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Resumo

Avaliar e prever a progressão de doentes com Esclerose Múltipla pode ser uma

tarefa árdua devido à heterogeneidade de sintomas associada à doença. No presente

trabalho foi usada uma base de dados do Centro Hospitalar e Universitário de Coim-

bra, contendo dados cĺınicos dos doentes, com o intuito de prever a progressão da

doença. Embora a base de dados contivesse uma grande variedade de dados cĺınicos,

foram usados apenas dados relativos à identificação, visitas e ataques sofridos pelos

doentes, já que os demais continham bastante informação em falta.

Os primeiros anos de informação da base de dados foram usados para prever o

subtipo e a severidade da doença, avaliada através de uma escala de quantificação

da condição neurológica (EDSS). Para tal, houve necessidade de proceder a uma

seleção dos doentes para cada uma das previsões efetuadas, de forma a incluir apenas

doentes com informação suficiente e um subtipo de Esclerose Múltipla de interesse.

Para cada uma das base de dados efectou-se um processo de engenharia de features,

no qual foram extráıdas diversas outras caracteŕısticas através dos campos da base

de dados. Para tal, procedeu-se à aplicação de uma segmentação anual que permitiu

aumentar significativamente a quantidade de informação dispońıvel.

A cada conjunto de preditores constituintes de cada base de dados, foram apli-

cados algoritmos de machine learning, incluindo um balanceamento dos dados, a

imputação dos valores em falta e a seleção dos preditores mais importantes, bem

como uma avaliação do desempenho obtido com cada classificador.

Os resultados obtidos foram avaliados e comparados com resultados de estudos ex-

istentes, usando como métricas a área debaixo da curva ROC, a sensibilidade, a es-

pecificidade, a G-mean e o F1-Score. Para além disto foram ainda constrúıdos perfis

de distribuição das features, de forma a identificar quais as features responsáveis

por uma severidade mais acentuada da doença e por cada um dos subtipos de Es-

clerose Múltipla. Desta forma foi posśıvel comparar os desempenhos usando várias

definições de severidade da Esclerose Múltipla, bem como criar um modelo capaz
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Abstract

de prever tanto casos mais severos como casos identificativos de um subtipo de Es-

clerose Múltipla progressivo. Em termos das features de um subtipo de Esclerose

Múltipla foram identificados a via piramidal, o valor atribúıdo ao sistema funcional

piramidal, o impacto nas atividades do dia a dia, a via do intestino e bexiga e o valor

EDSS como era expectável, embora tenham sido identificadas outras features não

esperadas tais como as vias sensoriais, cerebral, cerebelar e tronco cerebral. No que

concerne à previsão da severidade, foram identificadas várias features esperadas, de

entre as quais o valor de EDSS e vários sistemas funcionais.

Palavras-chave: Esclerose Múltipla; Machine Learning; Previsão da progressão da

doença;
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Abstract

Assessing and predicting the progression of patients with Multiple Sclerosis can be

a difficult task due to the heterogeneity of symptoms associated with the disease.

In this work, a database from the Centro Hospitalar e Universitário de Coimbra,

containing clinical data of the MS patients, was used to predict the progression of

the patients. Although the database contained a wide variety of clinical data, only

data related to the identification, visits and relapses were used since the remaining

contained a lot of missing data.

The first years of information from the database were used to predict the patients’

Multiple Sclerosis subtype and the disease severity, assessed using a neurological

condition quantification scale (EDSS). For this, it was necessary to select patients

for each of the predictions made, to include only patients with sufficient information

and a subtype of Multiple Sclerosis of interest.

For each of the databases, a feature engineering process was carried out, in which

several other characteristics were extracted through the fields of the database. To

this end, an annual segmentation was applied, which significantly increased the

amount of information available.

Machine learning algorithms were applied to each set of features of each database,

including several steps such as balance of data, the imputation of missing values

and the selection of the most important features, as well as an evaluation of the

performance obtained with each classifier.

The results obtained were evaluated and compared with results of existing studies,

using as metrics the area under the ROC curve, sensitivity, specificity, G-mean and

F1-Score. Besides, features distribution profiles were also constructed to identify

those features responsible for a more severe case and each of the Multiple Sclerosis

subtypes.

In this way, it was possible to compare the performances using several definitions of
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Abstract

Multiple Sclerosis severity, as well as to create a model capable of predicting more

severe cases and identifying cases of a progressive Multiple Sclerosis subtype. In

terms of features of a Multiple Sclerosis subtype, the pyramidal pathway, the Score

pyramidal, the impact in activities of daily living, the bowel and bladder pathway and

the EDSS value were identified as expected, although other unexpected features such

as sensory, cerebral, cerebellar and brainstem related features have been identified.

Regarding the severity prediction, several expected features were identified, among

which the EDSS value and several functional systems.

Keywords: Multiple Sclerosis; Machine Learning; Disease progression prediction;
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1

Introduction

This chapter, divided into 5 sections, presents the motivation for the develop-

ment of this master thesis, as well as its context and goals. In the first section, the

motivations for this work supported by some statistics concerning Multiple Sclerosis

(MS) are presented. The context of this condition, including the prediction benefits,

methodologies and difficulties of MS, is described in section 1.2. In section 1.3 the

main goals of this master thesis are enumerated and in section 1.4 its contribution

is described. Finally, the structure of this document is found in the last section of

this chapter.

1.1 Motivation

MS is the most common neurological disorder affecting young adults. This

disease affects more than 2 million people worldwide, having an increase higher

than 10% in the prevalence over the past 20 years [1]. It is also one of the most

frequent causes of paralysis and wheelchair use, negatively affecting the quality of life

of the families and patients with this disease in health, social and economic aspects

[2]. This disease has still no cure, and the symptoms vary widely for each person,

which constitutes a challenge to evaluate and predict the course of a condition with

such heterogeneity of manifestations and characteristics.

In addition to that, some patients face a severe condition during the disease

course, that leads to different disease characteristics and manifestations. The reasons

that cause the transition to a more severe stage remains unknown, and an effective

prediction of patients that are susceptible for such modification remains a challenge.

It is essential to understand and predict such disease alteration, once the medication

prescribed is dependent on disease development, and this uncertainty limits the

efficacy of the disease-modifying agents administered.

From these facts, one may conclude that prediction models of MS development

using the initial years of follow-up could contribute to an accurate identification of

1



1. Introduction

patients who may benefit of more aggressive disease-modifying agents and closer

monitoring, providing in this way valuable assistance to physicians.

1.2 Context

MS is a chronic immune disease, affecting the Central Nervous System (CNS),

leading to neurological disabilities. It is characterized by demyelination and axonal

loss, which leads to long term functional impairment and disability [3]. Myelin

is a layered tissue that surrounds the axons, whose function is to provide faster

communication between the neurons.

The course of this disease is quite different and unpredictable for each patient,

presenting symptoms that depend on the site and type of lesions. Those symp-

toms include optic and motor deficits, tremors, difficulty walking, balance disorders,

speech difficulties, memory and concentration problems, fatigue, or even paralysis

and complete loss of vision in more severe cases [4].

The majority of the patients begins with a relapse remitting (RR) course, char-

acterized by attacks and relapses with full or partial recovery and no disease pro-

gression. The disease phenotype tends to change over time, and several patients face

an increase of the neurologic deterioration, with or without relapses, which defines

the secondary progressive (SP) course. The conversion of RR to SP course remains

a challenge due to the nonexistence of clear clinical and imaging criteria defining the

beginning of the progressive phase. Furthermore, the uncertainty recognizing this

transition also limits the efficacy of the medications administered that are dependent

on the disease phenotype [5].

Another characteristic of MS is the different outcomes in different patients, that

creates a wide spectrum of the disease, ranging from benign to malignant cases. The

benign MS identifies the cases that present little or no disease progression and mini-

mal disability decades after the first manifestations, while malignant scenarios refer

to the most severe cases of MS [6]. Even though those definitions are not consensual

to every author, and not considered a course of the disease, they are commonly used

to identify the clinical characteristics that lead to less severe cases. Recognizing the

benign cases also provides valuable information in terms of medication and follow

up, once the patients that fit in this group do not need such a closer monitoring and

severe treatment when compared to the malignant cases.
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Prediction benefits

The main goal of MS prediction is to explore the information of the initial

years of the disease to predict the progression in the following years. Such data

can assist the physicians to identify the patients who are more likely to gain an

increased disability and who would benefit from more rigorous monitoring. With

the appropriate algorithm will be possible to accurately predict the disease course

and worsening scenarios, identifying those who would take advantage of an early

aggressive medication.

Prediction methodologies

Over the past years, the majority of research in MS involves inferential statistics

to predict or to test a hypothesis about biological processes involving MS courses,

and retrieve clinical interpretation of the results. Statistical inference is quite limited

when applied to a wide amount of data, as opposed to Machine Learning (ML) mod-

els that are essentially developed for prediction, and are more effective and present

a higher performance and accuracy with a large amount of data. Furthermore, ML

prediction’s allows to identify the most appropriate medical decisions, supporting

the choice of the disease-modifying therapies administered, which constitutes a huge

improvement in this area [7].

Considering those reasons, prediction models using ML approaches started re-

cently to be applied to MS to obtain a more quick and reliable classification of MS

courses, in a standardized way. Those computer-based technologies have emerged in

the medical fields, proven to have a good performance in several areas and demon-

strating their usefulness when applied to complex datasets, such as those of MS.

The majority of the authors using ML, use the clinical data from the initial years

to predict the outcome after several years, in terms of disease progression outcome,

measured by the Expanded disability status scale (EDSS), even though the used

criteria vary from author to author due to the lack of consensus on a definition of

which constitutes a benign/malignant case. There are also some others evaluating

if the initial years could be a good predictor of SP development.

Nowadays, prediction models started to use clinical data other than MRI and

lumbar punction. Although lumbar punction provides valuable information for di-

agnosis and that could be used to predict the disease course, this procedure is very

invasive and painful. On the other hand, MRI is not painful although the costs of

those tests are quite high. For both these reasons, a non-invasive procedure such
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as an algorithm capable of predict MS course in an efficient way is the goal of the

recent models that started to be used in MS.

Lastly, it is crucial to test the models developed in a real-world scenario. A

simulation, in practical conditions, of the algorithms developed, is essential to prove

their efficacy and evaluate the different conditions where they can be used and where

the medical knowledge extrapolated from the model is maximized.

Prediction difficulties

The nonexistence of a significant number of studies using clinical data consti-

tutes one of the biggest challenges in the approach considered. The majority of the

investigation in this area use MRI data or integration of clinical data with MRI,

while the number of studies using ML techniques applied to clinical data is quite

limited. Moreover, the lack of coherence between studies, which concerns the iden-

tification of significant predictors, constitute a major difficulty in the validation of

the results.

The definitions used by different authors are not consensual, leading to distinct

benign MS definitions used, which causes diversity and inconsistency in the results

obtained.

Furthermore, some failures to MS investigation could be related to the quality

of the data sets used. The heterogeneity of characteristics considered in the different

data sets, the different number of patients and regions where they were selected and

even the imbalanced data, due to the predominance of RR type over progressive

types, could lead to inconsistencies in the existing studies. Besides, it is essential to

mention that the creation of a database of MS is a complex process once information

from different sources must be registered, and the follow-up time necessary is long.

The disease itself, characterized by a different course and multiple symptoms

depending on the patient, lead to an arduous development of a model adapted to

every case and a complex interpretation of the results.

1.3 Main goals

The generic goal of this thesis is to evaluate and predict disease progression,

that can be subdivided into several specific goals:

1. Exploration and curation of an MS database from Coimbra Hospital and Uni-

versity Centre (CHUC);
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2. Development of an algorithm capable of predict whether a RR patient will

progress to SP or not;

3. Development of a model capable of predicting whether a patient will have a

more reserved prognosis or not, and explore all the possibilities of severe cases

identified in the literature to retrieve coherent conclusions among the studies;

4. Evaluate the real-world applicability of the algorithms created by simulating

the performance of the model in a real clinical scenario;

5. Retrieving clinical interpretation from the results/provide new medical in-

sights.

1.4 Contribution

Prior research, regarding the Multiple Sclerosis prediction, has demonstrated

the features and model performance of both predictions of conversion to secondary

progressive course and disease severity, concerning the 6th and 10th years of progres-

sion. This research advances theory on the identification of more reliable features

predictive of a severe condition promoted by the consideration of more disease sever-

ity classification problems retrieved from literature and the comparison performed

between those. The gap identified in the literature on a consensus definition of

disease severity, reflects the important insights provided by this study on the ef-

fects of different definitions on the performance and features obtained. Finally, to

contributing to the goal of increase model performance of both conversion to sec-

ondary progressive course and disease severity, it was extracted and included more

information regarding patients clinical data on the model. The following thesis con-

tributed partially to the recently accepted paper Prediction of Disease Progression

and Outcomes in Multiple Sclerosis with Machine Learning accepted for publication

in Scientific Reports Journal.

1.5 Structure

This dissertation contains 8 chapters.

Chapter 2 presents background information related to the disease that will be

mentioned throughout the document;

Chapter 3 refers to the state of the art of machine learning approaches in MS;

Chapter 4 presents a detailed description of the database used;

Chapter 5 describes the methods used to obtain the results of this master thesis;
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Chapter 6 exhibits the results obtained;

Chapter 7 supplies a detailed discussion of the dataset, experimental procedure

used and results obtained;

Chapter 8 presents a conclusion of the work.
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Background Concepts

In this chapter, the main concepts to understand this thesis are introduced. In

section 2.1 the risk factors of developing MS are described, including epidemiologic,

lifestyle and environmental factors. An overview of the actual diagnosis tests and

expanded disability status scale is presented in section 2.2 and 2.3, respectively. The

different courses of MS are explained in section 2.4. In section 2.5 the most common

therapies used are described while a ML description is provided in the last section.

MS is a disease of the central nervous system affecting more than 2.3 million

people worldwide. In multiple sclerosis the body’s autoimmune system destroys

the myelin sheath, that is an electrical insulation layer that surrounds the nerves.

This layer is essential in the CNS, once it is responsible for increase the velocity

at which neurons communicate [8]. The demyelination resultant from MS decreases

the efficiency and velocity at which the nerves conduct electrical impulses to and

from the brain, which causes physical disability and cognitive impairment leading to

a substantial reduction in the quality of life of those patients. This condition, that

affects young adults in the prime of life, is disabling and irreversible, even though

it’s progress can potentially be diminished if an early and appropriate treatment is

administered [2]. Similarly to other autoimmune diseases, MS is more common in

females.

2.1 Risk factors

The cause of MS remains unknown even though the combination of several

factors are admitted to trigger MS.

There is evidence that genetic factors are associated with a higher risk of MS.

The prevalence is higher in monozygotic twins than in dizygotic twins and persons

with both parents having MS presents a higher risk than those with only one parent

with MS. The vulnerability is also greater when the maternal side is the one having

MS, which is according to the ratio of prevalence of MS dependent on the gender
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[9].

Genetic factors only explain a part of the risk growth, whereby lifestyle and

environmental factors are believed to trigger MS in combination with a genetic

predisposition. The limited sun exposure is commonly associated with an increased

risk of occurrence of MS. Ultraviolet radiation (UVR) is used to convert vitamin D

to an active metabolite, and several studies address that a lower level of vitamin D

is related with an increased risk of incidence of MS [10]. A relation between several

infectious agents and MS risk was also suggested in which the epstein-barr virus

was identified as a potential risk factor, especially in adolescence [11]. Moreover,

unhealthy habits such as smoking habits and adolescent obesity are associated with

MS. There has been suggested that there is a clear cumulative dose of smoking and

a high body mass index value that presents a strong association with an increase in

MS risk [11].

This disease is also highly affected by geographic factors, depending on the

latitude considered. The regions farthest from the equator are identified as high-

risk regions. North America and some Northern European countries stand with

the higher risk, as opposed to North Africa, the Middle East, Latin America, Asia,

Oceania, the Caribbean, and sub-Saharan Africa that exhibits the lower risk. Some

countries in Europe and Australia present a moderate risk. The lower prevalence

in low-risk countries can be a result of the absence of data on those places due to

inferior access to medical facilities and less life expectancy time [12].

Figure 2.1: Worldwide prevalence of MS [1].
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The global occurrence of this condition is substantially different depending on

sex, with a clear predominance in females. The prevalence starts to diverge during

the adolescence, reaching a ratio of 2:1 in favour of woman around the sixth decade

of life. The age is also a crucial factor, once patients with ages between 35 and 64

are more affected, even though this condition affects patients from a wide range of

ages [13].

2.2 Diagnosis

The heterogeneity of symptoms and imaging manifestations between MS pa-

tients, and the similarities between clinical features of MS and other diseases lead

to difficulties in the diagnostic of MS. There isn’t still a single diagnostic test, even

though an early diagnosis of MS is essential to figure out the medications that should

be applied and that can act to prevent relapses and future disabilities. The diagno-

sis of MS relies on the inclusion of history and physical examinations, imaging and

laboratory findings [14].

The gold standard for the diagnosis of MS is the McDonald Criteria 2017 [14]

whose objective is to identify the first clinical symptom suggestive of MS and to pro-

vide an early categorization of patients as fulfilling the criteria or not. This criteria

is based on the number of attacks/relapses, the examination of the Cerebrospinal

Fluid (CSF) and identification of dissemination on time and space [15]. To correctly

apply the criteria, correct identification of the symptoms is essential. An attack, re-

lapse or exacerbation is defined as a focal or multifocal inflammatory demyelinating

event, occurring in the CNS, that lasts for at least 24h, with or without recovery, and

in the absence of fever or infection [14]. The dissemination in time is the appearance

of new CNS lesions over time while the dissemination in space is the occurrence of

a multifocal CNS process, characterized by the formation of the lesions in distinct

anatomical locations within the CNS. Moreover, the CSF examinations are used to

identify CSF-specific oligoclonal bands that could be an indicator of possible MS,

although they are not specific for MS [14].

The full McDonald Criteria 2017 is present in Table 2.1.

It is important to note that three different cases could arise from the application

of the 2017 McDonald Criteria:

1. Confirmed Multiple Sclerosis - if the criteria are fulfilled and there isn’t evi-

dence of a better clarification for the clinical evidence;

2. Possible Multiple Sclerosis - if the 2017 McDonald Criteria are not totally

fulfilled, even though Clinically Isolated Syndrome (CIS) lead to the suspicious
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Table 2.1: The 2017 McDonald Criteria for Diagnosis of MS [14].

2017 Macdonald Criteria

Number of attacks Number of lesions with objective clinical evidence Additional data needed for a diagnosis of multiple sclerosis

≥2 ≥2 No further tests are required to demonstrate dissemination in space and time

≥2

1 (as well as clear-cut historical

evidence of a previous attack involving

a lesion in a distinct anatomical location)

No further tests are required to demonstrate dissemination in space and time

≥2 1
Dissemination in space demonstrated by an additional clinical attack

implicating a different CNS site or by MRI

1 ≥2
Dissemination in time demonstrated by an additional clinical attack or

by MRI OR demonstration of CSF-specific oligoclonal bands

1 1

Dissemination in space demonstrated by an additional clinical attack

implicating a different CNS site or by MRI

AND

Dissemination in time demonstrated by an additional clinical attack or by

MRI OR demonstration of CSF-specific oligoclonal bands

of MS;

3. Not Multiple Sclerosis - if there is evidence of a better diagnosis for the clinical

evidences.

2.3 Expanded disability status scale (EDSS)

The EDSS scale, proposed by Kurtzke [16], is the most frequently used scale

in MS, allowing to measure the progression of the disability of the MS patients,

varying from 0 (no symptoms) to 10 (death by MS) by half steps. This scale is

composed of grades attributed to the 8 different functional systems, in which the

impairment of each one is evaluated and used to calculate the final score of dis-

ability. The functional systems are networks of neurons with distinct physiological

functions and symptoms. The group of systems considered in the EDSS scale and

the corresponding functions are described below:

1. Pyramidal - Involved in muscle weakness and voluntary movements;

2. Cerebellar - Related with coordination of movements and balance. It’s also

related to symptoms such as ataxia and tremor;

3. Brain Stem - Responsible for problems with speech and swallowing, normally

associated with the influence of cranial nerves;

4. Sensory - Reflects problems associated with loss of sensations below the head;

5. Bowel and Bladder - Responsible for incontinence and retention;

6. Visual - Impairment of the visual acuity;

7. Cerebral - Associated to problems with thinking and memory. Also reflects

mood perturbations and concentration problems;
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8. Other or Miscellaneous - Related to other symptoms that do not fit in any

of the other functional systems such as fatigue.

Those functional groups are graded from 0 (normal) to 5/6 (maximal impairment)

except for other or Miscellaneous system that is dichotomous, meaning that higher

grades correspond to a higher disability [16].

The first steps (0 to 3.5) in the scale are calculated according to the grade of

the functional systems (FS) while the following steps take also in consideration the

impairment of mobility. The different steps of the EDSS scale are described below

and represented in Figure 2.2 [16]:

• EDSS 0 - Normal neurological exam, in which all FS graded 0 (except for

Cerebral where grade 1 is accepted);

• EDSS 1 - No disability and minimal signs in one of the FS (grade 1), excluding

Cerebral grade 1;

• EDSS 1.5 - No disability and minimal signs are presented in more than one

functional system (grade 1), excluding Cerebral grade 1;

• EDSS 2 - Minimal disability in one FS, in which one of the FS is graded with

2 and the others with 0 or 1;

• EDSS 2.5 - Minimal disability in two FS, in which two of the FS are graded

with 2 and the others with 0 or 1;

• EDSS 3 - Moderate disability in one FS (one FS grade 3 while the others 0

or l), or mild disability in three or four FS (three or four FS grade 2 while the

others 0 or 1) though fully ambulatory;

• EDSS 3.5 - Fully ambulatory but presenting moderate disability in one of

the FS (one grade 3) and one or two FS grade 2; or two FS grade 3; or five

FS grade 2 (others 0 or 1);

• EDSS 4 - Fully ambulatory without aid, self-sufficient. One of the FS graded

with 4 while the others with 0 or 1 or combinations of lesser grades that exceed

the limits of the previous steps. Able to walk without aid or rest some 500

meters;

• EDSS 4.5 - Fully ambulatory without aid, up and about much of the day,

able to work a full day, may otherwise have some limitation of full activity or

require minimal assistance; one of the FS graded with 4 while the others with

0 or 1 or combinations of lesser grades that exceed the limits of the previous

steps. Able to walk without aid or rest for some 300 meters;

• EDSS 5 - Ambulatory without aid or rest for about 200 meters; disability

severe enough to impair full daily activities; one of the FS graded with 5 while
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the others with 0 or 1 or combinations of lesser grades that exceed the limits

of step 4;

• EDSS 5.5 - Ambulatory without aid or rest for about 100 meters; disability

severe enough to preclude full daily activities. One of the FS graded with 5

while the others with 0 or 1 or combinations of lesser grades that exceed the

limits of step 4;

• EDSS 6 - Intermittent or unilateral constant assistance required to walk about

100 meters with or without resting. More than two FS are graded with more

than 3;

• EDSS 6.5 - Constant bilateral assistance required to walk about 20 meters

without resting. More than two FS are graded with more than 3;

• EDSS 7 - Unable to walk beyond about 5 meters even with aid, essentially

restricted to wheelchair; wheels self in standard wheelchair and transfers alone;

up and about in wheelchair some 12 hours a day. More than one FS is graded

with more than 4; Pyramidal grade 5 alone, even though this case is rarer

• EDSS 7.5 - Unable to take more than a few steps; restricted to wheelchair;

may need aid in transfer; wheels self but cannot carry on in standard wheelchair

a full day; may require a motorized wheelchair. More than one FS is graded

with more than 4;

• EDSS 8 - Essentially restricted to bed or chair or perambulated in wheelchair,

but may be out of bed itself much of the day; retains many self-care functions;

generally have effective use of arms. Several FS are graded with more than 4;

• EDSS 8.5 - Essentially restricted to bed during the majority of the day; has

some effective use of arm(s) and retains some self-care functions. Usually,

several FS are graded with more than 4;

• EDSS 9 - Helpless bed patient that is able not only to communicate effectively

but also to neither to eat and swallow. Almost all FS are graded with more

than 4;

• EDSS 9.5 - Totally helpless bed patient that is not able to communicate

effectively, neither to eat nor swallow. Almost all FS are graded with more

than 4;

• EDSS 10 - Death due to MS.

