, using fewer initial samples. The optimum controller parameters
are ΔC = 30,0029 s,  % = −9, 0583 × 10−4,  � = −2, 5420 × 10−7 and  � = −0, 0214.
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6.5 Robustness analysis

Because no mathematical model can truly represent a physical process, robustness is an
important issue in PID controller tuning and design. Despite not being considered explicitly in
the proposed optimization-based tuning approach, it is still important to assess whether or not
the tuned controller is robust, or in more simple terms, if its performances severely degrades
due to changing operating conditions or uncertainty. Uncertainty is always present and can
mainly arise from the model used in the controller tuning procedure or unaccounted process
disturbances. Model uncertainty can be attributed to errors in the model parameters, uncon-
sidered dynamic phenomena or when using a linear model, process non-linearity. Because the
response of a higher fidelity non-linear model was used in the optimization-based tuning ap-
proach, this last source of model uncertainty is neglected. To assess the controller robustness,
different scenarios are simulated:

• to reflect parametric uncertainty, the value of global heat transfer coefficient, * , varies
25% from its nominal value

• the temperature of both feed streams,)� and)�, are either at their lowest (289 ) or highest
(300 ) daily values (Williams and Otto (1960)), reflecting changing operation conditions

• an unaccounted disturbance in which a positive or negative step change of 5 to the
cooling water supply temperature, )�8= occurs after 10 min of simulation

To determine whether the optimization-based tuning procedure reduced controller robustness,
two sets of controllers are compared, one tuned using SBO (BO for both the level and temper-
ature controller) and the other using standard tuning methods (ITAE rules for level controller
and RL for temperature controller). The results are displayed on Figure 6.9. Because these
changes do not affect the level dynamic behaviour, only the temperature closed-loop response
is analysed.

The robustness of a PID controller can be quantified using several metrics based on linear
control theory and system frequency response (Åström and Hägglund (2006)). However, since
in this example the process model is non-linear simpler alternative metrics were chosen. The
same performance metrics used before, ISE and sum of the rate of change in control action,
are calculated for each scenario. Their values are presented in Figure 6.10. The assumption
is that a more robust controller will display satisfactory performance even when uncertainty is
present. In this sense, this approach can be though of as a worst-case uncertainty scenario type
of analysis, as these were defined above. Alternatively, Monte Carlo simulations could also be
used to assess the impact of uncertainty and quantify robustness in a probabilistic sense.
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Figure 6.9: Closed-loop response for different scenarios (BO- controllers tuned with BO, STD
- controllers tuned with standard methods)
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Figure 6.10: Increase in ISE from nominal operation(BO- controllers tuned by BO, ST - con-
trollers tuned by standard tuning relations)

It can be seen that divergence from the nominal operation conditions results in worse con-
troller performance, the only exceptions being the scenarios where * is lower and the cooling
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water feed temperature is reduced. This is expected since both of these changes lead to a higher
heat transfer rate and increased heat removal. Observing the closed-loop response for the dif-
ferent scenarios, a decrease in the value of * seems to have the greatest effect on the system
response, followed by changes in the operating conditions. Comparatively, disturbances in the
cooling water feed temperature and an increased* appear to not have as great impact.

Regarding parametric uncertainty and observing the value of ISE, the controller tuned by
BO appears to be more robust than the one tuned by standard methods. For a higher value of
* , however, this controller is more aggressive, resulting in increased temperature oscillations.
This controller also shows superior ability to reject the cooling water temperature disturbance.
However, the same does not happen when considering different operation conditions. In these
scenarios, the controller tuned by BO shows worse performance than the one tuned with stan-
dard methods, with much higher deviations from the setpoint, overshoots, and for lower feed
temperatures, increased oscillation.

In conclusion, in spite of displaying higher performance for some scenarios, this example
serves to illustrate the need to incorporate robustness when tuning single-loop PID using op-
timization, taking into account, at least, changing operating conditions. An alternative would
be to use more advanced single-loop control strategies based on adaptive and self-tuning con-
trollers, where the controller parameters are estimated on-line based on a process model and ac-
quired data (Seborg et al. (2017)). In this regard, off-line optimization-based tuning approaches
using a simulated model, as the ones discussed so far, may not be needed.
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Chapter 7

Conclusions and future work

7.1 Conclusions

First of all, it is important to mention the objective functions in the examples presented used
in this work do not allow general and definitive conclusions regarding surrogate model perfor-
mance, sample designs or sizes. Nonetheless, several remarks and recommendations about the
use of Surrogate-Based Optimization (SBO) for the studied applications can be made.

