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Abstract

Genetic Programming (GP) is an automatic problem-solving technique inspired by na-
ture, that optimizes solutions through the evolution of a population of computer programs
[39]. This process of optimization, although computationally expensive, is also classified as
“embarrassingly parallel”. For many years researchers attempted to exploit this tendency
towards concurrency by employing various types of parallel programming paradigms. Par-
ticularly, vectorization of fitness evaluation data points was shown to benefit from the
use of commercially available parallel architectures such as the Graphics Processing Unit
(GPU), to speed up many GP related systems.

In this work, we take advantage of the TensorFlow framework to investigate the benefits
of applying this data vectorization method to different scenarios and determine respec-
tive GPU performance gains over a Central Processing Unit (CPU). For this purpose, an
independent GP engine was developed, TensorGP, along with a testing suite to extract
comparative results across different iterative and vectorized approaches.

Symbolic regression problems and expression-based image evolution were used to validate
system functionality. Our performance benchmarks demonstrate that by exploiting the
TensorFlow execution model, performance gains of up to two orders of magnitude can be
achieved on the GPU when compared to a CPU, for the vectorization of large problem
domains. Furthermore, exploratory experimentation in the context of evolutionary art
illustrates the engine’s feasibility towards artistic production.
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Resumo

Inspirada pela natureza, a Programacao Genética (GP) constitui um método automéatico
de resolugao de problemas que otimiza solugoes através da evolugao de um conjunto de pro-
gramas de computador [39]. Este processo de otimizagao, apesar de computacionalmente
dispendioso, é também extremamente paralelizdvel. Ao longo dos anos, varios modelos de
programacao foram aplicados a GP de modo a aproveitar este potencial de paralelizagao.
Mais especificamente, foi demonstrado que a vetorizagao de dados relativos & avaliagao
de aptidao dos individuos em GP beneficia do uso de processadores com capacidades de
paralelizacao como as Unidades de Processamento Grafico (GPUs).

No presente trabalho recorremos & plataforma TensorFlow para investigar as vantagens
da aplicagdo deste método de vetorizacdo a varios problemas de GP, assim como para
analisar ganhos de desempenho da GPU sobre o CPU. Para este propésito, foi desenvolvido
um motor de GP independente, TensorGP, assim como um ambiente de testes com o
objetivo de extrair resultados comparativos entre diversas abordagens tanto vetorizadas
como iterativas.

Problemas de regressao simbdlica e evolucao de imagens foram usados para validar o correto
funcionamento das funcionalidades implementadas. Os resultados experimentais obtidos
demonstram que tirando partido do modelo de execucao do TensorFlow para a vetorizacao
de dominios de avaliacdo extensos, ganhos de desempanho até duas ordens de grandeza
sao alcancaveis em GPU comparativamente com o CPU. Para além do mais, testes ex-
ploratérios realizados no a&mbito de arte evolucionaria comprovam a viabilidade do motor
para efeitos de produgao artistica.

Palavras-Chave

GP-GPU, Programagao Genética, TensorFlow, Vetorizacao, Paralelizagdo, Arte Evolu-
cionéria
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Chapter 1

Introduction

In recent years, the growth of Artificial Intelligence (AI) research and development en-
abled the implementation of increasingly sophisticated systems. However, the growing
complexity that these problems incur also leads to a higher degree of criticality and an
increased need for computational resources. For instance, autonomous vehicles require the
correct identification of countless objects as fast as possible in order to avoid obstacles
and prevent accidents. This need for evaluation speed has been a constant throughout
the area of computational intelligence, of which Evolutionary Computation (EC) is a field.
Inspired by Darwin’s theory of natural evolution, EC aims to evolve candidate solutions
in a continuous process of stochastic optimization.

In this work, we investigate some methodologies capable of speeding up the evolutionary
process with a special focus on the step of assessing how fit a candidate solution is. This
step, referred to as fitness evaluation, is a dominant concern to the performance of all
genetic algorithms. Particularly, Genetic Programming (GP), which targets the evolution
of actual computer programs, is known to require large amounts of computation resources,
as all individuals in the population need to be executed and tested against the objective. As
a result, fitness evaluation is widely regarded as the most computationally costly operation
in GP for most practical applications [18].

Despite this high demand for computational resources, GP is beyond doubt a powerful
evolutionary technique, as it is capable of tackling every problem solvable by a computer
program without the need for domain-specific knowledge. This domain independence is
a desirable property as no assumptions need to be made in advance about the form or
structure of the optimal solution [39]|. Additionally, because the same program needs to be
evaluated for all data points in our problem domain, the process of fitness assessment itself
holds great parallelization potential. Consequently, many methods have been proposed to
take advantage of parallel hardware in an attempt to speedup this process.

The last decade saw the exponential growth of computing power proposed by Gordon
Moore back in 1965 [36] start to break down. As we start meeting the limits of physics,
further scaling in frequency and power becomes commercially unfeasible for the micropro-
cessor industry, forcing a paradigm shift towards multi-core computing and parallelization.
With the rise of parallel computing, devices such as the Graphics Processing Unit (GPU)
have become ever more readily available. GPUs are designed with a throughput-oriented
architecture in mind that maximizes data processed per unit of time, allowing for multiple
tasks to be executed simultaneously. Whilst these devices are commonly targeted towards
personal computer gaming, the high floating-point performance they offer can be applied
to various high-performance scientific tasks, GP included.
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One way to parallelize the fitness phase is by vectorizing the set of data points to be evalu-
ated. In this data parallel approach, the evaluation works on the full array of fitness cases,
performing a vector or tensor operation for each function in our GP program. These tensor
operations are highly optimized on GPUs as they are necessary for the various stages of the
graphical rendering pipeline. Therefore, it makes sense to couple this data vectorization
approach with a GPU architecture. Tensor operations are highly optimized on GPUs as
they are necessary for the various stages of the graphical rendering pipeline. Therefore, it
makes sense to couple this data vectorization approach with a GPU architecture.

A number of interpreted languages like Matlab, Perl and Python already possess frame-
works specifically designed to deal with vectorized operations. Namely, TensorFlow is a
numerical library for the Python programming language that has proven handy for the
study and representation of a wide spectrum of machine learning problems as it seemingly
distributes computational efforts [1]. However, there are clear benefits of exploring the
vectorization capacity of this framework to speed up GP. Staats et al. [46] have done
precisely that by using TensorFlow to benchmark various GP related classification prob-
lems on both GPU and Central Processing Unit (CPU) architectures with the aid of the
KarooGP engine. Their experimental results clearly demonstrate the feasibility of this
framework for fitness data vectorization on parallel hardware.

1.1 Objectives

Our work aims to validate the versatility of this approach and extend it by studying a
broader range of GP related topics such as classical symbolic regression problems, targeted
image evolution, evolutionary art, etc. Mainly, we intend to determine how each one of
the scenarios analyzed benefits from the use of a GPU and to what extent. Furthermore,
TensorFlow has evolved as a platform since the implementation of KarooGP, introducing
novelties in the underlying execution model. For this reason, another objective will be
to compare different TensorFlow execution modes and understand how these can affect
evolution in GP.

In order to achieve the aforementioned goals, the following tasks were executed:
1. Study of necessary concepts and compilation of related literature.

2. Using TensorFlow to prototype a GP engine capable of operator vectorization, Ten-
sorGP.

3. Feature validation through a series of Symbolic regression experiments.

4. Adjustments to the engine as well as implementation of extra features for evolution
analysis.

5. Creation of a GitHub repository [5].
6. Benchmarking of different GP approaches.

7. Exploration of an Evolutionary Art scenario with parameter exploitation.
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1.2 Outline

The present document is organized as follows. In Chapter 2, the theoretical overview
regarding fundamental EC and GP topics is provided followed by a comprehensive list
of related literature in Chapter 3. In Chapter 4 we define the approach alongside the
representation needed to meet engine requirements. Next, in Chapter 5 we detail the main
features and operators implemented in TensorGP. Then, we compile all the experimentation
done involving the engine for Chapter 6. Finally, Chapter 7 highlights the main conclusions
from this study and some orientation for future work.
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Chapter 2

Background

This chapter aims to provide an overview of the necessary concepts that will be targeted
throughout this work. Following a top-down layout, we start by introducing Evolutionary
Computation (EC) to then funnel our focus towards the main theme of this project which
is Genetic Programming (GP).

2.1 Evolutionary Computation

For many years, scientists have strove to apply some of the aspects regarding biological
evolution to other contexts such as problem-solving, computer simulation and system mod-
eling. Initially, EC emerged as an alternative to find near-optimal solutions to problems
that could not be solved in polynomial time, the so called NP-hard problems.

These problems are often unfeasible to solve through classical analytical methods as they
often comprise a vast search space and/or slow solution assessment, which in turn makes
finding the absolute best solution a daunting task. Instead of scanning through the entire
search space to assess this best solution, EC employs heuristic approaches to gradually
find better solutions that converge to the global best as time goes on. In fact, an Evolu-
tionary Algorithm (EA) is nothing more than a continuous optimization process in which
a population of candidate solutions evolves according to specific problem constraints.

In the realm of Computer Science, evolutionary processes are comprised of four main
phases: Initialization, Selection, Reproduction (through genetic operators) and Termina-
tion [15]. Figure 2.1 shows the flow of phases within an evolutionary cycle.

In the initialization phase, the starting population of candidate solutions is generated,
oftentimes at random (although instantiation from specific starting points can be used if
we possess some prior knowledge of the task at hand) [4].

When implementing evolutionary techniques it is important to understand the difference
between phenotypes and genotypes in order to properly choose the representation that best
suits the problem to solve. The genotype of an individual is the set of its genetic attributes
(genes) that encodes behavioral traits. These encoded traits have observable manifestations
and characteristics that make up the phenotype. Any organism can, therefore, be viewed
as a mapping between their genotype and the respective phenotype. The selection phase is
a two-step process where, in a first instance, the existing population is evaluated according
to a fitness function (always calculated over the phenotype) that indicates how viable
each individual is. After assigning a fitness value to every member of the population,
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Population initialization Is termination No
& fitness evaluation criterion satisfied?

Yes l
( Start ( Output best solution ) Selection
(select parents)

Selection & fitness evaluation Reproduction
(update the population) (generate offsprings)

Figure 2.1: Representation of the Initialization, Selection, Reproduction and Termination
phases of the evolutionary cycle [9].

the top-scoring individuals are chosen to build the next generation. This way, selection
drives phenotypes as close to the optimum as possible with each passing generation [44].
Typically, this process is implemented through a tournament that is iteratively applied
over subsets of the whole population and selects pairs of individuals to breed.

With the selected members from the previous phase, a new generation is created using
the genetic material of the parents. The two most commonly used genetic operators that
achieve both mixing and variation of genetic material are crossover and mutation, respec-
tively. Whereas crossover is necessary to produce different combinations of genes, mutation
ensures that small variations are introduced in the gene pool to prevent premature con-
vergence of solutions to local extrema. Generally, we want a higher exploration rate of the
search space in the early steps of the evolutionary process while promoting exploitation in
later stages.

Finally, the evolution process must come to an end. There are numerous measures to
determine the best moment to stop these algorithms, some of which are: performance
stagnation (also called the threshold of performance, which happens when the evolution
ceases to produce better fitted individuals), maximum runtime, maximum generations or
when an acceptable error from the global optimum is reached.

Even though evolutionary approaches can be great problem solving tools, there are several
aspects to consider. Probably the most obvious limitation of any evolutionary process stems
from the already mentioned sub-optimality of solutions found. Being based on heuristics,
EA mostly sacrifices accuracy and optimality for speed. It is not hard to conclude that
there exists no algorithm for solving all (e.g. optimization) problems that is, on average,
superior to any other contending algorithm for all possible cases [50]. This is called the
No Free Lunch (NFL) theorem. In reality, EA is frequently said to be the second best
approach to most problems. If for a given problem there is no traditional solving method
that runs in a feasible amount of time, then an EA would be a good alternative to find
a “good-enough” solution in a sane amount of time. If however, there already exists an
analytical method that solves the problem in a reasonable time frame, then there is little
space for EC in that task.

Perhaps another aspect worth mentioning is that EA provides the necessary flexibility to
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be incorporated either in black-box models or in very specific situations such as dynamical
environments where the goals and problem constraints keep changing over time.

One last aspect to note is the apparent robustness of EA to parameter variation. While
it is true that parameter optimization (such as mutation and crossover probabilities, tour-
nament distribution, population size, etc) can play a significant role in algorithmic perfor-
mance, wrong parameter settings usually do not prevent fairly good results [44]. This added
robustness can help to ease the adoption of such algorithms by other fields of research.

2.2 Genetic Programming

GP is a subfield of EC that concerns itself with the evolution of actual computer programs.
This means that, while other EC approaches require knowledge about the internal structure
inherent to a problem, GP “automatically” solves the problem by optimizing a program
to solve it, consequently being regarded as a domain- independent technique. As with
all evolutionary processes, GP is stochastic as it involves the probabilistic selection of the
best individuals and introduces variations in the set of candidate solutions (or programs
in this case) through crossover and mutation. Again analogously to EC, although this
incorporation of random variations allows escaping from local extrema, it also means that
there is no guarantee as to solution optimality.

In GP, fitness assessment is done by running the actual program and evaluating their
quality compared to a form of ideal quality criteria. For example, if we are trying to
find a program that computes the average of two inputs, we may calculate the numerical
difference between the result from our evolving GP program and the correct formula for
computing averages. However, by only calculating the difference for a specific input, our
solution will be biased as we aren’t assessing fitness for other sets of inputs. In reality, for
a program with n inputs, we want to assess performance within a n-th dimensional domain
by calculating the summation of the differences across all points.

Commonly, programs in GP are not represented by a text string but rather through syntax
trees. These trees are comprised of terminal nodes that contain the variables and constants,
as well as non-terminal nodes that contain allowed operators/functions for that program.
The set of allowed operators is called the function set while the set of possible variables
leaf nodes is called the terminal set. The terminal and function sets together form the
primitive set. It should be noted that O-arity operators (functions with no parameters
such as “rand” or “jump”) are considered part of the terminal set and are therefore treated
as leaf nodes.

In this section, we analyse some desired properties of GP systems in regards to function
set creation and tree generation, as well as making some remarks about areas where GP
is particularly useful.

2.2.1 Function set properties

In order for a GP system to work efficiently, we need to ensure some properties regarding
the function set, namely closure and sufficiency. Closure is a property of the operators
that ensures the validity of functions generated by the program whatever combination
they appear in. This property is needed so that programs don’t cause errors in the fitness
assessment phase. To achieve Closure of the function set, we must provide type consistency
and evaluation safety. Evaluation safety is mainly a way to eliminate undefined behavior
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that may occur for some input combinations. Let’s assume we wish to include division in
our function set. If the terminal set contains the constant 0 then there is the possibility
of generating a program that attempts division by zero, which is undefined behavior that
inevitably leads to a run-time error. In this scenario, we would have to implement evalu-
ation safety programmatically by performing regular division with non zero dividers and
returning a predefined value (such as 0 or even -1) to prevent run-time errors.