2.3.1 Limitations of EDSS

Even though EDSS is specifically defined for MS and is the most used scale in

assessing the disability of patients with MS, this scale has some limitations. The
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Figure 2.2: Representation of the EDSS scale [16].

scale is not homogeneous, because the steps are not representative of the same

impairment, and is not linear in which concerns the time that each patient stays in

each of the steps. Moreover, the scale is not fully objective once there is a variation in

the scores attributed by the same doctor or different doctors to each situation. Also,

the scale is biased for motor functions, since those functions are more considered in

the scale than cognitive tasks [17].

2.4 Courses

Due to the heterogeneous manifestations of MS, a distinction of the clinical

courses of MS patients was defined to allow easier communication between physicians

and more accurate classification of the patients into different courses. In 1996, the

neurologists grouped the clinical courses of MS into four groups :

1. Relapse-Remitting (RR): The RR type is the most common form, affecting

around 85 % of the patients with MS. The course is characterized by several

relapses, that consist of attacks or development of new symptoms, followed by

periods of complete or partial recovery, called remission periods [18].
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2. Secondary Progressive(SP): SP patients present an initial relapsing-remitting

course with several relapses and remissions followed by a progressive state char-

acterized by possible occurrence of occasional relapses, minor remissions and

plateaus. [19].

3. Primary Progressive (PP): This type of MS affects around 10-15 % of the

patients. It is characterized by a gradual increase in the disease progression

from the onset, with possible plateaus and minor improvements, but without

any relapses or remissions. In these cases, the disease tends to occur later in

life, around 10 years afterwards, and the predominance in the female sex is

not verified. It is important to emphasize that in these cases it is harder to

distinguish this condition from other neurological diseases. In which concerns

to the treatment of MS, the patients with PP type tend to have resistance to

the treatments, and doesn’t exist a treatment capable of slow the progression

of such condition [20] [21].

4. Progressive Relapsing (PR): The PR is the least common manifestation of

MS, affecting less than 5 % of the patients with MS. It’s defined by an initial

progression with periods of relapses, although there are no remissions on this

type [22].

Over the past years, there was a rise in the knowledge of MS pathology and

improvements in imaging and biological marker research that lead to the necessity

of reviewing the existing phenotypes of MS. In 2013, a revision [23] of the disease

courses was proposed, in which MRI findings, biomarkers and clinical factors were

used to achieve a more accurate and homogeneous classification. Although the main

MS phenotype remained, there was an introduction of new characterizations of the

MS clinical courses, described in Table 2.2 [24].

Table 2.2: New definitions introduced in 2013 revision criteria.

New definitions introduced in 2013 revision criteria

Clinical Isolated Syndrome (CIS) First clinical presentation of the disease that demonstrates signs of inflammatory demyelination

Disease activity
Active

Evidence of relapses or episodes of new or increasing neurological dysfunction or the presence

of new T2 or gadolinium-enhancing lesions over a specified period of time

Not active No evidence of disease activity

Disease progression
Progressive

Evidence of disease worsening during a defined amount of time (at least one year) in which an

increase in neurological dysfunction/disability occurs without clear recovery, even though phases

of stability may occur

Not progressive No evidence of disease worsening during a specified period of time (at least one year)

One of the modifications was the introduction of the CIS, that could be con-

sidered as MS, although for that it is necessary to further satisfy the criteria of
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dissemination in time and space. Although a CIS may not lead to a diagnosis of

MS, usually those who are diagnosed with MS start with a CIS.

Furthermore, the concepts of disease activity and disease progression were in-

troduced. The disease activity was established in all MS courses, resulting in a

division of both CIS, RR, SP and PP into active or non-active. Differently, disease

progression is a concept that only describes progressive phases of MS, segregating

SP and PP into progressive or not progressive. [25][24][23].

Analysing the Figure 2.3 it is possible to observe the representation of the

increased disability in function of time, to each one of the courses after the 2013

revision, which allows to clearly distinguish the different MS courses. It is important

to note that the previously considered PR course type of MS has been eliminated

because those patients are now classified as PP with disease activity [24][23].
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Figure 2.3: MS courses after 2013 revision [25].

The CIS, that is part of the relapse-remitting spectrum, can be either active

or not active. The not active CIS will be considered with such designation until

the next change in the MRI or episode occurrence, while the active CIS can be

considered RR if the Macdonald criteria are verified. If a patient is diagnosed with
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RR, it can also be either considered an active or not active type, depending on

the existence of clinical relapse rate and image findings during a defined period.

Moreover, if a progressive state of the disease is identified, the patients can be

diagnosed with secondary progressive (having an initial relapse phase followed by

a progressive state) or primary progressive (having a progressive state from the

onset) [24]. In these cases, four different situations can occur throughout the disease

duration as observed in Figure 2.3:

• Active and with progression - occurs when a gradually worsening is verified

and a new attack happens;

• Active but without progression - occurs when a patient has a new attack

but is condition is not worsening;

• Not active but with progression - occurs when the patient is gradually

worsening even though a new attack is not verified;

• Not active and without progression - refers to the stable form of MS.

Moreover, in this master thesis only patients with RR, SP and PP courses are

admitted in order to simplify and consider courses with a reasonable amount of

patients included.

2.4.1 Benign/malignant MS

The mild course of MS defined as benign MS is characterized by a little or

even absence of progression and symptoms after several years of progression [26].

This form of MS is different from both progressive and non-progressive categories,

and there is still no consensus on a global definition for benign MS. The terminol-

ogy benign/malignant is advised to be used with caution, once the terms are not

consensual and even after several years of apparent benign MS a worsen can be

verified.

Furthermore, the terms worsening and progressing were distinguished to clarify

the meaning of each one. In the case of the patients whose disease is advancing due

to the frequent occurrence of relapses and incomplete recovery of those, the term

disease worsening should be used. On the opposite, the term disease progressing

should be used for the cases of progressive disease where the patient’s condition is

worsening gradually over time [24].
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2.5 Therapy

The therapy of MS is based on disease-modifying agents whose objective is to

diminish the duration and frequency of relapses, provide symptomatic relief and

prevent the advance of the disease to a progressive state, even though there isn’t

still any drug capable of curing MS [18].

The medication can be divided into acute relapses management and disease-

modifying treatments. The acute relapses are commonly treated with intravenous

(IV) methylprednisolone or dexamethasone, that are corticosteroids with a rapid

onset of action and few adverse effects. These corticosteroids are administered from

3 to 5 days and provide not only treatment for acute exacerbations, but also for

reducing the corresponding relapse duration. Such drugs are used to treat relapses

of both RR and SP patients [18].

In terms of disease-modifying treatments, there are several treatment options

commonly used. Eight Food and Drug Administration (FDA) approved medications

are presented in Table 2.3.

Table 2.3: FDA approved drugs [18].

Name Administration Dosing Frequency Disease type Action

Avonex

(Interferon beta-1a)
Intramuscular Once weekly RR

Diminish the incidence of

relapses

Rebif

(Interferon beta-1a)
Subcutaneous Three times weekly RR

Diminish the incidence of

relapses

Betaseron

(Interferon beta-1b)
Subcutaneous Every other day RR

Diminish the incidence of

relapses

Extavia

(Interferon beta-1b)
Subcutaneous Every other day RR

Diminish the incidence of

relapses

Glatiramer acetate Subcutaneous Once daily RR Reduce the rate of relapses

Mitoxantrone Intravenous
Short infusion (about 5 to 15 minutes)

every 3 months
RR and SP Prevents worsening course

Natalizumab Intravenous 1-hour infusion every 4 weeks RR Reduces the rate of relapses

Fingolimod Oral Once daily RR Reduce the rate of relapses and delay the progression

From the Table 2.3 it is possible to note that the medications administered are

dependent on the clinical situation, varying between medications used to diminish

the relapse rate or to prevent disease progression. In fact, for patients diagnosed with

RR course, the goal of the treatment is to reduce the rate and severity of relapses,

while for SP patients the medication is used to prevent progressive worsening of the

disease. It should be noted that a patient with SP could also benefit of medications

to diminish the incidence of relapses [27].

Although those drugs take several benefits to patients with MS, some of them

demonstrate several side effects. For instance, any of the medications containing
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interferon beta agents can lead to liver function abnormalities, glatiramer acetate

causes several injection-site reactions and chest pain among other side effects. It is

important to highlight the fact that several other options of medications are com-

monly used by physicians, even though those medications have not been approved

yet by FDA [18].

The drugs administered for each patient are not usually included in the models

for prediction of the type of MS because the medication reflects a personal opinion

of the physician on the course of the disease. Besides, if the medication prescribed

was considered, it was not possible to know if a given recovery was the result of

the drug administration. Even though the non-admission of medication leads to

the impossibility of know whether the outcome would have been the same with or

without medication and considering that an investigation of the cumulative effect

of the medication on the outcome of each patient would also be an interesting

approach, in this case, the medication was not included by medical advice. Moreover,

considering medication could also lead to a bias in the results. Furthermore, the

importance of predicting the disease course consists of the possibility to provide

adequate medication to the patients according to the predicted type of MS and

ideally, before any medication is given to the patient.

2.6 Machine learning

ML is a class of methods based on computer algorithms that learn from data

to make predictions, identify patterns and make decisions. Over the past years, this

subset of artificial intelligence started to be applied to several areas.

Supervised ML algorithms are used to learn a target function that best fits input

variables to an output variable, to predict new outcomes with the introduction of

new inputs. The main goal of the algorithms is to optimize the estimation of the

target function, which allows more accurate predictions [28].

This technology usually involves a systematic process to obtain accurate pre-

dictions in developed algorithms, consisting of data preparation, classification and

performance evaluation.

As can be seen in Figure 2.4 the first step consists of importing the raw data.

Such data is then pre-processed, i.e., transformed to a reliable format that may be

further used to extract relevant features. Those processes are important to have

proper data, in a standardized format, without missing values and outliers. The

selected features are further used to classify each sample into one of the labels.

Lastly, the classification performance is then evaluated using appropriate metrics
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[29].
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Figure 2.4: Machine learning pipeline.

2.6.1 Data preparation

ML models make predictions based on characteristics learnt from data, where

its appropriate use is essential to obtain good performance. After having a defined

problem that we pretend to solve using ML predictions, is crucial to identify and

select the data that is important for such problem [29]. The ML algorithms can be

distinguished in terms of the way they model a problem and learn from the input

data, consisting of supervised learning that uses labelled data and unsupervised

learning the uses unlabeled data. In this master thesis, there will be used only

supervised learning, where an appropriate labeling must be chosen, regarding the

definition of the problem. Moreover, it is also important to analyze and select the

raw data, defined as data in its original form, that can be used for prediction. The

supervised learning algorithms use data to identify patterns and builds logic through

the training process, making some predictions and correcting themselves when the

predictions are wrong [30].

Raw data is usually presented in unwanted formats, containing missing values

and with an extended amount of information, whereby the data need to be pre-

processed, to be formatted, cleaned and sampled. Furthermore, outlier detection and

removal must be performed. The pre-processed data is usually further transformed

using feature engineering [31].
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2.6.1.1 Feature engineering

A feature is an individual independent characteristic of the data, that describes

an attribute and is used as an input in the model [28]. The features are associated to

a process of feature engineering that is responsible to improve model performance by

converting raw data into features that better represent the underlying problem [32].

When the data contains attributes with different scales and quantities, a process of

normalization is essential to create features with uniform scales. The data must also

be analyzed to segregate features representing complex concepts into more features

or aggregate several features into one more representative. Such processes allow

creating more appropriate features from the data, leading to more flexibility and

less complexity on the model [33]. Feature engineering is an important process once

better features mean higher accuracy and an improvement in model performance.

The feature selection is part of features engineering and is a process to decide the

features that are meaningful for the considered problem. In fact, from all considered

attributes, there are some redundant and irrelevant for the context while some others

are more important for the model. Feature selection algorithms are methods that

solve this problem by automatically elect a group of features with more importance

due to a higher predictive power [32].

Furthermore, if all features are used, an overfitting situation may occur, in which

the model learns the noise of training data, corresponding to particular details that

do not provide generalization ability, and leading to a negative impact in terms of

model performance. To overcome this question, feature selection methods should be

applied to the data, to reduce the complexity of the model by obtaining a reduced

amount of features capable of generalizing the problem, providing outputs to sets

of inputs that the model has never seen before [34]. In this way, the model is also

easier to understand.

Selection methods can be categorized into 3 distinct groups: filter methods,

wrapper methods and embedded methods. Those classes reduce the number of

features, even though they use different algorithms to achieve that goal.

Filter methods select features from a dataset based on the characteristics of the

variables, once the features are filtered before the learning begins. Those methods

usually evaluate the features individually and do not take into account the relation-

ship between them. The filter methods rely on a score, calculated using measures

such as correlation, distance metrics and consistency metrics, that is attributed to

each feature, indicating whether the feature should be selected (if contains a high

score) or removed [35]. Those methods are computationally inexpensive. Examples

of filter methods include chi-square test and correlation coefficient scores [36].
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As opposite, wrapper methods evaluate a subset of features by analyzing all

possible feature subsets based on the performance of a given ML algorithm. For

each of the possible subsets, a new model needs to be trained to select the best

performing model according to a performance metric [37]. This fact leads wrapper

methods, that detect the interaction between variables, to high performances even

though they are computationally expensive. Examples of wrapper methods are

BFS (Breadth First Search), SFS (Sequential Forward Selection), SBS (Sequential

Backward Selection) and SVM RFE (Support Vector Machine Recursive Feature

Elimination) [36].

Finally, the embedded methods perform feature selection automatically during

the model training. Embedded methods take into consideration the interaction of

features like wrapper methods do, are less computationally expensive than wrapper

methods and more accurate than filter methods [34]. Those methods are subdivided

into regularization (lasso regression and ridge regression) and tree-based methods

(decision trees). Regularization methods add a penalty to the different parameters of

a model to reduce its freedom, once the penalty is applied depending on the number

of features. In this way, regularization methods make the model more robust to

noise and increase its generalization because it shrinks many features to almost zero

and find the most coherent group of features [36].

2.6.1.2 Missing values imputation

In datasets, it is common to encounter several fields without any information.

This fact is denominated as missing data, and it is important to impute the missing

values using the existent information, in order to be possible to use the samples

having missing data.

The first aspect that should be considered is the reason why the data is miss-

ing. In fact, data can be missing completely at random (MCAR) if there isn’t any

association between a missing value and any other value of the dataset, and is con-

sidered as Missing at random(MAR) if the data is missing due to other variables of

the dataset [38]. It can also be admitted that the values are missing not at random

(MNAR) if the values are missing due to a relationship between the reason because

the value is missing and it’s values [39].

There are several methods for the imputation of missing data. Some approaches

involve an imputation using the mean or the median of the existing values of that

variable / feature. It is also common to use the most common value among the

variable values to replace the missing data.

Although there are several other imputation methods it is worth to mention
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the imputation using KNN, that is a simple approach that looks for the k closest

neighbours and uses the mean of those points to impute the missing values.

2.6.2 Classification

After the data pre-processing and transformation, further steps are required to

accomplish the objective of developing an accurate classification model.

An important stage is the data partitioning, that in its standard form consists

of a subdivision of the original dataset into a training, validation and testing subset.

In this step, a percentage of the data is used to learn the data and fit the parameters

(train the model), in order to apply such model to new data afterwards (test the

model) and obtain the results of its performance. Furthermore, there are usually

cases of imbalanced datasets, consisting of a big difference in the number of samples

for each class. In order to overcome such difference, methods as oversampling and

undersampling are usually applied.

The final step consists of selecting an appropriate classifier to our problem.

2.6.2.1 Data preparation

In some classification problems, data is imbalanced, i.e, an unequal distribution

of the examples exists between classes. Such a difference can influence the model to

learn the patterns of the majority class while ignoring the minority class, which con-

stitutes a problem because the minority class is usually the class whose predictions

provide more interest [40].

Although it could be thought that the imbalanced dataset result from a poor

data acquisition, it commonly reflects the real scenario.

To balance the classes, it is usual to create a new version of the training dataset,

in which the distribution of the classes is modified to obtain a more balanced distri-

bution. Such approach is named resampling, and it is subdivided into oversampling

and undersampling. The oversampling is a method in which the examples of the

minority class are duplicated to achieve more equality between classes. An exam-

ple of such method is random oversampling that involves a random selection of the

minority class that will be duplicated and added to the training dataset. On the

opposite, undersampling methods work by deleting samples of the majority class, in

which the samples are randomly selected for random undersampling [41].

A different approach consists of weight balancing where a higher weight is at-

tributed to the less represented classes. This type of balancing can be used if it

is desirable to attribute a higher weight to the minority class due to their higher
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importance.

It is important to partition the dataset into training, validation and test sets.

Data partitioning consists in choosing the percentage of data that is used in each

one of those sets. A certain amount of data should be used to identify relationships

between the target function and the outcome (training set), but there is also the

need to verify if the relationships are accurate and if the model fit new data. For

such reasons, a percentage of data is used to provide an unbiased evaluation of a

model fit on the training dataset while tuning model hyperparameters (validation

set), and the remaining data is used to a final estimation of the performance after

model structure and parameters are completely fixed (testing set) [42].

The partition of the data is also essential to evaluate the fit of the model and

avoid overfitting. In fact, Cross-Validation (CV) methods are commonly used to

partition the data. K-fold CV [43] is an example of CV, mostly used in small

datasets, that divides a dataset into k parts, using k-1 parts to train the model and

the remaining part to validate the model. The algorithm performs k iterations in

order to guarantee that all k parts will be used in for test in one iteration. Such

algorithm ensures that the data is completely explored once all the samples are used

for training and after CV the best models, if sufficient data is available, are applied

in a testing set.

2.6.2.2 Classifiers

Several classification algorithms can be used and the appropriate choice depends

on the existing problem and available data. Some classifiers are listed below [44]

[45]:

1. Decision tree - This classifier is based on a construction of a flowchart-like

tree structure in which the internal nodes represent features, the branches

represent a decision rule and the leaf nodes represent the classification into

one of the classes. This algorithm classifies each point by moving from the top

of the tree (root) until the bottom of the tree, choosing in each case a side of

the branch [46].

2. Logistic regression -This type of regression analysis, that is usually applied

when the dependent variable is binary, fit the data to a logistic function and

use such function to predict the occurrence of an event. This method allows

to obtain the probability p(x) of a sample xi belonging to a certain class.

The function used to obtain the probability is indicated in the equation (2.1),
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where wi is the regression coefficient value concerning the feature xi [47].

p(x) =
1

1 + e−(w0+
∑n

i=1 wixi)
. (2.1)

3. Fisher Linear Discriminant Analysis (LDA)- This method is a classi-

fication and dimensionality reduction technique that transform the features

from higher-dimensional space into a lower-dimensional space. The maximum

number of dimensions that is possible to project data is C-1, where C is the

number of classes. Dimensionality reduction is achieved by projecting samples

in a lower-dimensional space that is chosen by considering the projection that

maximizes classes separability and minimizes the variance within the class,

known as Fisher criterion [48]. Classification is then possible by defining a

linear classifiers over the projected data.

4. K-Nearest Neighbors (KNN) - This algorithm stores the instances cor-

responding to training data points, and use feature similarity to predict the

values of new data points based on how closely it matches the points stored.

The label is determined by the most prevalent class among the corresponding

k nearest neighbours [49].

5. Support Vector Machine (SVM) - This algorithm is commonly used for

binary classification and prediction, and it works by assuming that each in-

stance corresponds to a point in space to find a hyperplane that maximizes

the separation margin between samples of the classes. Even though there are

several possible hyperplanes, the algorithm selects the one that provided the

maximum separation margin between data points of both classes, to obtain

a more confident classification for future data points [50]. The new instances

are classified based on their position, in which they are classified according to

the side of the hyperplane they are placed. The classification model can be

expressed as follows [51]:

f(z) = sgn(wT z + b).

Where w is the normal vector to the decision hyperplane, z the new sample to

be classified, and b is a bias term. w and b are obtained by minimizing:

Ψ =
1

2
‖w‖2 + C

N∑
i=1

ξi, subjected to

yi
(
wTx+ b

)
≥ 1− ξi; i = 1, ...,M.
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Where {xi, yi} (with i = 1; · · ·,M) is the training data, being xi input feature

vectors and yi ∈ {−1,+1} the class labels. ξ is a quantification of the degree of

misclassification, and C defines the influence of ξ on the minimization criterion

Ψ.

2.6.3 Performance evaluation

The classification models developed need to be further evaluated and analyzed.

In order to evaluate how well the model fit data, several metrics are used to evaluate

prediction [52]:

1. Confusion matrix - The confusion matrix allows to evaluate the model per-

formance, where four measures are obtained by assuming that the problem is

binary and there exists a class named as positive class, and there exists other

class named as negative.

• True Positives (TP) : number of samples correctly classified as the

positive;

• True Negatives (TN) : number of samples correctly classified as neg-

ative;

• False Positives (FP) : number of samples classified as positive that are

negative;

• False Negatives (FN) : number of samples classified as negative that

are positive.

2. AUC - The area under the ROC curve is also used for binary classification

problems. As can be seen in Figure 2.5, the ROC curve is a graphic plot of

the TPR (true positive ratio or sensitivity) in the function of the FPR (False

Positive Ratio or 1-specificity), used to classify each event into one class. In

order to classify based on a given classifier decision function, a threshold needs

to be defined, in which if the value is above the threshold it belongs to one

class and if it is below the threshold it belongs to the other class [53].

Several values of thresholds can be used to develop a ROC curve, and the AUC

is the area under the curve. Basically, if the value of AUC obtained by the

equation 2.2 is close to 1, the model classify correctly each class, if the value

is close to 0, it classify the classes in an opposite way, and if the value is close

to 0.5 means that the model has no class separation.

AUC =

∫ 1

x=0

ROC(x)dx. (2.2)
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Figure 2.5: ROC curve [53].

3. Accuracy - Accuracy represents the number of predictions correctly made out

of all predictions made. For this reason, the accuracy of 100% corresponds to

the highest accuracy possible, and the number of events incorrectly classified

make this number decrease.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

Even though this metric is commonly used, it is not appropriate in imbal-

anced classification once if the model attributes all examples to one class, the

accuracy is high, but the model is not effective [54].

4. Sensitivity - This metric corresponds to the true positive rate, identifying

the proportion of positives that are correctly identified as such

Sensitivity =
TP

TP + FN
(2.4)

5. Specificity - This metric corresponds to the true negative rate, identifying

the actual negatives that are correctly identified as such

Specificity =
TN

TN + FP
(2.5)

6. F1-score - This metric is the harmonic mean of precision and recall (sensi-

tivity) as can be seen in the equation 2.7. The precision corresponds to the

ratio of correctly predicted positive observations to the total predicted posi-

tive observations as can be seen in equation 2.6. This metric takes both false

positives and false negatives into account and is more realistic than accuracy
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in imbalanced class distributions, once accuracy usually benefits the classifiers

with poor performance for the minority class [54].

Precision =
TP

TP + FP
(2.6)

F1-Score =
2 ∗ Precision ∗Recall
Precision+Recall

. (2.7)

7. G-mean - This metric is the geometric mean of the sensitivity and specificity,

as can be seen in the equation 2.8

G-Mean =
√

sensitivity ∗ specificity (2.8)

Similarly to the F1-Score, this metric is more appropriate to imbalanced clas-

sification than accuracy [54].

