

Hugo Rafael Mendes Luís

DEEP LEARNING BASED HUMAN ACTIVITY

RECOGNITION:
A REAL-TIME PERSPECTIVE

Dissertation submitted in partial fulfillment of the requirements

for the Degree of Master of Science in Electrical and Computer
Engineering - Specialization in Automation, supervised by Prof.

Dr. Urbano José Carreira Nunes and presented to the Department
of Electrical and Computer Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

October of 2020

Hugo Rafael Mendes Lúıs

Deep Learning Based Human Activity

Recognition: A Real-Time Perspective

Dissertation submitted in partial fulfillment of the requirements for the Degree of

Master of Science in Electrical and Computer Engineering - Specialization in

Automation, supervised by Prof. Dr. Urbano José Carreira Nunes and presented

to the Department of Electrical and Computer Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

October of 2020

Hugo Rafael Mendes Lúıs

Deep Learning Based Human Activity

Recognition: A Real-Time Perspective

Supervisor:

Prof. Dr. Urbano José Carreira Nunes

Co-Supervisor:

Master Lúıs Carlos Artur da Silva Garrote

Jury:

Prof. Dr. João Pedro de Almeida Barreto

Prof. Dr. Rui Alexandre de Matos Araújo

Prof. Dr. Urbano José Carreira Nunes

Dissertation submitted in partial fulfillment of the requirements for the Degree of

Master of Science in Electrical and Computer Engineering - Specialization in

Automation, supervised by Prof. Dr. Urbano José Carreira Nunes and presented

to the Department of Electrical and Computer Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

October of 2020

Acknowledgements

The writing process of this dissertation put me to the test in several ways. I deepened

theoretical knowledge and tested its practical implications. I also learned to manage

frustration even when the results were not as desired. The working method was adjusted

in the context of a pandemic, but I still had the incessant support of my advisors in

this enriching journey. I start by thanking Professor Doutor Urbano Nunes and Mestre

Lúıs Garrote who, both from a distance and in person taught and guided me. They also

encouraged me to participate in the Summer-School on Robotics and Machine Learning,

which had great importance in this learning journey.

I also thank the Institute of Systems and Robotics - University of Coimbra (ISR-UC)

for the opportunity to work in an adequately equipped place. I also thank the people with

whom I shared this journey at ISR-UC, particularly Master Lúıs Garrote for the patience

and help provided throughout the dissertation research work.

I am also grateful to be surrounded by people who supported me outside the academic

context: my close friends, my parents and in-laws, my grandparents and my fiancée. Thank

you all!

i

Abstract

Over the last two decades there has been a massive development of robotic systems in the

field of service, social and personal robots. Robots are being deployed in scenarios such as:

public places, homes, hospitals, elderly care centers or front desk applications. This type of

robots will greatly benefit from the integration of a Human Activity Recognition module in

their architecture. Having the ability to identify a variety of human activities allows for a

more diverse human robot interaction. By identifying humans and their social interactions

the robots will also be able to adapt their navigation behavior according to social norms.

Empowering social robots with these capabilities will help towards the future deployment

of such robotic systems. Their behavior will look more natural, helping humans develop

a sense of comfort towards the robot’s presence.

The objective of the dissertation research work is to develop, train and evaluate a Hu-

man Activity Recognition framework. For such purpose two frameworks, (1) RGB-based

framework and (2) Skeleton-based framework were developed, trained and evaluated. A

performance comparison between both frameworks is made based on classification accuracy

and runtime.

The developed frameworks are primarily validated on a large-scale human activity recog-

nition dataset. After validation, the best performing framework, in terms of both classifi-

cation accuracy and runtime, is validated in a small-scale dataset collected at the Human-

Centered Mobile Robotics Laboratory in the Institute of Systems and Robotics - University

of Coimbra.

Tests were conducted in two subsets of classes with the objective of comparing the

frameworks’ generalization capabilities when trained and tested in a more or less challeng-

ing subset of classes. The results obtained met the expectations set for each developed

framework. Both frameworks can successfully identify activities on the large-scale dataset.

However, the performance on the small-scale dataset needs more research.

Keywords: Human Activity Recognition, Social Robot, Service Robot, Deep Learning,

Convolutional Neural Network

iii

Resumo

Nas últimas duas décadas, houve um grande desenvolvimento de sistemas robóticos na área

dos robôs de serviço, sociais e pessoais. Robôs têm vindo a ser integrados em cenários como:

locais públicos, casas, hospitais, lares de idosos ou como recepcionistas. Este tipo de robôs

irá beneficiar com a integração, na sua arquitetura, de um módulo de Reconhecimento

de Atividades Humanas. Ter a capacidade de identificar uma variedade de atividades

humanas permite uma interação homem-máquina mais diversa. Ao identificar humanos e

interações sociais, os robôs serão capazes de adaptar o seu comportamento de navegação de

acordo com as normas sociais. Habilitar robôs sociais com estas capacidades irá ajudar na

futura integração destes robôs. O seu comportamento irá parecer mais natural, ajudando

os humanos a desenvolver uma sensação de conforto em relação à presença do robô.

O objetivo do trabalho de investigação da dissertação é desenvolver, treinar e avaliar

uma framework de reconhecimento da atividades humanas. Para tal, duas frameworks, (1)

framework baseada em RGB e (2) framework baseada em esqueleto foram desenvolvidas,

treinadas e avaliadas. É feita uma comparação, com base na precisão da classificação e no

tempo de execução, do desempenho de ambas.

As frameworks desenvolvidas são validadas primeiramente num dataset de reconheci-

mento de atividades humanas de grande escala. Após esta validação, a framework com

melhor desempenho, tanto em termos de precisão de classificação como de tempo de ex-

ecução, é validada num dataset de pequena escala colhido no Laboratório Human-Centered

Mobile Robotics do Instituto de Sistemas e Robótica - Universidade de Coimbra.

Os testes foram realizados em dois subconjuntos de classes com o objetivo de comparar

a capacidade de generalização das frameworks quando treinadas e testadas em subconjun-

tos de classes com diferentes ńıveis de dificuldade. Os resultados obtidos correspondem

às expectativas estabelecidas para cada framework desenvolvida. Ambas as frameworks

conseguem identificar, com êxito, atividades no dataset de grande escala. No entanto, o

desempenho no dataset de pequena escala necessita de investigação adicional.

Palavras Chave: Reconhecimento de Atividades Humanas, Robô Social, Robô de

Serviço, Aprendizagem Profunda, Rede Neuronal Convolucional.

v

Contents

Acknowledgments i

Abstract iii

Resumo v

List of Acronyms xi

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Main Objective . 2

1.3 Main Contributions . 4

1.4 Dissertation Outline . 5

2 State of the Art 7

2.1 Human Activity Recognition . 7

2.1.1 Video-based Methods . 8

2.1.2 Ambient and Wearable Sensors Methods 11

3 Background Material 16

3.1 Deep Learning . 16

3.1.1 Training and testing Process . 16

3.2 Convolutional Neural Networks . 18

3.2.1 Convolutional Layers . 18

3.2.2 Pooling Layers . 20

3.2.3 Fully Connected Layers . 21

3.2.4 Global Average Pooling Layers . 22

3.2.5 Activation Functions . 22

3.3 Graph Convolutional Networks . 23

vii

3.3.1 Graph Convolution Definition . 24

3.4 Data Augmentation Techniques . 25

3.5 Transfer Learning . 25

4 Materials and Methods 28

4.1 NTU RGB+D 120 Dataset . 28

4.2 Performance Metrics . 29

4.3 Deep Learning Architectures for HAR . 30

4.4 Graph Convolutional Neural Network for HAR 31

4.5 CNN-based Object Detection . 34

4.6 PyTorch Package . 36

4.6.1 Creating and Training a Neural Network in PyTorch 36

4.7 Source Codes . 38

4.8 Validation Platform . 38

4.8.1 InterBot Hardware Architecture . 39

4.9 Intel RealSense Depth Camera D435 . 40

5 Developed Work 42

5.1 HAR-RGB-based Frameworks . 43

5.1.1 HAR-RGB-based Framework I . 43

5.1.2 HAR-RGB-based Framework II . 48

5.1.3 Feature Extraction and Classification 51

5.1.4 Data Augmentation . 52

5.2 HAR-Skeleton-based Framework . 54

5.2.1 Preprocessing Stage . 55

5.2.2 Feature Extraction and Classification 56

5.3 Dataset Subsets . 56

5.4 ISR dataset . 56

6 Experimental Results 58

6.1 Evaluation Protocol . 58

6.2 Training Parameters . 59

6.2.1 RGB-based Frameworks Training Parameters 59

6.2.2 Skeleton-based Framework Training Parameters 60

viii

6.3 RGB-based Framework I . 60

6.4 RGB-based Framework II . 65

6.4.1 Training on Subset 1 . 66

6.4.2 Training on Subset 2 . 69

6.4.3 Testing on the ISR Dataset . 70

6.5 Skeleton-based Framework . 72

6.6 Frameworks Runtimes . 73

7 Conclusion and Future Work 77

7.1 Conclusion . 77

7.2 Future Work . 78

Bibliography 92

APPENDICES 93

A NTU RGB+D 120 Dataset PyTorch Class 93

B C3D Neural Network PyTorch Definition 95

C NTU RGB+120 Dataset 97

D Deep Learning Networks Architectures 99

ix

List of Acronyms

2s-AGCN Two-Stream Adaptive Graph Convolutional Network.

3D-CNN Three-Dimensional Convolutional Neural Networks.

AS-GCN Actional-Structural Graph Convolution Network.

BGD Batch Gradient Descent.

C3D Convolutional 3D.

CNN Convolutional Neural Network.

DL Deep Learning.

DNN Deep Neural Network.

FAIR Facebook’s Artificial Intelligence Research Lab.

FC Fully Connected.

FFT Fast Fourier Transform.

FLOPS Floating Point Operations Per Second.

FPS Frames Per Second.

GAP Global Average Pooling.

GCN Graph Convolutional Networks.

GPU Graphics Processing Unit.

HAR Human Activity Recognition.

HAR-RGB-bFI HAR-RGB-based Framework I.

HAR-RGB-bFII HAR-RGB-based Framework II.

HAR-S-bF HAR-Skeleton-based Framework.

HMI Human-Machine Interface.

HRI Human-Robot Interaction.

I3D Two-Stream Inflated 3D ConvNet.

IMU Inertial Measurement Unit.

IoT Internet of Things.

IR Infrared.

xi

LSTM Long Short-Term Memory.

MBGD Mini-batch Gradient Descent.

ML Machine Learning.

NN Neural Network.

NPU Navigation Processing Unit.

POV Point of View.

ReLU Rectified Linear Unit.

RFID Radio-Frequency Identification.

RGB Red-Green-Blue.

RGB-D Red-Green-Blue-Depth.

RNN Recurrent Neural Network.

ROS Robot Operating System.

SGD Stochastic Gradient Descent.

SPS Sequences Per Second.

YOLO You Only Look Once.

xii

List of Figures

1.1 Illustration of the training phase for the frameworks evaluated in this work,

for a single training example. 3

1.2 Illustration of the testing phase for the frameworks evaluated in this work,

for a single testing example. 4

2.1 Typical HAR framework. 7

2.2 Categorization of the HAR frameworks. 8

3.1 Example of a CNN for a binary classification problem with an input image

of dimensions 6x6 pixels. 18

3.2 Example of a convolution between a 5x5 input and a 3x3 kernel with a

stride of 1 in both axis and 0 padding. 19

3.3 Depthwise separable convolution illustration, it is applied a depthwise con-

volution followed by a pointwise convolution. It is assumed that the two

channels (Red and Green) behind the front channel (Blue) have the exact

same values for calculation purposes. 20

3.4 Illustration of a max pooling operation. It is used a 2x2 region with a stride

of 2 in both axis. 21

3.5 Illustration of a FC layer. The input feature map contains 3 units and the

output feature map contains 2 units. bi denotes the bias values, xi denotes

the input activation units, wi denotes the weight vectors and yi denotes the

output units. The activation function used in this example is the Rectified

Linear Unit (ReLU). On the right side it is presented the calculations for

obtaining the output nodes values. 21

3.6 Illustration of a GAP layer. The inputs are three 2x2 feature maps. 22

3.7 ReLU, Logistic Sigmoid and Hyperbolic Tangent activation functions. . . . 23

3.8 Left: Spatiotemporal graph used to model the human skeleton structure

and motion. Right: Mapping strategy for the graph convolution. Adapted

from [1]. 24

xiv

4.1 From left to right: Configuration of the 25 joints (adapted from [2]) and

dataset characteristics. 29

4.2 Main blocks of 3 Residual Network architectures [3]. BN: batch normaliza-

tion, ReLu: rectified linear unit, conv: convolution, F: number of feature

maps, group: number of groups in group convolution. Adapted from [3]. . . 32

4.3 C3D [4] architecture. Conv: convolution, Pool: pooling layer, FC: fully

connected layer, softmax: softmax output layer. All convolutions have a

stride of 1 in both spatial and temporal dimensions. The number of filters

for each convolution is the last element in each box. Each fully connected

layer has 4096 output units. All pooling kernels are 2×2×2 except for the

first one which is 1×2×2. Adapted from [4]. 32

4.4 Main blocks of MobileNetV1 [5] and MobileNetV2 [6]. BN: batch normal-

ization, ReLu6: rectified linear unit with maximum value 6, Conv: convolu-

tion, F: number of feature maps, DWConv: depthwise convolution, s(1,1,1):

stride of 1 in each dimension. Adapted from [7]. 33

4.5 2s-AGCN main block and complete architecture. Left diagram: T denotes

the temporal length, N denotes the number of vertexes, Cin and Cout de-

notes the number of input and output channels respectively. Ak, Bk and Ck

are N×N matrices. fin and fout denote the input and output feature maps

respectively. Kv denotes the number of subsets. ⊕ denotes elementwise

summation and ⊗ denotes matrix multiplication. res(1×1) is a residual

layer that is applied when the number of output channels is different than

the number of input channels. θk(1×1) and φk(1×1) represent the embed-

ding functions. wk(1×1) is a 1×1 convolution layer. Red boxes represent

learnable parameters. Right diagram: B1-B9 represent the 2s-AGCN main

block. BN is a batch normalization layer and GAP is a global average

pooling layer. Adapted from [1]. 35

4.6 Overview of the InterBot architecture. 39

xv

5.1 HAR-RGB-bFI. The offline stage converts every video in the dataset to a set

of frames with 320×240 resolution and then saves them. The training phase

is composed of 3 main modules, a preprocessing stage a feature extraction

and classification stage and a optimization stage where based on the loss

function values the DL architecture’s weights are optimized. 44

5.2 Original 320x240 frame and the resulting images after applying two multi-

scale random crops. 46

5.3 Comparisson between two frames depicting different activities, drinking wa-

ter and vomiting. It shows a red region, which is common to both pictures,

that does not contribute with any relevant information to distinguish be-

tween the two activities. The green region contains the area where the

activity is being performed. 46

5.4 Original 320×240 frames and the resulting images after applying two dif-

ferent central crops (112×112 pixels and 160×160 pixels). 47

5.5 HAR-RGB-bFI testing phase. 48

5.6 HAR-RGB-bFII. The offline stage extracts from every video in the dataset a

bounding box containing the person’s whole body. The resulting bounding

boxes are resized to 112×112 pixels and then saved. 49

5.7 Original 320×240 frame and the resulting images after extracting and re-

sizing bounding boxes containing the person’s whole body. 50

5.8 Left: YOLOv3-spp original outputs, all detected objects are bounded in

the output image. Right: YOLOv3-spp output after code adaptations to

the original code for only outputing the bounding boxes for the category

’person’ in each frame. All objects are still detected, however the output

image only extracts the bounding boxes for the category ’person’. 51

5.9 HAR-RGB-bFII testing phase. 51

5.10 Various spatial domain data augmentation techniques and cropping tech-

niques used in this work. From left to right and up to bottom: a) original

image, b) center crop, c) horizontal flip, d) multiscale random crop, e) gaus-

sian blur, f) multiply pixel values and g) salt-and-pepper noise. 53

5.11 HAR-S-bF approach. The subject skeleton is extracted and fed to a GCN. . 55

xvi

5.12 InterBot mobile platform equipped with a laptopt and the Intel RealSense

D435 Depth Camera. Left: side view of the InterBot mobile platofrm,

Right: rear-view of the InterBot mobile platform. 57

5.13 Samples taken from the ISR Dataset. 57

6.1 Training loss curve and confusion matrix for the reference model on HAR-

RGB-bFI. 64

6.2 Sequences representing the activities: A) Headache, B) Sneeze/Cough, C)

Drink Water and D) Chest Pain. 65

6.3 Training loss curve and confusion matrix for the ResNet-50 on HAR-RGB-bFI 66

6.4 Training and testing accuracies for the reference model. The testing accu-

racy was calculated every 5 epochs. 67

6.5 Training loss curve and confusion matrix for the ResNet-50 trained from

scratch on HAR-RGB-bFII. 68

6.6 Training loss curve and confusion matrix for the ResNet-50 on HAR-RGB-

bFII when training a pre-trained model. 70

6.7 Loss curves for both B-stream and J-stream for Subset 1. 73

C.1 Samples from the dataset, adapted from [2]. 97

xvii

List of Tables

4.1 Left table: confusion matrix. Right table: confusion matrix in percentages. 30

6.1 Initial learning rate and batch size used for training the DL architectures. . 59

6.2 Initial learning rate used when training the pre-trained models. 60

6.3 Results obtained for MobileNetV1, on the HAR-RGB-bFI, when trained

from scratch on Subset 1 with different combinations of: width multiplier,

number of extracted frames and cropping technique parameters. 61

6.4 Results obtained for the 1b) and 1c) scenarios. The experiments were con-

ducted with a width multiplier value of 0.5, 16 extracted frames and a center

crop was applied during training. 62

6.5 Results obtained when training from scratch the six different DL architec-

tures, on HAR-RGB-bFI, on Subset 1 with the following parameters: width

multiplier of 0.5 (only applies to MobileNetV2), subsampling frequency of

2 frames, 16 extracted frames and center crop. 64

6.6 Results obtained when training from scratch the six different DL archi-

tectures, on HAR-RGB-bFII on Subset 1 with the following parameters:

width multiplier of 0.5 (only applies for MobileNetV2), subsampling of 2

frames and 16 extracted frames. 67

6.7 Results obtained when training the pre-trained models, on HAR-RGB-bFII

on Subset 1 with the following parameters: width multiplier of 0.5 (only

applies to MobileNetV2), subsampling of 2 frames and 16 extracted frames. 69

6.8 Results obtained when training from scratch the six different DL archi-

tectures, on HAR-RGB-bFII, on Subset 2 with the following parameters:

width multiplier of 0.5 (only applies to MobileNetV2), subsampling of 2

frames and 16. 70

6.9 Results obtained when training the pre-trained models, on HAR-RGB-bFII

on Subset 2 with the following parameters: width multiplier of 0.5 (only

applies to MobileNetV2), subsampling of 2 frames and 16. 71

6.10 Results obtained when training the models on the ISR Dataset. 72

xviii

6.11 Results obtained when training the GCN from scratch on both Subsets.

It was not possible to calculate the train classification accuracy. However,

it is shown both validation classification accuracy for the B-Stream and J-

Stream. Both streams are run at different moments and then their output

vectors are added and the classification is made based on the resulting vector. 73

6.12 Runtimes for the different modules and architectures evaluated in this dis-

sertation. For both RGB-based frameworks it is assumed a number of ex-

tracted frames equal to 16 and a resolution of 112×112 pixels. For the

HAR-S-bF it is assumed that the skeleton sequence length is equal to 300.

The runtime is measured in SPS. 74

C.1 Different camera setups tested. Adapted from [2]. 98

C.2 Dataset classes. Adapted from [2]. 98

D.1 3D-MobileNetV1 architecture, adapted from [7]. 99

D.2 3D-MobileNetV2 architecture, adapted from [7]. 99

D.3 ResNet-18, ResNet-50 and ResNeXt-101 full architectures. For ResNet-

18 the building block is the Basic Block, for ResNet-50 is the Bottleneck

Block and for ResNeXt-101 is the ResNeXt Block. All building blocks are

presented in Chapter 4. F denotes the number of output channels in each

layer. Conv1 layer is common to all three architectures, it is a convolutional

layer with a kernel of size (7x7x7) and stride of (1,2,2) followed by a (3x3x3)

max-pooling layer with stride of (2,2,2). The first block in Conv3 x, Conv4 x

and Conv5 x performs a down-sampling with a stride of (2,2,2). The last

layer is composed of a GAP layer followed by a FC layer with as many input

as output channels of Conv5 x and a number of output units equal to the

number of classes. The FC layer output vector is normalized by a softmax

function. Table adapted from [3]. 100

xix

Chapter 1

Introduction

This chapter presents the context and motivation for the developed work. The Human

Activity Recognition (HAR) problem is defined and examples of its applications are given.

The main objective and main contributions of the dissertation are described. Finally, the

dissertation’s outline is presented.

1.1 Context and Motivation

HAR is a classification problem that deals with the recognition of both human activities

and actions. HAR approaches can be broadly divided into two categories: video-based

approaches and wearable/ambient sensor based approaches. For the purpose of this dis-

sertation the focus is on video-based methods, more concretely, on methods that use a

sequence of frames to classify the activities. Although HAR can be performed on single

frames, it is a more challenging task due to the lack of temporal information on individual

frames [8–12]. On the other side, a sequence of frames provides both spatial and temporal

information that can be used for a more reliable inference given it is used an appropriate

architecture that can model both spatial and temporal information.

A simple example on the advantage of having temporal features is the following scenario:

if it is shown a picture of a person lying on the floor it is an easy task identifying the

pose as ”lying on the floor”. However, identifying the activity/action that led to that

particular pose is a more challenging task without having prior information. The person

could be either practicing yoga or, in a more extreme situation, it could have just fallen

and requires urgent help. Thus, having prior information is crucial for acting accordingly

to the situation.

The focus of the dissertation will be on HAR for indoor applications. The development

of social and assistive robots, which mainly operate in indoor environments, have received

much attention in the last decade [13, 14]. Robots have moved from industrial settings

to applications where Human-Robot Interaction (HRI) is heavily present [15]. Robots are

1

being deployed in homes, hospitals, elderly care centers or museums [13, 16–19]. Robots

such as Pepper [20] (a commercially available social humanoid robot presented in 2014),

SPENCER [21] (a socially aware robot) and SocialRobot [22] (a social platform for interac-

tion with the elderly) have been deployed in a wide variety of scenarios such as educational

environments [23], front desk applications [24], museums [25, 26], social interaction settings

[27, 28] and welcoming people in public places [29]. SPENCER was deployed in an airport

for passenger guidance and SocialRobot was deployed, as a pilot demo, in an elderly care

center in Netherlands. This type of robots will greatly benefit from the integration of

an HAR module in their architecture. Having the ability to identify a variety of human

activities allows for a more diverse human robot interaction. A service robot deployed in

an elderly care center will be able to identify emergency situations, motivate the elderly

for physical exercise or fetch objects such as medication or a cup of water. On the other

hand, a robot deployed in a public building will be able to detect when someone needs

directions or requires some service provided by the robot. Gestures such as pointing to

something or hand-waving at the robot could be used to initiate the HRI.

Moreover, a critical aspect to take into consideration when deploying robots in the

aforementioned scenarios is the robots’ navigation behavior. Distinguishing between a

human and an ordinary object is a crucial aspect to take into consideration when generating

navigation paths. A robot equipped with an HAR module can provide this capability by

adapting its navigation behavior when it encounters humans in its path (Human-aware

Robot Navigation)[30–32] These robots are capable of identifying humans as well as their

social interactions and having a navigation conduct that takes into account social norms,

e.g., not interrupting a conversation between two or more persons by passing between the

humans, navigating on the right of a human and having a smooth navigation path [33].