The other property of closure is Type Consistency. With Type Consistency, we make
sure that all functions allowed in the program only return and accept data of the same
type. This is often a requirement as the genetic operators applied to GP may swap nodes
corresponding to different subtrees, generate new subtrees and even delete existing ones,
making it possible for every operator to serve as input to any element of the function set
(including the operator itself).

The extent to which GP type consistency is still an issue in untyped languages (such
as Python and Perl) depends on the degree of internal type consistency already ensured
upon the set of operators provided by the language itself. Nevertheless, languages that
ensure this property over all existing data types are rare not to mention that ensuring type
consistency across different data structures can lead to several ambiguities and is an even
more complex task altogether. For that reason, the best practice is to stick to a single type
of data and explicitly define all non-trivial cases.

Another sought after property of GP operators is sufficiency. Sufficiency is needed to guar-
antee that at least one solution to the problem can be reached (or feasibly approximated)
given the function set. Suppose that we take the previously discussed example and try
to evolve a program to compute the average of two values in a system where the function
set only contains addition. We will never be able to reach a sensible solution as all we
can do is sum some combination of the inputs. To emulate division, we need either the
division operator itself or some derivation like multiplication. Unfortunately, there are
several problems where proving sufficiency for a given function set might be impractical
and, for such problems it is commonplace to add a few redundant operators in an attempt
to ensure this property.

2.2.2 Tree generation and manipulation

Generally, in order to generate an individual in GP, the two most used methods are Grow
and Full (Figure 2.2). Both methods employ random initialization of the nodes and ensure
a maximum depth (maximum distance in edges from a leaf to the root node). The full
method ensures that leaf nodes only appear in the defined Maximum Tree Depth (MTD) by
continuously feeding operators into one another until that point. Although this generates
a tree with a full topology, the size (number of nodes) of the resulting tree may change
as different operators might have a different number of inputs (child nodes). Whereas the
full method selects operators from the function or terminal set according to the current
tree depth, the grow method simply chooses a random node from the whole primitive set.
This allows for leaf nodes to exists above MTD, leading to shorter trees (fewer nodes) on
average. Oftentimes, both of these methods are used in conjunction to generate the initial
population in a process known as Ramped half-and-half. In this approach, half of the
population is generated using the full method while the other half is generated using grow.

During the evolutionary process, the program population is subject to recombination and
mutation operations just like in EC. In GP, crossover is typically done in a subtree fashion.
In this technique, we replace a randomly chosen subtree in the first parent with a subtree
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Figure 2.2: Example of trees generated with the full and grow methods (left and right,
respectively) [31].

of the second parent. Randomly choosing a node in the whole tree makes leaves much
more prone to crossover which causes a small amount of genetic material to be modified.
To account for this, Koza [25] proposed the widely accepted approach of only selecting leaf
nodes 10% of the time.

When it comes to mutation operators there are a few operators commonly used, probably
the most popular being subtree mutation. This operator replaces the subtree corresponding
to a randomly selected node with another randomly generated subtree. Subtree mutation
tends to generate offspring with the same size (on average) as their parents, although
some variations exist [39]. On the other hand, Hoist mutation tends to create smaller
individuals by generating offspring that are copies of a randomly chosen subtree of the
parent. Likewise, Shrink mutation also monotonously decreases program size by replacing
a randomly chosen subtree with a terminal. Another highly acclaimed mutation operator
is Point mutation (or node replacement mutation) where we select a random node (either
function or terminal) and replace the matching primitive with a different random primitive
of the same arity. Many EC problems benefit from Permutation mutation, which is a way
to shuffle the genes of an individual by repeatedly performing swaps in the genotype.
This type of mutation is also applied in GP, although to a lesser degree, by swapping the
arguments of a randomly chosen node from the function set.

2.2.3 GP Applications

Akin to EC, GP methods are regarded as good alternatives to problems where optimal
solutions are not attainable at all or in a reasonable amount of time. According to [39],
GP seems to excel in problems with at least some of the following properties:

e The relationships among the relevant variables are unknown or poorly understood.

e Finding the size, topology or representation of the optimal solution is a major part
of the problem.

e Significant amounts of test data are available in computer-readable form.

e There are good simulators to test the performance of tentative solutions to a problem,
but poor methods to directly obtain good solutions.

e Conventional mathematical analysis does not, or cannot, provide analytic solutions.

e An approximate solution is acceptable (or is the only result that is ever likely to be
obtained).

e Small improvements in performance are continuously measured and highly prized.
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Therefore, GP has done well in a variety of tasks ranging from conventional symbolic
regression and signal processing problems to other domains such as medicine and generative
art.

Generative art is commonly regarded as any art practise that is set in motion with some
degree of autonomy through a set of rules which are executed by a machine, typically a
computer [17]. Evolutionary art can therefore be defined as a subset of all generative art
that encompasses some type of evolutionary process.

As explained by J. Romero [41], GP in specific is a commonly used evolutionary art tech-
nique. This is due to the fact that any mathematical expression evolved with GP can be
evaluated by plugging in pixel coordinates to produce an image phenotype.

Even though defining art is outside the scope of this work, a general consensus is that the
perception of art is highly subjective. This can be problematic in the context of evolu-
tionary art because every evolutionary process needs to assess the fitness of its candidate
solutions. In fact, this happens to be the major difficulty for art generation with evolu-
tionary techniques. [32, p. 24]. In Chapter 6 we will revisit this topic by employing an
automatic evaluation method to evolutionary art in GP.

10
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State of The Art

In this chapter, we delve further into GP and contextualize the role of parallelization in
this area while providing a compilation of related literature.

3.1 Graph-based GP

Tree based GP follows a very well defined structure where each node calls primitives from
the depth level immediately below. While it is true that a tree is a special kind of graph,
efforts have been made to model GP systems in a graph-like manner where each subtree
has the possibility of being called from more than one location. This approach makes sense
as it is frequent for a program to have common parts that are derivations of other highly fit
individuals. These common parts represent copies of the same subtree that can be found
within an individual.

To evolve programs with this high degree of parallelism, Poli [38] proposed Parallel Dis-
tributed Genetic Programming (PDGP), which introduced the reuse of subtrees. In PDGP,
programs as seen as graphs with nodes representing primitives and links representing both
the flow of program control and results. The results labelled in the links allow for PDGP
to transcend the generalization of standard tree-based GP and explore the evolution of
more complex programs like logic networks, neural networks, finite state automata, etc.

Another interesting graph-based form of GP systems is Cartesian Genetic Programming
(CGP). In this representation initially proposed by Miller [34], a program’s genotype is
an integer list that represents the functions and connections between graph nodes. This
list of integers is subdivided into groups, each corresponding to a position in a 2-D array.
While one integer in a group defines the primitive to use, others point to the location of the
input values in the genome. Effectively, CGP implements an unusual form of redundancy,
in which genes may be switched on or off. This redundancy proved to have unexpected
beneficial results in evolutionary search [35].

3.2 Faster GP

Being that we must run every program in the population for every fitness case, it comes
as no surprise that GP is regarded as a High Performance Computing (HPC) task when
applied to complex problems. In this section, we analyse some methods used to curb the
use of computational resources and time, be it by speeding up or parallelizing GP search.

11
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3.2.1 Fitness Acceleration through Caching

As discussed in the previous section, graph-based GP has the ability to reuse partial
results avoiding the repeated evaluation of the same subtree and therefore speeding up the
execution of a given program. However, GP programs usually share code amongst different
individuals and not only within a single program [22]. This comes as a direct consequence
of the evolutionary process that promotes the genetic material of fit individuals, leading
to many copies of successful code throughout the population. Fitness caching refers to
the process of storing results of calculated subtrees thereby avoiding the re-calculation of
data. In particular, Handley [19] implemented fitness caching by saving the computed
value by each subtree for each fitness case. This allowed for computational savings both
by not recomputing subtrees that appear more than once in a generation and by not
recomputing subtrees that are copied from one generation to the next. Furthermore,
Handley represented the population of parsed trees as a Directed Acyclic Graph (DAG)
rather than a collection of separate trees, consequently saving memory by not duplicating
structurally identical subtrees.

Although many GP applications can greatly benefit from fitness caching, there are several
exceptions worth mentioning. First and foremost, in order to effectively reuse a past result,
we must remember both the inputs and the corresponding output for a given subtree. There
are, however, GP systems where subtrees have side effects in other parts of the program.
In such systems, the output of a subtree depends not only on the input parameters but also
on the rest of the program. Langdon [27| exploited syntax rules about where in the code
these side effects could lie so as to implement caching under these constraints. Nevertheless,
because of the unpredictable nature of these GP systems, fitness caching is more widely
used outside this domain.

Another implementation concern of this caching approach are the genetic operators in-
volved. Suppose that during the recombination phase we add a new subtree to a terminal
node of an already existing subtree. By doing this, the caches of every node between the
new code and the root node may now be invalid. Although at first this might look like
a complex problem, it should be noted that only direct ancestors of a node need to be
updated. As a result, imagining that the crossed over code is inserted at depth d, we only
need to update d nodes [39]. Considering that to evaluate a node we can use the cached
values of its children, this task is not so daunting after all.

Even if we rule out the performance overhead incurred by subtree caching, memory is
still an issue. Because the number of unique subtrees is a dynamical consequence of a
run, the size of the memory allocated for caching should be dynamic as well. This is
a potential problem in applications with a limited amount of available Random Access
Memory (RAM). It is therefore desirable to devise a mechanism where the maximum size
of the subtree cache can be set beforehand. Keijzer [23| proposed two cache update and
flush methods to deal with fixed size subtree caching. The first method uses a postfix
traversal of the tree and implements a bottom-up approach to decide whether a subtree
should be added to or deleted from the cache. The second method follows the DAG
approach, where inside the DAG a fixed set of fitness evaluations are cached. Realistically,
as memory is a limited resource, the cache size is always limited and because of this hit-
rates and search times become determining factors to performance. Wong and Zhang [51|
developed a caching mechanism based on hash tables to estimate algebraic equivalence
between subtrees. This proved efficient in reducing the time taken to search for common
code by reducing the number of node evaluations.

Caching methods are particularly useful in scenarios with greater memory requirements and

12



State of The Art

where code re-execution is more time consuming. As an example, Machado and Cardoso
[33] applied caching to the evolution of large sized images (up to 512 by 512 pixels) in the
NEvAr evolutionary art tool, confirming the benefits of caching for instances with large
sets of fitness cases.

3.2.2 GP in Parallel Hardware

The field of GP, although computationally intensive in nature is also “embarrassingly par-
allel” [2]. As a matter of fact, this is not a property exclusive to GP but valid to the area
of EC as a whole. Because of this, many efforts have been made to implement GP systems
using parallel hardware.

There are two main ways to apply parallelization to EC. We can attempt to speed up
both the evolutionary process itself or the fitness evaluation phase. For instance, Yu et al.
[52]. implemented a parallel genetic algorithm where not only the fitness evaluation was
parallelized, but also the genetic operators. Nevertheless, parallelizing genetic operators
like crossover means providing exclusive access to the genetic material of the parents,
which might perform suboptimally with traditional GP implementations. Perhaps the
most straightforward way to parallelize GP is to do so in the fitness phase, which is (in
most instances) the most computationally costly operation in GP [18]. Various methods to
speed up fitness evaluation with different parallel architectures are herein analysed, with
a special focus on Graphics Processing Unit (GPU)s.

3.2.3 GPU versus CPU

Whereas a Central Processing Unit (CPU) strives to minimize the latency of operations,
a GPU mainly focuses on maximizing data throughput as shown in Figure 3.1. Data
throughput refers to the amount of information that gets process in a given time unit, no
matter how fast each operation is performed, which translates to Genetic Programming
operations per second (GPops) in GP.

In recent years, we have seen steady growth in the computing capability of GPUs. Even
CPUs have seen an increasing concern with overall throughput maximization resulting
in higher core counts. While this is true, even top-of-the-line CPUs are still nowhere
near the floating point performance offered by a standard GPU. Typically, GPUs operate
according to a model called Single Program Multiple Data (SPMD), where many processors
simultaneously run the same program/instruction on different inputs. This applies to
fitness evaluation in GP in the sense that every generation we need to run every program
in the population on the same set of data points.

As an example, Cano et al. [8] proposed a scalable model to massively parallelize the eval-
uation of individuals using the NVIDIA Compute Unified Device Architecture (CUDA)
GPU programming model. Their test results revealed a significant reduction of compu-
tational time compared to a sequential approach, reaching speedups of up to 820 fold
for certain classification problems. Similarly, Augusto and Barbosa [3] ported many GP
parallelization strategies into the open source and multi platform OpenCL programming
framework. By comparing the results of these parallel strategies on CPU and GPU pro-
cessors from different vendors they concluded that overall, the GPU is considerably faster
and more power efficient than the CPU as even a mid-range GPU can beat a very high-end
CPU.

So far, we have looked at benchmarks comparing optimized GPU code against trivial
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Figure 3.1: A CPU architecture is optimized for low latency accesses, while GPUs are
optimized for higher throughput [29].

sequential CPU implementations. However, this is quite unfair for the CPU counterparts
as these devices have seen growing support in Single Instruction Multiple Data (SIMD)
optimizations. As Chitty [12] demonstrates, a multi-core CPU implementation of GP can
yield performance levels that match and even exceed those made for the latest graphics
cards. Indeed, despite the higher throughput of GPUs, identical performance values were
obtained for a sequential stack implementation of GP using Streaming SIMD Extensions
(SSE) and loop unrolling in a Multi-core CPU.

Additionally, GPUs are not the only parallelization capable devices that have been applied
to GP. For instance, Field Programmable Gate Arrays (FPGA) are chips that contain large
matrices of configurable logic blocks connected via programmable interconnects. These
interconnects allow for the chip functionality and connectivity to be changed through
software by simply writing a configuration into the chip’s static memory [39].

In particular, FPGAs have been applied to fitness evaluation in GP to evolve sorting net-
works [24]. The problem of checking whether a candidate network (a sequence comparison-
exchange operations executed in a fixed order) is a valid sorting network is an exceptionally
burdensome problem when it comes to computational resources, hence the use of an FPGA.
Still, Koza et al. managed to find optimal sorting networks to sort 7, 8 and even 9 items.

3.2.4 Interpretation vs Compilation

In order to run these programs in the GPU, we can either compile them for this platform or
build an interpreter capable of translating the program. There is clearly a trade-off choice:
the cost of iterating over code to translate it needs to be balanced against the compilation
overhead and reduced cost of iterating over compiled instructions.