It is important to evaluate the results obtained, testing it in real-life situa-

tions, with data unseen by the model in both pre-processing, feature selection and

classification. In fact, there are models that learn the training data in detail and

perform too well in the training data, but very poorly in new data. The performance

evaluation allows to identify such problems and validate the model.
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State of the art

This chapter provides a brief explanation of the current state of the art on

the prediction of MS progression. Firstly, there are presented different definitions

used for benign MS. Afterwards, an overview of the different features identified as

predictive of a benign course are listed with the correspondent study where they

were identified. Studies identifying demographic features and the existing ML ap-

proaches to predict worsening cases are also described and the results achieved are

enumerated. Moreover, studies focusing on the Secondary Progressive development

prediction are presented, along with a description of the identified features and best

results.

3.1 Definitions of benign MS

The definition of benign MS had varied throughout the years. As reviewed by

Ramsaransing GSM et al. [6] it started to be defined as ”It is not rare to encounter

complete remission which is hoped to be definitive” in 1872. Although the definitions

of benign MS are different from author to author, the introduction of the EDSS scale

led to a higher consensus among authors once they started to use such scale to define

benign MS. In literature, definitions such as variations of the disability score from 0

to 2 [55], [56], from 0 to 4 [57] and with a variation in the length of disease duration

from 5 years to 20 years are encountered. Even though the benign course in MS was

defined in a consensus meeting in 1996 as a disease in which the functional systems

remain fully functional after 15 years of disease onset, the most common definition

used is an EDSS score ≤ 3.0, after a disease duration of at least 10 years [58], [59],

[26], [60], [61],[62]. A progression index defined by the division of EDSS score by

disease duration is also addressed by some authors [63] as a meaning for benign

course, in which a progression index <0,2 corresponds to a benign course

progression index =
EDSS score

disease duration
. (3.1)
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In the Table 3.1 the different definitions of benign MS used by each author are

defined, as the number of patients used in each case and the frequency of patients

identified as benign cases in each study. It’s possible to identify that the benign

frequency varied from 6 to 71 %, which emphasize the fact that different defini-

tions change considerably the interpretation of the problem, and consequently the

distribution of the patients in each group.

Table 3.1: Definitions of benign multiple sclerosis proposed by several authors
organised by definition and chronological order, respectively.

Author; year Definition of Benign used Benign Frequency(%) No Patients

McAlpine ; 1961 [64] 32 241

Leibowitz and Alter; 1970 [65] 20.7 266

Sheperd ; 1979 [66] 7.2 557

Amato et al. ; 1999 [67]

Without restriction of activity for normal

employment and domestic purposes

but not necessarily symptom-free after a

follow-up period of more than 10 years 29 224

Kurtzke et al. ; 1977 [55]
Kurtzke DSS between 0 and 2 after more than 10 years of disease duration

20.1 527

Lauer and Firnhaber ; 1987 [56] 19 363

Poser et al. ; 1982 [63]
Deterioration of not more than one grade of

disability during a 5-year period (progression index ≤0.2)
21.9 2056

Hutchinson ; 1986 [58]

EDSS ≤ 3 after 10 years of illness

54 60

Thompson et al. ; 1986 [59] 42 400

Hawkins et al. ; 1999 [26] 19.9 181

Cabre et al. ; 2001 [60] 19.4 62

Ramsaransing et al ; 2001 [61] 26,7 2204

Mandriol et al. ; 2008 [62] 59,4 64

Lublin et al. ; 1996 [68]
Disease in which the patient remains fully functional

in all neurologic systems 15 years after disease onset

Krisztina et al. ; 2001 [69] EDSS between 0 and 3 points 15 248

Perini et al. ; 2001 [70]
EDSS score 3 with normal neurophysiological examination

in a period of 15 or more years after clinical onset of the disease
6 500

Benedikz et al. ; 2002 [57] EDSS <4 after 15 years 64 372

Kalanie et al. ; 2003 [71]
EDSS score ≤ 3.0 after 10 years and

score ≤ 2 after 5 years
14 265

Portaccio et al. ; 2009 [72] 71 63

Rovaris et al. ; 2011 [73] 49.3 369

Hviid et al. ; 2011 [74] 14,6 1265

Calabrese et al. ; 2013 [75]

EDSS ≤ 3 and a disease duration of 15 years

32,1 140

Bueno et al. ; 2017 [76] EDSS ≤ 3 and a disease duration of 20 years 49 61

Yijun Zhao et al. ; 2017 [77]
Increased EDSS 1.5 at up to five years

after baseline visit
1693

From those studies, different methods were used and several predictive features

were identified.

Hawkins et al. [26] developed a study to evaluate both the characteristics and

prognostic factors capable of identifying the patients that follow a benign course

of MS. Clinical and demographic variables were considered and t-test and χ2 test

were used to compare the different patient’s groups. There weren’t clear conclusions

about the symptoms related with benign MS course, even though optic neuritis and

sensory disturbance were identified as the most common features characterizing that
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course.

Poser et al. [63] used statistical tests to identify factors predictive of a benign

MS, defined by a progression index ≤ 0.2 (given by the quotient between the present

disability and the disease duration). Patients with optic neuritis as the initial symp-

tom, and with an age ≤ 39 years were identified as patients with more probability to

develop a benign course. The RR course was also identified as a feature predictive

of a benign course.

G. S. M. Ramsaransing et al. [6] developed a review about the existing studies

addressing the benign course of MS. From the studies analysed, several of them found

clinical factors associated with a favourable MS course namely low age at onset,

relapse-remitting course, short-duration onset symptoms, complete first remission,

and long time between onset and first relapse while a high number of functional

systems at onset and high EDSS at onset were identified as possible indicators of

not benign MS.

Tatjana Reynders et al. [78] also performed a literature review in which the

features predictive of a benign course were identified. Features such as early relapse

rate, disease phenotype at onset and low EDSS values at 5-10 years from the onset in

RR course are considered as factors with strong evidence of being features predictive

of a benign course, while there was no evidence of age and gender predict benign

MS independently. It is suggested that both age and gender are interacting with

the disease phenotype. Moreover, it is mentioned that mental and cognitive features

are not usually identified in studies, which may be caused due to the biased EDSS

scale to motor functions.

It was also studied cases of worsening condition, in which worsening was defined

as an EDSS increase ≥ 1.5 at up to five years after the baseline visit. Yijun Zhao

et al. [77] used ML approaches to classify the patients into worsening or non-

worsening groups. SVM and logistic regression were selected as classifiers. It was

used demographic, clinical and MRI data of the first two years to predict the EDSS

increase up to five years. The best result was achieved for 1 year of follow up

with MRI data having a sensitivity of 0.71, a specificity of 0.68 and an accuracy of

0.69. Some features such as EDSS score, disease activity score, sensory, cerebellar,

visual, mental, bowel/bladder and brainstem FS scores were identified as features

with predictive power to progressive MS while race, ethnicity and family history of

MS are determined as features predictive of non-progressive cases.

In a different study Yijun Zhao et al. [79] evaluated different models using SVM,

logistic regression, random forest, XGBoost, LightGBM, Meta-L and compared the

results obtained with the different classifiers. It was used the first two years to pre-
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dict up to five years and classify the patients into worsening/ non-worsening group.

Using LightGBM a sensitivity of 0.78, a specificity of 0.68 and overall accuracy of

0.70 was achieved. Features such as pyramidal functions, variations in the EDSS,

disease category and some others were also identified as having predictive power.

In the Table 3.2 an overview of the different features identified in literature with

the predictive power of benign or malignant MS (used to describe MS patients who

reach significant level of disability in a short period of time) is present.
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Table 3.2: Predictive features of a benign/malignant course identified in literature.

Feature Benign MS Non Benign MS

Authors

Age at onset:

High:

Low:

Poser et al. [63]

, Thompson et al. [59],

Hawkins et al. [26],

Ramsaransing et al. [61]

Gender:

Male: Portaccio et al. [72]

Female: Hawkins et al. [26]

Symptoms at onset:

Visual:

McAlpine [64],

S A Hawkins et al. [26]

, Poser et al. [63]

, Yijun Zhao et al. [77],

Ramsaransing et al. [61]

Amato et al. [67],

Pyramidal: Yijun Zhao et al.[79]

Amato et al. [67],

Kurtzke et al. [55],

Ramsaransing et al. [61],

Mandrioli et al. [62]

Cerebellar:
Leibowitz and Alter [65],

Yijun Zhao et al. [77]

Amato et al. [67],

Kurtzke et al. [55],

Lauer and Firnhaber[56]

Sensory:

S A Hawkins et al [26].,

Sheperd [66],

Amato et al. [67],

Hawkins et al. [26],

Mandrioli et al. [62],

Yijun Zhao et al. [77]

Bowel & Bladder: Yijun Zhao et al. [79] Amato et al.[67]

Brainstem:
McAlpine [64],

Yijun Zhao et al.[77]

Motor:

Spinal:

Mental: Yijun Zhao et al. [77]

Onset characteristics:

Low number of functional

systems involved:
Kurtzke et al. [55]

High number of functional

systems involved:

Amato et al. [67],

Kurtzke et al. [55],

Lauer and Firnhaber [56]

High

EDSS:
Tatjana Reynders et al. [78] Amato et al. [67], Kurtzke et al. [55]

RR course

Sheperd [66],

Poser et al. [63],

Tatjana Reynders et al. [78]

Progressive course
Amato et al. [67],

Lauer and Firnhaber [56]

Relapse:

Long time between onset

symptoms and next relapse:

Kurtzke et al. [55],

Thompson et al. [59]

Low relapse rate:

McAlpine et al [64],

Amato et al. [67],

Ramsaransing et al. [61]
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3.2 Early prediction of SP cases

Due to the initial similarities between RR and SP patients, some authors eval-

uated the clinical factors capable of distinguishing the patients who will evolve to

SP course and those who will remain with the RR course.

Adrian Ion-Margineanu et al. [80] developed a study to classify MS patients

into one of the existing MS types. A ML algorithm was applied to clinical data

combined with lesion loads and magnetic resonance metabolic features. Using an

LDA, it was achieved an F1-Score of 87% for the distinction of RR vs SP and an

F1-Score of 85 % for the distinction of RR vs PP. It was possible to verify that the

lesion loads were better when used to differentiate between RR and SP forms.

Boiko et al. [81] established a correlation between the course of MS and the

number of relapses during the first year of the disease. Moreover, this author iden-

tified that for subjects with later first relapse, the transition to SP course is longer.

Bergamaschi et al. [82] developed a bayesian model to estimate the risk of

evolving to SP course, in which polisyntomatic onset and late age at onset were

identified as unfavourable factors and female gender was associated with lower risk.

Furthermore, factors such as type of onset, motor and sphincter relapses and an

early increase in disability were considered as key features for assessing the risk of

advance to SP course.

3.3 Overview of MS research

Analyzing several studies, it is possible to verify that the research approaches

and models developed have changed over time. Older studies focus their efforts to

infer about associations between biological processes and disease manifestations, or

relations between disease courses and symptoms. In these studies, inferential statis-

tics are used to infer about such relations and try to identify possible mechanisms or

symptoms of interest to understand how the disease manifestations occur and how

benign cases and SP development can be identified in an early stage.

In more recent research, it can be noted that the inferential statistics have

been mostly replaced by ML approaches that find generalizable predictive patterns

capable of predicting the disease course [77][79] [80]. Models of pattern recognition,

neuronal networks and fuzzy logic, for example, have been used for prognosis of

disease course, focusing on forecasting future outcomes [83]. Accompanied by this

change in research objectives, several new features with predictive power for benign

cases and disease courses classification have arisen. ML also allowed to work with
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larger quantities of clinical data in a standardized way.

Considering the actual knowledge regarding the MS pathology, a consensual and

complete definition for benign/malignant MS should be created. Actually, there is

no possibility to compare some results from different studies predicting benign cases,

due to the use of diverse definitions. It is relevant to note that some models can

present better results because the definition used is less rigorous. Such criteria

heterogeneity causes ambiguity in results obtained. In fact, using the EDSS scale,

the new knowledge about MS pathology, the new improvements in clinical factors

and the most recent imaging techniques, a more concrete definition of benign MS

should be proposed to standardize future MS investigation.
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Dataset Description

A database, from the Neurology Department of Centro Hospitalar e Univer-

sitário de Coimbra, whose use for research proposal has been approved by the Ethical

Committee of the Faculdade de Medicina da Universidade de Coimbra was used in

this master thesis, containing information from 1134 patients. The data, for each pa-

tient, includes identification, demographic information, relevant events in MS course

(relapses, the onset of the progressive course, symptoms identified in each visit) and

treatments administered. Among the total data is possible to distinguish between

static and dynamic data.

The patients are periodically monitored, with regular visits to the clinic every

3 months or every 6 months, depending on the severity of the cases. Besides, if a

patient feels bad or forecast that he will be unwell, he or she can go to the clinic in an

unplanned way, which corresponds to an irregular visit. The patients still go to the

clinic when they have relapses, where they can be hospitalized or not. Although it

is administered continuous treatments on the patients, in those cases where relapse

occurs, is also administered corticosteroids.

Dataset

Dynamic informationStatic information

Gender Onset age Information 
of visits

Information 
of relapses

Information 
that lead to 
diagnosis

Age

Figure 4.1: Type of information contained in the dataset.

As observed in Figure 4.1 the static information corresponds to the data that

do not change with time, including demographic data such as gender, age and age

at onset and clinical information that lead to the diagnosis, including CSF examina-

tions, the measure of evoked potentials and MRI exams. As opposite, the dynamic
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information is the data that varies with time, and variations are observed in differ-

ent periods. This data contains information about visits and relapses that can be

different from visit to visit and from relapse to relapse.

The entire information provided in the database, was organized in 12 groups,

as described in Table 4.1

Table 4.1: Description of the original database xls sheets.

Information groups Description Used / Not used - cause

Identification Information of patient such as demographic

information

Used

Concomitant Diseases Information of other diseases of the patients Not used - Available for few patients

Family History Information of family history diseases Not used - Available for few patients

Visits Information regarding visits at hospital Used

MRI Information of a reduced number of patients Not used - Available for few patients

CSF Includes important information regarding the

patient condition retrieved from CSF examination

Not used - Plenty of missing data

Evoked Potential Includes important information regarding the

patient condition retrieved from the evoked

potential examination

Not used - Plenty of missing data

Laboratory Test Includes important information regarding the

patient condition retrieved from laboratory tests

Not used - Plenty of missing data

Relapses Information about relapses Used

Adverse Event Information of adverse events suffered by the

patients

Not used - Available for few patients

Pregnancy Information of the pregnancy such as

complications occurred

Not used - Available for few patients

Treatments Information of the treatments administered to

the patients

Not used - Could lead to bias

Table 4.1 demonstrates that several groups were excluded due to a significant

amount of missing data verified. Some others were not used since the information

available concerned only a small number of patients. Among used groups, it was pos-

sible to identify several cases of patients containing missing data in core fields, such

as onset and diagnosis date and symptoms from visits and relapses. Furthermore,

there were also verified cases of patients not diagnosed with MS.

To provide more details about the fields used to model development, a descrip-

tion of each feature contained in the curated database is described in the following

sections, divided by group.

4.1 Identification

In this section, the fields of the Identification group are presented and explained:
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1. Birth Date: Birthdate of patients used with diagnosis date, onset date and

secondary progressive diagnosis date to calculate the patient’s age at these

events;

2. Gender: Patient’s gender;

3. Age at onset: Calculated using birth date and onset date to obtain the mean

age at onset of the patients considered;

4. Diagnosis Date: Corresponds to the moment when MS was for the first time

diagnosed. It is used along with the birth date and secondary progressive

diagnosis date;

5. Secondary progressive diagnosis date: Date at which patient having RR

was diagnosed with SP course;

6. Supratentorial: Boolean field, indicating the existence of MS manifestations

related to the supratentorial region at the time of diagnosis;

7. Optic pathways: Boolean field, indicating the existence of MS manifestations

related to the optic pathways at the time of diagnosis;

8. Brainstem-Cerebellum: Boolean field, indicating the existence of MS man-

ifestations related to the brainstem and/or cerebellum at the time of diagnosis;

9. Spinal cord: Boolean field, indicating the existence of MS manifestations

related to the spinal cord at the time of diagnosis;

10. Clinical findings: Boolean field, indicating the existence of clinical evidence

in the initial MS manifestations at the time of diagnosis;

11. MRI: Boolean field, indicating the existence of visible MS manifestations in

the MRI exams at the time of diagnosis;

12. Evoked potentials: Boolean field, indicating the existence of MS manifesta-

tions in evoked potentials test at the time of diagnosis;

13. CSF: Boolean field, indicating the existence of MS manifestations in the lum-

bar puncture exam at the time of diagnosis;

14. MS course: Boolean field, indicating whether the actual MS course of the

patient is RR, SP or PP.

4.2 Visits

In this section, the fields of the Visits group are presented and explained:

1. Visit date: Corresponds to the date in which the visit to the hospital oc-

curred;

2. Routine: Boolean field, indicating whether it was a routine visit or an emer-
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gency one;

3. Suspected relapse: Boolean field, indicating if a relapse is expected or not;

4. Score pyramidal: Field with values varying from 0-6, corresponding to the

momentaneous score for the Pyramidal FS;

5. Score cerebellar: Field with values varying from 0-5, corresponding to the

momentaneous score for the Cerebellar FS;

6. Cerebellar weakness: Boolean field, indicating if there were MS manifesta-

tions of cerebellar weakness;

7. Score brainstem: Field with values varying from 0-5, corresponding to the

momentaneous score for the Brainstem FS;

8. Score sensory: Field with values varying from 0-5, corresponding to the

momentaneous score for the Sensory FS;

9. Score bowel: Field with values varying from 0-5, corresponding to the mo-

mentaneous score for the Bowel and Bladder FS;

10. Score visual: Field with values varying from 0-5, corresponding to the mo-

mentaneous score for the Visual FS;

11. Visual symptom: Boolean field, indicating whether a patient had visual

symptoms or not;

12. Score mental: Field with values varying from 0-5, corresponding to the

momentaneous score for the Mental FS;

13. Score ambulation: Field with values varying from 0-11, corresponding to

the ambulatory capacity of the patient;

14. Gdataxia: Boolean field, indicating if gait disturbances of ataxia (lack of

voluntary coordination of muscle movements) occurred. It is related to the

dysfunctions in the Cerebellum;

15. Dysaesthesiae: Boolean field, indicating if a symptom of dysaesthesia (Ab-

normal and disagreeable sensations experienced in the absence of stimulation)

occurred;

16. Ataxia lower extremity: Boolean field, indicating if a symptom of ataxia in

the lower extremities occurred. It is related to dysfunctions in the Cerebellar

functional system;

17. Paresthesiae: Boolean field, indicating if a symptom of paresthesiae (burning

or prickling sensation ) occurred;

18. CognitionPB: Boolean field, indicating if cognition perturbation occurred

due to MS. It is related to dysfunctions in the Cerebral functional system;

19. GdParesis: Boolean field, indicating if gait disturbances of paresis (partial
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loss of voluntary movement) occurred. It is related to dysfunctions in the

Pyramidal functional system;

20. GdSpasticity: Boolean field, indicating if gait disturbances of spasticity oc-

curred;

21. MwUpperExtremity: Boolean field, indicating if a symptom of muscular

weakness in the upper extremities occurred. It is related to dysfunctions in

the Pyramidal functional system;

22. MicturitionPb: Boolean field, indicating if perturbations in the micturition

(involuntary release of urine) were verified. It is related to dysfunctions in the

Bowel and Bladder functional system;

23. Fatigue: Boolean field, indicating if patients felt fatigue;

24. mwLowerExtrimity: Boolean field, indicating if a symptom of muscular

weakness in the lower extremities occurred. It is related to dysfunctions in the

Pyramidal functional system;

25. MoodPb: Boolean field, indicating if perturbations in the mood were verified;

26. EDSS: Value of EDSS varying from 0 to 10 attributed by the physician at

each visit.

4.3 Relapses

In this section, the fields of the Relapses group are presented and explained:

1. Relapse date: Corresponds to the date in which the relapse occurred;

2. Impact ADL Functions: Indicates the impact of five different activities

of daily living. Those ADL include bathing (personal hygiene and groom-

ing), dressing (dressing and undressing), transferring (movement and mobil-

ity), toileting (continence-related tasks including control and hygiene), eating

(preparing food and feeding);

3. Recovery: Corresponds to the amount of recovery after the relapse, admitting

values of complete recovery, partial recovery and none recovery;

4. Severity: Indicates the intensity of the relapse, admitting values of mild,

moderate and severe;

5. CNS Pyramidal Tract: Boolean field, indicating if MS manifestations re-

lated to Pyramidal tract occurred;

6. CNS Brainstem: Boolean field, indicating if MS manifestations related to

Brainstem occurred;

7. CNS Bowel Bladder: Boolean field, indicating if MS manifestations related
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to Bowel and Bladder tract occurred;

8. CNS Neuropsycho Functions: Boolean field, indicating if neuropsychologic

MS manifestations occurred;

9. CNS Cerebellum: Boolean field, indicating if MS manifestations related to

Cerebellum occurred;

10. CNS Visual Functions: Boolean field, indicating if MS manifestations re-

lated to visual functions occurred;

11. CNS sensory functions: Boolean field, indicating if MS manifestations re-

lated to sensory functions occurred.

4.4 Patient selection

Considering the objective of predicting benign/malignant cases and RR to SP

transition, and taking into account the limitations of the database used, several

steps were performed to obtain an optimal selection of patients to each prediction

scenario.

As can be seen in 4.2 a), the original database contained information of 1134

patients. Among those patients, 258 were not diagnosed with MS, which cause their

automatic exclusion, once they were not useful to fulfil the objective of this study.

Moreover, the fields with complete missing data were also excluded.
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a) b)

c)

Included patients with SP 
diagnosis date after the 
5th year of tracking

Figure 4.2: Iterative steps of the selection criteria of the patients.

The exclusion of the patients due to the aforementioned reason lead to the

creation of a curated database identified in Figure 4.2 b). In total, the curated

database contained clinical data from 876 patients, in which 752 were diagnosed

with RR sub-type, 85 with SP sub-type and 39 with PP sub-type. The PP patients

were not included in further steps once they represent a minority of the cases and

are characterized by clinical manifestations different from other courses in an initial

phase. The patients with missing data in both onset date, diagnosis date and SP

diagnosis date (only considered for RR/SP selection) were also not included due to

the impossibility to retrieve critical information to predict the outcomes.

It was verified that the number of visits and relapses was quite variable from

patient to patient, existing a significant difference in the amount of data between

some patients. Moreover, the majority of the patients had no information of visits

previous to or in the year of the diagnosis date, which makes it impossible to retrieve

the information from the initial years. Lastly, the years of follow-up are also not

the same for every patient. Since different labels will be compared it is necessary

to select an appropriate subset of patients for each case, that contains enough data

and a required number of years of follow-up.
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To integrate information from different sources and uniform the amount of data

considered to each patient, several inclusion criteria were defined to guarantee that

sufficient information is used in each case. The inclusion criteria common to every

label is enumerated below:

1. Diagnosed with MS;

2. Diagnosed with RR or SP sub-types;

3. Information of at least 5 visits;

4. Records of patient follow-up at least since the diagnosis date.

Such criteria select the patients most likely to have information from the onset

of the disease, by selecting those with visits before or in the year of the diagnosis

date. In the patients where the diagnosis date was missing, the onset date was used

to perform such selection. If both dates were missing, the patients were not included

due to the impossibility to retrieve critical information to predict the outcomes. For

the RR/SP selection, there was introduced an exception to the previous statement,

once the patients containing the first annotated visit only after RR diagnosis, but

the SP diagnosis date after the fifth year of tracking were also included. In this

way it is guaranteed that the information used still belonged to an RR subtype.

Moreover, only patients with at least 5 visits were considered to standardize the

amount of data between patients and guarantee that each patient has a minimum

of information to be included.

