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Abstract

In this work we investigate a mathematical model to reconstruct the mechanical properties of an
elastic medium. To this end, we develop of a mathematical model for the mechanical deformation
assuming that the parameters that define the mechanical properties of the medium are known. The
model is based on time-harmonic equations of linear elasticity. The numerical solution is obtained
using a finite element discretization in a three-dimentional domain. The performance of the method
is illustrated with numerical examples. The mathematical model for solving this direct problem
is the computational basis to address the inverse problem which consists of determining the set of
parameters that characterize the mechanical properties of the medium knowing the displacement fields
for a given excitation. We consider different optimization methods to solve the inverse problem and
discuss their performance. We report several computational results which illustrate their behavior in
terms of accuracy and efficiency.

The study reported in this thesis was developed in the scope of a broader project with the objective
of developing a new imaging technique that allows to map in vivo the mechanical properties of the
retina by Optical Coherence Elastography, which is an elastography technique based on Optical
Coherence Tomography. The final goal is the discovery of biomarkers based on the mechanical
properties of the retina that allow the early detection, before clinical manifestations, of neurodegenerative
processes.





Resumo

Neste trabalho investigamos o modelo matemático para a reconstrução das propriedades mecânicas
de um meio elástico. Com esse objectivo, nós desenvolvemos o modelo matemático para as
deformações mecânicas assumindo que os parâmetros que definem as propriedades mecânicas de o
meio são conhecidos. O modelo é baseado em equações de elasticidade linear em tempo harmónico. A
solução numérica é obtida usando a discretização de elementos finitos em um domínio tridimensional.
O desempenho do método é ilustrado com exemplos numéricos. O modelo matemático para resolver
este problema direto é a base computacional para abordar o problema inverso que consiste em
determinar o conjunto de parâmetros que caracterizam as propriedades mecânicas de um meio
conhecendo o campo de deslocamentos para uma dada excitação. Nós consideramos diferentes
métodos de otimização para resolver o problema inverso e discutimos o seu desempenho. Nós
exibimos vários resultados computacionais que ilustram seu comportamento em termos de precisão e
eficiência.

O estudo descrito nesta tese foi desenvolvido no âmbito de um projecto mais amplo com o objectivo
do desenvolvimento de uma nova técnica de imagiologia que permite mapear in vivo as propriedades
mecânicas da retina por Elastografia de Coerência Óptica, que é uma técnica de elastografia baseada
na Tomografia de Coerência Óptica. O objectivo final é a descoberta de biomarcadores baseados nas
propriedades mecânicas da retina que permitam a deteção precoce, anterior às manifestações clínicas,
de processos neurodegenerativos.
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Chapter 1

Introduction

One of the major challenges that currently arises in the area of health is in prevention. It is very
important to identify early stages of diseases while they still are on the asymptomatic phase allowing
to mitigate the undesirable consequences of their progression. Neurodegenerative diseases, which
affect millions of people worldwide, start to develop 10-20 years before their clinical manifestations
[1]. The late stages are characterized by massive neuronal death, leading to an extremely unfavourable
prognosis for treatment, making the early diagnosis is of uppermost importance.

This thesis arises in the context of a real application associated with the investigation of neurodegenerative
processes in which there is a pressing need for techniques with enough sensitivity to detect early signs
of neurodegeneration and to define biomarkers of neurodegenerative diseases. The retina is the visible
part of the central nervous system and has been explored for signs of neurodegeneration. Moreover,
findings of the scientific community support the idea that imaging the mechanical properties of the
retina can detect changes before volumetric changes or neuronal losses become detectable.

Optical coherence elastography (OCE) is an emerging biomedical imaging technique based in
the optical coherence tomography (OCT) imaging modality to form pictures of biological tissue and
map its biomechanical properties. OCE combines mechanical excitation with OCT for measuring the
corresponding elastic displacement [2–5]. Applications of this technique vary from skin to the retina,
being the latter the one of most interest to this work. An acoustic excitation system can be used for
inducing the mechanical load to the retina. In this case, an ultrasound source is coupled with an OCT
device.

The work in this thesis was developed in the framework of a wider project, which gathers a
multidisciplinary team, whose objective is to develop an OCE technique for measuring in vivo the
mechanical properties of the retina on animal models, with the purpose of detecting early signs of
neurodegeneration [6].

One of the tasks of the project is the development of a numerical model for the mechanical
deformation of the retina induced by the propagation of acoustic waves, given the parameters that
define the mechanical properties of the medium. This mathematical model will be used to numerically
simulate the displacement field within the retina, given a known excitation, and considering different
sets of values for the parameters of the model. In this thesis, we start by considering this direct
problem. We propose a model based on time-harmonic equations of linear elasticity. To compute the
numerical solution of this model we use a finite element method in a three-dimensional domain. We
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2 Introduction

discretize the computational domain with tetrahedral elements and we derive the numerical solution
using piecewise linear basis functions.

Another task of the project is to investigate a process for obtaining the mechanical properties of
the retina given the displacement field, that is, to solve the inverse problem of elastography. In our
approach, we formulate the inverse problem as an optimization program using mathematical model for
solving the direct problem as the computational basis. The inverse problem consists of determining the
set of parameters that characterize the mechanical properties of the medium knowing the displacement
field for a given excitation. In practice, it is intended to infer the parameters that characterize the
mechanical properties so that the difference between simulated displacements obtained with the
mathematical model for the direct problem with those parameters and the data are minimized.

In the direct and the inverse problems, the retina is treated as a material with linear isotropic
mechanical behavior, purely elastic.

The thesis is organized as follows. In Chapter 2 we describe the mathematical model for the direct
problem. We present the deduction of the linear elasticity model which is a system of partial differential
equations together with boundary conditions. We deduce its weak formulation and discuss results
of existence and uniqueness of solution. In Chapter 3 we deduce in detail the linear finite element
method for the problem and display some simulation results, in two different geometries, in order to
illustrate the performance of this numerical method. We present an estimation of the convergence
order based on simulation results. In Chapter 4 we investigate the inverse problem in which we intend
to infer the mechanical properties of the medium knowing the mechanical deformations. We start
by presenting the optimization problem that we need to solve and analyze its properties. Then we
consider different optimization methods. We summarize the key ideas of each of them and present the
corresponding implementation of the algorithms. Finally, we present several computational results
and discuss the performance of the methods. We show the results of our approach using fabricated
data which is obtained using the numerical solution of the direct problem. We include experiments
with noise free data and noisy data. Introducing noise in the fabricated data we intend to mimic the
application scenario where we plan, in future work, to use real data from the retina.



Chapter 2

Elasticity equation

In this chapter we derive the linear elasticity equation and the respective boundary conditions. Next we
determine the weak formulation of this equation and we address the issue of existence and uniqueness
of solution.

Let’s start by introducing some notation needed to write the linear elasticity equation and the
boundary conditions. Let p be a scalar function, v

∼
= (vi)1≤i≤3 a vector function and a

≈
= (ai j)1≤i, j≤3

a matrix of functions of three variables. We will use the following notation for v, v
∼

and a
≈

: given a

space D, v ∈ D, v
∼
∈ D

∼
= D3 and v

≈
∈ D

≈
= D3×3.

We define grad
∼

p =
(

∂ p
∂x1

∂ p
∂x2

∂ p
∂x3

)T
, divv

∼
= ∑

3
i=1

∂vi
∂xi

,

grad
≈

v
∼
=


∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

 , div
∼

a
≈
=


∑

3
i=1

∂a1i
∂xi

∑
3
i=1

∂a2i
∂xi

∑
3
i=1

∂a3i
∂xi

 , △v
∼
=


∑

3
i=1

∂ 2v1
∂x2

i

∑
3
i=1

∂ 2v2
∂x2

i

∑
3
i=1

∂ 2v3
∂x2

i

 , I3 =

1 0 0
0 1 0
0 0 1


and yet

ε
≈
(v
∼
) =

1
2

(
grad
≈

v
∼
+(grad

≈
v
∼
)T
)
.

2.1 Deduction of the linear elasticity equation

This section is dedicated to deduce the equation of linear elasticity from the knowledge of physic laws,
more specifically by the law of conservation of the momentum.

Let us consider an isotropic elastic material which occupies a bounded region Ω ⊆ R3, with
boundary ∂Ω, subject a force acting on it. The aim is to characterize the field of induced displacements
u
∼
(x, t) with x = (x1,x2,x3) ∈ Ω and t ∈ R+

0 in the form of a set of equations for the displacements.

We will denote by
∂ u
∼

∂ t (x, t) the velocity field of such displacements and by ρ the material density.
Let P(t) be the momentum of the system that corresponds to

P(t) =
∫

Ω

ρ

∂ u
∼

∂ t
(x, t)dx.

3



4 Elasticity equation

By laws of physics it is known that the variation of the momentum of the system is equal to the
resulting forces that are acting on it [7]. Assuming sufficient regularity, we determine the variation of
the momentum that is given by

P′(t) =
∫

Ω

ρ

∂ 2u
∼

∂ t2 (x, t)dx.

Concerning the forces acting on Ω, we have the surface force, which interacts at the boundary of the
set, and a force that acts on the volume of the body [8], i.e.,∫

∂Ω

t
∼

ds and
∫

Ω

f
∼
(x)dx.

respectively. The first integral is restricted to the boundary of the set Ω and t
∼

is called the traction

vector. By Cauchy’s stress theorem, t
∼

is the same as σ
≈
(u
∼
(x, t))n

∼
[9] where σ

≈
(u
∼
(x, t)) is the stress

tensor and it is given by [10]

σ
≈
(u
∼
(x, t)) = 2µε

≈
(u
∼
(x, t))+λ tr(ε

≈
(u
∼
(x, t)))I3

and n
∼
= (n1,n2,n3) is the unit outward normal to Ω. Summing the two forces results the following

∫
Ω

ρ

∂ 2u
∼

∂ t2 (x, t)dx =
∫

∂Ω

σ
≈
(u
∼
(x, t))n

∼
ds+

∫
Ω

f
∼
(x)dx. (2.1)

Applying the divergence theorem to (2.1), we obtain

∫
Ω

ρ

∂ 2u
∼

∂ t2 (x, t)−div(σ
≈
(u
∼
(x, t)))− f

∼
(x)dx = 0.

The arbitrariness of the set Ω in terms of integration and the continuity of the integrand function
allows to obtain the equality [11, Proposition 1.39]

ρ

∂ 2u
∼

∂ t2 (x, t) = div
∼

σ
≈
(u
∼
(x, t))+ f

∼
(x).

Assuming that u
∼
∈C2, by the Schwarz’s theorem, we have [12]

∂

∂xi

(
∂uk

∂x j

)
=

∂

∂x j

(
∂uk

∂xi

)
, i, j,k ∈ {1,2,3} (2.2)

and using the definition of div
∼

σ
≈
(u
∼
(x, t)) leads the linear elasticity equation for u

∼
(x, t) that is [13, 14]

ρ

∂ 2u
∼

∂ t2 (x, t) = µ △ u
∼
(x, t)+(λ +µ)grad

∼

(
divu

∼
(x, t)

)
+ f

∼
(x), (x, t) ∈ Ω×R+

0 , (2.3)



2.1 Deduction of the linear elasticity equation 5

with the Lamé constants, µ and λ , given, respectively, by

µ =
E

2(1+υ)
and λ =

υE
(1+υ)(1−2υ)

, (2.4)

where E is the Young’s Modulus and υ is the Poisson’s ratio.
Let’s assume that (µ,λ ) ∈ [µ1,µ2]× ]0,∞[ where 0 < µ1 < µ2. Consider that the applied impulse

allows to admit that the displacement field has a harmonic time shape [14], i.e.,

u
∼
(x, t) = ℜ

(
u
∼
(x)eiωt

)
, (2.5)

where ℜ is the real part of a complex and ω is the angular frequency. By Euler formula we have
eiωt = cos(ωt)+ isen(ωt), so (2.5) can be written in the form

u
∼
(x, t) = ℜ

[
u
∼
(x)(cos(ωt)+ isen(ωt))

]
= u

∼
(x)cos(ωt) . (2.6)

Next, we present each term of (2.3) considering the transformation (2.6):

∂ u
∼

∂ t
(x, t) =−ωsen(ωt)u

∼
(x) ,

∂ 2u
∼

∂ t2 (x, t) =−ω
2 cos(ωt)u

∼
(x) ,

△u
∼
(x, t) =△u

∼
(x)cos(ωt) , grad

∼

(
divu

∼
(x, t)

)
= grad

∼

(
divu

∼
(x)
)

cos(ωt) .

So, from (2.3), through the previous simplifications, we obtain

µ △ u
∼
(x)+(λ +µ)grad

∼

(
divu

∼
(x)
)
+ω

2
ρu
∼
(x)+ f

∼
(x) = 0 or cos(ωt) = 0.

If cos(ωt) = 0 then u
∼
(x, t) = u

∼
(x)cos(ωt) = 0. In this case the solution is always null and

consequently not captivating. We are interested only in the equation

µ △ u
∼
(x)+(λ +µ)grad

∼

(
divu

∼
(x)
)
+ω

2
ρu
∼
(x)+ f

∼
(x) = 0, x ∈ Ω. (2.7)

For the boundary of the set Ω, let us consider ∂Ω = ∂Ω1 ∪ ∂Ω2 and ∂Ω1 ∩ ∂Ω2 = /0 where
∂Ω1,∂Ω2 are two subsets of ∂Ω. Throughout the work it is assumed that ∂Ω1 is a flat surface.
Considering that exists a tension in the normal direction to ∂Ω on ∂Ω1, the corresponding boundary
condition is such that

σ
≈
(u
∼
)n
∼
= g

∼
on ∂Ω1, (2.8)

where g
∼

is a vector function, which represents the force exercised in ∂Ω1. It should also be considered

that the displacements are null in the boundary ∂Ω2, i.e.,

u
∼
= 0 in ∂Ω2. (2.9)



6 Elasticity equation

The model (2.7), (2.8) and (2.9) can be summarized as the following system of equations

µ

(
∂ 2u1
∂x2

1
+ ∂ 2u1

∂x2
2
+ ∂ 2u1

∂x2
3

)
+(λ +µ)

[
∂

∂x1

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)]
+ω2ρu1 + f1 = 0, x ∈ Ω,

µ

(
∂ 2u2
∂x2

1
+ ∂ 2u2

∂x2
2
+ ∂ 2u2

∂x2
3

)
+(λ +µ)

[
∂

∂x2

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)]
+ω2ρu2 + f2 = 0, x ∈ Ω,

µ

(
∂ 2u3
∂x2

1
+ ∂ 2u3

∂x2
2
+ ∂ 2u3

∂x2
3

)
+(λ +µ)

[
∂

∂x3

(
∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)]
+ω2ρu3 + f3 = 0, x ∈ Ω,

σ
≈
(u
∼
)n
∼

= g
∼
, x ∈ ∂Ω1,

u
∼

= 0, x ∈ ∂Ω2.

(2.10)

2.2 Weak Formulation

In this section we intend to present the weak formulation of the model (2.7), (2.8) and (2.9). For this,
let’s start by defining the functional spaces, inner products and their associated norms which will be
needed.

Consider u
∼

and a
≈

functions defined in the domain Ω and the Lebesgue spaces

L
∼

2 (Ω) =

{
u
∼

: ||u
∼
||L

∼
2(Ω) < ∞

}
, L

≈
2 (Ω) =

{
a
≈

: ||a
≈
||L

≈
2(Ω) < ∞

}
where

||u
∼
||L

∼
2(Ω) = (u

∼
,u
∼
)

1/2
L
∼

2(Ω)
=

(∫
Ω

|u
∼
(x) |2dx

)1/2

, ||a
≈
||L

≈
2(Ω) = (a

≈
: a
≈
)

1/2
L
≈

2(Ω)
=

(∫
Ω

|a
≈
(x) |2dx

)1/2

.