Langdon and Banzhaf [26] demonstrated a SIMD interpreter which runs a quarter of a mil-
lion programs simultaneously on the NVIDIA GeForce 8800 GTX GPU using RapidMind’s
GNU C++ OpenGL framework. By employing a Reverse Polish Notation (RPN) rather
than a prefix-based representation, Langdon replaced recursive calls by an explicit stack
thus making the interpreter readily applicable to CGP and increasing performance. In one
case, more than one billion GPops were interpreted. Analogously, Cano and Ventura [7|
created a parallel subtree interpreter that extends on common parallelization approaches
by concurrently evaluating different code segments of the same individual. As demon-
strated in their work, the interpreter managed to outperform similar models, achieving up
to 21 billion GPops using a NVIDIA GTX 480 GPU. In a similar fashion, Harding and
Banzhaf [20, 21| used fragment shader programs to interpret GP individuals. This is done
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through a case statement at the evaluation of each node that determines what function to
apply to the input values. The shader is executed for each individual and the resulting
texture is converted back into an array for fitness assessment. This was proved beneficial
to increase performance both in classification and regression problems.

On the other hand, many works resort to compilation approaches. Chitty [11] used a
conversion technique to automatically convert each GP tree into a fragment program that
would then be compiled for the GPU on the CPU. After compilation, the program is
transferred to the GPU where it is executed for fitness evaluation. This is achieved by
using both OpenGL and C for Graphics (Cg) to convert chromosomes to Cg source code
and render the evaluation data to a texture. The texture is then transferred back to
the CPU where it is compared to the desired output and assigned a fitness value. This
implementation proved to be much faster than many data parallel approaches.

3.2.5 Parallelization approaches and Thread Divergence

However we choose to run GP programs in the GPU (be it interpreted or compiled), we can
also run multiple programs at once. As a result, we can parallelize both the evaluation of
programs (population parallel approach) or the set of fitness cases (data parallel approach).

Robilliard et al. [40] analysed this problematic by implementing two different interpretation
schemes: BlockGP and Therad GP. Threads in a GPU architecture are typically subdivided
into groups. These groups have different designations according to GPU manufacturers
(Streaming Multiprocessor for NVIDIA, Compute Unit for AMD, etc). For the sake of
simplicity, we shall call these groups of threads multiprocessors. In the BlockGP scheme,
each multiprocessor would only interpret one GP tree at a time, which allowed for multiple
GP programs to be evaluated in parallel. The second scheme would spread the individuals
of the population by the available threads on the GPU. This is to say that, if the population
number was equal to the number of threads of the GPU, each thread would be responsible
to run one single GP program. Their test results showed that, for all the considered test
cases, BlockGP continuously outperformed ThreadGP.

This was demonstrated to be partly due to a phenomenon called divergence. Although
in parallel computing each thread workload should aim to be as independent as possible,
many algorithms cannot escape the need for thread synchronization. Let’s say that we
required that all threads evaluate an if statement before continuing code execution. In
this scenario, there may be threads that evaluate the conditional statement as false on
their own data and are then put on idle as they wait for the remaining ones. This process
leads to divergence and consequently to a loss of computing power. This was precisely
the problem in the ThreadGP scheme as many threads interpreting different programs
were run on each multiprocessor In their comparative benchmarks, Augusto and Barbosa
[3] also investigated the impact of branch divergence in GPU performance. Accordingly,
they concluded that the population-parallel per multiprocessor strategy is clearly the most
efficient approach.

3.2.6 Data Vectorization

Up until this point, we verified that there is a clear motivation in parallelizing the fitness
phase. More specifically, we exemplified approaches where various fitness cases were as-
sessed simultaneously through parallelization. However, we can also run all fitness cases
at the same time but by vectorization of the fitness domain instead. Whatever the dimen-
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sionality of the problem, we can always represent the fitness domain as an n-dimensional
matrix of values.

In this paradigm, running a GP program consists of nothing more than a successive
component-wise application of the operators the program is made of. In his work re-
garding subtree caching Keijzer [23| also studies the benefits of vectorized evaluation for
symbolic regression over the standard case-by-case evaluation method. As the author
points out, such a vectorized evaluation effectively reduces the running time of a program
to the number of nodes it contains. This makes overhead independent from the size of the
fitness domain, which is especially useful in problems with millions of data points (i.e. the
evolution of large images via GP [10]).

Furthermore, some interpreted languages such as Matlab, Python and Perl already have
extensive support for vectorized evaluation in an attempt to reduce computational impact.
In fact, many numerical computation libraries like Python’s TensorFlow have been used to
aid domain vectorization [46]. Moreover, TensorFlow has the added benefit of being readily
available for GPU with minimal to none code modifications. GPUs, as the name implies,
are optimized for graphics processing, which mostly entails matrix and vector operations.
Therefore, it makes sense to use this kind of hardware to accelerate vectorized evaluation
even further. Staats et al. [46] demonstrated the benefits of using TensorFlow to vectorized
GP fitness data in both CPU and GPU architectures. Experimental results showed that
by vectorizing data with KarooGP (the GP engine used) in a problem consisting of 90,000
data points, performance increases up to 875 fold are possible under specific scenarios.
Moreover, while runs of the KarooGP system on the GPU fail to outperform similar runs
on the CPU for small problems, the results are inverted when running complex problems
(5.5 million data points) with GPU speedups averaging 1.3 times. Once again, this last
benchmark validates that larger fitness domains do benefit from the higher data throughput
offered by massively parallel architectures such as the GPU.
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Chapter 4

Approach

The fitness evaluation process in Genetic Programming (GP) consists of two phases: geno-
type to phenotype translation through the calculation of domain data points followed by
fitness assessment based on the obtained phenotype. In this work, we intend on speeding
up the fitness evaluation process by mainly focusing on the vectorization of data points to
be assessed during the genotype to phenotype translation phase. The advantages and mo-
tivations for this approach are described in section 3.2.6 “Data Vectorization”. To achieve
our objectives, we resort to the TensorFlow numerical library to create a GP engine called
capable of implementing the mentioned techniques for accelerating tree evaluation, as pro-
posed by [46].

While a few other independent GP engines already use this framework, this new imple-
mentation is justifiable as we wish to extend the applicability of this system to study other
problems (i.e., in the domains of image evolution) and possibly provide a general-purpose
tool that makes parallelization seemingless for experimentation within GP research. Be-
sides, other engines using TensorFlow (including KarooGP) mostly use outdated versions
of TensorFlow that operate over graphs which can oftentimes be non-optimal as far as GP
is concerned (as we will analyse in the following sections). Moreover, we will also compare
our vectorized approach against iterative baselines and other standard GP frameworks in
the field (such as DEAP) in order to determine performance gains.

4.1 Parallelization of Fitness Evaluation

The domain of fitness data points to be evaluated is fixed for all individuals across all
generations, making the vectorization of this data trivial using a tensor representation. In
essence, a tensor is a generalization of scalars (that have no indices), vectors (that have
exactly one index), and matrices (that have exactly two indices) to an arbitrary number of
indices [42]. The output from the evaluation phase will be a tensor, given as a function of
the coordinates for each data point. These coordinates will also be represented as tensors,
each defining coordinates for one of the dimensions.

Before moving on, we must define the variables of the terminal set. For a problem con-
cerning a domain with n dimensions, there will be n variables in the terminal set as this
is the amount necessary to index any element within that domain.

In a serial approach z, y, z, ..., are actually variables because they change according to
which element of the domain we are evaluating. However, in a vectorized approach we want
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to evaluate the domain in one go and as a result z, y, z, ..., will be tensors containing
coordinate values. This means that, for example, every element in x will have the value
corresponding to the position of that element in the tensor along the x axis. For this
reason, the word “variable” is a rather misleading terminology in the context of parallel
GP. Nevertheless, in an effort to stay consistent with existing literature, we will continue
to refer to these as variables of the terminal set.

In the same manner that there are variables in the terminal set, there are also constants/s-
calars that either can take the same value for the whole problem domain or have specific
values according to a given dimension. Typically this dimension is the depth, in order to
emulate color channels like Red-Green-Blue (RGB).

To calculate the output tensor of a program, we first need to represent the program flow
as a data structure composed of operators from the function set as well as variables and
ephemeral constants of the terminal set. This is done by first parsing the expression
containing the code of the program into a tree structure that is recursively traversed to
calculate the result tensor. TensorFlow then seemingless distributes computational efforts
across available hardware, Central Processing Unit (CPU) and/or Graphics Processing
Unit (GPU).

Finally, fitness is calculated by comparing this result with the optimal fitness measure.
We should note that this last comparative step of the fitness evaluation phase can also be
vectorized and run on the GPU. Additionally, as the target to compare is constant, we can
save this data as a tensor to GPU memory and eliminate the overhead of memory transfer.

4.2 TensorFlow Intermediate Caching

When running the vectorized operations, TensorFlow performs some limited caching of
intermediate nodes to avoid later code re-execution.

As previously mentioned, it is frequent for a population of GP programs to share common
code. In fact, this is a result of the evolutionary process that promotes highly fit code
which in turn gets mutated and transmitted across generations. By caching the fitness
values of common segments of code, we avoid re-executing the same code time and time
again, possibly leading to a significant increase in efficiency and algorithmic performance.

In TensorFlow 1 this can be done through an intermediate graph of operations in what
TensorFlow calls graph execution mode. With further developments in TensorFlow 2 there
was a shift in execution paradigm and the explicit intermediate graph was abolished in
favor of just-in-time tensor execution, also known as eager execution mode.

In upcoming sections, we aim to explore and exploit the caching mechanisms employed by
both TensorFlow execution modes to hopefully obtain more meaningful speedups, both in

GPU and CPU.
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Implementation

TensorGP takes the classical approach of most other GP applications and expands on
it by using TensorFlow to vectorize operations and consequently speed up the domain
evaluation process through the use of parallel hardware. The engine herein described was
implemented in Python 3.7 using the TensorFlow 2.1 framework and is publicly available
on GitHub [5].

TensorFlow is still an evolving tool with version 2.0 coming out in late 2019. By this
time, most of the TensorFlow dependent part of the engine was already developed and, for
this reason, some features of the engine had to be rewritten to comply with both the new
TensorFlow Application Programming Interface (API) and execution models.

In this section, we describe the implementation details of the incorporated GP features
and the efforts of integrating some of said features with the TensorFlow platform.

5.1 Genotype and Phenotype

In its simplest form, each individual can be represented as a mathematical expression
which corresponds to a program that one would come across in any traditional functional
programming language. Our engine follows the traditional GP approach of representing this
expression as a tree graph, which facilitates the modification of our symbolic expressions
through genetic operators. This way, to build an individual, a tree structure is created and
nodes are recursively added to the tree until a certain depth range and other criteria are
met.

The next step is to go through the entire genotype data to produce phenotypes. This is
where vectorization really shines. In our case, the phenotype is a rank 3 tensor which
results from evaluating our expression over the entire problem domain. Because this result
tensor has three dimensions, we can represent the phenotype as an image. The first two
dimensions of the result tensor are the width and height of the image while the third
dimension corresponds to the color channels. The classical approach of calculating an
individual’s expression as many times as there are evaluation points in the problem domain
can be a time consuming task even for modern processors. This is especially true for larger
domains.

For instance, a 1,000 by 1,000 pixel image translates to 1 million evaluation points for which
we would have to evaluate an expression. Moreover, it is not uncommon for GP experiments
to have populations with hundreds or even thousands of individuals, which would mean
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that just to get to the phenotypes, we could potentially be looking at billions of expression
evaluations per generation. Vectorization eases the burden of this task by taking advantage
of the parallel nature of the evaluation process. With the aid of TensorFlow primitives, we
can apply an operation to all domain points at the same time. It’s noteworthy that the
evaluation itself may not happen at the same time in hardware, however. Internally, the
tensor information is passed to the processor, where it is segmented and distributed between
all available parallel processors. This step is done with the help of Compute Unified Device
Architecture (CUDA) if using the GPU. TensorFlow provides an abstraction layer for this
segmentation process.

5.1.1 TensorFlow Integration

As mentioned, TensorFlow can either execute in an eager or graph-oriented mode. When
it comes to graph execution, TensorFlow internally converts the tree structure into a graph
before actually calculating any values. This is done in order to cache potential intermediate

results from subtrees, effectively generalizing our tree graph structure to a Directed Acyclic
Graph (DAG).

<
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Figure 5.1: Genotype and Phenotype representation in TensorGP.
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Figure 5.1 shows the different possible stages of genotype to phenotype translation in the
engine. The string to tree translation phase will only happen if the population is given as
input by the user. Moreover, we can verify that in the DAG representation, the addition
of z and y variables is reused and fed into nodes that use that same code (the cosine and
sine operators, in this case).

Throughout most of TensorFlow version 1, this process of compiling desired operations into
a graph was the only mode of execution and had to be done explicitly in code. Before the
announcement of version 2, TensorFlow introduced a new processing model called “eager
execution”, which allows for the immediate execution of a tensor operation without the
need for graph building. Therefore, the tree to DAG translation phase does not exist when
running TensorFlow in eager mode. It worth noting this eager execution model is enabled
by default in TensorFlow 2.x and supports GPU acceleration [45].

Although graph oriented execution allows for many memory and speed optimizations, there
are scenarios where the tensors to run change frequently. In such scenarios, the removal of
this intermediate graph layer might be beneficial.

Because the individuals we are evolving are constantly changing from generation to gen-
eration, we would be inclined to think that eager mode would instead be a good fit for
tensor execution. For this reason, in Chapter 6 we include some performance comparisons
between both these TensorFlow execution modes.

5.2 Tree Generation

The three main methods for randomly generating tree expressions are supported by the
engine: grow, full and Ramped Half-and-Half (RHH). These methods recursively grab
elements from the function and terminal set in order to generate a batch of tree structures
(the initial population). This batch of trees must obey a minimum and maximum tree
depth as well as a certain set of rules.

For clarity and future reference, depth is defined as counting edges, not nodes.

5.2.1 Grow and Full

As mentioned in Section 3, with the full method all individuals are generated by filling
the tree with elements from the function set until the maximum tree depth is reached.
Concerning the grow method, a similar process is implemented using both the function
and terminal set instead, leading to shorter trees on average.

As a sidenote, because the primitives of the function set can have different arities, two
trees generated using the same maximum depth can be rather different in size (number of
nodes). For instance, assuming the full method using a maximum depth n, a tree with a
arity-3 root node will generate three n - 1 depth subtrees which will most likely be bigger
than a tree with a single argument root node (only one n - 1 depth subtree). The grow
method is also affected by such differences, although to a lesser extent due to the random
distribution of terminal nodes.
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5.2.2 Ramped Half-and-Half

In the first few iterations of the engine, RHH was implemented by simply having one
half of each tree generated with the full method and the other half generated using the
grow method. While this might be the most straightforward implementation, it has the
disadvantage of always generating trees with a specific depth. To overcome this, the tree
depth is defined a priori (typically using a random value from 2 to 6 [39]).

Nonetheless, there are other versions of RHH that uniformly distribute generated trees
across a given depth range, achieving a good range of both randomly sized and randomly
shaped individuals. One of those variations is described by [49] and it consists of evenly
dividing the population in blocks, so that each block generates individuals of different
depths ranging from the specified minimum to maximum tree depths. Half of each block
is generated using the full method, while the other half uses the grow method. The main
difference is that using this algorithm, all individuals are generated using one and only one
method (either full or grow).