Empowering a social robot with Human-aware Robot Navigation will help towards the

future deployment of social, service and personal robots. The robot’s navigation behavior

will look more natural, helping humans develop a feeling of comfort towards the robot’s

presence which boosts the HRI confidence [34–36].

1.2 Main Objective

The main objective of the dissertation research work was to develop, train and evaluate

an HAR framework. For such purpose two frameworks, (1) HAR-RGB-based framework

2

and (2) HAR-Skeleton-based Framework (HAR-S-bF) were developed, trained and evalu-

ated. A performance comparison between both frameworks is made based on classification

accuracy and runtime.

The developed work is divided into two phases: (1) training phase and (2) testing

phase. During the training phase the framework, more concretely the feature extraction

and classification module, is trained on a labeled training set (Straining). On the testing

phase the HAR framework is tested on a labeled testing set (Stesting) and its classification

accuracy is calculated. Both Straining and Stesting are subsets of the same dataset Sdataset

where Straining ∪ Stesting = Sdataset and Straining ∩ Stesting = ∅. Figure 1.1 presents two

illustrative diagrams of the training phases of the two HAR frameworks. In Fig. 1.2 it is

presented two illustrative diagrams of testing phase of the two HAR frameworks.

Set of RGB frames
extracted from a 2-3s
duration video depicting
a single activity.

Input Data

Preprocessing

t

RGB Frames with
320x240 resolution

Output
vector

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames from
the input set (16 or 32 frames,
depending on the settings);
-Apply data augmentation
techniques to the selected
subset;
-Resize to 112x112 pixels.

It is used a Deep Learning
architecture for feature extraction
and classification.

Ground Truth
vector

Optimize architecture's weights

Calculate Loss
Function Value

Training Phase

(a) RGB-based HAR framework during training phase, for a single training example.

Input Data

Preprocessing

t

Skeleton
Sequence

Deep Learning Based
Feature Extraction and Classification

-It is set a fixed sequence
length of 300 frames. If the
input skeleton sequence < 300,
then repeat skeleton sequence
until the 300 frames requirement
is met;
-Apply data augmentation
techniques to the skeleton
sequence.

Skeleton poses extracted
from the RGB Data. It is
extracted a single
skeleton from each frame.
Only single person
activities are considered.

It is used a Graph Convolutional Network
(GCN) for feature extraction and classification.

Output
vector

Calculate Loss
Function Value

Ground Truth
vector

Optimize GCN's weightsTraining Phase

(b) HAR-S-bF during training phase, for a single training example.

Figure 1.1: Illustration of the training phase for the frameworks evaluated in this work,
for a single training example.

3

Set of RGB frames
extracted from a 2-3s
duration video depicting
a single activity.

Input Data

Preprocessing

t

RGB Frames with
320x240 resolution

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames
from the input set (16 or
32 frames, depending on
the settings);
-Center crop a square of
160x160 pixels;
-Resize to 112x112 pixels.

It is used a Deep Learning
architecture for feature extraction
and classification.

Label

Output
vector

Nausea
Clapping
Drink Water
Hand-waving
PointingBased on the output

vector the activity
with the highest
probability is
chosen as the
predicted label for
the input video.

Testing Phase

(a) RGB-based HAR framework during testing phase, for a single testing example.

Input Data

Preprocessing

t

Skeleton
Sequence

Label

Output
vector

Nausea
Clapping
Drink Water
Hand-waving
Pointing

Deep Learning Based
Feature Extraction and Classification

It is set a fixed sequence
length of 300 frames. If the
input skeleton sequence <
300, then repeat skeleton
sequence until the 300
frames requirement is met.

Skeleton poses extracted
from the RGB Data. It is
extracted a single
skeleton from each frame.
Only single person
activities are considered.

It is used a Graph Convolutional Network
(GCN) for feature extraction and classification.

Based on the output
vector the activity
with the highest
probability is
chosen as the
predicted label for
the input video.

Testing Phase

(b) HAR-S-bF during testing phase, for a single testing example.

Figure 1.2: Illustration of the testing phase for the frameworks evaluated in this work, for
a single testing example.

1.3 Main Contributions

Typically HAR RGB-based frameworks use the whole image as input for the feature extrac-

tion and classification module managing to achieve high classification accuracies. However,

it is common for these frameworks to include some sort of attention mechanism [37, 38]

that is able to focus on the subjects present in the image, ignoring background clutter and

irrelevant regions of the image. For the purpose of this dissertation the methods used do

not include any sort of attention mechanism, which initially led to poor classification ac-

curacies. Thus, to address this issue, it is proposed the introduction of a human detection

stage to extract, from each frame, a bounding box containing the person performing the

activity. The resulting bounding boxes are then used as input data for the RGB-based

framework. This approach improves the classification accuracy when compared to a more

traditional approach where the whole frame is used as input to the framework.

A subset of the NTU RGB+D 120 Dataset was prepared, more concretely frames were

4

extracted from the original videos and stored as 320x240 pixels images, for training and

evaluating seven different Deep Learning (DL) architectures. It was also developed the

necessary source code to make the dataset compatible with source code available in the

GitHub repository1 created by [7] and used in the dissertation.

Seven different DL architectures for both feature extraction and classification were

trained from scratch and evaluated on the NTU RGB+D 120 Dataset [2]. Pre-trained

models on Kinetics-600 [39] of the architectures used in this dissertation were also used to

transfer learning by only optimizing their output layer on the NTU RGB+D 120 Dataset,

which improved the classification accuracy by reducing the overfit. The DL architectures

performance is compared in terms of classification accuracy and runtime.

A small-scale human activity recognition dataset was collected at the Human-Centered

Mobile Robotics Laboratory in the Institute of Systems and Robotics - University of

Coimbra. The dataset contains 300 videos depicting a single activity with 2-3s each and

10 subjects participated in the dataset recording each activity in 3 different angles. The

RGB-based framework was evaluated on this dataset.

1.4 Dissertation Outline

The dissertation is organized as follows:

• Chapter 2: State of the art of the HAR problem with a brief historic note;

• Chapter 3: Presents the theoretical concepts needed to understand the HAR frame-

works developed, trained and evaluated in this dissertation;

• Chapter 4: Presents the material and methods used in the dissertation such as the

NTU RGB+D 120 Dataset [2], DL architectures used for the feature extraction and

classification modules or source codes used to train and evaluate the frameworks;

• Chapter 5: Explains the developed work, presenting the proposed solutions to

overcome the problems encountered during the course of the work;

• Chapter 6: Results obtained during the developed work are shown and discussed;

• Chapter 7: A conclusion and suggestions for future work are presented.

1https://github.com/okankop/Efficient-3DCNNs

5

Chapter 2

State of the Art

In this chapter it is presented an overview of the most common methods for solving the

HAR problem. The chapter is divided into two parts: (1) Video-based methods and (2)

Wearable/Ambient Sensor based methods.

2.1 Human Activity Recognition

A generic HAR framework is presented in Fig. 2.1. The framework’s input is either a set

of video frames or a temporal sequence of inertial data, depending if the HAR framework

is Video-based or Wearable/Ambient sensor-based, respectively. The preprocessing stage

generates input data for the feature extraction module. The extracted features, in the

form of a feature vector, are then fed to the classifier. After processing the feature vector,

the classifier outputs a prediction for the activity depicted in the sequence of frames or

temporal sequence of inertial data.

Label

Output
vector

Feature
vector

t t

t

RGB or Depth Map
Frames

Skeleton
Sequence

 Temporal Sequence
of Inertial Data

Nausea
Clapping
Pointing
Drink Water
Hand-waving

Preprocessing Feature
Extraction Classification

In some methods both the feature extraction and
classification stages are part of the same module

Figure 2.1: Typical HAR framework.

A possible categorization diagram for the HAR frameworks is presented in Fig. 2.2.

There are two major aspects that characterize an HAR framework: (1) sensor modality

used to generate the input data and (2) the feature extraction and classification method.

7

Human Activity
Recognition

RGB and/or Depth Cameras
(Video) Ambient and Wearable Sensors

Handcrafted
Features

Deep Learning
Features

Handcrafted
FeaturesFeature Extraction

Sensor Modality

Deep Learning
Features

Figure 2.2: Categorization of the HAR frameworks.

Regarding sensor modality there are two major categories: video-based approaches and

wearable/ambient sensor-based approaches. Video-based approaches, which are the focus

of this work, generally use RGB, RGB-D or depth map videos as inputs. On the other

hand, wearable/ambient sensor-based approaches use wearable and/or ambient sensors to

collect the input data. Feature extraction is performed by either a deep neural network or

an handcrafted method.

For the video-based methods it is important to note that feature extraction and classi-

fication can be performed on two possible data modalities: image sequences (RGB and/or

depth map images) or human skeleton sequences (extracted from the RGB and/or depth

map images).

2.1.1 Video-based Methods

In the last decade very cost-effective RGB-D sensors such as Intel RealSense Cameras,

Microsoft Kinetic and Asus Xtion have been released allowing for an easier access to

this technology and contributing for significant advances in the research of HAR methods

[40–42].

The first methods for video-based HAR were broadly divided into two categories [43]:

(1) state-space approaches and (2) template matching approaches. In (1) each pose or

activity is encoded as a state and the recognition is performed by a Hidden Markov Model

[44–46]. In (2) a template is created for each activity or pose and the recognition is made

by matching the extracted features with a set of predefined templates [47–49].

Throughout the last decade the DL success has also extended to the HAR problem.

Taylor et al. [50] used a multi-stage architecture that combined convolutional and fully-

connected layers for HAR. First a convolutional gated Restricted Boltzmann Machine

extracts features from every successive frame and 3D convolutional layers are used to cap-

8

ture mid-level spatiotemporal cues. The final layer is a fully connected layer whose output

is normalized using the softmax function. Ji et al. [51] presented a 3D Convolutional Neu-

ral Network (CNN) architecture for HAR, the model extracts both temporal and spatial

features from the input sequence. Authors reported a classification accuracy of 90.2% on

the KTH dataset [52], which is a dataset composed of 6 activities (boxing, handclapping,

hand-waving, jogging, running and walking).

Karpathy et al. [53] reported the problem of runtime performance when training CNNs,

stating that training a CNN could take weeks to train on large-scale datasets (for context,

the paper was published in 2014). Thus, it was proposed a two stream CNN architecture:

(1) a high-resolution fovea stream receives a 89×89 pixels resolution video cropped from

the original video center, and (2) a low-resolution context stream receives a downsampled

89×89 pixels resolution video from the original video. Both streams were composed of

alternating convolution, normalization and pooling layers, and ending with two fully con-

nected layers. For fusing the two streams, authors evaluated late, early and slow fusion.

The method was tested on the large-scale Sports-1M dataset [53] and the model with slow

fusion achieved an accuracy of 60.9%. Authors also made experiments on transfer learning

on UCF-101 dataset [54] achieving a 3-fold accuracy of 65.4% when fine-tuning the top 3

layers with the slow fusion network pre-trained on the Sports-1M dataset.

Carreira and Zisserman [55] introduced Two-Stream Inflated 3D ConvNet (I3D) for

video classification tasks. I3D is based on 2D CNN inflation, i.e., filters and pooling

kernels of image classification CNNs are expanded into 3D allowing for spatio-temporal

feature extraction. It is composed of two streams, one trained on RGB inputs and another

on optical flow inputs, where each stream is trained separately and their predictions are

averaged at test time. Authors showed that after pretraining their model on the Kinetics

Dataset [55] the classification accuracy improved up to 80.9% on HMDB-51 Dataset [56]

and 98.0% on UCF-101 Dataset [54].

In a more recent approach [57] the concept of SlowFast networks was presented for HAR.

SlowFast networks are composed of two CNNs (pathways) that operate at different frame

rates: (1) a Slow pathway is used to capture spatial semantics at low frame rates and (2)

a Fast pathway is used to capture motion at high frame rates. The Slow pathway can be

any CNN that operates on a video as a spatio-temporal volume. For this pathway it is

applied a temporal stride τ on the input set of frames (only one out of τ frames is extracted

from the input set). Typically τ = 16, meaning that for a video recorded at 30 Frames

9

Per Second (FPS) roughly two frames are extracted per second. The Fast pathway can

also be any CNN that operates on a spatio-temporal volume. However, for this pathway

the temporal stride is given by τ/α, typically α = 8, meaning that this pathway extracts

8 times more frames from the input set than the Slow pathway. Lateral connections are

used to fuse the information of both pathways. These connections are unidirectional from

the Fast pathway to the Slow pathway. A Global Average Pooling (GAP) is performed

on each pathway’s output and both output feature vectors are concatenated and are used

as the input to a fully-connected classifier layer. The architecture achieved a classification

accuracy of 81.8% on Kinetics-600, and also surpassed the state of the art results in two

activity detection datasets: Atomic Visual Actions Dataset [58] and Charades Dataset

[59].

Girdhar et al. [38] proposed an Action Transformer model for recognizing and localizing

human actions in videos. The model is able to both detect the persons in the video and

classifiy their activities/actions. The model is divided into two main parts, being the first

part responsible for generating features and region proposals (bounding boxes) for the

persons present in the image while the second part uses the previously generated features

to predict the actions and improve the bounding box/boxes limits. The architecture was

evaluated on Atomic Visual Actions Dataset [58] achieving state of the art results.

Köpüklü et al. [7] reported that in recent years the focus on the action recognition

problem has been on creating architectures that can achieve the best classification ac-

curacy. However in real-world applications the hardware available lacks the processing

power, memory size or even power capacity to be capable of running the models at decent

real-time performance. Thus, the authors converted popular resource efficient 2D CNNs

to 3D CNNs and evaluated their classification accuracy on 3 popular datasets (Kinetics-

600 [39], Jester [60] and UCF-101 [54]) as well as their real-time performance in terms of

runtime. Results showed that the 3D CNN resource efficient architectures are capable of

achieving comparable classification accuracies with wider and deeper models while having

less parameters and Floating Point Operations Per Second (FLOPS). For example, authors

compare 3D-ShuffleNetV1 2.0x with ResNet-18 [61] both achieving similar classification

accuracies while ResNet-18 has 7 times more parameters and 14 times more FLOPS.

Another approach for HAR is to extract the human skeleton from each frame and use

that information to predict the activity. The human skeleton can be obtained in one of

two ways: (1) using a pose estimation algorithm that extracts the 2D or 3D human skele-

10

tons from each RGB, RGB-D or Depth Map image [62–64] or (2) using a camera such

as Kinect V2 that provides both the 2D or 3D human skeletons present in the frame.

Using the human skeleton for HAR has the advantage, over the methods that only use

the image for HAR, of being more robust to background clutter, being viewpoint invariant

and being computationally efficient due to the smaller data size [65, 66]. Shi et al. [1]

proposed Two-Stream Adaptive Graph Convolutional Network (2s-AGCN) a two stream

graph convolutional network for skeleton-based HAR. The model is composed of two par-

allel streams: (1) joint stream (J-Stream) and (2) bone stream (B-Stream). J-Stream

extracts features from the 3D location of each skeleton joint. B-Stream extracts features

from bone information calculated from the 3D locations of the joints. The two streams

are fused via decision level fusion. Both streams’ output vector is normalized via a soft-

max layer and then are added together. The resulting vector is used to predict the action

depicted in the input video. Li et al. [67] proposed Actional-Structural Graph Convolu-

tion Network (AS-GCN) where they extended the standard skeleton graph by including

structural links that model the dependencies between joints, i.e. the graph links not only

include the bones but also ”artificial” bones that are connected between highly related

joints. Actional links were also proposed, this links are specific to each activity and are

learned directly from each activity. The model improved previous classification accuracies

on both NTU RGB+D 120 Dataset [2] and Kinetics-600 [39].

2.1.2 Ambient and Wearable Sensors Methods

The Internet of Things (IoT) [68] concept has allowed the proliferation and interconnec-

tivity of large amounts of small devices that are constantly collecting data about people’s

daily activities. The use of wearable and ambient sensors have the advantage of not suffer-

ing from ambient occlusion or brightness changes, which are the two major problems in the

video-based approaches. Moreover, sensors like gyroscopes and accelerometers are already

embedded in common devices such as smartphones and smartwatches making them very

accessible and cheaper than most sensors used in the video-based HAR methods [69–72].

There is a large variety of sensors that can be used to capture the subject’s motion and

interaction with the environment. For example, an accelerometer can provide valuable

information about the subject’s motion. Although it will be very difficult to distinguish

between ”eating” and ”drinking” from inertial data alone. In this case a possible solution

would be placing a pressure sensor on a cup and fusing information from both sensors to

11

give a better estimate if the subject is in fact ”eating a chocolate bar” or ”drinking a cup

of water” [73–75].

The most common used ambient and wearable sensors can be categorized as follows

[76–78]:

– Wearable sensors: accelerometer, gyroscope, heart rate sensors or electromyography.

Usually these are directly associated with the subject, collecting data about their

motion patterns;

– Ambient sensors: RFID, light sensors, pressure sensors, reed switch sensors, Wi-Fi

or bluetooth. These sensors provide valuable data about the interaction between the

human and their environment. Generally gives information about the location of the

subject in his/her environment or if the user interacted with a given object. Having

this data can be valuable by providing the context in which a given action/activity

is occurring.

Early research works in the HAR area were concerned with medical applications such as

analyzing gait patterns and using accelerometer data to calculate energy expenditure [79–

83]. Most of the feature extraction and classification was based on handcrafted methods,

although some methods started introducing Neural Network (NN)s as classifiers [79, 83].

Application of HAR was then introduced to areas other than medicine, in applications

where context awareness was required [84–86].

More recently, in [87] authors developed a CNN for HAR using accelerometer data. The

network’s input were 3 time series of 64 raw sensor data points, corresponding to the 3D

coordinate frame axis (X, Y and Z). The framework was able to outperform the current

state of the art methods from 3 public datasets (OPPORTUNITY Activity Recognition

Dataset [88], a car manufacturing activity dataset [89] and Actitracker Dataset [90]).

Ordóñez and Roggen [91] presented a DL based framework that was capable of fusing

multimodal sensor data. The authors designed a Deep Neural Network (DNN) (Deep-

ConvLSTM) that combined both convolutional and recurrent layers. Both layers had its

own purpose, convolutional layers transformed the input values into feature maps acting

as feature extractors while recurrent layers modeled the temporal dynamics embedded in

the feature maps extracted by the convolutional layers. A sliding window approach was

used to select the input data from the raw data provided by each sensor. The method

outperformed existing ones in 2 public datasets (OPPORTUNITY Activity Recognition

Dataset [88] and a car manufacturing activity dataset [89]). Yang et al. [92] also presented

12

a method based on a NN, with the difference that it was only composed of convolutional

layers. The framework also achieved state of the art performance on 2 public datasets

(OPPORTUNITY Activity Recognition Dataset [88] and Hand Gesture Dataset [93]).

A more recent approach is the work by Qin et al. [94], authors used the same technique

as [95] and transformed the raw sensor data, from an accelerometer and a gyroscope

(acceleration and angular velocity) into Gramian Angular Fields images. The framework

contains two main blocks, the first is composed of 2 parallel deep residual networks for both

acceleration and angular velocity data. Then a fusion layer fuses both previous networks’

outputs and feeds the resulting data to the second block composed of another deep residual

network. Classification is performed by 6 fully connected layers and the output vector is

then normalized by applying the softmax function.

Recognition of fine-grained hand activities is also possible, in Laput and Chris [96] the

authors proposed a method for the recognition of hands activities. The device used was a

LG W100 smartwatch from LG which has an embedded Inertial Measurement Unit (IMU)

that provides three axis accelerometer data. This data is converted into 3 spectrograms

that are then fed to a CNN to perform the feature extraction and classification. An

overall accuracy of 90.7% was reported on the 25 class dataset collected and made publicly

available by the authors.

Although full DL based frameworks are very popular nowadays there are still works

that use a combination of both DL and traditional approaches. An example is the work

by Hassan et al. [97] where the authors use handcrafted features in conjunction with

a classifier based on a deep belief network. A dataset with 12 classes was collected and

made publicly available, an overall accuracy of 95.85% was reported outperforming existing

methods.

Another possible approach is multimodal sensor fusion where both visual and sensor

data are fused and used for inference. Both sensor-based and video-based approaches

have their own disadvantages/drawbacks. Sensor-based methods lack the ability to dis-

tinguish more complex activities, are location and orientation dependent, multiple sensors

are needed to recognize activities that involve partial body movements and wearing single

or multiple sensors can be intrusive. On the other hand video-based approaches suffer

from background clutter, illumination changes, viewpoint sensitiveness and can be com-

putationally expensive. Both approaches have the potential to complement each other,

sensor-based approaches are insensitive to background clutter, illumination and viewpoint

13

changes while video-based approaches can distinguish more complex activities and do not

require that the subjects wear any hardware [76, 98, 99]. Some works that follow this

approach have been published in recent years. In [100] authors proposed a method that

fused, at feature-level, both inertial and RGB-D. First, for both modalities, handcrafted

features are extracted from raw data and concatenated into a feature vector. This vector

is then fed to a Machine Learning (ML) based classifier, both Support Vector Machine

and K-Nearest Neighbors methods were evaluated. Authors reported higher accuracies

than existing methods on the UTD-MHAD dataset [101] for both subject-generic and

subject-specific modalities.

Imran and Raman [102] also follow a similar approach but instead of a feature-level fusion

the authors performed decision-level fusion. An architecture composed of 3 parallel streams

analyses data from a gyroscope, RGB video and 3D skeleton joint data. For gyroscope

data and RGB video data a CNN is used for feature extraction and classification. For the

3D skeleton data an RNN was used also for both feature extraction and classification. The

method achieved an accuracy of 97.91% on the UTD-MHAD dataset [101].

14

Chapter 3

Background Material

This section presents the various theoretical concepts needed to understand and analyze

the frameworks implemented and evaluated in this dissertation.

It is important to note that ML learning methods can be broadly divided into four

main paradigms: (1) supervised learning, (2) unsupervised learning, (3) semi-supervised

learning and (4) reinforcement learning. In (1) the goal is to learn a mapping function that

maps from inputs x to outputs y, given a labeled training set (collection of input-output

pairs). In (2) the training set is composed of only inputs and the goal is to find patterns

in the training set. In (3) the training set is composed of both labeled and unlabeled

examples. In (4) learning an input-output mapping is based on a continuous interaction

with the environment where the agent learns by trial and error [103–105]. For the purpose

of this dissertation the remainder of this chapter will focus on the supervised learning

paradigm.

3.1 Deep Learning

DL is a sub field of ML that introduced the concept of DNNs. A key characteristic of DL

architectures is the number of layers that compose a DNN where DL architectures can have

more than one hundred layers [61, 106]. DL architectures such as CNNs, RNNs and LSTMs

have revolutionized many fields, e.g. natural language processing [107], speech recognition

[108], computer vision [53, 109], drug design [110] and genetic mutations classification [111].

In a more general way, DL models can solve tasks such as classification [112], regression

[113], transcription [114, 115] or machine translation [116].

3.1.1 Training and testing Process

The main goal of a DL algorithm is to approximate a function f that maps a given input x

into an output y, i.e. y = f(x; θ). For the specific case of HAR, the goal is to approximate

a function where y is a discrete value, i.e. denotes a given class such as ”Drink Water”,

16

”Hand-waving” or ”Pointing”. The network defines a mapping y = f(x; θ) and tries to

learn the values θ (weights) that result in the best approximation. Assuming a classification

problem, training a neural network is performed by feeding it with training examples x

with a known label y = f(x; θ) and then updating the θ values in such a way that the

error between the prediction and the ground truth is minimized [103].