The spaces L
∼

2 (Ω) and L
≈

2 (Ω) are endowed with the inner products

(u
∼
, v
∼
)L
∼

2(Ω) =
∫

Ω

u
∼
· v
∼

dx =
3

∑
i=1

∫
Ω

uivi dx, (a
≈

: b
≈
)L
≈

2(Ω) =
∫

Ω

a
≈

: b
≈

dx =
3

∑
i=1

3

∑
j=1

∫
Ω

ai jbi j dx,

respectively, which induce the norms defined before. In space

H
∼

1 (Ω) =
{

u
∼
∈ L

∼
2 (Ω) ,∂ u

∼
/∂xi ∈ L

∼
2 (Ω) , i = 1, ...,3

}
is equipped with the following inner product

(u
∼
, v
∼
)H
∼

1(Ω) = (grad
≈

u
∼

: grad
≈

v
∼
)L
≈

2(Ω)+(u
∼
, v
∼
)L
∼

2(Ω).

Let V
∼
=
{

v
∼
∈ H

∼
1 (Ω) : v

∼
|∂Ω2 = 0

}
. To obtain the weak formulation, the equation (2.7) is

multiplied on both sides by a test function v
∼
∈V

∼
and integrated over the domain Ω. In this way, we

have ∫
Ω

µ △ u
∼
· v
∼
+(λ +µ)grad

∼

(
divu

∼

)
· v
∼
+ω

2
ρu
∼
· v
∼
+ f

∼
· v
∼

dx = 0. (2.11)
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Before integration by parts, we reorganize the above equality applying the Schwarz’s theorem [12] to
the partial derivatives that are multiplied by the coefficient µ , for i ̸= j. We have,

(λ +µ)
3

∑
i, j=1

(
∂

∂x j

(
∂ui

∂xi

))
v j = (λ +µ)

(
3

∑
i=1

(
∂

∂xi

(
∂ui

∂xi

))
vi +

3

∑
i̸= j

(
∂

∂x j

(
∂ui

∂xi

))
v j

)

= (λ +µ)
3

∑
i=1

(
∂

∂xi

(
∂ui

∂xi

))
vi +

3

∑
i ̸= j

λ

(
∂

∂x j

(
∂ui

∂xi

))
v j +µ

(
∂

∂xi

(
∂ui

∂x j

))
v j

= λ

3

∑
i, j=1

(
∂

∂x j

(
∂ui

∂xi

))
v j +µ

(
3

∑
i=1

(
∂

∂xi

(
∂ui

∂xi

))
vi +

3

∑
i ̸= j

(
∂

∂xi

(
∂ui

∂x j

))
v j

)
.

To obtain the variational formulation in the desired form, we note that the equation (2.11) is
equivalent to

3

∑
i, j=1

∫
Ω

µ

(
∂

∂xi

(
∂u j

∂xi

))
v j +λ

(
∂

∂x j

(
∂ui

∂xi

))
v j dx

+µ

(
3

∑
i=1

∫
Ω

(
∂

∂xi

(
∂ui

∂xi

))
vi dx+

3

∑
i̸= j

∫
Ω

(
∂

∂xi

(
∂ui

∂x j

))
v j dx

)

+
3

∑
i=1

∫
Ω

ω
2
ρuivi + fivi dx = 0.

Next we will present the integration by parts of the last equality

3

∑
i, j=1

∫
Ω

µ

(
∂u j

∂xi

)(
∂v j

∂xi

)
+λ

(
∂ui

∂xi

)(
∂v j

∂x j

)
dx+µ

3

∑
i=1

∫
Ω

(
∂ui

∂xi

)(
∂vi

∂xi

)
dx

+µ

3

∑
i ̸= j

∫
Ω

(
∂ui

∂x j

)(
∂v j

∂xi

)
dx−

3

∑
i=1

∫
Ω

ω
2
ρuivi + fivi dx (2.12)

=
3

∑
i, j=1

∫
∂Ω

µ

(
∂u j

∂xi

)
niv j +λ

(
∂ui

∂xi

)
n jv j ds+µ

3

∑
i=1

∫
∂Ω

(
∂ui

∂xi

)
nivi ds

+µ

3

∑
i ̸= j

∫
∂Ω

(
∂ui

∂x j

)
niv j ds,

where n
∼
= (n1,n2,n3) is the unit outward normal. The following lemmas will be used to simplify the

equality (2.12).

Lemma 1. For u
∼

,v
∼
∈V

∼
and any vector n

∼
∈ R3 holds

σ
≈
(u
∼
)n
∼
· v
∼
=

3

∑
i, j=1

µ

(
∂u j

∂xi

)
niv j +λ

3

∑
i, j=1

(
∂ui

∂xi

)
n jv j +µ

(
3

∑
i=1

(
∂ui

∂xi

)
nivi +

3

∑
i̸= j

(
∂ui

∂x j

)
niv j

)
.
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Proof. We mentioned that σ
≈
(u
∼
) = 2µε

≈
(u
∼
) + λ tr(ε

≈
(u
∼
))I3. Therefore, according the previously

notation, we have that σ
≈
(u
∼
) is given by

2µ


∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)
1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)
∂u3
∂x3

+λ

3

∑
i=1

∂ui

∂xi
I3

i.e.,

2µ


∂u1
∂x1

0 0
0 ∂u2

∂x2
0

0 0 ∂u3
∂x3

+µ


0 ∂u1

∂x2
+ ∂u2

∂x1

∂u1
∂x3

+ ∂u3
∂x1

∂u1
∂x2

+ ∂u2
∂x1

0 ∂u2
∂x3

+ ∂u3
∂x2

∂u1
∂x3

+ ∂u3
∂x1

∂u2
∂x3

+ ∂u3
∂x2

0

+λ ∑
3
i=1

∂ui
∂xi

I3.

When multiplying the matrices with the vector n
∼

and making the internal product of the result

with the test function v
∼

, we obtain that σ
≈
(u
∼
)n
∼
· v
∼

is given by

2µ


∂u1
∂x1

n1
∂u2
∂x2

n2
∂u3
∂x3

n3

 ·

v1

v2

v3

+λ

3

∑
i=1

∂ui

∂xi

n1

n2

n3

 ·

v1

v2

v3

+µ


(

∂u1
∂x2

+ ∂u2
∂x1

)
n2 +

(
∂u1
∂x3

+ ∂u3
∂x1

)
n3(

∂u1
∂x2

+ ∂u2
∂x1

)
n1 +

(
∂u2
∂x3

+ ∂u3
∂x2

)
n3(

∂u1
∂x3

+ ∂u3
∂x1

)
n1 +

(
∂u2
∂x3

+ ∂u3
∂x2

)
n2

 ·

v1

v2

v3


= 2µ

3

∑
i=1

(
∂ui

∂xi

)
nivi +λ

3

∑
j=1

3

∑
i=1

(
∂ui

∂xi

)
n jv j +µ

3

∑
i̸= j

(
∂u j

∂xi
+

∂ui

∂x j

)
niv j

= µ

3

∑
i= j

(
∂u j

∂xi

)
niv j +µ

3

∑
i=1

(
∂ui

∂xi

)
nivi +λ

3

∑
i, j=1

(
∂ui

∂xi

)
n jv j +µ

3

∑
i ̸= j

(
∂u j

∂xi

)
niv j

+µ

3

∑
i ̸= j

(
∂ui

∂x j

)
niv j

= µ

3

∑
i, j=1

(
∂u j

∂xi

)
niv j +λ

3

∑
i, j=1

(
∂ui

∂xi

)
n jv j +µ

(
3

∑
i=1

(
∂ui

∂xi

)
nivi +

3

∑
i ̸= j

(
∂ui

∂x j

)
niv j

)
.

Lemma 2. Let grad
≈

u
∼
=
(

∂ui
∂x j

)
1≤i, j≤3

and ε
≈
(u
∼
) = 1

2

(
grad
≈

u
∼
+(grad

≈
u
∼
)T
)

. Then

2µε
≈
(u
∼
) : ε

≈
(v
∼
) = µgrad

≈
u
∼

grad
≈

v
∼
+µ

3

∑
i=1

(
∂ui

∂xi

)(
∂vi

∂xi

)
+µ

3

∑
i ̸= j

(
∂ui

∂x j

)(
∂v j

∂xi

)
.

Proof. Starting with the first term, we observe that

2µε
≈
(u
∼
) : ε

≈
(v
∼
) =

µ

2

(
grad
≈

u
∼
+(grad

≈
u
∼
)T
)

:
(

grad
≈

v
∼
+(grad

≈
v
∼
)T
)

=
µ

2

(
2grad

≈
u
∼

: grad
≈

v
∼
+2grad

≈
u
∼

: (grad
≈

v
∼
)T
)
= µgrad

≈
u
∼

: grad
≈

v
∼
+µgrad

≈
u
∼

: (grad
≈

v
∼
)T

because grad
≈

u
∼

: (grad
≈

v
∼
)T = (grad

≈
u
∼
)T : grad

≈
v
∼

and grad
≈

u
∼

: grad
≈

v
∼
= (grad

≈
u
∼
)T : (grad

≈
v
∼
)T . It remains to

prove that ∑
3
i=1

(
∂ui
∂xi

)(
∂vi
∂xi

)
+∑

3
i ̸= j

(
∂ui
∂x j

)(
∂v j
∂xi

)
= grad

≈
u
∼

: (grad
≈

v
∼
)T . As
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grad
≈

u
∼

: (grad
≈

v
∼
)T =


∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3

 :


∂v1
∂x1

∂v2
∂x1

∂v3
∂x1

∂v1
∂x2

∂v2
∂x2

∂v3
∂x2

∂v1
∂x3

∂v2
∂x3

∂v3
∂x3

= ∑
3
i=1

(
∂ui
∂xi

)(
∂vi
∂xi

)
+∑

3
i̸= j

(
∂ui
∂x j

)(
∂v j
∂xi

)
,

we obtain the desired equality.

Applying Lemma 1 to (2.12), we conclude that the equation (2.11) is equivalent to:

3

∑
i, j=1

∫
Ω

µ

(
∂u j

∂xi

)(
∂v j

∂xi

)
dx+λ

3

∑
i, j=1

∫
Ω

(
∂ui

∂xi

)(
∂v j

∂x j

)
dx+µ

3

∑
i=1

∫
Ω

(
∂ui

∂xi

)(
∂vi

∂xi

)
dx

+µ

3

∑
i ̸= j

∫
Ω

(
∂ui

∂x j

)(
∂v j

∂xi

)
dx−

3

∑
i=1

∫
Ω

ω
2
ρuivi + fivi dx =

∫
∂Ω

σ
≈
(u
∼
)n
∼
· v
∼

ds. (2.13)

The expression (2.13) can be represented in a more condensed way:

∫
Ω

µgrad
≈

u
∼

: grad
≈

v
∼
+λdivu

∼
divv

∼
+µ

(
3

∑
i=1

(
∂ui

∂xi

)(
∂vi

∂xi

)
+

3

∑
i̸= j

(
∂ui

∂x j

)(
∂v j

∂xi

))
−ω

2
ρu
∼
· v
∼
− f

∼
· v
∼

dx =
∫

∂Ω

σ
≈
(u
∼
)n
∼
· v
∼

ds. (2.14)

By applying Lemma 2, we obtain∫
Ω

2µε
≈
(u
∼
) : ε

≈
(v
∼
)+λdivu

∼
divv

∼
−ω

2
ρu
∼
· v
∼

dx =
∫

∂Ω

σ
≈
(u
∼
)n
∼
· v
∼

ds+
∫

Ω

f
∼
· v
∼

dx.

In the boundary, given the conditions (2.8), (2.9) and taking into account that v
∼
∈V

∼
, so v = 0 in ∂Ω2,

we have that ∫
∂Ω

σ
≈
(u
∼
)n
∼
· v
∼

ds =
∫

∂Ω1

σ
≈
(u
∼
)n
∼
· v
∼

ds+
∫

∂Ω2

σ
≈
(u
∼
)n
∼
· v
∼

ds =
∫

∂Ω1

g
∼
· v
∼

ds.

In this way, the weak formulation of (2.10) takes the form: find u
∼
∈ V

∼
such that

a(u
∼
, v
∼
) = l(v

∼
), ∀v

∼
∈V

∼
, (2.15)

where
a(u

∼
, v
∼
) =

∫
Ω

2µε
≈
(u
∼
) : ε

≈
(v
∼
)+λdivu

∼
divv

∼
−ω

2
ρu
∼
· v
∼

dx (2.16)

and
l(v
∼
) =

∫
∂Ω1

g
∼
· v
∼

ds+
∫

Ω

f
∼
· v
∼

dx.

2.3 Well Posedness

The objective of this section is study the existence and uniqueness of solutions of the problem (2.15).
For this purpose, we will consider the following definitions and theorems:
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Definition 1. [15,Section2.4.3] Let Ω be a limited domain and let’s consider the Hilbert’s space
V
∼
= H

∼
1 (Ω). A bilinear form a : V

∼
×V

∼
→ C is said to be V

∼
- coercive if it satisfies, for all u

∼
∈V

∼
, the

inequality of Gårding ∣∣∣∣a(u∼,u∼)+C||u
∼
||2L

∼
2(Ω)

∣∣∣∣≥ α||u
∼
||2H

∼
1(Ω)

,

where C and α are positive constants.

Definition 2. [15,Section2.4.1]
A bilinear form b : V

∼
×V

∼
→C being V

∼
an Hilbert’s space is said to be V

∼
- elliptic, if there exists α > 0

such that ∣∣∣b(u
∼
,u
∼
)
∣∣∣≥ α||u

∼
||2V

∼

for all u
∼
∈V

∼
.

Definition 3. [15,Section2.4.1]
A bilinear form a : V

∼
×V

∼
→ C defined on the Hilbert’s space V

∼
, is said to be continuous if ∃ M > 0

such that ∣∣∣a(u
∼
, v
∼
)
∣∣∣≤ M||u

∼
||V

∼
||v
∼
||V

∼
,

for all u
∼
, v
∼
∈V

∼
.

Applying the Riesz-Schauder theory [16, Theorem 6.5.15] we define the following result.

Theorem 1. Let a(·, ·) be a coercive bilinear form such that a(u
∼
, v
∼
) = b(u

∼
, v
∼
)+β1(u∼

, v
∼
)L
∼

2 , being

b(·, ·) a V
∼
− elliptic bilinear form. For each β1 ∈ C we have one of the following alternatives:

1. The problem a(u
∼
, v
∼
) = l(v

∼
) has a unique solution;

2. β1 is an eigenvalue of the problem.

Theorem 2. [17,Second Korninequality]
There exists a positive constant C such that

||ε
≈
(v
∼
)||L

≈
2(Ω) ≥C||v

∼
||H

∼
1(Ω), v

∼
∈V

∼
.

where V
∼
=
{

v
∼
∈ H

∼
1 (Ω) : v

∼
|∂Ω2 = 0

}
.

The goal is to apply the Theorem 1 to study under what conditions (2.15) has a unique solution.
For this purpose, it is intended to check the conditions of this theorem. Let

b(v
∼
, v
∼
) =

∫
Ω

2µε
≈
(v
∼
) : ε

≈
(v
∼
)+λdivv

∼
divv

∼
dx = 2µ||ε

≈
(v
∼
)||2L

≈
2(Ω)

+λ ||divv
∼
||2L2(Ω)

.

As λ > 0, from Theorem 2 we have

b(v
∼
, v
∼
) ≥ 2µ||ε

≈
(v
∼
)||2L

≈
2(Ω)

≥ 2µC2||v
∼
||2H

∼
1(Ω)

,
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so b(·, ·) is H
∼

1 (Ω)− elliptic.

Consequently for the bilinear form a(·, ·) defined in (2.16), we have that

a(v
∼
, v
∼
)≥ 2µC2||v

∼
||2H

∼
1(Ω)

−ω
2
ρ||v

∼
||2L

∼
2(Ω)

,

so a(·, ·) is coercive. Because of Theorem 1 and assuming that β1 is not an eigenvalue value of the
problem, we have that (2.15) has a unique solution.

