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Abstract

Start by doing what’s necessary,
then do what’s possible, and sud-
denly you are doing the impossible.
(Francis of Assisi)

Brain-wave measurement sensors, EEG based, have been popularized lately, becoming ever

more precise and cheap. Nowadays, anyone is able to measure brain waves and patterns of

someone outside of medical laboratories. Besides analyzing brain signals, applications can even

be implemented as a way of controlling electronic devices, know as a brain-computer interface.

Brain-computer interface along with the “Internet of Things“, are becoming evermore popular as

people have accepted wearables and smart devices as a part of our everyday life. In this thesis, I

will attempt to explore EEG to investigate EEG signals, and build a proof of concept application

able to detect if the user has eyes open or closed using machine learning algorithms, with good

detection accuracy. The end goal is an interface between a driver using a BCI headband and a

smart device, where brain signals are being constantly collected and processed, in the event that

the driver becomes sleepy, the smart device will promptly send an auditory signal warning the

driver of danger.

Keywords: BCI - Brain Computer Interface, IOT - Internet of Things, EEG - Elec-

troencephalography, Brain Signals, EEG signals, Machine Learning





Resumo

Our lives begin to end the day we be-
come silent about things that mat-
ter.
(Martin Luther King, Jr.)

Sensores de leitura de ondas cerebrais, baseados em EEG, tornaram-se populares ultima-

mente, tornando-se cada vez mais precisos e baratos. Nos dias de hoje, qualquer pessoa é capaz

de medir ondas cerebrais e padrões de qualquer indiv́ıduo fora dos laboratórios médicos. Para

além de analizar os sinais cerebrais, as aplicações podem até implementar um método de controlar

dispositivos electrónicos, conhecido como Brain Computer Interface. Brain-computer interface e

“Internet of Things,“ estão a tornar-se cada vez mais populares já que as pessoas têm aceitado

bem dispositivos electrónicos e dispositivos electrónicos inteligentes como parte do seu quotidi-

ano. Nesta tese, proponho-me a explorar dispositivos EEG e investigar sinais EEG, e desenvolver

uma aplicação prova de conceito capaz de detectar se o utilizador têm os olhos abertos ou fecha-

dos utilizando algoritmos de inteligência artificial, com boa precisão de deteção. O obejectivo

principal será o desenvolvimento de um interface entre um condutor utilizando uma BCI head-

band e um dispositivo electrónico inteligente, onde os sinais cerebrais estão a ser constantemente

colectados e analizados, e numa eventual ocorrencia onde o condutor apresenta sonolência, o dis-

positivo electrónico inteligente deverá prontamente emitir um sinal sonoro avisando o utilizador

do perigo.

Keywords: BCI - Brain Computer Interface, IOT - Internet of Things, EEG - Elec-

troencephalography, Brain Signals, EEG signals, Machine Learning
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Chapter 1

Introduction

An investment in knowledge pays
the best interest.
(Benjamin Franklin)

1.1 Motivation

The task of driving is a distinct and complex task requiring perceptual, cognitive, and

decision-making skills. Falling asleep behind the wheel is extremely dangerous, driving while

fatigued impairs the ability to drive safely. Response time, attention, and decision-making ca-

pabilities all suffer when sleep-deprived. A certain level of alertness is essential to guarantee the

safekeeping of the driver and other road users. Reducing the extent of sleep-deprived driving is

critical to improve the safety of roads.

According to the World Health Organization (WHO) over 1.35 million people die each year

on road accidents, it is also now the leading cause of death for children and yound adoults aged

to 29 years old, and the 8th leading cause of death for people of all ages [1]. In a recent report

[2], between 20 to 30% of road accidents are caused by tiredness.

Available techniques for detecting drowsiness and sleepiness in drivers can be generally divided

into the following categories: sensing of driver operation, sensing of vehicle response, monitoring

the response of driver, ranging from lane detection mechanisms, traffic analysis vision systems,

sensing of physiological characteristics and tiredness estimation systems [3]. Available physical

detection methods could involve changes in heart rate, the open and closure of the eyes and
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electroencephalographic (EEG) the later being known to have a positive correlation with sleep

patterns [4].

The existence of a real time system that supervises driver drowsiness and warns him of

potential threats can be very useful, potentially avoiding accidents. However, this system should

not interfere with the driving ability, to ensure the safety of the driver and those around him.

1.2 Objectives

This thesis proposes to use a low-cost EEG device, along with supporting portable hardware

and software, to design and validate a system to detect if a drirver has his eyes open or closed,

and emit a sound alert, in real-time. Such a system could be used by truck drivers, aircraft pilots

or a regular driver to detect and warn drivers of their drowsiness and inattention with a very

quick response time. This system would not need to monitor driving patterns nor would it affect

the field of view and could be paired, although not required, with traditional computer vision

detection systems for peak accuracy, such as feature based detection using on-board cameras [5].

This system will record multiple EEG signals via the available dry sensors and apply filters to

split the signal into frequencies. Time-frequency analysis will be implemented to monitor changes

in these frequencies over time. When the EEG transitions resemble sleep, the device will produce

an audible alarm.