To measure how close the network’s predictions are to the desired outputs a function

has to be defined. This function is named ’cost function’ and for a classification problem

with multiple labels a possible cost function is the cross-entropy loss which is defined as

[105]:

J = −
n∑
i=1

tilog(pi) (3.1)

where n denotes the number of classes, ti denotes the ground truth label and pi denotes

the softmax probability for the ith class. Thus, the algorithm’s goal is to minimize the loss

function. For such purpose, gradients with respect to the loss function are calculated for

each learnable parameter θ in the back propagation step. Next, based on the calculated

gradients each weight θ is updated based on an optimization algorithm such as gradient

descent [117]. For the specific case of Stochastic Gradient Descent (SGD) the equation is

the following [103, 117]:

θk = θk−1 − η · ∇θJ(θk−1;x
(i); y(i)) (3.2)

where k denotes the kth optimization step, i denotes the ith training example, θ denotes the

weight to be updated, η denotes the learning rate and ∇θJ(θk−1;x
(i); y(i)) is the gradient

of parameter θ with respect to the loss function J . In SGD the weights are updated

each training example, contrary to other popular optimization algorithms such as Batch

Gradient Descent (BGD) and Mini-batch Gradient Descent (MBGD) where the weights

are updated after iterating through all training examples or after iterating through a mini-

batch of training examples, respectively. Two important aspects need to be considered

when using SGD as the optimization algorithm: (1) the learning rate should slowly decrease

during the training phase and (2) the dataset should be reshuffled every epoch to prevent

biasing the optimization algorithm [117].

To evaluate the DL algorithm two aspects can be addressed:

• The algorithm’s ability to make the training loss function value decrease;

• The algorithm’s ability for making the gap between the training and testing loss

17

Input Layer Convolutional Layer

3x3 Kernel

Pooling Layer

3x3 Kernel

40x1 Vector

Flattening

Fully-conected Layers Output Layer

6x6 Input Image
4x4x10 Feature Map

2x2x10 Feature Map

2x1 Vector

Hidden Layers

Figure 3.1: Example of a CNN for a binary classification problem with an input image of
dimensions 6x6 pixels.

function values small.

Based on these two aspects two problems can be identified: (1) overfitting and (2) under-

fitting. (1) Occurs when the gap between the testing and training loss function values is

too large which means that the function learned has high bias; (2) occurs when the train-

ing error is too large meaning that the algorithm failed to approximate an appropriate

function, meaning that the function approximated has high variance [103, 118].

3.2 Convolutional Neural Networks

CNNs are commonly used to solve problems that involve data organized in 2D or 3D

arrays. The most common applications are related to computer vision problems such as

video classification [53], image classification [112] and object detection and recognition

[119]. An illustrative example of a CNN architecture is presented in Fig. 3.1. There are

mainly 3 types of hidden layers in a CNN: convolutional layers, pooling layers and fully

connected layers. The network’s input is an image or sequence of images stacked together

(video). The ouput, in the case of a classification problem, is a 1 dimensional vector with

the scores for each class. This output vector can then be normalized to a probability

distribution representing the probabilities for each class using softmax function.

3.2.1 Convolutional Layers

Generally the first layers in a CNN are convolutional layers. They act as feature extractors

and are known for their ability to extract high-level features from the input data [112, 120].

Each layer applies the convolution operation (Fig. 3.2) between its input and a given

18

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

* =
1 0 1

0 1 0

1 0 1

4 3 4

2 4 3

2 3 4

Input Image
5x5

Kernel
3x3

Output
3x3

= 4

= 3

1 1 1

0 1 1
0 0 1

1 0 1
0 1 0

1 0 1

1 1 0

1 1 1
0 1 1

1 0 1

0 1 0
1 0 1

First two dot
products of the

convolution
operation

Figure 3.2: Example of a convolution between a 5x5 input and a 3x3 kernel with a stride
of 1 in both axis and 0 padding.

kernel. The convolution operation is performed by overlapping the kernel with the input

image and performing the dot product between the pixels values and the kernel’s weights.

In the example presented in Fig 3.2 a total of 9 dot products were performed.

There are some parameters that can be set when performing a convolution:

– Kernel dimensions: height and width of the kernel;

– Stride: number of rows or columns that the kernel slides between each application

of the kernel to the data;

– Padding: number of extra rows or columns added to the image boundaries.

The kernel values represent learnable parameters that are optimized during the training

process. Depending on the parameters chosen the size of the output can vary. A general

formula to calculate the output feature map dimensions is [121]:

noHW =
⌊niHW + 2p− f

s

⌋
+ 1 (3.3)

where noHW is the width/height of the output array, niHW is the width/height of the input

array, p is the padding, s is the stride and f is the dimension of the kernel.

Depthwise Separable Convolution

This convolution factorizes a standard convolution into a depthwise convolution followed

by a pointwise convolution. In a depthwise convolution each input channel is convolved

with its own kernel, and therefore the number of channels is kept during the operation,

19

* =

Input RGB Image
3x5x5

3 Kernels
3x3

Output
3x5x5

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

1 0 1

0 1 0

1 0 1

1 0 1

0 1 0

1 0 1

1 0 1

0 1 0

1 0 1

4 3 4

2 4 3

2 3 4

4 3 4

2 4 3

2 3 4

4 3 4

2 4 3

2 3 4

(a) Depthwise Convolution

* =

Kernel
3x1x1

Input
3x5x5

1

Output
3x3

4 3 4

2 4 3

2 3 4

4 3 4

2 4 3

2 3 4

4 3 4

2 4 3

2 3 4

12 9 12

6 12 9

6 9 12

(b) Pointwise Convolution

Figure 3.3: Depthwise separable convolution illustration, it is applied a depthwise con-
volution followed by a pointwise convolution. It is assumed that the two channels (Red
and Green) behind the front channel (Blue) have the exact same values for calculation
purposes.

i.e. Cout = Cin. A pointwise convolution applies a 1×1×Cin kernel to all input pixels thus

producing an output with a single channel while keeping the height and width dimensions

of the input tensor. By separating a conventional convolution into two steps both com-

putation time and model dimensions are significantly reduced [5]. MobileNetV1 [5] and

MobileNetV2 [6] are examples of architectures, which were evaluated in this work, that

use this type of convolution. Both operations are illustrated in Fig. 3.3.

3.2.2 Pooling Layers

Typically pooling layers are used after convolution layers and their purpose is to achieve

spatial invariance by reducing the spatial dimensions of the input feature map. Regions

of the input feature map are summarized statistically by applying a certain function such

as average of the values of that region (average pooling), selecting the highest value (max

pooling) or a weighted average based on the distance to the central element [103, 122]. In

Fig. 3.4 a max pooling operation is illustrated. A pooling layer does not contain learnable

20

Input Feature Map
4x4

Output Feature Map
2x2

4

4

2

8Max pool with a
2x2 region

and stride of 2
in both axis

1 3

0 4

1 0

1 2

2 3

0 4

2 3

7 8

Figure 3.4: Illustration of a max pooling operation. It is used a 2x2 region with a stride
of 2 in both axis.

parameters.

3.2.3 Fully Connected Layers

In a Fully Connected (FC) layer all nodes are connected to all output units from the

previous layer. The value of each node is calculate by a linear combination of the output

units of the previous layer plus an added bias value followed by an activation function

[104]. Figure 3.5 illustrates a simple fully connected layer with 3 input units and 2 output

units:

1

1

0.1

0.51

0.76

Figure 3.5: Illustration of a FC layer. The input feature map contains 3 units and the
output feature map contains 2 units. bi denotes the bias values, xi denotes the input
activation units, wi denotes the weight vectors and yi denotes the output units. The
activation function used in this example is the Rectified Linear Unit (ReLU). On the right
side it is presented the calculations for obtaining the output nodes values.

Thus, for a given output unit yi its value is calculated based on the following equation

[104]:

yi = f

(∑
j

wijxj + bi

)
(3.4)

where f denotes the activation function and both wi and bi represent the learnable pa-

21

rameters that are optimized during the training process. Generally FC layers are used as

the last layers in CNNs architectures. The output feature map of the last convolutional

layer is reshaped into a vector and fed to the FC layers. Then a softmax logistic regression

layer normalizes the output vector from the last FC layer [112, 123–125].

3.2.4 Global Average Pooling Layers

Lin et al. [123] stated that FC layers are prone to overfitting, which lowers the generaliza-

tion ability of the architecture. As a solution the GAP layer was proposed as a replacement

for the FC layers. In a GAP layer, each input feature map is averaged and the resulting

values are concatenated into a vector, meaning that the output vector will have has many

elements as the number of input feature maps. This layer does not contain any learnable

parameters contrary to the FC layers which helps preventing overfitting. Another advan-

tage is the fact that GAP sums out the spatial information which makes it more robust

to spatial translations in the input. GoogLeNet [126] and ResNet [61] are example of

successful architectures that use GAP layers in the last layers of the architecture. Figure

3.6 illustrates a GAP layer:

Three 2x2 Input Feature
Maps

1 2

4 1
3 2

2 3
3 1

1 1

Global Average
Pooling 2

2.5
1.5

3x1x1 Output
vector

Figure 3.6: Illustration of a GAP layer. The inputs are three 2x2 feature maps.

3.2.5 Activation Functions

Activation functions are used to compute the output values of the hidden layers in a

neural network. Generally the activation function is nonlinear allowing for the network,

as a whole, to learn a nonlinear function of its input [103]. The following list presents the

most common activation functions and their visualization is shown in Fig. 3.7:

• ReLU: f(x) = max(0, x);

• Sigmoid: f(x) = σ(x) = 1
1+e−x ;

• Hyperbolic Tangent: f(x) = 2σ(2x)− 1 = ex−e−x

ex+e−x .

22

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-2

-1

0

1

2

3

4

5
f(

x
)

(a) ReLU

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-0.5

0

0.5

1

1.5

f(
x
)

(b) Logistic Sigmoid

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

-1.5

-1

-0.5

0

0.5

1

1.5

f(
x
)

(c) Hyperbolic Tangent

Figure 3.7: ReLU, Logistic Sigmoid and Hyperbolic Tangent activation functions.

3.3 Graph Convolutional Networks

Graph Convolutional Networks (GCN) are specially suited for graph structured data.

Data such as citation networks, gene data, social networks or the human skeleton are all

examples of data that can be structured as a graph [127]. It is easily perceivable that

graphs can have very different sizes, the nodes can be very unordered and each node can

have a different number of neighbor nodes. This characteristics impose a difficulty when

applying the classical convolution operation to this type of data. To solve this problem, a

possible solution is to use GCNs where the classical convolution operation is generalized

to graph data [127–129].

GCNs have been successfully applied in problems related to 3D semantic segmentation

[130], classification and segmentation of point clouds [131], human-object interaction [132],

machine translation [133, 134] or human activity recognition [1, 67, 135, 136].

For the purpose of this dissertation it is of interest the use of GCNs to solve the HAR

problem. Thus, in the following paragraphs a possible spatiotemporal graph to model

the human skeleton structure and motion will be presented. In Fig. 3.8(a), is presented

the spatiotemporal graph that represents a temporal sequence of 3 skeletons. The orange

circles represent the vertexes that are defined based on the human skeleton joints. The

edges connecting each vertex represent the bones connecting each joint and are named

spatial edges. For the temporal dimensions the same vertex is connected, by temporal

edges, with its equivalent in adjacent frames. Each vertex attribute is set as the 3D

coordinate vector of the corresponding joint.

23

(a) Spatiotemporal graph.

X

(b) Mapping strategy.

Figure 3.8: Left: Spatiotemporal graph used to model the human skeleton structure and
motion. Right: Mapping strategy for the graph convolution. Adapted from [1].

3.3.1 Graph Convolution Definition

Based on the spatiotemporal graph previously defined, the graph convolution operation

on a given vertex vi is defined as:

fout(vi) =
∑
vj∈Bi

1

Zij
fin(vj) · w(li(vj)) (3.5)

where fout and fin denote the output and input feature maps. vi denotes the target joint

and vj denotes the joint j at a distance of 1 edge to the target joint. Bi is the sampling area,

similar to the kernel size in the typical convolution operation, w is the weight function.

The number of weight vectors is fixed, while the number of joints in the sampling area is

variable depending on the target joint. Thus, it is necessary to create a mapping function

li to assign each joint with its own weight vector. The strategy adopted for the mapping

function is illustrated in Fig. 3.8(b). The sampling area (defined as the joints that are

adjacent to the target joint in the spatial dimension) encloses the green and blue joints.

The red joint represents the target joint. Bi is divided into 3 subsets (Sik): Si1 is the

target joint; Si2 is the centripetal subset and contains the vertexes that are closer to the

center of gravity of the skeleton (marked as ’x’ in the graph, neck joint), contains the

green joint; Si3 is the centrifugal subset and contains the vertexes that are farther from

the center of gravity of the skeleton, blue vertexes. Zij is the number of vertexes in the

subset that contains the joint vj .

Thus, the feature map is a C×T×N tensor where C denotes the number of channels

(when using 3D coordinates C = 3), T denotes the number of frames and N denotes the

24

number of vertexes.

To implement the graph convolution, in the spatial dimension, the following equation is

defined:

fout =

Kv∑
k

Wk(finAk) ·Mk (3.6)

where Kv denotes the kernel dimension. Ak = Λ
− 1

2
k ĀkΛ

− 1
2

k , where Āk is an N ×N matrix,

and the element Āijk indicates if the joint vj is in the subset Sik of joint vi. Thus, Āk maps

each joint to its corresponding weight vector. Λiik =
∑

j(Ā
ij
k)+α is the normalized diagonal

matrix. Wk is a Cout × Cin×1×1 weight vector which represents the weighting function

(w(li(vj)) in Eq. 3.5. Mk is an N×N learnable matrix that represents the importance of

each joint [137].

For the temporal dimension the convolution is similar to a standard convolution. It is

defined that each joint is connected to the equivalent vertexes in the consecutive frames.

Then a Kt×1 convolution is applied on the output feature map computed previously, where

Kt denotes the kernel size of temporal dimension.

3.4 Data Augmentation Techniques

DNN are heavily dependent on large amounts of training data to avoid overfitting and

generalize well to new data. However, in practice the amount of data is limited and it

is not always possible to collect a large training set. Data augmentation techniques help

alleviate this problem by creating new training data [103, 138]. Data augmentation has

been particularly effective in computer vision problems where new training examples can

be created from the existing training set. Operations such as translating the image a

few pixels in any direction, cropping a region, injecting salt and pepper noise, zoom in,

rotating, flipping vertically or color space transformations are all examples of commonly

used techniques in computer vision problems [138, 139]. Examples of spatial and temporal

augmentation techniques are provided in Chapter 5.

3.5 Transfer Learning

Transfer learning can be defined as transferring knowledge learned in a given base dataset

(base model) to a target dataset (target model). This method can be a powerful tool

to help prevent the overfit problem. It is important that the features learned in the base

25

model are general and not specific to the base dataset, otherwise they might not be suitable

for the target dataset [140]. Generally, the first-layers features are general and aplicable to

many datasets, these can specialize in identifying edges, corners or other general shapes.

On the other hand, the last-layers features tend to be specific to a given dataset and learn

complex shapes specific to a given class [103, 141, 142].

Two types of transfer learning can be identified: (1) fine-tuning the whole base model

or (2) use the base model as feature extractor. In (1) the base model’s weights of every

layer are optimized for the target dataset, in (2) the base model’s first layers’ weights are

frozen and are used as feature extractors while the last layers’ weights are optimized for

the target dataset acting as classifiers [140]. The option of whether or not to fine-tune

the whole model or optimize only the last layers depends mainly on the size of the target

dataset and the number of parameters in the first layers. If the target dataset is small

and the number of parameters in the first layers is large then the best option is to use

the base model as feature extractor and optimize the last layers on the target dataset,

otherwise if it is used a fine-tuning the model could overfit the target dataset. On the

other hand, if the target dataset is of large-scale and the number of parameters is low,

and thus the overfitting is not a problem, then fine-tuning the whole base model would

be more appropriate [140]. It is also important to note that generally, when training a

pre-trained model in a new dataset, the model converges faster, and thus requires less time

to train than training the model from scratch on the new dataset. During the course of

the work it was possible to verify that, in fact, the training process is faster when training

a pre-trained model.

For the purpose of the dissertation, due to the high number of parameters in the DL

architectures used and the small-scale property of the datasets, the architectures are used

as feature extractors and only the last layer’s weights are optimized.

26

Chapter 4

Materials and Methods

In this chapter it is presented the different materials and methods used in the dissertation.

The chapter is organized as follows:

1. Dataset used for training the neural networks;

2. Performance metrics for evaluating the frameworks’s performance;

3. DL architectures used for feature extraction and classification of the human activities;

4. Object detection framework used for extracting from each image a bounding box

containing the subject performing the activity;

5. Brief introduction to the PyTorch package as well as an overview on how to create

and train a neural network;

6. Presentation of the source codes, based on the PyTorch package, used to train and

evaluate the neural networks;

7. Presentation of the mobile platform used for evaluating the frameworks and of the

Depth camera used for collecting the dataset.

4.1 NTU RGB+D 120 Dataset

NTU RGB+D 120 [2] is a dataset for human activity recognition. It features 120 activities

including daily actions, medical conditions and mutual actions. It was recorded using 3

concurrent Microsoft Kinect v2 cameras and contains 114480 activity samples (around 954

video samples per class). Each sample has the following data modalities: (i) RGB video;

(ii) depth map video; (iii) 3D skeletal data and (iv) Infrared (IR) video. The RGB videos

have 1920×1080 resolution and the IR and depth map videos have 512×424 resolution.

The 3D skeletal data contains the 3D coordinates of the 25 major body joints in each

frame [2].

28

Dataset Characteristics

#Action Classes 120 82 daily actions
12 medical conditions
26 mutual actions

#Subjects 106 15 different countries
heights: 1.3m to 1.9m
ages: 10 to 57 years

#Views 155 32 setups
3 angles: −45◦, 0◦,+45◦

different backgrounds
different locations

Figure 4.1: From left to right: Configuration of the 25 joints (adapted from [2]) and dataset
characteristics.

Each subject performed every action twice, one facing a camera positioned to their left

and another facing a camera positioned to their right. To further increase the number of

camera views the authors used 32 different camera angles and heights configurations [2].

The authors proposed two methods for evaluating the classification algorithms perfor-

mance:

– Cross-subject evaluation: it is defined a group of 53 subjects as the training group

and the remaining 53 subjects belong to the test group.

– Cross-setup evaluation: a similar procedure was applied, setups were divided into 2

groups, one for training the frameworks and the other for testing their performance.

Although it is of no interest to this dissertation the authors also introduced a one-shot

recognition setting. The dataset is divided into two parts, one composed of 100 classes

for training. And a smaller group composed of 20 classes to test the one-shot recognition

capacity of the frameworks.

Sample images of this dataset, a table with the different camera setups and the dataset

classes are shown in the Appendix C.

4.2 Performance Metrics

To evaluate the frameworks’ performance, the classification accuracy was calculated for

each model. Classification accuracy is defined as the ratio of the number of correct pre-

dictions to the total number of predictions made, expressed in percentage:

Accuracy (%) =
Number of correct predictions

Total number of prediction made
∗ 100 (%) (4.1)

29

A confusion matrix was also constructed for each model. Confusion matrices provide

a representation of the classification performance of the model. Each row represents the

true label while each column represents the predicted labels for each true label. Table 4.1

provides a generic example of a confusion matrix for a problem with 3 possible classes.

In the left table for the true label A, 90 examples were labeled as class A, 1 example was

labeled as class B and 9 examples were labeled as class C. This means that class A was

labeled correctly in 90% of the examples.

Table 4.1: Left table: confusion matrix. Right table: confusion matrix in percentages.

Predicted Class
A B C

T
ru

e
C

la
ss A 90 1 9

B 1 98 1

C 5 15 80

Predicted Class
A B C

T
ru

e
C

la
ss A 90% 1% 9%

B 1% 98% 1%

C 5% 15% 80%

Frameworks’ real-time performance was also evaluated, the total time it takes to pro-

cess a video sample is calculated. Depending on the framework this time is calculated

individually for each framework’s stage and then all times are summed giving the total

time for analyzing a video sample. This is an important metric for the context of this

dissertation since one of the objectives is to implement an HAR framework with real-time

performance.

4.3 Deep Learning Architectures for HAR

A total of 6 DL architectures were trained and tested in this dissertation, of which five are

3D versions of well known 2D architectures and one is a popular 3D CNN for large-scale

supervised training datasets:

– ResNets: He et al. [61] address a common issue that arises when training deeper

neural networks: increasing the depth of a network leads to an accuracy saturation

and then rapid degradation. To overcome this issue the authors introduced a new

concept: residual learning. This concept is implemented by adding a ”shortcut

connection”, namely identity shortcut connection, to neural networks [61]. This

type of connection skips one or more convolutional layers by performing an identity

operation over the input and adding it to the output of the skipped connections, Fig.

4.2. Results showed that this type of deeper networks (Residual Networks) performed

30

better when compared with their equivalents without ”shortcut connections” and

achieved state-of-the-art results. In this dissertation 3D versions [3] of 3 ResNets

variations were tested, namely, ResNet-18 (Fig. 4.2(a)), ResNet-50 (Fig. 4.2(b))

and ResNeXt 4.2(c)) [3].

– Convolutional 3D (C3D) [4]: C3D (Fig. 4.3) is a 3D CNN composed of 8 convolu-

tional layers, 5 max-pooling layers and 3 fully connected layers, the output vector

is normalized by a softmax function. It has a simple and generic architecture that

achieved state of the art results in a variety of video classification benchmarks [4].

– MobileNetV1 [5]: MobileNetV1 introduces a new type of convolution called depthwise

separable convolutions, presented in Chapter 2. Authors reported that MobileNet

achieves performances close to the state of the art in various tasks while having a

smaller model and faster computation times when compared to the state of the art

models. A 3D version [7] of MobileNetV1 was used in this dissertation. Figure 4.4(a)

presents an illustration of the main building block of MobileNet V1.

– MobileNetV2 [6]: this second version of MobileNet builds upon the concept of depth-

wise convolution while adding two new concepts: linear bottlenecks and shortcut

connections. Linear bottlenecks allows for reduced memory usage during inference

by first expanding the number of channels by applying a 1×1 convolution then ap-

plying a depthwise convolution followed by another 1×1 convolution to restore the

number of channels. Shortcut connections on the other hand allow for deeper mod-

els following the same principle introduced by He et al. [61]. A 3D version [7] of

MobileNetV2 was used in this dissertation. Figure 4.4(b) presents an illustration of

the main building block of MobileNet V2.

4.4 Graph Convolutional Neural Network for HAR

A skeleton-based approach for HAR was evaluated in this work, for such purpose a GCN

was used for feature extraction and classification. Shi et al. [1] presented 2s-AGCN,

a two stream graph convolutional network for HAR. It is a network where the graph

structure modeling the human skeleton is adaptative and learnable during the training

process contrary to existing methods where a fixed graph is set manually. The model

is composed of two parallel streams: (1) joint stream (J-Stream) and (2) bone stream

(B-Stream). J-Stream extracts features from the 3D location of each skeleton joint. B-

31

Conv, 3x3x3, F

BN

ReLu

BN

ReLu

Conv, 3x3x3, F

Conv, 3x3x3, F

BN

ReLu

Conv, 3x3x3, F

BN

(a) ResNet-18 main block

Conv, 1x1x1, F

BN

ReLu

Conv, 3x3x3, F

BN

ReLu

Conv, 1x1x1, 4F

BN

ReLu

(b) ResNet-50 main block

Conv, 1x1x1, F

BN

ReLu

Conv, 3x3x3, F,
group=32

BN

ReLu

Conv, 1x1x1, 2F

BN

ReLu

(c) ResNeXt main block

Figure 4.2: Main blocks of 3 Residual Network architectures [3]. BN: batch normalization,
ReLu: rectified linear unit, conv: convolution, F: number of feature maps, group: number
of groups in group convolution. Adapted from [3].