Let u
∼
∗ be this solution and let’s consider a new problem: find u

∼
∈ V

∼
such that

b(u
∼
, v
∼
) = l1(v

∼
), ∀v

∼
∈V

∼
, (2.17)

where l1(v
∼
) = l(v

∼
)+ω2ρ(u∗

∼
, v
∼
).

To obtain the solution of this problem, we will consider the following approach. Let’s define a
functional J : V

∼
→ R

J(v
∼
) =

1
2

b(v
∼
, v
∼
)− l1(v

∼
).

In this way it is possible to obtain a relationship between a minimization problem for this functional
and the problem (2.17) from the following lemmas.

Lemma 3. [18,Section2.2]
Let u

∼
be the unique solution of the weak formulation (2.17) and suppose that b(·, ·) is a symmetric

bilinear functional on V
∼

. Under these conditions u
∼

is the unique minimizer of J(·) on V
∼

.

Lemma 4. [18,Section2.2]
If u

∼
∈V

∼
is the unique minimizer of J(·) then u

∼
is the unique solution of the problem (2.17).

With these two lemmas it is possible to conclude the equivalence between the weak formulation
(2.17) and the minimization problem defined by the functional J, provided that the weak formulation
has unique solution and that b(·, ·) is a symmetric elliptic bilinear functional on V

∼
. The proof of these

conditions is then presented in what follows.
The problem (2.17) has unique solution because b(·, ·) is H

∼
1 (Ω)− elliptic [16, Theorem 6.5.9].

In addition, b(·, ·) is a symmetric bilinear form on H
∼

1 (Ω) as

b(u
∼
, v
∼
)=

∫
Ω

2µε
≈
(u
∼
) : ε

≈
(v
∼
)+λdivu

∼
divv

∼
dx=

∫
Ω

2µε
≈
(v
∼
) : ε

≈
(u
∼
)+λdivv

∼
divu

∼
dx= b(v

∼
,u
∼
), ∀u

∼
, v
∼
∈V

∼
.

Let ū
∼

the unique solution of problem (2.17) so

b(ū
∼
, v
∼
) = l(v

∼
)+β1(u∼

∗, v
∼
), ∀v

∼
∈V

∼
.

On the other hand, as u
∼
∗ is the unique solution of problem (2.15), we have that

b(u
∼
∗, v

∼
) = l(v

∼
)+β1(u∼

∗, v
∼
), ∀v

∼
∈V

∼
.

Consequently u
∼
∗ = ū

∼
.
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We conclude that u
∼
∗ is the only minimizer of J(·).



Chapter 3

Finite Element Method

3.1 Description of the method

Given the system of equations (2.10) resulting from the time-harmonic linear elasticity equation
together with boundary conditions, we will discuss how to obtain its solution. In this context, we will
approximate the exact solution by continuous piecewise linear functions considering a partition of the
domain using the finite element method. The procedure for applying this method will be presented in
detail in this chapter.

Let us consider the weak formulation of the problem stated in equation (2.15). The characterization
of the finite element solution to obtain the approximation uh

∼
of u

∼
consists in considering a finite

dimensional subspace Vh
∼
⊂V

∼
, which consists of continuous piecewise polynomial functions of a fixed

degree associated with each element of a partition of the domain. In this contexts, h represent the
diameter of the partition. Therefore, the finite element formulation of the problem (2.15) is: find
uh
∼
∈Vh

∼
such that

a(uh
∼
,vh
∼
) = l(vh

∼
), ∀vh

∼
∈Vh

∼
. (3.1)

Assuming the conditions of existence and uniqueness of solution of the problem (2.15) derived in
Chapter 2 and for h small enough by [16, Theorem 8.2.8] we know that the discrete problem (3.1) has
unique solution.

In this work, the finite element space Vh
∼

consists of continuous piecewise linear functions. We

start considering a partition of Ω into M tetrahedrons K j, j ∈ {1, ...,M} so that

Ω =
M⋃

j=1

K j and, int(Ki)∩ int(K j) = /0,∀ i, j ∈ {1, ...,M} , i ̸= j. (3.2)

The resulting subdivision (or mesh) is denoted by Ωh. To each tetrahedron there are associated four
vertices that can be vertices of the interior or the border of Ω. For any pair of tetrahedrons from the
partition of Ω either they don’t intersect or they have in common only vertices or edges.

Assuming that N is the total number of vertices in Ωh then dimVh
∼
= 3N because each function in

Vh
∼

is a three component vector function. So we associate to each vertex a scalar basis function for

each of the three components of the vector function.

13
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Let us consider Vh
∼
= span{φ11, ...,φN1,φ12, ...,φN2,φ13, ...,φN3} , where φ ji, i= 1,2,3, j = 1, ...,N

are the linearly independent basis functions. In this way, each component of the approximate solution
uh
∼

will be written as a linear combination of the basis functions φ ji

uh = (u1h,u2h,u3h)

with

uih(x,y,z) =
N

∑
j=1

U jiφ ji (x,y,z) , i = 1,2,3, (3.3)

where U ji, i = 1,2,3, j = 1, ...,N are the constants that we want to calculate.

As already mentioned, each vertex j of the partition of Ω in tetrahedrons is associated with three
base functions φ ji, i = 1,2,3, j = 1, ...,N, one function for each component. These functions are
continuous in Ω and linear in each tetrahedron.

In this way, we can define the approximation of finite elements, from the weak formulation of
elasticity equation. The purpose is to find uh

∼
∈Vh

∼
such that

∫
Ω

2µε
≈
(uh
∼
) : ε

≈
(vh
∼
)+λdivuh

∼
divvh

∼
−ω

2
ρuh

∼
· vh
∼

dx =
∫

∂Ω1

g
∼
· vh
∼

ds+
∫

Ω

f
∼
· vh
∼

dx, ∀vh
∼
∈Vh

∼
. (3.4)

It should be noted that, if uh
∼

∗ is the solution of the problem (3.4) then uh
∼

∗ is the minimizer of the

problem

Jh(vh
∼
) =

1
2

b(vh
∼
,vh
∼
)− l1,h(vh

∼
),vh

∼
∈Vh

∼
, (3.5)

with l1,h(vh
∼
) = l(vh

∼
)+ω2ρ(u∗h

∼
,vh
∼
), this is, the solution of finite elements uh

∼
∗ satisfies

J(uh
∼

∗) = min
vh
∼
∈Vh

∼

J(vh
∼
). (3.6)

Next, it is intended to show that the problem (3.6) is equivalent to the following problem: find
V ∈ R3N such that

1
2

V T B∗V −V T F∗
1 is minimum, (3.7)

where V = [V11, ...,VN1,V12, ...,VN2,V13, ...,VN3]
T , with B∗ being a 3N × 3N matrix and F∗

1 being a
vector of dimension 3N ×1.

3.2 Deriving the numerical scheme

In this section we will present the way of calculating the global stiffness matrix B∗ and the vector F∗
1

of the problem (3.7). We can write the bilinear form b(·, ·) in (3.5) in the following way

b(vh
∼
,vh
∼
) = ∑

K∈Ωh

∫
K

2µε
≈
(vh
∼
) : ε

≈
(vh
∼
)+λdivvh

∼
divvh

∼
dx.
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3.2.1 Reference tetrahedron

An important question to be resolved is how to obtain the value of the integrals over the tetrahedrons.
The tetrahedrons that form the partition of the domain have different configurations. To make the
calculations easier, let’s use a reference tetrahedron.

For each tetrahedron K of the partition of Ωh, consider ri = (xi,yi,zi) , i = 1, ...,4, representing the
coordinates of their vertices in a global cartesian system. Consider also the local coordinates (ξ ,η ,τ)

where the vertices of the tetrahedron are the local coordinate axes as represented in Figure 3.1.

Fig. 3.1 Tetrahedron represented in local coordinates.

In this way, we can write the coordinates of each point r = (x,y,z) of K as a convex combination
of the local coordinates

r = (x,y,z) = r1ψ1 (ξ ,η ,τ)+ r2ψ2 (ξ ,η ,τ)+ r3ψ3 (ξ ,η ,τ)+ r4ψ4 (ξ ,η ,τ) (3.8)

where
ψ1 (ξ ,η ,τ) = 1−ξ −η − τ, ψ2 (ξ ,η ,τ) = ξ ,

ψ3 (ξ ,η ,τ) = η , ψ4 (ξ ,η ,τ) = τ.

The elements of {ψi, i = 1, ...,4} are called the nodal basis of the set of linear polynomials in
relation to local coordinates. This transformation is associated with the Jacobi matrix which is given
by

J =
∂ (x,y,z)

∂ (ξ ,η ,τ)
=

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1

 .

The Jacobian can be written as

|J|= det

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1

= det


x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

 .
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Note that |J|= 6V1234, where V1234 is the volume of the tetrahedron K induced by r1, ...,r4. So, for
any function vh

∼
∈Vh

∼
,

vih (x,y,z) = vih (r (ξ ,η ,τ)) =
4

∑
j=1

Vjiψ j (ξ ,η ,τ) , i = 1, ...,3, (3.9)

where Vji is the value of the function vih in the vertex of the tetrahedron K with position r j, i =
1, ...,3, j = 1, ...,4. Realizing, in the vector form, we havev1h (x,y,z)

v2h (x,y,z)
v3h (x,y,z)

=

V11

V12

V13

ψ1 (ξ ,η ,τ)+

V21

V22

V23

ψ2 (ξ ,η ,τ)+

V31

V32

V33

ψ3 (ξ ,η ,τ)+

V41

V42

V43

ψ4 (ξ ,η ,τ) .

Note that from the previous transformation and by the chain rule it is possible to obtain a
relationship between the partial derivatives

∂v jh
∂ξ

=
∂v jh
∂x

∂x
∂ξ

+
∂v jh
∂y

∂y
∂ξ

+
∂v jh
∂ z

∂ z
∂ξ

,
∂v jh
∂η

=
∂v jh
∂x

∂x
∂η

+
∂v jh
∂y

∂y
∂η

+
∂v jh
∂ z

∂ z
∂η

,
∂v jh
∂τ

=
∂v jh
∂x

∂x
∂τ

+
∂v jh
∂y

∂y
∂τ

+
∂v jh
∂ z

∂ z
∂τ
,

that can be written as follows:(
∂v jh
∂ξ

∂v jh
∂η

∂v jh
∂τ

)T
= JT

(
∂v jh
∂x

∂v jh
∂y

∂v jh
∂ z

)T
, j = 1,2,3. (3.10)

The inverse
(
JT
)−1 exists, and

(
∂v jh
∂x

∂v jh
∂y

∂v jh
∂ z

)T
=
(
J−1
)T
(

∂v jh
∂ξ

∂v jh
∂η

∂v jh
∂τ

)T
with

(
J−1)T

=
(J∗)T

|J|
=

1
|J|

a11 a12 a13

a21 a22 a23

a31 a32 a33


where J∗ is the adjugate matrix of J and

a11 = (y3 − y1)(z4 − z1)− (z3 − z1)(y4 − y1) , a12 = (z2 − z1)(y4 − y1)− (y2 − y1)(z4 − z1) ,

a13 = (y2 − y1)(z3 − z1)− (z2 − z1)(y3 − y1) , a21 = (z3 − z1)(x4 − x1)− (x3 − x1)(z4 − z1) ,

a22 = (x2 − x1)(z4 − z1)− (z2 − z1)(x4 − x1) , a23 = (z2 − z1)(x3 − x1)− (x2 − x1)(z3 − z1) ,

a31 = (x3 − x1)(y4 − y1)− (y3 − y1)(x4 − x1) , a32 = (y2 − y1)(x4 − x1)− (x2 − x1)(y4 − y1) ,

a33 = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1) ,
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with j = 1,2,3.
In this way, multiplying both members of (3.10) by

(
JT
)−1, we obtain

∂v jh
∂x |J|= a11

∂v jh
∂ξ

+a12
∂v jh
∂η

+a13
∂v jh
∂τ

, j = 1,2,3,
∂v jh
∂y |J|= a21

∂v jh
∂ξ

+a22
∂v jh
∂η

+a23
∂v jh
∂τ

, j = 1,2,3,
∂v jh
∂ z |J|= a31

∂v jh
∂ξ

+a32
∂v jh
∂η

+a33
∂v jh
∂τ

, j = 1,2,3,

(3.11)

and we can write the partial derivatives given on the coordinates (x,y,z) in terms of the partial
derivatives on the local coordinates.

The relations in (3.11) will be very helpful to obtain the matrix B∗ and the vector F∗
1 in (3.7). The

calculations of the matrix B∗ and the vector F∗
1 are very extensive and can be found in the Appendix

A.

3.2.2 Linear system

In this section we will discuss a way to obtain the solution of the problem (3.7). Let’s consider the
function χ , defined in the following form

χ : R3N → R
V 7→ 1

2V T B∗V −V T F∗
1 .

Note that, by Section 2.3, the function χ has a unique minimizer on R3.

We will denote the gradient of the function χ by, ∇χ =
(

∂ χ

∂V11
, ..., ∂ χ

∂VN1
, ∂ χ

∂V12
, ..., ∂ χ

∂VN2
, ∂ χ

∂V13
, ..., ∂ χ

∂VN3

)T
.

The minimizer V of χ is such that ∇χ(V ) = 0. As the matrix B∗ is symmetric, ∇χ(V ) = B∗V −F∗
1 .

In this way, the minimizer V satisfies
B∗V = F∗

1 .

In this way, we calculate the coefficients U∗
ji, i = 1,2,3, j = 1, ...,N of (3.3) that allow to obtain

the solution uh
∼

∗ of the problem (3.4) which satisfy B∗U∗ = F∗
1 . This problem is equivalent to

AU = F, (3.12)

where A = B∗ − β1B′′ is a 3N × 3N matrix and F = F∗
1 − β1B′′U∗ is a 3N × 1 vector with B′′ =

∑
M
k=1 Lk

1B′ (Lk
1

)T .
Note that the system (3.12) is simplified since we have Dirichlet boundary conditions, u

∼
= 0, in

x ∈ ∂Ω2. So we will consider another system where we eliminate the rows and columns of matrix A
and the entries of vector F that correspond to the vertices of this boundary.

Next, we will illustrate the performance of the method with numerical experiments.

3.3 Numerical results

In this section we present some numerical results. Having in mind the problem that motivated this
work, we use real parameters that characterize the retina to define the mathematical model. The
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implementation of the method was made in Matlab. We present two groups of test problems. In
the first group, for simplicity, we will consider a cubic domain. In the second group, the domain is
taken to be a cylinder, aiming to mimic possible configurations of the domain of interest in the project
application [20].

Let Ω be a cube, Ω = [−2,2]3 ⊂ R3, with ∂Ω = ∂Ω1 ∪∂Ω2 where ∂Ω1 corresponds to the face
of the cube contained in the plane z =−2 and ∂Ω2 corresponds to the remaining faces of the cube.
Let’s consider a partition of Ω into a set of M tetrahedrons.

For meshing we used the Matlab function DelaunayTriangulation(x,y,z). In Figure 3.2 we
represent a partition of the domain into a set of ten tetrahedrons.

Fig. 3.2 Partition of the cube into a set of ten tetrahedrons (left); Triangulation on the boundary ∂Ω1
(right).

The equation was defined using the parameters taken from [21]: Young’s modulus E and Poisson’s
ratio υ given by

E = 2×104Pa,
υ = 0.498.

The Lamé constants are calculated from the above values using (2.4). In addition, we set the angular
frequency ω to be 2π × 106 rad/s and the density ρ to be 1g/cm3. For the vector function g

∼
we

considered
g1 = 103, g2 = 103, g3 = 3cos(z)×106. (3.13)

In Figure 3.3, we present the numerical solution of the elasticity equation using the mesh in Figure
3.2.