This RHH variation is no longer a way of generating trees individually, but rather a way
of generating an entire population, achieving the same effect as the first implementation
but with a more uniform depth and size distribution (as opposed to a random one). There
are more complex ways to mix the full and grow methods to achieve true uniformity
amongst trees such as the algorithm proposed by [6], which guarantees the creation of a
tree chosen uniformly from the full set of all possible trees of a given size. However, we
opted to use the block driven RHH algorithm because of the balance it offers between
complexity /performance and distribution of results.

The tree generation function is used to either initialize a population or to inject individ-
uals into an already existing one, in a process known as immigration (which the engine
also supports). Typically, this process is executed to promote diversity in situations of
prolonged fitness plateaus.

All generated programs must be evaluated for fitness before entering the current population.
Custom initial individuals can also be passed to the engine through a text file containing
the corresponding expressions as we will later describe.

5.3 Genetic Operators

In any application involving evolutionary computation, there must be a way to mix and
change the genetic material of candidate solutions. This can be achieved with crossover
(also known as recombination) and mutation operators. The idea behind crossover is
that by combining the genetic data of two highly fit individuals, we produce a different
individual which, from a statistical standpoint, should also be fairly fit. On the other hand,
mutation methods introduce small changes to the genes in order to explore new solutions
and prevent the stagnation of the genetic pool in a given population.

5.3.1 Crossover

As previously seen, the common approach of using a tree to represent individuals in GP
eases the implementation of both crossover and mutation operators. TensorGP implements
one crossover and four mutation operators. The used crossover operator implements a
variation of a common technique called subtree crossover. This technique involves selecting
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a node from one parent and inserting that node into the second parent. The selected node
from the first parent is chosen randomly either from the function set with 90% probability
or from the terminal set with 10% probability (according to Koza’s rule [25]). Then, a
node is randomly chosen from the function set of the second parent and within that node,
a random children is chosen to be substituted.

—‘

Figure 5.2: Example of the crossover result between the top row images, resulting in the
images of the bottom row.

It is worth mentioning that this algorithm preserves both parents, and unlike other vari-
ations, only one new individual is created by copying the second parent and performing
the aforementioned substitution process. Figure 5.2 exemplifies this crossover method. As
shown, the image produced is a mix of both its parents because it combines features and
shapes from both images into a single individual.

5.3.2 Mutation

When it comes to mutation, the four implemented algorithms are subtree, point, promotion
and demotion mutation. All these operators create a single new individual, that results
from copying the parent and applying the corresponding algorithms. In early versions of
the engine, only subtree mutation was implemented. However, in order to cope with the
increasing evolutionary needs of experimentation, three more operators were added. A
description of all currently implemented mutation operators is subsequently provided.

Subtree mutation randomly chooses a non-terminal node and replaces its rooted subtree by
a randomly generated one of the same depth. In early versions of the engine, only subtree
mutation was implemented. However, the destructive nature of this operator coupled
with its inability to explore different depths, lead to the implementation of the remaining
operators.
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Figure 5.3: Parent program for the mutation processes exemplified in Figures 5.4 and 5.5.

Point mutation randomly chooses a node (terminal or not) and replaces said node with
another one from the same set. In other words, if a terminal node is chosen we replace
it by another terminal whereas if a function is chosen, we replace it by another function.
We need to take additional caution for the nonterminal case because we must replace the
chosen node with another primitive of the same arity. This means that we can’t replace
an if primitive (which takes three arguments) with a multiply (which only takes two). In
the special case that there is only one primitive of the specified node’s arity, the mutation
process generates an individual equal to the parent.

----HE‘

B°Q! U

Figure 5.4: Images resulting from Subtree (right) and Point mutation (left).

One peculiarity of these two operators is that they both preserve the depth of the original
parent. However, we might want want to dynamically vary this parameter in order to avoid
biasing the evolutionary process towards the depth distribution of the initial population.
For this reason, promotion and demotion mutation were implemented.

Promotion mutation aims to decrease the size of a tree by erasing one of its nodes. In
this method, we take a randomly chosen non-terminal node and replace one of its children
with the parent. This will also erase any other children of the older node. Moreover, this
mutation never deletes terminals because we could not generate a valid tree without adding
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Chapter 5

another primitive in its place.

On the contrary, demotion mutation serves the purpose of increasing the size of a tree. At
first, a random node is chosen (terminal or non-terminal) and is replaced by a randomly
selected primitive from the function set. If the node has children, one of them will be the
old replaced node, while the remaining children (if any) are randomly generated terminals.

i

Figure 5.5: Images resulting from Promotion (right) and Demotion mutation (left).

5.3.3 Operation Application

The application of genetic operators is mutually exclusive, meaning that the engine ap-
plies at most one of the operators described to each individual in each generation. The
population generated for the next generation is based on the current population. For each
new individual, a tournament selection is performed over the current population to select
individuals which will be the parents of any genetic operators applied. The operator to be
applied to each new individual is affected by both the mutation and crossover rates. The
algorithm is as follows.

Algorithm 5.1: Application of genetic operators.

input: max_ retrie cnt, child depth
i+ 0

while (min_ depth < child depth < max depth) and
(i < max_retrie cnt)
parent < tournament selection ()
random number < random ()
child <« parent

if random number < crossover rate
parent 2 < tournament_selection ()
child <+ crossover (parent, parent 2)

else if crossover rate < random_ number < crossover rate
child + mutation(parent, mutation method)

end if

child depth <« depth(child)
i+ 1i+1
end while

First, a random number is generated from 0 to 1. If the generated number is lesser than the
crossover rate, then we select two parents and perform the crossover operator. Otherwise,
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if the random number is between the crossover rate and the sum of both the mutation
and crossover rates, one of the four possible mutation operators is randomly chosen and
applied. Else, if the random number is within the sum of both rates and 1 no operator
is applied. In order for this selection to work as intended, the sum of the mutation and
crossover rates must be less than 1, or else the selection will be biased towards choosing
the crossover operator.

As discussed previously, the promotion and demotion mutation operators do not guarantee
depth preservation and because of this, generated trees might not meet the depth range
criteria. If this is the case, the engine will retry applying the operator selection process
for a few more iterations. If after a number of tries no valid tree is found, the algorithm
simply gives up and copies the individual resulting from the tournament selection. The
pseudocode in Algorithm 5.1 illustrates the whole selection process for genetic operators.

5.4 Fitness Assessment

Fitness is assessed every time new individuals enter the population. This happens when
the population is initialized, between generations or when immigration is used. The fitness
function itself is written by the user and passed to the engine as a reference.

Before assessment, the engine passes the population to a wrap function that enables the
TensorFlow device to be used for evaluation, only then the actual fitness function is called.
The vectorization process for fitness evaluation is described in detail in Chapter 4. The
next population of individuals is generated by mutating and mating individuals of the
previous generation according to Algorithm 5.1.
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Figure 5.6: Population evolution within an evolutionary run (experiment with NIMA clas-
sifier - see Chapter 6).
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One of the most important aspects of evolutionary algorithms in general is the method
of selecting individuals. Our GP engine follows the most commonly used tournament
selection method [14]|. Tournament selection works by taking a sample for the population
and choosing the fittest individual within that sample. The size of this sample is called
tournament size and determines the evolutionary pressure to exert onto the population (a
tournament size of 3 is the engine’s default). A larger tournament size is more likely to
choose the overall best, leading to more evolutionary pressure and greater convergence.

5.5 Primitive Set

In order to provide a general purpose GP tool and ease evolution towards more complex
solutions, the primitive set implemented goes beyond the scope of simple mathematical and
logic operators. This way, we attempt to provide sufficiency through redundancy of oper-
ators for as many problems as possible. Moreover, the fact that our engine predominately
deals with images calls for the addition of image specific operators.

Operators must also be defined for all possible fitness domains, which in some cases means
implementing protection mechanisms for certain values. Table 5.1 enumerates the different
types of operators and respective special cases. All operators are applied to tensors and
integrated into the engine through composition of existing TensorFlow functions.

Besides the specified protective mechanism there are noteworthy implementation details
for some of these operators. As an example, when calculating trigonometric operators, the
input argument is first multiplied by 7. The reasoning behind this is that most problem
domains are not defined in the [—m, 7| range, but are otherwise normalized to either [0, 1]
or [-1, 1.

As a matter of fact, it is common in GP not to represent image data in the range of its
width, height and depth but with these values normalized to [-1, 1]. This makes it so
that the argument to the trigonometric operators is in the [—7, 7| range, which covers the
whole output domain for these operators, as can be observed by the examples in Figure
5.7. Generally speaking, keeping the problem domain normalized helps maximize operator
coverage and achieve better results (or more aesthetic ones, as far as image evolution is
concerned).

On another note, bitwise operators also need modifications due to incompatible data types.
We are interested in bitwise operations between integers. However, the values passed
between operators in the engine are floats. We can overcome this by interpreting the float
input values as integers, removing the decimal separator and then dividing the final result.
For instance, assuming the zor operator for floats with 6 effective digits of precision, we
can approximate the integer result by calculating:

int(z - 10%) @ int(y - 10)
106

flz,y) = (5.1)

TensorGP implements a lot of operations that despite useful, are not meant to be applied
to all kinds of problems. For this reason, before calling the engine, the user may specify
a subset of the described operators to be used according to the task at hand. Moreover,
operators like clip and frac are mostly helper functions used when implementing other
operators and may therefore be used even if not directly defined the user-specified subset.
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(a) f(z,y) = cos(x).

(b) f(z,y) = cos(x)sin(y).

Figure 5.7: Images generated with m multiplied by the trigonometric functions input as
implemented in the engine (left) and respective images generated without adjusting for 7
(right).

5.5.1 Warp

While still testing operator functionality in the beginning of this work, the warp operator
stood out as a source of some bugs and implementation struggles. Perhaps the main
difficulty is that, unlike other operators, warp data accesses are not performed element-
wise. In other words, whereas other operators perform calculations over elements of the
same index, warp needs to be able to access any element of an input tensor independent
of the index being calculated. Because of this, the TensorFlow implementation of this
operator needs to be expressed as a ‘not so obvious” composition of existing primitives.
This makes the warp probably the slowest operator of the whole primitive set. Hence, in
this subsection, we shall more rigorously define this operator as well as analyse it from a
performance perspective.

The warp operator is defined as a transformation that maps every element of a tensor to a
different coordinate. There are two main arguments to this operator for a tensor with rank
n: the tensor with the elements to transform (hereafter referred to as image tensor) and
an array of n tensors of rank n, each with the new coordinate position for that dimension
(hereafter referred to as coordinate tensors). The bi-dimensional version of this operator
is often used to distort shapes in an image.

Figure 5.8 exemplifies this distortion process. The original image (left) is warped using a
trigonometric expression to transform values along the x axis. We can see that the top and
bottom features of the original image seem to become stretched while features towards the
middle stay similar.

Any colored image can be thought of as a rank 3 tensor. In this representation, the first

29



Chapter 5

(a) Original Image I. (b) T = warp(I, mult(cos(y), z),y)

Figure 5.8: Image transformation using warp.

two dimensions would correspond to the width and height of the image, while the last
dimension encodes the data for the color channels, which corresponding to the “depth”.
Color data can be encoded in RGB, Hue Saturation Value (HSV), or any other format
(TensorGP uses RGB).

In order to deform shapes in an image while preserving color data, the coordinate tensors
have to map points along the third dimension to themselves. In other words, we will have
to perform a null transformation along the color channel (here corresponding to the depth)
of the tensor. We can achieve this by plugging in the color channel input a tensor filled
with the depth values for each of its elements.

It is worth noting that a tensor resulting from a warp operation can either lose or main-
tain the amount of information relative to the original tensor, but never gain additional
information. This happens because warp transforms data by gathering elements from the
main input tensor, therefore never generating more unique elements in the result.

If the transformation process (defined by the input tensors) gathers every element exactly
once, the amount of information is maintained, otherwise at least some information is lost.
Because of this, some properties that are commonplace in other simple math operators
(such as associativity and inversion) either do not hold for all warp transformations or
simply do not apply.

Identity is however a valid warp property (exists for every tensor). Let I be the image
tensor of rank n and C' the array of coordinate tensors corresponding to the variables
of the terminal set. Then, the expression Identity = warp(l,C) holds true for every I.
For n = 2, this translates to Identity = warp(l,z,y). Besides, other common matrix
operations can easily be expressed as a warp transform. For instance, a transpose can be
emulated by switching the coordinate tensors and defining Transpose = warp(1,y, x).

When it comes to performance, because we must perform a gather from the input for every
element of the result tensor, the warp operator has a very high parallelism potential. Thus,
we might be enticed to write a straightforward implementation based on the transformation
process for each individual element (as presented in Algorithm 5.2).

It should be noted that, even though tensors can be viewed as multidimensional matrices,
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for implementation purposes it is easier to represent them as a single array of contiguous
elements. In this representation, we can iterate over all tensor elements with a simple for
loop and locate a certain element within the tensor based on its coordinates.

For example, assuming the coordinates (ci, ¢z, c3) and dimensions (n1,ng,ng) we can get
the index by calculating index = ((c1 x n1) + ¢2) X ng) + ¢3. Index calculation can be
generalized for n dimensions either recursively or using a for loop, as demonstrated by
Algorithm 5.2.

Algorithm 5.2: Parallel warp algorithm for an arbitrary number of dimensions.

function get coordinate (offset , index)

domain delta < max domain — min domain

el + input tensors|[index]|[offset |

domain < constrain(min domain, el, max domain) — min domain
domain < domain x (dimensions|[index] — 1) X domain_ delta;

return round (domain)
end function

function warp(input tensors, image, dimensions)
result < create tensor(tensor rank)

foreach index in [0, number tensor elements|
coordinate < get coordinate(index, 0)

for i in [1, tensor rank]

coordinate ¢« dimension[i] x coordinate

coordinate <« coordinate + get coordinate(index, i)
end for

result [index] <« image[coordinate]
end for

return result
end function

Where “input_tensors” is an array of tensors (7'[¢|[n] represents the nth element of the ith
input tensor), “image” is the tensor to gather values from, “dimensions” refers to the shape
of tensors and “tensor rank” to the number of dimension of tensors.

This implementation has the advantage of being easily adapted to machines with parallel
processors by segmentation (or even elimination) of the outer for loop.

However, while TensorFlow possesses a plethora of operators to cater to our vectorization
needs, it lacks a warp-like operator. Therefore, to implement it, we need to express the
whole transformation process as a composition of existing TensorFlow functions. Luckily,
TensorFlow has a “gather nd” operator, which accepts a tensor of indices and grabs data
from another tensor according to the given indices. This way, the only thing that we
have to do in preparation is to build this tensor of indices and pass it to the “gather nd”
operator.