Some additional requirements were added to ensure that for each case the pa-

tients had sufficient information to predict the outcomes. Once the predictions

varied in terms of years, in some cases the patients were excluded for not having at

least 5 years of follow-up, while in others the patients were excluded for not having

at least 10 years of follow-up. Furthermore, some predictions use a value of EDSS

in a specific year, and for such reason, the existence of at least one visit in that year

or consecutive years were defined as inclusion criteria.

Analysing the Figure 4.2 c) it is possible to identify the 6 different datasets

obtained by the application of common inclusion criteria and the additional require-

ments for each case, which lead to a different selection of patients. The differences

in the selection arise from the follow-up years, the inclusion of non-baseline informa-

tion, and the existence of at least one visit in specific years. Although some datasets

in the Figure 4.2 c) are quite similar, they had to be considered as distinct once in

the present study it was used several definitions of benign MS from the literature

and it was desirable to recreate as closely as possible such definitions and evalu-

ate the differences in the results obtained by those tiny differences. In this way, 6

datasets were created containing the information from the selected patients in each
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case.

For every case, the demographic characteristics and the number of visits and

years of follow up of the patients that fulfil the inclusion criteria are presented in

the Table 4.2. It can be seen, in all selected groups, that the patients included are

predominantly women, which is according to the fact that the disease affects more

females. In terms of the mean age at onset, the value is around 31 years which is also

expected once the disease start usually at young adult period. Furthermore, it can

be seen that the predictions with a follow-up of 10 years present the highest number

of visits, with exception to prediction after 10 years using only baseline information

(information of EDSS values retrieved from the routine visits) that presents a lower

number due to the exclusion of non-routine visits.

Table 4.2: Characteristics of the patients that fulfil the inclusion criteria for the
different sets.

SP/RR
Benign after 5

years selection

Benign after 6

years selection

Benign after 10

years selection

Benign after 10 years

with 5 year information

Benign after 10

years baseline selection

Number of patients: 181 167 145 67 52 50

Female: 136 (75.14%) 118 (70.66%) 101 (69.66 %) 52 (77.61 %) 40 (76.92 %) 39 (78%)

Mean age at onset: 31.10 ± 10.54 30.87 ± 10.46 30.28 ± 10.11 32.30 ± 11.84 32.63 ± 11.89 31.52 ± 11.36

Follow-up years: 10.01 ± 8.18 8.86 ± 7.66 9.67 ± 7.98 14.52 ± 10.35 13.87 ± 11.36 11.76 ± 2.30

Number of visits: 13.22 ± 4.87 13.2 ± 4.73 13.82 ± 4.76 15.90 ± 4.83 16.02 ± 4.42 8.6 ± 3.34
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Experimental Procedure

The experimental procedure involved a ML approach in order to predict the

MS disease course. Two different aspects regarding the MS disease course were

predicted, specifically the SP development/not development and the disease severity,

evaluated by the identification of benign/malignant cases.

Database

SP development 
/not development

Benign/malignant 
courses

Predict

2 years of features 

First visit 2 year

3 years of features

First visit 3 year

4 years of features

First visit 4 year

1 year of 
features

First visit

5 years of features

First visit 5 year

1 year

5 year model

includes

includes

includes

4 year model

3 year model

2 year model

1 year model

includes

using

Time models used     

    Select the 
year-model with 
the best 
performance

    Extract the 
clinical information 
predictive of a SP 
case

Results SP 
development

Results Benign 
cases
   Select the 
year-model with 
the best 
performance

   Extract the 
clinical information 
predictive of a 
benign MS case

using

Figure 5.1: Methodology used.

As can be seen in the Figure 5.1 the same database was used to predict SP

development/not development and benign/malignant cases.

In both problems were applied 5 time models, each constituted by a different

amount of years of follow-up and features considered. The time models represent

part of the database used for each prediction, that correspond to the years of data

used as information for the prediction. One of the objectives is to identify the

number of years of follow-up that are needed to obtain a good model performance,

and for such reason the model was tested using a different amount of years of follow-

up. For example, when 1 year of follow-up was chosen, only the features from the

first year were considered for the prediction while when 2 years were picked the

features from both first and second years were chosen. The same logic was applied
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for 3, 4 and 5 years.

Moreover, the application of such time models also allow to extract the most

important predictors, and the corresponding years where they were important, for

both SP development and benign/malignant predictions. Although the methodology

is similar for all cases, the differences between them are caused by the different

subsets of patients selected, and the different labels admitted as mentioned in the

next section.

5.1 Labels

Since two different classification problems are considered, namely the classi-

fication in RR/SP and the classification in benign/malignant, the labels for each

problem are logically distinct once the outputs predicted in each model are differ-

ent.

Regarding the RR/SP model, the label considered was binary, indicating if the

patient was diagnosed with RR (0) or with SP (1). This label was created using the

identification group that contained the information of the disease course for each

one of the individuals considered.

In the case of benign/malignant model, a more complex situation was defined,

once several labels were created and tested. From the literature, it was possible to

verify that the nonexistence of a consensus definition of benign MS, utilized by all

authors, is leading to an ambiguity in the results and an arduous comparison of the

results achieved in the different papers. To overcome such problem, several labels

were retrieved from literature and some others were introduced in order to evaluate

how the performance is affected by the selected label and whether different labels

lead to different predictive features.

In this way, 9 distinct binary labels indicating if the patient had a benign case

(0) or malignant case (1) were tested. Each label is described in the Table 5.1.
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Table 5.1: Description of the labels used.

Label Description From state of art Dataset used Number of patients Benign percentage

Label SP Development of SP course Yes RR/SP selection 181 -

Label1 EDSS 0–2 in the 10 years using baseline visits [55] [56] Yes Benign after 10 years baseline selection 50 42

Label2 EDSS <=3 in the 10th year using baseline visits [58] [59] [26] [60] [61] [62] Yes Benign after 10 years baseline selection 50 58

Label3 EDSS <=3 in the 10 year No Benign after 10 years selection 67 55.22

Label4 EDSS <=3 during the initial 10th years No Benign after 10 years selection 67 28.53

Label5 * EDSS <=3 after 10 years and <=2 after 5 years [71] Yes Benign after 10 years with 5 year information 52 52.17

Label6 ** EDSS <=4 in the 10th year using baseline visits [57] Yes Benign after 10years baseline selection 50 76

Label7 EDSS <=3 in the 6th year [84] Yes Benign after 6 years selection 145 73.80

Label8 *, *** Increase EDSS <1.5 after 5 years [77] Yes Benign after 5 years selection 167 86.82

Label9 *, *** Progression index <0,2 after a duration of 5 years [63] Yes Benign after 5 years selection 167 77.24

* In literature only the EDSS baseline was considered

** In literature were considered 15 years

*** In literature were considered that the limit cases were benign (<= instead of <)

Analysing the Table 5.1 it is possible to recognize the meaning of each label

and verify those that were retrieved from the bibliography. Firstly, there were labels

admitting only baseline information (EDSS retrieved from the routine visits), while

some others included baseline and non-baseline information (EDSS retrieved from

both routine and non-routine visits, including the EDSS from relapses). Regarding

the label 1 and 2, both labels use the same selection of patients and consider only the

baseline information, leading to labels equal to literature. Once the database had

several limitations, slight changes had to be performed to the other labels retrieved

from literature. In terms of label 5, it should be used only baseline information, but

it lead to an even reduced number of patients and for such reason it was decided to

use both baseline and non-baseline information. Regarding label 6, in literature it

is used an EDSS ≤ 4 in the 15th year, but it were used only 10 years in this case

once the number of patients with 15 years of follow-up was quite reduced. In terms

of label 8 and label 9, both labels presented an number of malignant cases quite

reduced. To overcome this problem and obtain an higher number of patients of the

minority class, it were admitted that in the limit cases the patient was malignant

(it was used < instead of ≤ ) and it were also considered baseline and non-baseline

information, although in literature only baseline information was used.

Furthermore, it can be noted in Table 5.1 that the number of patients used

varied depending on the label considered, because different labels required different

amount of years of follow-up and visits occurring in different specific years. To each
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case, all patients with a sufficient follow-up period and with visits in the year that

the EDSS is retrieved were considered. The percentages of benign in each case were

also different from label to label, which is according to literature and demonstrate

that different definitions provide a enormous variance in the amount of patients

identified as benign.

It is important to note that there were identified in the state-of-the-art other

definitions that were not used because a longer period of follow-up (15 and 20 years)

was admitted and in the present database the number of patients with that amount

of years of follow-up is quite reduced.

5.2 Feature engineering

A process of feature engineering was used in the available data, in order to

increase the number of features used by ML algorithms. Such technique included

the creation of features by applying statistic operators to previous segmented data

in time windows, to extract more information from raw data.

Dynamic Data

Visits data Relapses data

Routine data Non-routine data

Data segmentation in 
time

Apply statistic 
operators

Features

Static Data

Clinical Data

Figure 5.2: Procedure used to create features.
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The process used to create features is presented in Figure 5.2. As previously

mentioned, the data can be divided in static data, not dependent on time and

dynamic information that changes with time. For this reason, a different process

was used to create features from static data and dynamic data.

The static information, comprising age, age at onset, gender, clinical informa-

tion that lead to diagnosis, and even diagnosis date was automatically used to obtain

the features, once the information is invariable with time. Furthermore, some ad-

ditional static features retrieved from data were included, concretely the EDSS at

onset, the number of functional systems involved at onset and the amount of years

from diagnosis/onset/birth to diagnosis of progressive course. The features created

are presented in the Table 5.2

Table 5.2: Features created using static information.

Static Data
All time models

Used

CSF

Evoked Potentials

Contains CSF and Evoked Potentials

RR/SP/PP

Age

Gender

Deceased

Age of Onset

Supratentorial

Optic Pathways

Brainstem-Cerebellum

Spinal Cord

Progression from onset

From onset to diagnosis

Clinical Findings

MRI

From diagnosis to diagnosis progressive

From onset to diagnosis progressive

From birth to diagnosis progressive

Family History

Number of functional systems involved at onset

EDSS at onset

As opposite, the features created using dynamic data involved a more complex

process. The dynamic data was initially divided into visits data and relapses data.

It is important to note that the visits data were further segregated into routine
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data, corresponding to a routine appointments of a 3-6 months frequency and non-

routine data corresponding to non-scheduled visits. To each one of those, it were

applied time models that allowed to retrieve all the clinical information from one

point in time into another point in time. The data was segmented annually, and

was treated as time-series. To the data it were applied statistical operators such as

mean, median, mode, standard deviation and ratios. This methodology lead to the

creation of the features.

The time segmentation performed is presented in Figure 5.3
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Figure 5.3: Accumulative and non accumulative windows used for feature creation.

The temporal segmentation involved accumulative and non-accumulative win-

dows. First of all, it is important to note that the year of onset was admitted to
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correspond to the year of the first visit registered on both accumulative and non-

accumulative windows, once it is expected that the patient was already with MS

when he first went to the hospital. By admitting this fact, the first year corre-

sponds to the first year of symptoms and not to the first year after the disease was

diagnosed, which lead to a more accurate identification of the years in which the

symptoms occurred.

The non-accumulative windows represent the first five years, in which each

one of the years was considered independently of the others. By applying such

segmentation, it is possible to retrieve all dynamic features of a single year.

As opposite, accumulative windows constitute an aggregation of information

from several years, by considering a succession of at least 2 years. The start and

duration of accumulative windows was variable. It were considered onset starting

windows, that included data from onset until 2, 3, 4, 5 and windows starting in the

second, third and fourth year ranging from those years until 3, 4, 5 years, depending

on the case.

The importance of the application of such time segmentation, relies in the fact

that the information of routine visits of the 1st year after onset can be different from

the information of routine visits 2 years after onset if more visits had occurred in the

second year. With this rational it is possible to create several features using raw data,

and identify the amount of years that provide optimal predictions. Furthermore,

such segmentation allows to reduce significantly the amount of missing data and it

is also important to evaluate if the features with more predictive power vary between

different windows considered.

All features created can be identified using Tables 5.3 and 5.4. The first column

corresponds to the raw features, the following columns corresponds to the statistical

operators used, and the final columns (3 last columns for visits group and last column

for relapses), indicate the cases in which the features were used. It is important to

note that the same features were created for all time windows. For instance, for the

Score Pyramidal, considering three years of features, the application of the statistical

operator mean allow to retrieve the mean of all registered values of that feature

until the third year. The remaining statistical operators follow the same rationale.

Furthermore, the ratio events is defined as the proportion of occurrences of a feature,

which means that if the feature fatigue is considered, the ratio events represent the

number of times that fatigue occurred in a visit among all visits considered. The

ratio-non events are calculated by 1-ratio events.

The assignment of the name to each feature involved a methodological process:

<statistical operator><feature name><time model><Information group>. Ap-
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plying this rationale, an example of a feature created is mean gdataxia from2to5years

visits routine.

Table 5.3: Features created from the visits information group.

Visits Data
All time models

mean median mode std maximum ratio events ratio non-events Used in total data Used in routine data Used in non-routine data

Suspected Relapse

Score Pyramidal

Score Cerebellar

Cerebellar Weakness

Score BrainStem

Score Sensory

Score Bowel

Score Visual

Visual Symptom

Score Mental

Score Ambulation

gdAtaxia

dysaesthesiae

ataxiaLowerExtrem

paresthesiae

cognitionPb

gdParesis

gdSpasticity

mwUpperExtrem

micturitionPb

fatigue

mwLowerExtrem

moodPb

EDSS

No visits in the X year

X= 1, 2, 3, 4, 5 year-model

Table 5.4: Features created from relapses information group.

Relapses Data
All time models

mean median mode std maximum ratio events ratio non-events Used

Impact ADL Functions

Recovery

Severity

CNS Pyramidal Tract

CNS Brainstem

CNS Bowel Bladder

CNS Neuropsycho Functions

CNS Cerebellum

CNS Visual Functions

CNS Sensory Functions

EDSS

No relapses in the X year

X= 1, 2, 3, 4, 5 year-model

5.3 Machine learning pipeline

The ML pipeline used, was the same for both SP development and disease

severity predictions, consisting on an initial process of feature extraction, using
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static and dynamic information, and a choice of the amount of years of features to

integrate the dataset used.

As demonstrated in Figure 5.4 the obtained dataset was uniformly shuffled and

then partitioned into training and testing set using a k-Fold Cross-Validation, where

70% of the data was selected for training and 30% for testing. Once for the majority

of the labels considered, the dataset was highly imbalanced, 70 % of the samples

of the minority class were selected and an equal number of samples of the majority

class were extracted from the entire shuffled set, to constitute the training set, while

the remaining samples compose the test set. The partition of 70/30 was selected

once it constitutes a classic partition. Furthermore, several fields of both training

and testing set were missing, whereby an imputation of the missing values using the

mean of the values of the training set was performed and that mean was then used

to imputate the missing values of the test set.

The missing values imputation was proceeded by an standardization using a

z-score. The feature selection was the next step, where two filter methods (correla-

tion and AUC) were applied followed by a Least Absolute Shrinkage and Selection

Operator (LASSO) Regression. For both standardization and feature selection steps

it can be noted that the result of the training parameters were used to perform the

same operations in the testing set. This means that, for example, the mean and

standard deviation from the training data are used to standardize the testing data.

Several different classifiers (KNN-3, LDA, Linear Regression and SVM) were trained

and the obtained models were tested in unseen data (testing set)

Finally the performance of the model was evaluated using several metrics. It is

important to note that the entire process was repeated 100 times (10 different k-fold

CV, each one with k=10) which allowed to explore the entire data and guarantee that

the results did not change significantly once the dataset was significantly explored.

In this way, the mean of the results of all iterations that constitute the final results do

not changed significantly from execution to execution which lead to a good approach

to the associated stochasticity.

Regarding the implementation, was utilized MATLAB for all phases of this

master thesis. All the functions used for this work are built-in MATLAB, except for

the standardization [85] and missing data imputation [86]. Each step of the pipeline

is explained in the next subsections.
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Figure 5.4: Pipeline used for both RR/SP and benign/malignant predictions.

5.3.1 Partitioning and balancing methods

Considering the dataset composed by the features previously created respecting

the number of years of selected, it is necessary to partition the data. The partition

involves segregation of an amount of data to estimate the parameters for the ML

model (training data) and the remaining to evaluate how well the ML models work

(testing data).

A k-fold CV with k = 10 was used to shuffle randomly the patients and sepa-

rate them into k uniform groups, wherein each group contained the real proportion

of patients from both classes (RR/SP and benign/malignant). Once the dataset

used is imbalanced for both SP development and disease severity predictions, an

undersampling approach was performed in the uniformly shuffled data, in which 70

% of the patients of the minority class were selected for the training group together

with an equal number of samples of the majority class. The remaining samples,

including the 30% samples of the minority class and the remaining samples of the

majority class not used for the training set, were selected for the testing set. With
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this approach is guaranteed that an acceptable number of samples of the minority

class is used for training and that an equal number of samples of both classes is used

to train the model which solve the imbalanced situation.

Furthermore, once a k-fold CV was used to guide the split into training and

testing sets, it is ensured that in each iteration performed, the group of patients

allocated to training and testing is different. All the process was repeated 10 times,

resulting in 100 iterations (10 different k-fold CV, each one with k=10), which allow

to better explore all data and increase the confidence in the evaluation results.

Lastly, the performance was obtained by the average of the results from all the 100

iterations. It is important to mention that the cvpartition function from MATLAB

was used to perform the k-fold CV.

5.3.2 Imputation of missing values

In the dataset considered there were missing data in several fields, that were

imputated using the existing data. The process by which the data is imputated can

vary in the assumption made, diverging between assuming the mean of the existing

values, finding similar points, use the most frequent value, among others.

An aspect that is important to be mentioned is that the missing values are

assumed to be missing completely at random, because it seems to not exist any re-

lation between the missing values and the outcome or the values of the other features

[87]. When analyzing the fields that contain plenty of missing data, it appears not

to exist any relation between the missing data and the benign, malignant, RR or SP

samples, once the missing data occurs similarly in all those outcomes. In addition,

the visits to the hospital are usually scheduled from 3 to 3 or 6 to 6 months, and in

this database there are missing several of this visits in all patients. Consequently,

the gaps regarding the patient clinical absence are assumed to be caused by the

non-annotation of visits. Furthermore, it also appears to not exist any case of a

feature that is missing due to the information retrieved from the remaining features.

In the current methodology, the missing values were imputed using the mean of

the existing values. This is a simple approach, that is computationally fast. It was

performed an imputation in the training set, using exclusively the values of such set.

The values of the mean for each field obtained with the imputation on the training

set were then used to perform the imputation on the testing set.
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5.3.3 Feature selection

The dataset used contained an huge amount of features when compared to the

number of samples used. It is known that if all features were used for prediction, the

model could learn the noise of the data, using irrelevant and redundant data that

only contributed to an overfitting of the model to the training data. The feature

selection methods allow to select a subset of features that likely will lead to an

increase in the capability of generalization. The goal of selecting features is to keep

those that maximize performance, and removing those that are irrelevant and lead

to a decrease in the model generalization capacity [88].

The approach used consist in the application of two filter methods followed by

an embedded one. Initially the features were filtered based on a Pearson’s linear

correlation coefficient between each feature and the output. The correlation for all

features was retrieved and the 100 features containing the higher correlation were

selected. A correlation filter was admitted due to the fact that a higher correlation

tend to demonstrate a relationship between the attributes considered.

Furthermore, a second filter evaluating which of the 100 features perform better

in terms of ROC analysis was applied. The AUC was calculated for the 100 features,

and the 50 features with the higher value were selected. It was used corr and

perfcurve functions for calculating correlation coefficient and AUC, respectively.

Those 50 features resulting from AUC filter were then standardized using a z-score

to convert such data into a common range.

The two initial filters were applied in order to reduced substantially the number

of features that will be used in the embedded method. The embedded method

selected is the LASSO that is a computationally expensive method with a long

period to converge, and by decreasing the amount of features the time to compute

was also reduced.

The LASSO is a feature selection method that was used to select an optimal set

of features. This method performs both feature selection and regularization, which

allows to enhance both the prediction performance and the interpretability of the

model, while the redundancy is removed. The LASSO forces the sum of the absolute

values of the model parameters to be inferior to a fixed value, which is achieved using

a L1 regularization process, where some of the coefficients of the regression variables

(features) are penalized and shrinked to zero. The features whose coefficients are

non-zero after the shrinking process are then selected to be part of the model, while

the remaining features are eliminated [89]. This method does not select the best

features individually, but rather the best group of features. The cost function of
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this regression, for M samples and P features, is described in Eq. (5.1), where λ

controls the L1 penalty influence, w is the regression coefficients vector, y the data

to be fitted, ŷ the fitted regression values according to features x:

M∑
i=1

(yi − ŷi)2 =
M∑
i=1

(yi −
P∑

j=0

wj × xij)2 + λ

P∑
j=0

|wj| . (5.1)

The higher the value of λ, the greater the regularization action, which means

that more features are shrinked to zero and eliminated.

In this case, was calculated a LASSO regression for a geometric sequence of

100 values, in which only the highest one can lead to a model with 0 features.

The value of λ was selected by a classical rule of thumb [90], guaranteeing that

there should be at least 5 training samples for each feature. For example, if for

a given training dataset there exists approximately 30 samples (2*0.70*21 samples

minority class), a maximum number of 5 allowed features is obtained. This logic

was applied to all considered labels. It was decided to use the rule of thumb instead

of a CV procedure (that is a more standard approach) to get the value of lambda,

once the CV procedure leads to the selection of the highest value of lambda that

creates a model with 0 features. For the implementation of LASSO was used the

lasso function of MATLAB.

5.3.4 Classifiers

For the predictive model, several classifiers were tested to evaluate the results

using different alternatives and realize if the performance of the model is relatively

good regardless of the chosen classifier. Moreover, only simple classifiers were se-

lected once it was used a reduced number of samples, and more complex algorithms

such as neuronal networks could lead to overfitting.

The first classifier used was the KNN. It was used a value of k equal to 1,3

and 5. Only odd numbers were selected for k value once the algorithm predicts the

label based on the most common k nearest points, and with even numbers, there is

a possibility to exist equally common labels. Moreover, low values of k were selected

once the dataset is small and the low k values lead to increase sensitivity to the

points localizations. The best results were obtained for a k=3, although they were

not substantially different from the results obtained with the other values of k. For

training the classifier was used fitcknn function from MATLAB.

The LDA is a dimensionality reduction technique that is used for supervised

classification that project data to a maximum of C-1 dimensions, where C is the
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number of classes. This means that for binary problems, the features are projected

into 1 dimension (1 axis). Having as base the projected one dimensional data, a

linear classifier is defined, originating a Fisher LDA classifier. It was used fitcdiscr

function from MATLAB for training the classifier with pseudolinear selected as

discriminant type.

The linear regression is a classifier that establish a linear relation between the

input variables and the output values, in order to obtain a line that best fits the

points. In this case, if the predicted response values of the linear regression model

obtain a value higher than 0.5, the value is admitted to belong to the class 1 while

if the value is lower or equal to 0.5 the sample is classified as 0. For training the

classifier was used fitlm function from MATLAB.

The SVM was also used as classifier, in which linear function was used as kernel

function. It was used fitcsvm function from MATLAB.

5.3.5 Evaluation metrics

To evaluate the results obtained with the several classifiers considered, several

evaluation metrics were considered. Some of the used metrics are described below:

1. Sensitivity - This metric measures the true positive rate, which stands as the

proportion of the actual positives that are correctly identified as such. In this

specific case, the sensitivity reflects the proportion of the SP cases correctly

identified for the RR/SP label and malignant cases correctly identified for the

benign/malignant labels;

2. Specificity - This metric measures the true negative rate, which stands as the

proportion of the actual negatives that are correctly identified as such. In this

specific case, the specificity reflects the proportion of the RR cases correctly

identified for the RR/SP label and benign cases correctly identified for the

benign/malignant labels;

3. F1-Score - This metric presents the number of correctly identified SP cases,

among the total of cases classified as SP, for the RR/SP classification problem.