Conv, 3x3x3, 64 Po
ol Conv, 3x3x3, 128 Po
ol Conv, 3x3x3, 256 Conv, 3x3x3, 256 Po
ol Conv, 3x3x3, 512

Conv, 3x3x3, 512 Po
ol Conv, 3x3x3, 512 Conv, 3x3x3, 512 Po
ol FC, 4096 FC, 4096

So
ftm

ax

Figure 4.3: C3D [4] architecture. Conv: convolution, Pool: pooling layer, FC: fully con-
nected layer, softmax: softmax output layer. All convolutions have a stride of 1 in both
spatial and temporal dimensions. The number of filters for each convolution is the last
element in each box. Each fully connected layer has 4096 output units. All pooling kernels
are 2×2×2 except for the first one which is 1×2×2. Adapted from [4].

32

DWConv, 3x3x3, F

BN

ReLu

BN

ReLu

Conv, 1x1x1, F'

FxDxHxW

F'xDxHxW

(a) MobileNetV1 main block

Conv, 1x1x1, 6F

BN

ReLu6

BN

ReLu6

DWConv, 3x3x3,
s(1,1,1) 6F

FxDxHxW

FxDxHxW

Conv, 1x1x1, 6F

BN

(b) MobileNetV2 main block

Figure 4.4: Main blocks of MobileNetV1 [5] and MobileNetV2 [6]. BN: batch normaliza-
tion, ReLu6: rectified linear unit with maximum value 6, Conv: convolution, F: number
of feature maps, DWConv: depthwise convolution, s(1,1,1): stride of 1 in each dimension.
Adapted from [7].

Stream extracts features from bone information calculated from the 3D locations of the

joints. The two streams are fused via decision level fusion. Both streams’ output vector

is normalized via a softmax layer and then both are added together. The resulting vector

is used to predict the action depicted in the input video.

The authors use the same spatiotemporal graph presented by Yan et a.l [137] to represent

the skeleton sequences. However, the graph convolution layer (presented in Chapter 3)

is improved to an adaptative graph convolution layer where the authors introduce two

learnable graphs that are optimized in conjunction with the weight vector (Wk) during

the training process:

fout =

Kv∑
k

Wkfin(Ak +Bk + Ck) (4.2)

the new parameters are Ak, Bk and Ck. Ak is the N×N normalized adjacency matrix of

the skeleton graph, set manually and it is fixed. Bk is a N×N learnable adjacency matrix

whose values are optimized during the training process. Ck is a N×N learnable matrix

which purpose is to learn a graph for each sample (data-dependent graph). For such pur-

pose, to determine if two given vertexes are connected and how strong is that connection,

33

it is used the normalized embedded Gaussian function to determine the similarity between

the two given vertexes:

f(vi,vj) =
eθ(vi)

Tφ(vj)∑N
j=1 e

θ(vi)Tφ(vj)
(4.3)

N is the total number of vertexes. Given an input feature map (fin) with dimensions

Cin×T×N where Cin denotes the number of input channels and T denotes the number of

frames. fin is embedded into Ce×T×N by applying two embedding functions (θ and φ)

that are defined as a 1×1 convolution layer. The two embedded feature maps are then

reshaped into an N×CeT and a CeT×N matrix. Both matrices are multiplied to obtain a

N×N matrix, which is normalized to 0 - 1, whose element Cijk represents the similarity of

vertexes vi and vj . Finally the Ck similarity matrix is calculated by applying the softmax

function to the previous matrix. Thus, Ck is calculated based on the following equation:

Ck = softmax(fTinW
T
θkWφkfin) (4.4)

where Wθ and Wφ denote the parameters of the embedding function.

Figure 4.5 illustrates both the 2s-AGCN complete architecture as well as its main block

that implements the adaptative graph convolution layer defined previously.

4.5 CNN-based Object Detection

One of the HAR frameworks evaluated in this dissertation requires a human detection

module. For such purpose it was used the state of the art object detection system You

Only Look Once (YOLO) [143]. Since its original release in 2016 the authors published two

additional papers [144, 145] where improvements were made to the original architecture.

In the YOLO system the input image is segmented into an S × S cells grid. If the

object’s bounding box center is inside a given cell that cell is responsible for detecting

that object. Thus, each cell predicts a given number of bounding boxes and associates

with each box its confidence that there is an object inside that box. Moreover, each cell also

has a conditional probability for each class, meaning that if a given box contains an object

then that object’s class is the one with the highest probability. Finally it is performed a

non maximum suppression to eliminate duplicate predictions and it is applied a threshold

detection. In YOLOv3 [145] the authors used a different backbone CNN, Darknet-53

which is a CNN with 53 convolutional layers. It was also used a new type of bounding

34

Ck

softmax

(1x1)

X

(1x1)

fin

Ak

+

Bk

X

(1x1)

+

fout

(1x1)

Cin x T x N

CeT x NN x CeT

N x NCin x T x N

Cout x T x N

Kv = 3

Ck

softmax

(1x1)

X

(1x1)

fin

Ak

+

Bk

X

(1x1)

+

fout

(1x1)

Cin x T x N

CeT x NN x CeT

N x NCin x T x N

Cout x T x N

Kv = 3

(a) 2s-AGCN main block.

BN

B1 - 3, 64, 1

B2 - 64, 64, 1

B3 - 64, 64, 1

B4 - 64, 128, 2

B5 - 128, 128, 1

B6 - 128, 128, 1

B7 - 128, 256, 2

B8 - 256, 256, 1

B9 - 256, 256, 1

GAP

Softmax

2x3x300x25
tensor

Label

(b) 2s-AGCN ar-
chitecture.

Figure 4.5: 2s-AGCN main block and complete architecture. Left diagram: T denotes
the temporal length, N denotes the number of vertexes, Cin and Cout denotes the number
of input and output channels respectively. Ak, Bk and Ck are N×N matrices. fin and
fout denote the input and output feature maps respectively. Kv denotes the number of
subsets. ⊕ denotes elementwise summation and⊗ denotes matrix multiplication. res(1×1)
is a residual layer that is applied when the number of output channels is different than
the number of input channels. θk(1×1) and φk(1×1) represent the embedding functions.
wk(1×1) is a 1×1 convolution layer. Red boxes represent learnable parameters. Right
diagram: B1-B9 represent the 2s-AGCN main block. BN is a batch normalization layer
and GAP is a global average pooling layer. Adapted from [1].

35

box called anchor boxes. Instead of predicting the size and location for each bounding box

the network calculates offsets for predefined boxes (anchor boxes), authors state that it is

easier for the network to learn offsets than predicting the coordinates and bounding box’s

size directly. Another improvement was multiscale prediction, instead of having a S × S

cells grid the authors implemented prediction at 3 different scales: 13 × 13, 26 × 26 and

52× 52 [146].

4.6 PyTorch Package

PyTorch is an open source scientific computing package. It was first published in 2016 by

Facebook’s Artificial Intelligence Research Lab (FAIR) and since then has become one of

the most popular DL frameworks.

The main focus of the PyTorch library is the DL community, mainly due to the following

two features:

– Graphics Processing Unit (GPU) tensor computation: PyTorch allows tensor oper-

ations to be performed in the GPU allowing for faster computations;

– Autograd module: it allows automatic differentiation for all operations performed

on tensors. In the forward pass these operations are recorded and later the gradients

can be calculated automatically and stored into the tensor’s .grad attribute.

4.6.1 Creating and Training a Neural Network in PyTorch

Creating and training a neural network in PyTorch involves 3 main steps: creating the

dataset class, defining the neural network and creating the main loop to iterate over all

the training examples.

Generally the main loop is composed of a primary loop that iterates over all the epochs

and a secondary loop that iterates over all the training examples:

1 . . .
2 for epoch in range (0 , nr epochs) :
3 for batch , data in enumerate(da ta s e t l oade r , 0) :
4 inputs , l a b e l s = data [0] . to (dev i ce) , data [1] . to (dev i c e)
5 outputs = network (inputs)
6 l o s s = c r i t e r i o n (outputs , l a b e l s)
7 opt imize r . z e ro g rad ()
8 l o s s . backward ()
9 opt imize r . s tep ()

10 . . .

The first step is the forward propagation which outputs the predictions (5th line). Then

36

follows the backward propagation step (8th line) and finally the optimization step where

the NN weights are updated (9th line) based on a given optimization method defined

previously. It is important to note that in the 6th line the loss is calculated based on a

given criterion that was also defined previously. Also an important characteristic of the

PyTorch library is that the user does not need to define any of the functions that were

used in this main loop, they are all predefined. Next, the parts of the code that need to

be built from scratch by the user are presented.

The PyTorch package provides several prebuilt dataset classes for the most popular

datasets, however the NTU RGB+D 120 Dataset class is not contemplated in those pre-

built classes. For such purpose it is presented in the Appendix A an example of a dataset

class for the NTU RGB+D 120 Dataset. PyTorch documentation states that a dataset

class should override the len () and getitem () methods. The len () method re-

turns the number of examples in a dataset and getitem () allows indexing of the dataset

such as ntu dataset[i] which returns the ith example from the dataset. An example of

the implementation of these two methods is present, as stated before, in the Appendix

A. In this specific example it was implemented a simple augmentation technique (vertical

flipping) that has a 50% chance of occurring when calling the getitem () method. The

sample is then resized (height and width in pixels), converted to tensor variable and all the

frames are concatenated into a variable (this group of frames represents the video sample).

This variable is then returned to the caller function.

Finally, the third step is to define the architecture of the neural network. The PyTorch

package also provides several architecture templates for the most commonly used neural

networks. For the purpose of illustration it is presented in the Appendix A a template

for the C3D architecture [4] with batch normalization [147]. The template of the neural

network must implement a forward() function that when called computes the outputs

given the inputs (forward propagation). For such purpose there are several predefined

classes that can be used to define the NN such as Conv3d() , BatchNorm3d() , MaxPool3d() ,

Linear() which applies 3D convolution, batch normalization, 3D max pooling and a linear

transformation, respectively, over an input signal. For the sake of brevity only a few of

the available predifined classes were presented.

To keep track of the NN’s performance a test function should also be implemented. For

such purpose it can be created a for loop where each test set example is classified by

the neural network and the result is compared with a ground truth file. Then the NN’s

37

performance can be calculated based on a given criteria.

4.7 Source Codes

For training and testing the DL architectures it was used the publicly available code1

developed by Köpüklü et al. [7]. In their paper the authors converted popular 2D resource

efficient CNNs into 3D versions with the purpose of video classification. The new versions’

performance was evaluated on three public benchmarks/datasets: Kinetics-600 [55], 20BN-

jester Dataset [60] and UCF101 [54].

It is important to point out that this code was specifically designed to train and evaluate

models on the aforementioned benchmarks. Although, for the purpose of this dissertation

a different dataset (NTU RGB+D 120) was used which demanded several adaptations to

make the source code compatible with the NTU RGB+D 120 Dataset, details are explained

in Chapter 5.

Regarding the skeleton based approach it was also used a public repository2 developed

by Shi et al. [1]. Authors proposed 2s-AGCN, a two-stream GCN with decision-level fusion

for video classification that was trained and tested on the NTU RGB+D 120 dataset. For

this reason the available code was entirely compatible and few changes needed to be made.

4.8 Validation Platform

The InterBot (Interactive mobile roBot) platform, Fig. 4.6, is an indoor service robot

which was developed at ISR-UC [148], it uses a modular software architecture that allows

collaborative HRI. The HRI system integrates two Human-Machine Interface (HMI) de-

vices: an on-board portable device and a remote station which is in charge of planning the

robot tasks. The software architecture was developed using the Robot Operating System

(ROS) [149] framework.

1https://github.com/okankop/Efficient-3DCNNs
2https://github.com/lshiwjx/2s-AGCN

38

On-board HMI

Navigation
Processing Unit

(NPU)

Actuators
(motors)

Raspberry Pi

Sensor Data
(encoders)

Battery Management
System (BMS)

RoboteQ Motor
Controller

Keyboard

Battery

Screen
Display

TCP/IP Communication

ROS Topics

Remote Station

TCP Socket

Screen
Display

Screen
DisplayUser Inputs

User Inputs

Configurations

RGB-D
Camera

LIDAR

(a) InterBot architecture: main hardware mod-
ules and their inputs and outputs. The arrows
show the flow of data (adapted from [148])

On-board
HMI

Navigation
Processing Unit

(NPU)

Actuators

Raspberry Pi

InterBot Platform

Sensor Data
(encoders)Operator

User

Remote
Station

(b) Overview of the InterBot hardware archi-
tecture and flow of information (adapted from
[148])

Figure 4.6: Overview of the InterBot architecture.

4.8.1 InterBot Hardware Architecture

InterBot is a differential drive mobile robot composed of two motorized wheels and a caster

wheel. Each motorized wheel is actuated by a DC motor powered by 8-cell lithium batteries

which is controlled by a RoboteQ Motor Controller. There is an encoder coupled to each

motor axis. The speed commands are sent to the RoboteQ Controller by a Raspberry

Pi which also receives information from the wheels’ encoders and sends the odometry to

the Navigation Processing Unit (NPU). The NPU is an onboard laptop that runs the

ROS software nodes. Both a Scanning Laser Rangefinder (Hokuyo UTM-30LX Laser) and

an Intel RealSense D435 camera are installed on the platform. Direct or shared control

over the InterBot platform is provided via the Remote Station. The on-board HMI is

a Nexus 10 tablet, acting as HRI [148]. InterBot can be operated either locally using

the on-board HMI Virtual Joystick or remotely from the Remote Station using the same

Virtual Joystick but using mouse/keypad events. The InterBot has a set of configuration

parameters that are initialized with default values which can be safely changed while the

robot is operating [148]. Figure 4.6 illustrates the InterBot main hardware modules and

39

how they are interconnected.

4.9 Intel RealSense Depth Camera D435

Intel RealSense Depth Camera D435 is a stereo vision depth camera. It is able to record

videos up to 1920x1080 RGB resolution at 30 FPS. Although not used in this dissertation,

the camera is also able to record depth map videos with up to 1280x720 resolution at

30 FPS. It has a range of 0.2m up to 10m, depending on the lighting conditions. The

subsystem assembly contains a stereo depth module and a vision processor (Intel RealSense

Vision Processor D4). Connection with a host system is done through a USB C to USB

2.0/USB 3.1 conneciton [150].

Interface between the camera and the laptop is done through the official ROS wrapper

provided publicly by Intel3. A laptopt running Lubuntu 18.04 LTS with ROS Melodic was

used to record the images provided by the camera.

3ROS Wrapper for Intel RealSense Devices, available at: https://github.com/IntelRealSense/realsense-
ros

40

Chapter 5

Developed Work

This chapter introduces the frameworks proposed in the dissertation for solving the HAR

problem.

Figure 5.1 presents the HAR-RGB-based Framework I (HAR-RGB-bFI) and its offline

stage. In the offline stage, every video in the dataset is converted to a set of frames which

are then saved. During the training phase, each set of frames, obtained on the offline stage,

is directly fed to the HAR-RGB-bFI framework. The preprocessing stage is responsible for

applying data augmentation techniques and then resizing the images for matching the DL

architecture’s input layer dimensions. The DL architecture is responsible for extracting

features and classifying (feature extraction and classification module) the activity depicted

in the input set of frames.

HAR-RGB-based Framework II (HAR-RGB-bFII) is illustrated in Fig. 5.6. In this

second framework it is introduced a human detection module during the offline stage.

This module substitutes the video processing module, it extracts, from each frame, a

bounding box containing the person’s whole body and then saves the set of bounding

boxes. The introduction of the human detection module aims to solve the problems in the

HAR-RGB-bFI, which are discussed later in this chapter. The training phase is similar

to HAR-RGB-bFI except that the input is a set of bounding boxes instead of the whole

frame.

A third framework, HAR-Skeleton-based Framework (HAR-S-bF), illustrated in Fig.

5.11, was also developed and evaluated in this dissertation. This approach uses the 3D

coordinates of each joint of the human skeleton for feature extraction and classification.

Feature extraction and classification is performed by 2s-AGCN (presented in Section 4.4).

The subsets of classes of the NTU RGB+D 120 dataset used for training and evaluating

the frameworks are listed and their purpose is also explained. Finally, the dataset collected

at the Institute of Systems and Robotics - University of Coimbra, which was used for

evaluation of the generalization capability of the frameworks, is also presented in this

chapter.

42

5.1 HAR-RGB-based Frameworks

In this section both HAR-RGB-based frameworks developed in this dissertation are pre-

sented by explaining their respective offline stages, training phases and testing phases. It

is divided into 4 parts:

• HAR-RGB-bFI: explains the offline stage and the preprocessing module of both

training and testing phases;

• HAR-RGB-bFII: explains the offline stage and the preprocessing module of both

training and testing phases;

• Feature Extraction and Classification Module: explains the feature extraction and

classification module for both frameworks. This module is the same for the two

frameworks, and thus it is explained in the same section;

• Optimization Step: explains the Optimization Step for both frameworks;

• Data Augmentation: explains and illustrates the data augmentation techniques used

for both HAR-RGB-based frameworks.

5.1.1 HAR-RGB-based Framework I

HAR-RGB-bFI is illustrated in Fig. 5.1. It is composed of:

• An offline stage where the whole dataset is processed before starting the training

phase;

• A training phase where the feature extraction and classification module (DL ar-

chitecture) is trained on the dataset processed by the offline stage;

• A test phase where the framework performance is evaluated on the dataset pro-

cessed by the offline stage.

Offline Stage

The offline stage’s (top half of the diagram presented in Fig. 5.1) input is an RGB video

with 1920×1080 resolution recorded at 30 FPS. Each video portrays a single subject per-

forming a single activity and lasts for about 2 to 3 seconds, depending on the subject and

activity. First, the video is resized to 320×240 resolution and then is converted to a set of

frames. The resulting frames are then saved.

43

Set of RGB frames
extracted from a 2-3s
duration video depicting
a single activity.

Input Data

Preprocessing

t

RGB Frames with
320x240 resolution

Output
vector

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames from
the input set (16 or 32 frames,
depending on the settings);
-Apply data augmentation
techniques to the selected subset;
-Resize to 112x112 pixels.

It is used a Deep Learning
architecture for feature extraction
and classification.

Ground Truth
vector

Optimize architecture's weights

Calculate Loss
Function Value

Training Phase

Video
1920x1080 resolution

@ 30 FPS

Video Processing

(1) Resize the video to 320x240
resolution;
(2) Extract every frame and
save the resulting image.

Offline Stage
RGB Frames with

320x240 resolution

Input Data
Output Data

Figure 5.1: HAR-RGB-bFI. The offline stage converts every video in the dataset to a set
of frames with 320×240 resolution and then saves them. The training phase is composed
of 3 main modules, a preprocessing stage a feature extraction and classification stage and
a optimization stage where based on the loss function values the DL architecture’s weights
are optimized.

Training Phase

During the training phase (bottom half of the diagram presented in Fig. 5.1) the feature

extraction and classification module is trained on the dataset, previously processed by the

offline stage. One set of frames, representing a video, is fed at a time to the training phase.

This set of frames represents a single video and has a single label. Throughout the chapter

it is referenced a size of 112×112 pixels, this is the size of the frames that are fed to the

feature extraction and classification module.

The preprocessing stage purpose is twofold: converting the input set of frames for

matching the DL architecture’s input layer dimensions (select 16 or 32 frames from the

input set and resizing each frame to 112×112 pixels) and applying data augmentation

techniques to the input set of frames. For the purpose of the dissertation, one of the

main focus of the developed work was testing and evaluating different cropping methods

(spatial augmentation technique, discussed later in this chapter). The cropping method

can be interpreted as a data augmentation technique (multiscale random cropping) or,

under certain conditions, as a method that extracts the important region of the image for

44

the classification task (center cropping). In the case of the HAR problem, for the center

cropping to effectively extract the important region from the image, it must be assumed

that the person is centered in the image throughout the whole video (discussed later in

this chapter).

The initial approach was to use a multiscale random crop in the input set of frames,

depicted in Fig. 5.2. In this cropping technique, a random sized square region is selected

and extracted from each frame and then is resized to a 112×112 pixels square. This was a

technique implemented, as default, in the source code [7] used for this work. The purpose

of such technique is to serve as spatial data augmentation technique. For each epoch,

it crops different regions of the set of frames, and thus creating more training examples

for the training process. Every frame in a set of frames is cropped at the same position.

However, this cropping technique proved to be unsuitable for the dataset used in this

dissertation. As illustrated in Fig. 5.2 the cropped regions can be very different from one

another. There could be regions extracted containing the subject’s whole body, containing

part of the subject’s body or even containing only background objects. It is clear that this

cropping technique is not very suitable for this type of dataset. The datasets (Kinetics-

600 dataset [39], UCF-101 dataset [54] and Jester dataset [60]) used by the authors of the

source code used in this dissertation are very different from the NTU RGB+D 120 dataset.

Jester is a gesture recognition dataset where the subjects are sitting in front of their laptop

webcam doing hand gestures. Kinetics-600 and UCF-101 are activity recognition datasets

that are a collection of videos downloaded from YouTube, and therefore were recorded

with different points of view, resolutions or come from varying sources (personal videos,

commercials, TV news or documentaries are all examples of such sources).

A second approach was to resize each frame to a 112×112 pixels square and then applying

data augmentation, except for any sort of cropping technique. Essentially, the whole frame

is used for feature extraction and classification. This method also proved to be unsuitable

for the dataset used in this dissertation. Note that the majority of the visual information in

each frame is irrelevant for the activity being performed. Fig. 5.3 illustrates this problem.

The DL architectures used in this dissertation for the feature extraction and classification

module do not include any sort of attention mechanism that is capable of focusing on the

region of interest. An example of such mechanism is the work by Baradel et al. where the

authors developed a framework that is capable of concentrating on interest points that are

relevant to the activities/actions. The authors managed to achieve 86.6% cross-subject

45

Figure 5.2: Original 320x240 frame and the resulting images after applying two multiscale
random crops.

Figure 5.3: Comparisson between two frames depicting different activities, drinking water
and vomiting. It shows a red region, which is common to both pictures, that does not
contribute with any relevant information to distinguish between the two activities. The
green region contains the area where the activity is being performed.

classification accuracy on the NTU RGB+D dataset.

Having into account that the region of interest is located mainly at the center of each

frame, a possible strategy, to help the DL architecture concentrate on that region, would

be to extract this area and use it as input to the DL architecture. As a first experiment,

it was used a 112×112 pixels square region extracted from the frame’s center. However,

in some cases a 112×112 square is not large enough to include the relevant body parts

for some activities (e.g. situations b1) and d1) in Fig. 5.4). Also, in extreme cases, the

person’s body could be completely left out on the resulting image (e.g. situation c1) in

Fig. 5.4).

To try to mitigate the problem of missing body parts in the center crop, one last approach

46

112x112
pixels

160x160
pixels

112x112
pixels

160x160
pixels

160x160
pixels

112x112
pixels

160x160
pixels

112x112
pixels

a) b)

c) d)

a1)

a2)

d1)

d2)

c1)

c2)

b1)

b2)

Figure 5.4: Original 320×240 frames and the resulting images after applying two different
central crops (112×112 pixels and 160×160 pixels).

was proposed. Extracting first a larger square (160×160 pixels) from the image center,

and then resized to 112×112 pixels. This second approach solves the problem for some of

the situations (e.g. situation a2) and d2) in Fig. 5.4). However, it is clear that in other

cases even with a larger square the person’s body is still out of frame in the resulting

image (e.g. situation c2) in Fig. 5.4) or a relevant body part is missing (e.g. situation b2)

in Fig. 5.4).