Algorithm 5.3: Parallel warp algorithm for an arbitrary number of dimensions.

def tensorflow composite warp (input_ tensors, image, dimensions):

n = tensor rank
domain delta = max_ domain — min_domain

# Replace non—defined values with zero

for t in input_ tensors:
t = tf.where(tf.math.is nan(t), tf.zeros like(t), t)
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Create a list of tensor coordinates
T = create list(n)

for i in range(n):

# Constrain all tensor values to domain

T[i] = tf.clip by value(input tensors[i], 0.0, dimensions[k] — 1)

T[i] = tf.math.subtract(T[i], 1.0)

# Map domain to coordinates

T[i] = tf.math. multiply (T[i], 1.0 / domain delta)

T[i] = tf.round(T[i])

Stack all coordinate tensors in a single tensor along a new axis

coordinates = tf.stack (T, axis = n)
coordinates = tf.cast(coordinates, tf.int32)

# Gather elements from the image tensor given the calculated coordinates
return tf.gather nd(image tensor, coordinates)

In turn, the process of building the index tensor involves the following phases: iterating over
the coordinate tensors and constraining all elements to the problem domain, mapping their
elements from the domain values of the problem to the dimensions of the output tensor (e.g.
image resolution) and finally rearranging coordinate tensor data by stacking the tensor list
along a new axis, effectively creating a new single tensor acceptable by “gather nd”. A
pseudocode of this operator composition approach is described in Algorithm 5.3.

The previous code is written in Python and the TensorFlow functions used are marker by
the prefix “tf.”. It should also be noted that arithmetic operators in TensorFlow such as
tf.math.add() only accept tensor inputs. In order to include scalars in such operations, we
need to create a constant tensor with the function ¢ f.constant(). For the sake of readability,
however, the above pseudocode assumes the automatic creation of that constant. As an
example: tf.add(T,1) adds 1 to all tensor elements without the need to explicitly create
the constant tensor.

Despite being easy (and arguably more comprehensive) to implement warp as a composi-
tion of operations, we cannot deny the inefficiency of this method versus writing a custom
operator. In fact, TensorFlow allows for the creation of custom operators using C++ for
the CPU code and CUDA for an optimal GPU version.

In order to better understand the performance implications of these algorithms and verify
the potential for parallelism of the warp operator, Figure 5.9 compares 6 different ap-
proaches. The objective being to check how a TensorFlow 2 implementation fares against
more low-level implementations as well as some other iterative baselines.

The entries corresponding to the TensorFlow platform implement warp with operator
composition (Algorithm 5.3), while other entries are based upon explicit parallelization
(Algorithm 5.2). The actual implementations used are slightly optimized versions of both
algorithms. All approaches were tested using rank 3 tensors with dimensions [z, z,4], =
varying from 64 to 4,096. Results are computed from an average of 100 runs (Table 5.4).

Two approaches are GPU based: one of them uses TensorFlow composition (TF GPU)
while the other implements explicit parallelization with an independent CUDA kernel
(GPU CUDA). For the CPU, there is the classical serial approach (CPU), a Single Instruc-
tion Multiple Data (SIMD) version (CPU AVX2), another SIMD version with multithread-
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Time comparisons for warp implementations
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Figure 5.9: Time comparisons for various warp implementation approaches across different
tensor sizes.

ing added (CPU AVX2 mt) and finally, the TensorFlow approach (TF CPU). Specifically,
the SIMD instruction set used was Advanced Vector Extensions (AVX) 2 (also known as
“Haswell New Instructions”). Moreover, all TensorFlow approaches were executed in eager
mode.

Due to the many orders of magnitude that these test results encompass, our best bet for
graphical representation is to use a logarithmic scale as it would be otherwise impossible
to distinguish results (as exemplified by Figure 5.10).

Figure 5.9 shows average timings across different tensor sizes. Regarding the CPU, we ob-
serve a big discrepancy between serial (CPU) and vectorized implementations (like AVX2),
which only confirms how parallelism prone this operator is. Furthermore, almost every
approach follows a linear time increase across tensor side, apart from the TensorFlow ap-
proach on GPU (TF GPU) which exhibits some starting overhead along with performance
penalties for larger domains (see Table 5.2).

In Figure 5.11 we can more easily analyse the performance curve for this approach. Smaller
domains display a lower operation per second count caused by the initial overhead. In the
meantime, larger domains values seem to indicate performance degradation, likely due
to GPU memory constraints. In reality, the last test case corresponding to the largest
problem domain, did not finish in TensorFlow GPU due to insufficient Video Random
Access Memory (VRAM) (therefore not being present in the figures and tables). The
fact that this test case completes in a basic CUDA application seems to indicate that
TensorFlow stills performs some level of cashing for intermediate operator composition
results which occupies more memory (even when executing in eager mode).
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Time comparisons for warp implementations
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Figure 5.10: Time comparisons for various warp implementation approaches on a linear
scale.

Additionally, still looking at Figure 5.11, we see that the two SIMD approaches using
AV X2 scale slightly better for smaller domains, tendency that is inverted in the TensorFlow
approach for CPU that achieves lower relative Million of operations per second (Mops) for
tensors with size 256 when comparing with larger test cases (see Table 5.3).

Overall, the most performant approach (CUDA) was around 300 times faster than the
slowest one (CPU, serialized), reaching almost 10,000 Mops. In both figures, the red line
represents a threshold for approaches two orders of magnitude slower than CUDA. Apart
from the traditional iterative CPU approach, only the TensorFlow CPU version did not
meet this threshold. This is most likely because our specific TensorFlow build tested was
not compiled to support SIMD instructions.

TF TF CPU CPU
CUDA | gpu) | (cPU) | (AVX2 MT) | (avxz) | (CPU)
256 0.033 1.077 15.631 0.173 0.278 19.486
512 0.127 1.037 49.856 0.870 1.252 75.467
1024 0.503 2.625 199.636 3.549 5.454 295.192
2048 1.973 16.171 808.798 14.652 20.115 | 1286.380
4096 7.919 DNF | 3255.874 55.819 80.252 | 4843.459

DNF stands for “Did Not Finish”

Table 5.2: Average timing values(in milliseconds) for different warp implementations across
tensor sizes.
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10000 1 —e— TF GPU _
TF CPU o * d ®
—e— CPU
—e— CPU AVX2
—8— CPU AVX2 (mt)
—e— GPU CUDA
mmmm CUDA (100.0 times slower)
4 o - - — o
5 1000 e
Z . g ®
< -
2
o
3
[
2
C
[
<
v
c
S
o
[
[~
=}
-
=3
c
£ 1004
H
L * - e — o
101 T T T T T
256 512 1024 2048 4096

Tensor side

Figure 5.11: Operations per second comparison for various warp implementation ap-
proaches across different tensor sizes.

The implementation used in our GP engine was the second fastest for the 1,024 domain
test case. This surprising performance even when resorting to operator composition might
be explained by the TensorFlow internal Accelerated Linear Algebra (XLA) integration.
XLA allows to internally compile a sequence of operators into a single GPU kernel call,
substantially reducing related overheads. Analysing XLA performance in TensorFlow is,
however, not the aim of this work.

TF TF CPU CPU

CUDA | gpu) | (cPU) | (avX2 MT) | (avx2) | (CPU)
256 | 8058.283 | 243.372 | 16.771 1515.178 | 942761 | 13.453
512 | 8270.179 | 1011.006 | 21.032 1205.135 | 837.527 | 13.895
1024 | 8336.091 | 1597.630 | 21.010 1181.827 | 768.962 | 14.209
2048 | 8503.404 | 1037.515 | 20.743 1145.046 | 834.073 | 13.042
4096 | 8474.518 DNF | 20.612 1202.258 | 836.231 | 13.856

DNF stands for “Did Not Finish”

Table 5.3: Average operations per second values(in Mops) for different warp implementa-
tions across tensor sizes.

Even though these results seem impressive, the performance differences shown are not
indicative of real-world performance. Tree evaluation often chain dozens or even hundreds
of different operators, leading to other problems in memory management between GPU
and CPU. Besides, program evaluation is only one step within GP and, because of this,
performance improvements of many orders of magnitude are not to be expected for full
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evolutionary runs. In 6, we will analyse GPU performance improvements for both tree
evaluation and complete evolutionary runs.

Parameter Value
CPU Intel®) Core™ i7-6700 (3.40 GHz)
GPU NVIDIA GeForce GTX 1060 3GB
Runs Average of 100

Table 5.4: Experimental setup for the warp operator benchmark.

5.6 Features and Parameterization

In this section, we provide a comprehensive description of TensorGP’s main features along
with the functionality of the parameters that control them. This will hopefully provide a
clear overview of engine functionality and capabilities from a user’s perspective.

5.6.1 Features

When a GP run is initiated on the engine, a special ID based on the current time is
generated for that run and a folder with this ID is created in the local file system (the
path can be user specified). This folder holds files which register information about the
evolution of the experiment, including a folder for each generation. Inside the generation
folders are the images corresponding to every program within that generation. By default
all generations are logged, however, the user can specify an interval between which the
population data is not saved (this can be useful to avoid writing too much information to
disk in longer runs).

In each generation, the engine keeps track of depth and fitness for all individuals. This
information is written to a Comma Separated Values (CSV) file inside the corresponding
generation folder along with the image of the fittest individual of that generation, a text
file with the genotype information (in the form of a string) and images of the remaining
population if the user specifies so. Furthermore, when the run is over, the engine saves the
overall stats for the experiment in a CSV file and automatically generates the depth and
fitness evolution graphics across generations.

Besides, the engine keeps an updated state with all the important parameters and evo-
lution status. The idea is to be able to pause the evolutionary process at any time and
close the program to resume the experiment later. To do this, when the engine is called
it starts by creating a configuration file for that experiment with the appropriate settings
(population size, generations, mutation rate, etc). Then, with each passing generation,
the engine updates the file with information regarding evolution status (current popula-
tion, generation, best fitness, etc). When it is time to resume the experiment, the engine
simply loads the corresponding configuration file (using the ID that uniquely identifies the
experiment), gathering the latest generational and population data.

Although the default engine behaviour is to generate the initial population according to a
given or otherwise random seed, the user can choose to pass a text file containing string-
based programs to the initial engine call in order to specify a custom initial population.

Even though the most traditional method of determining when a GP run ends is to set
a generational limit, there are a number of other ways to do so, including number of
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evaluations, acceptable error, fitness stagnation or loss of diversity. Currently, there are
only two stop criteria implemented: the generation limit (which the engine defaults to) and
acceptable error. In the acceptable error method, the experiment comes to an end if the
best fitted individual achieves a fitness value specified by the user. The conditional check
for this value is made differently depending on whether we are dealing with a minimization
or maximization problem, which leads to the next main feature.

The user can define whether the values calculated for fitness are to be minimized or maxi-
mized. The implementation of this feature is rather simple because the only change needed
is to the conditional fitness checks: when maximizing we check if the fitness is greater than
the current best while when minimizing we check if its lesser than the best. This translates
into small changes to the tournament selection and fitness assessment methods. It is worth
noting that the fitness evaluation function passed to the engine by the user must be in
agreement with the objective specified (maximizing or minimizing).

Moreover, It is possible to define custom operators for the engine. The only requirement
for the implementation of any operator is that it must return a tensor generated with
TensorFlow and have dims = [] as one of the input arguments (in case the tensor dimensions
are needed). After implementing the function, the user is required to add an entry to the
function set with the corresponding operator name and arity.

5.6.2 Parameters

With all the default values defined in the engine, the only strictly necessary argument
that must be passed to the initial call is the fitness function itself. Nevertheless, different
problems more often than not benefit from different evolutionary processes, at which point
parameter adjustment is not only recommended but may even be necessary.

Table 5.5: Parameterization of the current engine implementation.

Default A ted o
Name eat ceepie Description
values values
) ) Function Function to be used when assessing
fitness_function - . N
pointer individual performance
. Number of individuals in th
population_size 100 Positive Int tbet ot mdvt uab.(programs) H e
population
N Findividuals th — -
tournament_size 3 Positive Tnt umber o 1nd1v1§ua s that pal'“tlclpate in
a tournament during the selection process
Probability of lyi f th
mutation_rate 0.1 [0, 1] rObabIiiy Of aDPLYILS any of Bhe
mutation operators to an individual
crossover._rate 0.9 0, 1] Probability of 'applying crossover to an
individual
. Mini depth of individual ted
min_tree_depth 0 Positive Int Hmin Gepti ot 1v.1 Hals generate
by the engine
. Maxi depth of individual ted
max_tree_depth 8 Positive Int AL CEPUL OF IMAIVICUALS generate
by the engine
Maxi h of individual
max_init_depth None Positive Int aximum d?pt . © 1nd.hx.71(.iua > gener'ated
by the engine in the initial population
. “ramped . Choose tree generation method: “ramped
t_depth t
fax-1nitcep half-and-half’ String half-and-half’, “full” or “grow”
terminal_prob® 01 0,1] Probability of .gf.anerating terminal nodes
when conditions to do so are met
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scalar_prob? 0.33 0, 1] Probgbility .Of generati.ng a const.ant
terminal while generating a terminal
) Probability of generating a scalar
uniform_ . . .
0.5 [0,1] constant terminal while generating a
scalar_prob .
constant terminal
Method to stop the evolution process;
stop_criteria “generation” String “generation” means to stop after
stop _walue number of generations
stop_value 10 Positive Int | Threshold to stop the evolution process
X ) ey . Whether we are dealing with a
ojective minimizing String o e
maximization or minimization problem
L . o Generation interval to bring back best
immigration 00 Positive Int e . .
individuals from previous generations
Positive Int
target_dims [128, 128] OS;;;;Z . Problem domain dimensions
Maximum number of nodes to be
max_nodes -1 Positive Int generated for each tree (-1 means no
limit)
" dtob d by th d b
seed None Positive Int Seed to be use v ¢ rat (.)m HHDEE
generator in the engine
Print debug information to console
debug 1 [0, o0] (higher numbers translate to more
verbose outputs)
, Generate fitness and depth evolution
save_graphics True Boolean .
graphics if True
h ted fitness and depth
show_graphics True Boolean Show genelra ¢ n.e Sb.an P
evolution graphics if True
Which physical device to run TensorFlow
device “/cpu:0” String operators on (along with some other
features)
save_to_file 10 Positive Int Generation interval to save engine state
data to
. If not None read population from
read_init . . .
i None String specified file instead of randomly
_from_pop_£file

generating it

tensor values are equal).

% A terminal is a tensor taken from the function set; a constant terminal is a terminal which is always
constant within at least one dimension; a scalar constant terminal is constant along all dimensions (all
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Table 5.1: Description of implemented engine operators.