The first case study considered the optimization of a cheap objective function with a known
and convex form. After comparison with other derivative-based and Derivative Free Opti-
mization (DFO) algorithms, SBO, both using static sampling and Bayesian Optimization (BO),
found the optimum while the other two DFO algorithms failed to do so within a limited num-
ber of objective function evaluations, which displays higher efficiency of the surrogate-based
methods. Although a derivative-based algorithm showed superior performance for a convex,
smooth and cheap objective function, these conditions rarely apply to black-box problems. For
this reason so there may be little use to apply derivative-based methods. It was shown that for
a lower dimensional optimization problem, a better approach is to use surrogate models and
adaptive sampling strategies with the goal of optimization. This avoids the problem of under or
oversampling, and is a more time and effort efficient method. In addition, because the surrogate
models are trained with static data, without accounting to changes in the black-box model pa-
rameters or input variable values, there is the need to refit a new surrogate model whenever such
changes occur. Because of this, in addition to optimize the surrogate models, the whole model
fitting procedure, including sample generation, model and hyper-parameter selection, needs to
be performed once a process disturbance occurs. This can prove difficult or not worth the effort,
especially whenever the optimization problem must be solved frequently or on-line, as in RTO.
However, it must be emphasized that the use of SBO with adaptive sampling may not be as
advantageous for larger, plant-wide RTO problems, with tens of decision variables, although
that remains to be assessed in the future.
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In the second case study, SBO was used to tune a PI and a PID controller using sim-
ulations from a complex non-linear dynamic model. The tuning problem was formulated as
a multi-objective optimization problem. As it was expected, optimally tuned controllers dis-
played superior performance than those tuned by standard methods. However, this increase of
performance did not came with an increase in effort due to the use of a systematic and almost
automatic methodology. This methodology to determine the design space bounds and the ob-
jective function weights proved to be useful, simple and efficient, leading to a good controller
performance after only one optimization run. Despite the need to perform at least one prior
simulation, for system identification, after defining the design space, the tuning procedure is
highly automatic. By considering the controller sampling time as a decision variable, all con-
troller parameters are optimally selected, so no trial and error procedures are required to tune
the controller, saving time and effort.

Based on the results of this work, the Biased-relay method is recommended for unstable
system identification in order to obtain an approximate transfer function model, since it only
required one simulation and was easy to use. In conjunction with model-based tuning methods
that consider robustness, bounds on the decision variables were defined with no trial and error.
By performing SBO within those bounds, good controller parameters were found. This way, it
is recommended that when system identification is used to obtain a process model, model-based
methods that take into account robustness, such as the AMIGO method for stable systems or
the RL method for unstable systems, should be used.

After performing a robustness analysis consisting of a different scenarios with parametric
uncertainty, unexpected disturbances and changing operating conditions, it was shown that the
controllers with parameters obtained with BO showed higher robustness than the ones tuned
by standard methods to model parametric uncertainty and unaccounted disturbances. However,
performance was worse when considering changes in operating conditions. This illustrates the
need to take into account uncertainty when performing the optimization-based tuning approach.

Overall, BO showed consistently superior results than MSRS. This comes at the cost of in-
creased computational time, because of the auxiliary acquisition function optimization problem.
However, if each objective function evaluation is time consuming, the increased computational
time should not be a concern, since BO is more efficient in terms of evaluations. This algorithm
showed the best results when using the EI criterion. This is because this acquisition function
automatically considers the trade-off between exploration and exploitation. Regarding the ef-
fect of the initial sample size on SBO performance, there were mixed results. For BO using a
lower sample size seemed to generally improve performance. However, if this sample is also
used to obtain a notion of the scales between different objective, as was proposed, using a lower
sample can bias the identification of these scales. In this regard, no definitive conclusion can be
made.
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7.2 Future Work

Despite demonstrating the advantages of using surrogate models to solve control-oriented
optimization problems, the work of this thesis only touched a part of potential applications.
Additional interesting case studies and approaches are identified for future work.