Fig. 3.3 The initial cube (left) and its deformation by the action of the force defined by (3.13) (right).

As can be seen from the Figure 3.3, the only vertex inside the lower face suffered a significant
downward displacement (the third component of the point decreased) and it is still possible to observe
that the inner point of the cube moved slightly in the same direction. In Figure 3.4 we present another
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example this time considering the same Lamé constants and the function g
∼

defined by

g1 = 103, g2 = 103, g3 =−3cos(z)×106, (3.14)

i.e., only by changing g3 making it symmetrical to the function of the previous example. For the
function g

∼
defined in this way, it is expected that the vertices that suffered displacements in the

previous situation, would move in the opposite direction. The results are illustrated in Figure 3.4 and
in Figure 3.5.

Fig. 3.4 The initial cube (left) and its deformation by the action of the force defined by (3.14) (right).

Changes are not easily visible in the two figures. For that reason, we use the Table 3.1 to show the
values of the displacements in two points, one inside the cube and other located in the bottom face
in the cube. In Table 3.1 we show the new coordinates of two points that result from the sum of the
original coordinates with the displacements calculated.

Fig. 3.5 An other point of view of the initial cube (left) and its deformation by action of the force
defined by (3.14) (right).

Original After displacement
Coordinates x y z x y z
Interior point 0 0 0 3.64×10−7 -0.000917 0.911

Boundary point 0 0 -2 0.000147 -0.00211 -0.163
Table 3.1 Coordinates of original vertices and coordinates after displacement.

Let us now consider the second group of numerical results where the domain is a cylinder.
Let Ω =

{
(x,y,z) : x2 + y2 ≤ 0.25,0 ≤ z ≤ 1

}
with ∂Ω = ∂Ω1∪∂Ω2 where ∂Ω1 corresponds the

face of the cylinder contained in the plane z = 1 and ∂Ω2 corresponds the remaining faces of the solid.
In this domain we have some additional issues because of the curved boundary on the side face of the
cylinder. The way to generate the mesh points that correspond to the vertices of the tetrahedron of the
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partition of the domain has to be done carefully in this situation. We will consider several planes of
the form z = β , β ∈ [0,1] and points equally spaced in circumferences of the shape{

(x,y) : x2 + y2 = r2} ,r ≤ 0.5

at each plane. This way, we construct a mesh on the cylinder, so if we use more points, better will be
the approximation of the solid. Let’s consider a partition of Ω into M tetrahedrons and a triangulation
of ∂Ω1 into M1 triangles.

Let u
∼
= (0,0,u3), with u3 = −((x−0.5)2 + (y− 0.5)2 − 0.25)z, be the exact a solution that

satisfies the boundary conditions previously imposed. To define the problem, we calculate f
∼

in (2.7)

and g
∼

in (2.8) from the exact solution. The purpose of using a fabricate solution is to make possible to

control if the numerical method works well.
The cylinder as well as the numerical displacements are shown in the Figure 3.6. We can observe

that the method presents the desired behaviour. The gray shades, from the figure on the right, quantify
the displacements where the darker tones correspond to greater displacements.

Fig. 3.6 Partition of the cylinder in to a set of tetrahedrons (left) and the corresponding displacements
obtained by the numerical method (right).

Only from the perception of the shade colors in Figure 3.6, it isn’t easy to have an idea of the
magnitude of the displacements obtained inside the solid. To solve this issues, we plotted the results
in Figure 3.7 using the software Paraview, combined with Matlab.

Fig. 3.7 Displacements quantified by color arrows. Numerical solution (left) and exact solution u
∼

(right).
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We can observe the displacement field looking to the colors and size of the arrows associated to
the points. We conclude by, Figure 3.7, that the numerical solution and the exact solution behave in
the same qualitative behaviour.

Now we will determine experimentally the order of convergence of our implementation of the
finite element method for the linear elasticity equation. Here, we will consider the cubic domain
Ω = [−2,2]3.

Let’s consider u
∼

exact = (uexact
1 ,uexact

2 ,uexact
3 ) given by

uexact
i (x1,x2,x3) = sen

(
π

4
(x1 +2)

)
sen
(

π

4
(x2 +2)

)
cos
(

π

8
(x3 +2)

)
, i = 1,2,3, (3.15)

which is the exact solution of (2.10), for the case w = 0. We define f
∼

and g
∼

such that u
∼

exact satisfies


−µ △ u

∼
exact − (λ +µ)grad

∼

(
divu

∼
exact

)
= f

∼
, x ∈ Ω,

σ
≈
(u
∼

exact)n
∼

= g
∼
, x ∈ ∂Ω1,

u
∼

exact = 0, x ∈ ∂Ω2,

where ∂Ω1 corresponds to the face of the cube contained in the plane z =−2 and ∂Ω2 corresponds to
the remaining faces of the cube. The Lamé constants are defined by µ = λ = 10. Numerically the
solution is obtained by solving the linear system defined in Section (3.2.2), that is, the solution is
a 3N ×1 vector. We will denote the approximation solution obtained by the finite element method
(3.1) as Uapprox. We denote by Uexact the 3N ×1 vector whose entries are the exact solution defined
in (3.15) at the mesh points. It is possible to quantify the error e of the numerical method using the
discrete L2

h norm ||e||L2
h(Ω) = ||Uexact −Uapprox||L2

h(Ω) where

||y||2L2
h(Ω)

= ∑
K∈Ωh

||y||2L2
h(K)

with

||y||2L2
h(K)

=
V1234

4

[
4

∑
i=1

2

∑
j=0

y2
t(ri)+ jN

]
,y ∈ R3N .

K represents each tetrahedron of the partition of Ωh with vertices ri, i ∈ {1, ...,4} defined in Section
3.2.1 with volume V1234. The expression y2

t(ri)+ jN , j ∈ {0,1,2} denotes the (t(ri)+ jN)-th squared
component of the vector y. The function t is defined by

t : R3 →{1, ...,N}
ri 7→ t(ri),

where t(ri) is the index that corresponds to vertex of ri in the global numbering.
In Tables 3.2 and 3.3 we present the error for different choices of the mesh size. We denote by h

the size of the subdivision of the edges of the cube to form the partition of the domain.
In the experiments, we start with an initial uniform partition of the domain and then we refine the

mesh.
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h 2 1 0.5
||e||L2

h(Ω) 2.4859 1.0718 0.3416

Table 3.2 Norm of the error.

h 4/3 4/9
||e||L2

h(Ω) 1.6028 0.2766

Table 3.3 Norm of the error.

Let us denote by e1 and e2 the approximation errors corresponding to two partitions of the domain
with diameter h1 and h2, respectively. We are assuming that the norm of the errors can be written in
the form

∥e1∥L2
h1
≤Chp

1 and ∥e2∥L2
h2
≤Chp

2 .

Then,
∥e1∥L2

h1

∥e2∥L2
h2

≤
(

h1

h2

)p

and consequently p ≥ log( h1
h2

)
(∥e1∥L2

h1

∥e2∥L2
h2

)
.

With the data of the previous tables, it would be interesting to estimate the convergence order of
this numerical method. Collecting the results of Table 3.2 and Table 3.3 it’s possible to estimate p.
We consider cases h1 = 2, h2 = 1 (case 1), h1 = 1, h2 = 0.5 (case 2), h1 = 2, h2 = 0.5 (case 3) and
h1 = 4/3, h2 = 4/9 (case 4).

We estimate the values of p by computing

log( h1
h2

)
(∥e1∥L2

h1

∥e2∥L2
h2

)
.

The results are presented in Table 3.4.

case 1 2 3 4
estimate for p 1.21 1.65 1.43 1.60

Table 3.4 Estimation of the convergence order p.

From the results obtained, we estimate that the convergence order is about 1.5.



Chapter 4

Inverse problem

In Chapter 3, a numerical method was developed to solve the equation of linear elasticity. This method
can be used to determine the displacements induced in the retina by ultrasounds, being known the
elasticity constants which characterize the medium. In other words, knowing the Lamé constants µ

and λ that define the elastic properties of the retina we can compute the elastic deformations. In this
chapter, it will be addressed the inverse of the previous problem, that is, knowing the displacements,
the goal is to infer the values of the Lamé constants characterizing the medium under investigation.
In terms of the application which is in the scope of the ElastoOCT project, the goal is to have a
prior knowledge of the health status of the retina through the properties of tissues in order to avoid
neurodegenerative processes and analyze the evolution of certain disease. In our approach to solve
this problem, it will be necessary to consider the mathematical model that was developed for the direct
problem. It is intended to find µ and λ so that the difference between the displacements predicted by
the mathematical model and the observed displacements is minimized.

This chapter will be divided in three sections where we start to study the description of the inverse
problem in Section 4.1. Several optimization methods were considered to solve this problem and we
present a brief description of them in Section 4.2. Finally, in Section 4.3, we report the computational
results about the performance of the algorithm in terms of the number of iterations and accuracy.

4.1 Description of problem

In this section we will analyze the inverse problem, which can be described by the following
minimization program:

min
µ, λ

∥U −Uobs∥2
L2

h(Ω) /∥Uobs∥2
L2

h(Ω)

s.t. AU = F
µ ∈ [µ1,µ2]

λ ∈ [λ1,λ2]

(4.1)

where Ω is the domain defined in Section 2.1 and A and F are the matrix and the vector which define
the linear system to solve the direct problem defined in Section 3.2.2. Uobs and U are the vectors with
the observed displacements and the solution of the system (3.12), respectively. We are assuming that
µ and λ have range values compatible with the biological structures so it makes sense working with

23
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limited domains for them. The objective function uses the discrete L2
h norm defined in Section 3.3.

Although computational results are done with Ω being a cube, the algorithm is prepared to work for
any domain. Since A is a non-singular matrix (see Section 3.2.2), the problem (4.1) can be rewritten
as follows:

min
µ,λ

∥∥A−1F −Uobs
∥∥2

L2
h(Ω)

/∥Uobs∥2
L2

h(Ω)

s.t. µ ∈ [µ1,µ2]

λ ∈ [λ1,λ2]

(4.2)

The matrix A depends on µ and λ and, consequently, U = A−1F depends also on µ and λ . For
convenience, we denote the objective function by l(µ,λ ), that is,
l(µ,λ ) =

∥∥A−1F −Uobs
∥∥2

L2
h(Ω)

/∥Uobs∥2
L2

h(Ω).

Despite the fact we weren’t able to obtain an explicit expression of A−1 in terms of these
parameters, we could deduce implicit expressions for the partial derivatives of the objective function
l. These expressions will be useful to characterize the convexity of the objective function and for
the development of optimization methods to solve this problem. The study of the convexity of the
objective function is an important aspect for this problem, since if it is convex in a convex set, all the
local minimizers in that set will be global.

In what follows, our goal is to present expression for the first and second order partial derivatives
of l. We will only present the deduction of the expression for the first derivative in order to µ since
the derivative in order to λ follows the same reasoning. He have that

∂ l
∂ µ

(µ,λ ) =
∂

∂ µ

(
||A−1F −Uobs||2L2

h(Ω)

)
/∥Uobs∥2

L2
h(Ω)

= ∑
K∈Ωh

V1234

4∥Uobs∥2
L2

h(Ω)

×
4

∑
i=1

2

∑
j=0

(
∂

∂ µ

[(
A−1F −Uobs

)2
t(ri)+ jN

])
. (4.3)

Using matrix differentiation we can write that ([22, 23])

∂

∂ µ

[(
A−1F −Uobs

)2
t(ri)+ jN

]
= 2(A−1F −Uobs)t(ri)+ jN

([
∂A−1

∂ µ

]
F
)

t(ri)+ jN
,

which is the same as

−2(A−1F −Uobs)t(ri)+ jN

(
A−1 ∂A

∂ µ
A−1F

)
t(ri)+ jN

, j ∈ {0,1,2} .

Defining the 3N ×1 vectors q = A−1F −Uobs and qµ = A−1 ∂A
∂ µ

A−1F we obtain:

∂

∂ µ

[(
A−1F −Uobs

)2
t(ri)+ jN

]
=−2q(t(ri)+ jN)qµ(t(ri)+ jN), j ∈ {0,1,2} .

So the expression (4.3) can be written in the form

∂ l
∂ µ

(µ,λ ) =− ∑
K∈Ωh

V1234

2∥Uobs∥2
L2

h(Ω)

[
4

∑
i=1

2

∑
j=0

q(t(ri)+ jN)qµ(t(ri)+ jN)

]
.
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In a similar way, considering that qλ =A−1 ∂A
∂λ

A−1F we obtain the expression for the first derivative
in order to λ :

∂ l
∂λ

(µ,λ ) =− ∑
K∈Ωh

V1234

2∥Uobs∥2
L2

h(Ω)

[
4

∑
i=1

2

∑
j=0

q(t(ri)+ jN)qλ (t(ri)+ jN)

]
.

The derivative of A is deduced easily from the expression of B∗ (defined in the Appendix), obtaining:

∂A
∂ µ

=
1

36V1234

M

∑
k=1

Lk
1

(
Rk
)T

C1Rk
(

Lk
1

)T
,

∂A
∂λ

=
1

36V1234

M

∑
k=1

Lk
1

(
Rk
)T

C2Rk
(

Lk
1

)T
,

with

C1 =

(
2I3 03

03 I3

)
and C2 =

(
13 03

03 03

)
,

where 03, 13 are square matrices with all components being zeros and ones respectively.
Next, we will present the deduction for the second order derivative in order to µ following the

same steps:

∂ 2l
∂ µ2 (µ,λ ) = ∑

K∈Ωh

V1234

4∥Uobs∥2
L2

h(Ω)

×
4

∑
i=1

2

∑
j=0

(
∂ 2

∂ µ2

[(
A−1F −Uobs

)2
t(ri)+ jN

])
. (4.4)

We can write the second order derivative of the term inside the parentheses in the following form:

2(A−1 ∂A
∂ µ

A−1F)2
t(ri)+ jN −2(A−1F −Uobs)t(ri)+ jN

(
∂

∂ µ

[
A−1 ∂A

∂ µ
A−1

]
F
)

t(ri)+ jN
,

for j ∈ {0,1,2}. Simplifying the derivative in order to µ of the matrix product we obtain

∂

∂ µ

[
A−1 ∂A

∂ µ
A−1

]
=

[
∂A−1

∂ µ

][
∂A
∂ µ

A−1
]
+A−1 ∂

∂ µ

[
∂A
∂ µ

A−1
]

= −2A−1 ∂A
∂ µ

A−1 ∂A
∂ µ

A−1.

In the previous expressions note that the second order derivative of the matrix A in order to µ is zero.
So we obtain the following expression:

2(A−1 ∂A
∂ µ

A−1F)2
t(ri)+ jN +4(A−1F −Uobs)t(ri)+ jN

(
A−1 ∂A

∂ µ
A−1 ∂A

∂ µ
A−1F

)
t(ri)+ jN

,

j ∈ {0,1,2}. So the expression (4.4) is the same as

∂ l2

∂ µ2 (µ,λ ) = ∑
K∈Ωh

V1234

2∥Uobs∥2
L2

h(Ω)

[
4

∑
i=1

2

∑
j=0

(
qµ(t(ri)+ jN)

)2
+2q(t(ri)+ jN)wµ(t(ri)+ jN)

]
,

where wµ = A−1 ∂A
∂ µ

A−1 ∂A
∂ µ

A−1F is a 3N ×1 vector.