Operator . . .
Type Subtype (engine abbreviation) Arity Functionality
Mathematical Arithmetic Addition (add) 2 T4y
Subtraction (sub) 2 xr—y
Multiplication (mult) 2 T Xy
Division (div) 2 0 if denominator is 0
Trigonometric * Sine (sin) 1 cos(z)
Cosine (cos) 1 sin(z)
Tangent (tan) 1 tan(z)
Others Exponentional (exp) 1 e’
. log
Logarithm (log) 1 ifar -0
Exponentiation 9 Ty
(pow) 0 if z and y equal 0
Minimun (min) 2 min(x,y)
Maximun (max) 2 maz(z,y)
Average (mdist) 2 (x+y)/2
Negative (neg) 1 -
Square Root 5 N
(sqrt) Oifx <0
-lifxz <0
Sign (sign) 1 0 if z equals 0
litz >0
Absolute value 1 -z itz <0
(abs) zifz >0
s . \b ensure y < x < z
Constrain (clip) 3 or maz(min(z,z),y)
x mod y
Modulo (mod) 2 remainder of division
Fractional part?
(frac) L 7= [a]
Logic Conditional Condition (if) 3 if x then y else z
i logic value of z V y
~A C
Bitwise OR (or) 2 for all bits
. logic value of x @y
Exclusive OR (xor) 2 for all bits
logic value of x Ay
AND (and) 2 for all bits
Transform data
Image Transform Warp (warp) n given tensor input 9
-1ifx <0
Step Normal (step) 1 Lifz ~— 0
Smooth (sstep) 1 2?(3 — 2x)
Perlin Smooth 3
(sstepp) 1 z°(z(6x — 15) + 10)
Color Distance (len) 2 Va2 + g2
Linear Interpolation (lerp) 3 x4+ (y —x) X frac(z)

@ Input argument in radians, ® These are mostly help operators, ¢ Transformation to integer is needed
4 More details in section 5.5.1
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Experimentation

This chapter compiles a series of experiments performed with our engine, ranging from the
early phases of feature validation to CPU against GPU performance benchmarks, as well
as some real-world image evolution applications.

In the first section, efforts towards operator and evolution validation are described. Next,
a comprehensive benchmark of CPU against GPU timings is studied, first for a controlled
environment with only tree/tensor evaluation, followed by a real-world GP problem con-
templating evolution. Finally, we investigate applications in the area of evolutionary art
using an image assessment classifier.

The software and processing hardware used for the execution of these experiments is as
follows:

e CPU Intel® Core™ i7-6700 (3.40 GHz)

e GPU NVIDIA GeForce GTX 1060 3GB

e RAM 2 x 8GB @2,666 MHz

e Operative System Windows 10

¢ Execution Environment Command Prompt

More details regarding specific experimental setups are defined in tables located at the end

of the corresponding section/subsection. GP parameters not specified in these setup tables
follow the defaults defined in Table 5.5.

6.1 Validation Testing

This section describes some of the validation efforts performed on the engine to ensure
both evolutionary behaviour and the correctness of implemented operators. As mentioned,
the engine suffered a major overhaul with the upgrade to version 2 of TensorFlow. At this
point, TensorGP’s implementation was already in an advanced stage, which meant testing
and validating most features twice.

An initial batch of tests was performed to verify the integrity of Tensorflow vectorized op-
erators. This test consisted of a series of asserts performed over desired operator properties
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to test different use cases. All of the protection mechanisms described in Table 5.1 were
validated at least once through this method.

In the context of validating the evolution process itself, three problems were studied. The
first problem tested on the engine concerned the file size maximization of Joint Photo-
graphic Experts Group (JPEG) generated images. In this experiment, the main focus
was solely to confirm the engine’s ability for evolution. Later, TensorGP was applied to
the symbolic regression task of approximating a polynomial function using a simple Mean
Squared Error (MSE) metric for fitness assessment. Besides confirming evolution, this
experiment also analysed performance differences between CPU and GPU.

Along with the TensorFlow 2 overhaul, some quality of life features regarding management
of the primitive set and operator definition were added to the engine as well as a few genetic
operator improvements, which meant feature re-validation. For this reason, the engine was
then applied to three symbolic regression problems in the context of image evolution.

It is worth noting that tests conducted in the first two experiments (JPEG compression
and polynomial symbolic regression) were performed with version 1 of TensorFlow using
graph execution mode. For this reason, performance is not up to par with the latest engine
implementation which uses version 2 in eager execution mode. Still, we must reiterate that
experiments in this section are not meant to showcase engine performance but rather to
validate the ability for evolution of a population towards an objective.

6.1.1 JPEG compression

This first experiment aims to maximize the size of a JPEG image. In this scenario, fitness
assessment was performed by generating and saving the image corresponding to the indi-
vidual’s expression in JPEG format. The size of the produced JPEG was then read and
attributed to the fitness value for that individual.

Figure 6.1 shows the image of an individual produced during evolution. This individual
takes advantage of a self-repeating pattern and modifies it with trigonometric operators,
just enough to trick the JPEG compression algorithm. To put sizes in perspective, Figure
6.1 was originally nearly 2MB whereas the initial population revealed an average size of a
few KB.

This pattern seems to indicate some degree of evolution. Nevertheless, in an effort to
demonstrate evolution in a more traditional context, fitness and timing values were then
analysed for a symbolic regression problem.

Parameter Value
Runs 10 (average)
Maximum Tree Depth | 10
Population Size 50
Generations 20
Objective Maximize JPEG file size

Table 6.1: Experimental setup for the JPEG evolution experiment.

41



Chapter 6

Figure 6.1: Artifact resulting from the task of maximizing JPEG size. Best of generation
5 out of 50 individuals.

6.1.2 Symbolic Regression - Paige Polynomial

To further verify the integrity of the evolution process, the engine was then tested on a
classical symbolic regression task. The objective is to approximate the polynomial function
defined by:

1,1
l+z=%  1+y*

fz,y) = (6.1)

This function is also known as Pagie Polynomial and is often regarded as difficult to
approximate. As proposed by Lourengo et al. [30, p. 13|, the domain considered is defined
in the [—5,5] interval, with a step of s = 0.4, totalling 676 data evaluation points (26
points in each dimension).

In Figure 6.2, we see the results of running this setup with evolution for a population of
100 individuals for 100 generations. We conclude that there is in fact evolution, as the
error from the target function decreases with passing generations. As shown, the MSE
score of the best individual decreases from almost 0.2 to slightly more than 0.14 in the
final generation.

Next, we benchmarked this task for GPU and CPU, but now measuring fitness evaluation
time. The configuration is the same apart from the population (now 20) and the number
of generations, which was modified to meet the specified number of evaluations.

As shown in Figure 6.3, the GPU takes slightly more time on average than the CPU. This
happens because the number of programs to evaluate is reduced (a few hundred) and the
evaluation domain is also rather small. This translates into a performance penalty when
performing the vectorization process on the GPU instead. In fact, the timing difference

42



Experimentation

0.20

Best fitness evolution for the Paige Polynomial

0.19

0.18 -

0.17 4

Best fit individual

0.16 4

0.15

0.14

20

40 60 80
Generations

100

Figure 6.2: Evolution of the MSE metric for the best fit individual over 100 generations
for the Pagie polynomial, 676 fitness points.
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Figure 6.3: Benchmark of time taken to perform n expression evaluations in CPU (red)
and GPU (blue).

seen in the graph corresponds to the overhead of copying data from the CPU to the GPU
and then back to the CPU when needed.

In upcoming experiments, we will analyse how different approaches (iterative and vector-
ized) compare against each other for larger problem domains.
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Parameter Value
Runs 5 (average)
Maximum Tree Depth | 10
Population Size 100 (fitness evolution); 20 (CPU vs GPU benchmark)
Generations 100 (fitness evolution); dynamic (CPU vs GPU benchmark)
Objective Minimize error from Pagie Polynomial

Table 6.2: Experimental setup for Symbolic Regression - Pagie Polynomial.

6.1.3 Image Evolution

So far, outside of early JPEG evolution and other functionality testing, we have been
only experimenting with a symbolic regression problem within a more traditional setting.
This experiment aims to extend upon the previous symbolic regression results while also
serving as a revalidation tool for new features in TensorGP. Results in this section and
from this point on were obtained using TensorFlow 2 running in eager execution mode,
unless expressed otherwise.

Indeed, any image can be represented through a mathematical expression, no matter how
complex it might be. This means that we can effectively generalize symbolic regression to
the evolution of any initial set of images towards any other target image. For instance,
the Pagie Polynomial function when taken in the [—5, 5] domain for both z and y can be
represented with the image in Figure 6.4.

Figure 6.4: Phenotype representation of the Pagie polynomial function 6.2 for all (z,y) in
[—5,5].

Akin to other regression problems, the initial batch of images should evolve to visually
approximate whatever image is defined as target. In the area of GP, this problem of image
evolution towards a target is not a novelty. However, the success of research tackling this
problem is relative to the problem complexity.

Generally speaking, the main issue is that for highly complex target images (images with
complex mathematical representations), the evolutionary process might require a large
number of individuals and generations to attain meaningful results. This amount of indi-
viduals and generations leads to a large number of evaluations and an equally large exper-
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imental run time. In their work, DiPaola et al. [13]| attempted to evolve a rather complex
picture of Darwin’s gaze, letting the experiment run for about 50 days. Impressively, even
with limited computational resources, the best fitted individuals started resembling the
target image for certain features by the end of the run. Even so, the fact that such a large
amount of time was needed to achieve some degree of feature resemblance really puts in
perspective how complex this task can be.

The reason for this picture of Darwin being so inherently complex is because it was origi-
nally a painting created by a human, which adds a difficult layer of detail for a computer
to simulate. Nevertheless, no matter how unfathomably complex an image might be, we
can always represent it in a digital format, even if we have to individually define a value
for every pixel with a conditional operator.

Commonly in GP, assessing fitness for symbolic regression problems is done through mea-
sures like Root Mean Square error (RMSE) or MSE (which was used for the previous
experiment). However, a known shortcoming of the RMSE metric when applied to sym-
bolic regression is that it may end up over benefiting solutions that are constant on the
average domain value. In the context of an image this means preferring individuals only
containing a single color close to the average of the target image. As a countermeasure,
the Structure Similarity Index Measure (SSIM) metric was implemented and benchmarked
against the more common RMSE.

(2 1y + Ch) + (2‘7wy + C2)

SSIM(x,y) =
() (12 4+ p2 + C1)(02 + 02 + Cy)

(6.2)

where:

g, phy = mean of x and y, respectively

o2, JZ = variance of x and y , respectively
0gy = co-variance between x and y level
Cy,Cy = (k1 L)?, (ko L)?

L = dynamic range of color channels

SSIM has the advantage of taking into account image structure and gradients, therefore
penalising images containing different shapes from the target. This metrics accepts two
sets of data (z and y in Equation 6.2) and determines the visual impact of shifts in image
luminance, changes in contrast, as well as any other remaining errors which are collectively
referred to as structural changes [43]. The internal TensorFlow implementation of SSIM
follows a default of k1 = 0.01 and ko = 0.03 for division stabilization. In our case, each
color channel is 8 bits, which translates to a dynamic range of L = 255.

As a side note, SSIM is a maximization metric that outputs values in the [—1,1] range (1
representing equality amongst two sets of data). RMSE on the other hand, is a minimiza-
tion metric that only outputs positive values (0 representing perfect similarity amongst two
sets of data). Due to the fact that RMSE ranges depend on the data to be analysed and the
scale used is different from SSIM, numerical comparisons between both metrics are of little
help. In fact, there is not an obvious way to directly compare these two metrics because
RMSE is an absolute error metric while SSIM represents perceptual and saliency-based
errors [43]. Nonetheless, we will make an attempt to interpret the test results critically
from a visual standpoint.

In total, 3 images with an increasing level of complexity were tested. These images were
generated using the norBErT evolutionary art tool [48]. The first test concerned the
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evolution towards a gray-scale image composed of simple shapes with a size of 128 by 128
pixels. A population composed of 50 individuals was evolved for 200 generations.

oy B

Figure 6.5: Target image (left) with best individuals generated with RMSE (middle) and
SSIM (right) - Black and white image.

The results verify evolution, with both metrics managing to visually approximate the target
image. RMSE seems to achieve a more accurate solution in this particular test, as shown
in Figure 6.5. Despite this, the final SSIM solution is both significantly simpler (Figure 2)
while still reaching a SSIM index of 0.9 (Figure 1). RMSE was faster with a total engine
time of 263 seconds compared to 311 seconds for SSIM.

Even though these results might seem encouraging, tests on slightly more complex colored
images were conducted instead of jumping straight to evolution with photorealistic images.
In the next two experiments, the number of generation was increased to 5,000 and the size
of corresponding images decreased to 64 by 64 pixels.

Figure 6.6: Target image (left) with best individuals generated with RMSE (middle) and
SSIM (right) - First colored image.

For this run, we observe that RMSE manages to attain a slightly more similar image in
relation to the target when compared to SSIM (Figure 6.6). Even though both metrics
max out tree depth (Figure 4), fitness seems to reach a stagnation point faster with RMSE
(no major improvements past the 600 generation mark - Figure 3).

Despite the increase in generations, overall fitness results are worse than the ones verified
for the first image, with a best of 68.6 for RMSE and almost 0.62 for SSIM. Experiments
also took significantly longer with around three and a half hours of total engine time for
RMSE and 10 more minutes for SSIM.

For the second colored image, it is unclear which metric manages to better approximate
the target from a visual perspective (Figure 6.7). However, RMSE results for the overall
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Figure 6.7: Target image (left) with best individuals generated with RMSE (middle) and
SSIM (right) - Second colored image.

best individual are marginally worse (Figure 5) when compared with those of the previous
image (68.6 and 72.8 respectively), whilst the SSIM metric shows a small improvement
(0.62 against 0.72 over last image).

Once again, both metrics max out available tree depth after a couple of generations, indi-
cating that evolution towards more complex targets might benefit from larger and deeper
trees (Figure 6). For this run, RMSE was significantly faster, with a modest 6 hours of
engine time versus 17 hours and 14 minutes with SSIM.

Preliminary tests for photorealistic images proved not to be largely insightful due to regular
fitness plateaus for small tree depths. Such experiments would most likely require evolving
much bigger individuals throughout thousands of generations in order to obtain noteworthy
results as seen in [13|. Therefore, these tests were deemed too computationally demanding
to be performed inside the scope of mere validation testing.

Parameter Value
Runs Single
Maximum Tree Depth | 10
Population Size 50
Generations 200 (first image); 5,000 (last two images)
Objective Minimize error from target image

Table 6.3: Experimental setup for Symbolic Regression in the context of Image Evolution.

6.2 GPU versus CPU

Whereas last section mainly focused on making sure the engine is able to evolve suitable
solutions and that operator functionality is as intended, this section on the other hand, is
concerned with the time comparison of different GP approaches both in a more controlled
environment and within a real-world scenario that features a complete evolutionary run.