Regarding the severity classification problem, this metric presents the number

of correctly classified malignant cases, among the total of cases classified as

malignant.

Those metrics, along with AUC and G-mean, were selected once they reflect

more realistically the results obtained. Other common evaluation metrics such as

accuracy were not included since the dataset is highly imbalanced and a high value

of accuracy could represent a bad classification if the model is classifying all samples
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as the majority class.
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Results

This chapter is divided into sections representing each classification problem

(labeling) defined and a final section where all results of benign/malignant predic-

tion are compared. For each classification problem, the performance of the model

including the results obtained with four classifiers, and the features with most pre-

dictive power in each year are presented.

In terms of performance of the model, in each case, the best results achieved

for each year are in bold.

Regarding the identification of predictive features, several figures containing the

predictive power of the features in each year model are presented. The predictive

power corresponds to the number of times that a given feature was identified among

the 100 iterations. Only the features that were present in at least 10 iterations were

exhibited in the figures. It is important to note that only the name is presented,

and it does not contain the statistical operator used once it was verified that the

features were identified using several statistical operators in which there wasn’t a

clear predominance of one of them.

Moreover, the features were represented in graphs divided by time models, in

which each colour represent an accumulation of years. The features retrieved from

non-accumulative windows were counted as onset starting accumulative windows

once the percentage of features from non-accumulative windows was quite reduced

(for example, only 9 % of the features were from non-accumulative windows for

RR/SP classification problem and only 6 % were from non-accumulative windows

for classification problem 1). With this approach, the visualization of the graphs

obtained is simpler, once the year 3, for example, represent all features from non-

accumulative windows and accumulative windows starting on onset until that year.

It was also used coding procedure to every graph containing the predictive features

to facilitate the interpretation of the graphs

In the Figures 6.1 until 6.11 it is also represented in each feature a signal (+)

indicative of benign or RR case or (-) that indicates a malignant or SP case. Such
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information was retrieved by the correlation that each feature had with the outcome.

Lastly, it is important to note that for the case of severity classification prob-

lems, the definitions of benign considered were all using a value of EDSS scale as a

threshold, which enables a comparison between them.

6.1 RR / SP classification problem

Table 6.1: Results of the performance obtained for the classification problem
RR/SP.

Best results KNN 3 LDA SVM Linear Linear Regression

AUC: 0.70 ± 0.08 0.70 ± 0.08 0.69 ± 0.08 0.58 ± 0.10

G-Mean: 0.63 ± 0.06 0.65 ± 0.08 0.63 ± 0.09 0.64 ± 0.09

Specificity: 0.51 ± 0.09 0.65 ± 0.09 0.61 ± 0.13 0.65 ± 0.09

Sensitivity: 0.79 ± 0.13 0.66 ± 0.15 0.68 ± 0.18 0.64 ± 0.16

F1-Score: 0.11 ± 0.02 0.13 ± 0.04 0.12 ± 0.04 0.13 ± 0.04

1 year model

AUC: 0.74 ± 0.08 0.77 ± 0.08 0.76 ± 0.09 0.62 ± 0.14

G-Mean: 0.68 ± 0.07 0.67 ± 0.14 0.67 ± 0.14 0.66 ± 0.14

Specificity: 0.62 ± 0.10 0.75 ± 0.07 0.71 ± 0.10 0.75 ± 0.07

Sensitivity: 0.76 ± 0.14 0.63 ± 0.21 0.67 ± 0.21 0.62 ± 0.21

F1-Score: 0.14 ± 0.03 0.16 ± 0.04 0.16 ± 0.04 0.16 ± 0.05

2 year model

AUC: 0.74 ± 0.08 0.76 ± 0.07 0.76 ± 0.08 0.61 ± 0.12

G-Mean: 0.70 ± 0.06 0.66 ± 0.12 0.69 ± 0.08 0.66 ± 0.12

Specificity: 0.67 ± 0.07 0.75 ± 0.06 0.70 ± 0.08 0.75 ± 0.06

Sensitivity: 0.75 ± 0.13 0.61 ± 0.18 0.71 ± 0.17 0.60 ± 0.18

F1-Score: 0.15 ± 0.03 0.16 ± 0.04 0.16 ± 0.04 0.15 ± 0.04

3 year model

AUC: 0.73 ± 0.08 0.78 ± 0.06 0.76 ± 0.07 0.70 ± 0.08

G-Mean: 0.70 ± 0.10 0.66 ± 0.11 0.64 ± 0.11 0.66 ± 0.11

Specificity: 0.78 ± 0.07 0.81 ± 0.06 0.79 ± 0.07 0.81 ± 0.06

Sensitivity: 0.65 ± 0.16 0.56 ± 0.18 0.55 ± 0.18 0.56 ± 0.18

F1-Score: 0.19 ± 0.05 0.18 ± 0.06 0.16 ± 0.06 0.18 ± 0.06

4 year model

AUC: 0.84 ± 0.08 0.82 ± 0.10 0.81 ± 0.11 0.77 ± 0.13

G-Mean: 0.78 ± 0.11 0.72 ± 0.11 0.73 ± 0.12 0.72 ± 0.11

Specificity: 0.78 ± 0.06 0.80 ± 0.09 0.77 ± 0.11 0.80 ± 0.09

Sensitivity: 0.78 ± 0.18 0.65 ± 0.16 0.71 ± 0.18 0.65 ± 0.16

F1-Score: 0.23 ± 0.07 0.22 ± 0.08 0.21 ± 0.09 0.22 ± 0.09

5 year model
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Figure 6.1: Features with highest predictive power identified in classification prob-
lem RR/SP. The darker the shade of blue, the closer to the diagnosis is the year
when the feature was retrieved and the darker the shade of green the closer to the
diagnosis is the accumulation of the years (non-starting on onset) where the feature
was identified.
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As observed in Table 6.1 the best results to predict SP development were ob-

tained using an SVM linear as a classifier in the two initial years and using a KNN-3

in the remaining ones.

Figure 6.2: Performance in each N-year model for RR/SP classification problem.

As can be seen in the Figure 6.2, a clear evolution in the performance of the

model can be observed over time. It can also be noted that sensitivity outperformed

significantly the control performance (SP developed line), which indicates that in

each year model the model developed correctly identified more SP patients when

compared to the accumulative ratio of patients that developed SP in that year. The

5 year model, using a KNN-3, was selected as the best model, with a satisfactory

performance obtained: an AUC of 0.84 ± 0.08, a geometric mean of 0.78 ± 0.11,

a specificity of 0.78 ± 0.06, a sensitivity of 0.78 ± 0.18 and an F1-Score of 0.23 ±
0.07. Overall, the results obtained for F1-Score were low for every year considered

with every classifier.

The evolution of the features identified as predictive can be observed in Figure

6.1. It can be noted that the features identified are different in distinct years. In the

first-year model, the EDSS, Impact ADL Functions, CNS Brainstem, CNS Sensory

Functions, CNS Cerebellum, Score Sensory, Score Brainstem, CNS Neuropsycho

Functions and CNS Pyramidal tract were identified as predictive. Among those

features, only the EDSS and Score Brainstem remain predictive in all other years.
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It can be observed that the Score Cerebellar and Score Mental were not predictive

in the two initial years, but started to be predictive in the third and remain as

predictive features until the 5-year model. This may be due to the fact that they

are functional systems that take longer to show clinically evident symptoms.

6.2 Disease severity classification problem

The disease severity was predicted using several definitions of benign MS. Each

definition of benign was used as a different label, which constituted an different

classification problem. The results obtained, including the performance of the model

and the most predictive features, for each of the classification problems considered

are presented in the sections from 6.2.1 until 6.2.9. In the section 6.2.10 is presented

a comparison of the results obtained, in each year-model, for all disease severity

classification problems.
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6.2.1 Classification problem 1 - EDSS 0-2 in the 10th year

using baseline visits

Table 6.2: Results of the performance obtained for the classification problem 1.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.57 ± 0.10 0.62 ± 0.08 0.60 ± 0.09 0.58 ± 0.09

G-Mean 0.50 ± 0.09 0.56 ± 0.08 0.54 ± 0.10 0.56 ± 0.08

Specificity 0.51 ± 0.17 0.61 ± 0.14 0.60 ± 0.19 0.61 ± 0.14

Sensitivity 0.54 ± 0.14 0.52 ± 0.11 0.51 ± 0.12 0.52 ± 0.11

F1-Score 0.60 ± 0.10 0.61 ± 0.09 0.60 ± 0.10 0.61 ± 0.09

1 year model

AUC 0.62 ± 0.09 0.64 ± 0.08 0.61 ± 0.08 0.60 ± 0.09

G-Mean 0.59 ± 0.09 0.60 ± 0.07 0.57 ± 0.08 0.60 ± 0.07

Specificity 0.54 ± 0.15 0.68 ± 0.15 0.57 ± 0.16 0.68 ± 0.15

Sensitivity 0.66 ± 0.12 0.55 ± 0.12 0.59 ± 0.13 0.55 ± 0.12

F1-Score 0.71 ± 0.08 0.64 ± 0.08 0.66 ± 0.09 0.64 ± 0.08

2 year model

AUC 0.68 ± 0.06 0.71 ± 0.06 0.67 ± 0.06 0.63 ± 0.07

G-Mean 0.63 ± 0.06 0.64 ± 0.07 0.58 ± 0.08 0.64 ± 0.07

Specificity 0.66 ± 0.14 0.69 ± 0.14 0.55 ± 0.14 0.69 ± 0.14

Sensitivity 0.61 ± 0.10 0.60 ± 0.09 0.63 ± 0.09 0.60 ± 0.09

F1-Score 0.69 ± 0.07 0.69 ± 0.07 0.69 ± 0.06 0.69 ± 0.07

3 year model

AUC 0.76 ± 0.08 0.76 ± 0.08 0.74 ± 0.10 0.72 ± 0.10

G-Mean 0.70 ± 0.08 0.71 ± 0.08 0.66 ± 0.10 0.71 ± 0.08

Specificity 0.76 ± 0.14 0.79 ± 0.10 0.65 ± 0.14 0.79 ± 0.10

Sensitivity 0.66 ± 0.12 0.65 ± 0.15 0.68 ± 0.10 0.65 ± 0.15

F1-Score 0.74 ± 0.08 0.74 ± 0.11 0.74 ± 0.08 0.74 ± 0.11

4 year model

AUC 0.75 ± 0.09 0.77 ± 0.09 0.76 ± 0.08 0.67 ± 0.11

G-Mean 0.69 ± 0.08 0.62 ± 0.11 0.71 ± 0.09 0.62 ± 0.11

Specificity 0.88 ± 0.12 0.93 ± 0.10 0.86 ± 0.12 0.93 ± 0.10

Sensitivity 0.54 ± 0.09 0.42 ± 0.16 0.58 ± 0.09 0.42 ± 0.16

F1-Score 0.68 ± 0.08 0.57 ± 0.15 0.71 ± 0.08 0.57 ± 0.15

5 year model
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Figure 6.3: Features with highest predictive power of a benign/malignant course
identified in classification problem 1. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

It can be observed in the Table 6.2 that the best result for the prediction

of benign/malignant cases using the classification problem 1 was achieved using a

KNN-3 as a classifier and 4 years of features obtaining an AUC of 0.76 ± 0.08,

an geometric mean of 0.70 ± 0.08, a specificity of 0.76 ± 0.14, an sensitivity of

0.66 ± 0.12 and an F1-Score of 0.74 ± 0.08. Overall, it was observed an increase

in the performance of the model from the first to the second year and from the

third to fourth year. The opposite occurs from second to the third year and from

fourth to the fifth year in which a decrease in the value of sensitivity was noted.

It is worth mentioning that the best performing classifiers varied depending on the

year considered, although the performances of the classifiers were quite similar in

the majority of the cases. The KNN-3 was the best classifier for the second, third

and fourth year, the LDA was selected for the first year and the SVM linear was

identified as the best performing in the 5 year model.

Regarding the features identified as predictive, it can be noted in the Figure

6.3 that every feature was identified in the first year with exception to Score Bowel

and Severity that only appear in the second year. Furthermore, the evolution of

the features over the years is clear, being noted that from all features identified in

the first year only the EDSS and CNS Sensory Functions remain predictive in all

year models. The CNS cerebellum was identified in the three first models, the CNS

visual functions in the two first models and the CNS pyramidal Tract and CNS

Neuropsycho Functions only in the first year model.

In terms of predictive power, the EDSS, CNS Sensory Functions and CNS

Cerebellum (in the two first-year models) represent the cases with a higher value of

predictive power. It is also important to note that the features from the year of the

time model are the most predictive in such year model for the majority of the cases,

although the features from the initial year remain important until later years.
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6.2.2 Classification problem 2 - EDSS ≤ 3 in the 10th year

using baseline visits

Table 6.3: Results of the performance obtained for the classification problem 2.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.54 ± 0.13 0.64 ± 0.11 0.67 ± 0.09 0.64 ± 0.09

G-Mean 0.50 ± 0.16 0.58 ± 0.11 0.60 ± 0.11 0.58 ± 0.11

Specificity 0.57 ± 0.17 0.65 ± 0.11 0.65 ± 0.12 0.65 ± 0.11

Sensitivity 0.51 ± 0.23 0.55 ± 0.17 0.58 ± 0.17 0.55 ± 0.17

F1-Score 0.41 ± 0.11 0.46 ± 0.11 0.48 ± 0.11 0.46 ± 0.11

1 year model

AUC 0.60 ± 0.12 0.68 ± 0.10 0.69 ± 0.09 0.70 ± 0.10

G-Mean 0.57 ± 0.11 0.59 ± 0.11 0.62 ± 0.10 0.59 ± 0.11

Specificity 0.50 ± 0.13 0.70 ± 0.08 0.61 ± 0.09 0.70 ± 0.08

Sensitivity 0.67 ± 0.20 0.53 ± 0.18 0.66 ± 0.17 0.53 ± 0.18

F1-Score 0.47 ± 0.12 0.46 ± 0.13 0.51 ± 0.11 0.46 ± 0.13

2 year model

AUC 0.6 ± 0.14 0.70 ± 0.13 0.69 ± 0.11 0.67 ± 0.13

G-Mean 0.57 ± 0.13 0.61 ± 0.16 0.62 ± 0.12 0.61 ± 0.16

Specificity 0.59 ± 0.16 0.74 ± 0.11 0.66 ± 0.11 0.74 ± 0.11

Sensitivity 0.58 ± 0.18 0.52 ± 0.19 0.61 ± 0.18 0.52 ± 0.19

F1-Score 0.46 ± 0.14 0.50 ± 0.16 0.51 ± 0.12 0.50 ± 0.16

3 year model

AUC 0.65 ± 0.11 0.75 ± 0.10 0.74 ± 0.09 0.65 ± 0.12

G-Mean 0.61 ± 0.12 0.62 ± 0.13 0.66 ± 0.11 0.62 ± 0.13

Specificity 0.66 ± 0.12 0.82 ± 0.11 0.76 ± 0.13 0.82 ± 0.11

Sensitivity 0.59 ± 0.18 0.49 ± 0.18 0.59 ± 0.19 0.49 ± 0.18

F1-Score 0.49 ± 0.14 0.49 ± 0.18 0.55 ± 0.13 0.51 ± 0.16

4 year model

AUC 0.81 ± 0.09 0.86 ± 0.07 0.85 ± 0.08 0.70 ± 0.10

G-Mean 0.70 ± 0.11 0.64 ± 0.12 0.71 ± 0.12 0.64 ± 0.12

Specificity 0.84 ± 0.12 0.91 ± 0.10 0.90 ± 0.09 0.91 ± 0.10

Sensitivity 0.61 ± 0.17 0.46 ± 0.17 0.58 ± 0.18 0.46 ± 0.17

F1-Score 0.61 ± 0.13 0.54 ± 0.16 0.62 ± 0.15 0.54 ± 0.16

5 year model
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Figure 6.4: Features with highest predictive power of a benign/malignant course
identified in classification problem 2. The darker the shade of blue, the closer to
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The best classifier to predict the benign cases using the classification problem

2 is the SVM classifier for the four initial year models and the KNN-3 in the 5-

year model as observed in Table 6.3. The best results were obtained using 5 years of

features with an AUC of 0.81 ± 0.09, an geometric mean of 0.70 ± 0.11, a specificity

of 0.84 ± 0.12, a sensitivity of 0.61 ± 0.17 and an F1-Score of 0.61 ± 0.13. Overall,

there is an increase in the performance over time, although the rise is not gradual

from year to year, once from the first year model to the second year model and from

the fourth year model to the fifth year model the growth was more accentuated.

The features identified as predictive using the classification problem 2 are rep-

resented in the Figure 6.4. Overall, the number of features identified decreases over

time, in which 11 features were identified in the first year model and only 3 were

predictive in the 5 year model. Among all features, only the EDSS was predictive in

all year models, containing a high predictive power in all cases. The CNS Neuropsy-

cho functions was the unique feature predictive only on the 4 initial year models,

while both Score Mental and CNS Bowel Bladder were predictive in the 3 initial

year models.

The Score Pyramidal represent an interesting case once it was predictive in all

year models with exception to the first-year model. Moreover, the Score Cerebellar,

CNS Sensory Functions and Score Bowel appear to be predictive only in later years.
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6.2.3 Classification problem 3 - EDSS ≤ 3 in the 10th year

Table 6.4: Results of the performance obtained for the classification problem 3.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.59 ± 0.14 0.80 ± 0.13 0.81 ± 0.13 0.75 ± 0.12

G-Mean 0.53 ± 0.20 0.67 ± 0.19 0.68 ± 0.17 0.67 ± 0.19

Specificity 0.71 ± 0.15 0.85 ± 0.10 0.81 ± 0.11 0.85 ± 0.10

Sensitivity 0.46 ± 0.24 0.58 ± 0.26 0.62 ± 0.25 0.58 ± 0.26

F1-Score 0.43 ± 0.14 0.58 ± 0.18 0.58 ± 0.18 0.58 ± 0.18

1 year model

AUC 0.61 ± 0.13 0.83 ± 0.09 0.78 ± 0.11 0.73 ± 0.12

G-Mean 0.57 ± 0.20 0.64 ± 0.23 0.65 ± 0.19 0.64 ± 0.23

Specificity 0.77 ± 0.14 0.85 ± 0.10 0.80 ± 0.12 0.85 ± 0.10

Sensitivity 0.49 ± 0.23 0.55 ± 0.27 0.59 ± 0.25 0.55 ± 0.27

F1-Score 0.48 ± 0.15 0.57 ± 0.17 0.56 ± 0.15 0.57 ± 0.17

2 year model

AUC 0.74 ± 0.11 0.80 ± 0.11 0.76 ± 0.12 0.72 ± 0.12

G-Mean 0.64 ± 0.20 0.64 ± 0.16 0.64 ± 0.16 0.64 ± 0.16

Specificity 0.78 ± 0.12 0.87 ± 0.10 0.80 ± 0.11 0.87 ± 0.10

Sensitivity 0.58 ± 0.27 0.50 ± 0.20 0.54 ± 0.21 0.50 ± 0.20

F1-Score 0.54 ± 0.16 0.54 ± 0.16 0.52 ± 0.15 0.54 ± 0.15

3 year model

AUC 0.81 ± 0.12 0.83 ± 0.15 0.83 ± 0.13 0.79 ± 0.15

G-Mean 0.70 ± 0.19 0.72 ± 0.20 0.70 ± 0.19 0.72 ± 0.20

Specificity 0.78 ± 0.11 0.85 ± 0.10 0.82 ± 0.11 0.85 ± 0.10

Sensitivity 0.68 ± 0.27 0.65 ± 0.26 0.65 ± 0.28 0.65 ± 0.26

F1-Score 0.60 ± 0.17 0.64 ± 0.17 0.61 ± 0.18 0.64 ± 0.17

4 year model

AUC 0.81 ± 0.12 0.88 ± 0.12 0.89 ± 0.10 0.84 ± 0.12

G-Mean 0.72 ± 0.18 0.77 ± 0.18 0.78 ± 0.18 0.77 ± 0.18

Specificity 0.81 ± 0.10 0.90 ± 0.10 0.88 ± 0.10 0.90 ± 0.10

Sensitivity 0.69 ± 0.25 0.70 ± 0.25 0.73 ± 0.25 0.70 ± 0.25

F1-Score 0.63 ± 0.16 0.71 ± 0.17 0.71 ± 0.17 0.71 ± 0.17

5 year model
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Figure 6.5: Features with highest predictive power of a benign/malignant course
identified in classification problem 3. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
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6. Results

The results obtained using the classification problem 3, presented in the Table

6.4, demonstrate a clear increase in the performance of the model in the two final

year models, although the three initial year models present a similar performance.

Thus, the best result was obtained using 5 years of features with an SVM linear as

the classifier, where was obtained an AUC of 0.89 ± 0.10, a geometric mean of 0.78

± 0.18, an specificity of 0.88 ± 0.10, an sensitivity of 0.73 ± 0.25 and an F1-Score

of 0.71 ± 0.17. It is worth mentioning that the SVM linear was the best performing

classifier in the first, second and fifth year models, while the KNN-3 was better for

the third and fourth-year models.

In Figure 6.5 it can be noted an evolution of the features over the years. Re-

garding the features identified in the first year, the Severity and Recovery were the

less predictive features once they present the lower predictive power and were the

unique features that weren’t identified in any other year. Among the remaining

features predictive in the first year, the EDSS and CNS Sensory Functions were

predictive in all models, the CNS Brainstem and Score Bowel were predictive in the

four initial models and the Score Mental and CNS Pyramidal Tract were predictive

in the three initial year models. Furthermore, the CNS Cerebellum was predictive

in the two initial models and the CNS Neuropsycho Functions was predictive in the

first, third and fourth-year model.

Lastly, it is possible to observe that both the Score Cerebellar and the Score

Pyramidal appeared for the first time in the second year model and were also pre-

dictive in the four year model. The most recent features appear to be the most

predictive in this case, which means that in the second year model the features from

the second year are the most predictive and in the third year model the features

from the third year are the most predictive.
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6.2.4 Classification problem 4 - EDSS ≤ 3 during the initial

10th years

Table 6.5: Results of the performance obtained for the classification problem 4.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.76 ± 0.08 0.82 ± 0.07 0.82 ± 0.06 0.83 ± 0.07

G-Mean 0.67 ± 0.07 0.70 ± 0.07 0.70 ± 0.07 0.69 ± 0.07

Specificity 0.90 ± 0.14 0.88 ± 0.14 0.84 ± 0.13 0.88 ± 0.14

Sensitivity 0.51 ± 0.09 0.56 ± 0.10 0.60 ± 0.10 0.55 ± 0.10

F1-Score 0.66 ± 0.08 0.70 ± 0.08 0.73 ± 0.07 0.70 ± 0.08

1 year model

AUC 0.72 ± 0.10 0.81 ± 0.07 0.80 ± 0.08 0.81 ± 0.08

G-Mean 0.64 ± 0.07 0.70 ± 0.07 0.70 ± 0.08 0.69 ± 0.07

Specificity 0.85 ± 0.15 0.87 ± 0.15 0.83 ± 0.15 0.87 ± 0.15

Sensitivity 0.49 ± 0.09 0.58 ± 0.09 0.61 ± 0.11 0.57 ± 0.09

F1-Score 0.64 ± 0.08 0.72 ± 0.07 0.74 ± 0.09 0.71 ± 0.07

2 year model

AUC 0.73 ± 0.10 0.78 ± 0.10 0.78 ± 0.09 0.78 ± 0.09

G-Mean 0.68 ± 0.10 0.68 ± 0.09 0.69 ± 0.09 0.67 ± 0.09

Specificity 0.87 ± 0.17 0.92 ± 0.13 0.89 ± 0.15 0.92 ± 0.13

Sensitivity 0.55 ± 0.09 0.51 ± 0.10 0.55 ± 0.10 0.49 ± 0.10

F1-Score 0.69 ± 0.08 0.66 ± 0.09 0.70 ± 0.09 0.65 ± 0.09

3 year model

AUC 0.78 ± 0.08 0.80 ± 0.07 0.81 ± 0.06 0.79 ± 0.10

G-Mean 0.70 ± 0.08 0.68 ± 0.08 0.72 ± 0.08 0.67 ± 0.08

Specificity 0.92 ± 0.10 0.93 ± 0.11 0.91 ± 0.12 0.93 ± 0.11

Sensitivity 0.54 ± 0.09 0.51 ± 0.10 0.57 ± 0.10 0.49 ± 0.10

F1-Score 0.69 ± 0.08 0.66 ± 0.09 0.72 ± 0.08 0.65 ± 0.09

4 year model

AUC 0.82 ± 0.07 0.83 ± 0.05 0.84 ± 0.06 0.82 ± 0.07

G-Mean 0.72 ± 0.07 0.69 ± 0.05 0.72 ± 0.07 0.68 ± 0.05

Specificity 0.96 ± 0.09 0.98 ± 0.05 0.95 ± 0.08 0.98 ± 0.05

Sensitivity 0.54 ± 0.09 0.49 ± 0.07 0.55 ± 0.10 0.47 ± 0.07

F1-Score 0.70 ± 0.08 0.65 ± 0.06 0.70 ± 0.09 0.63 ± 0.06

5 year model
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Figure 6.6: Features with highest predictive power of a benign/malignant course
identified in classification problem 4. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.