1.3 Work Developed

During development, an algorithm for EEG channel analysis, for the headband was developed,

where the bluetooth data packages are gathered and shown on the screen in real-time, another

algorithm was developed for recording user EEG data. A NN classifier algorithm was created

that takes this data and give a prediction if the user is with eyes closed or open, and sends an

auditory signal to warn the user, if the eyes closed state is predicted. A database was produced

and can be used in future similar projects, containing user data of closed and open eyes, of 20

seconds continuous periods, for each of 3 subjects, obtained in a lab environment. Since the

muse headband team does not provide programming software to work with, any packages and
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projects with this particular headband is rather scarce, the developed algorithms can improve

this research field with this particular headband.

1.4 Dissertation Structure

Chapter 1, ”Introduction”, introduces Brain Computer interface and its components. Also,

this chapter explores different techniques of the brain measuring activities. Finally, this chapter

discusses the research questions of this thesis. Chapter 2, ”Background and Related Works”,

shows the biomedical and system background, and discusses the related works. In this chapter,

brain anatomy and brain lobes activity will be discussed. Also, it explains EEG signals in more

details and discusses EEG signal processing, EEG sleep patterns, driver fatigue as well as discuss

similar work and contributions. Chapter 3, ”Development”, this chapter compares different EEG

headsets and why this thesis chooses Muse Headband, discusses classification methods, introduces

neural networks and discusses how the work was developed and the database produced.

Chapter 4, ”Conclusion”, concludes the thesis, and discusses its limitations. Also, in this

chapter, results are discussed and compared to other related research, alternatives are given on

how to obtain better results and what other methods available could be used.
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Chapter 2

Background and Related Works

Happiness lies in the joy of achieve-
ment and the thrill of creative effort.
(Franklin D. Roosevelt)

2.1 Brain Computer Intrerface

Brain-computer interfaces (BCI) acquire brain signals, analyze them, and translate them into

commands that are relayed to output devices that carry out desired actions. The neural activity

can be measured using invasive or noninvasive techniques. BCI applications that have been

implemented vary in use, such as applications for disabled people to interact with computational

devices, in gaming to play games with their thoughts, social applications to capture feelings and

emotions, and application for human brain activities [6].

A BCI system, Figure - 2.1, consists of three sequential components: signal acquisition,

making sence of the extracted signals through feature extraction and feature translation, using

these idicators to preform a task . These are controlled by an application that defines the onset

and timing of operation, the details of signal processing, the nature of the device commands, and

the oversight of performance. An effective operating protocol allows a BCI system to be flexible

and to serve the specific needs of each user.

• Signal acquisition, the measurement of brain signals using a particular sensor modal-
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Figure 2.1: BCI System

ity (eg, scalp or intracranial electrodes for electrophysiologic activity, fMRI for metabolic

activity). The signals are amplified to levels suitable for electronic processing (and they

may also be subjected to filtering to remove electrical noise or other undesirable signal

characteristics). The signals are then digitized and transmitted to a computer.

• Feature extraction, the process of analyzing the digital signals to distinguish pertinent

signal characteristics (ie, signal features related to the person’s intent).

• Feature Translation, the resulting signal features are then passed to the feature transla-

tion algorithm, which converts the features into the appropriate commands for the output

device (ie, commands that accomplish the user’s intent). The translation algorithm should

be dynamic to accommodate and adapt to spontaneous or learned changes in the signal

features and to ensure that the user’s possible range of feature values covers the full range

of device control.

• Device Output, the commands from the feature translation algorithm operate the external

device, providing functions such as letter selection, cursor control, robotic arm operation,

and so forth. The device operation provides feedback to the user, thus closing the control

loop.

In short BCI, refers to a system that translates data from the brain to an external device.

To undestand this type of communication, it is primarily necessary to measure the brain neural

activity.
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2.1.1 Measuring brain activity

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) of the brain is a safe and painless test that uses a

magnetic field and radio waves to produce detailed images of the brain and the brain stem. It

does not use radiation.

This technique requires an MRI bed to scan a subject, which limits space movement and due

to the magnet effects, metallic items are not allowed during the scan which limit its applications.

It takes several seconds, the data collection is slowed down.

Functional Magnetic Resonance Imaging

An FMRI-BCI system is a special MRI technology that measures brain activity by detecting

changes associated with blood flow. Spatially localized brain activity is measured by fMRI

using the BOLD effect which is the neurovascular response to electric brain activity. Usually,

Echo Planar Imaging (EPI) sequences are applied to acquire functional images when the subject

is performing a mental task or imagery. Images are reconstructed, distortion corrected, and

averaged by the signal acquisition component. The signal analysis component retrieves the

data, and performs data preprocessing, such as including 3D motion correction, and statistical

analysis. The signal time series of interactively selectable regions of interest are then exported

to the custom-made visualization software (signal feedback component) which provides feedback

to the subject using video projection. FMRI scans have poor temporal resolution. Temporal

resolution refers to the accuracy of the scanner in relation of time: or how quickly the scanner

can detect changes in brain activity. However, the temporal resolution, temporal resolution refers

to the accuracy of the scanner in relation of time (how quickly the scanner can detect changes in

brain activity), is limited by a blurred intrinsic hemodynamic response and a finite signal-to-noise

ratio.