Akin to the tests performed for the warp operator, the large time differences amongst
approaches benchmarked in this section warrants the use of a logarithmic scale for graphical
representation, as a linear scale would fail to discern between different results.
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6.2.1 Tree evaluation

As mentioned previously, TensorFlow evolved since the early testing phase, introducing
the eager execution mode which allows for immediate tensor execution without the need
to build the intermediate DAG. The graphs are different for each individual and amongst
generations, so it would make sense for eager execution to have an advantage, at least while
the evolutionary process does not reach the exploitation of one specific type of individual.

To further understand the performance implications of both execution modes when com-
pared to more traditional GP methods, the evaluation of a fixed batch of populations was
benchmarked. This experiment intends to both compare TensorFlow execution modes and
showcase the raw evaluation power of the GPU in comparison to the CPU.

In total, six approaches were compared. Four of these approaches concern the GP engine
implementation: testing both graph and eager execution modes when running in the GPU
versus CPU. The other two approaches implement serial GP evaluation methods: one
resorting to the DEAP framework and another one using a modified version of the engine
that evaluates individuals with the eval Python function instead of TensorFlow. The next
two paragraphs describe the last two approaches.

Perhaps one of the most commonly used GP tools, DEAP is an Evolutionary Computa-
tion (EC) framework written in Python that offers a powerful and simple interface for
Experimentation [16]. We have chosen to include comparisons to this framework because
it represents the standard for iterative domain evaluation in research and literature around
GP. Moreover, DEAP is easy to install and allows for the prototyping of controlled envi-
ronments within a few lines of code.

Time comparison across frameworks

10000 { —e— EVAL
DEAP .

—s— GPU_TF_GRAPH

—e— CPU_TF_GRAPH .

—s— GPU_TF_EAGER ry

—s— CPU_TF_EAGER .

1000 { === GPU_TF_EAGER (50 times slower)

Time (s)

100 4

10 4

T T T T T T
64 128 256 512 1024 2048
Tensor side

Figure 6.8: Time comparison of different approaches for tree evaluation.
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Furthermore, we also include our own serial baseline. The purpose is to compare achievable
timings for an iterative approach that does not use third-party software. We do this
by passing the expression of an individual to the Python eval method so we can run
it. However, this method proves to be slow because it parses the input and then runs
the produced Python code. Therefore, calling eval for all domain values may not be
feasible. Instead, we only call eval once by plugging in a lambda defined expression of the
individual. This will effectively return a function that we can call for any value, eliminating
the overhead of parsing code. This method turns out to be way faster as we are basically
“compiling” the expression/program before running it. For future reference, this approach
will be referred to as EVAL.

In this experiment, we run a static batch of 5 populations for each test case. Every
population consists of 50 individuals and was generated using the RHH method with a
maximum tree depth of 12 as defined in Table 6.6. For all six described approaches we
run the population batch for rank 2 tensors ranging from 64 by 64 (4,096 elements) all the
way to 2,048 by 2,048 (over 4 million evaluation points). Larger domains were not tested
mainly due to VRAM limitations of the GPU.

Figure 6.8 shows the average time taken for the evaluation of all 5 populations in all test
cases. We can conclude that both EVAL and DEAP results are similar, following a linear
increase in evaluation time with an increase in evaluation points.

Operations per second across frameworks

—e— EVAL
DEAP
—e— GPU_TF_GRAPH
1000 | —®— CPU_TF_GRAPH
—e— GPU_TF_EAGER
—e— CPU_TF _EAGER
=== GPU_TF_EAGER (50 times slower)

100 4

10 4

Million of operations per second (Mops/s)

T T T T T T
64 128 256 512 1024 2048
Tensor side

Figure 6.9: Operations per second comparison of different approaches for tree evaluation.

Because there is no domain vectorization, the direct relation between elements and time
taken comes as no surprise. It is worth noting that because of time constraints, results
corresponding to the dashed lines in the two largest tensor sizes were not run but instead
predicted by following the linear behaviour from previous values.
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TF graph | TF graph | TF eager | TF eager

EVAL | DEAP |~ qpyy | (cPu) | (gPU) | (cPU)

64 | AVG 8.346 8.050 23.138 39.813 3.815 3.036
STD 0.219 0.201 0.564 0.842 0.217 0.076

128 | AVG | 33.132 | 31.779 25.885 42.003 3.540 4.073
STD 0.818 0.885 0.497 1.067 0.128 0.112

256 | AVG | 132.277 | 126.930 32.971 60.224 3.527 10.898
STD 3.362 3.499 0.773 1.661 0.131 0.112

512 | AVG | 531.153 | 522.531 128.748 109.530 3.834 11.373
STD | 12.756 | 13.973 2.792 2.920 0.186 0.920

1024 | AVG DNF DNF 446.900 252.232 5.924 26.233
STD DNF DNF 8.940 21.268 0.225 1.056

2048 | AVG DNF DNF 879.737 775.540 14.197 107.416
STD DNF DNF 31.784 58.375 0.370 4.739

DNF stands for “Did Not Finish”

Table 6.4: Standard deviation (STD) and average (AVG) of timing values for the tree
evaluation experiment (in seconds).

Analysing results for TensorFlow eager execution mode, we see that even though the CPU
is faster for smaller domains (64 by 64), this trend fades rapidly for larger problems. In
fact, for 128 by 128 (16,384) elements, the GPU is already marginally faster than the CPU.
This margin widens with an increase in tensor side, resulting in GPU evaluations over a
2,048 by 2,048 domain being almost 8 times faster. As a reminder, with TensorFlow we
are already providing operator vectorization, hence the 8 fold increase is merely a product
of running the same approach on dedicated hardware.

Moreover, we can also confirm the hypothesis that the evolutionary process in GP benefits
from eager execution. For the two smaller domain sizes, we observed that the slowest eager
execution approach is about 8 times faster than the fastest graph execution one. This trend

continues for larger domains.

TF graph | TF graph | TF eager | TF eager

EVAL | DEAP |~ qpyy | (cPu) | (GPU) | (CPU)
64 | AVG 5.123 5.311 1.848 1.074 11.233 14.086
STD 0.013 0.029 0.007 0.013 0.631 0.126
128 | AVG 5.162 5.382 6.607 4.072 48.336 41.997
STD 0.011 0.039 0.066 0.039 0.695 0.243
256 | AVG 5.172 5.390 20.751 11.361 194.072 62.777
STD 0.013 0.028 0.420 0.162 3.287 1.335
512 | AVG 5.172 5.237 21.255 24.986 714.443 241.604
STD 0.033 0.029 0.287 0.326 18.340 15.924
1024 | AVG DNF DNF 24.493 43.617 1850.492 417.695
STD DNF DNF 0.361 3.444 19.868 17.234
2048 | AVG DNF DNF 49.788 56.708 3084.161 407.904
STD DNF DNF 0.824 4.476 23.578 8.984

DNF stands for “Did Not Finish”

Table 6.5: Standard deviation (STD) and average (AVG) of operation per second values
for the tree evaluation experiment (in Mops/s).

However, results gathered for graph execution show rather unexpected behaviour.

As

suggested by past experiments, it would be safe to assume that the CPU would be faster
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for small domains with the GPU taking over for larger ones.

In reality, the opposite is happening: the GPU is faster for domains up to 256 in size,
from which point on the CPU takes over. The answer to this strange behaviour may lie in
the graph implementation that TensorFlow uses. Fitting every individual of a population
in one session graph proved to take too much memory for larger domains, making these
approaches even slower both in GPU and CPU. This need for memory is especially taxing
for the GPU VRAM (which is only 3GB versus the available 16GB for system memory)
that did not even finish some test cases trying to include the entire population in a single
graph. For this reason, and to be consistent with all domain sizes, we decided to test
these graph execution approaches by opening a session graph for each individual instead
of evaluating the entire population in one graph. Still, we can safely conclude that both
graph execution approaches are slower than their eager equivalents.

Similarly to the warp operator experiments in Section 5.5.1 of the last chapter, the red bold
line represents a 50 times performance threshold over our fastest approach (TensorFlow
eager on GPU), which reached a peak of over 3,000 Mops/s as shown in Figure 6.9.

This turns out to be a rather steep performance drop when compared to the amount of
operations per second demonstrated with the warp operator. The main reasons being
more complex memory management (the chaining of operations fills the GPU VRAM
which needs to free space by sending unnecessary data back to the CPU) and operator
safety methods which include both the protection mechanisms described in Table 5.1 as
well as Not a Number (NaN) checks.

Parameter Value
Runs 5 (average)
Maximum Tree Depth | 12 (all 5 populations only had this depth)
Population Size 50
Generations 1
Objective - (no evolution)
Test cases 6 (22", for n in [6, 11])

Table 6.6: Experimental setup for Tree Evaluation.

6.2.2 Evolutionary run

Last experiment results only concern the tensor evaluation phase, stripped down of both
the fitness evaluation phase and the remaining evolutionary process. This setup certainly
does not constitute a typical real-world scenario within the context of GP research.

For that reason, in this subsection, we once again take the previous Paige polynomial
symbolic regression problem and let the same initial populations evolve for 50 generations.
Although the main purpose of this experiment is to benchmark timings, we will also anal-
yse fitness progression across generations to make sure that evolution is verifiable for all
approaches.

In this experiment, only four out of the six previously analysed approaches were compared.
TensorFlow graph execution was excluded due to the fact that both its GPU and CPU
approaches proved to be slower than any other running in eager execution mode. Because
our aim is to confirm speedup between our fastest TensorFlow approaches and the more
standardized iterative ones, we chose to compare TensorFlow eager execution against the
baseline (EVAL) and DEAP.
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Regarding our baseline approach, fitness was assessed by reverting the tree representation
of an individual back to a string and then following the previous algorithm of compiling
a function with Python’s eval method. For DEAP, the eaSimple evolutionary algorithm
was used along with a PrimitiveTree object to represent each individual. There is an
additional struggle with this framework because the number of assessed individuals does
not remain constant throughout generations. Instead, the population size depends on the
offspring from past populations, which further obfuscates direct comparisons.

Figure 6.10 shows total run times for all considered approaches. Probably the most notice-
able aspect of these results is that they appear to be less linear in nature when compared
to those regarding raw tree evaluation. This happens because, even though we are using
a fixed population batch for each test case, evolution might be guided towards different
depths for different initial populations. If the best fitted individual happens to have a lower
depth value, the rest of the population will eventually lean towards that trend, lowering
the overall average population depth and thus rendering the tensor evaluation phase less
computationally expensive. The opposite happens if the best fitted individual is deeper, re-
sulting in more computation time. This explains the relatively higher standard deviations
presented in Table 6.7.

Time comparison across frameworks

—— EVAL
10000 - DEAP

—e— GPU_TF_EAGER
—e— CPU TF_EAGER
mmmm GPU TF EAGER (100x slower)

1000

Time (s)

100 4

10

64 128 256 512 1024 2048
Tensor side

Figure 6.10: Time comparison of different approaches for a full evolutionary run.

In reality, even for the same initial population, the evolutionary process might benefit
different programs for different problem sizes. An expression that roughly approximates a
4 by 4 domain might fail to approximate a larger one, and even though the contrary might
not be true, evolution rarely finds the most efficient solution. Basically, this means that
given the exact same populations and parameters (other than domain size), it is possible
for the best fitted individual achieved for a small domain to be more complex than another
one reached for a bigger domain. In this scenario, if the size discrepancy is big enough,
the overhead incurred by evaluating bigger individuals might very well outweigh the higher
number of evaluation cases, making the evolution process slower for the smaller domain.
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This also explains the non-linear behaviour across problem sizes. In specific, we observe
that for the TensorFlow GPU approach (GPU_TF EAGER), the test case for size 256
runs faster than the two smaller domains. This happens because, as verified by analysing
previous results for this approach (Tables 6.4 and 6.5), domains up to a certain size roughly
take the same amount of time to evaluate in the GPU due to the massive overhead of
copying data to and from the device. It just so happens that the 256 test case saw a low
enough average depth of individuals to verify such a decrease in computation time (Figure
6.11).

Average depth values [average and depth] across tensor sizes
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8.5
- 8.0 ! .
£
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7.0 \/ \
64 128 256 512 1024 2048
Tensor side

Figure 6.11: Average depth values across test cases for the GPU_ TF EAGER approach.

It is worth noting that in this experiment the tensor side doubles for each consequent test
case, making the evaluation of a given expression 4 times slower. Assuming we use the full
method for tree generation and a simplification of our primitive set to have arity 2 for all
operators, it would only take an increase of 2 average depth levels to make evolution more
than 4 times slower (and therefore more taxing than doubling the tensor side).

Still regarding TensorFlow results, from the two first test cases, we can not identify a
clear preference towards CPU or GPU as for these domain sizes the GPU memory transfer
overhead is on par with the lack of CPU parallelization power. Nonetheless, for domains
larger than 256 in tensor side, a clear preference towards GPU starts to be evident, with
an average speedup of over 21 times for a 2,048 by 2,048 problem size (64 seconds average
for the GPU against 1,353 seconds for the CPU approach).

Perhaps the most unexpected results are the test cases for the DEAP framework, which are
consistently slower than even the EVAL baseline. In tree evaluation we saw that domain
calculation is slightly faster in DEAP than in our baseline. However, as mentioned, DEAP
uses dynamic population sizes during evolution which might slow down the run. It is also
worth mentioning that only the basic genetic operators and algorithms were used for DEAP.
More extensive experimentation with the evolutionary capabilities of this framework would
most likely reveal a more optimal set of genetic operators and parameters that could be
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faster than EVAL. Even so, that is not the aim of this work and so we shall compare
TensorFlow timings against our baseline, which follows the same iterative principle.

In turn, EVAL proves to slower than any of the TensorFlow approaches for all considered
test cases, with an average verified speedup of almost 600 times over GPU TF EAGER
for the 512 domain test case (18 and a half seconds average for the GPU in TensorFlow
against 11,052 seconds or slightly over 3 hours for EVAL). For both iterative approaches
(DEAP and EVAL), tests that on average took longer than 5 hours for a single population
were not completed as they would steal computation time from other experiments (to put
these times in perspective, EVAL would take almost two weeks to complete if it were to
follow the displayed behaviour for smaller test cases).

Clearly, the results shown for the GPU in TensorFlow are fast, maybe even too fast. Indeed,
with the evolutionary process thrown in the mix, it would be safe to assume that the speed
up between iterative and vectorized approaches would shorten, even if marginally. This
seems to not be the case, in fact, speedups are higher when compared to tree evaluation
experiments. Previous results with 512 tensor side for TensorFlow GPU against EVAL
regarding raw tree evaluation shows a speedup of almost 140 times, which is a far cry from
the aforementioned nearly 600 times confirmed with evolution.

Average time values taken across generations for tensor side 64

1.4

1.2

1.0

0.8

Time (s)

0.4

0.2

0.0

0 10 20 30 40 50
Generations

Figure 6.12: Average evaluation time across generations for test case 64 in the GPU
_TF EAGER approach.