74



6. Results

For the classification problem 4, it can be seen in the Table 6.5 that the best

classifier is the SVM linear for all year models. In this case, the results were worsen-

ing over the years, with the best performances occurring with 1 and 2-year models.

Once the two initial models perform similarly, the 1-year model was selected as the

most appropriate model, once it is possible to predict the outcome sooner. With

features from the first year, it was obtained an AUC of 0.82 ± 0.06, a geometric

mean of 0.70 ± 0.07, a specificity of 0.84 ± 0.13, a sensitivity of 0.60 ± 0.10 and an

F1-Score of 0.73 ± 0.07.

The Figure 6.6 presents the features identified as predictive of a benign/malignant

course using classification problem 4. It should be noted that the EDSS was not

used as a feature in this classification problem, once the objective is to verify if

there was any value of EDSS higher than 3 since the beginning of the disease and

for such reason if the EDSS was used, the label was considered as a feature. The

CNS Brainstem, the Score Pyramidal, the CNS Pyramidal tract and the Score Cere-

bellar were predictive in all year models while the CNS Cerebellum were identified

in the four initial year models. Among the other features, the Score Bowel were

identified as predictive since the second year model, and the Score Brainstem was

predictive from second until fourth year model. Moreover, the CNS Neuropsycho

Functions was predictive since the third year, the CNS Sensory functions from the

fourth year model and the Severity only in the fifth year model.

Overall, the year 3 appear to be important once features from such year are

predictive in both third, fourth and fifth-year models.
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6.2.5 Classification problem 5 - EDSS ≤ 2 after 5 years and

≤ 3 after 10 years

Table 6.6: Results of the performance obtained for the classification problem 5.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.69 ± 0.10 0.74 ± 0.08 0.73 ± 0.08 0.69 ± 0.11

G-Mean 0.62 ± 0.12 0.65 ± 0.09 0.64 ± 0.10 0.65 ± 0.09

Specificity 0.78 ± 0.16 0.78 ± 0.17 0.78 ± 0.17 0.78 ± 0.17

Sensitivity 0.52 ± 0.15 0.56 ± 0.12 0.56 ± 0.15 0.56 ± 0.12

F1-Score 0.62 ± 0.12 0.66 ± 0.10 0.65 ± 0.11 0.66 ± 0.10

1 year model

AUC 0.71 ± 0.07 0.75 ± 0.05 0.72 ± 0.07 0.71 ± 0.09

G-Mean 0.66 ± 0.07 0.70 ± 0.07 0.66 ± 0.08 0.70 ± 0.07

Specificity 0.79 ± 0.14 0.76 ± 0.13 0.67 ± 0.15 0.76 ± 0.13

Sensitivity 0.57 ± 0.11 0.65 ± 0.11 0.67 ± 0.10 0.65 ± 0.11

F1-Score 0.66 ± 0.08 0.72 ± 0.07 0.71 ± 0.07 0.72 ± 0.07

2 year model

AUC 0.79 ± 0.08 0.82 ± 0.05 0.80 ± 0.05 0.76 ± 0.07

G-Mean 0.71 ± 0.08 0.75 ± 0.07 0.71 ± 0.08 0.75 ± 0.07

Specificity 0.83 ± 0.14 0.76 ± 0.12 0.69 ± 0.13 0.76 ± 0.12

Sensitivity 0.63 ± 0.10 0.75 ± 0.10 0.76 ± 0.10 0.75 ± 0.10

F1-Score 0.72 ± 0.08 0.79 ± 0.06 0.77 ± 0.07 0.79 ± 0.06

3 year model

AUC 0.82 ± 0.07 0.84 ± 0.06 0.84 ± 0.05 0.84 ± 0.07

G-Mean 0.77 ± 0.08 0.77 ± 0.07 0.77 ± 0.06 0.77 ± 0.07

Specificity 0.89 ± 0.11 0.81 ± 0.08 0.79 ± 0.09 0.81 ± 0.08

Sensitivity 0.67 ± 0.09 0.74 ± 0.11 0.75 ± 0.09 0.74 ± 0.11

F1-Score 0.77 ± 0.08 0.79 ± 0.08 0.79 ± 0.06 0.79 ± 0.08

4 year model
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Figure 6.7: Features with highest predictive power of a benign/malignant course
identified in classification problem 5. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

Considering the classification problem 5, the performance of the model increased

over time as can be seen in Table 6.6. The LDA was the most appropriate classifier

for both first, second and third year models, while the SVM Linear was the best

for the fourth year model. The best results were obtained using 4 years of features,

where was achieved an AUC of 0.84 ± 0.05, a geometric mean of 0.77 ± 0.06, a

specificity of 0.79 ± 0.09, a sensitivity of 0.75 ± 0.19 and an F1-Score of 0.79 ±
0.06.

In terms of predictive features, only the Score Bowel and the Score Cerebellar

were not identified in the 1-year model. The Score Bowel was an important predic-

tor on the second year model and the Score Cerebellar was identified in the third

and fourth year model although it contained a low predictive power in both year

models. Among the remaining features, the EDSS, CNS BrainStem, CNS Sensory

Functions and CNS Neuropsycho Functions were identified in all year models. From

those features, CNS Neuropsycho Functions presented a lower predictive power when

compared to the others. Furthermore, the CNS Bowel Bladder was identified in the

three initial year models while both CNS Cerebellum and Score Pyramidal were

identified only in the two initial year models.
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6. Results

6.2.6 Classification problem 6 - EDSS ≤ 4 in the 10th year

using baseline visits

Table 6.7: Results of the performance obtained for the classification problem 6.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.64 ± 0.11 0.69 ± 0.12 0.68 ± 0.12 0.67 ± 0.12

G-Mean 0.38 ± 0.29 0.46 ± 0.26 0.47 ± 0.24 0.46 ± 0.26

Specificity 0.82 ± 0.10 0.84 ± 0.05 0.85 ± 0.06 0.84 ± 0.05

Sensitivity 0.31 ± 0.28 0.34 ± 0.23 0.34 ± 0.22 0.34 ± 0.23

F1-Score 0.31 ± 0.08 0.32 ± 0.10 0.31 ± 0.10 0.32 ± 0.10

1 year model

AUC 0.63 ± 0.11 0.68 ± 0.11 0.68 ± 0.11 0.66 ± 0.11

G-Mean 0.40 ± 0.29 0.44 ± 0.29 0.51 ± 0.20 0.44 ± 0.28

Specificity 0.79 ± 0.11 0.82 ± 0.05 0.84 ± 0.07 0.82 ± 0.05

Sensitivity 0.33 ± 0.29 0.34 ± 0.26 0.37 ± 0.21 0.35 ± 0.26

F1-Score 0.30 ± 0.08 0.32 ± 0.09 0.30 ± 0.10 0.32 ± 0.09

2 year model

AUC 0.60 ± 0.12 0.65 ± 0.12 0.64 ± 0.12 0.65 ± 0.13

G-Mean 0.40 ± 0.26 0.41 ± 0.28 0.47 ± 0.23 0.41 ± 0.28

Specificity 0.80 ± 0.10 0.82 ± 0.07 0.81 ± 0.09 0.82 ± 0.08

Sensitivity 0.29 ± 0.22 0.29 ± 0.23 0.33 ± 0.20 0.30 ± 0.23

F1-Score 0.29 ± 0.11 0.31 ± 0.12 0.30 ± 0.14 0.31 ± 0.12

3 year model

AUC 0.60 ± 0.12 0.62 ± 0.10 0.61 ± 0.11 0.61 ± 0.10

G-Mean 0.41 ± 0.26 0.41 ± 0.26 0.41 ± 0.26 0.41 ± 0.27

Specificity 0.82 ± 0.10 0.82 ± 0.07 0.81 ± 0.07 0.81 ± 0.07

Sensitivity 0.30 ± 0.23 0.29 ± 0.22 0.30 ± 0.22 0.30 ± 0.22

F1-Score 0.29 ± 0.10 0.30 ± 0.10 0.29 ± 0.11 0.29 ± 0.10

4 year model

AUC 0.80 ± 0.08 0.82 ± 0.06 0.83 ± 0.05 0.89 ± 0.07

G-Mean 0.79 ± 0.08 0.80 ± 0.08 0.79 ± 0.08 0.80 ± 0.08

Specificity 0.93 ± 0.04 0.93 ± 0.03 0.93 ± 0.04 0.93 ± 0.03

Sensitivity 0.69 ± 0.14 0.69 ± 0.14 0.69 ± 0.14 0.69 ± 0.14

F1-Score 0.61 ± 0.09 0.63 ± 0.09 0.62 ± 0.10 0.63 ± 0.09

5 year model
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Figure 6.8: Features with highest predictive power of a benign/malignant course
identified in classification problem 6. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

The results of the performance obtained for the classification problem 6, sum-

marized in the Table 6.7, demonstrate that the SVM linear was the best classifier for

the three initial year models, the KNN-3 was the appropriate classifier in the fourth

year model and the Linear Regression was the best option on the fifth year model.

Overall, the performance of the model is poor in the four initial years, presenting

low values of sensitivity and F1-Score. In the fifth year model, a different scenario

occurs, once the performance is acceptable. The best results were achieved using

a Linear Regression on the fifth year with an AUC of 0.89 ± 0.07, an geometric

mean of 0.80 ± 0.08, a specificity of 0.93 ± 0.03, a sensitivity of 0.69 ± 0.14 and an

F1-Score of 0.63 ± 0.09 obtained.

The Figure 6.8 represent the evolution of the predictive features for classification

problem 6. Overall, it is possible to note that only 6 features were identified as

predictive. The EDSS and CNS Pyramidal Tract were identified in every year model.

The CNS Visual Functions was identified in the first two year models and the Score

Bowel only in the second year model. Finally, both the Impact ADL Functions and

Score Pyramidal were identified in the third and fourth-year models. It is important

to note that in terms of predictive power, the EDSS and the CNS Pyramidal Tract

appear to be the features with the higher values for the majority of the year models.

Furthermore, the most recent features are also the most predictive in this case.
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6.2.7 Classification problem 7 - EDSS ≤ 3 in the 6th year

Table 6.8: Results of the performance obtained for the classification problem 7.

Best results Classifier KNN-3 LDA SVM Linear Linear Regression

AUC: 0.73 ± 0.05 0.78 ± 0.05 0.79 ± 0.05 0.75 ± 0.05

G-Mean: 0.66 ± 0.06 0.73 ± 0.06 0.72 ± 0.05 0.73 ± 0.06

Specificity: 0.61 ± 0.06 0.74 ± 0.05 0.68 ± 0.08 0.74 ± 0.05

Sensitivity: 0.73 ± 0.11 0.73 ± 0.11 0.76 ± 0.12 0.73 ± 0.11

F1-Score: 0.32 ± 0.05 0.41 ± 0.06 0.38 ± 0.06 0.41 ± 0.06

1 year model

AUC: 0.79 ± 0.05 0.87 ± 0.03 0.88 ± 0.04 0.86 ± 0.04

G-Mean: 0.73 ± 0.05 0.81 ± 0.05 0.80 ± 0.05 0.81 ± 0.05

Specificity: 0.65 ± 0.07 0.85 ± 0.03 0.82 ± 0.05 0.85 ± 0.03

Sensitivity: 0.82 ± 0.09 0.77 ± 0.10 0.79 ± 0.11 0.77 ± 0.10

F1-Score: 0.38 ± 0.05 0.54 ± 0.06 0.51 ± 0.06 0.54 ± 0.06

2 year model

AUC: 0.84 ± 0.06 0.90 ± 0.04 0.91 ± 0.04 0.89 ± 0.04

G-Mean: 0.79 ± 0.06 0.83 ± 0.06 0.83 ± 0.05 0.83 ± 0.06

Specificity: 0.75 ± 0.05 0.85 ± 0.03 0.80 ± 0.04 0.85 ± 0.03

Sensitivity: 0.83 ± 0.11 0.81 ± 0.11 0.86 ± 0.11 0.81 ± 0.11

F1-Score: 0.46 ± 0.07 0.56 ± 0.06 0.52 ± 0.06 0.56 ± 0.06

3 year model

AUC: 0.87 ± 0.05 0.90 ± 0.05 0.90 ± 0.04 0.90 ± 0.04

G-Mean: 0.82 ± 0.06 0.81 ± 0.07 0.82 ± 0.05 0.81 ± 0.07

Specificity: 0.84 ± 0.04 0.88 ± 0.04 0.83 ± 0.05 0.88 ± 0.04

Sensitivity: 0.80 ± 0.12 0.75 ± 0.12 0.82 ± 0.10 0.75 ± 0.12

F1-Score: 0.54 ± 0.07 0.58 ± 0.09 0.54 ± 0.06 0.58 ± 0.09

4 year model

AUC: 0.91 ± 0.04 0.87 ± 0.05 0.93 ± 0.02 0.89 ± 0.04

G-Mean: 0.82 ± 0.06 0.76 ± 0.07 0.81 ± 0.06 0.76 ± 0.07

Specificity: 0.90 ± 0.04 0.89 ± 0.03 0.89 ± 0.03 0.89 ± 0.03

Sensitivity: 0.76 ± 0.13 0.66 ± 0.11 0.73 ± 0.11 0.66 ± 0.11

F1-Score: 0.61 ± 0.07 0.54 ± 0.08 0.59 ± 0.07 0.54 ± 0.08

5 year model
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Figure 6.9: Features with highest predictive power of a benign/malignant course
identified in classification problem 7. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

The results obtained for the classification problem 7 are presented in Table 6.8.

It can be seen that a good performance was obtained in all year models. Overall, the

third-year model can be selected as the best performing year, once it was obtained

the highest values of G-mean, AUC and Sensitivity among all year models and the

other metrics hadn’t a great difference when compared to other year models. To

visualize such result, it can be noted that using an SVM linear and three years of

features, an AUC of 0.91 ± 0.04, a geometric mean of 0.83 ± 0.05, a specificity of

0.80 ± 0.04, a sensitivity of 0.86 ± 0.11 and an F1-Score of 0.52 ± 0.06 was obtained.

Furthermore, it is important to highlight that the LDA was the best classifier for

the first-year model, the KNN-3 was the best for the fifth year model and the SVM

linear was selected in the remaining year models.

In Figure 6.9 it can be noted that both Score Pyramidal and EDSS are predictive

in all year models. Among the other features identified as predictive in the first year,

only the Score Cerebellar and the Score Brainstem are also predictive in other year

models. It is also interesting to visualize other cases such as the number of relapses,

the CNS Bowel Bladder and the Score Bowel that only started to be predictive in the

second year model. Lastly, it can be noted that the CNS Neuropsycho Functions

and the Score cerebellar were exclusively predictive in the third and fourth-year

model, respectively.
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6. Results

6.2.8 Classification problem 8 - Increase EDSS < 1.5 after

5 years

Table 6.9: Results of the performance obtained for the classification problem 8.

Classifier KNN-3 LDA SVM Linear Linear Regression

AUC 0.53 ± 0.08 0.61 ± 0.09 0.58 ± 0.10 0.55 ± 0.09

G-Mean 0.49 ± 0.08 0.56 ± 0.07 0.53 ± 0.07 0.56 ± 0.07

Specificity 0.36 ± 0.09 0.41 ± 0.09 0.38 ± 0.09 0.42 ± 0.09

Sensitivity 0.70 ± 0.17 0.78 ± 0.14 0.77 ± 0.14 0.77 ± 0.14

F1-Score 0.10 ± 0.02 0.12 ± 0.02 0.12 ± 0.02 0.12 ± 0.02

1 year model

AUC 0.61 ± 0.09 0.69 ± 0.08 0.68 ± 0.08 0.62 ± 0.12

G-Mean 0.58 ± 0.10 0.64 ± 0.08 0.63 ± 0.09 0.64 ± 0.08

Specificity 0.49 ± 0.10 0.56 ± 0.09 0.55 ± 0.10 0.56 ± 0.09

Sensitivity 0.71 ± 0.20 0.76 ± 0.15 0.75 ± 0.18 0.74 ± 0.15

F1-Score 0.13 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03

2 year model

AUC 0.60 ± 0.08 0.67 ± 0.08 0.66 ± 0.07 0.58 ± 0.10

G-Mean 0.57 ± 0.08 0.63 ± 0.09 0.61 ± 0.08 0.62 ± 0.09

Specificity 0.50 ± 0.13 0.57 ± 0.11 0.55 ± 0.12 0.57 ± 0.11

Sensitivity 0.69 ± 0.17 0.72 ± 0.18 0.72 ± 0.17 0.70 ± 0.18

F1-Score 0.13 ± 0.03 0.15 ± 0.04 0.14 ± 0.03 0.15 ± 0.04

3 year model

AUC 0.61 ± 0.08 0.69 ± 0.06 0.65 ± 0.06 0.60 ± 0.09

G-Mean 0.57 ± 0.07 0.62 ± 0.07 0.58 ± 0.08 0.62 ± 0.07

Specificity 0.53 ± 0.10 0.62 ± 0.08 0.62 ± 0.09 0.62 ± 0.08

Sensitivity 0.64 ± 0.15 0.64 ± 0.12 0.56 ± 0.16 0.63 ± 0.12

F1-Score 0.12 ± 0.03 0.15 ± 0.03 0.13 ± 0.03 0.15 ± 0.03

4 year model
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Figure 6.10: Features with highest predictive power of a benign/malignant course
identified in classification problem 8. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

The results obtained for the classification problem 8 are presented in Table 6.9.

It can be noted that the LDA was the best performing classifier for all year models.

Although the model presents an acceptable value of sensitivity, it was obtained a

low value of F1-Score in every year model. The best performing year was the fourth,

with an AUC of 0.69 ± 0.06, a geometric mean of 0.62 ± 0.07, a specificity of 0.62

± 0.08, a sensitivity of 0.64 ± 0.12 and an F1-Score of 0.15 ± 0.03.

As can be seen in Figure 6.10, it was identified several distinct features. The

most predictive features in the first year are the CNS Visual Functions, the Impact

ADL Functions and the Severity. On the second year model, the CNS Visual Func-

tions remain as one of the most predictive features alongside with Score Bowel. On

the remaining year models, those two features present also a high value of predictive

power together with EDSS. From the remaining features, it was identified 4 features

(Score Sensory, Score Pyramidal, Score Ambulation and Score Brainstem) that were

only predictive on the fourth year model.
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6.2.9 Classification problem 9 - Progression index < 0,2 af-

ter a duration of 5 years

Table 6.10: Results of the performance obtained for the classification problem 9.

Best results Classifier KNN-3 LDA SVM Linear Linear Regression

AUC: 0.58 ± 0.09 0.68 ± 0.10 0.66 ± 0.09 0.65 ± 0.09

G-Mean: 0.50 ± 0.08 0.60 ± 0.10 0.57 ± 0.09 0.61 ± 0.10

Specificity: 0.35 ± 0.11 0.55 ± 0.13 0.51 ± 0.15 0.56 ± 0.12

Sensitivity: 0.76 ± 0.14 0.70 ± 0.19 0.70 ± 0.19 0.69 ± 0.19

F1-Score: 0.19 ± 0.04 0.24 ± 0.06 0.22 ± 0.05 0.24 ± 0.06

1 year model

AUC: 0.61 ± 0.08 0.70 ± 0.07 0.68 ± 0.07 0.65 ± 0.07

G-Mean: 0.55 ± 0.07 0.63 ± 0.07 0.59 ± 0.08 0.63 ± 0.07

Specificity: 0.43 ± 0.12 0.58 ± 0.10 0.53 ± 0.15 0.58 ± 0.10

Sensitivity: 0.74 ± 0.16 0.70 ± 0.15 0.70 ± 0.16 0.69 ± 0.15

F1-Score: 0.21 ± 0.04 0.25 ± 0.05 0.24 ± 0.05 0.25 ± 0.05

2 year model

AUC: 0.69 ± 0.07 0.73 ± 0.08 0.71 ± 0.08 0.69 ± 0.07

G-Mean: 0.66 ± 0.07 0.64 ± 0.09 0.64 ± 0.09 0.64 ± 0.08

Specificity: 0.65 ± 0.07 0.72 ± 0.07 0.68 ± 0.08 0.72 ± 0.07

Sensitivity: 0.69 ± 0.13 0.58 ± 0.15 0.62 ± 0.17 0.57 ± 0.15

F1-Score: 0.28 ± 0.05 0.28 ± 0.07 0.27 ± 0.07 0.28 ± 0.07

3 year model

AUC: 0.68 ± 0.08 0.70 ± 0.07 0.71 ± 0.08 0.67 ± 0.08

G-Mean: 0.67 ± 0.08 0.58 ± 0.10 0.64 ± 0.08 0.58 ± 0.10

Specificity: 0.72 ± 0.07 0.76 ± 0.07 0.67 ± 0.07 0.77 ± 0.07

Sensitivity: 0.63 ± 0.14 0.46 ± 0.15 0.62 ± 0.14 0.46 ± 0.15

F1-Score: 0.30 ± 0.07 0.25 ± 0.07 0.27 ± 0.06 0.25 ± 0.07

4 year model
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Figure 6.11: Features with highest predictive power of a benign/malignant course
identified in classification problem 9. The darker the shade of blue, the closer to
the diagnosis is the year when the feature was retrieved and the darker the shade of
green the closer to the diagnosis is the accumulation of the years (non-starting on
onset) where the feature was identified.
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6. Results

The results obtained for the classification problem 9 are presented in Table

6.10. Overall, the LDA was the best classifier in the two initial year models while

the KNN-3 was the best performing in the two last year models. The F1-Score

metric exhibits low results for in all classifiers for all year models. The third-year

with KNN-3 as classifier it is the best performing case with an AUC of 0.69 ± 0.07,

a geometric mean of 0.66 ± 0.07, a specificity of 0.65 ± 0.07, a sensitivity of 0.69 ±
0.13 and an F1-Score of 0.28 ± 0.05.

In Figure 6.11 it is possible to visualize that half of the features were identified

as predictive in the first year model and the other half were only predictive over

the following years. From the features identified in the first year, only the CNS

Cerebellum, the Score Pyramidal and the Score ambulation were predictive in all

year models. Considering the features not predictive in the first year, the Score

Brainstem was the unique feature that only started to be predictive in the fourth

year model, once the other features were predominantly predictive in the second and

third year models.
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6. Results

6.2.10 Comparison of the results of benign/malignant clas-

sification problems

Table 6.11: Best results obtained in disease severity classification problems using
1 year of features.