In a similar way, considering the 3N ×1 vectors wλ = A−1 ∂A
∂λ

A−1 ∂A
∂λ

A−1F and

wµλ = A−1
(

∂A
∂ µ

A−1 ∂A
∂λ

+ ∂A
∂λ

A−1 ∂A
∂ µ

)
A−1F , we obtain the expression for the second order derivative
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in order to λ and also the mixed derivatives:

∂ l2

∂λ 2 (µ,λ ) = ∑
K∈Ωh

V1234

2∥Uobs∥2
L2

h(Ω)

[
4

∑
i=1

2

∑
j=0

(qλ (t(ri)+ jN))2 +2q(t(ri)+ jN)wλ (t(ri)+ jN)

]

and

∂ l2

∂λ∂ µ
(µ,λ ) = ∑

K∈Ωh

V1234

2∥Uobs∥2
L2

h(Ω)

[
4

∑
i=1

2

∑
j=0

qλ (t(ri)+ jN)qµ(t(ri)+ jN)

+q(t(ri)+ jN)wµλ (t(ri)+ jN)

]
.

The expressions previously obtained are difficult to manipulate to find out a region where the
function l is convex. A way to have an hint about the convexity of l is to plot the function. As an
example, we consider that Uobs corresponds to the solution of the direct problem with the parameters
(10,10), which will be designated by (µobs,λobs) and will correspond to the optimal solution of the
inverse problem. Figure 4.1 (left), shows us the shape of l in the region [5,25]2. Figure 4.1 (right),
shows a zoom in the region [9,11]2 where the optimal solution is found.

Fig. 4.1 Graph of the objective function in [5,25]2 (left) and in [9,11]2 (right).

From this figures it seems that the objective function l seems to be convex in a certain region. To
get more information about this behavior, we compute the eigenvalues of the hessian ∇2l(µ,λ ). We
consider uniformly distributed grid points in the domain [5,25]2 and we calculate the signal of the
corresponding eigenvalues on those points.

Fig. 4.2 A different perspective of the graph of the objective function in [5,25]2 (left); the red
points on the surface correspond to a region where the objective functions seems to be convex. A
two-dimensional image with the same domain (right).
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In the surface of Figure 4.2 we have red and white points where the corresponding hessian have
both eigenvalues positive (the red points) and eigenvalues with different signals (the white points).
We conclude that function l isn’t convex.

From Figure 4.2 (right), we infer the region where the objective function l seems to be convex is
given by

{(µ,λ ) : 5 ≤ µ ≤ 25∧0.681µ −0.836 ≤ λ ≤ 25} .

Thus, in view of our assumption, if the methods converge to a stationary point inside this region,
so this point is a local minimizer and, therefore, global in that region. This is what happens in our
numerical results, as will be shown in Section 4.3.

4.2 Optimization methods

To solve the problem (4.2) we will present some optimization methods. It should be noted that we
don’t have an analytical expression for the objective function l, which initially prevented us from
obtaining its derivatives. In this way, the first methods analysed were methods without derivatives,
namely the coordinated search method (procedure usually used in these situations) and the trust-region
method using a quadratic model obtained by the least squares. The first one is among of the most
popular methods which only require the use of the function values. The other one aims to determine
the minimizer of l from successive optimization sub-problems. At a later stage of this study, we
were able to obtain the expressions of the partial derivatives of l presented in Section 4.1, so we also
implemented the steepest-descent method and compared it with the previous ones.

We will describe the optimization methods for a general unconstrained minimization problem
of a function ϑ(x), x ∈ Rn. In the problem analyzed in this work, x = (µ,λ )T and along the text
we will use the notation x or (µ,λ )T depending on which one is more convenient. For each one of
these methods, we will present an example of how the algorithm works in the following academic
case: a cubic domain being Ω = [−2,2]3 with ∂Ω = ∂Ω1 ∪∂Ω2 where ∂Ω1 corresponds to the face
of the cube contained in the plane z =−2 and ∂Ω2 corresponds to the remaining faces of the cube.
In Figure 4.3 we represent a partition of the domain Ω into a set of 48 tetrahedrons. Note that the
non-null displacements calculated using this mesh correspond to two points, one inside the cube with
coordinates (0,0,0) and the other located in the bottom face in the cube (0,0,−2).

Fig. 4.3 Partition of the cube into a set of 48 tetrahedrons (left); Triangulation on the boundary ∂Ω1
(right).
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Let I = [9,11]2 and (µobs,λobs) = (10,10) the Lamé constants used to generate the observed
displacement Uobs. The direct problem uses the following data: the function g

∼
is defined as gi =

5.86×10−3,∀i ∈ 1,2,3, the angular frequency being ω = 2 rad/s and the density of material is defined
by ρ = 1g/cm3. In these concrete example we know the exact solution which is (10,10) so we can
consider the following stop condition in the three algorithms: ∥(10,10)− xk∥2 < 0.1, where xk is
the approximation obtained in the iteration k of the optimization methods. Here || · ||2 denotes the
euclidean norm defined by ∥y∥2

2 = ∑
2
i=1 y2

i , y ∈ R2.

The methods presented here will be compared computationally in Section 4.3.

4.2.1 Coordinated search method

In this section we intend to apply an iterative method to find a possible local/global minimum.
We choose the coordinated search method that is a direct search method of directional type that
successively minimizes along coordinate directions. This option arises because it is an optimization
method without derivatives which has properties of global convergence, i.e., the convergence doesn’t
depend on the chosen initial point [24]. We can also mention that it evaluates the objective function
for a finite number of points at each iteration. In the iteration k, the method evaluates the function
in a set of points near to the point xk. If it reduces the value of the objective function we update the
approximation; otherwise, the method executes a new iteration with a new set of points. The points
must satisfy a certain geometry in order to achieve the convergence of the method. This geometry is
established by a positive spanning set (PSS) of Rn. The set positively generated by {v1, ...,vs} ⊂ Rn is
the convex cone {

v ∈ Rn : v =
s

∑
i=1

αivi,αi ≥ 0, i = 1, ...,s

}
,

that is, the set of vectors which are a linear combination of vectors where all coefficients are non
negative scalars. A PSS in Rn is a set of vectors in Rn that spans it positively [24]. The use of
a PSS avoids to calculate the objective function in a random set of points and to each of them is
possible to find a vector that is a descent direction [25]. This means that for a given PSS D and
∀w ̸= 0,∃ d̄ ∈ D : wT d̄ > 0 [24, lemma 3.2]. In other words, assuming that ϑ is continuously
differentiable and ∇ϑ(x) ̸= 0, there is always a descent direction for the function ϑ in xk. If we don’t
find a point where the objective function reduces its value in a given iteration, the step is reduced.
Since one of the directions is of descent, then by reducing the step successively we will reach a
successful iteration. In general it is necessary more than a simple decrease of the function ϑ to
guarantee the convergence of the method. In this sense, we can use a force function, ρ : R+ → R+,
that is typically continuous and satisfies [24, 26]

lim
t→0+

ρ(t)
t

= 0 (4.5)

and ρ(t1)≤ ρ(t2) if t1 < t2. To initialize the method we have to define the initial point x0 and the step
length α0, which is a positive constant.

Initially the algorithm consist in a search step. For each iteration k, we compare ϑ(xk) with the
value of the function ϑ in Pk = {xk +αkd : d ∈ D}, where D a given PSS of Rn, to find a direction dk



4.2 Optimization methods 29

and the step length αk such that the following inequality holds

ϑ(xk +αkdk)≤ ϑ(xk)−ρ(αk). (4.6)

The geometry of a PSS D (with non-zero vectors) is often evaluated using the cosine measure [24]

cm(D) = min
0̸=v∈Rn

max
d∈D

vT d
∥v∥∥d∥

,

where ∥·∥ could be any norm. It can be proved that cosine measure is positive for a PSS [24]. This
result will be important to support the proof of global convergence.

There are several ways to implement the algorithm but we will describe the one used in this work
(Algorithm 1). We will consider that the first direction of D that satisfies the inequality (4.6) is the one
chosen because it is costly to evaluate the objective function. As a consequence the order of directions
in a PSS has influence in the choise of the trajectory for a given initial point. If there is a direction
dk and step αk that satisfies (4.6), the iteration k is declared successfully and then the next point is
given by xk+1 = xk +αkdk. Otherwise the iteration k is declared to be unsuccessful and xk+1 = xk. To
update αk+1 we consider αk+1 = αk when the iteration is successful; otherwise, αk+1 = αk/2. Next
the sketch of this method will be presented.

Algorithm 1: Coordinated search method
Initialization Choose x0 satisfying ϑ(x0)<+∞ and α0 > 0.
for k = 0,1,2, ... do

Order the set Pk = {xk +αkd : d ∈ D} for a PSS D. Calculate the value of the function ϑ

in Pk following the order of D.
if ∃dk ∈ D : ϑ(xk +αkdk)≤ ϑ(xk)−ρ(αk) then

xk+1 = xk +αkdk;
αk+1 = αk;

else
xk+1 = xk;
αk+1 = αk/2;

Next, we will present the results to prove the global convergence of this optimization method,
[24, 27]. The first condition ensures that the function ϑ should be bounded from below to avoid a
infinity of successful iterations.

Hypothesis 1. Let ϑ be bounded from below in the set L(x0) = {x ∈ Rn : ϑ(x)≤ ϑ(x0)}.

Hypothesis 2. The gradient ∇ϑ(x) is Lipschitz continuous with Lipschitz constant δ > 0 in a open
set that contains L(x0).

In order to have convergence we have to guarantee the existence of a subsequence S of unsuccessful
iterations that converges to zero:

lim
k∈S

αk = 0. (4.7)
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To continue the study, the next result should be imposed. In case of having unsuccessful iterations the
following inequality holds [24]:

∥∇ϑ(x)∥<
(

δ

2
cm(D)−1max

d∈D
∥d∥
)

α +

cm(D)−1

min
d∈D

∥d∥

 ρ(α)

α
.

This result relates the gradient norm of the function ϑ with the step length α as well the ratio ρ(α)/α .
From Hypothesis 1 and 2, we can easily conclude the global convergence to a stationary point.

Theorem 3. Suppose Hypothesis 1 and Hypothesis 2, then there is a subsequence S of unsuccessful
iterations such that

lim
k∈S

||∇ϑ(xk)||= 0.

Under the same hypothesis it is proved in [28] that

min
0≤ j≤k

∥∥∇ϑ(x j)
∥∥

converges sublinearly to zero with rate 1/
√

k. If the function is convex it can be proved a sublinear
global rate of 1/k. When it’s strongly convex we have a linear global rate for this method [29].

For the concrete case of function l, it wasn’t possible verify the Hypothesis 2. However, the
numerical results presented in Section 4.3 show that the method seems to converge in all tests
performed.

We will apply the Algorithm 1 with the initial point x0 = (11,11) and the initial step α0 = 0.1 to
show how this method works. We will consider the force function ρ(t) = t2/5000, and the PSS given
by

D =

{[
1
0

]
,

[
0
1

]
,

[
−1
0

]
,

[
0
−1

]}
.

Initially the algorithm found the direction d3 = (−1,0)T to decrease the function value. The
approximation obtained was x1 = (10.9,11) and α1 = 0.1. This process repeats the same value of
the step length until the iteration 20. At iteration 20, there is no point in P20 that decreases the value
of the function, so the iteration is unsuccessful. In the next iteration the algorithm kept the same
approximation but decreased the step length value for half of it. In iteration 21 there was a decrease in
the value of the function. The process continues until the iteration 28 where x28 = (9.975,10.075)
checks the stop condition ∥(10,10)− x28∥2 < 0.1. In Figure 4.4 (left), we have the approximations
obtained with the method (red points) and in white the final solution x∗. In Figure 4.4 (right) we have
the trajectories for four initial points with different colors (the trajectory starting from (11,11) is also
included). Other PSS can be considered, for example the set

D1 =

{[
1
1

]
,

[
1
−1

]
,

[
−1
1

]
,

[
−1
−1

]}
.
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Fig. 4.4 The graphs present the objective function in I where we have successive iterations of Algorithm
1. In the left, it is presented the trajectory starting from x0 = (11,11) with α0 = 0.1 and in the right it
is presented the trajectories starting from different initial points.

Fig. 4.5 Several trajectories obtained by Algorithm 1 for the four points with the PSS D1. The surface
represent the objective function in I.

In Figure 4.5 we present the trajectories starting in the same initial points shown in the Figure 4.4
(right). We can observe that the trajectories are different, but all seem to converge to the optimal
solution. In section 4.3 a comparative study of this method with both PSS will be done.

4.2.2 Derivative free trust-region method

The configuration of the function l seems to be well approximate, locally, by a quadratic function.
This fact, motivated us to apply trust region methods using a quadratic model to be an approximation
of the objective function. In this section we aim to achieve the minimizer with this technique.

One of the first works about this subject uses the multivariate interpolation technique. It arises in
the context of unconstrained optimization and doesn’t require the use of derivatives of the objective
function [30]. This fact is relevant for our work because initially we hadn’t access to derivatives
which is a disadvantage compared to many optimization methods. Other problem described is the
high cost of obtaining the values of the objective function, something that also arises in our work. The
method described in the article belongs to the class of trust region methods where the quadratic model
is obtained by interpolation and the trust region is defined by the euclidean norm centered in xk. In
our work, to simplify the calculations, we will consider the infinite norm, defined by ∥y∥

∞
= max

1≤i≤n
|yi|,

y ∈ Rn, to form a square in the neighborhood of the point xk. In general the article presents the
ideas that we want to describe, however, it doesn’t present the theoretical results proving the global
convergence of the method.
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Other studies initially consider interpolation and regression techniques to derive the quadratic
models. As we obtained better results with regression, we will only describe this approach to get the
quadratic models. In the regression models the number of points used is less restrictive since it can
use more points (advantage). The theoretical results can be found in [28] where it is shown global
convergence for trust region algorithms without derivatives. It is also presented how the models with
regression and interpolation are obtained to have certain properties (depending on the geometry of
the set) [31, 32]. Other works have emerged in this area to have a similar role to directional methods
[34, 36]. Recently in [35] trust region methods have been applied to non-smooth problems, where
the derivatives didn’t exist. In these situations, other variants of the method are considered. For
this method, the global convergence is proved and an efficient and robust technique for non-smooth
unconstrained optimization problems is presented.

We will describe the method for ϑ(x), x ∈ R2, since the quadratic models and domains belong to
this space. In this way, we will use the notation x = (µ,λ )T and for the iteration k, xk = (µk,λk)

T .

In trust-region methods, a region is defined around the point xk. For this region, it is defined a
quadratic model that is easy to minimize and it should give a good approximation to the objective
function. After that, the next candidate will be the minimizer in this region and the reduction of the
objective function is compared with the reduction of the quadratic model . If the minimizer isn’t
accepted, the iteration is unsuccessful and the trust region radius is reduced; otherwise, we have a
successful iteration, xk+1 is updated and the trust region radius remains the same.

The trust region radius plays an important role to obtain a successful iteration. If it is too small,
the algorithm loses the opportunity to get a close approximation near the minimizer of the objective
function. If it is too large the quadratic model couldn’t be a good approximation of the objective
function in all the region and the minimizer of the model may not be close to the minimizer of the
objective function.

For iteration k, we will denote the quadratic model by lk. Usually this model is based on Taylor’s
series expansion of ϑ around xk [25] using the first and second order derivatives of the function ϑ .
Here we decided to avoid the use of the derivatives of ϑ(x) so we used the least squares method to get
the quadratic model which approximates ϑ(x). To build it, we use a set Pk with random points where
ϑ(x) will be calculated. We will try, whenever possible, to preserve points from the previous iteration
that have already been calculated to decrease the number of times the function is evaluated.