Magnetoencephalography

MEG is the primary process through which central nervous system (CNS) neuronal activity

can be detected, cataloged, and analyzed. MEG identifies the very small magnetic fields that are
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created by infinitesimal electric currents flowing throughout CNS neurons during different mental

activities. MEG essentially works because neuromagnetic signals penetrate the skull and scalp

without being distorted. A magnetic source image (MSI) is created when MEG information

is superimposed on a magnetic resonance image. The ability of the MEG process to identify

mental activity with pinpoint accuracy is accomplished with the use of SQUIDS (superconducting

quantum interference devices). This technique allows capturing MEG of the head efficiently and

rapidly. Also, this technique is non-invasive and can be used as complement for other techniques

such as EEG and fMRI. Due to the fact that MEG uses magnetic fields, this technique makes

less distortion than the electric fields. However, the same restriction applied on fMRI and MRI

can be applied to MEG due the to its sensitivity metallic objects.

Electroencephalogram

EEG is the most commonly used technique to measure this activity: electrodes are placed on

the scalp and can be used in pairs to measure the electrical differential. The EEG technique is

one of the most studied non-invasive interfaces as it has a fine temporal resolution. The main

advantages of EEG lie in the relatively low setup price, possibility of portability and relative

ease of use. Among the main drawbacks of EEG is the quality of spatial resolution that tends

to be poor. Only certain types of activity in the superficial layers of the brain can be measured

and the amplitude of the electrical activity is in the microvolts. EEG is a weak signal and

needs to be amplified in order to be displayed or stored on a computer. In a digital acquisition

system the analog signal is digitized and typically sampled at a rate of 256 to 512 Hz. Two

approaches to recording the EEG signal are invasive and non-invasive. In the invasive approach,

Electrocorticography (ECoG), the electrode is implanted inside the human brain, which requires

surgery. In a non-invasive approach, electrodes are placed on the surface of the skull, which

have benefits such as risk free, easy setting, and repeating measurement. In addition, it is more

favorable in developing and designing application for normal people. The focus of this thesis will

be based on this non-invasive EEG technique.

2.1.2 Signal acquisition
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Brain signals vary greatly between people and everyday in a person. This is due to the low

spatial resolution of scalp EEG and to the fact that the measurement of EEG is indirect. This

means that averaging is required to obtain reliable measurements, which in turn slows down

the speed at which EEG can be processed and used to detect phenomena and results in a low

bitrate. The bitrate represents the amount of information transmitted by the BCI per minute.

The person, who wants to use a BCI-based system should be trained to produce the stable brain

patterns the more training the user undergoes or the more training trials are captured, the faster

the detection can be made [7]. This training can require hours and days of repetitive practice.

We can split the BCI architecture into synchronous and asynchronous systems.

In synchronous (or system-paced) BCIs the commands are imposed by the system, which

is restricted to a predefined time frame, this is a cue based BCI. These systems include two

stages. First stage requires the subject to perform mental tasks (e.g. imagination of tongue

movement), in order for the system to collect a sufficient amount of supervised data. At this

stage no feedback is provided to the user. The acquired data is processed offline, and allows

defining features, classifiers and their parameters. Once the classification accuracy is sufficient

from the offline learning, a second, supervised stage is proposed: the user is asked on the tasks

to perform and now receives feedback on the result of the classification.

In contrast, in asynchronous (self-paced) BCIs the commands are issued at any time whenever

the user decides, this is a self paced system which operates independently of a cue stimulus.

Still, the synchronous setting remains common, as the performance of such BCIs can easily

be evaluated, table 2.1, thus making this setting desirable for experiments and for comparing

system in an in the lab setting. Moreover, a continuous classification (required for asynchronous

systems) greatly increases the computational requirements towards achieving a real-time BCI

system.

Training a BCI is a slow and tedious process, it may take from 10 minutes to several hours,

varying from system to system.

2.2 Electrodes Placement

There are different system placements of electrodes on the scalp. There is the 10/20 system

9



Table 2.1: Synchronous vs Asynchronous BCI

Advantages Disadvantages

Synchronous BCI Easier control for user arti-

facts:

allotted time to move or

blink eyes.

System knows ahead off time

when the command

from the user will be received

Commands are imposed

by the system, user cannot

choose

when to perform an action

Asynchronous BCI Can be operated on

free will of the user

More prone to

noise by the user: involun-

tary movement

of eyes and blinks. Compu-

tationally more

demanding as it provides

continuous

classification in real-time
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which has 21 electrodes, the system 10/10 system which has 81 electrodes, and the 10/5 system

which has 300 electrodes. We will use the 10/20 system. The numbers 10 and 20 in the 10/20

system refer to the distance between adjacent electrodes, which is 10% or 20% of the total front

back or right-left distance of the skull. The positioning of the EEG electrodes on the scalp, that

we will focus on are: in the forehead, correspondant to Fp1 and Fp2, and the back of the ears,

A1 and A2, see figure 2.2.