Increasing the center crop size would eventually include the person’s whole body for

every image. However, as the crop size increases, more irrelevant visual information is

included resembling the situation where the whole frame is used as input. This problem

is can be seen in all of the 160×160 images present in Fig. 5.4, where great part of the

image contains irrelevant information.

Overall, HAR-RGB-bFI main problem is the fact that it is assumed the person per-

forming the activity is centered in the image. If the person deviates from the image center

this assumption can become a problem since the crop position does not take into account

this variations. The person can move out of the image center not only because it moves

during the activity but also because the robot can move around during the activity. Thus,

the resulting image, after cropping the original, can be a background scene without any

person or the person’s left or right body side could be left out. Moreover, even if the

person remains relatively centered in the image throughout the activity, another difficulty

that arises is the fact that the image area occupied by the person varies with the distance

47

Set of RGB frames
extracted from a 2-3s
duration video depicting
a single activity.

Input Data

Preprocessing

t

RGB Frames with
320x240 resolution

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames
from the input set (16 or
32 frames, depending on
the settings);
-Center crop a square of
160x160 pixels;
-Resize to 112x112 pixels.

It is used a Deep Learning
architecture for feature extraction
and classification.

Label

Output
vector

Nausea
Clapping
Drink Water
Hand-waving
PointingBased on the output

vector the activity
with the highest
probability is
chosen as the
predicted label for
the input video.

Testing Phase

Figure 5.5: HAR-RGB-bFI testing phase.

to the camera. Different crop sizes would be required for different distances between the

subject and the camera, i.e. a person closer to the camera occupies more area in the image

than a person who is located farther from the camera.

Testing Phase

For the HAR-RGB-bFI testing phase the preprocessing stage is responsible for extracting

N frames (16 or 32 depending on the settings) from the original video and applying a

central crop of 160×160 pixels square which is then resized to 112×112 pixels. No spatial

data augmentation techniques are applied during testing. Finally, the frames are stacked

together forming a 3×N×112×112 tensor that is fed to the DL architecture for feature ex-

traction and classification. Figure 5.5 shows a diagram illustrating HAR-RGB-bFI testing

phase.

5.1.2 HAR-RGB-based Framework II

Trying to improve the classification accuracy achieved with the first framework, it is pro-

posed in this dissertation a second approach in which a human detection stage substitutes

the video processing module in the offline stage. HAR-RGB-bFII is illustrated in Fig. 5.6.

It is composed of:

• An offline stage where the whole dataset is processed before starting the training

phase;

• A training phase where the feature extraction and classification module (DL ar-

chitecture) is trained on the dataset processed by the offline stage;

• A test phase where the framework performance is evaluated on the dataset pro-

cessed by the offline stage.

48

Set of bounding
boxes extracted from
a 2-3s duration
video depicting
a single activity.

Input Data

Preprocessing

t

Output
vector

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames from
the input set (16 or 32 frames,
depending on the settings);
-Apply data augmentation
techniques to the selected
subset.

It is used a Deep Learning
architecture for feature extraction
and classification.

Ground Truth
vector

Optimize architecture's weights

Calculate Loss
Function Value

Training Phase

Video
1920x1080 resolution

@ 30 FPS

Human Detection Stage

-Extracts a bounding box
containing the humans in the
image;
-Resize to 112x112 pixels and
save the square image.

Offline Stage Bounding boxes
with 112x112

resolution

Input Data
Output Data

Bounding boxes
with 112x112

resolution

t

Figure 5.6: HAR-RGB-bFII. The offline stage extracts from every video in the dataset
a bounding box containing the person’s whole body. The resulting bounding boxes are
resized to 112×112 pixels and then saved.

Offline Stage

The offline’s stage (top half of Fig. 5.6) input is the same as the offline stage of HAR-

RGB-bFI. The main difference is the human detection module that substitutes the video

processing module. The human detection module extracts, from each frame, a bounding

box containing the person’s whole body. Independently of the subject’s location this

bounding box contains its whole body (given it is present in the image), contrary to

HAR-RGB-bFI. Naturally, the bounding box dimensions depend on both the distance

between the person and the camera and the person’s pose (for example, if the person is

standing with arms open the bounding box will be wider than a person standing with

arms crossed). Thus, after being extracted, the bounding box is resized to a 112×112

pixels square and saved. Therefore, each video in the dataset is converted to a set of

bounding boxes containing the person performing the activity (as referenced earlier, each

video contains a single person).

Figure 5.7 illustrates the resulting bounding boxes after extraction and resizing for the

4 situations previously presented in Fig. 5.4. It is clear that with the human detection

49

a) b)

c) d)

Bounding box Bounding box
Resized to

112x112 pixels

Bounding box

Bounding box

Bounding box

Bounding Box
Resized to

112x112 pixels

Bounding box
Resized to

112x112 pixels

Bounding box
Resized to

112x112 pixels

Original frame Original frame

Original frame Original frame

Figure 5.7: Original 320×240 frame and the resulting images after extracting and resizing
bounding boxes containing the person’s whole body.

module the framework is able to keep track of the person performing the activity, contrary

to HAR-RGB-bFI. For the human detection stage it was used YOLOv3-spp [145] (third

version of the state of the art object detection system YOLO [143]) with Spatial Pyramid

Pooling blocks [151]. A pre-trained model on Common Objects in Context Dataset (COCO

Dataset) [152] published by Ultralytics LLC1 was used. This dataset contains 80 object

categories, however for the context of this dissertation only the category ’person’ is of

interest. Thus, it was necessary to adapt the original code for extracting only the bounding

boxes for the category ’person’ in each frame. Figure 5.8 illustrates the differences between

the original and new outputs of YOLOv3-spp.

Training and Testing Phases

Training and testing phases are very similar to HAR-RGB-bFI. The main difference is

the application of cropping techniques, on the HAR-RGB-bFII the offline stage resizes the

bounding boxes to 112×112 and then saves them. Thus, the preprocessing stage does not

apply any type of cropping technique on the input set of frames. The feature extraction

and classifcation module is the same as the HAR-RGB-bFI. Figure 5.9 illustrates the

testing phase of HAR-RGB-bFII.

1https://github.com/ultralytics/yolov3

50

Original outputs New outputs

Figure 5.8: Left: YOLOv3-spp original outputs, all detected objects are bounded in the
output image. Right: YOLOv3-spp output after code adaptations to the original code for
only outputing the bounding boxes for the category ’person’ in each frame. All objects are
still detected, however the output image only extracts the bounding boxes for the category
’person’.

5.1.3 Feature Extraction and Classification

For feature extraction and classification, for both HAR-RGB-based frameworks, six dif-

ferent DL architectures were tested and evaluated. In Chapter 4 the main building block

of each architecture was briefly described and their complete architectures is presented in

appendix D, except for C3D which was already presented in Chapter 4. It is important to

note that five of the six architectures were originally designed for image recognition. For

this work, their versions [3, 7] for video recognition were trained and evaluated.

The input layer for all six architectures has dimensions C×D×H×W where: (1) C

Set of RGB frames
extracted from a 2-3s
duration video depicting
a single activity.

Input Data

Preprocessing

t

RGB Frames

Deep Learning Based
Feature Extraction and Classification

-Select a subset of frames
from the input set (16 or
32 frames, depending on
the settings).

It is used a Deep Learning
architecture for feature extraction
and classification.

Label

Output
vector

Nausea
Clapping
Drink Water
Hand-waving
PointingBased on the output

vector the activity
with the highest
probability is
chosen as the
predicted label for
the input video.

Testing Phase

Figure 5.9: HAR-RGB-bFII testing phase.

51

denotes the number of channels in the input data (since the input data is a set of RGB

images this means that C = 3, one for each color); (2) D denotes the depth of the input

data which represents the number of input images (in this work, depending on the settings,

the number of images is either 16 or 32); (3) H denotes the height, measured in pixels, of

the input data (in this work H = 112); (4) W denotes the width, measured in pixels, of

the input data (in this work W = 112).

The DL architectures output is a 1 dimensional vector with length equal to the number

of classes. For all architectures it is applied the softmax function to the output vector.

In the resulting vector each element represents the probability score for each class and all

elements add up to 1. The class with the highest probability score is chosen as the label

for the input set of frames. Individual performance of each DL architecture is presented

in Chapter 6.

5.1.4 Data Augmentation

This section explains both spatial and temporal data augmentation techniques used during

the training phase of both HAR-RGB-based frameworks.

Spatial Domain Data Augmentation

Spatial domain data augmentation is commonly used in image classification tasks. How-

ever, it can also be used in video classification problems by applying the augmentation

techniques to each frame individually. In this work several spatial domain augmentation

techniques were used (Fig. 5.10 illustrates the resulting images after applying each data

augmentation technique):

– Flipping an image horizontally: each set of frames has a 50% chance of being flipped

horizontally;

– Multiplying pixel values by a constant: each image is multiplied by a constant with

a value in the interval [0.80, 1.20]. This transformation changes the image’s pixels

values by a percentage that varies from −20% to 20% (darken or brighten the image).

Every frame in the same video sample is multiplied by the same constant, i.e. all

frames change brightness equally;

– Applying salt-and-pepper noise: each video sample has a 10% probability of being

affected by this transformation. Each pixel’s color value has a chance in the interval

[1
120 , 1

30] of being reduced to 0 or increased to 255;

52

a)

d)b) c)

e) f) g)
Figure 5.10: Various spatial domain data augmentation techniques and cropping tech-
niques used in this work. From left to right and up to bottom: a) original image, b)
center crop, c) horizontal flip, d) multiscale random crop, e) gaussian blur, f) multiply
pixel values and g) salt-and-pepper noise.

– Applying a gaussian filter: each video sample has a 20% probability of being affected

by this transformation. Convolution with two 1D gaussian kernels, one for each axis,

with a dimension of 41×1 and σ = 5 is applied to the image;

– Multiscale random crop: in this technique the frame is cropped at a random location

and the resulting image is used as input for the feature extraction and classification

module. In a given set of input frames the crop location and size is the same for all

frames. The resulting image is then resized to 112×112 pixels.

It is worth mentioning two other spatial transformations that were tested in this disser-

tation: (1) Center crop: each frame is cropped at the center. The cropping dimensions,

depending on the settings, are a square of 112×112 or 160×160 pixels. In the case of the

160×160 pixels square the resulting image is resized to 112×112 pixels. This transforma-

tion is always applied during the testing phase of both HAR-RGB frameworks and (2)

Resizing: no cropping is applied, the video sample is only resized to 112×112 pixels. Both

transformations are applied to the set of input frames instead of the multiscale random

crop. Note that these transformation are not applied with the objective of being used as

data augmentation, their purpose was described previously in this chapter.

Time Domain Data Augmentation

Subsampling frames at different frequencies is a type of data augmentation technique that

is used in video classification tasks. In this work two variations of subsampling were

tested: subsampling frequency and randomizing the starting frame. Both can be used

individually or concurrently, for the purpose of this dissertation several combinations of

53

the aforementioned variations were tested (results are shown in Chapter 6).

Subsampling frequency is applied by changing the step between each consecutive frame.

For example, given a set of frames F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and considering the

number of frames to be extracted is 4, two possible subsets are:

– F1 = {1, 3, 5, 7}, a subsampling frequency of 2 was used meaning that one frame is

selected from the original set every 2 frames;

– F2 = {1, 4, 7, 10}, a subsampling frequency of 3 was used meaning that one frame is

selected from the original set every 3 frames.

Randomizing the starting frame is applied by picking a random starting frame from the

input set of frames. For example, given a set of frames F = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and

the number of frames to be selected is 4, two possible subsets are:

– F1 = {3, 4, 5, 6}, the first frame was the 3rd;

– F2 = {6, 7, 8, 9}, the first frame was the 6th.

It is important to note that if there are not enough frames to satisfy the desired amount,

either because the total number of frames is less than 16 or 32 (depending on the setting)

or because the initial frame (selected randomly) was closer to the end of the video, the

algorithm loops back to the first frame and continues from there. For example, given a

series of frames F = {1, 2, 3, 4, 5, 6, 7} and the number of frames to be selected is 5 frames.

By applying a sampling frequency of 2 and starting at frame number 2 the selected frames

would be:

– F1 = {2, 4, 6, 1, 3}.

5.2 HAR-Skeleton-based Framework

HAR-S-bF is illustrated in Fig. 5.11. For this framework few adaptations needed to be

made to the publicly available source code2 by [1]. The framework’s input is a sequence

of human poses. Each human pose is modeled by a graph where each vertex represent the

human joints, a total of 25 joints are used. Each vertex contains a feature vector with 3

elements that correspond to the 3D location of the corresponding joint.

2https://github.com/lshiwjx/2s-AGCN

54

Input Data

Preprocessing

t

Skeleton
Sequence

Deep Learning Based
Feature Extraction and Classification

-It is set a fixed sequence
length of 300 frames. If the
input skeleton sequence < 300,
then repeat skeleton sequence
until the 300 frames requirement
is met;
-Apply data augmentation
techniques to the skeleton
sequence.

Skeleton poses extracted
from the RGB Data. It is
extracted a single
skeleton from each frame.
Only single person
activities are considered.

It is used a Graph Convolutional Network
(GCN) for feature extraction and classification.

Output
vector

Calculate Loss
Function Value

Ground Truth
vector

Optimize GCN's weightsTraining Phase

Figure 5.11: HAR-S-bF approach. The subject skeleton is extracted and fed to a GCN.

5.2.1 Preprocessing Stage

Preprocessing stage is responsible for generating the bone and joint data from the input

skeleton sequence.

It is assumed that each skeleton sequence has 300 poses (in practical terms, it is assumed

that the video samples have a maximum of 300 frames), for skeleton sequences with less

than 300 poses null poses are padded until the sequence has a length of 300. The poses

are then concatenated into a tensor with dimensions M×C×T×V where:

• M - number of skeletons present in each frame. It is assumed that a maximum of two

skeletons are present in each frame. However for the purpose of this dissertation only

activities with one subject were evaluated, and thus the second skeleton is composed

of null joints;

• C - number of channels. Since each joint is represented as a point in the 3D space

the number of channels is equal to 3, one for each axis (X, Y, Z);

• T - number of frames. It is assumed a fixed number of frames equal to 300;

• V - number of joints. Each pose is represented by a set of 25 joints;

• The resulting tensor is of dimensions 2×3×300×25.

To create the bone data it is assumed that a bone connects two joints. The joint closer

to the center of gravity of the skeleton is the source joint (v1 = (x1, y1, z1)) and the joint

farther away is the target joint (v2 = (x2, y2, z2)). The vertex corresponding to the source

joint stores the vector information that points to the target joint from the source joint

(v2 − v1). Because the number of joints is one more than the number of bones it is added

a null bone to the central joint (joint number 1, bottom of the spine). Thus the bone data

tensor also has the same dimensions as the joint data tensor.

55

5.2.2 Feature Extraction and Classification

As aforementioned the feature extraction and classification step is performed by a two

stream graph convolutional network with decision level fusion. Bone data is fed to the

B-stream (bone stream) and joint data is fed to the J-stream (joint stream), the last layer

of each stream is normalized by applying a softmax function. The resulting output vectors

of each stream are then added and the label is the class with the highest score.

5.3 Dataset Subsets

As mentioned in Chapter 4 the dataset used in this dissertation for training the frameworks

was the NTU RGB+D 120 [2]. Two Subsets of classes were chosen for training and

evaluating the framework: (1) health related classes and (2) interaction + health related

classes. Subset 1 contains health related classes that are useful in applications such

as service robots in healthcare [22, 153, 154] or social assistive robots for elderly people

[155–157]. Subset 2 contains both interaction and health related classes, this subset

was created with the objective of evaluating the frameworks’s performance when trained

in a less challenging subset of classes. Also, interaction classes (pointing, clapping and

hand-waving) can be useful for detecting when the user intends to interact with the robot.

The following list shows the classes contained in each subset:

• Subset 1: drink water, headache, chest pain, sneeze/cough, nausea/vomiting, falling

down and staggering;

• Subset 2: drink water, nausea/vomiting, pointing, hand-waving and clapping.

5.4 ISR dataset

To evaluate the generalization capability of the implemented frameworks testing was per-

formed on a dataset collected at the Human-Centered Mobile Robotics Laboratory in

the Institute of Systems and Robotics - University of Coimbra. Results are presented in

Chapter 6.

The dataset was collected with an Intel Realsense D435 Depth Camera. Video was

recorded at 30 FPS with 640x480 resolution. A total of 300 RGB videos were recorded

with 10 participants performing 10 activities. The subjects were positioned directly in

front of the camera at a distance of 3 meters. The camera was positioned on the InterBot

56

Intel RealSense
D435

Height = 0.92cm

Laptop

Figure 5.12: InterBot mobile platform equipped with a laptopt and the Intel RealSense
D435 Depth Camera. Left: side view of the InterBot mobile platofrm, Right: rear-view of
the InterBot mobile platform.

Figure 5.13: Samples taken from the ISR Dataset.

mobile platform at a height of 0.92 meters. Note that the dataset was collected with

the robot’s Point of View (POV), generally HAR datasets do not provide such POV. For

example: Kinetics-600 dataset is a collection of videos downloaded from YouTube with

varying sources and POVs and UCF-101 dataset is also composed of videos downloaded

from YouTube.

Participants performed each activity 3 times, one facing the camera, one turned to their

right 45 degrees and another turned to their left 45 degrees. The 10 activities performed

correspond to the 10 different activities presented in section 5.3. Fig. 5.12 shows the

InterBot equipped with a laptopt and the Intel RealSense D435 Depth Camera ready for

collecting the ISR-dataset. Some samples of the ISR Dataset are shown in Fig. 5.13

57

Chapter 6

Experimental Results

This chapter presents the experimental results obtained for different training and testing

scenarios in terms of classification accuracy on the training and testing sets. It is also cal-

culated the time it takes for each framework to evaluate an input sequence of 16 frames.

The chapter is divided into the following sections: (1) Evaluation Protocol, (2) Train-

ing Parameters, (3) HAR-RGB-bFI Results, (4) HAR-RGB-bFII Results, (5) HAR-S-bF

Results and (6) Frameworks Runtimes.

6.1 Evaluation Protocol

As mentioned in Chapter 5 two Subsets of classes were selected from the NTU RGB+D

120 Dataset to train and test the frameworks:

• Subset 1 is composed of the following 7 classes: (1) Drink Water, (2) Headache,

(3) Chest Pain, (4) Sneeze/Cough, (5) Nausea/Vomiting, (6) Falling Down and (7)

Staggering;

• Subset 2 is composed of the following 5 classes: (1) Drink Water, (2) Nausea/Vom-

iting, (3) Pointing, (4) Hand-waving and (5) Clapping.

On the NTU RGB+D 120 Dataset each class has 948 videos while on the ISR Dataset

each class has 30 videos. The classification accuracy was calculated based on cross-subject

evaluation, meaning that a part of the subjects is used for training the models and the

remaining subjects are used for testing. For the NTU RGB+D 120 Dataset it was used

the recommended splits in [2], which means that for Subset 1 and Subset 2, around

70% of the videos are used for training and the remaining 30% are used for testing. For

the ISR Dataset, 7 subjects are used for training the models (21 videos per class) and 3

subjects are used for testing the models (9 videos per class).

58

Table 6.1: Initial learning rate and batch size used for training the DL architectures.

Architecture Learning Rate Batch Size

C3D 0.0001 4
MobileNet V1 0.25 32
MobileNet V2 0.25 32
ResNet-18 0.1 32
ResNet-50 0.1 16
ResNeXt 0.1 16

6.2 Training Parameters

This section presents the training parameters used in the training phase for the developed

frameworks.

6.2.1 RGB-based Frameworks Training Parameters

To train all six architectures, it was used SGD with a momentum of 0.9 as the optimization

algorithm. Categorical cross entropy loss was used as the loss function and the weight decay

was set to 0.001. Training was conducted in a machine equipped with 16GB of RAM, a

NVIDIA GeForce GTX 1060 6GB and an Intel Core i5-3570K @ 3.40GHz.

The aforementioned hyperparameters and training details are common to all architec-

tures during their training phases. However, both the learning rate and batch size had

to be adjusted for each architecture. Table 6.1 summarizes these two parameters for each

architecture. It is important to note that learning rate is adjusted during the training

process, as explained in Chapter 3. Thus, depending on the architecture the learning rate

is divided by a factor of 10 once the loss function value starts converging. The training

phase ends when the loss function value converges and further lowering the learning rate

does not improve the loss function value.

Training a Pre-trained Model

Another possibility when training a model is to use a pre-trained model as feature extractor

and optimize the last layers on the desired dataset (explained in Chapter 3). For HAR,

Köpüklü et al. [7] published pre-trained models of the MobileNet V1, MobileNet V2,

ResNet-18 and ResNet-50 networks 1. These models were pre-trained on the Kinetics-600

Dataset [39].

1https://github.com/okankop/Efficient-3DCNNs

59

Table 6.2: Initial learning rate used when training the pre-trained models.

Architecture Learning Rate

MobileNet V1 0.025
MobileNet V2 0.025
ResNet-18 0.01
ResNet-50 0.01

Training parameters are similar to the parameters when training the models from scratch

except for the learning rate and the total number of epochs each architecture needs before

converging to a solution. Table 6.2 shows the initial learning rates for each architecture.

Similar to training from scratch, the training phase ends when the loss function value

converges and further lowering the learning rate does not improve the loss function value.

6.2.2 Skeleton-based Framework Training Parameters

For training the 2s-AGCN, it was used SGD with a Nesterov Momentum [158] of 0.9 as the

optimization algorithm. Cross-entropy was used as the loss function and the weight decay

was set to 0.0001. Due to hardware limitations the batch size was set to 8. Considering

the learning rate, it was followed the same approach as the authors of the 2s-AGCN: initial

learning rate is set to 0.1 and is divided by a factor of 10 at the epochs 30 and 40 with the

training process ending at epoch 50. Following this approach proved to be effective and

appropriate for both the Subsets used in this dissertation.

6.3 RGB-based Framework I

Six different DL architectures were trained and tested for the feature extraction and clas-

sification module of the HAR-RGB-bFI (presented in Section 5.1.1) and the following

evaluation scenarios were considered:

1. MobileNetV1:

(a) Different combinations of the width multiplier2 value, number of extracted

frames and cropping technique;

(b) Different values for the subsampling frequency value while using a fixed value

2Both MobileNetV1 and MobileNetV2 have a width multiplier parameter that allows changing the
number of output channels in each convolutional layer by multiplying it by the default number of output
channels in each convolutional layer.

60

for the width multiplier, number of extracted frames and cropping technique;

(c) Not applying any cropping technique. The input set of frames is just re-

sized to match the DL architecture’s input layer dimensions. The remaining

parameters (width multiplier, subsampling frequency and cropping technique)

are fixed.

2. MobileNetV2: width multiplier of 0.5, 16 extracted frames, subsampling frequency

of 2 and center crop;

3. ResNet-18, ResNet-50, ResNeXt and C3D: 16 extracted frames, subsampling

frequency of 2 and center crop.

The experiments performed on HAR-RGB-bFI were conducted on Subset 1. Due to

hardware limitations it was not possible to test all the DL architectures on all scenarios.

For such purpose MobileNetV1 was selected as a testbed with the goal of testing different

combinations of : (1) width multiplier value, (2) number of extracted frames from the

input set, (3) the type of cropping technique and (4) subsampling frequency. For all

the experiments the starting frame is selected randomly from the input set of frames, as

explained in Section 5.1.4.

The results for tests 1a), 1b) and 1c) are presented in Table 6.3 and Table 6.4.

Table 6.3: Results obtained for MobileNetV1, on the HAR-RGB-bFI, when trained from
scratch on Subset 1 with different combinations of: width multiplier, number of extracted
frames and cropping technique parameters.