7.2.1 Approximation of the Pareto set

In this work, the multi-objective optimization problem was solved by defining each objec-
tive importance a priori, through the use of the weighted-sum method. A alternative to better
reflect the relative importance of each objective is to choose the solution based on a approxima-
tion of the Pareto set. To this end, and considering SBO, several multi-objective BO algorithms
can be used (Rojas-Gonzalez and Van Nieuwenhuyse (2019)).

7.2.2 Optimization-based tuning of more complex control structures

Beyond tuning single-loop PID controllers, SBO could also be used to tune controllers
in more complex structure, for instance cascade or multi-loop PID controllers. Also, it would
be interesting to use this optimization approach to tune linear or non-linear MPC. Despite the
existence of some work in these regards (cf. chapter 4), demonstrating the advantages of this
procedure on case studies considering chemical processes, on which references are few and
scarce, should be interesting. If there is a lower layer of PID control under the MPC, the
benefits of a simultaneous tuning procedure for both controllers based on optimization could
also be tested. These examples would involve higher dimensional optimization problems, a
factor which would have to be taken into consideration. Another problem may be the increase
in the number of optimization objectives and the definition of the trade-off between them.

7.2.3 Surrogate-based optimization for NMPC

As mentioned in chapter 4, an interesting and relatively unused idea is to use SBO to solve
the optimization problem in NMPC. Since the problem must be solved on-line, in addition to
efficiency in the number of objective function evaluations, the algorithm overhead time, due
to additional calculations, would have to also be taken into consideration. This would mean
that BO, which showed better results but with higher computational time, would perhaps result
in lower performance than other more fast surrogate-based algorithms, for instance MSRS or
trust-region algorithms, such as the ones mentioned in Chapter 4.3. The problem would also
require dealing with constraints, possibly non-linear.In addition, the number of decision vari-
ables is proportional with the number of manipulated variables and the length of the control
horizon. An increase in either or both of these inevitably escalates the dimensionality of the op-
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timization problem, which would have to be taken into account when selecting surrogate-based
approaches.

Surrogate-based DFO algorithms could be compared with those traditionally used, rely-
ing on derivative information to determine if the surrogate approach possesses merit and if the
assumption that the objective function evaluation is the limiting factor is valid. The approach
could also be tested for situations where a prediction model is embedded in an external simula-
tion software, such as Aspen Plusr.

7.2.4 Deal with uncertainty in optimization

Last, and certainly not the least, it would be important and interesting to include a measure
of uncertainty when solving the controller tuning optimization problem using surrogate models.
This would be important not only for single loop, but multiple loop PID controllers as well.

How to include uncertainty and design the controller explicitly considering robustness is an
interesting and challenging problem. There are already optimization-based tuning approaches
which optimize the controller parameters considering a measure of robustness (Åström and
Hägglund (2006)). However, this measure is based on notions from linear control theory and
frequency response, which would require modifications or different approaches when consider-
ing a non-linear process model. The use of high-fidelity or black-box type simulations for the
controller tuning procedure would also have to be considered when devising solutions. Based
on a recent review by Hüllen et al. (2020), ideas from robust optimization, stochastic program-
ming or discrepancy modelling used in a SBO framework could be investigated. Solutions
found in recent works regarding the use of BO(cf. Hüllen et al. (2020) for references therein)
under uncertainty can also be investigated.
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A Williams-Otto reactor dynamic model

A simplified PI&D of the reactor considered in this work is shown below.

Figure A.1: Simplified PI&D of reactor

Modifications to the original model in Williams and Otto (1960) included calculating the
specific heat capacity of the reactor mixture, �?' (Kummer et al. (2020)), neglecting both the
internal heating coils and the recycle stream, and the addition of equations to describe the reactor
level and cooling water temperature dynamics. These equations were derived using mass and
energy balances, with the following considerations:

• The physical properties of both the reactor mixture and cooling water are constant and do
not present temperature dependence

• The reactor is considered a perfect cylinder with constant area

• Inside the coil flows pure water

• The coil wall is made of metal with a high thermal conductivity and a low thickness, so
resistance to heat transfer can be considered low and the wall temperature dynamics can
be neglected

• Due to the low thickness of the coil wall, its outer diameter is assumed to be equal to its
inner diameter

• The water flowing inside the coil is considered an incompressible fluid

• The internal coil is permanently full of water, so mass dynamics are neglected

• The cooling water flow pattern is considered plug flow, where the contribution of heat
dispersion phenomena, both in the axial and radial directions, is considered negligible
when compared to convection
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A. Williams-Otto reactor dynamic model

The model of the system is described by the following set of differential equations:

d'c
�'

2

4

3!'