Figure 2.2: Eletrode placement 10-20 system. 1

2.3 EEG Signals

In 1924 a German physiologist and psychiatrist, Hans Berger, recorded EEG signals for the

first time on human beings and introduced alpha and beta waves. Hangs Berger also introduced

the term “electroencephalogram”. In the mid- 1930s, Alfred Loomis showed that in humans EEG

patterns dramatically changed during a night’s sleep. In most of EEG studies, usually, alpha,

beta, theta and delta waves are used for sleep studies. Alpha and beta waves can be used to

represent conscious states, while theta and delta waves are mostly used to represent unconscious

states. Alpha waves significantly increase during closed eyes and eyes blinking in relax and active

states [8]. While, drowsy, under stress or heavy mental work load the alpha wave power decreases

and the theta band power increases [9]. Hence, alpha, beta, theta and delta band can be used

to measure the drowsiness.

1https://en.wikipedia.org/wiki/10%E2%80%9320 system (EEG)
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Different electrical frequencies can be linked to actions and different stages of consciouses.

This has been done by observing subjects performing different tasks, while recording their EEG.

• Gamma waves are in the frequency range of 31Hz and up. It is thought that it reflects the

mechanism of consciousness. Beta and gamma waves together have been associated with

attention, perception, and cognition [9].

• Beta waves are in the frequency range of 12 and 30 Hz, but are often divided into 1 and 2

to get a more specific range. Small waves associated with focused concentration and best

defined in central and frontal areas. When resisting or suppressing movement, or solving a

math task, there is an increase of beta activity [9].

• Alpha waves, ranging from 7.5 to 12 Hz, are slower and associated with relaxation and

disengagement. Thinking of something peaceful with eyes closed should give an increase of

alpha activity. Most profound in the back of the head and in the frontal lobe [9].

• Theta waves, ranging from 3.5 to 7.5 Hz, are linked to inefficiency, daydreaming, and the

very lowest waves of theta represent the fine line between being awake or in a sleep state.

Theta arises from emotional stress, especially frustration or disappointment [9].

• Delta waves, ranging from 0.5 to 3.5 Hz, are the slowest waves and occurs when sleeping.

If these waves occur in the awake state, it thought to indicate physical defects in the brain.

Movement can make artificial delta waves, but with an instant analysis (just observing raw

EEG records) [9].

2.4 EEG headset device comparison

Selecting the correct EEG device can be a difficult process. Many aspects must be considered,

and the relevance of each one depend on the approach. Moreover each manufacturer, may or

may not show the information perceptively clear. There are many EEG headsets available on

the market with different characteristics, the most widely used devices considered are:

• Muse Headset: an EEG device developed mainly as a meditation tool. Possessing 4 chan-

nels, 1 reference and two ground electrodes. It is one of the easier bands to get started

with, as it requires no head preparation, has a 256 Hz Sampling Rate, 12 bits ADC(Analog
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to Digital Converter). There are research tools available for Windows, Mac and Linux, al-

though compatibility with the 2016 version is not possible, an interface must be manually

implemented, price is around 150 euros, Figure - 2.3.

Figure 2.3: Muse headband.2

• OpenBCI: open source EEG and can have up to a maximum of 16 channels, 256 Hz Sam-

pling Rate, 24 bits ADC, open source software and hardware, prices vary from 400 euros

for 8 channels and 800 euros for 16 channels, Figure - 2.4.

Figure 2.4: OpenBCI.3

• Emotiv Epoc: one of the first consumer EEG devices released on the market, easy to wear,

comes with 14 EEG channels with static form factor. Less economic than other commercial

headsets and has an additional cost for accessing the data that the headset collects. 2048

Hz Sampling Rate, 14 bits ADC, costs around 650 euros, Figure - 2.5.

2https://choosemuse.com/
3http://www.mdtmag.com/sites/mdtmag.com/files/imecneuropro.jpg
4https://www.emotiv.com/wp-content/uploads/2016/06/emotiv epoc square-w.jpg
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Figure 2.5: Emotiv Epoc.4

• Emotiv Insight: second product which Emotiv brought the market, considered a more

economic option to the Epoc headset. Comes with 5 channels, Sampling rate varies from

126 Hz and 256 Hz, 15 bits ADC, around 250 euros, Figure - 2.6.

Figure 2.6: Emotiv Insight.5

• Neurosky Mindwave: Simple design having only 1 channel for use, 512 Hz Sampling Rate,

12 bits, Available SDK, around 80 euros, Figure - 2.7.

The number and placement of electrodes is an important factor to consider, depending

5https://www.emotiv.com/wp-content/uploads/2016/04/emotiv-insight-square-w.jpg
6 https://www.robotshop.com/media/catalog/product/cache/1/image/900x900/9df78eab33525d08d6e5fb8d27136e95/n/e/neurosky-

mindwave-mobile-eeg-sensor.png
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Figure 2.7: Neurosky Mindwave. 6

Table 2.2: - Voltage 2- Bit Digital Representation.