Width
Multiplier

Nr. of extracted
Frames

Cropping
Technique

Train
Accuracy

Test
Accuracy

0.2 16 center 72.2% 51.6%
0.2 16 random 56.1% 52.8%
0.2 32 center 86.8% 42%
0.2 32 random 70% 46.9%
0.5 16 center 94.3% 53.3%
0.5 16 random 55.4% 48.7%
0.5 32 center 95.8% 45.7%
0.5 32 random 80% 49.5%
0.7 16 center 93.9% 52.1%
0.7 16 random 55% 47.4%
0.7 32 center 94% 35.9%
0.7 32 random 81.2% 32.7%

Using the model highlighted with a darker color (highest test classification accuracy) in

Table 6.3 as a reference for comparison, the following observations can be made:

• Width multiplier : increasing or decreasing the width multiplier value leads to

61

Table 6.4: Results obtained for the 1b) and 1c) scenarios. The experiments were conducted
with a width multiplier value of 0.5, 16 extracted frames and a center crop was applied
during training.

Subsampling
Frequency

Cropping
Technique

Train
Accuracy

Test
Accuracy

1 center 78.9% 41.5%
2 center 94.3% 53.3%
4 center 99.8% 38.3%
2 none(resizing) 67.6% 36.1%

a lower test classification accuracy. This results can be explained by analyzing

how the model complexity changes by increasing or decreasing the width multiplier

value. With a higher width multiplier the network has more learnable parameters,

and therefore can be more prone to overfitting the training set [159], and thus the

train classification accuracies increase while the test classification accuracy decreases.

With a lower width multiplier value the network has less learnable parameters mean-

ing that is less capable of learning a mapping function between the input layer and

the output layer leading to lower test classification accuracies and underfitting. De-

spite the lower number of parameters there is still a significant overfit;

• Number of extracted frames: increasing the number of extracted frames to 32

increases the train classification accuracy, however the test classification accuracy is

lower. As stated in Chapter 3 the goal of applying augmentation techniques is to help

mitigate overfit. One temporal augmentation technique is extracting, in each epoch,

a random subset of frames from the same input set. Meaning that in each epoch

different temporal information is extracted from the same input set. By increasing

the number of extracted frames more information about the input set is being fed

to the DL architecture during training. In practice this means that the temporal

augmentation technique is not having any effect because in every epoch the temporal

information covers roughly the whole activity;

• Subsampling frequency: increasing the subsampling frequency leads to results

that are similar to the ones obtained by increasing the number of extracted frames.

The model is able to classify correctly 99.8% of the training set, however it has

a poor generalization capability, achieving a test classification accuracy of 38.3%.

Decreasing the subsampling frequency also led to lower test classification accuracies,

the extracted frames are not scattered enough through time to represent the activity

62

being performed. For example, the randomly selected frames could be the beginning

of the sequence or the end, which are similar to most of the classes, the person is

just standing still;

• Cropping technique: by applying a center crop to the extracted frames the irrel-

evant information is excluded and the DL architecture can focus on the important

region of the image. The results show that the classification accuracy is greater when

compared with the random multiscale cropping or just resizing the frames. However,

it is also clear that the difference between the train classification accuracy and the

test classification accuracy is greater.

After analyzing the results, it can be concluded that the following combination resulted

in the best test classification accuracy: applying a width multiplier of 0.5, extracting 16

frames and applying a center crop. Figure 6.1(a) shows the training loss curve for the

reference model. The confusion matrix for the reference model is shown in Fig. 6.1(b), it

is clear that the model struggles to distinguish activities that share common movements.

The activities ”Drink Water”, ”Sneeze/Cough”, ”Chest Pain” and ”Headache” all have in

common the hand movement, the person is relatively still and raises one or both hands

to the head or upper torso, Fig. 6.2 illustrates a sequence for the four aforementioned

activities. The class ”Falling Down” is mispredicted with ”Staggering” due to the fact

that both are related because before falling down there is a period when the person is

staggering/losing balance. Extracting only 16 frames from the input set might not be

enough to identify if the person is going to fall or is just staggering. Another important

observation is the fact that some of the participants of NTU RGB+D 120 Dataset recreated

both the ”Sneeze/Cough” and ”Nausea/Vomiting” with similar movements, they placed

one or both hands on their mouth/nose and then bent over.

Finally, after determining a suitable combination of parameters, the remaining 5 DL

architectures are trained and tested with the same parameters. Thus, the parameters

used are: width multiplier of 0.5 (only applies for MobileNetV2), subsampling frequency

of 2, 16 extracted frames and a center crop is applied to the extracted frames. The

results obtained for the remaining 5 DL architectures (scenarios 2 and 3) are presented in

Table 6.5. After analyzing the results, it can be observed that the difference between the

train accuracy and test accuracy shows signs of a overfitting problem for the evaluated

architectures. Two possible causes could be: (1) the architectures are too complex and

overfit the training set or (2) the dataset is too small, meaning that there are not enough

63

0 10 20 30 40 50 60 70 80 90

Epoch

0

0.5

1

1.5

2

2.5
Lo

ss
 V

al
ue

(a) Training loss curve for the reference model on
HAR-RGB-bFI. The initial learning rate was set
to 0.25 and was divided by 10 on epochs number
60 and 86. The training ended at epoch 135 with
a training loss of 0.13.

Drink Sneeze Stag. Fall. Head. C.Pain Naus.
Predicted labels

Dr
in

k
Sn

ee
ze

St
ag

.
Fa

ll.
He

ad
.

C.
Pa

in
Na

us
.

Tr
ue

 la
be

ls

52.9 3.6 0.0 0.0 36.6 6.5 0.4

23.6 39.1 1.4 0.0 19.9 12.7 3.3

0.4 2.9 94.9 0.0 0.4 0.4 1.1

2.5 1.8 27.9 53.6 5.4 1.4 7.2

33.7 10.1 0.0 0.0 46.4 8.3 1.4

25.0 23.6 0.0 0.0 19.9 23.9 7.6

5.5 17.8 2.2 0.0 2.5 9.8 62.2
0

20

40

60

80

(b) Confusion matrix for the reference model on
HAR-RGB-bFI. Drink - Drink Water, Sneeze -
Sneeze/Cough, Stag. - Staggering, Fall. - Falling
Down, Head. - Headache, C. Pain - Chest Pain
and Naus. - Nausea/Vomiting.

Figure 6.1: Training loss curve and confusion matrix for the reference model on HAR-
RGB-bFI.

Table 6.5: Results obtained when training from scratch the six different DL architectures,
on HAR-RGB-bFI, on Subset 1 with the following parameters: width multiplier of 0.5
(only applies to MobileNetV2), subsampling frequency of 2 frames, 16 extracted frames
and center crop.

Architecture
Train

Accuracy
Test

Accuracy

MobileNetV1 94.3% 53.3%

MobileNetV2 88.1% 63.7%

ResNet-18 95.5% 64.1%

ResNet-50 91.9% 59.6%

ResNeXt 93.2% 54.3%

C3D 91.1% 51.9%

training examples to achieve a good generalization. Regarding cause (1), MobileNetV1

has around 41 times less parameters than ResNet-18 and 60 times less parameters than

ResNet-50 and overfits the dataset despite being much more narrower and shallower in

terms of size. Addressing cause (2), note that typically the DL architectures evaluated in

this work are trained from scratch on large scale datasets, contrary to both Subset 1 and

Subset 2 dimensions. Thus, it is safe to assume that the overfit is mainly related to the

two aforementioned causes.

Figure 6.3 shows the training loss curve for the ResNet-50 and its confusion matrix.

The confusion matrix for this architecture is similar to MobileNetV1, the classes ”Drink

Water”, ”Sneeze/Cough”, ”Headache” and ”Chest Pain” are mispredicted between one

64

A)

B)

C)

Time

D)

Figure 6.2: Sequences representing the activities: A) Headache, B) Sneeze/Cough, C)
Drink Water and D) Chest Pain.

another, however the ResNet-50 is able to predict correctly 83.7% of the ”Drink Water”

videos. The classes ”Falling Down” and ”Staggering” are mispredicted with each other as

well as ”Nausea Vomiting” and ”Sneeze/Cough”.

Figure 6.4 presents the training and testing accuracy curves for the reference model.

By analyzing both curves it can be seen that after the 30th epoch the model shows signs

of overfitting the dataset. The training accuracy continues to improve and the testing

accuracy remains stable.

6.4 RGB-based Framework II

Two types of training were performed on the HAR-RGB-bFII: (1) training from scratch

and (2) training a pre-trained model. As stated previously, due to hardware limitations

it was not possible to test all scenarios on all architectures on both HAR-RGB-based

65

0 20 40 60 80 100 120

Epoch

0

0.5

1

1.5

2

2.5

3

Lo
ss

 V
al

ue

X 101
Y 0.3422

X 90
Y 0.4214

(a) Training loss curve for the ResNet-50 on HAR-
RGB-bFI trained from scratch. The initial learn-
ing rate was set to 0.1 and was divided by 10
on epochs number 50, 60, and 100. The training
ended at epoch 115 with a training loss of 0.23.
Please note that between the epoch 91 and epoch
101 due to an error during the training phase the
loss function value was not saved to the .txt file.

Drink Sneeze Stag. Fall. Head. C.Pain Naus.
Predicted labels

Dr
in

k
Sn

ee
ze

St
ag

.
Fa

ll.
He

ad
.

C.
Pa

in
Na

us
.

Tr
ue

 la
be

ls

83.7 1.4 0.0 0.0 13.4 1.4 0.0

12.7 57.2 1.8 0.0 16.3 9.4 2.5

0.0 1.8 98.2 0.0 0.0 0.0 0.0

2.2 2.5 58.0 31.2 0.0 0.7 5.4

31.2 10.1 0.0 0.0 54.3 3.6 0.7

9.1 40.9 0.0 0.0 12.7 30.8 6.5

2.2 25.8 5.5 0.0 2.5 2.2 61.8
0

20

40

60

80

(b) Confusion matrix for the ResNet-50 on HAR-
RGB-bFI trained from scratch. Drink - Drink Wa-
ter, Sneeze - Sneeze/Cough, Stag. - Staggering,
Fall. - Falling Down, Head. - Headache, C. Pain -
Chest Pain and Naus. - Nausea/Vomiting.

Figure 6.3: Training loss curve and confusion matrix for the ResNet-50 on HAR-RGB-bFI

Frameworks. Thus, since the HAR-RGB-bFII provided the best results when trained from

scratch, it was decided to evaluate the DL architectures when training their pre-trained

models only for the HAR-RGB-bFII, since it was more promising than the HAR-RGB-bFI.

Therefore, transfer learning was applied to MobileNetV1, MobileNetV2, ResNet-18 and

ResNet-50, for ResNeXt and C3D it was not possible to find pre-trained models.

This section is divided into 3 main parts:

1. Training and testing the DL architectures on Subset 1;

2. Training and testing the DL architectures on Subset 2;

3. Training and testing the DL architectures on the ISR Dataset.

As aforementioned, the remaining experiments will use the same parameters as the

reference model of HAR-RGB-bFI except for the cropping technique. In HAR-RGB-bFII

no cropping technique is applied to the extracted frames. The extracted frames are the

bounding boxes of the subject performing the activity.

6.4.1 Training on Subset 1

The results when training the DL architectures from scratch on Subset 1 are shown in

Table 6.6. As expected, the results have improved, by using a human detection stage the

region of interest is extracted from the image and used as input to the feature extraction

66

0 10 20 30 40 50 60 70 80 90

Epoch

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y

Train Acc.
Test Acc.

X 90
Y 53.3

X 90
Y 94.26

Figure 6.4: Training and testing accuracies for the reference model. The testing accuracy
was calculated every 5 epochs.

Table 6.6: Results obtained when training from scratch the six different DL architectures,
on HAR-RGB-bFII on Subset 1 with the following parameters: width multiplier of 0.5
(only applies for MobileNetV2), subsampling of 2 frames and 16 extracted frames.

DL
Architecture

Train
Accuracy

Test
Accuracy

MobileNetV1 92.1% 67.5%

MobileNet V2 91.5% 75.2%

ResNet-18 95.1% 74.1%

ResNet-50 96.9% 75.2%

ResNeXt 94.6% 68.8%

C3D 91.8% 74.5%

and classification module. Thus, the DL architecture can focus on this region only. De-

pending on the model the improvements vary from 10% on ResNet-18 to 22.6% on C3D. A

possible explanation for these improvements could be the fact that by removing the major-

ity of the background the DL architecture might not be able to identify patterns present in

the data that are not relevant to the recognition task. By concentrating only on the sub-

ject performing the activity the DL architecture is able to focus on learning each activity’s

movements/motions instead of identifying spurious patterns. Many authors identify the

property of learning spurious patterns or sampling noise as the explanation why the DL

architectures overfit the training sets [103, 159, 160]. By limiting the visual information,

to the strictly necessary to identify the activities, the sampling noise is reduced, therefore

helping to mitigate the overfit problem.

Figure 6.5 shows both the loss curve and confusion matrix for ResNet-50 on HAR-RGB-

bFII. When comparing the results with those obtained for ResNet-50 on HAR-RGB-bFI,

67

0 10 20 30 40 50 60 70 80

Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4
Lo

ss
 V

al
ue

(a) Training loss curve for the ResNet-50 on HAR-
RGB-bFII trained from scratch. The initial learn-
ing rate was set to 0.1 and was divided by 10 on
epochs number 60 and 70. The training ended at
epoch 75 with a training loss of 0.09.

Drink Sneeze Stag. Fall. Head. C.Pain Naus.
Predicted labels

Dr
in

k
Sn

ee
ze

St
ag

.
Fa

ll.
He

ad
.

C.
Pa

in
Na

us
.

Tr
ue

 la
be

ls

77.5 0.7 0.0 0.4 18.1 2.9 0.4

10.9 58.3 1.8 0.0 17.8 8.0 3.3

0.0 0.7 98.9 0.0 0.4 0.0 0.0

0.7 1.1 38.0 52.9 1.8 0.7 4.7

8.3 4.0 0.0 0.0 83.3 2.5 1.8

4.3 4.7 0.4 0.0 3.6 76.8 10.1

2.5 9.1 1.8 0.0 0.7 7.3 78.5
0

20

40

60

80

(b) Confusion matrix for the ResNet-50 on HAR-
RGB-bFII trained from scratch. Drink - Drink
Water, Sneeze - Sneeze/Cough, Stag. - Staggering,
Fall. - Falling Down, Head. - Headache, C. Pain -
Chest Pain and Naus. - Nausea/Vomiting.

Figure 6.5: Training loss curve and confusion matrix for the ResNet-50 trained from scratch
on HAR-RGB-bFII.

it is clear that the classification accuracies have improved for all classes except for ”Drink

Water” which lowered 6.2%. However, the classification accuracy for the ”Drink Water”

class is still very high and the overall classification accuracy improved by 15.6%. These

results demonstrate that by including a human detection stage the classification accuracy

of the HAR-RGB framework improves up to 22.6%, as mentioned earlier, depending on

the feature extraction and classification module (DL architecture) used.

Another possibility for trying to further improve the results is to apply transfer learning

techniques. Typically, when applying transfer learning to an HAR framework the models

are pre-trained on the large scale Kinetics dataset [55] and then used as feature extractors

while the top layers are trained on a smaller scale dataset [7, 55, 57, 161]. For the purpose

of this dissertation, when training the pre-trained models, all the layers but the last are

frozen and only the weights from the output layer are updated during the training phase.

As aforementioned, it was not possible to find pre-trained models for all architectures.

Thus, this technique was applied on MobileNetV1, MobileNetV2, ResNet-18 and ResNet-

50 (the models were pre-trained on Kinetics-600 and published online3 by [7]). Pre-training

the models on Kinetics-600 during the dissertation research work was impossible due to

both hardware and time limitations.

The results obtained, when training the pre-trained the models, are shown on Table 6.7.

3https://github.com/okankop/Efficient-3DCNNs

68

Table 6.7: Results obtained when training the pre-trained models, on HAR-RGB-bFII
on Subset 1 with the following parameters: width multiplier of 0.5 (only applies to
MobileNetV2), subsampling of 2 frames and 16 extracted frames.

DL
Architecture

Train
Accuracy

Test
Accuracy

MobileNetV1 90.7% 78.6%

MobileNetV2 92.1% 81.6%

ResNet-18 95.9% 81%

ResNet-50 96.8% 88.1%

As expected, the test classification accuracy has improved for all models while the train

classification accuracies are similar to the previous ones. It was possible to improve the

best test classification accuracy obtained previously by 12.9%, up to 88.1%.

Figure 6.6 shows the loss curves and the confusion matrix fro the ResNet-50 on HAR-

RGB-bFII when training a pre-trained model. By comparing with the results obtained

when training the model from scratch it is clear that all the classes improved their test

classification accuracies. It can also be observed that regarding the mispredictions the

model follows a similar behavior as before, the classes ”Drink Water”, ”Sneeze/Cough”,

”Headache” and ”Chest Pain” are mispredicted between one another. The class ”Stagger-

ing” is predicted correctly in 98.9% of the examples and the ”Falling Down” class improved

its classification accuracy by 31.9% up to 84.8%. It also interesting to note that the class

”Nausea/Vomiting” is mispredicted with ”Sneeze/Cough” and ”Chest Pain” in similar

percentages, this might be due to the fact that in some of the ”Chest Pain” examples the

subjects might be raising one or both hands to the chest area and bending over, similarly

to ”Nausea/Vomiting” and ”Sneeze/Cough”.

6.4.2 Training on Subset 2

The activities in Subset 2 were selected with the goal of having a less challenging dataset

by chosing a smaller number of activities and activities that are more distinct between

one another, and therefore easier to identify. Thus, it is expected that the framework

achieves a better performance. Table 6.8 shows the results obtained when training the

DL architectures from scratch. As expected, it can be concluded that all architectures

perform better. ResNet-18 achieves the highest test classification accuracy with 82.6%.

Following the same method as before, it was used transfer learning. Table 6.9 shows the

results obtained when training the pre-trained models on Subset 2. ResNet-50 achieves

69

0 2 4 6 8 10 12 14 16 18 20

Epoch

0

0.2

0.4

0.6

0.8

1

1.2
Lo

ss
 V

al
ue

(a) Training loss curve for the ResNet-50 on HAR-
RGB-bFII when training a pre-trained model. The
initial learning rate was set to 0.01 and was divided
by 10 on epoch number 15. The training ended at
epoch 20 with a training loss of 0.1.

Drink Sneeze Stag. Fall. Head. C.Pain Naus.
Predicted labels

Dr
in

k
Sn

ee
ze

St
ag

.
Fa

ll.
He

ad
.

C.
Pa

in
Na

us
.

Tr
ue

 la
be

ls

93.5 1.1 0.0 0.0 4.3 1.1 0.0

7.2 76.1 0.0 0.0 6.2 7.6 2.9

0.0 0.0 98.9 0.4 0.4 0.4 0.0

0.4 0.7 9.1 84.8 1.1 0.4 3.6

5.8 1.4 0.0 0.0 90.6 0.4 1.8

1.1 1.4 0.0 0.0 0.4 89.9 7.2

0.0 8.7 0.0 0.4 0.0 7.3 83.6
0

20

40

60

80

(b) Confusion matrix for the ResNet-50 on HAR-
RGB-bFII when training a pre-trained model.
Drink - Drink Water, Sneeze - Sneeze/Cough,
Stag. - Staggering, Fall. - Falling Down, Head.
- Headache, C. Pain - Chest Pain and Naus. -
Nausea/Vomiting.

Figure 6.6: Training loss curve and confusion matrix for the ResNet-50 on HAR-RGB-bFII
when training a pre-trained model.

Table 6.8: Results obtained when training from scratch the six different DL architectures,
on HAR-RGB-bFII, on Subset 2 with the following parameters: width multiplier of 0.5
(only applies to MobileNetV2), subsampling of 2 frames and 16.

DL
Architecture

Train
Accuracy

Test
Accuracy

MobileNetV1 87.6% 75.1%

MobileNetV2 91.1% 80.8%

ResNet-18 96.5% 82.6%

ResNet-50 96.5% 78.8%

ResNeXt 95.7% 71.4%

C3D 93% 82.3%

the best test classification accuracy with 95.1% by improving 16.3% comparatively to the

classification accuracy obtained when trained from scratch.

6.4.3 Testing on the ISR Dataset

The experiments made on the ISR Dataset had the objective of evaluating the general-

ization capability of the HAR-RGB-bFII when trained on the NTU RGB+D 120 Dataset

and tested on the ISR Dataset. The results are shown in Table 6.10 (top 4 rows), it can be

observed that all the DL architectures have poor generalization capabilities. Despite the

high train classification accuracy on the NTU RGB+D 120 Dataset the test classification

accuracy on the ISR Dataset is low for all models. The settings in which the ISR Dataset

70

Table 6.9: Results obtained when training the pre-trained models, on HAR-RGB-bFII
on Subset 2 with the following parameters: width multiplier of 0.5 (only applies to
MobileNetV2), subsampling of 2 frames and 16.

DL
Architecture

Train
Accuracy

Test
Accuracy

MobileNetV1 94.7% 83.5%

MobileNetV2 94.8% 87.3%

ResNet-18 97.7% 88.3%

ResNet-50 98.7% 95.1%

was collected were as close as possible to the settings of the NTU RGB+D 120 Dataset

(distance to the camera, height of the camera and number of FPS). However, it is clear

that the HAR-RGB-bFII struggles to achieve the same results obtained when tested on

the NTU RGB+D 120 Dataset.

Trying to find any issues with the ISR Dataset the majority of the 300 collected videos

was analyzed, as well as part of the 6636 videos of the NTU RGB+D 120 Dataset. Two

observations can be drawn from analyzing the ISR Dataset: (1) the dataset was collected

with a dark background (black cabinet and black chalkboard), half of the participants were

wearing dark clothes and only 3 participants were wearing short sleeved clothes; (2) the

ISR Dataset has an average of 98 frames per video while the NTU RGB+D 120 Dataset

has an average of 83 frames per video. In (1) it can be concluded that when taking into

account all three factors (dark background, dark clothes and long sleeved clothes) the arms

movements are challenging to identify and track, in some of the situations only the hand

movement can be identified and tracked effectively. In (2) it can be concluded that a great

part of the frames are capturing the person standing still with the arms down, contrary to

the NTU RGB+D 120 Dataset where the activity starts sooner and fewer frames are just

capturing the person standing still. Also, in the NTU RGB+D 120 Dataset it was observed

that it is easier to distinguish the participants from the background and a great majority

of the participants were wearing short sleeved clothes, and thus the arms movement is

more easily identified and tracked. Taking into account all the aforementioned factors it is

safe to assume that, while it was recorded under similar settings, the ISR Dataset is still

very different from the NTU RGB+D 120 Dataset.

Finally, two other tests were performed were training the pre-trained models on the

ISR Dataset for both HAR-RGB-based Frameworks. The results are shown in Table 6.10,

the middle 4 rows present the results obtained for HAR-RGB-bFII and the bottom 4

71

Table 6.10: Results obtained when training the models on the ISR Dataset.

DL
Architecture

Train
Accuracy

Test
Accuracy

HAR-RGB-bFII
NTU RGB+D 120

Dataset

MobileNetV1 90.7% 22.2%
MobileNetV2 92.1% 17.5%
ResNet-18 95.9% 25.4%
ResNet-50 96.8% 26.7%

HAR-RGB-bFII
ISR Dataset

MobileNetV1 93.2% 47.6%
MobileNetV2 97.3% 44.4%
ResNet-18 95.9% 55.5%
ResNet-50 96.6% 46%

HAR-RGB-bFI
ISR Dataset

MobileNetV1 97.3% 39.7%
MobileNetV2 95.9% 41.3%
ResNet-18 98.6% 41.3%
ResNet-50 97.6% 35.4%

rows present the results obtained for HAR-RGB-bFI. By training the models on the ISR

Dataset it can be seen that the test classification accuracies are higher, although the results

are still mediocre. Two conclusion can be drawn: (1) the framework is able to identify

the activities during the training phase, meaning that it is possible to use this type of

framework for the ISR Dataset; and (2) the dataset is probably too small to effectively

train the DL architectures used in this work, even when training a pre-trained model and

only optimizing the last layer the DL architecture does not generalize.