Best results 1 year model

AUC G-Mean Specificity Sensitivity F1-Score

Classification problem 1

(EDSS ≤ 2 after 10th year

using baseline visits)

0.62 ± 0.08 0.56 ± 0.08 0.61 ± 0.14 0.52 ± 0.11 0.61 ± 0.09

Classification problem 2

(EDSS ≤ 3 after 10th year

using baseline visits)

0.67 ± 0.09 0.60 ± 0.11 0.65 ± 0.12 0.58 ± 0.17 0.48 ± 0.11

Classification problem 3

(EDSS ≤ 3 in the 10 year)

0.81 ± 0.13 0.68 ± 0.17 0.81 ± 0.11 0.62 ± 0.25 0.58 ± 0.18

Classification problem 4

(EDSS ≤ 3 during the ini-

tial 10 years)

0.82 ± 0.06 0.70 ± 0.07 0.84 ± 0.13 0.60 ± 0.10 0.73 ± 0.07

Classification problem 5

(EDSS ≤ 2 after 5 years and

≤ 3 after 10 years)

0.74 ± 0.08 0.65 ± 0.09 0.78 ± 0.17 0.56 ± 0.12 0.66 ± 0.10

Classification problem 6

(EDSS ≤ 4 after 10 years

using baseline visits)

0.68 ± 0.12 0.47 ± 0.24 0.85 ± 0.06 0.34 ± 0.22 0.31 ± 0.10

Classification problem 7

(EDSS ≤ 3 in the 6th year)

0.78 ± 0.05 0.73 ± 0.06 0.74 ± 0.05 0.73 ± 0.11 0.41 ± 0.06

Classification problem 8

(Increase EDSS < 1.5 after

5 years)

0.61 ± 0.09 0.56 ± 0.07 0.41 ± 0.09 0.78 ± 0.14 0.12 ± 0.02

Classification problem 9

(Progression index <0.2 af-

ter a duration of 5 years)

0.68 ± 0.10 0.60 ± 0.10 0.55 ± 0.13 0.70 ± 0.19 0.24 ± 0.06
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Figure 6.12: Features with highest predictive power of a benign/malignant course
identified in the first year.
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The best results for every classification problem using 1 year of features are

presented in Table 6.11. Overall, it is possible to note several differences between

the results obtained for different classification problems. Firstly, the classification

problems 6, 8 and 9 are the worst-performing labels and all have in common the

quite imbalanced dataset and the consideration of 10 years of follow-up. From the

remaining labels, the classification problem 3, 4 and 7 were identified as the best-

performing labels. All those classification problems use a value of EDSS of 3 as

a threshold, although the follow-up period is different (10 years for classification

problem 3 and 4, and 6 years for classification problem 7). Moreover, those 3

classification problems consider baseline and non-baseline information. Once the

classification problem 1 and classification problem 2 present slightly worse results

than the three best labels, can indicate that the presence of non-baseline information

on the first year contributes to better results. Lastly, classification problem 5 exhibits

good performance, similar to the best labels, although it was not chosen as one of

the best-performing labels once it contains a slightly worse sensitivity.

Regarding the predictive features, the Figure 6.12 presents an overview of all

features identified in each classification problem using only 1 year of features. The

top part of the figure, represented in orange, indicates the relative frequency of the

occurrence of the features among all labels in order to facilitate the visualization

of the most frequent features. The relative frequency was given by the number of

features where the feature was identified as predictive divided by the total number

of labels. It is important to note that in the case of the classification problem 4

the EDSS was not considered as a feature and for such reason, the total number of

labels considered was only 8 in that case.

Among the totality of the features identified as predictive in the first year, the

CNS Pyramidal Tract was the most commonly identified, being present in 8 out of

9 labels. Moreover, the CNS Cerebellum and CNS Brainstem were also important

predictors, once they were present in 7 out of 9 labels. The EDSS was identified only

in 6 out of 8 labels, although it presented a predictive power of 100 which indicates

that is an essential predictor for such labels.

The reason to identify the most common features among the classification prob-

lems is due to the fact that if one feature is identified regardless of the classification

problem considered, it is more probable that the feature can be assumed as a known

predictor of a benign case.
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Table 6.12: Best results obtained in disease severity classification problems using
2 years of features.

Best results 2 year model

AUC G-Mean Specificity Sensitivity F1-Score

Classification problem 1

(EDSS ≤ 2 after 10th year

using baseline visits)

0.62 ± 0.09 0.59 ± 0.09 0.54 ± 0.15 0.66 ± 0.12 0.71 ± 0.08

Classification problem 2

(EDSS ≤ 3 after 10th year

using baseline visits)

0.69 ± 0.09 0.62 ± 0.10 0.61 ± 0.09 0.66 ± 0.17 0.51 ± 0.11

Classification problem 3

(EDSS ≤ 3 in the 10 year)

0.78 ± 0.11 0.65 ± 0.19 0.80 ± 0.12 0.59 ± 0.25 0.56 ± 0.15

Classification problem 4

(EDSS ≤ 3 during the ini-

tial 10 years)

0.80 ± 0.08 0.70 ± 0.08 0.83 ± 0.15 0.61 ± 0.11 0.74 ± 0.09

Classification problem 5

(EDSS ≤ 2 after 5 years and

≤ 3 after 10 years)

0.75 ± 0.05 0.70± 0.07 0.76 ± 0.13 0.65 ± 0.11 0.72 ± 0.07

Classification problem 6

(EDSS ≤ 4 after 10 years

using baseline visits)

0.68 ± 0.11 0.51 ± 0.20 0.84 ± 0.07 0.37 ± 0.21 0.30 ± 0.10

Classification problem 7

(EDSS ≤ 3 in the 6th year)

0.88 ± 0.04 0.80 ± 0.05 0.82 ± 0.05 0.79 ± 0.11 0.51 ± 0.06

Classification problem 8

(Increase EDSS < 1.5 after

5 years)

0.69 ± 0.08 0.64 ± 0.08 0.56 ± 0.09 0.76 ± 0.15 0.15 ± 0.03

Classification problem 9

(Progression index <0.2 af-

ter a duration of 5 years)

0.70 ± 0.07 0.63 ± 0.07 0.58 ± 0.10 0.70 ± 0.15 0.25 ± 0.05
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Figure 6.13: Features with highest predictive power of a benign/malignant course
identified in the second year. The darker the shade of blue, the closer to the diagnosis
is the year when the feature was retrieved.

95



6. Results

The Table 6.12 summarizes the best results achieved in each classification prob-

lem using 2 years of features. Similarly to the previous case, the classification prob-

lems 6, 8 and 9 are the worst-performing labels. Although the classification problems

8 and 9 present a good result of sensitivity, they also present a quite low value of

F1-Score. Regarding the other classification problems, the best-performing labels,

in this case, are the label 4, 5 and 7. Those 3 labels have in common the fact that

they consider baseline and non-baseline information. It is important to note that

the classification problems 1 and 2 were also performing well, containing a value

of sensitivity higher than 2 of the best labels, although they present lower values

of AUC, G-Mean and Specificity. The classification problem 3 exhibited a lower

value of sensitivity when compared to the three best labels. Overall, it is possible

to identify a similar scenario when compared to the previous case where only 1 year

of features was used. In both cases, the best-performing labels used non-baseline

information and the worst performing labels correspond to imbalanced datasets.

Lastly, it is important to note that the performance of the model increased for

the majority of the labels by the addition of the second year of features.

Regarding the features most commonly identified as predictive, the EDSS was

the unique feature present in all possible classification problems. Moreover, the

Score Bowel was also an important predictor in 8 out of 9 classification problems

and the CNS Cerebellum, the CNS Brainstem and Score Pyramidal were the other

important predictors identified in 6 out of 9 classification problems.
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Table 6.13: Best results obtained in disease severity classification problems using
3 years of features.

Best results 3 year model

AUC G-Mean Specificity Sensitivity F1-Score

Classification problem 1

(EDSS ≤ 2 after 10th year

using baseline visits)

0.68 ± 0.06 0.63 ± 0.06 0.66 ± 0.14 0.61 ± 0.10 0.69 ± 0.07

Classification problem 2

(EDSS ≤ 3 after 10th year

using baseline visits)

0.69 ± 0.11 0.62 ± 0.12 0.66 ± 0.11 0.61 ± 0.18 0.51 ± 0.12

Classification problem 3

(EDSS ≤ 3 in the 10 year)

0.74 ± 0.11 0.64 ± 0.20 0.78 ± 0.12 0.58 ± 0.27 0.54 ± 0.16

Classification problem 4

(EDSS ≤ 3 during the ini-

tial 10 years)

0.78 ± 0.09 0.69 ± 0.09 0.89 ± 0.15 0.55 ± 0.10 0.70 ± 0.09

Classification problem 5

(EDSS ≤ 2 after 5 years and

≤ 3 after 10 years)

0.82 ± 0.05 0.75± 0.07 0.76 ± 0.12 0.75 ± 0.10 0.79 ± 0.06

Classification problem 6

(EDSS ≤ 4 after 10 years

using baseline visits)

0.64 ± 0.12 0.47 ± 0.23 0.81 ± 0.09 0.33 ± 0.20 0.30 ± 0.14

Classification problem 7

(EDSS ≤ 3 in the 6th year)

0.91 ± 0.04 0.83 ± 0.05 0.80 ± 0.04 0.86 ± 0.11 0.52 ± 0.06

Classification problem 8

(Increase EDSS < 1.5 after

5 years)

0.67 ± 0.08 0.63 ± 0.09 0.57 ± 0.11 0.72 ± 0.18 0.15 ± 0.04

Classification problem 9

(Progression index <0.2 af-

ter a duration of 5 years)

0.69 ± 0.08 0.67 ± 0.08 0.72 ± 0.07 0.63 ± 0.14 0.30 ± 0.07
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Figure 6.14: Features with highest predictive power of a benign/malignant course
identified in the third year. The darker the shade of blue, the closer to the diagnosis
is the year when the feature was retrieved and the darker the shade of green the
closer to the diagnosis is the accumulation of the years (non-starting on onset) where
the feature was identified.
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6. Results

Analysing the Table 6.13 the three best-performing labels using 3 years of fea-

tures are the classification problem 1, 5 and 7. There is still a significant difference

between the results obtained with the classification problems 5 and 7 and the clas-

sification problem 1, once the classification problem 1 has a lower performance than

the other two labels. This can be resultant from the fact that besides the threshold

at the tenth year, the classification problem 5 also considers a threshold in the fifth

year, and the classification problem 7 considers a threshold in the sixth year, which

occurs earlier than the classification problem 1. For this reason, with three years of

features, it appears that the labels predicting earlier scenarios perform better. Even

for the classification problem 9, the results were better, even though the F1-Score

value remained low. The classification problem 8 is the most imbalanced scenario,

with the lower number of malignant cases, which explains the poor performance

even for a prediction in the fifth year. The overall performance is also increasing for

the majority of the labels by the addition of the third year of features.

Regarding the predictive features, the EDSS was identified as predictive in all

classification problems. Moreover, the CNS Neuropsycho Functions was identified

in 7 out of 9 classification problems and the Score Bowel in 6 out of 9 classification

problems. The remaining features were only coincident in 5 or fewer classification

problems.
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Table 6.14: Best results obtained in disease severity classification problems using
4 years of features.

Best results 4 year model

AUC G-Mean Specificity Sensitivity F1-Score

Classification problem 1

(EDSS ≤ 2 after 10th year

using baseline visits)

0.76 ± 0.08 0.70 ± 0.08 0.76 ± 0.14 0.66 ± 0.12 0.74 ± 0.08

Classification problem 2

(EDSS ≤ 3 after 10th year

using baseline visits)

0.74 ± 0.09 0.66 ± 0.11 0.76 ± 0.13 0.59 ± 0.19 0.55 ± 0.13

Classification problem 3

(EDSS ≤ 3 in the 10 year)

0.81 ± 0.12 0.70 ± 0.19 0.78 ± 0.11 0.68 ± 0.27 0.60 ± 0.17

Classification problem 4

(EDSS ≤ 3 during the ini-

tial 10 years)

0.81 ± 0.06 0.72 ± 0.08 0.91 ± 0.12 0.57 ± 0.10 0.72 ± 0.08

Classification problem 5

(EDSS ≤ 2 after 5 years and

≤ 3 after 10 years)

0.84 ± 0.05 0.77 ± 0.06 0.79 ± 0.09 0.75 ± 0.09 0.79 ± 0.06

Classification problem 6

(EDSS ≤ 4 after 10 years

using baseline visits)

0.60 ± 0.12 0.41 ± 0.26 0.82 ± 0.10 0.30 ± 0.23 0.29 ± 0.10

Classification problem 7

(EDSS ≤ 3 in the 6th year)

0.90 ± 0.04 0.82 ± 0.05 0.83 ± 0.05 0.82 ± 0.10 0.54 ± 0.06

Classification problem 8

(Increase EDSS < 1.5 after

5 years)

0.69 ± 0.06 0.62 ± 0.07 0.62 ± 0.08 0.64 ± 0.12 0.15 ± 0.04

Classification problem 9

(Progression index <0.2 af-

ter a duration of 5 years)

0.69 ± 0.08 0.67 ± 0.08 0.72 ± 0.07 0.63 ± 0.14 0.30 ± 0.07
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Figure 6.15: Features with highest predictive power of a benign/malignant course
identified in the fourth year. The darker the shade of blue, the closer to the diagnosis
is the year when the feature was retrieved and the darker the shade of green the
closer to the diagnosis is the accumulation of the years (non-starting on onset) where
the feature was identified.
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6. Results

The three best-performing labels using 4 years of features are the classifica-

tion problems 3, 5 and 7 as demonstrated in the Table 6.14. Those 3 labels use

non-baseline information, which one more time appear to be a significant factor.

Moreover, the classification problem 6 is also performing poorly in this case. The

classification problem 8 and 9 are performing well in all metrics except for the F1-

Score, which may be caused by the highly imbalanced dataset, once the model is

predicting correctly the largest part of the samples of the majority class, although

it incorrectly classify several samples of the minority class. Moreover, the classifi-

cation problem 1 also increase the performance with the addition of the fourth year

of features.

Regarding the predictive features, the EDSS was identified in all classifica-

tion problems again. The Score Pyramidal was present in 8 out of 9 classification

problems and the CNS Sensory Functions in 7 out of 9 classification problems. Fur-

thermore, the CNS Brainstem was predictive in 6 out of 9 classification problems,

while the remaining features were predictive in 5 or fewer classification problems.

Table 6.15: Best results obtained in disease severity classification problems using
5 years of features.

Best results 5 year model

AUC G-Mean Specificity Sensitivity F1-Score

Classification problem 1

(EDSS ≤ 2 after 10th year

using baseline visits)

0.76 ± 0.08 0.71 ± 0.09 0.86 ± 0.12 0.58 ± 0.09 0.71 ± 0.08

Classification problem 2

(EDSS ≤ 3 after 10th year

using baseline visits)

0.81 ± 0.09 0.70 ± 0.11 0.84 ± 0.12 0.61 ± 0.17 0.61 ± 0.13

Classification problem 3

(EDSS ≤ 3 in the 10 year)

0.89 ± 0.10 0.78 ± 0.18 0.88 ± 0.10 0.73 ± 0.25 0.71 ± 0.17

Classification problem 4

(EDSS ≤ 3 during the ini-

tial 10 years)

0.84 ± 0.06 0.72 ± 0.07 0.95 ± 0.08 0.55 ± 0.10 0.70 ± 0.09

Classification problem 5

(EDSS ≤ 2 after 5 years and

≤ 3 after 10 years)

- - - - -

Classification problem 6

(EDSS ≤ 4 after 10 years

using baseline visits)

0.89 ± 0.07 0.80 ± 0.08 0.93 ± 0.03 0.69 ± 0.14 0.63 ± 0.09

Classification problem 7

(EDSS ≤ 3 in the 6th year)

0.91 ± 0.04 0.82 ± 0.06 0.90 ± 0.04 0.76 ± 0.13 0.61 ± 0.07

Classification problem 8

(Increase EDSS < 1.5 after

5 years)

- - - - -

Classification problem 9

(Progression index <0.2 af-

ter a duration of 5 years)

- - - - -
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Figure 6.16: Features with highest predictive power of a benign/malignant course
identified in the fifth year. The darker the shade of blue, the closer to the diagnosis
is the year when the feature was retrieved and the darker the shade of green the
closer to the diagnosis is the accumulation of the years (non-starting on onset) where
the feature was identified.
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6. Results

The Table 6.15 contains the results of the classification problems where it was

used 5 years of features for prediction. In this case, the classification problems 5,

8 and 9 don’t have results once they represent a prediction in the fifth year and

for such reason, there was not included 5 years of features. From the remaining

classification problems, the three with the best performance are the classification

problem 3, 6 and 7. In this case, the classification problem 6 increased significantly

the performance. The majority of the classification problems did not increase the

performance with the addition of the fifth year of features.

Concerning the predictive features, the EDSS was identified one more time as

predictive in all classification problems. The other significant predictor was the Score

Pyramidal that was present in 4 out of 6 classification problems. The remaining

features were present in 3 or fewer classification problems.
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7

Discussion

In this chapter, several aspects related to the objective and procedure used in

this master thesis are discussed. First of all, the objective of this master thesis

was to predict the progression of MS integrating clinical data from different sources,

although several aspects were not considered. The epidemiology would be an in-

teresting factor to consider, as the disease is highly affected by geographic factors,

but once the database is constituted by only Caucasian patients, it had to be dis-

regarded. Similarly, data relative to the family history, CSF and evoked potentials

was also not considered because there was plenty missing data, although there is

evidence that genetic factors are related with a higher risk of MS, and that CSF and

evoked potentials are key factors used in other studies.

The consideration of reports of MRI examinations could also have been an in-

teresting aspect to use as clinical data once the majority of the studies use MRI

examinations to retrieve potential features predictive of disease progression. How-

ever, in this master thesis, the reports of MRI examinations could not be considered

once it only contained information from a reduced number of patients.

In terms of therapy, the data was not considered because it could introduce a

bias to the results, once the medication chosen may introduce a medical opinion of

the course of the disease.

Furthermore, the data sets for all predictions are small, once the number of

patients used was quite reduced when compared to other studies in the literature

[59] [63] [74] [77] [79] [82]. Even from the selected patients, it was necessary to

proceed to the imputation of missing data, once the data set contained several

missing values.

With regards to the EDSS, this scale was used in every benign/malignant def-

inition, once the definitions are composed by a threshold value of EDSS during a

certain amount of time. Some of the values used were retrieved from the literature

while some others were used as a test for comparisons with existing labels. From

the labels extracted from the literature, some had to be slightly changed due to the
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7. Discussion

missing values, highly imbalanced data set and reduced number of patients.

The initial years of the disease were highlighted once it was desirable to identify

the early clinical factors that are responsible for the transition to an SP course and

the ones that lead to a benign/malignant case.

From these factors, one may conclude that a study containing a higher number

of patients could be a vital aspect to obtain more reliable results and conclusions.

In order to confirm our findings, it is necessary to use other data sets with less

missing data, and evaluate the labels of benign retrieved from literature without

any modification. Lastly, integration of clinical data from more sources could also

be an interesting approach to identify more diverse predictive features of a benign

course and an SP development.

7.1 Comparison with the State of the art

The state of the art was essential for the selection of approaches for this master

thesis. Although the initial objective was to predict the evolution of MS, the concept

of comparing different definitions of benign MS arises from the literature.

The literature itself is reduced in terms of studies involving ML procedures,

although some approaches already exist and in the future it is expected that there

will be even more. The majority of the papers consist of an analysis of MRI exam-

inations, inferential statistics or clinical reviews of the current predictive features.

Although the number of studies is small, it was possible to identify among the ex-

isting studies several incoherences in the definitions used that lead to a difficulty in

the comparison of the results obtained.

The benign form of MS is described with several differences from author to

author, varying in terms of the years of follow-up admitted and in the EDSS value

considered. Such modifications result in an enormous variation in the percentage

of patients identified as benign, which can be a reason to the different conclusions

regarding the clinical factors that can lead to a better or worse prognosis of the

patients. This inconsistency verified was the reason to explore the benign MS and

develop a model capable of predicting the benign/malignant course of MS, using

definitions from the literature and new definitions in order to verify which models

are easier to predict and which features are consistent among all definitions.

The other aspect identified in the literature was the development of SP course,

that was identified as a problem due to the difficulty of identifying the patients that

will evolve to such course. Even from the patients considered in this study, there

is a possibility that a patient may be considered RR type, but will still develop SP
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course. The studies regarding SP development were also quite reduced and they

have identified few clinical conditions resulting in the development of that course.

Besides the few existing studies, a comparison with the literature was performed

for both SP development and disease severity. In terms of model performance of

SP development prediction, Adrian Ion. Margineanu [80], obtained an F1-score of

0.87 after training Fisher LDA and SVM-RBF classifiers on clinical, lesion loads

and metabolic features. Once the other metrics are not assessed in Adrian Ion.

Margineanu study, it can only be seen that the model developed in this master

thesis is underperforming in terms of F1-score.

Regarding the features predictive of an SP development the polisyntomatic on-

set, late age at onset, female sex, motor and sphincter relapses were identified by

Bergamaschi [82]. In the present study, only the CNS Bowel Bladder (related with

sphincter relapses) and CNS Pyramidal, Score Pyramidal, Impact ADL Functions

(all related with motor functions) were also identified in common with literature.

The majority of the features predictive of an SP development identified in the litera-

ture were demographic factors, although only dynamic information related to EDSS,

impact ADL functions and functional systems were predictive in the present study.

The fact that there is no consensus of the predictive features from study to study

lead to non-existence of features that could validate the present model, although the

non-presence of static features may be a limiting factor once they were identified in

other studies [82][81][80].

Regarding the performance of disease severity model, the Table 7.1 summarizes

the results obtained by Zhao et al. [77] and the results obtained in each classification

problem.
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Table 7.1: Comparison of the results obtained with literature.

Performance of disease severity model

Specificity Sensitivity

Zhao et al. [77] - Increase EDSS ≤ 1.5 after 5 years 0.68 0.71

EDSS ≤ 2 after 10th year using baseline visits 0.76 0.66

EDSS ≤ 3 after 10th year using baseline visits 0.84 0.61

EDSS ≤ 3 in the 10 year 0.88 0.73

EDSS ≤ 3 during the initial 10 years 0.84 0.60

EDSS ≤ 2 after 5 years and ≤ 3 after 10 years 0.79 0.75

EDSS ≤ 4 after 10 years using baseline visits 0.93 0.69

EDSS ≤ 3 in the 6th year 0.80 0.86

Increase EDSS < 1.5 after 5 years 0.62 0.64

Progression index < 0.2 after a duration of 5 years 0.65 0.69

Zhao et al. obtained a sensitivity of 71% and specificity of 68% and in the

present study were obtained worst results when the same Benign MS definition

than Zhao et al. was used (Increase EDSS < 1.5 after 5 years), even though, for

other benign MS definitions (EDSS ≤ 3 in the 10 year, EDSS ≤ 2 after 5 years

and ≤ 3 after 10 years, and EDSS ≤ 3 in the 6th year) were achieved better results.

Although a comparison of the sensitivity and specificity obtained was performed, the

absence of the other metrics limit the comparison of results. Furthermore, in terms

of the predictive features of disease severity, only the EDSS and features related to

functional systems were identified in the present study. All those features were also

present in literature, which reinforces the confidence in the results obtained.

Finally, the nonexistence of several studies with similar procedures for both

RR/SP and benign/malignant prediction limits the comparison of the results, as

well as the incoherence of the predictive features identified in the existing studies

that lead to difficulties to validate the obtained results.