3C
= �� + �� − d'&' (1)

<'

3-�

3C
= �� − d'&'-� − :1-�-�<' (2)

<'

3-�

3C
= �� − d'&'-� − :1-�-�<' − :2-�-�<' (3)

<'

3-�

3C
= −d'&'-� + 2:1-�-�<' − 2:2-�-�<' − :3-�-%<' (4)

<'

3-�

3C
= −d'&'-� + 2:2-�-�<' (5)

<'

3-�

3C
= −d'&'-� + 1, 5:3-�-%<' (6)

<'

3-%

3C
= −d'&'-% + :2-�-�<' − 0, 5:3-�-%<' (7)

<'�?'
3)'

3C
= ���?� ()� −)') + ���?� ()� −)')+ (8)

2:1-�-�<' (−Δ�'1) + 3:2-�-�<' (−Δ�'2) + 1, 5:3-�-%<' (−Δ�'3) +&2>>;

d,�?,
3)� (I, C)

3C
= − 4&28=

c��
2
d,�?,

m)�

mI
+ 4*
��
()' −)�) (9)

With initial conditions:

!' (0) =!0' (10)

-8 (0) =- 0
8 , 8 = �, �,�, �,�, % (11)

)' (0) =) 0' (12)

And boundary conditions:

/ = 0 : )� (0, C) = )�8= (13)

/ = !� :
m)� (!�, C)

mI
= 0 (14)

The model is composed of a equation system with 8 ODEs and 1 PDE. To enable a simultaneous
solution, the last equation was solved using the method of lines by discretization of the partial
derivative in Equation (9) along the spatial coordinate, which is approximated using backwards
finite differences:

m)� (I)
mI

≈ )�: −)�:−1
ΔI

(15)

The reaction rates, :8 , are described by Arrhenius law:

:8 = �8 exp

(
−�08
)'

)
, 8 = 1, 2, 3 (16)

The value of the reactor diameter, �' , is not provided by Williams and Otto (1960). Considering
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a recommended aspect ratio of !' = 2�' (Luyben (2007)), the diameter can be estimated by:

+) =
c

4
�'

2!' ⇔ +) =
c

2
�'

3 ⇔ �' =
3

√
2+)

c
(17)

The total volume, +) , corresponds to the sum of reactor mixture volume, +', and the internal
coil volume, +2>8; :

+) = +' ++2>8; ⇔ +) =
<'

d'
+ c
4
��

2!� (18)

The mass hold up, <' was considered the same as the one in Chapter 4, 2105,2 :6. The heat
capacity of the reactor mixture, �?' is a function of each component mass fraction, -8 and
individual heat capacity, �?8 :

�?' =

6∑
8=1

�?8-8 (19)

The total heat exchanged between the cooling water and the reactor mixture, &2>>; , can be
determined through the integral of heat transfer along the coil length, !� , considering a constant
heat transfer coefficient,* , and coil diameter, �� :

&2>>; = *c��

∫ !�

0

()� (I, C) −)' (C))3I (20)

The integral in the equation above was approximated using numerical integration and Riemann’s
sum:

&2>>; ≈ *c��
#∑
:=1

()�: (C) −)' (C))ΔI (21)

Where # is the number of discrete lumps and)�: the temperature of the coil lump : . The model
parameters are presented in the table below.