Voltage 2- Bit Digital Representation

0-2.5 00

2.5-5.0 01

5.0-7.5 10

7.5-10.0 11

on the type of brain response needed to be measured, a minimum number of electrodes

may be required. Measuring Relaxation levels is simple with 1 or 2 electrodes. Sampling

Rate of an EEG translates the number of samples in a second received to the device. Most

of the devices have a minimum of 256 samples a second, but there are some with higher

sampling rate. Depending on the frequency we are trying to measure, the sampling rate

must be at least 2.5 times greater. The Analog to Digital Converter (ADC) Bits represents

the resolution of the signal. The number of bits is an important measurement unit to be

able to accurately estimate the voltage, however more bits does not necessarily mean better

quality data. For example if we have 4 ADC bits and we are attempting to measure a signal

between 0 and 10 Volts. The data must be represented as depicted in table 2.2.

Table 2.3 compares some of the characteristics that need to be considered when choosing an

EEG headset.

To further the research using this device, the Muse headband was selected, the price, battery

and comfortability are the most important aspects for a consumer product, moreover the existence

of LSL support adds an additional layer of customization, by allowing the programmer to access
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Table 2.3: - EEG Headset comparison

Device Channels ADC Bits Motion sensors LSL Support Battery Cost

Muse 2016 4+1 ref 12 3 axis Yes 5 hours Medium

Epoc 14+2 ref 16 9 axis Possible 6 hours High

Insight 5+2 ref 15 9 axis Possible 4 hours Medium

OpenBCI up to 16 channels 24 3 axis Yes 26 hours High

N.M. 1+1 ref 12 N/A N/A 8 hours Low

Figure 2.8: Muse Headband Electrode Placement

the sensors data using his own code.

2.5 Related Work

Although popularity as been rising lately on BCI systems, it is a relatively recent field of

study. Researchers have given attention to video and image processing, they have used driver’s

eye and face videos for drowsiness detection. In 1998, [10] described a new approach for driver’s

drowsiness detection based on analysis of their eyelid movement. Time series of interhemispheric

and intrahemispheric cross spectral densities of full spectrum EEG is another study in 2001 by

[11] they used three types of artificial neural networks: the linear network, the non-linear artificial

neural network (ANN), and the Learning Vector Quantization (LVQ) neural network. [12] in 2006

used the Relative Band Ratio (RBR) of the EEG frequency bands, then statistical tests were

used for drowsiness detection. [13] used wavelet transform for decomposition of EEG signal to its

sub bands . Twenty human subjects underwent driving simulations with EEG monitoring, Alert

EEG was marked by dominant beta activity, while drowsy EEG was marked by alpha dropouts.

The duration of eye blinks corresponded well with alertness levels associated with fast and slow

eye blinks. Samples of EEG data from both states were used, for increasing the accuracy of
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diagnosing the transition from wakefulness to sleep, they applied EEG sub bands and also left

and right EOG and chine EMG to artificial neural network. In 2009, [14] showed that support

vector machines are the best classifier for wake to sleep transition diagnosis.
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Chapter 3

State of the Art

3.1 The Brain During Sleep

The task of sleep can be broken down to four sleep stages proceeded by Rapid Eye Movement

(REM) sleep. Stage 1 sleep is the transition from wakefulness to sleep. At this stage, a person

can be woken easily, and may not be aware that they were sleeping. During stage 1 sleep, EEG

signals are low amplitude and low frequency. During stage 2 sleep, body temperature decreases

and the heart rate slows. In stage 2 sleep, alpha waves are periodically interrupted by alpha

spindles or sleep spindles. Alpha spindles are 12-14 Hz bursts of brain activity that last at least

half a second [15]. These periods of alpha spindle activity are sometimes called alpha spindle

epochs. Stages 3 and 4 are deeper sleep, with stage 4 being deeper than stage 3. REM sleep

follows stage 4 sleep. REM sleep is most readily identified by rapid eye movement. During

REM sleep, dreaming occurs and brain activity increases. Each of these stages continue to cycle

from stage 1 through REM sleep throughout the sleeping period. The majority of brain activity

during the transition from wakefulness to sleep occurs in the frontal and occipital lobes. High

occipital lobe activity is associated with relaxed wakefulness. During stages 2-4, delta activity

in the frontal lobe increases and theta activity in the occipital lobe increases [16]. Methods for

sleep detection can be created by observing these features in the brain during the transition from

wakefulness to sleep.