Let Pk = {(µi,k,λi,k) : i ∈ {1, ...,nk}} be a set with nk ≥ 9 random points where the function
ϑ is known. To determine the quadratic model of lk we use the least squares method through
the points of Pk. To deduce these models we will consider that Pk has nk points in the set Ik =[
µin f ,k,µsup,k

]
×
[
λin f ,k,λsup,k

]
and this set is divided into nine sub-sets as follows

Ii, j,k =


[
µin f ,k +(i−1)sk,µin f ,k + isk

]
×
[
λin f ,k +( j−1)rk,λin f ,k + jrk

]
, (i, j) ∈ {(1,1)} ,[

µin f ,k +(i−1)sk,µin f ,k + isk
]
×
]
λin f ,k +( j−1)rk,λin f ,k + jrk

]
, (i, j) ∈ {(1,2),(1,3)} ,]

µin f ,k +(i−1)sk,µin f ,k + isk
]
×
[
λin f ,k +( j−1)rk,λin f ,k + jrk

]
, (i, j) ∈ {(2,1),(3,1)} ,]

µin f ,k +(i−1)sk,µin f ,k + isk
]
×
]
λin f ,k +( j−1)rk,λin f ,k + jrk

]
, (i, j) ∈ {(2,2),(2,3),(3,2),(3,3)} ,

(4.8)

where sk =
1
3(µsup,k −µin f ,k), rk =

1
3(λsup,k −λin f ,k) and for each sub-sets there is at least one point,

however, we will assume that xk ∈ I2,2,k. This condition is imposed to make sure that the points aren’t
very close to each other and to make possible to have representative points around all the trust region.
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So with these distributed nk points, we want to get the k-th quadratic model lk, that can be written
as follows,

lk(µ,λ ) = a1 +a2µ +a3λ +a4µ
2 +a5λ

2 +a6µλ , k ∈ Z+
0 , (4.9)

for some ai ∈ R, i ∈ {1, ...,6} that best fits the objective function. These coefficients ai, i ∈ {1, ...,6},
are determined in way to minimize the distance between the points considered and the approximate
function. Let zi,k = l(µi,k,λi,k) be the i-th value obtained in the objective function l, i ∈ {1, ...,nk}.
The problem can be solved by minimizing the function

Lk(a1, ...,a6) =
nk

∑
i=1

(zi,k − lk(µi,k,λi,k))
2 .

The necessary condition to obtain the solution is that the partial derivatives of Lk need to be zero, i.e.,

∂Lk

∂ai
(a1, ...,a6) = 0,∀i ∈ {1, ...,6} ,

that is equivalent to solve the following linear system of six equations
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(4.10)

The solution of this system exists and it is unique [28, 33]. So the solution of this linear system allows
to obtain the constants and we have the approximation lk by the least squares method of the function
ϑ , ∀k ∈ Z+

0 .
Note that by this technique, it’s possible add, if it is necessary, more points to obtain a better fit

and this issue is an advantage over the for quadratic interpolation since it only allows six points [37].
Since we already know how these polynomials are determined, we intend to characterize the

minimizer of this successive models through the trust region. In this method, x0 is the initial point
and ∆0 > 0 is the initial trust region radius. So the initial trust-region is defined by the set I0 where
x0 ∈ I2,2,0 and for the other sub-sets a random point is generated. Consequently the set P0 is defined
with this points and we are able to calculate the approximation l0. For the iteration k let us consider the
points of Pk to obtain the k-th approximation lk by the least squares method. To achieve the minimizer,
we will obtain the solution of the next sub-problem

min
x∈R2

lk(x)

s.t ∥x− xk∥∞
≤ ∆k.

(4.11)
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The solution xk+1 will be the minimizer of lk in the square centered in xk and radius ∆k. Its critical
point is the solution of ∇lk(µ,λ ) = 0:[

2a4 a6

a6 2a5

][
µ

λ

]
=−

[
a2

a3

]
(4.12)

where the matrix of the system is the hessian, ∇2lk(µ,λ ), of the quadratic model. This matrix is
definite positive (DP) if the two eigenvalues are positive [38, Theorem 2.27]. The characteristic
polynomial of the hessian allows us to obtain the next expressions for eigenvalues:

a4 +a5 ±
√

(a4 −a5)2 +a2
6.

So this values are both positive when 4a4a5 −a2
6 > 0 and a4 > 0.

We will denote by x∗k the minimizer of (4.11) in the iteration k. If the hessian is definite positive
and the solution obtained by resolution of (4.12) is in the trust region, the minimizer of (4.11) is the
solution of (4.12). If one of this conditions isn’t satisfied the minimizer will be determined over the
boundary. As lk is continuous in ∥x− xk∥∞

≤ ∆k which is closed and bounded, (i.e. compact of finite
dimension), there is a minimizer (and a maximizer) by Weirstrass Theorem [39, Theorem 4.1].

To accept this minimizer, being the iteration successful, it is necessary that the reduction obtained
in the objective function be at least one portion of the observed reduction in the quadratic model. In
this way, we analyze the ratio:

ρk =
ϑ(xk)−ϑ(x∗k)
lk(xk)− lk(x∗k)

, (4.13)

and we compare it with the value η ∈ ]0,1[ initially fixed. If ρk ≥ η , the quadratic model fits well to
the objective function and the iteration k is successful; otherwise, the trust region is too large and the
fit between the function and the model isn’t in accordance with what we expected. In this case, we
reduce the trust region radius (maintaining the same approximation). The Algorithm 2 presents a brief
description of this method.

To update Pk+1 and Ik+1, independent of having success or not, we will have as trust region a
new square centered on xk+1 with radius ∆k+1 and the set Ik+1 will be given by the trust region. As
xk+1 is the centre of these region, xk+1 ∈ I2,2,k+1 and if there are points of Ik that belong to some
Ii, j,k+1, (i, j) ∈ {1,2,3} ̸= (2,2), we will keep those points; otherwise a new point is generated for
each sub-set. Pk+1 will be the set with the new nk+1 points obtained by this process and a new quadratic
model is obtained by the least squares method. For the next iterations repeat this procedure as it is
briefly described in Algorithm 2.

Next we will discuss which are the sufficient conditions to have global convergence of this method
based on the work presented in [28].

Let’s start by the properties of the quadratic model. For the iteration k, we will consider Λk =

max
1≤i, j≤nk

∥∥(µi,k,λ j,k)− xk
∥∥

2 where these points belong to Pk and they were generated following an

uniform random distribution on each sub-interval except the one in I2,2,k. The first condition assumes
that function ϑ is continuously differentiable in an open domain A containing the ball B(xk,Λk) ={

x ∈ R2 : ∥x− xk∥2 ≤ Λk
}

and ∇2ϑ is Lipschitz continuous with constant δ1 > 0 in A. This result
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Algorithm 2: Derivative free trust-region method
Initialization Choose x0, ∆0 > 0 and the constant η ∈ ]0,1[ with ϑ(x0)< ∞. Obtain I0 and
consequently P0.

for k = 0,1,2, ... do
Construct the model for lk(µ,λ ) by least squares method in (4.10) with the points of Pk.
Obtain the critical point by resolution of the problem (4.12).
if ∇2lk(µ,λ ) is DP and satisfies the constrain of the sub-problem (4.11) then

x∗k is the minimizer;
else

Obtain the minimizer x∗k over the boundary of the square centered in xk and radius ∆k.
Calculate ρk in (4.13).
if ρk ≥ η then

∆k+1 = ∆k;
xk+1 = x∗k ;

else
∆k+1 = ∆k/2;
xk+1 = x∗k ;

Update Ik+1, Pk+1 for the new points and obtain lk+1.

allows us to have a ball over the successive points of Pk so if we consider Λk greater than the trust-
region, the ball will cover the respective square. If it isn’t possible to satisfies such condition, we will
generate a new point in order to ensure that it is satisfied.

Then we will present the conditions to prove the global convergence. The function ϑ should be
smooth in L(x0) where this set is the same as defined in Hypothesis1 with n = 2. In the trust-region
method it’s assumed that the hessian of the quadratic model is uniformly bounded.

Hypothesis 3. There exist a positive constant C, such that, for all iterations xk verifies∥∥∇
2lk(xk)

∥∥≤C.

Hypothesis 4. The function ϑ is continuously differentiable and Hypothesis 2 holds for an open
domain containing the following set ⋃

x∈L(x0)

B(x,∆max),

where ∆max ≥ ∆k, ∀k ≥ 0 and x0 are known.

The following theorem shows that all sequences of gradients of ϑ converge to zero.

Theorem 4. The Hypothesis 1,3 and 4 allow to conclude [28] that

lim
k→∞

||∇ϑ(xk)||= 0.

Given the expression of l, we can’t verify whether the hypotheses of Theorem 4 are valid in our
problem, but the results in Section 4.3 appear to indicate that the method converges.



36 Inverse problem

In order to clarify how the Algorithm 2 works, we will present a numerical example. Let’s consider
x0 = (11,11), ∆0 = 0.1 and η = 0.1. Then, we generate the points of P0 in order to build l0, where

l0(µ,λ ) =
(
5855−997µ −227λ +43µ

2 +2.53λ
2 +19µλ

)
×10−4.

The critical point of l0 has both eigenvalues positive but since it doesn’t belong to the square we
will calculate the minimizer over the boundary which is (10.9,10.9). Since ρ0 = 0.99 ≥ η we have
success in first iteration and this means that the quadratic model is a good approximation of the
objective function in the trust region. Thus we obtain the solution x1 and the radius of the trust region
is kept. The next nine approximations were obtained over the boundary where all of them we had
success. The last approximation is x10 = (10,10.0005) which it has an error smaller than 0.1.

Fig. 4.6 The graph shows the objective function in I where the several approximations are obtained by
the Algorithm 2 starting with x0 = (11,11) and ∆0 = 0.1 (left). It is also presented the last quadratic
model obtained by the least squares (right).

4.2.3 Steepest-descent method

In this section we will apply an optimization method with the derivatives obtained in Section 4.1,
called the steepest-descent method also known as the gradient method. It is a line search method
where the direction of this method is the one where the function l decrease more quickly and requires
only the calculation of the first derivatives. However, it is a slow method in difficult problems and
doesn’t provide large reductions of function value due to be sensitive to low scales [25].

Let’s assume that the function ϑ(x), x ∈Rn, is continuously differentiable. In the steepest-descent
method the iterations are given by

xk+1 = xk +αk pk (4.14)

where the descent direction pk is −∇ϑ(xk) and αk is the length of the step in such direction. The step
length can be found in an exact form through the next optimization problem of one variable

min
α>0

ϑ(xk +α pk). (4.15)

However, it is expensive to solve (4.15) and it isn’t necessary to calculate αk in the way to obtain
global convergence. Usually, it is sufficient to determine αk in an approximate form satisfying the
Wolfe’s conditions [40]: given c1,c2 ∈]0,1[ with c1 < c2, ϑ(xk +α pk)≤ ϑ(xk)+ c1α(∇ϑ(xk))

T pk

(sufficient decrease condition) and (∇ϑ(xk+α pk))
T pk ≥ c2(∇ϑ(xk))

T pk (curvature condition) which
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allows to obtain global convergence of the method. The first condition provides a decrease in ϑ

proportional to α while the second avoids very small steps. The last condition can be replaced by
the backtracking technique without losing the convergence properties [25]. The idea is to start by
considering a given value ā > 0. The backtracking procedure is to find a α = ā that satisfies the
sufficient decrease condition and in the case that ā doesn’t satisfy it, it is reduced by one factor until
the condition is satisfied. The first value of ā that algorithm verifies, it is the value consider for αk.
This procedure to determine αk is given by Algorithm 3 while Algorithm 4 gives us the sketch of the
steepest-descent method.

Algorithm 3: Backtracking for steepest-descent method
Initialization Choose ā > 0, c1 ∈ ]0,1[ and let α = ā.
while ϑ(xk −α∇ϑ(xk))> ϑ(xk)− c1α ∥∇ϑ(xk)∥2

2 do
α = α/2;

Terminate αk = α .

Algorithm 4: Steepest-descent method
Initialization Choose the initial point x0 where ϑ(x0)< ∞.
for k = 0,1,2, ... do

Step 1: Calculate the direction ∇ϑ(xk);
Step 2: Find the length step αk by the Algorithm 3 ;
Step 3: Update xk+1 = xk −αk∇ϑ(xk);

Then we will present the results that guarantee the global convergence of steepest-method [25, 41].

Lemma 5. Let any iteration of the form (4.14) be obtained with the steepest-descent method. Suppose
that ϑ is bounded below in Rn and that it is continuously differentiable in an open domain A containing
the set defined in Hypothesis 1. Assuming also Hypothesis 2 then the following expression holds:

∞

∑
k=0

cos2
θk ∥∇ϑ(xk)∥2 < ∞.

Theorem 5. Assuming the conditions in Lemma 5 and that cosθk ≥ γ > 0 for all k, then [25]

lim
k→∞

||∇ϑ(xk)||= 0.

It can be proved also that under Hypothesis 1 and 2, when the Algorithm 4 is used the gradient
decays at a sublinear rate 1/

√
k [28]. If the function is convex or strongly convex the global rate is the

same as for the coordinated search method [29].
Since some hypothesis are the same as those presented for the trust region method, we don’t know

if the function l verifies these conditions. However, the numerical results presented in Section 4.3
seem exhibit the convergence of the method.

We will present a simple example in order to show how Algorithm 4 works. We will consider the
initial point x0 = (11,11), ā = 25 and c1 = 0.01. Initially the algorithm determines the gradient for the
initial point that is given by (−0.0144,−0.0033). With this descent direction and with the step length
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α0 = 25 we can decrease the value of the function obtaining the approximation x1 = (10.641,10.916).
After a some iterations we obtained the approximation x226 = (9.979,10.097) with an error smaller
than 0.1.

Fig. 4.7 Sucessive approximations obtained by Algorithm 4 starting from x0 = (11,11) where ā = 25
and c1 = 0.01. The trajectory is described on the surface of the objective function l defined in [9,11]2.

4.3 Computational study

In this section we will present a comparative study of the optimization methods described in Section
4.2 applied to the problem analyzed in this work.

In the context of the ElastoOCT project we still have no experimental data that can be used in
this work. Thus, in the tests performed we will use as observed displacements the vector Uobs which
corresponds to the solution obtained by the direct method with (µobs,λobs) = (10,10). In this way, the
vector (µobs,λobs) will be the optimal solution of the inverse problem that we want to approximate. In
the context of the project, the experimental data should contain noise so in this section are considered
two scenarios: noise free data (Section 4.3.1) and noisy data (Section 4.3.2). In the first scenario, it is
intended to identify the method with the best performance, which will be used in the second scenario
to assess its sensitivity to the noise level considered. This study will allow to evaluate the applicability
of the proposed solution in a real scenario in the future.

For both scenarios we consider the same domain Ω = [−2,2]3 and the same boundary conditions
presented in previous section. The density of the material is taken to be ρ = 1g/cm3, the angular
frequency is w = 2 rad/s and the force function g

∼
is defined by gi = 5.86×10−3,∀i ∈ 1,2,3. For the

optimization problem we will choose the set I = [5,100]2. The surface of objective function l in I is
presented in Figure 4.8.

The performance of the methods will be analyzed in term of the following parameters: the number
of iterations, the number of times the objective function is calculated, the absolute error, the function
value and the gradient norm. We will do a statistical study where we perform 30 simulations with
different starting points and we evaluate the mean, the standard deviation (SD) and the maximum
value for the number of iterations. We also present the percentage of successful iterations (% Suc)
until the solution converges considering the stop condition. For the second parameter described we
will analyze the mean and standard deviation, however, for the remaining parameters we study the
behavior from the respectively graphs. In each simulation, the three methods use the same starting
point.
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Fig. 4.8 Surface of the objective function l in [5,100]2.

4.3.1 Noise free data

In this section we aim to compare the performance of the three methods described in Section 4.2.
We want to verify which of these methods is the most efficient with the goal of choosing the best
optimization method to be applied in the problems with noisy data.

For this scenario, since we know that the optimal solution is (10,10), we will consider the stop
condition for the three algorithms given by ||(10,10)− xk||2 < 0.1.

Coordinated search method

Since we have the same starting points, the choice of the initial step length has to be consistent since
it should be the same value for the three methods. In this method we have chosen α0 = 10, since it is
possible to pass through all regions of the set I with few iterations.