Table A.1: Williams-Otto reactor dynamic model parameters (Williams and Otto (1960),
Forbes (1994)), Kummer et al. (2020)

Parameter Value Parameter Value

�1(B−1:6�) 1, 6599 × 106 �?� (�:6−1 −1) 2262
�2 (B−1:6�) 7, 2117 × 108 �?� (�:6−1 −1) 2119
�3 (B−1:6�) 2, 6745 × 1012 �?� (�:6−1 −1) 1744
�01 ( ) 6666,7 �?� (�:6−1 −1) 2052
�02 ( ) 8333,3 �?� (�:6−1 −1) 2357
�03 ( ) 11111 �?% (�:6−1 −1) 2204

d' (:6<−3) 800,92 �?, (�:6−1 −1) 4186
Δ�'1 (: �:6−1) -263,8 d, (:6<−3) 1000
Δ�'2 (: �:6−1) -158,3 * (,<−2 −1) 800
Δ�'3 (: �:6−1) -226,3 �� (<) 0,0254

!� (<) 116,4336 �' (<) 1,1960
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A. Williams-Otto reactor dynamic model

Since the reactor temperature and component mass fractions values at the nominal point are
known, as they were determined by steady-state optimization, the only variable values that need
to be calculated are the level, cooling water exit temperature and flowrate. The level value at
steady state is arbitrary, since it does not depend on other variables. Therefore it was determined
considering the reactor mass hold-up, 2105,2 :6. The cooling water exit temperature,)�>DC , and
flowrate, &28=, can be determined by a set of sequential calculations (Luyben (2007)). First the
heat that must be removed,&2>>; to maintain a constant)' , is determined by solving Equation (8)
in steady-state. At steady-state, &2>>; can also be described by the logarithmic mean:

&2>>; =
()' −)�8=) − ()' −)�>DC )

;=

(
)'−)�8=
)'−)�>DC

) (22)

Solving Equation (22) in order to)�>DC gives)�>DC = 344, 4 . &28=, can be determined through a
steady-state energy balance:

&28= =
&2>>;

d,�?, ()�>DC −)�8=)
(23)

Because the cooling water temperature varies along the length of the coil, the spatial temper-
ature profile at steady state must be known. This profile can be determined solving equation
Equation (9) at steady-state, which is an ODE that has an analytical solution:

0 = −4&�8=
c��

2
d,�?,

m)� (I)
mI

+ 4*
��
()' −)� (I)) ⇔

)2 (I) = )' − ()' −)�8=) exp

(
−c*��/
d,�?,&28=

)
(24)

Z depends on the number of discrete steps along the axial coordinate. To determine this number,
a sensitivity analysis was taken in which the relative absolute error between the steady state
value of &2>>; (from Equation (8)) and the approximation of Equation (21), as a function of the
number of steps, using Equation (24) to determine the temperature spatial profile.
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Figure A.2: Relative error as a function of the number of discretization steps
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Based on this analysis, 200 discretization steps were chosen, which resulted in a absolute
relative error of approximately 0, 35% from the rigorous &2>>; value of 297, 6:, . The value of
the input variables for the nominal scenario are given on the table below.

Table A.2: Nominal values for input variables

Input variable Value Input variable Value Input variable Value

)� ( ) 294,3 &̄' (!/B) 8,2593 &̄� (!/B) 1,2778
)� ( ) 294,3 &'<0G (!/B) 12 &28=<0G (!/B) 4
)28= ( ) 288,75 &'<8= (!/B) 0 &28=<8= (!/B) 0

It must be noted that the upper limits on the flowrates &' and &28= were considered as a
base example.

93



B. Surrogate model selection and validation for chapter 5

B Surrogate model selection and validation for chapter 5

B.1 Polynomial regression

Polynomial regression models were implemented using fit. In these models, the first in-
dependent variable is the reactant B flowrate, �� and the second is the reactor temperature )'.
Firstly, several polynomial model types were tested, as to asses the most adequate. Since the
initial sample size is 20, and the number of samples must be greater than the number of coeffi-
cients to estimate, several types of polynomials are ruled out. Preliminary tests also showed that
first or second order terms lead to higher prediction error. The remaining options are compared
in figure below.

Figure B.3: Comparison between different polynomial models for different sampling plans

Increasing the number of samples does not appear to have a significant effect on lowering
the prediction error, with only slight differences in prediction errors using 30 or 50 training
samples. It can be seen that a polynomial model with third order terms for �� and fifth order
terms for)' outperforms other models across all designs, reason for choosing this model instead
of all the others.