0http://psychmuseum.uwgb.org/wp-content/uploads/2016/10/what-are-the-four-lobes-of-the-brain 1-

300x232.jpg
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Figure 3.1: Lobes of the Center Cortex

3.2 Driver Fatigue Detection

The existent commercial systems able to detect driving patterns of fatigued drivers, such

as the Ford Driver Alert, the Mercedes Attention Assist, the Volkswagen Driver Alert System,

or Volvo Driver Alert Control and Lane Departure Warning. Each of these systems monitor

changes in driving displayed by drowsy drivers like jerky steering movements or drifting out of

lanes. When this occurs, an audible and visual warning is produced. Ford’s Driver Alert system

even includes scenarios in which if the warning is ignored for too long, it can only be discontinued

by stopping and exiting the car [17]. The Danish “Anti Sleep Pilot” not only monitors driving

patterns, but it requires that the driver push a button on the device as quickly as possible

when indicated to verify that the driver’s response time is adequate. Other systems like the

Fraunhofer’s Eyetracker or the Toyota Driver Monitoring System monitor the driver’s eyes to

confirm that they are watching the road. The driver can be warned if they are not watching

the road when an obstacle is ahead. The driver is also warned if their eyes close for a period

of time. Systems that monitor driving patterns can monitor all forms of erratic driving, which

includes distracted driving. Their disadvantage is a slow response time, it may be too late to

stop an accident from occurring. Driver monitoring systems have the potential to detect driver

drowsiness before an accident occurs, but they rely on being able to monitor a driver’s eyes to

determine if they are open. An EEG based device may be able to detect the onset of sleep and

improve on these existing systems, and it has the added benefit of not requiring an unhindered

view of the driver’s eyes.
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3.3 Data Classification

This is the step after feature extraction of EEG signals. These are the algorithms considered

to obtain the classification:

• Support Vector Machine, given a points set, subset of a larger set (space), in which

each of them belong to one of two possible categories, SVM algorithm builds a model that

predicts whether a new point (whose category is unknown) belongs to one category or the

other.

• Neural Networks, independent processing units are assembled and connected with each

other. Moreover, these generate a function of their total inputs.

• Linear Discriminant Analysis, the data is divided into hyper planes to represent differ-

ent classes. Due to linear nature of EEG data, is not recommended to use LDA.

• Bayes Rule, posterior probability of a feature vector is computed to belong to a particular

class. In addition, feature vector is located into a class where it belongs to the highest

probability .

3.4 Artificial Neural Network classifier

Inspired by the human nervous system and more specific the human brain, which is capable

not only to learn and to generalize rules, but also to perform parallel tasks, the artificial neural

network (ANN) also consists of elements called neurons. Figure - 3.2 shows the architecture of

an ANN with three main layers: input layer, hidden layer and output layer. Since all connections

are in one direction and there are also no feed-back loops between neurons, this architecture is

called a feed-forward network. This network is memoryless, because the output to a specific input

does not depend on the previous state of the network. The number of features and the number

of classes determine the number of inputs and outputs, respectively. Therefore, only the number

of neurons and hidden layers are free parameters to be selected. Considering too many neurons

or hidden layers leads to the overfitting of the network and consequently lack of generalization.
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Figure 3.2: Artificial Neural Network

On the contrary, too small numbers of them prevent the network from learning rules adequately.

The impact of the number of neurons on the classification performance is discussed in the next

sections.

3.4.1 Network architecture

As shown in 3.3, the input layer sends the input values xi to the hidden layer without processing

them. The hidden layer neurons calculate the weighted sum of the inputs called net activation

(net). These calculated values are then fed to a non-linear activation function f() whose outputs

yj are the inputs to the next layer. Mathematically, we have the equation:

where index j refers to the j-th hidden neuron and wij
(1) corresponds to the input-to-hidden

neuron weights (Fig. 3.2 and 3.3).

Similarly, the output layer also calculates the net activation and the final result corresponds

to the classifier output. Therefore, we have equation:

In the above equation, index k denotes the k-th output unit 3.3. Nh denotes the number of

neurons in the hidden layer. In the case of a multi-class classification problem with m classes,

22



Figure 3.3: Mathematical representation of the input to hidden layer of a network

the class with the maximum value of zk will be selected as the final classification result by the

ANN classifier as follows:

The overall output of the introduced three-layer network in 3.2 can be represented as:

where zk is given as the function of the input xi by replacing 3.4.1 in 3.4.1 for yj and x0 =

y0 = 1. The generalization of 3.4.1 also allows considering other activation functions at the

output layer in comparison to the hidden layers. The non-linear activation function can be either

a hard threshold function such as the sign function or a soft thresholding one such as the sigmoid

function. The sigmoid function is popular for having the following properties as shown in 3.4 for

the tangent sigmoid f(net) = 2
1+e−2net−1

• It is non-linear.

• It saturates which bounds the possible output values.

• It is continuous and differentiable.

It will be shown later that non-differentiable activation functions are, in general, not of

interest. Since f() is a non-linear function, ANN is also a non-linear classifier and consequently

can handle complex rules between features and classes.
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Figure 3.4: Sigmoid activation function

3.5 Support Vector Machine

SVM is a classifiation algorithm of binary output. SVM builds a hyper plane or set of hyper

planes in a dimensional space very high and it can use this to classification and regression of

signals. This hyper plane is created perpendicularly to points and it has to separate a set of

points optimally. An algorithm based in SVM takes a set input data (in SVM a data point is

viewed as a dimensional vector) and builds a model which can classify that set of points, which

they have been given, in one category or another. SVM is also known as maximum margin

classifiers because it is looked for the hyper plane which is further away of points which are

nearer than that hyper plane.