6.5 Skeleton-based Framework

As aforementioned in the previous chapters, the HAR-S-bF used in this dissertation was

proposed by [1] for both the NTU RGB+D 120 Dataset and the Kinetics-600 Dataset and

the source code was made publicly available4. Thus, for the purpose of the dissertation

few tests and code adaptations needed to be made to the original work.

The HAR-S-bF was trained from scratch on both Subsets. The NTU RGB+D 120

Dataset was recorded with a Kinect V2 camera. This camera is capable of extracting,

tracking and providing data for up to 6 skeletons in the image. For the purpose of the

dissertation, the framework used to extract the skeleton was OpenPose [64], a state of the

art pose estimation algorithm. Both OpenPose and Kinect V2 provide a skeleton with 25

joints, however the skeleton configuration is different, some joints are positioned in different

4https://github.com/lshiwjx/2s-AGCN

72

Table 6.11: Results obtained when training the GCN from scratch on both Subsets. It
was not possible to calculate the train classification accuracy. However, it is shown both
validation classification accuracy for the B-Stream and J-Stream. Both streams are run at
different moments and then their output vectors are added and the classification is made
based on the resulting vector.

Subset
Bone-Stream
Val. Accuracy

Joint-Stream
Val. Accuracy

Test
Accuracy

Subset 1 86.8% 88% 88.9%

Subset 2 90.3% 92.5% 93%

locations. For example, Kinect V2 provides one joint for the head while OpenPose provides

5 joints (center of the head, eyes and ears). Therefore, the HAR-S-bF is incompatible with

the OpenPose skeleton. Some code adaptations can be made to make the code compatible

with OpenPose, however, due to time limitations it was not possible to analyze the source

code and make the necessary adaptations.

The results obtained for training the HAR-S-bF on both Subsets are presented in

Table 6.11. Comparing the results with the results obtained by the authors [1] it can be

concluded that the framework was trained successfully achieving similar results on both

datasets. Figure 6.7 presents the loss curves for the training process of both streams on

Subset 1.

0 5 10 15 20 25 30 35 40 45 50

Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s
 V

a
lu

e

(a) Loss curve for the J-stream.

0 5 10 15 20 25 30 35 40 45 50

Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s
 V

a
lu

e

(b) Loss curve for the B-stream.

Figure 6.7: Loss curves for both B-stream and J-stream for Subset 1.

6.6 Frameworks Runtimes

It is important to take into consideration not only the classification accuracy of the frame-

works but also their runtime. The mobile platforms where the evaluated frameworks might

73

Table 6.12: Runtimes for the different modules and architectures evaluated in this dis-
sertation. For both RGB-based frameworks it is assumed a number of extracted frames
equal to 16 and a resolution of 112×112 pixels. For the HAR-S-bF it is assumed that the
skeleton sequence length is equal to 300. The runtime is measured in SPS.

Module Runtime(SPS)

MobileNetV1 25 SPS

MobileNetV2 15 SPS

ResNet-18 47 SPS

ResNet-50 25 SPS

C3D 111 SPS

Resnext 11 SPS

2sAGCN 13 SPS

OpenPose 0.04 SPS

YOLOv3-spp 1.4 SPS

be deployed generally have at most a laptop as the computation unit. Thus, lacking the

computational power necessary to have an acceptable real-time performance.

To evaluate the runtime of the frameworks it is necessary to calculate the runtime of all

the modules that are part of each framework, summing each one for obtaining the total

runtime for each framework. For the HAR-RGB-bFI this means calculating the runtimes

for the feature extraction and classification module (the preprocessing stage runtime is

negligible when compared to the architectures’ runtime). For the HAR-RGB-bFII in

addition to the feature extraction and classification module the human detection stage

runtime also needs to be calculated. Finally, for the HAR-S-bF the runtime of the pose

estimation stage also needs to be calculated in addition to the feature extraction and

classification module.

The runtime is measured in terms of Sequences Per Second (SPS). For the RGB-based

Frameworks testing phase the input sequence is a set of 16 frames with a resolution of

112×112 pixels. For the HAR-S-bF the input skeleton sequence length is 300, the number

of input skeletons is 2 and the number of joints is 25. For both the human detection stage

and skeleton extraction stage (corresponds to the offline stage of HAR-RGB-bFII and

HAR-S-bF respectively) the input is a set of 16 frames with 640x480 resolution (the same

resolution used to record ISR Dataset). Table 6.12 shows the runtimes for each module.

By analyzing the results it is clear that both the human detection stage and pose es-

timation stages (bottom 2 rows) limit the number of sequences per seconds that both

frameworks can compute. At best HAR-RGB-bFII could compute 1.4 SPS while HAR-S-

bF could compute 0.04 SPS. On the other hand, because HAR-RGB-bFI do not requires

74

a human detection stage neither a pose estimation stage it is able to compute 111 SPS

with the fastest DL architecture and 11 SPS with the slowest DL architecture. Note that

for the HAR-S-bF architecture it was assumed that the input sequence contains 300 skele-

tons. However, in a real scenario the number of input skeletons would be the same as the

number of input frames for the RGB frameworks, and thus the number of SPS would be

higher than the one calculated.

75

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The main objective of the dissertation was to develop, train and test an HAR framework.

For such purpose, both the classification accuracy and, no less important, the runtime for

each framework were evaluated.

In terms of classification accuracy, the results show that for both Subset 1 and Subset

2 the frameworks are capable of identifying the activities with high accuracies. However,

when tested on the ISR Dataset the classification accuracies are significantly lower. This

results might be related to the ISR Dataset size, probably has not enough training examples

and the models overfit the training set. More research work needs to be done in this topic

to fully understand why the results obtained when training on NTU RGB+D 120 dataset

could not be replicated in the ISR Dataset. In a future work, the causes that led to a

low classification accuracy must be identified and a solution to mitigate them should be

developed.

It is also important to note that due to the human detection stage the HAR-RGB-bFII

lacks the ability to classify activities with more than one person (its input is a bounding box

that contains a single person). Therefore, for applications that require the identification of

activities that involve more than one person a solution for this problem must be proposed.

Or, in alternative, using the HAR-RGB-bFI or the HAR-S-bF in such scenarios.

The obtained results show that a real-world scenario application for the developed frame-

works is possible. Nowadays laptops are equipped with graphics processing units that are

capable of running DL frameworks. Despite not having evaluated the frameworks on a

laptop, the hardware characteristics of the desktop used are well within the reach of a

medium range laptop. Thus, it is safe to assume that similar results would be obtained

on a mobile platform, assuming no other programs running in background.

The achieved results for the presented frameworks indicate that they can be successfully

implemented in a service robot as to identify health related classes. Or, in the case of

77

Subset 2, implemented in a social or personal robot which would be able to identify

when someone wants to start an interaction with it.

The main objective proposed in the introduction was successfully achieved. Three dif-

ferent frameworks were trained, tested and evaluated, and promising results were achieved.

7.2 Future Work

To improve the current work several topics can be addressed, such as:

• ISR Dataset: continue improving the dataset by including more activities and

participants. Include different backgrounds and evaluate the effect of background

clutter on classification accuracy. Include also activities recorded when the InterBot

is moving;

• Classification accuracy on the ISR Dataset: identify the reasons behind the

low classification accuracy on ISR Dataset and propose solutions for them;

• HAR-RGB-bFII: research the problem of detecting social activities;

• HAR-S-bF: evaluate this framework on the ISR dataset under two settings: (1)

training from scratch and (2) transfer learning from the Kinetics-Skeleton dataset

[162] or NTU RGB+D 120 dataset [2].

78

Bibliography

[1] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph convolutional

networks for skeleton-based action recognition,” Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019.

[2] J. Liu, A. Shahroudy, M. Perez, G. Wang, L.-Y. Duan, and A. Kot, “Ntu rgb+d 120:

a large-scale benchmark for 3d human activity understanding,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2019.

[3] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3d cnns retrace the history

of 2d cnns and imagenet?,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2018.

[4] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotempo-

ral features with 3d convolutional networks,” Proceedings of the IEEE International

Conference on Computer Vision, 2015.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: efficient convolutional neural networks for mo-

bile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:

inverted residuals and linear bottlenecks,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018.

[7] O. Köpüklü, N. Kose, A. Gunduz, and G. Rigoll, “Resource efficient 3d convolu-

tional neural networks,” IEEE/CVF International Conference on Computer Vision

Workshop, 2019.

[8] G. Guo and A. Lai, “A survey on still image based human action recognition,”

Pattern Recognition, 2014.

[9] Z. Zhao, H. Ma, and S. You, “Single image action recognition using semantic body

part actions,” Proceedings of the IEEE International Conference on Computer Vi-

sion, 2017.

[10] Z. Zhao, H. Ma, and X. Chen, “Generalized symmetric pair model for action classi-

fication in still images,” Pattern Recognition, 2017.

[11] Y. Zhang, L. Cheng, J. Wu, J. Cai, M. N. Do, and J. Lu, “Action recognition in still

images with minimum annotation efforts,” IEEE Transactions on Image Processing,

79

2016.

[12] D. Girish, V. Singh, and A. Ralescu, “Understanding action recognition in still im-

ages,” IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops, 2020.

[13] J. Wirtz, P. G. Patterson, W. H. Kunz, T. Gruber, V. N. Lu, S. Paluch, and A. Mar-

tins, “Brave new world: service robots in the frontline,” Journal of Service Manage-

ment, 2018.

[14] M. Mende, M. L. Scott, J. van Doorn, D. Grewal, and I. Shanks, “Service robots

rising: How humanoid robots influence service experiences and elicit compensatory

consumer responses,” Journal of Marketing Research, 2019.

[15] M. Čaić, D. Mahr, and G. Oderkerken-Schröder, “Value of social robots in services:

social cognition perspective,” Journal of Services Marketing, 2019.

[16] H. Moradi, K. Kawamura, E. Prassler, G. Muscato, P. Fiorini, T. Sato, and R. Rusu,

“Service robotics (the rise and bloom of service robots),” IEEE Robotics & Automa-

tion Magazine, 2013.

[17] A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot: pepper:

The first machine of its kind,” IEEE Robotics & Automation Magazine, 2018.

[18] I. Leite, C. Martinho, and A. Paiva, “Social robots for long-term interaction: a

survey,” International Journal of Social Robotics, 2013.

[19] J. Broekens, M. Heerink, H. Rosendal, et al., “Assistive social robots in elderly care:

a review,” Gerontechnology, 2009.

[20] “pepper.” https://www.softbankrobotics.com/emea/en/pepper. Accessed:

2020-10-12.

[21] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani,

D. Cremers, V. Evers, M. Fiore, et al., “Spencer: a socially aware service robot for

passenger guidance and help in busy airports,” Field and Service Robotics, 2016.

[22] D. Portugal, P. Alvito, E. Christodoulou, G. Samaras, and J. Dias, “A study on the

deployment of a service robot in an elderly care center,” International Journal of

Social Robotics, 2019.

[23] F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa, R. Sei, and K. Hayashi, “Pepper

learns together with children: development of an educational application,” IEEE-

RAS 15th International Conference on Humanoid Robots (Humanoids), 2015.

[24] A. Gardecki, M. Podpora, R. Beniak, and B. Klin, “The pepper humanoid robot in

80

https://www.softbankrobotics.com/emea/en/pepper

front desk application,” Progress in Applied Electrical Engineering, 2018.

[25] D. Allegra, F. Alessandro, C. Santoro, and F. Stanco, “Experiences in using the pep-

per robotic platform for museum assistance applications,” 25th IEEE International

Conference on Image Processing, 2018.

[26] G. Castellano, B. De Carolis, N. Macchiarulo, and G. Vessio, “Pepper4museum:

towards a human-like museum guide,” Workshop on Advanced Visual Interfaces and

Interactions in Cultural Heritage, 2020.

[27] I. Aaltonen, A. Arvola, P. Heikkilä, and H. Lammi, “Hello pepper, may i tickle

you? children’s and adults’ responses to an entertainment robot at a shopping

mall,” Proceedings of the Companion of the ACM/IEEE International Conference

on Human-Robot Interaction, 2017.

[28] M. E. Foster, R. Alami, O. Gestranius, O. Lemon, M. Niemelä, J.-M. Odobez, and

A. K. Pandey, “The mummer project: engaging human-robot interaction in real-

world public spaces,” International Conference on Social Robotics, 2016.

[29] E. Saad, M. A. Neerincx, and K. V. Hindriks, “Welcoming robot behaviors for draw-

ing attention,” ACM/IEEE International Conference on Human-Robot Interaction,

2019.

[30] S. T. Hansen, M. Svenstrup, H. J. Andersen, and T. Bak, “Adaptive human aware

navigation based on motion pattern analysis,” IEEE International Symposium on

Robot and Human Interactive Communication, 2009.

[31] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Simeon, “A human aware mobile

robot motion planner,” IEEE Transactions on Robotics, 2007.

[32] D. Vasquez, P. Stein, J. Rios-Martinez, A. Escobedo, A. Spalanzani, and C. Laugier,

“Human aware navigation for assistive robotics,” Experimental Robotics, 2013.

[33] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation:

a survey,” Robotics and Autonomous Systems, 2013.

[34] R. Kirby, Social robot navigation. PhD thesis, Carnegie Mellon Univ., Pittsburgh,

PA, USA, 2010.

[35] K. Charalampous, I. Kostavelis, and A. Gasteratos, “Recent trends in social aware

robot navigation: a survey,” Robotics and Autonomous Systems, 2017.

[36] A. Vega, L. J. Manso, D. G. Macharet, P. Bustos, and P. Núñez, “Socially aware

robot navigation system in human-populated and interactive environments based

on an adaptive spatial density function and space affordances,” Pattern Recognition

81

Letters, 2019.

[37] F. Baradel, C. Wolf, J. Mille, and G. W. Taylor, “Glimpse clouds: human activity

recognition from unstructured feature points,” Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018.

[38] R. Girdhar, J. Carreira, C. Doersch, and A. Zisserman, “Video action transformer

network,” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019.

[39] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman, “A short

note about kinetics-600,” arXiv preprint arXiv:1808.01340, 2018.

[40] P. Wang, W. Li, P. Ogunbona, J. Wan, and S. Escalera, “Rgb-d-based human motion

recognition with deep learning: a survey,” Computer Vision and Image Understand-

ing, 2018.

[41] Y. Wang, S. Cang, and H. Yu, “A survey on wearable sensor modality centred human

activity recognition in health care,” Expert Systems with Applications, 2019.

[42] J. Zhang, W. Li, P. O. Ogunbona, P. Wang, and C. Tang, “Rgb-d-based action

recognition datasets: a survey,” Pattern Recognition, 2016.

[43] J. K. Aggarwal and Q. Cai, “Human motion analysis: a review,” Computer Vision

and Image Understanding, 1999.

[44] J. Yamato, J. Q. Ohya, and K. Ishii, “Recognizing human action in time-sequential

images using hidden markov model,” Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 1992.

[45] C. Bregler, “Learning and recognizing human dynamics in video sequences,” Pro-

ceedings of IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 1997.

[46] C. Achard, X. Qu, A. Mokhber, and M. Milgram, “A novel approach for recognition

of human actions with semi-global features,” Machine Vision and Applications, 2008.

[47] R. Polana and R. Nelson, “Low level recognition of human motion (or how to get

your man without finding his body parts),” Proceedings of the IEEE Workshop on

Motion of Non-rigid and Articulated Objects, 1994.

[48] A. F. Bobick and J. W. Davis, “The recognition of human movement using temporal

templates,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001.

[49] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as space-time

shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005.

82

[50] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional learning of

spatio-temporal features,” European Conference on Computer Vision, 2010.

[51] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human ac-

tion recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

2013.

[52] C. Schuldt, I. Laptev, and B. Caputo, “Recognizing human actions: a local svm

approach,” Proceedings of the 17th International Conference on Pattern Recognition,

2004.

[53] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-

scale video classification with convolutional neural networks,” Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2014.

[54] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: a dataset of 101 human actions

classes from videos in the wild,” CRCV-TR-12-01, 2012.

[55] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and

the kinetics dataset,” Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

[56] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large video

database for human motion recognition,” Proceedings of the International Conference

on Computer Vision, 2011.

[57] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video recogni-

tion,” Proceedings of the IEEE International Conference on Computer Vision, 2019.

[58] C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan,

G. Toderici, S. Ricco, R. Sukthankar, et al., “Ava: a video dataset of spatio-

temporally localized atomic visual actions,” Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2018.

[59] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta, “Holly-

wood in homes: crowdsourcing data collection for activity understanding,” European

Conference on Computer Vision, 2016.

[60] J. Materzynska, G. Berger, I. Bax, and R. Memisevic, “The jester dataset: a large-

scale video dataset of human gestures,” IEEE/CVF International Conference on

Computer Vision Workshop, 2019.

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

83

2016.

[62] Y. Xiu, J. Li, H. Wang, Y. Fang, and C. Lu, “Pose flow: rfficient online pose

tracking,” British Machine Vision Conference, 2018.

[63] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar, G. Pons-Moll, and

C. Theobalt, “Single-shot multi-person 3d pose estimation from monocular rgb,”

International Conference on 3D Vision, 2018.

[64] Z. Cao, G. H. Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “Openpose: realtime

multi-person 2d pose estimation using part affinity fields,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2019.

[65] P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, “View adaptive neu-

ral networks for high performance skeleton-based human action recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2019.

[66] C. Caetano, F. Brémond, and W. R. Schwartz, “Skeleton image representation for

3d action recognition based on tree structure and reference joints,” 32nd SIBGRAPI

Conference on Graphics, Patterns and Images, 2019.

[67] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-structural

graph convolutional networks for skeleton-based action recognition,” Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[68] A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier, “The inter-

net of things for ambient assisted living,” International Conference on Information

Technology: New Generations, 2010.

[69] T. Brezmes, J.-L. Gorricho, and J. Cotrina, “Activity recognition from accelerom-

eter data on a mobile phone,” International Work-Conference on Artificial Neural

Networks, 2009.

[70] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone

accelerometers,” ACM SigKDD Explorations Newsletter, 2011.

[71] N. Győrb́ıró, Á. Fábián, and G. Hományi, “An activity recognition system for mobile

phones,” Mobile Networks and Applications, 2009.

[72] A. Henpraserttae, S. Thiemjarus, and S. Marukatat, “Accurate activity recognition

using a mobile phone regardless of device orientation and location,” International

Conference on Body Sensor Networks, 2011.

[73] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the home using

simple and ubiquitous sensors,” International Conference on Pervasive Computing,

84

2004.

[74] A. Arcelus, M. H. Jones, R. Goubran, and F. Knoefel, “Integration of smart home

technologies in a health monitoring system for the elderly,” 21st International Con-

ference on Advanced Information Networking and Applications Workshops, 2007.

[75] C.-H. Lu and L.-C. Fu, “Robust location-aware activity recognition using wireless

sensor network in an attentive home,” IEEE Transactions on Automation Science

and Engineering, 2009.

[76] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning for sensor-

based human activity recognition: overview, challenges and opportunities,” arXiv

preprint arXiv:2001.07416, 2020.

[77] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-based

activity recognition: a survey,” Pattern Recognition Letters, 2019.

[78] Y. Wang, S. Cang, and H. Yu, “A survey on wearable sensor modality centred human

activity recognition in health care,” Expert Systems with Applications, 2019.

[79] K. Aminian, P. Robert, E. Jequier, and Y. Schutz, “Estimation of speed and in-

cline of walking using neural network,” IEEE Transactions on Instrumentation and

Measurement, 1995.

[80] J. Morris, “Accelerometry — a technique for the measurement of human body move-

ments,” Journal of Biomechanics, 1973.

[81] T. C. Wong, J. G. Webster, H. J. Montoye, and R. Washburn, “Portable accelerome-

ter device for measuring human energy expenditure,” IEEE Transactions on Biomed-

ical Engineering, 1981.

[82] G. A. Meijer, K. R. Westerterp, H. Koper, and F. ten Hoor, “Assessment of energy

expenditure by recording heart rate and body acceleration,” Medicine and Science

in Sports and Exercise, 1989.

[83] K. Aminian, P. Robert, E. Jequier, and Y. Schutz, “Level, downhill and uphill

walking identification using neural networks,” Electronics Letters, 1993.

[84] C. Randell and H. Muller, “Context awareness by analysing accelerometer data,”

Digest of Papers. Fourth International Symposium on Wearable Computers, 2000.

[85] L. Bao and S. S. Intille, “Activity recognition from user-annotated acceleration

data,” International Conference on Pervasive Computing, 2004.

[86] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recognition

and monitoring using multiple sensors on different body positions,” International

85

Workshop on Wearable and Implantable Body Sensor Networks, 2006.

[87] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang, “Con-

volutional neural networks for human activity recognition using mobile sensors,” 6th

International Conference on Mobile Computing, Applications and Services, 2014.

[88] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d. R. Millán,

and D. Roggen, “The opportunity challenge: a benchmark database for on-body

sensor-based activity recognition,” Pattern Recognition Letters, 2013.

[89] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and Tröster, “Wearable activity

tracking in car manufacturing,” IEEE Pervasive Computing, 2008.

[90] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone

accelerometers,” ACM SIGKDD Explorations Newsletter, 2011.

[91] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent neural net-

works for multimodal wearable activity recognition,” Sensors, 2016.

[92] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep convolu-

tional neural networks on multichannel time series for human activity recognition,”

International Joint Conference on Artificial Intelligence, 2015.

[93] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity recognition

using body-worn inertial sensors,” ACM Computing Surveys, 2014.

[94] Z. Qin, Y. Zhang, S. Meng, Z. Qin, and K.-K. R. Choo, “Imaging and fusing time

series for wearable sensor-based human activity recognition,” Information Fusion,

2020.

[95] Z. Wang and T. Oates, “Imaging time-series to improve classification and imputa-

tion,” Proceedings of the 24th International Joint Conference on Artificial Intelli-

gence, 2015.

[96] G. Laput and C. Harrison, “Sensing fine-grained hand activity with smartwatches,”

Proceedings of the CHI Conference on Human Factors in Computing Systems, 2019.

[97] M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren, “A robust human

activity recognition system using smartphone sensors and deep learning,” Future

Generation Computer Systems, 2018.

[98] C. Chen, R. Jafari, and N. Kehtarnavaz, “A survey of depth and inertial sensor

fusion for human action recognition,” Multimedia Tools and Applications, 2017.

[99] L. Wang, D. Q. Huynh, and P. Koniusz, “A comparative review of recent kinect-

based action recognition algorithms,” IEEE Transactions on Image Processing, 2019.

86

[100] M. Ehatisham-Ul-Haq, A. Javed, M. A. Azam, H. M. Malik, A. Irtaza, I. H. Lee, and

M. T. Mahmood, “Robust human activity recognition using multimodal feature-level

fusion,” IEEE Access, 2019.

[101] C. Chen, R. Jafari, and N. Kehtarnavaz, “Utd-mhad: a multimodal dataset for

human action recognition utilizing a depth camera and a wearable inertial sensor,”

2015 IEEE International conference on image processing (ICIP), 2015.

[102] J. Imran and B. Raman, “Evaluating fusion of rgb-d and inertial sensors for multi-

modal human action recognition,” Journal of Ambient Intelligence and Humanized

Computing, 2020.