B.2 Kriging

The kriging models were implemented using fitrgp, MLE was performed using the default
MATLABr optimizer.
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Figure B.4: Comparison of RMSE using different kriging kernels and trends using LHS

The exponential kernel is much less accurate than the other two kernels, by at least an
order of magnitude, and the squared exponential kernel appears to have higher accuracy than
the Matérn 5/2. Other apparent conclusion is that the performance using a linear trend is similar
when using a constant or a quadratic trend, except for the exponential kernel. This would
indicate that, in specific this case, increasing model complexity, by using a polynomial trend,
does not lead to significant improvements in model accuracy. To assess these conclusions, the
error using squared exponential and Matérn 5/2 kernels is compared for the other deterministic
designs, that do not present randomness.

Figure B.5: Comparison of Squared Exponential and Matérn 5/2 kernel using Sobol and Halton
designs

Observing the results of both designs, it can be seen the prediction error when using a
Matérn kernel is two times larger for the lowest sample size and only shows better performance
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B. Surrogate model selection and validation for chapter 5

for an increase in number of points, for both designs. This leads to favour the use of a squared
exponential kernel for a smaller sample and the Matérn 5/2 kernel for a larger sample. As
before, the performance when using a constant or linear trend for the squared exponential kernel
is comparable, however, in this case, a quadratic trend improves the prediction accuracy. These
results are similar to the ones reported by Bhosekar and Ierapetritou (2018) for several test
problems. Since the increase in accuracy for the quadratic trend comes at the expense of a
more complex model, which requires more training points to estimate additional model hyper-
parameters of the quadratic trend, and increases computational time, the use of a quadratic trend
instead of a constant trend seems to not be worth the trade-off. For the Matérn kernel, the use
of a polynomial trend does not appear to lower prediction error.

B.3 Artificial Neural Networks

Feedforward ANN were implemented using the feedforwardnet, with the weights and bi-
ases estimated considering the mean squared error as the objective loss function and the back-
propagation optimization problem was solved using the fast Levenberg-Marquardt algorithm,
by default in MATLABr. The number of training iterations was left at default, 1000. The
weights were initialized always using the same random number generator, for reproducibility.
To assess the impact of network architecture on prediction error, various types of networks were
compared for Sobol designs with 20, 30 and 50 samples. One and two hidden layers with 10
nodes in each layer were considered, with two of the most used activation functions, the hyper-
bolic tangent and the logistic function. For simplicity sake, in the case of two hidden layers, the
number of neurons and activation functions are identical in each layer.

Figure B.6: Effect of neural network architecture and sample size on prediction error.

When a lower sample size is used, the networks with a lower number of nodes (three to five)
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present a lower prediction error. Also networks with only one hidden layer generally perform
better than those with two. This is because bigger networks have a larger number of weights
and bias to estimate and therefore require a bigger amount of training data to prevent overfitting.
As the initial sample size increases, this fact becomes apparent, with bigger networks showing
a lower prediction error. Looking at the two activation functions, it appears that for a single
hidden layer, better performance is achieved with the use of a logistic function for lower sample
size and hyperbolic tangent for a higher sample size. However, the impact of different activation
functions when two hidden layers are used is not as obvious.

All things considered, the results above show that for the largest number of samples, the
network architecture which presents the lowest error is a network with two hidden layers with
5 nodes each, using the logistic activation function, with a RMSE of 0, 02034$/B. However, a
closer look reveals that a one hidden layer with 9 nodes using the hyperbolic tangent shows the
second best performance, with a RMSE of 0, 02196$/B. Comparing the number of parameters
in each network, the first one has a total of 51 parameters (10 and 30 weights for the input
and hidden layer, respectively, and 11 biases) while the second network has 37 parameters (18
and 9 weights for the input and hidden layer, respectively, and 10 biases). Considering that a
model with fewer coefficients is generally more favourable, and that difference in performance
is marginal between the simpler network with only one hidden layer is chosen.
B.4 Radial basis functions

RBF models were implemented using newrbe, which chooses all data points as centres for
the basis functions and estimates the weights solving the linear equation system. A bias on the
network output is also estimated. Only the Gaussian radial basis function (see Equation (2.24))
was considered for this case. The value of the width, W , constant for all neurons, was adjusted
by testing several values for different sample designs.