3.6 Power Spectral Density

The power spectrum of a time series describes the distribution of power into frequency com-

ponents composing that signal. According to Fourier analysis, any physical signal can be de-

composed into a number of discrete frequencies, or a spectrum of frequencies over a continuous

range. The statistical average of a certain signal as analyzed in terms of its frequency content,

is called its spectrum.

When the energy of the signal is concentrated around a finite time interval, especially if its

total energy is finite, one may compute the energy spectral density. More commonly used is the

power spectral density , which applies to signals existing over all time, or over a time period
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large enough that it could as well have been over an infinite time interval. The power spectral

density (PSD) then refers to the spectral energy distribution that would be found per unit time,

since the total energy of such a signal over all time would generally be infinite. Summation or

integration of the spectral components yields the total power or variance.
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Chapter 4

Development

No man should escape our universi-
ties without knowing how little he
knows.
(J. Robert Oppenheimer)

4.1 Communication from headband to computer

4.1.1 BLE technology

The muse headband uses Bluetooth Low Energy to broadcast its recordings. BLE is the

intelligent, power-friendly version of Bluetooth wireless technology. It is already being widely

used and is playing a significant role in transforming smarter gadgets by making them more

compact, affordable, and less complex, its initial focus was to provide a radio standard with

the lowest possible power consumption, specifically optimized for low cost, low bandwidth, low

power, and low complexity.

4.1.2 LSL Layer

The Lab Streaming Layer is a python library for the unified collection of measurement time
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series in research experiments that handles both the networking, time-synchronization, real-time

access as well as optionally the centralized collection, viewing and disk recording of the data.

The LSL distribution consists of: The core transport library (liblsl) and its language interfaces,

we specifically only use python for this.

This layer will allow us mediate communication between the headband and the computer

used to store and process the data received.

4.1.3 Keras

Keras is an open-source neural-network library written in Python, with a high-level API to

build and train neural network models.

We will use this library in the design of our neural network, inputs such as layers, objectives

and activation functions, optimizers, to make working with the data easier.

4.2 Work Developed

4.2.1 Dataset and algorithm development

Three subjects data was used, each was instructed to gaze directly forward parallel to the

ground, with as minimum as possible movement of the head and eyes, if too much involuntary

movement was present, data was scrapped and the task restarted. Therefore, twenty seconds

data is recorded with eyes open and another twenty seconds with eyes closed, for 3 different

subjects. At the first step features are extracted from the signals in such a way that represent

the signal very well. We extracted Fourier transform (FT) and power spectrum density (PSD)

features and their harmonics in the Fourier domain. These features should contain all important

information about the signal. The next step is the classifier, a specific pattern is allocated to

a class based on the characteristic features selected for it. In order to evaluate the proposed

system in real-time applications, three temporal intervals of 1 second . Each twenty second data

is divided into non-overlapping segments with the length equal to each interval. Muse has a
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Figure 4.1: Training The Neural Network

sampling rate of 256 Hz and four channels, each second we have 256 samples, so in 20 seconds

we have 5120 samples, each containing 4 channel values, in total for each state we have 20480

samples (electrode values), this will be the input for the neural network. The output of the

network is binary, so two states must be defined, we have established closed eyes state equals

zero, and open eyes state equals one and train the network based on this arquitecture.

4.2.2 Tests and Results

In order to test the neural network accuracy in predicting if the user has their eyes open or

closed, we developed two different neural network architectures, one where we give it an input

array size of sixteen, which are correspondent to the electrode values of four samples, for each

of the four channels, and the second NN we gave as input 256 samples, per channel, increasing

input size in the hopes of improving the network robustness, both have an hidden layer of 50

neurons, trained under batch size of 1000, 15000 epochs, 30% of training input was used as test

data, and 15% used as validation, this static values were found to be optimal on accuracy tests.

For each of these architectures we use each recorded subject data, and test for both eyes closed

and open.

The prediction average, is a metric that consists on the sum of all prediction values divided

by the number of samples. This means the closer the prediction average is of one or zero, one

represents eyes open and zero eyes closed state, the more confident the network is on the given

prediction, and in reverse the closer it is of the middle value of 0.5 the more uncertain the
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Table 4.1: - 16 input ANN results

Eyes State Subject 1 Subject 2 Subject 3

Open 0.6795 0.7186 0.7608

Closed 0.3658 0.1516 0.3171

Table 4.2: - 256 input ANN results

Eyes State Subject 1 Subject 2 Subject 3

Open 0.9178 0.9821 0.5532

Closed 0.4648 0.0178 0.4505

prediction is.

First we perform a test to the prediction of both networks using samples of the same dataset,

we should expect good accuracy on detection since we use samples of the same subject. Table 4.3

displays this metric, ratio of correct predictions in relation to the ground truth, this ranges from

0 to 1, using as input to the neural network, samples of the same subject to test both networks.

Table 4.4 displays the same metric using the same input but this time instead using the 256

input network.

Now instead of using the same subject samples, we train the network on a different dataset,

since subject 2 appears to have had a better benchmark, we use this dataset to train the network

and use the other dasetsets as input and analyze the prediction result.