For this method we will present a study with the PSS D and D1 defined in Section 4.2.1
considering the force function ρ(t) = t2/5000. We intend to compare which of this PSS produces
better approximations with the Algorithm 1.

Given the domain configuration and the directions considered in D1, there are situations where it
may not be possible to find a descent direction in D1. For example, if in iteration k we obtain the point
xk = (5,100), only the vector (1,−1)T of D1 allows us to keep the next points in I but this direction
may be an ascent direction. To overcome this situation, we defined the PSS D2 = D1 ∪D where we
kept the elements in same order as in the respective sets and the directions of D are checked only if
none of the directions in D1 generate a successful iteration.

As the distribution looks roughly symmetrical (see boxplot in Figure 4.9) and there aren’t many
outliers, we decided to analyze the mean and standard deviation for the number of iterations and the
number of evaluations of the objective function.

In Figure 4.9, we show the boxplot of the number of iterations (left), the average value of the step
length for iteration and the average value of the absolute error, using the euclidean norm, for each
iteration (right), considering 30 simulations with different starting points.

Figure 4.9 and Table 4.1 present a summary of the results obtained with the 30 simulations.
From these results we can conclude that the use of PSS D2 is, in general, more efficient in the tests
performed. In fact, in terms of the number of iterations to achieve the desired precision, the mean and
variability is lower when PSS D2 is used.
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Fig. 4.9 Boxplot of the number of iterations (left); Average values of the step length for each iteration
(blue lines) and the variation on average of the absolute error (red lines) measure by euclidean norm
in terms of the number of iterations (red lines) corresponding different PSS. The continuous lines
and dashed lines correspond to PSS D and D2, respectively. The values correspond to the mean of 30
simulations.

This decrease in the number of iterations is achieved with an increase in the number of times
that the objective function is evaluated. Taking into account the values in Table 4.1, we observe that
the average number of times the objective function is evaluated for each iteration is 1.6 in the case
of the PSS D and approximately 2.7 in the case of set D2. Generally, we can then conclude that,
on average, in the first case, it uses only the first two vectors of D while in the second case three
vectors of D1 are used. Relatively to the length of the step, it is observed that the use of the set D2

allows to maintain higher values in the first iterations, since the absolute error is higher, causing the
algorithm to approximate the exact solution more quickly (resulting in a reduction in the number
of iterations already indicated). When increasing the number of iterations, the PSS D2 (blue dash
lines) obtained on average a value of the step length closer to zero more quickly than when the PSS
D is used.. This figure is also in agreement with equation (4.7) which guarantees the existence of a
sequence of iterations where the step length tends to zero. We also report the percentage of successful
iterations in both cases is similar (Table 4.1) which corresponds to the portion of successful iterations
among the total iterations performed until the stop condition is satisfied. From the analysis of this
table and Figure 4.9 (right), we conclude that unsuccessful iterations should appear earlier when using
the set D, which would be expected because it has less elements, leading to a faster decrease of the
step length.

Since the objective function l isn’t negative, an indicator of the convergence of successive
approximations can be the value of the objective function. In Figure 4.10 we present the variation
of the function value for both PSS. We can observe that the behavior of this graph is similar to the
variation of step length and absolute error in Figure 4.9 (right) since the decrease in the value of the
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step length and the absolute error until reaching the optimal solution implies a decrease in the value of
the function, which was expected.

We include the average of the gradient norm in Figure 4.10 to verify if, numerically, the average
of the 30 simulations we have the convergence to the stationary point stated in Theorem 3. Analyzing
this parameter in both PSS, they have a different behavior than we expected since initially the curves
increase a little bit. This behavior can be explained by using the surface of the objective function
in Figure 4.8. Note that the 30 starting points are random and it is more probable that they belong
to set [40,100]× [5,100] ⊂ I where the objective function is characterized by having a little slope
corresponding to where the norm of the gradient has small values. The algorithm in a few iterations
will have approximations close to the region where the function changes its concavity (see Figure 4.8),
making that the gradient will gradually increase since the slope is bigger. However it quickly becomes
smaller when we are already very close to the optimal solution and converges to a stationary point.

In Figure 4.10 we can conclude that since the PSS D presents higher decreases of the initial
function values, the gradient for this PSS is slightly higher when increasing the number of iterations.
However, after a few iterations, the PSS D2 presents higher decreases of the value of function more
quickly so in this way as it preforms fewer iterations until it converges, the gradient norm in this PSS
tends more quickly to zero as we can see in Figure 4.10.

Number of iterations Number of evaluation of l
PSS/Data mean SD maximum % Suc mean SD

D 42.87 13.96 73 78% 69.15 15.6
D2 31.32 7.38 47 75.7% 83.9 14.86

Table 4.1 Statistical summary of the computational results for the coordinated search method.

Derivative free trust-region method

First we will discuss a reasonable value for the initial radius. In Algorithm 1, the directions of the
PSS D and D2 have vectors with unit norms and α0 = 10, making ||x1 − x0||2 ≤ 10.

To be in the same condition when using Algorithm 2, we will use ∆0 = 5
√

2 since the trust region
is a neighborhood of x0 with radius ∆0 defined with the infinite norm, that is, a square with side 10

√
2

centered on x0.
We will consider the same aspects as before to evaluate the performance of this optimization

method. In Figure 4.11 we present the boxplot for the number of iterations, a graph with the average
value of the trust region radius and the absolute error for each iteration. The statistical summary is
presented in Table 4.2.

From the results presented, we observed that this method needs fewer iterations than the coordinated
search method to achieve the desired precision, but evaluates the objective function at more points
(approximately four evaluations of the function for each iteration). From Figure 4.11 (right), we see
in general a significant decrease of the average of trust region radius and the absolute error. The
evolution of the trust region radius has three "phases". At first (up to iteration 7) maintains a high
radius value allowing absolute error to decrease quickly; in the second (until iteration 20) the radius
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Fig. 4.10 Variation on the average, for each iteration, of the function value (blue lines) and the gradient
norm (red lines) for each PSS. The continuous lines and dashed lines correspond to the PSS D and D2,
respectively.

Fig. 4.11 Boxplot of the number of iterations (left); Average values of the trust-region radius (blue)
and the absolute error measure by euclidean norm in terms for each iteration (right).
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decreases quickly (should be when it gets the iterations without success) and there is a slowdown in
the decrease in the error; in the latter (after iteration 20) the two lines stabilize (this happens because
most simulations have already converged). We can notice that the percentage of successful iterations
for each solution compared to the coordinated search method is slightly higher, which was expected
since this method performs less iterations until it satisfies the stopping condition. All the simulations
converge to the optimal solution in less than 35 iterations.

By observing Figure 4.11 (right, blue line) and Figure 4.12, we notice that the behavior of the
absolute error, the norm of the gradient and value of the function are similar to the previous method.
However, these metrics decreased quickly in the trust region method because it needed fewer iterations
until converging to the optimal solution.

Number of iterations Number of evaluation of l
Data mean SD maximum % Suc mean SD

Values 19.6 5.02 34 80.2% 79.5 16.85
Table 4.2 Statistical summary of the computational results for the derivative free trust-region method.

Fig. 4.12 Variation on average of the function value (blue line) and the gradient norm (red line) with
the number of iterations.

Steepest-descent method

We will present a way to obtain the step length α0 ∈]0, ā] for this method in order to be comparable
with the other methods. We want the best effective distance through the direction ∇l(x0) using a
reasonable value for ā. The effective distance, ā||∇l(x0)||2 must be equal to 10 to be in concordance
with the other methods. One approximation for the initial step is ā = 10/||∇l(x0)||2 and it depends of
the initial approximation x0 which is different of others methods. We will also consider that c1 = 0.01
as described in Section 4.2.3.
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In Figure 4.13, we show the boxplot of the number of iterations (left), the average value of the
step and the absolute error for each iteration (right). Observing the results of Figure 4.13 and Table
4.3 we conclude that it is necessary, on average, more iterations to reach a solution close to the
optimal solution and the data show greater variability in the number of iterations compared to what
we obtained in the other two methods. This method determines the step length using the backtracking
technique, needing to compute the objective function on average four times for iteration.

Fig. 4.13 Boxplot of the number of iterations (left); Average values of the step length for each solution
(blue line). The line in red represents the variation on average of the absolute error measure by
euclidean norm of the number of iterations for the 30 simulations (right).

By Figure 4.13 (right) we can conclude that with the decrease in absolute error (red line), the step
length (blue line) tends to zero, which allow to guarantee the convergence of the approximations to a
stationary point.

Number of iterations Number of evaluation of l
Data mean SD maximum mean SD

Values 133.6 57.9 298 534.7 264
Table 4.3 Statistical summary of the computational results for the steepest-descent method.

We present in Figure 4.14 a graph with the average value of the Euclidean norm of the gradient
and function value for each iteration. We can observe that the behaviour of these graphs are similar to
that obtained by the other methods. However we can see that the peak of the value of the norm of the
gradient (red lines) is higher than the other methods. In what concerns to the behavior of the value of
the objective function, it is similar to the previous method. However their decrease of the objective
function was slower since the method need more iterations until converging to the optimal solution.
We can conclude that the initial points of our simulations converge to the optimal solution since, on
average, the norm of the gradient of them tends to zero (Theorem 5).
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Fig. 4.14 Variation on average of the function value (blue line) and the gradient norm (red line) with
the number of iterations.

In this simulations we consider that derivative free trust-region method is the most efficient since it
converges very fast to an approximation close to the optimal solution in a few iterations. This method
isn’t very restrictive when determines a new approximation since it is the minimizer in the trust region
and allow to obtain descent directions (advantage). In simulations, the coordinated search method
is exhaustive since Algorithm 1 finds the first direction of the PSS that satisfies (4.6) around xk. It
only uses the knowledge of l on a discrete set of points, having no general information about what
happens in the neighborhood of xk (disadvantage), where it can be possible to decrease the value of
the objective function even further. In the trust region method, the quadratic model that best fits the
objective function gives an idea of the objection function in a whole neighborhood at each iteration. in
each iteration. The steepest-descent method in our simulations have on average very low values of the
gradient norm and consequently the value of the gradient. Despite the gradient is the direction from
where the function decrease quickly, this process takes a lot of iterations to converge (disadvantage).
The next section is dedicated to a more realistic scenario which we will solve using consider the
derivative free trust-region method.

4.3.2 Noisy data

In this section we intend to evaluate if it is possible to infer the optimal solution with noisy
displacements. To put this idea in practice, we will simulate observed displacements by the direct
problem where this solution satisfies the system (3.12) and then we will introduce a gaussian noise
R ∼ N (0,σ) where R is a vector of dimension 3N ×1 and σ is the standard deviation. So in noisy
situations instead of displacements Uobs, we will consider as data Ūobs = (R+ 13N×1)Uobs, where
13N×1 is a 3N ×1 vector with all components equal to one and the i-th component of the vector Ūobs

is given by (R(i)+1)Uobs(i), i ∈ 1, ...,3N. The value of the standard deviation σ can’t be very high,
otherwise the disturbed values will be very different from the initial values and it isn’t possible to
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recover the optimal solution. For this reason, we present a study about which variations the values of
standard deviation could have.

Application

We will present a study to discuss the sensitivity of the data disturbed by noise. We will consider ten
equally spaced variations of σ in the interval [0,0.02] where for each value of it, we will consider
simulations with 10 random initial points. We intend to evaluate the absolute error, using the euclidean
norm, between the solution (10,10) and the approximation obtained by the derivative free trust-region
method.

In this context we can’t impose the same stopping condition of the previous section because we
don’t know if the optimal solution (10,10) disturbed with noise will converges to the optimal solution.
We will consider 34 iterations to run the algorithm for each initial solution since in previous section the
derivative free trust-region method needed at most this number of iterations to converge considering
the stop condition. In Figure 4.15 we present on average of the variation of the absolute error with the
variation of the σ for ten simulations.

Fig. 4.15 Average of the euclidean norm of the absolute error obtained from ten simulations for each
value of σ .

We can conclude that all simulations without noise, σ = 0, arrived at the optimal solution.
Generally increasing the value of σ has the effect of increasing the error except when σ belongs to the
interval [0.011,0.015]. We weren’t expecting this situation, however, the same situation happened in
other tests we made. Note that for this range of values of σ , the error is quite big so the approximation
is far from the optimal solution.

Generally, from Figure 4.15 we can observe that we obtain a good approximation for the Lamé
constants for values of σ ∈ [0,0.004] with absolute error less than 0.1 between the optimal solution
and the approximate solution by this optimization method.
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Our simulations correspond to the angular frequency, the density material, an the function g
∼

defined in Section 3.3. From the data considered and smaller values of σ (σ ≤ 0.004) was possible to
recover the Lamé constants (with the norm of the absolute error less than 0.1).
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Appendix A

A.1 Global matrix B∗

In this section we will calculate the matrix B∗ in (3.7). Using (3.5) we will determine

b(vh
∼
,vh
∼
) =

∫
Ω

2µε
≈
(vh
∼
) : ε

≈
(vh
∼
)+λ

(
divvh

∼

)2

dx = ∑
K∈Ωh

(
2µ||ε

≈
(vh
∼
)||2L

≈
2(K)

+
∫

K
λ

(
divvh

∼

)2

dx

)

in terms of the coefficients Vji.

We will denote the base functions are linear in each tetrahedron K. Given that ε
≈
(vh
∼
) : ε

≈
(vh
∼
) and(

divvh
∼

)2

depend on first-order derivatives so these functions are constant in each tetrahedron K.

Thus, the integrals of these functions are the products of these constants by the measure of the set K
which, in this case, is the volume of tetrahedron with the vertices r1, ...,r4, i.e.,

2µ||ε
≈
(vh
∼
)||2L

≈
2(K)

+
∫

K
λ

(
divvh

∼

)2

dx =V1234

(
2µε

≈
(vh
∼
) : ε

≈
(vh
∼
)+λ

(
divvh

∼

)2
)
.

As |J|= 6V1234, the last expression is equal to

1
6
|J|
(

2µε
≈
(vh
∼
) : ε

≈
(vh
∼
)+λ

(
divvh

∼

)2
)
,

or equivalently,
1

36V1234
|J|2
(

2µε
≈
(vh
∼
) : ε

≈
(vh
∼
)+λ

(
divvh

∼

)2
)
. (A.1)

With the purpose of obtaining a simplification of the previous expression, let’s consider the following
lemmas.

Lemma 6. [19] For γ(vh
∼
) = [ε11(vh)ε22(vh)ε33(vh)2ε12(vh)2ε13(vh)2ε23(vh)]

T and εi j(vh) =
1
2

∂vih
∂x j

+

1
2

∂v jh
∂xi

, i, j ∈ {1,2,3} holds

2µε
≈
(vh
∼
) : ε

≈
(vh
∼
)+λ

(
divvh

∼

)2

= γ
T (vh

∼
)Cγ(vh

∼
),

53



54

where the matrix C is given by 

2µ +λ λ λ 0 0 0
λ 2µ +λ λ 0 0 0
λ λ 2µ +λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ


.

Lemma 7. For V K = [V11V21V31V41V12V22V32V42V13V23V33V43]
T holds γ(vh

∼
) = 1

|J|R
kV K , where

(
Rk
)T

is a 12×6 matrix given by

(
Rk
)T

=



−(a11 +a12 +a13) 0 0 −(a21 +a22 +a23) −(a31 +a32 +a33) 0
a11 0 0 a21 a31 0
a12 0 0 a22 a32 0
a13 0 0 a23 a33 0
0 −(a21 +a22 +a23) 0 −(a11 +a12 +a13) 0 −(a31 +a32 +a33)

0 a21 0 a11 0 a31
0 a22 0 a12 0 a32
0 a23 0 a13 0 a33
0 0 −(a31 +a32 +a33) 0 −(a11 +a12 +a13) −(a21 +a22 +a23)

0 0 a31 0 a11 a21
0 0 a32 0 a12 a22
0 0 a33 0 a13 a23



.