7.2 Dataset Description

One of the major limitations of this master thesis was the dataset used. Al-

though the initial database contained 1134 patients, from these only 181 could be

used. The great part of the patients contained only information several years af-

ter the diagnosis which leads to their exclusion once it was impossible to retrieve

information from the initial years of the disease.
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Furthermore, although the dataset contained clinical information of several as-

pects such as MRI, concomitant diseases, evoked potentials, among others, these

factors had to be ignored because they contained plenty of missing data and were

related to a small number of patients. For this reason, only information from the

identification, visits and relapses was considered, although more data could lead to

better results.

Moreover, among the considered patients it was possible to note that the num-

ber of information from patient to patient is quite variant and there are plenty of

missing data in some fields. The diagnosis date is an example of a field that was

missing for some patients, and in such cases was used the onset date for select the

patients included in each dataset. For the RR/SP selection was also included pa-

tients with the SP diagnosis date after the fifth year of tracking. The assumptions

made may lead to incorrect identification of the years where the features were pre-

dictive if the diagnosis date was earlier than the onset date, and if the SP diagnosis

date was several years after diagnosis date. Even though, those considerations were

essential to guarantee an acceptable number of patients included.

Furthermore, the routine visits are usually scheduled every 3 or every 6 months

depending on the patient condition, whereby was expected to exist data of at least

2 visits in each year to every patient, which does not occur. The majority of the

patients does not contain information of 2 visits in every year they are followed and

there are several cases of patients that do not contain data of any visit in some years.

For this reason, the temporal segmentation was annual, which contributed to deal

with the missing data. However, the nonexistence of information in a certain year

might also affect the drawing conclusions regarding the years in which the features

are predictive.

The number of important features that had to be disregarded due to the missing

data present and the reduced number of patients that were used are negative aspects

of the data set used, that may limit the conclusions drawn from this master thesis.

Nevertheless, the data set used is a real data set from a hospital, representing a

real scenario, which demanded that the methodology used was capable of deal with

missing values, leading also to an advantage.

7.3 Experimental Procedure

A process of feature engineering was performed in order to increase the number

of features by creating features using temporal segmentation and applying statisti-

cal operators to the raw data. The process of feature engineering was a complex
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procedure that involved a consideration of accumulative windows starting in differ-

ent years and non-accumulative windows in order to retrieve the most information.

This procedure was also used as a strategy to deal with missing data, once the tem-

poral segmentation performed annually and the accumulative windows considered

allowed to increase the amount of data used for predictions. Furthermore, some

other features identified in the state-of-the-art such as the number of functional sys-

tems involved at the onset, the EDSS at onset and the number of visits and relapses

at each year were also introduced.

The dataset obtained with the feature engineering process was used to explore

different labels and compare the differences in the results achieved with them.

Regarding the benign labels, some of the labels were retrieved from literature.

Several limitations arise to test those labels due to the dataset used. Among the

labels identified in the literature, there were several cases that were defined by and

EDSS ≤ 3 after 15 years [70] [72] [73] [75] and other defined as EDSS ≤ 3 after

20 years [76] that were not tested once the dataset contains information of a lower

amount of years for the majority of the patients, which made unviable to test these

labels for such periods. Furthermore, the consideration of the same EDSS value

with only 10 years of follow-up was already considered as a label to test due to some

studies addressing such definition, which led to the exclusion of those labels with a

value of EDSS of 3 and follow-up periods that lasted for more than 10 years.

Regarding the tested labels, there were cases defined by a value of EDSS in a

specific year, even though the database contained no data of visits or relapses in

that year. To overcome this limitation, and maintain enough patients to test, it

was considered the EDSS value in the consecutive years in those labels. Among

the literature labels, some other modifications were performed. The label 5 should

consider only the baseline EDSS although both the baseline and non-baseline EDSS

were admitted to obtain a higher number of patients with EDSS value in the years

considered or consecutive years. Label 6 should be evaluated after a follow-up of 15

years, but only 10 years were considered once there were few patients that contained

enough information after 15 years. In the labels 8 and 9, it was also considered the

EDSS of baseline and non-baseline and assumed that the limit cases (increase EDSS

= 1.5 and progression index = 0.2 respectively) were malignant, once both these

modifications allow obtaining a more balanced scenario.
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7.4 Results

The results of RR/SP prediction and benign/malignant classification problems

are discussed separately once they constitute two distinct prediction scenarios al-

though in both cases a comparison with the literature was performed.

7.4.1 RR/SP classification problem

The prediction of SP development was performed using 5 different models that

considered different past data. As previously mentioned, to the year 1 only features

from the first year were used, while for year 2 features from both year 1 and year 2

were considered. By analyzing the Table 6.1 it can be seen the results obtained for

the prediction of SP development in each one of those year models.

The best results were achieved with the SVM classifier in the two first years

and with a KNN-3 in the remaining years. Overall, it is possible to note an increase

in all five metrics over the years, with the best results for all of them being achieved

using 5 years of features. This seems to demonstrate that the higher the number

of features considered, the better the performance of the model, although for the

fourth-year a decrease in the performance was verified, once the specificity increases

but the sensitivity decreases. In fact, once the SP cases correspond to the minority

and is more important to identify such cases due to the necessity of administering

a more aggressive medication, it is desirable to obtain higher sensitivity.

It is important to highlight that for F1-Score metric the results obtained were

quite low in all years. This metric, that considers precision (true positive cases

among all cases classified as positive) presents a poor performance that is probably

caused by the highly imbalanced data set. Although the performance is not good for

F1-Score, this metric is important because it provides a more realistic performance

evaluation.

Overall, the developed model presents acceptable results in terms of AUC,

specificity, sensitivity and G-mean although the low value obtained for F1-Score

metric presents a major limitation of the model. One may conclude that once the

number of SP samples is reduced, although the majority of RR samples are correctly

classified, the number of RR miss-classified samples is still superior to the number of

correctly classified SP samples which lead to poor F1-Score results. For such reason,

the model is limited and should be used with caution once the incorrect identification

of RR samples leads to the administration of more aggressive medication for those

patients which can cause negative effects on patients.
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7.4.2 Feature analysis - RR/SP classification problem

In Figure 6.1 the features predictive of an SP development case are identified.

The figure represents the features and their predictive power, calculated by the

number of the times that the features appeared among the 100 iterations.

Although several statistical operators were used to the creation of the features,

and a division into routine/non-routine visits was performed, those are not men-

tioned in the results because heterogeneity was verified. There wasn’t a predomi-

nance of any statistical operator, and by excluding such information the results are

easier to present and interpret. There wasn’t also any relevant superiority between

routine/non-routine features whereby such information is not presented. Figure 6.1

allows to verify the evolution of the features over the years.

Firstly, it is possible to note that all identified features correspond to dynamic

features, and the majority of them are related to the functional systems. It can

be noted the presence of 11 predictive features, retrieved from functional systems

information from both visits and relapses. Additionally, only the EDSS and the

Impact ADL Functions were identified as predictive features. From this fact, one

may conclude that to evaluate the SP development, both EDSS and functional

systems data are the most important information, as both features were identified

in distinct year-models, as opposed to the Impact ADL functions that was only

predictive in the first year. Moreover, it is also important to highlight the complete

absence of features related to demographic information and symptoms.

An initial conclusion that can be retrieved is that the most recent features

are usually the most predictive ones. This means that when two years of features

are considered, the features of the second year are the most predictive ones, while

when three years are admitted the features of the third year are the most common.

Although this does not occur in every case, the majority of the features identified

follow this logic. Moreover, it can be seen that the features from the initial years

remain important once they are also identified in the later years.

Additionally, it was possible to note a presence of both features retrieved from

both accumulative windows starting and not starting on the onset, although the fea-

tures from accumulative windows starting on onset appear to be more predominant.

Among the 13 features identified, it is possible to note that each feature presents

a particular pattern, in which the EDSS and the Score Brainstem are identified in

all 5 models, the CNS Sensory functions was identified only in the 4 initial years and

the remaining features in fewer year-models. The predictive power also varied from

feature to feature and even within the same feature from year-model to year-model.

112



7. Discussion

Table 7.2 summarizes the predictive features of an RR/SP case, indicating the

name of the feature, the years where the feature was identified as an important

predictor and whether the feature was predictive of an RR or SP course. It can

be noted that the majority of the features identified as predictive are indicative of

an SP course. The identified features provide valuable information to physicians,

as they inform which patient characteristics should be given attention in each year.

For example, it can be seen that the CNS Brainstem was a predictor of a RR course

during the two initial years.

Table 7.2: Most commonly predictive features of an RR/SP course chronologically
ordered by year of occurrence.

Features RR Course SP Course Years

CNS Cerebellum x x 1

CNS Pyramidal Tract x x 1

Impact ADL Functions x 1

CNS Brainstem x 1,2

Score Sensory x 1,2

EDSS x 1,2,3,4,5

Score Brainstem x 1,2,3,4,5

CNS Sensory Functions x 1,2,3,4

CNS Neuropsycho Functions x 1,3

CNS Bowel Bladder x 2,3,4

Score Pyramidal x 3

Score Cerebellar x 3,4,5

Score Mental x 3,4,5

7.4.3 Benign/malignant classification problems

In terms of benign/malignant MS prediction, several classification problems

were used to explore the existing definitions used by several authors in literature

and advance with some others that could be interesting approaches.

The first conclusion that can be retrieved from the model performances ob-

tained for each classification problem is that the definition of benign MS used affect

significantly the results obtained, once the performance of the model and the best

performing year varied significantly for each classification problem. Although for the
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majority of the classification problems the higher the number of years of features

used, the better the model performed, this does not occur to every case once classi-

fication problem 4 present worst performance over time and there are cases whose

better performance is identified on the third year. Furthermore, the best classifiers

identified in each year-model also varied from classification problem to classification

problem. Such facts lead to the impossibility to retrieve a common best classifier

and year-model to all classification problems, once both depend on the definition

considered.

The fact that some definitions are similar, and present only small variations in

terms of the information considered (EDSS threshold used and the number of year

of follow-up considered) enable a comparison of the performance of some of those

labels, which allows concluding about the factors that lead to such diversity in the

performances obtained.

From the analyses of the Tables 6.2 until 6.15 it is possible to retrieve informa-

tion of the performance of the model for each classification problem over years and

also a comparison between the classification problems, essential to retrieve conclu-

sions.

The classification problems 1, 2 and 6 considered an EDSS threshold of 2, 3

and 4, respectively, after 10 years of follow-up, using only baseline information,

and those labels can be compared, once the unique variation is the EDSS value

considered. By comparing the performance of those classification problems, it can

be seen if the value of EDSS selected can lead to variations in the efficiency of the

model. Overall, the results in the label 1 and 2 are similar. The label 6 presents a

poor performance compared to the remaining 2 labels, which is caused by the more

imbalanced scenario of the dataset used for the label 6. This idea suggests that

labels with higher values of EDSS as threshold can lead to a reduced number of

patients identified as malignant, which impacts negatively the performance of the

models due to the imbalanced datasets.

Classification problem 3 was defined by the EDSS of both visits and relapses

in the tenth year, which is different from the label 2 where only the baseline EDSS

was admitted. This is an important factor once in the relapses the EDSS suffers

an increase and for such reason, it is expected that more patients are identified as

malignant. From the comparison of the performance of those labels, it can be seen

that the classification problem 3 presents slightly better results than the classifica-

tion problem 2 in the majority of the cases, which indicates that the model performs

better for prediction of an EDSS that includes relapses values.

For the classification problem 4, an EDSS <=3 during the initial 10th years
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was admitted as opposed to the label 3 where the EDSS <=3 was verified only on

the 10th year. The comparison of those labels suggests that for the initial years

those labels perform similarly, with slightly better performance for the classification

problem 4 until the third-year model. After that, the classification problem 3 present

significant better results which indicate that with more years of information, the

classification problem 4 perform worst.

The classification problem 5, can also be compared with the classification prob-

lem 3 once the unique difference between them is that the classification problem 5

also consider and EDSS value 2 after 5 years as a condition. It can be seen that

the classification problem 5 presents better results for every year, with exception

to the first, which is an indicator that the disease severity is easier predicted when

diminished follow-up periods are also admitted. The same conclusion is obtained

for classification problem 7, where a follow-up of 6 years is admitted and better re-

sults are achieved when compared to the classification problem 3, even with a more

imbalanced dataset.

For labels 8 and 9, where 5 years of follow up were considered, it is possible to

note that the model was underperforming in both cases. Although it was obtained

acceptable results of sensitivity, both labels present low results in the F1-Score

metric. The poor results can be due to the consideration of an increase on the

EDSS and progression index for label 8 and 9, respectively, which appear to be

harder to predict than simply an EDSS value as a threshold. Moreover, those two

labels are also the most imbalanced ones which might also be one of the reasons for

the poor performance verified.

In general, it is possible to conclude that the label 5 and label 7 are the better-

performing labels among all other labels. The label 7 consider only 6 years of

follow-up and the label 5 consider 10 years of follow-up, although it also admits

an threshold after 5 years, which appears to lead to the good results. From this

fact, one may conclude that the models perform better when EDSS thresholds are

established for lower follow-up periods. Moreover, it was also possible to verify, as

expected, that the model performs better for balanced datasets than for imbalanced

datasets. The consideration of the non-baseline information appears to be also a

factor that affects the results once the labels considering that information present

better results. Furthermore, the EDSS value selected can also be a factor that

influences the results, once higher EDSS thresholds can lead to higher imbalanced

datasets which cause poorer results.

From these facts, one may conclude that a label presenting a low number of

years of follow-up, defined by a lower EDSS threshold, and using both baseline and
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non-baseline information is the option that would present the better performance.

Lastly, it is important to remember that the low number of patients, distinct to dif-

ferent classification problems, as well as the modifications introduced to definitions

retrieved from literature are limiting aspects of this thesis.

7.4.4 Features analysis - benign/malignant classification prob-

lems

From the analysis of the Figures 6.3 until 6.16 it is possible to retrieve several

conclusions regarding the features identified as predictive on the different classifica-

tion problems considered.

Similarly to the RR/SP classification problem, the information regarding the

several statistical operators used and the division into routine/non-routine visits per-

formed was not mentioned in the results due to the nonexistence of a predominance

of any statistical operator or routine/non-routine features.

First of all, it can be noted that the features identified as predictive are distinct

for distinct labels. Table 7.3 summarizes the totality of features that were identified

in at least one classification problem. By observing this table and compare it with

the literature it is possible to take some initial conclusions. In the results obtained

there is not a single static feature, although in literature features such as age at

onset [63] [59] [26] [61], sex [72] [26], the course of the disease [66] [63] [78] [67] [56],

and the number of function systems involved at onset [55] [56] [67] were identified

in some studies.

Table 7.3: Features identified as predictive of disease severity among all classifica-
tion problems.

Features identified as predictive of disease severity

EDSS CNS Neuropsycho Function Impact ADL Functions Score Cerebellar Score Brainstem

CNS Sensory Functions Score Mental Severity Score Sensory Fatigue

CNS Cerebellum CNS Bowel Bladder Score Bowel GdSpasticity Paresthesiae

CNS Pyramidal Tract CNS Brainstem Recovery GdAtaxia MwLowerExtrem

CNS Visual Functions Score Visual Score Pyramidal Score Ambulation Number relapses

The features identified belong exclusively to visits and relapses information,

without being observed a predominance of one of them. Furthermore, from the 25

identified features, just some of them are identified in each label and for such reason,

an analysis to identify the more common features among all classification problems

were carried out. With such analyses, the confidence in the features identified as

predictive is higher.

116



7. Discussion

An initial conclusion retrieved from the analysis of the figures regarding the

features predictive of a benign scenario is that each classification problem presented

a different number of features identified, predictive on different years, with different

predictive powers. This fact demonstrates that different classification problems lead

to different features considered which is according to the literature where different

authors identify some features as predictive while others don’t.

Moreover, it is possible to note for the majority of the classification problems,

the most recent information is the most important, although the past information

remains predictive. For example, it was demonstrated that the features from the

third year are more predictive in the third year model, although some information

from previous years is also predictive. Furthermore, features retrieved from both

accumulative windows starting on the onset and non starting on onset were identified

in all labels.

In addition, in the current study, several features commonly identified among

the labels were summarized in Table 7.4. The information was retrieved from the

analysis of the Figures 6.12 until 6.16, in which the features appearing in the majority

of the classification problems were included in the table, once they appear to be

reliable predictors.

Table 7.4: Most commonly predictive features among all benign/malignant classi-
fication problems chronologically ordered by year of occurrence.

Features Benign MS Malignant MS Years Identified in literature:

CNS Pyramidal Tract x x 1 Both benign and malignant

CNS Cerebellum x x 1, 2 Both benign and malignant

CNS Brainstem x 1, 2 Only benign

EDSS x 1, 2, 3, 4, 5 Both benign and malignant

Score Bowel x 2, 3 Both benign and malignant

Score Pyramidal x 2, 4, 5 Both benign and malignant

CNS Neuropsycho Functions x 3 Only benign

CNS Sensory Functions x x 4 Only benign

Score Cerebellar x 4 Both benign and malignant

In this table, there is an indication of features that the physicians should pay

attention to, once they were identified as the most common features among the

majority of the classification problems. Moreover, it is also exhibited the year mod-

els where each feature was predictive as well as an indication whether they were

predictors of a benign, malignant or both scenarios. Furthermore, the Table 7.4

also contains an comparison with the literature. The fact that all features identified

were also identified in the literature is an important aspect that contributes to a

validation of the results and the developed model.
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Moreover, it can also be noted that there were features predicting only benign

or malignant scenarios, which occurred when all classification problems agreed, but

also features indicating both benign and malignant scenario, which occurred when

different conclusions were retrieved from different classification problems. Further-

more, was observed a clear predominance of the features predictive of malignant

scenarios.

Additionally, all features identified as reliable predictors of benign/malignant

scenario were functional systems, with exception to the EDSS. Although the EDSS is

not a functional system, it is a scale that measures the impairment of patients using

grades attributed to the 8 different functional systems, and for such reason, both

EDSS and functional systems are related. From this fact, one may conclude that any

symptom or demographic feature was commonly identified among the classification

problems, as opposed to the scores attributed to each functional systems (in both

visits and relapses) and the EDSS value that constituted the important features

identified.

Lastly, the information of the Table 7.4 can be valuable to assist in the prognosis

of a patient, once it is easily identified the factors that might lead to a severe scenario.

For example, it can be seen that the Central Nervous System Brainstem appear to

be a predictor of a benign scenario during the two initial years, although it does not

remain as an important predictor during the remaining years.
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Conclusion

The overall goal of this Master Thesis was to evaluate and predict the progres-

sion of patients with MS using a database from the Neurology Department of Centro

Hospitalar e Universitario de Coimbra. To achieve such objective an ML model was

developed, where the clinical data from the initial years after the diagnosis was used

to predict later stages.

The ML algorithm created, robust to real-life scenarios, was used to classify

each patient into RR/SP subtypes and benign/malignant scenario, and extract the

clinical information that was predictive of each case, as well as the corresponding

years in which the features were identified. Furthermore, it was also possible to

compare the performances of the different comparative problems considered.

Overall, the best results were achieved in the fifth year for the RR/SP classifica-

tion problem with an AUC of 0.84 ± 0.08, a G-mean of 0.78 ± 0.11, an specificity of

0.78 ± 0.06, an sensitivity of 0.78 ± 0.18 and an F1-Score of 0.23 ± 0.07 obtained.

The classification problem 7, that stands for an EDSS ≤ 3 in the 6th year, was

the best performing classification problem evaluating the disease severity, with an

AUC of 0.91 ± 0.04, a geometric mean of 0.83 ± 0.05, a specificity of 0.80 ± 0.04,

a sensitivity of 0.86 ± 0.11 and an F1-Score of 0.52 ± 0.06 obtained on the third

year. Furthermore, the classification problem 5, defined as an EDSS ≤ 2 in the 5th

year and an EDSS ≤ 3 in the 10th year, was the second-best performing classifica-

tion problem, with a slightly worst performance when compared to the previously

mentioned case.

From the results obtained, one may conclude that the models perform better

when more years of information are considered. It was also noted that it is easier

to predict benign/malignant scenarios when an EDSS threshold is defined after 5/6

years than when it is only defined after 10 years. Besides, predicting the disease

severity using lower EDSS threshold values is simpler, once high EDSS values tend

to lead to more imbalanced data sets.

Regarding the predictive features identified, the EDSS and functional systems
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related features appear to be the most significant ones, and the most recent infor-

mation of those features appear to be the most predictive, although the information

from the initial years remains important.

The modification introduced in some benign definitions retrieved from litera-

ture, the reduced number of patients considered, the different amount of patients

admitted for different classification problems constitute some of the limitations of

this master thesis. From those facts, it is necessary to test this procedure in different

data sets, in order to validate the drawing conclusions.

In a future study, an integration of more data, related to MRI reports, CSF

analysis and evoked potentials could be an important addition to identify other

important predictors. Moreover, it could also be interesting to add more samples to

verify if those predictors remain the most important ones. Furthermore, performing

this comparative study in different data sets, using an equal amount of patients to

every classification problem, would be an important factor that could lead to more

fair conclusions.
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[80] A. Ion-Mărgineanu, G. Kocevar, C. Stamile, D. M. Sima, F. Durand-Dubief,

S. Van Huffel, and D. Sappey-Marinier, “Machine learning approach for clas-

sifying multiple sclerosis courses by combining clinical data with lesion loads

and magnetic resonance metabolic features,” Frontiers in neuroscience, vol. 11,

p. 398, 2017.

[81] A. Boiko, G. Vorobeychik, D. Paty, V. Devonshire, D. Sadovnick, et al.,

“Early onset multiple sclerosis: a longitudinal study,” Neurology, vol. 59, no. 7,

pp. 1006–1010, 2002.

[82] R. Bergamaschi, S. Quaglini, M. Trojano, M. P. Amato, E. Tavazzi, D. Pao-

licelli, V. Zipoli, A. Romani, A. Fuiani, E. Portaccio, et al., “Early prediction

of the long term evolution of multiple sclerosis: the bayesian risk estimate for

multiple sclerosis (brems) score,” Journal of Neurology, Neurosurgery & Psy-

chiatry, vol. 78, no. 7, pp. 757–759, 2007.

[83] L. A. Arani, A. Hosseini, F. Asadi, S. A. Masoud, and E. Nazemi, “Intelli-

gent computer systems for multiple sclerosis diagnosis: a systematic review of

reasoning techniques and methods,” Acta Informatica Medica, vol. 26, no. 4,

p. 258, 2018.

[84] M. F. d. S. Pinto, Evaluation and prediction of Multiple Sclerosis Disease Pro-

gression. PhD thesis, Universidade de Coimbra, 2018.

[85] P. Paunov, “Data standardization. MATLAB Central File

128



Bibliography

https://www.mathworks.com/matlabcentral/fileexchange/

50857-data-standardization,” 2020.

[86] J. Santarcangelo, “jsantarc/Imputation-of-missing-values-

Matlab-. GitHub https://github.com/jsantarc/

Imputation-of-missing-values-Matlab-/issues/1,” 2020.

[87] S. Seaman, J. Galati, D. Jackson, and J. Carlin, “What is meant by” missing

at random”?,” Statistical Science, pp. 257–268, 2013.

[88] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “A review

of feature selection methods on synthetic data,” Knowledge and information

systems, vol. 34, no. 3, pp. 483–519, 2013.

[89] V. Fonti and E. Belitser, “Feature selection using lasso,” VU Amsterdam Re-

search Paper in Business Analytics, vol. 30, pp. 1–25, 2017.

[90] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: A re-

view,” IEEE Transactions on pattern analysis and machine intelligence, vol. 22,

no. 1, pp. 4–37, 2000.

129

https://www.mathworks.com/matlabcentral/fileexchange/50857-data-standardization
https://www.mathworks.com/matlabcentral/fileexchange/50857-data-standardization
https://github.com/jsantarc/Imputation-of-missing-values-Matlab-/issues/1
https://github.com/jsantarc/Imputation-of-missing-values-Matlab-/issues/1