Figure B.7: Effect of width in Gaussian RBF prediction error for different sampling plans

97



B. Surrogate model selection and validation for chapter 5

It seems that the value of the width, W has a greater impact on prediction error when the
initial design has fewer samples and increasing this value improves accuracy, up to a point. As
the number of samples increase, increasing the width appears to not have as significant effect
on prediction error, eventually stagnating. This is expected since the the width value is related
to the vector distance for which each Gaussian neuron responds in the input space, so that with
fewer samples, each neuron has to respond to a greater input space area so that new inputs are
detected. With a lower number of samples, the area does not need to be as large. Overall, the
best performance is achieved with a W value of 27 for a Sobol design, leading to the lowest
prediction error across the three initial sample sizes.

B.5 Support Vector Regression

SVR models were fitted through fitrsvm and the quadratic optimization problem is solved
using the default Sequential Minimal Optimization algorithm. Taking this into account, the use
of a Gaussian kernel, where W is set to 1 by default in fitrsvm, and polynomial kernels of second
to fifth order were tested for different initial designs and sample sizes.

Figure B.8: Effect of C and different kernels on SVR prediction error for different sampling
plans

It can be seen that the impact of increasing the parameter � is only significant for the
Gaussian kernel, and in the case of polynomial kernels, increasing� above 100 does not lead to
a decrease in prediction error. This indicates that when using a polynomial kernel, increasing
model complexity with a higher value of � leads to worse performance, increasing fitting time
with the same, or higher, prediction error. Also, for these kernels, as the sample size increases,
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the error is lower when a lower value of C is used, meaning that for a larger sample, the use of
a more complex model is not favourable.

Regarding different kernels, it can be seen that the Gaussian kernel shows worse perfor-
mance compared to polynomial kernels above second order. Within the different polynomial
kernels, the fourth order kernel is more accurate for a lower sample size but as the initial sample
size increases, the fifth order kernel leads to a much lower prediction error. Considering these
results, the use of a fifth order polynomial with a C value of 10 is favoured above all others,
leading the lowest error for higher sample sizes.
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C. Simulink flowsheets used in closed-loop simulations

C Simulink flowsheets used in closed-loop simulations

[J ] = function (x)

Load Simulink model information using ’load_system’

Set controller parameters to x using ’set_param’

Perform simulation using ’sim’

Obtain simulation output information via ’out’ block

Return objective function value for x: J(x)

Figure C.9: Representation of MATLABr function used in simulation optimization with
Simulinkr

Figure C.10: Simulink model of the Williams-Otto reactor
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Figure C.11: Simulink flowsheet for PID control

Figure C.12: Simulink flowsheet for Relay tests
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D. Biased-relay method description and results

D Biased-relay method description and results

In this method, a relay with hysteresis in one direction is used:

D (C) =
{
3 , if 4 (C) ≥ )
−3 , if 4 (C) < 0

(25)

The addition of a hysteresis generates an asymmetric oscillation, which allows approximating
the process gain as:

 = −
∫ %

0
~ (C)3C∫ %

0
D (C)3C

(26)

The integral are evaluated over one period of oscillation, % . After calculating the process gain
(Equation (26)), the time constant, g and delay, \ can be estimated, after modification for unsta-
ble system identification (Marchetti et al. (2001)) by:

g =

√(
 
 2D

)2
− 1

lD
(27)

\ =
0A2C6(lDg)

lD
(28)

Based on the system response,  2D is estimated using Equation (6.11) and the ultimate fre-
quency,lD is:

lD =
2c

%D
(29)

Because the relay is not ideal and the controlled variable does not display symmetric oscillation,
both parameters present increased error in the approximation. Considering a test with ) as 0,1
 and 3 as 1, 3430 × 10−3<3/B, the system response is:
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Figure D.13: Biased Relay test

Based on this response,  2D is 0,0097 and %D is 53,53 seconds. A comparison between the
closed-loop response to a unitary step setpoint change of the identified model with the original
non-linear model is made in the figure below:
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Figure D.14: Identified and original model closed-loop response to a step change in setpoint

103



E. Additional closed-loop simulation figures

E Additional closed-loop simulation figures

Figure E.15: Level closed-loop response for different sampling times
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Figure E.16: Temperature closed-loop response for different sampling times
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