This can be explained by the caching of intermediate results that TensorFlow performs
even when executing in eager mode. While neither DEAP or EVAL use any memory
during expression calculations, TensorFlow can store results concerning parts of individuals
that remain unchanged through the generations. This leads to a pronounced decrease in
evaluation time after the first few initial generations, as observed in Figure 6.12. These
results further make the case for expression evolution with TensorFlow.
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Finally, with the aim of confirming evolution in this experiment, Appendix B contains
graphs regarding fitness evolution across generations for all studied approaches.

TF eager | TF eager

EVAL | DEAP (CPU) (GPU)

64 | AVG 196.866 | 397.821 21.859 17.766
STD 96.264 | 339.495 13.439 8.287

128 | AVG 795.363 | 2546.834 15.761 21.189
STD 381.714 | 2127.378 7.852 11.986

256 | AVG | 3274.131 | 7783.763 45.640 13.769
STD | 2482.257 | 5824.779 20.788 7.390

512 | AVG | 11052.164 DNF 104.960 18.486
STD | 3887.540 DNF 30.212 8.750

1024 | AVG DNF DNF 434.372 21.205
STD DNF DNF 160.051 9.979

2048 | AVG DNF DNF 1353.666 64.535
STD DNF DNF 679.557 32.505

DNF stands for “Did Not Finish”

Table 6.7: Standard deviation (STD) and average (AVG) timing values for the evolutionary
run experiment (in seconds).

Parameter Value
Runs 5 (average)
Maximum Tree Depth | 12 (all 5 populations only had this depth)
Population Size 50
Generations 50
Objective Minimize error from Pagie Polynomial
Test cases 6 (227, for n in [6, 11])

Table 6.8: Experimental setup for Evolutionary Run.

6.3 Evolutionary art with NIMA

With the increase in tensor evaluation speed and consequently of the evolutionary process
made possible by our engine, the potential for computer evolutionary art seems enticing.
Specifically, in this section, we will apply TensorGP to the problem of producing visually
appealing imagery with the aid of an image quality assessment classifier. We will first pro-
vide a comparative benchmark between DEAP and our GPU approach using TensorFlow
in order to further corroborate the advantages of GPU in this type of experimentation.
Afterwards, relying on the GPU parallelization capabilities, we will relax specific GP pa-
rameters and analyse the resulting effects on image generation.

For this task, we need a way to rank individuals according to how visually appealing they
seem to humans. As explained at the end of Chapter 2, this fitness assessment process is
non-trivial when it comes to evolutionary art.

Because the images need to be appealing from a human perspective, one obvious way
to deal with fitness assessment would be to resort to human supervision. However, this
option would not only slow down the evolutionary process which is the main enabler for
the exploration of this theme but would also be rather time consuming for the human
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expert. For this reason, we decided to make use of the Neural Image Assessment (NIMA)
classifier for fitness ranking. NIMA tackles the problem of quantification of image quality
and aesthetics with a deep Convolutional Neural Network (CNN) that is trained to predict
which images a typical user would rate as visually appealing, either from a technical or
aesthetic standpoint [47].

NIMA makes use of Keras, which is a Python module that provides a set of deep learning
models through TensorFlow’s backend. The implementation of NIMA used is publicly
available at [28] and allows the use of pre-trained CNNs in Keras. For this experimentation
in particular, we are interested in the NIMA aesthetic network, trained with the Atomic
Visual Action (AVA) image datasets specifically for assessing image aesthetics [37].

The classifier internally uses images with a resolution of 224 by 224 pixels and therefore
all the domains considered for this section have dimensions [224, 224, 3], to accommodate
image resolution and the RGB color channels as previously done with experiments in
targeted image evolution (Section 6.1.3). Besides, NIMA outputs two values for each
image: the main score and an associated error. For simplicity, fitness in the following tests
is calculated using only the main score of an image.

Moreover, apart from total engine time, values for fitness and tensor evaluation will be
analysed to better understand the contribution of each evolution phase in overall system
performance. “Fitness” timings refer to the time taken for classification with NIMA, “Ten-
sor” corresponds to expression evaluation time and “Engine” indicates total time taken for
the whole run.

6.3.1 GPU vs CPU

In this experiment, we show performance differences between the DEAP framework and
our eager GPU approach in TensorFlow using NIMA (simply referred to as TF GPU in
subsequent results). For this purpose, the aesthetic classifier was integrated with both
approaches and applied to the same initial population batch used for previous experimen-
tations in the context of CPU versus GPU (Section 6.2).

Engine Tensor Fitness
Avg. Std. Avg. Std. Avg. | Std.
DEAP 20828.926 | 22126.456 || 20808.229 | 22123.844 || 17.928 | 0.659
TF GPU 40.860 8.862 21.508 6.022 || 10.857 | 0.817

Table 6.9: Average and standard deviation timings values (in seconds) for GPU versus
DEAP evolution with NIMA.

The preceding table shows average and standard deviation values for the considered metrics
amongst all 5 runs. As expected, the TF GPU approach is significantly faster than DEAP,
with an average speedup of over 500 times for total engine time and almost 1,000 times
for tensor evaluation. Again, even taking into account the power of the GPU, these results
should be taken with a grain of salt as we are dealing with different engines that follow
different evolutionary pathways. Indeed, the higher standard deviations values imply a
wide range of timing values, especially with DEAP (with results ranging from 2,700 to
60,000 seconds for minimum and maximum run times, respectively). Although deviations
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are not so pronounced for GPU, we should remember that the classifier resolution (224 by
224 pixels) translates to a domain that still entails some memory copying overhead for the
GPU, as seen in Section 6.1.3. Furthermore, the caching of intermediate results greatly
favors TF GPU timings.

Regarding DEAP, expression evaluation is shown to take the bulk of all computation time,
while for TensorFlow the percentage of time spent on classification significantly increases.

As a sidenote, the slightly increased fitness evaluation time for DEAP derives from the
fact that fitness is assessed on an individual basis, therefore forcing one call to NIMA
per individual, whereas in TensorFlow we measure fitness for the whole population at
once, which allows passing all corresponding tensors as a batch with a single classifier call.
Besides, the gap between the sum of tensor plus fitness times and total engine time in our
GPU approach is mainly due to TensorFlow initialization, generation of log files and some
genetic operator overhead.

These experiments provide a rough estimate of achievable speedups in this scenario. How-
ever, to obtain more accurate overall results would mean performing more runs, which has
proven unfeasible with the DEAP approach.

Parameter Value

Runs 5 (average)

Maximum Tree Depth | 12 (all 5 populations only had this depth)

Population Size 50

Generations 50

Objective Maximize score of NIMA aesthetic classifier.

Table 6.10: Exprimental setup for TF GPU vs DEAP classification with NIMA.

6.3.2 Parameter Exploitation

The experimental setup used for benchmarking in the previous subsection proved to be
a relatively light load for our engine, which allows some leeway to exploit desirable GP
parameters in the context of evolutionary art. Mainly, we are interested in harnessing latent
GPU potential to study how increasing depths, population size and number of generations
affect NIMA guided evolution.

For this purpose, three different experimental setups were executed where we analyse
system run times and display the most aesthetic individuals both according to classifier
scores and from a human perspective.

Engine Tensor Fitness
Avg. Std. Avg. Std. Avg. Std.
SETUP 1 | 154.060 | 53.340 76.389 | 44.113 56.320 | 4.187

SETUP 2 | 1549.142 | 851.596 || 1020.004 | 678.013 237.839 | 27.847
SETUP 3 | 3893.523 | 595.160 || 1546.332 | 466.752 || 1982.522 | 20.945

Table 6.11: Average and standard deviation timings values (in seconds) for different setups
for NIMA evolution.
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Runs | Generations | Population size | Max Tree Depth
SETUP 1 30 200 50 12
SETUP 2 30 500 100 15
SETUP 3 30 200 200 20

Table 6.12: Experimental setups for exploratory tests in evolutionary art with NIMA.

Apart from the experiment specific parameters in Table 6.12 and defaults defined in Table
5.5, every one of the following experiments were run with a crossover probability of 90%
to further promote diversity. [32, p. 145].

The first setup is based upon the standard batch of 50 individuals that we have been using.
Setup 2 is based upon [48] and intends to emulate another recent experiment in the realm
of evolutionary art. For the last and most computationally intensive setup, we increase
max tree depth to 20 to broaden the search space and revert the number of generations
back to 200.

The first conclusion we can take from the timing results in Table 6.11 is that setup 3 is
in fact, the most taxing on system resources. The drastic increase in NIMA evaluation
time verified for setup 3 is mainly explained by an implementation detail that forced
execution exclusively to the CPU for the classifier in this setup, or TensorFlow would
otherwise crash due to memory overflow of the GPU VRAM. It should be noted that
setup 3 does indeed entail the highest memory footprint because of population size. As
expected, the smaller standard deviations values are detected for fitness assessment as the
work done by the classifier is constant (always evaluate the same number of individuals
per generation) whereas tensor times vary according to average population depth, types of
operation favored by evolution and opportunities for caching of intermediate results.

Lastly, in the hopes of demonstrating some of TensorGP’s potential for artistic generation,
we compile a small gallery with the best individuals according to both the NIMA aesthetic
classifier (Figure 6.13) and a human (and therefore subjective) perspective (Figure 6.14).

Perhaps the most noticeable aspect of these images is that the individuals with the highest
fitness values are not always the most visually appealing. Nonetheless, this should not
come as surprise. In reality, NIMA is trained using the AVA dataset which primarily uses
images related to human activities, not necessarily works of art. Besides, there is always the
underlying subjectiveness of sorting any kind of art, which undermines, even if marginally,
the effectiveness of using a classifier for that purpose.
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Figure 6.13: Gallery of 3 best images according to NIMA score, generated with experimen-
tal setup 1 (left), 2 (middle) and 3 (right).
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Figure 6.14: Gallery of 15 visually appealing images from a human perspective, generated
with experimental setup 1 (left), 2 (middle) and 3 (right).
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Conclusion

The usefulness of GP goes undisputed due to its ability to approximate the optimal solution
of a given problem without domain-specific knowledge. However, because all candidate
solutions need to be evaluated against the entire fitness domain for each generation of the
evolutionary process, GP is often regarded as very computationally expensive.

In this work, we propose an approach to ease this computational burden by taking ad-
vantage of the high potential for parallelism in GP. Namely, we investigate the benefits
of applying data vectorization to the fitness evaluation phase using throughput-oriented
architectures such as the GPU.

To accomplish this we employed the TensorFlow numerical computation library written
in Python, to develop a general-purpose GP engine capable of catering to our vectoriza-
tion needs, TensorGP. TensorFlow provides seamless integration across different computing
devices thus simplifying the process of performance comparison amongst various architec-
tures.

Regarding experimentation, the functional aspect of evolution was first validated by max-
imizing image file size when compressing to the JPEG format. Additionally, and still
within the validation phase, TensorGP was used to approximate both the Pagie Polynomial
function and a selection of target images in the context of classical symbolic regression.
Expression based image evolution was then performed in a benchmarking phase where
performance differences amongst different GPU and CPU approaches were analysed.

Our results show that, by using TensorFlow 2 to perform vectorization of large fitness
case domains in a GPU, speed gains in excess of two orders of magnitude over a standard
iterative approach can be reached under controlled environments that exclusively target raw
tree evaluation rates. Furthermore, experiments comprising full fledge evolutionary tasks
suggest that TensorFlow manages to save intermediate results from expression calculation,
avoiding the re-execution of highly shared code, consequently accentuating speedups in
relation to more traditional iterative GP approaches.

Finally, we applied our engine to an evolutionary art problem using an image quality
assessment classifier to perform automatic fitness evaluation. Time comparisons in this
area further demonstrate how advantageous parallel GP solutions can be even outside the
scope of typical application scenarios. Moreover, our TensorFlow approach is shown to
make feasible the exploitation of certain GP parameters such as depth and population
size, which are desirable in evolutionary art research.

These test results provide an experimental demonstration of how larger domains benefit

61



Chapter 7

from the higher computational throughput of massively parallel hardware such as the GPU
[46]. In fact, as the complexity of problems attempted by GP increases, a natural demand
for higher computational resources follows. Namely, with GPU computing on the rise and
the potential to perform trillions of floating point operations per second, a shift towards
the applications of these devices to GP is likely to occur. However, our test results for
smaller domains seem to still make the case for more latency-oriented programming models
such as the CPU. Therefore, modern day GP seems to be best suited for heterogeneous
computing frameworks like TensorFlow that are device independent.

Upon completion of this work, several possibilities are to be considered for future endeav-
ours. Some engine improvements and application scenarios that were not furthered or
contemplated are subsequently listed.

Firstly, TensorGP performance would benefit from the elimination of overhead incurred by
operator composition and protection mechanisms through the integration of device specific
code (dedicated CPU functions and CUDA kernels) with TensorFlow. However, this would
require the integration of our custom operators with the TensorFlow libraries, possibly in
a future release of the framework.

Another appealing idea would be to integrate a pre-processing phase into the engine with
the purpose of simplifying expressions before tensor evaluation. This would help eliminate
redundant computations, effectively making the fitness evaluation phase even faster.

On the other hand, the study of image-based symbolic regression could be extended by
comparing and analysing the impact of different fitness metrics and classifiers in the evo-
lution process. Specifically, based on the data collected from Chapter 6, evolution towards
photorealistic images is tempting. Even though this task seems to require deeper trees to
cope with the inherently higher complexity, the accelerated evaluation process provided by
GPUs coupled with the aforementioned improvements could prove fruitful in this scenario.

Evolutionary art also opens up a plethora of applications for TensorGP. For instance,
because the engine is prepared to deal with an arbitrary number of dimensions, evolution
of video is therefore possible, despite not attempted. This can be achieved by simply
introducing another dimension (corresponding to time) in the tensor input data.

Lastly, the time comparison study amongst different approaches could be extended by
including different GP frameworks (e.g. GPLearn, TinyGP, ECJ, ...). However, this
work path was discarded early on mainly because neither of these tools are implemented in
Python, which would defeat the purpose of providing a direct comparison between different
approaches and devices.
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Appendix A

This appendix contains the graphics corresponding to the depth and fitness evolution

mentioned in the experimental results for the symbolic regression of images (see Section
6.1.3).
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Figure 1: Fitness values across generations for RMSE (left) and SSIM (right) - Black and
white image.
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Figure 2: Depth values across generations for RMSE (left) and SSIM (right) - Black and
white image.
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Figure 3: Fitness values across generations for RMSE (left) and SSIM (right) - First colored
image.
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Figure 4: Depth values across generations for RMSE (left) and SSIM (right) - First colored
image.
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Figure 5: Fitness values across generations for RMSE (left) and SSIM (right) - Second
colored image.
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Figure 6: Depth values across generations for RMSE (left) and SSIM (right) - Second
colored image.
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Chapter 7

Appendix B

The graphics in this appendix correspond to the fitness evolution of the approaches com-
pared in Section 6.2.2.
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Figure 7: Average fitness values (generation average and best) for the EVAL (right) and
DEAP (left) approaches.
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Figure 8: Average fitness values (generation average and best) for the eager CPU (right)
and GPU (left) approaches.
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