Proof. Given the expression of derivatives in (3.11) and from (3.8) and (3.9) we obtain

∂v jh

∂ξ
=V2 j −V1 j,

∂v jh

∂η
=V3 j −V1 j,

∂v jh

∂τ
=V4 j −V1 j, j = 1,2,3,

which proves the lemma.

From lemmas 6 and 7, we obtain (A.1) in the equivalent form

1
36V1234

|J|2 γ
T (vh

∼
)Cγ(vh

∼
) =

1
36V1234

(
V K)T

(
Rk
)T

CRkV K =
(
V K)T

BkV K , (A.2)

where
Bk =

1
36V1234

(
Rk
)T

CRk.

Matrix Bk is the local matrix corresponding to the tetrahedron of vertices r1, ...,r4. We will
construct B∗ from these M local matrices. For the k-th tetrahedron K, let’s consider an application Lk

that associates the vertices of this tetrahedron with all the vertices of the set Ωh. We can defined a
matrix N ×4 with entries zeros and ones. The number of columns is the number of vertices of the
tetrahedron. We will describe the j-th column of Lk, j ∈ {1, ...,4}. For matrix Bk, if the vertex with
position r j is the i-th vertex in global numbering, i ∈ {1, ...,N} so the j-th column of Lk has unit
entrie in i-th row, j ∈ {1, ...,4}. As we are working in R3 the idea is to do the same for the three
components. It should be noted that

V K =


(
Lk
)T 0 0

0
(
Lk
)T 0

0 0
(
Lk
)T

V =

Lk 0 0
0 Lk 0
0 0 Lk


T

V =
(

Lk
1

)T
V, (A.3)
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where Lk
1 is a block matrix, where each block diagonal is the matrix Lk. With this relationship is

possible to pass from vih (r j) , i = 1, ...3, j = 1, ...,4, which are the values of the function vh
∼

in the

local matrix vertices, to vih (r j) , i = 1, ...3, j = 1, ...,N which are the values of the function for all
vertices of the set Ωh. So, rewriting (A.2) using (A.3), we obtain

(
V K)T

BkV K =

((
Lk

1

)T
V
)T

Bk
(

Lk
1

)T
V =V T Lk

1Bk
(

Lk
1

)T
V

and therefore

b(vh
∼
,vh
∼
) = ∑

K∈Ωh

(
2µ||ε

≈
(vh
∼
)||2L

≈
2(K)

+
∫

K
λ

(
divvh

∼

)2

dx

)

= ∑
K∈Ωh

(
V K)T

BkV K = ∑
K∈Ωh

V T Lk
1Bk
(

Lk
1

)T
V =V T

(
M

∑
k=1

Lk
1Bk
(

Lk
1

)T
)

V =V T B∗V

where B∗ = ∑
M
k=1 Lk

1Bk
(
Lk

1

)T . So we can conlude that b(vh
∼
,vh
∼
) =V T B∗V , being B∗ the global stiffness

matrix.
The matrix B∗ = ∑

M
k=1 Bk

1 is symmetric if Bk
1 is symmetrical ∀k ∈ {1, ...,M}. As the local matrix

Bk is symmetric because matrix C is also symmetric. Then Bk
1 is symmetric provided that

(
Bk

1

)T
= Bk

1.
Since (

Bk
1

)T
=

(
Lk

1Bk
(

Lk
1

)T
)T

= Lk
1

(
Bk
)T (

Lk
1

)T
= Lk

1Bk
(

Lk
1

)T
= Bk

1

then B∗ is symmetric.
After obtaining the matrix B∗, the next step is to determine the vector F∗

1 .

A.2 Right-hand side F∗
1

In this section we will calculate the vector F∗
1 in (3.7).

From (3.5) and (3.7), we obtain

V T F∗
1 = l1,h(vh

∼
) =

∫
∂Ω1

g
∼
· vh
∼

ds+ω
2
ρ

∫
Ω

uh
∼

∗ · vh
∼

dx+
∫

Ω

f
∼
· vh
∼

dx. (A.4)

Note that in (A.4) the first integral is defined over the boundary ∂Ω1 and the others are defined over Ω.
Let´s start to calculate the first integral. As mentioned earlier, ∂Ω1 is a plane surface. Let K1, ..,KM1

be all the triangles that belong to one of the faces of one of the tetrahedrons of the partition presented
before which are contained in ∂Ω1. The resulting subdivision (or mesh) is denoted by ∂Ωh1.

So we can write ∫
∂Ω1

g
∼
· vh
∼

ds = ∑
K1∈Ωh1

∫
K1

g
∼
· vh
∼

ds. (A.5)

As a consequence of (3.2) we have that the M1 triangles intersect only at a vertex, or along
an edge or don’t intersect. For each triangle K1 of the discretization of ∂Ω1, let’s consider the
points ri = (xi,yi,zi) , i = 1, ...,3 which correspond to the coordinates of its vertices. Without loss
of generality we can assume that ∂Ω1 is parallel to the plane XOY and therefore all vertices of the
respective triangles have coordinates zi = α,α ∈ R, i = 1, ...,3. Consider the local coordinates (ξ ,η)
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where the vertices of the reference triangle are represented on the coordinate plane over the axes, as in
Figure A.1. In this form, we can write the coordinates of each point r = (x,y,z) of K1 as a convex

Fig. A.1 Triangle represented in local coordinates.

combination of the coordinates of the reference triangle

r = (x,y,z) = r1ϕ1 (ξ ,η)+ r2ϕ2 (ξ ,η)+ r3ϕ3 (ξ ,η) , z = α, (A.6)

where
ϕ1 (ξ ,η) = 1−ξ −η , ϕ2 (ξ ,η) = ξ , ϕ3 (ξ ,η) = η .

The elements of {ϕi, i = 1,2,3} are called the nodal bases of the set of linear polynomials relatively
to the local coordinates. For this transformation, the Jacobi’s matrix is given by

J1 =
∂ (x,y)
∂ (ξ ,η)

=

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)

and the Jacobian is

|J1|= det

(
x2 − x1 x3 − x1

y2 − y1 y3 − y1

)
= det

x1 y1 1
x2 y2 1
x3 y3 1

 .

Note that |J1|= 2A123, where A123 is the area of the triangle K1 defined by r1, ...,r3.

For any function vh
∼
∈Vh

∼
, and for (x,y,z) ∈ ∂Ωh1, we have that

vih (x,y,z) = vih (r (ξ ,η)) =
3

∑
j=1

Vjiϕ j (ξ ,η) , i = 1, ...,3, z = α, (A.7)

where Vji is the value of the function vih in the vertex of the tetrahedron K with position r j,
i = 1, ...,3, j = 1, ...,3. Therefore

vh
∼
=

v1h (x,y,z)
v2h (x,y,z)
v3h (x,y,z)

=

V11

V12

V13

ϕ1 (ξ ,η)+

V21

V22

V23

ϕ2 (ξ ,η)+

V31

V32

V33

ϕ3 (ξ ,η) .

Now let’s consider that, for any triangle K1, the points r1,r2,r3 correspond to the vertices V1,V2,V3

respectively. Consider that the function g
∼

in (A.5) defined in triangle K1 can be written, in terms of
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the local coordinates, as

g j (x,y,z) = g j

(
1
3

3

∑
i=1

Vi

)(
3

∑
i=1

ϕi

)
, j = 1,2,3. (A.8)

Therefore, by (A.7) and (A.8) we have

∫
K1

g
∼
· vh
∼

ds =
3

∑
j=1

∫
K1

g jv jh ds

= |J1|
3

∑
j=1

∫
∆T

[
g j

(
1
3

3

∑
i=1

Vi

)(
3

∑
i=1

ϕi

)]
(V1 jϕ1 +V2 jϕ2 +V3 jϕ3) dξ dη ,

where ∆T defines the triangle in the local coordinates (ξ ,η), i.e.,

∆T = {(ξ ,η) : 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1−ξ} .

We can summarize the last equality in the following matrix form

∫
K1

g
∼
· vh
∼

ds = |J1|
3

∑
j=1

∫
∆T

[V1 jV2 jV3 j]D

G j

G j

G j

 (A.9)

where G j = g j
(1

3 ∑
3
i=1Vi

)
, j = 1, ...,3 and D is a 3×3 matrix where the component (i, j) is given by∫

∆T

ϕiϕ jdξ dη , i, j ∈ {1,2,3} . (A.10)

To obtain the entries of the matrix D we have to calculate the integrals in (A.10). Let us start with
the diagonal elements, i.e., the integrals where the integrating function is ϕ2

i , i = 1,2,3,
∫

∆T
ϕ2

i dξ dη

=
∫ 1

0
∫ 1−ξ

0 ϕ2
i dη dξ . We obtain∫

∆T

ϕ
2
1 dξ dη =

∫
∆T

ϕ
2
2 dξ dη =

∫
∆T

ϕ
2
3 dξ dη =

1
12

.

Next, lest us calculate the integrals whose integrating function is the product ϕiϕ j for i ̸= j. In
this case

∫
∆T

ϕiϕ j dξ dη =
∫ 1

0
∫ 1−ξ

0 ϕiϕ j dη dξ and

∫
∆T

ϕ1ϕ2 dξ dη =
∫

∆T

ϕ1ϕ3 dξ dη =
∫

∆T

ϕ2ϕ3 dξ dη =
1
24

.
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Taking into account the previous expressions for the entries of the matrix D, we can write (A.9) as
follows:

∫
K1

g
∼
· vh
∼

ds = |J1|
3

∑
j=1

[V1 jV2 jV3 jV4 j]D1


G j

G j

G j

0

 ,
i.e., is the same as (

V K)T
D2GK =

(
V K)T

gk,

where GK = [G1G1G1 0G2G2G2 0G3G3G3 0 ]T ,

D2 = |J1|

D1 0 0
0 D1 0
0 0 D1

 , D1 =

[
D 03×1

0T
3×1 0

]
, D =

1
24

2 1 1
1 2 1
1 1 2

 ,

and 03×1 is a 3×1 vector of zeros.
Next, we present the calculation of the second integral in (A.4):∫

Ω

uh
∼

∗ · vh
∼

dx = ∑
K∈Ωh

∫
K

uh
∼

∗ · vh
∼

dx.

Consider that, for any tetrahedron K, the points r1,r2,r3,r4 correspond to the vertices V1,V2,V3,V4,
respectively. The function uh

∼
∗ defined in the tetrahedron K in terms of the local coordinates, can be

written as

u∗jh (x,y,z) = u∗jh

(
1
4

4

∑
i=1

Vi

)(
4

∑
i=1

ψi

)
, j = 1,2,3.

So, by this approach we have

∫
K

uh
∼

∗ ·vh
∼

dx=
3

∑
j=1

∫
K

u∗jh (x,y,z)v jh (x,y,z)dxdydz= |J|
3

∑
j=1

∫
∆

u∗jh (r (ξ ,η ,τ))v jh (r (ξ ,η ,τ))dξ dη dτ,

(A.11)
where ∆ defines the tetrahedron in local coordinates (ξ ,η ,τ), i.e.,

∆ = {(ξ ,η ,τ) : 0 ≤ ξ ≤ 1,0 ≤ η ≤ 1−ξ ,0 ≤ τ ≤ 1−ξ −η} .

Replacing (3.9) in (A.11) we obtain

∫
K

uh
∼

∗ · vh
∼

dx = |J|
3

∑
j=1

∫
∆

[
u∗jh

(
1
4

4

∑
i=1

Vi

)(
4

∑
i=1

ψi

)]
×

×(V1 jψ1 +V2 jψ2 +V3 jψ3 +V4 jψ4) dξ dη dτ.



A.2 Right-hand side F∗
1 59

This equality can be summarized in the following matrix form

∫
K

uh
∼

∗ · vh
∼

dx = |J|
3

∑
j=1

[V1 jV2 jV3 jV4 j]E


U∗

j

U∗
j

U∗
j

U∗
j

 , (A.12)

where U∗
j = u∗jh

(1
4 ∑

4
i=1Vi

)
, j = 1, ...,3 and E is a 4×4 matrix where the component (i, j) is given

by ∫
∆

ψiψ j dξ dη dτ, i, j ∈ {1,2,3,4} . (A.13)

To obtain the entries of the matrix E we have to calculate the integrals in (A.13). We start with the
diagonal elements, i.e., the integrals where the integrating function is ψ2

i , i = 1,2,3,4,∫
∆

ψ2
i dξ dη dτ =

∫ 1
0
∫ 1−ξ

0
∫ 1−ξ−η

0 ψ2
i dτ dη dξ . We obtain∫

∆

ψ
2
1 dξ dη dτ =

∫
∆

ψ
2
2 dξ dη dτ =

∫
∆

ψ
2
3 dξ dη dτ =

∫
∆

ψ
2
4 dξ dη dτ =

1
60

.

Next, we will calculate the integrals where the integrand function is ψiψ j for i ̸= j,∫
∆

ψiψ j dξ dη dτ =
∫ 1

0
∫ 1−ξ

0
∫ 1−ξ−η

0 ψiψ jdτ dη dξ . We obtain∫
∆

ψ1ψ2 dξ dη dτ =
∫

∆

ψ1ψ3 dξ dη dτ =
∫

∆

ψ1ψ4dξ dη dτ =
∫

∆

ψ2ψ3 dξ dη dτ =
1

120
and

∫
∆

ψ2ψ4 dξ dη dτ =
∫

∆

ψ3ψ4 dξ dη dτ =
1

120
.

Taking into account the previous expressions for the entries of the matrix E, we can write (A.12) as
follows: ∫

K
uh
∼

∗ · vh
∼

dx =
|J|
120

(
V K)T

E1 0 0
0 E1 0
0 0 E1

(U∗)K =
(
V K)T

B′ (U∗)K

where (U∗)K = [U∗
1 U∗

1 U∗
1 U∗

1 U∗
2 U∗

2 U∗
2 U∗

2 U∗
3 U∗

3 U∗
3 U∗

3 ]
T and

E1 =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 , B′ =
|J|
120

E1 0 0
0 E1 0
0 0 E1

 .

Next the purpose is to determine the explicit form of F∗
1 . For this it should be noted that the

expression in (A.3) is different. Instead of having the matrix Lk
1 we will define another one that is Lk

2.
It is a block matrix where each diagonal block has a matrix of dimension N ×4 but the fourth column
will be with zeros. So for the triangles we obtain V K =

(
Lk

2

)T V .
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To calculate the last integral in (A.4) it´s enough to consider what has been done previously for
the integrals over Ω. Therefore, we have that∫

K
f
∼
· vh
∼

dx =
(
V K)T

B′ (F∗)K

where (F∗)K = [F∗
1 F∗

1 F∗
1 F∗

1 F∗
2 F∗

2 F∗
2 F∗

2 F∗
3 F∗

3 F∗
3 F∗

3 ]
T .

From (A.4) we have

l1,h(vh
∼
) = ∑

K1∈Ωh1

∫
K1

g
∼
· vh
∼

ds+ω
2
ρ ∑

K∈Ωh

∫
K

uh
∼

∗ · vh
∼

dx+ ∑
K∈Ωh

∫
K

f
∼
· vh
∼

dx

=
M1

∑
k=1

(
V K)T

gk +
M

∑
k=1

ω
2
ρ
(
V K)T

B′
[
(U∗)K +(F∗)K

]
.

Then replacing V K and (U∗)K results

l1,h(vh
∼
) =

M1

∑
k=1

V T Lk
2gk +

M

∑
k=1

ω
2
ρV T Lk

1B′
(

Lk
1

)T
U∗+V T Lk

1B′ (F∗)K =V T (F∗+F1) =V T F∗
1

where F∗ = ∑
M1
k=1 Lk

2gk +∑
M
k=1 Lk

1B′ (F∗)K and F1 = ω2ρ ∑
M
k=1 Lk

1B′ (Lk
1

)T U∗.
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