[103] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. Cambridge,

MA, USA: MIT press, 2016.

[104] S. Haykin, Neural networks and learning machines. Hamilton, Canada: Prentice

Hall, 2008.

[105] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[106] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transforma-

tions for deep neural networks,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017.

[107] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning

based natural language processing,” IEEE Computational Intelligence Magazine,

2018.

[108] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent

neural networks,” IEEE International Conference on Acoustics, Speech and Signal

Processing, 2013.

[109] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning:

a review,” IEEE Transactions on Neural Networks and Learning Systems, 2019.

[110] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets

as a method for quantitative structure–activity relationships,” Journal of Chemical

Information and Modeling, 2015.

[111] P. Chang, J. Grinband, B. Weinberg, M. Bardis, M. Khy, G. Cadena, M.-Y. Su,

S. Cha, C. Filippi, D. Bota, et al., “Deep-learning convolutional neural networks ac-

curately classify genetic mutations in gliomas,” American Journal of Neuroradiology,

2018.

[112] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

87

convolutional neural networks,” Advances in Neural Information Processing Systems,

2012.

[113] A. Kendall and R. Cipolla, “Geometric loss functions for camera pose regression

with deep learning,” Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

[114] F. Seide, G. Li, X. Chen, and D. Yu, “Feature engineering in context-dependent

deep neural networks for conversational speech transcription,” IEEE Workshop on

Automatic Speech Recognition & Understanding, 2011.

[115] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit number

recognition from street view imagery using deep convolutional neural networks,”

International Conference on Learning Representations, 2013.

[116] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-

ing to align and translate,” International Conference on Learning Representations,

2015.

[117] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[118] A. Ng, Machine learning yearning - technical strategy for ai rngineers, in the rra of

deep learning. deeplearning.ai, 2018.

[119] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature

pyramid networks for object detection,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017.

[120] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

European Conference on Computer Vision, 2014.

[121] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

arXiv preprint arXiv:1603.07285, 2016.

[122] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convo-

lutional architectures for object recognition,” International Conference on Artificial

Neural Networks, 2010.

[123] M. Lin, Q. Chen, and S. Yan, “Network in network,” International Conference on

Learning Representations, 2014.

[124] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” International Conference on Learning Representations, 2014.

[125] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

88

ception architecture for computer vision,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016.

[126] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, and A. Rabinovich, “Going deeper with convolutions,” Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[127] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A comprehen-

sive survey on graph neural networks,” IEEE Transactions on Neural Networks and

Learning Systems, 2020.

[128] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering,” Advances in Neural Information

Processing Systems, 2016.

[129] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-

structured data,” arXiv preprint arXiv:1506.05163, 2015.

[130] X. Qi, R. Liao, J. Jia, S. Fidler, and R. Urtasun, “3d graph neural networks for

rgbd semantic segmentation,” Proceedings of the IEEE International Conference on

Computer Vision, 2017.

[131] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dy-

namic graph cnn for learning on point clouds,” ACM Transactions on Graphics,

2019.

[132] S. Qi, W. Wang, B. Jia, J. Shen, and S.-C. Zhu, “Learning human-object interac-

tions by graph parsing neural networks,” Proceedings of the European Conference on

Computer Vision, 2018.

[133] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph convo-

lutional encoders for syntax-aware neural machine translation,” Proceedings of the

Conference on Empirical Methods in Natural Language Processing, 2017.

[134] D. Marcheggiani, J. Bastings, and I. Titov, “Exploiting semantics in neural machine

translation with graph convolutional networks,” Proceedings of the Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2018.

[135] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action recognition with

directed graph neural networks,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2019.

[136] Y.-H. Wen, L. Gao, H. Fu, F.-L. Zhang, and S. Xia, “Graph cnns with motif and

89

variable temporal block for skeleton-based action recognition,” Proceedings of the

AAAI Conference on Artificial Intelligence, 2019.

[137] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional networks for

skeleton-based action recognition,” 32nd AAAI Conference on Artificial Intelligence,

2018.

[138] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for

deep learning,” Journal of Big Data, 2019.

[139] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification

using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[140] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in

deep neural networks?,” Advances in Meural Information Processing Systems, 2014.

[141] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”

European conference on computer vision, 2014.

[142] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for sim-

plicity: the all convolutional net,” International Conference on Learning Represen-

tations, 2015.

[143] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: unified,

real-time object detection,” Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016.

[144] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[145] J. Redmon and A. Farhadi, “Yolov3: an incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[146] Q.-C. Mao, H.-M. Sun, Y.-B. Liu, and R.-S. Jia, “Mini-yolov3: real-time object

detector for embedded applications,” IEEE Access, 2019.

[147] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by

reducing internal covariate shift,” Proceedings of the 32nd International Conference

on Machine Learning, 2015.

[148] R. Cruz, L. Garrote, A. Lopes, and U. J. Nunes, “Modular software architecture for

human-robot interaction applied to the interbot mobile robot,” IEEE International

Conference on Autonomous Robot Systems and Competitions, 2018.

[149] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Ng, “Ros: an open-source robot operating system,” IEEE International Confer-

90

ence on Robotics and Automation Workshop on Open Source Software, 2009.

[150] Intel, Intel RealSense D400 Series Product Family - Datasheet, January 2019. Revi-

sion 005.

[151] Z. Huang, J. Wang, X. Fu, T. Yu, Y. Guo, and R. Wang, “Dc-spp-yolo: dense

connection and spatial pyramid pooling based yolo for object detection,” Information

Sciences, 2020.

[152] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft coco: common objects in context,” European Conference

on Computer Vision, 2014.

[153] D. Hebesberger, T. Koertner, C. Gisinger, and J. Pripfl, “A long-term autonomous

robot at a care hospital: a mixed methods study on social acceptance and experiences

of staff and older adults,” International Journal of Social Robotics, 2017.

[154] A. Meghdari, A. Shariati, M. Alemi, G. R. Vossoughi, A. Eydi, E. Ahmadi, B. Moza-

fari, A. Amoozandeh Nobaveh, and R. Tahami, “Arash: a social robot buddy to sup-

port children with cancer in a hospital environment,” Proceedings of the Institution

of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018.

[155] H. Eftring and S. Frennert, “Designing a social and assistive robot for seniors,”

Zeitschrift für Gerontologie und Geriatrie, 2016.

[156] E. Martinez-Martin and M. Cazorla, “A socially assistive robot for elderly exercise

promotion,” IEEE Access, 2019.

[157] S. Coşar, M. Fernandez-Carmona, R. Agrigoroaie, J. Pages, F. Ferland, F. Zhao,

S. Yue, N. Bellotto, and A. Tapus, “Enrichme: perception and interaction of an

assistive robot for the elderly at home,” International Journal of Social Robotics,

2020.

[158] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initializa-

tion and momentum in deep learning,” International Conference on Machine Learn-

ing, 2013.

[159] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, 2014.

[160] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference. Fort

Collins, CO, USA: Springer, 2002.

[161] Z. Qiu, T. Yao, C.-W. Ngo, X. Tian, and T. Mei, “Learning spatio-temporal repre-

91

sentation with local and global diffusion,” Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019.

[162] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Vi-

ola, T. Green, T. Back, P. Natsev, et al., “The kinetics human action video dataset,”

arXiv preprint arXiv:1705.06950, 2017.

92

Appendix A

NTU RGB+D 120 Dataset PyTorch

Class

1 import os
2 import torch
3 import pandas as pd
4 import numpy as np
5 from torch . u t i l s . data import Dataset , DataLoader
6 from t o r c h v i s i o n import transforms , u t i l s
7 from skimage import io , t rans form
8 import j s on
9 import time

10 import random
11
12 def l a b e l t o t a r g e t (c l a s s I n d p a t h) :
13 a c t i o n s = pd . r ead c sv (c l a s s Ind path , de l im whi te space=True , header=None)
14 d = {}
15 for i in range (0 , len (a c t i o n s)) :
16 d [a c t i o n s [1] [i]] = i
17 return (d)
18
19 def g e t d a t a s e t (dataset path , annotat ion path , c l a s s Ind path , subset) :
20 a n n o t a t i o n f i l e = j son . load (open(annotat ion path))
21 c l a s s i d x = l a b e l t o t a r g e t (c l a s s I n d p a t h)
22 datase t = []
23 i = 0
24 print (” Prepar ing datase t (paths to each video and number o f frames) . ”)
25 for v ideo id , va lue in a n n o t a t i o n f i l e [’ database ’] . i tems () :
26 i f value [’ subset ’] == subset :
27 v ideo path = datase t path + ”/” + value [’ annotat ions ’] [’ l a b e l ’]
28 + ”/” + v i d e o i d
29 f = open(datase t path + ”/” + value [’ annotat ions ’] [’ l a b e l ’] +
30 ”/” + v i d e o i d + ’ / n frames ’ , ” r ”)
31 nr f rames = f . read ()
32 f . c l o s e ()
33 sample = {
34 ’ v ideo ’ : v ideo path ,
35 ’ nr f rames ’ : nr frames ,
36 ’ l a b e l ’ : c l a s s i d x [va lue [’ annotat ions ’] [’ l a b e l ’]] ,
37 }
38 datase t . append (sample)
39 i = i + 1
40 return (datase t)
41
42
43 class NTU RGB Dataset (Dataset) :
44 def i n i t (s e l f , dataset path , annotat ion path , c l a s s Ind path , subset ,
45 sample durat ion , c l i p s t e p , pv , s a m p l e s i z e) :

93

46 ”””
47 Args :
48 da t a s e t p a t h (s t r i n g) : path to the d i r e c t o r y wi th a l l the
49 c l a s s e s f o l d e r s con ta in ing each v ideo .
50 anno ta t ion pa th (s t r i n g) : path to the j son annotat ion f i l e .
51 c l a s s I nd pa t h (s t r i n g) : path to c l a s s I nd . t x t f i l e .
52 s u b s e t (s t r i n g) : t r a i n or t e s t .
53 sample dura t ion (i n t) : number o f frames to e x t r a c t
54 from each v ideo .
55 h o r i z o n t a l f l i p (boo l) : do h o r i z on t a l f l i p on the images or not .
56 c l i p s t e p (i n t) : a frame i s e x t r a c t e d each ’ c l i p s t e p ’ s t e p s .
57 pv : P r o b a b i l i t y t h a t a v e r t i c a l f l i p i s made to the c l i p .
58 s amp l e s i z e : S i z e o f each frame .
59 ”””
60 s e l f . da tase t path = datase t path
61 s e l f . annotat ion path = annotat ion path
62 s e l f . c l a s s I n d p a t h = c l a s s I n d p a t h
63 s e l f . subset = subset
64 s e l f . sample durat ion = sample durat ion
65 s e l f . c l i p s t e p = c l i p s t e p
66 s e l f . pv = pv
67 s e l f . s a m p l e s i z e = s a m p l e s i z e
68 s e l f . da tase t = g e t d a t a s e t (s e l f . dataset path , s e l f . annotat ion path ,
69 s e l f . c l a s s Ind path , s e l f . subset)
70
71 def l e n (s e l f) :
72 return (len (s e l f . da tase t))
73
74 def g e t i t e m (s e l f , idx) :
75 c l i p = []
76 nr f rames = int (s e l f . da tase t [idx] [’ nr f rames ’])
77 #Sample s t a r t s a t a random frame
78 cur rent f rame = random . rand int (1 , nr f rames)
79 #Randomize v e r t i c a l f l i p
80 f l a g v e r t i c a l f l i p = random . random () > s e l f . pv
81
82 for i in range (1 , s e l f . sample durat ion + 1) :
83 i f (cur rent f rame) > (nr f rames) :
84 cur rent f rame = 1
85 frame = i o . imread (s e l f . da tase t [idx] [’ v ideo ’] + ’ / image ’ +
86 str (cur rent f rame) . z f i l l (5) + ’ . jpg ’)
87 #Ver t i c a l F l i p
88 i f f l a g v e r t i c a l f l i p :
89 frame = np . f l i p l r (frame)
90 #Resize (Image : H ∗ W ∗ C)
91 frame = transform . r e s i z e (frame ,
92 [s e l f . s ample s i z e , s e l f . s a m p l e s i z e])
93 #To Tensor (Tensor : C ∗ H ∗ W)
94 frame = frame . t ranspose ((2 , 0 , 1))
95 frame = torch . from numpy (frame) . f loat ()
96
97 c l i p . append (frame)
98 cur rent f rame = current f rame + s e l f . c l i p s t e p
99 #Concatenates a l l frames

100 c l i p = torch . s tack (c l i p , 0)
101 c l i p = c l i p . permute ((1 , 0 , 2 , 3))
102 l a b e l = s e l f . da tase t [idx] [’ l a b e l ’]
103 return c l i p , l a b e l

94

Appendix B

C3D Neural Network PyTorch Def-

inition

1 import torch . nn as nn
2 import torch . nn . f u n c t i o n a l as F
3 import time
4
5 class Net (nn . Module) :
6 def i n i t (s e l f , num classes) :
7 super (Net , s e l f) . i n i t ()
8
9 s e l f . conv1 = nn . Conv3d (3 , 64 , k e r n e l s i z e =(3 , 3 , 3) ,

10 padding =(1 , 1 , 1))
11 s e l f . bn1 = nn . BatchNorm3d (64)
12 s e l f . pool1 = nn . MaxPool3d (k e r n e l s i z e =(2 , 2 , 2) , s t r i d e =(1 , 2 , 2))
13
14 s e l f . conv2 = nn . Conv3d (64 , 128 , k e r n e l s i z e =(3 , 3 , 3) ,
15 padding =(1 , 1 , 1))
16 s e l f . bn2 = nn . BatchNorm3d (128)
17 s e l f . pool2 = nn . MaxPool3d (k e r n e l s i z e =(2 , 2 , 2) , s t r i d e =(2 , 2 , 2))
18
19 s e l f . conv3a = nn . Conv3d (128 , 256 , k e r n e l s i z e =(3 , 3 , 3) ,
20 padding =(1 , 1 , 1))
21 s e l f . bn3a = nn . BatchNorm3d (256)
22 s e l f . conv3b = nn . Conv3d (256 , 256 , k e r n e l s i z e =(3 , 3 , 3) ,
23 padding =(1 , 1 , 1))
24 s e l f . bn3b = nn . BatchNorm3d (256)
25 s e l f . pool3 = nn . MaxPool3d (k e r n e l s i z e =(2 , 2 , 2) , s t r i d e =(2 , 2 , 2))
26
27 s e l f . conv4a = nn . Conv3d (256 , 512 , k e r n e l s i z e =(3 , 3 , 3) ,
28 padding =(1 , 1 , 1))
29 s e l f . bn4a = nn . BatchNorm3d (512)
30 s e l f . conv4b = nn . Conv3d (512 , 512 , k e r n e l s i z e =(3 , 3 , 3) ,
31 padding =(1 , 1 , 1))
32 s e l f . bn4b = nn . BatchNorm3d (512)
33 s e l f . pool4 = nn . MaxPool3d (k e r n e l s i z e =(2 , 2 , 2) , s t r i d e =(2 , 2 , 2))
34
35 s e l f . conv5a = nn . Conv3d (512 , 512 , k e r n e l s i z e =(3 , 3 , 3) ,
36 padding =(1 , 1 , 1))
37 s e l f . bn5a = nn . BatchNorm3d (512)
38 s e l f . conv5b = nn . Conv3d (512 , 512 , k e r n e l s i z e =(3 , 3 , 3) ,
39 padding =(1 , 1 , 1))
40 s e l f . bn5b = nn . BatchNorm3d (512)
41 s e l f . pool5 = nn . MaxPool3d (k e r n e l s i z e =(1 , 2 , 2) , s t r i d e =(2 , 2 , 2) ,
42 padding =(0 , 1 , 1))
43
44 s e l f . f c 6 = nn . Linear (8192 , 4096)
45 s e l f . f c 7 = nn . Linear (4096 , 4096)

95

46 s e l f . f c 8 = nn . Linear (4096 , num classes)
47
48 s e l f . dropout = nn . Dropout (p=0.5)
49
50
51 def forward (s e l f , x) :
52 x = s e l f . pool1 (F . r e l u (s e l f . bn1 (s e l f . conv1 (x))))
53
54 x = s e l f . pool2 (F . r e l u (s e l f . bn2 (s e l f . conv2 (x))))
55
56 x = F. r e l u (s e l f . bn3a (s e l f . conv3a (x)))
57 x = s e l f . pool3 (F . r e l u (s e l f . bn3b (s e l f . conv3b (x))))
58
59 x = F. r e l u (s e l f . bn4a (s e l f . conv4a (x)))
60 x = s e l f . pool4 (F . r e l u (s e l f . bn4b (s e l f . conv4b (x))))
61
62 x = F. r e l u (s e l f . bn5a (s e l f . conv5a (x)))
63 x = s e l f . pool5 (F . r e l u (s e l f . bn5b (s e l f . conv5b (x))))
64
65 x = x . view (1 , 8192)
66 x = F. r e l u (s e l f . f c 6 (x))
67 x = s e l f . dropout (x)
68 x = F. r e l u (s e l f . f c 7 (x))
69 x = s e l f . dropout (x)
70
71 x = s e l f . f c 8 (x)
72
73 return x

96

Appendix C

NTU RGB+120 Dataset

Figure C.1: Samples from the dataset, adapted from [2].

97

Table C.1: Different camera setups tested. Adapted from [2].

Setup Height (m) Distance (m) Setup Height (m) Distance (m)

1 1.7 3.5 17 2.5 3.0
2 1.7 2.5 18 1.8 3.3
3 1.4 2.5 19 1.6 3.5
4 1.2 3.0 20 1.4 4.0
5 1.2 3.0 21 1.7 3.2
6 0.8 3.5 22 1.9 3.4
7 0.5 4.5 23 2.0 3.2
8 1.4 3.5 24 2.4 3.3
9 0.8 2.0 25 2.5 3.3
10 1.8 3.0 26 1.5 2.7
11 1.9 3.0 27 1.3 3.5
12 2.0 3.0 28 1.1 2.9
13 2.1 3.0 29 2.5 2.8
14 2.2 3.0 30 2.4 2.7
15 2.3 3.5 31 1.6 3.0
16 2.7 3.5 32 2.3 3.0

Table C.2: Dataset classes. Adapted from [2].

Daily Actions (82)

A1: drink water A2: eat meal A3: brush teeth A4: brush hair
A5: drop A6: pick up A7: throw A8: sit down
A9: stand up A10: clapping A11: reading A12: writing
A13: tear up paper A14: put on jacket A15: take off jacket A16: put on a shoe
A17: take off a shoe A18: put on glasses A19: take off glasses A20: put on a hat/cap
A21: take off a hat/cap A22: cheer up A23: hand-waving A24: kicking something
A25: reach into pocket A26: hopping A27: jump up A28: phone call
A29: play with phone/tablet A30: type on a keyboard A31: point to something A32: taking a selfie
A33: check time (from watch) A34: rub two hands A35: nod head/bow A36: shake head
A37: wipe face A38: salute A39: put palms together A40: cross hands in front
A61: put on headphone A62: take off headphone A63: shoot at basket A64: bounce ball
A65: tennis bat swing A66: juggle table tennis ball A67: hush A68: flick hair
A69: thumb up A70: thumb down A71: make OK sign A72: make victory sign
A73: staple book A74: counting money A75: cutting nails A76: cutting paper
A77: snap fingers A78: open bottle A79: sniff/smell A80: squat down
A81: toss a coin A82: fold paper A83: ball up paper A84: play magic cube
A85: apply cream on face A86: apply cream on hand A87: put on bag A88: take off bag
A89: put object into bag A90: take object out of bag A91: open a box A92: move heavy objects
A93: shake fist A94: throw up cap/hat A95: capitulate A96: cross arms
A97: arm circles A98: arm swings A99: run on the spot A100: butt kicks
A101: cross toe touch A102: side kick - -

Medical Conditions (12)

A41: sneeze/cough A42: staggering A43: falling down A44: headache
A45: chest pain A46: back pain A47: neck pain A48: nausea/vomiting
A49: fan self A103: yawn A104: stretch oneself A105: blow nose

Mutual Actions / Two Person Interactions (26)

A50: punch/slap A51: kicking A52: pushing A53: pat on back
A54: point finger A55: hugging A56: giving object A57: touch pocket
A58: shaking hands A59: walking towards A60: walking apart A106: hit with object
A107: wield knife A108: knock over A109: grab stuff A110: shoot with gun
A111: step on foot A112: high-five A113: cheers and drink A114: carry object
A115: take a photo A116: follow A117: whisper A118: exchange things
A119: support somebody A120: rock-paper-scissors - -

98

Appendix D

Deep Learning Networks Architec-

tures

Table D.1: 3D-MobileNetV1 architecture, adapted from [7].

Layer/Stride Nr. Blocks Output Size

Input Layer - 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(2x2x2) 1 64x8x28x28

Block/s(2x2x2) 1 128x4x14x14

Block/s(1x1x1) 1 128x4x14x14

Block/s(2x2x2) 1 256x2x7x7

Block/s(1x1x1) 1 256x2x7x7

Block/s(2x2x2) 1 512x1x4x4

Block/s(1x1x1) 5 512x1x4x4

Block/s(1x1x1) 1 1024x1x4x4

Block/s(1x1x1) 1 1024x1x4x4

AvgPool(1x4x4)/s(1x1x1) 1 1024x1x1x1

Linear(1024xNumCls) 1 NumCls

Table D.2: 3D-MobileNetV2 architecture, adapted from [7].

Layer/Stride Nr. Blocks Output Size

Input Layer - 3x16x112x112

Conv(3x3x3)/s(1,2,2) 1 32x16x56x56

Block/s(1,1,1) 1 16x16x56x56

Block/s(2,2,2) 2 24x8x28x28

Block/s(2,2,2) 3 32x4x14x14

Block/s(2,2,2) 4 64x2x7x7

Block/s(1,1,1) 3 96x2x7x7

Block/s(2,2,2) 3 160x1x4x4

Block/s(1,1,1) 1 320x1x4x4

Conv(1x1x1)/s(1,1,1) 1 1280x1x4x4

AvgPool/s(1,1,1) 1 1280x1x1x1

Linear(1280xNumCls) 1 NumCls

99

Table D.3: ResNet-18, ResNet-50 and ResNeXt-101 full architectures. For ResNet-18 the
building block is the Basic Block, for ResNet-50 is the Bottleneck Block and for ResNeXt-
101 is the ResNeXt Block. All building blocks are presented in Chapter 4. F denotes the
number of output channels in each layer. Conv1 layer is common to all three architectures,
it is a convolutional layer with a kernel of size (7x7x7) and stride of (1,2,2) followed by a
(3x3x3) max-pooling layer with stride of (2,2,2). The first block in Conv3 x, Conv4 x and
Conv5 x performs a down-sampling with a stride of (2,2,2). The last layer is composed of
a GAP layer followed by a FC layer with as many input as output channels of Conv5 x
and a number of output units equal to the number of classes. The FC layer output vector
is normalized by a softmax function. Table adapted from [3].

Layers
Models

ResNet-18 ResNet-50 ResNeXt-101

Input Layer 3x16x112x112

Conv1 Conv(7x7x7)/s(1,2,2), F = 64

Conv2 x 2 Blocks, F = 64 3 Blocks, F = 256 3 Blocks, F = 256

Conv3 x 2 Blocks, F = 128 4 Blocks, F = 512 24 Blocks, F = 512

Conv4 x 2 Blocks, F = 256 6 Blocks, F = 1024 36 Blocks, F = 1024

Conv5 x 2 Blocks, F = 512 3 Blocks, F = 2048 3 Blocks, F = 2048

Output Layer GAP − > FC layer − > softmax

100