Table 4.5 displays the prediction average using the 16 inputs network.

Table 4.6 displays the same metric using the same input but this time instead using the 256

input network.

We find an overall accuracy rate for this method ranging from 58% to 76% accurately diag-

nosed. The specific accuracy rates of interest are the true positive rate and the false negative

rate. The true positive rate is the number of times the method accurately gave a drowsy diagnosis

divided by the number of times the method gave a eyes closed state. In other words, this number

represents the confidence that a subject may have that he or she is truly drowsy when given a

Table 4.3: - 16 input ANN results

Eyes State Subject 1 Subject 2 Subject 3

Open 0.5678 0.5603 0.7058

Closed 0.4014 0.3088 0.2860
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Table 4.4: - 256 input ANN results

Eyes State Subject 1 Subject 2 Subject 3

Open 0.8385 0.5312 0.3500

Closed 0.3446 0.3500 0.2760

Table 4.5: - Subject 1 test accuracy

Subject Channel True Positive True Negative False Positive False Negative Percent

1 FP1 73% 30% 49% 47% 51%

1 FP2 96% 35% 39% 10% 67%

drowsy diagnosis. Again the results using this electrode placement and this sampling rate are

highly variable ranging from 49% to 93% accuracy. The next accuracy measure of interest is the

false negative rate. We define a positive signal as a drowsy diagnosis, and a negative signal as

its opposite. Hence, the false negative rate is defined as the number of times the method reports

that the user is alert when in fact she is drowsy divided by the number of times the method

reports an alert diagnosis. Results vary from a high of 41% to a low of 14%.

The average accuracy rate across all the subjects comes to 71%. While this isn’t necessarily

an unsatisfactory result, the corresponding false negative rates do make this an unsatisfactory

result. We would want to alert a driver who is drifting into drowsiness more than we’d like to

accurately determine that he is alert.

Table 4.6: - Subject 2 test accuracy

Subject Channel True Positive True Negative False Positive False Negative Percent

2 FP1 63% 53% 43% 41% 58%

2 FP1 93% 50% 34% 14% 72%
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Table 4.7: - Subject 3 test accuracy

Subject Channel True Positive True Negative False Positive False Negative Percent

3 FP1 53% 70% 36% 40% 62%

3 FP1 86% 68% 26% 18% 77%

Figure 4.2: Prediction array for eyes open

32



Chapter 5

Conclusions

An expert is a man who has made
all the mistakes which can be made
in a very narrow field.
(Niels Bohr, Danish physicist)

The objective of this work was to advance our experience in producing a decision-making

tool for sleep analysis based on Artificial Neural Networks using a wearable and wireless EEG

device. Two configurations of the neural network were developed to compare the results each with

different inputs. On the first attempt to evaluate the networks performance by using samples of

the same dataset, the results are good for both networks, as it should be expected. The second

test used different subject samples and datasets, on that experiment the only outlier is subject

3 on the 256 architecture having less that 0.5 as prediction, when the state should be eyes open.

All around results are correct although not as precise as equivalent works, using ANN and

classification classes, these give results which vary between 61 and 80% [13]. Even if the results

obtained are not as accurate does not always mean that the ANN is wrong. Another choice of

parameters and/or the addition of other parameters resulting from another modeling techniques

like the detection of the graphical-elements and the integration of the other physiological signals

may be able to improve the results.
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5.1 Future Work

This study could be used in future studies or researches. Also, this dataset can be analyzed with

other methods and check different results. As mentioned in this thesis, there are many methods

to analyze the datasets. As implemented one of them is Neural Network (NN). It can be used to

extract pattern because this method has a high ability to understand the meaning from imprecise

or complicated data. Besides, it has the ability of learning how to do task based on data. NN

contains just one input layer where are input variables and the output layer where is the problem

solution. This method has intermediate hidden processing layers to employ the problem. This is

a structure of connected three-layer network. One the most important task in NN design is the

determination of appropriate number of hidden layers.

Another one to perform the classification of EEG signals from this thesis in the future would

be Bayes Rule, which is an easy mathematical function that uses for calculating conditional

probabilities. Which computes a posterior probability of a feature vector to belong to a particular

class. Bayes rule simplifies the calculation of conditional probabilities and clarifies significant

features of subjectivist position. Later, results are compared and it can see with which method

it gets the best result and the fastest one.

Other algorithm to perform the classification of EEG signals from this thesis in the future

would be Linear Discriminant Analysis (LDA). It was more used in the past because it is able to

produce an output which is continuous in time as well as in amplitude. To apply many different

EEG parameters, LDA is a good algorithm, like common spatial patterns (CSP), as well as band

power values (ERD) and Adaptive autoregressive (AAR) parameters. This algorithm assigns

weights to the input data to carry out a best linear separation of such data. Another algorithm

to perform the classification of EEG signals from this thesis in the future would be Case-Based

Reasoning (CBR). This is the process of solving new problems based on solutions of previous

problems wich scince this particular problem does benefit from stored data.
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