Synthesis of Novel Chiral Spiroisoxazolidine- β-Lactams from 6Alkylidenepenicillanates: A 1,3-Dipolar Cycloaddition Approach

Américo J. S. Alves and Teresa M. V. D. Pinho e Melo*
University of Coimbra, Coimbra Chemistry Centre and Department of Chemistry, 3004535 Coimbra, Portugal
*tmelo@ci.uc.pt

Abstract

The synthesis of a library of 6-alkylidene- β-lactams, derived from 6-aminopenicillanic acid is reported. The 1,3 -dipolar cycloaddition of these 6 -alkylidenepenicillanates with nitrones was explored as an approach to synthesize novel chiral spiroisoxazolidine- β-lactams. Quantum chemical calculations, at the DFT level of theory, were carried out to elucidate the 3D structure of the synthesized compounds. The reported methodology, which involves the generation of three new consecutive stereogenic centers, proved to be regio- and stereoselective, leading to novel chiral spiroisoxazolidine-penicillanates efficiently.

Keywords: Spiro- β-lactams; Isoxazolidines; Penicillanates; Nitrones; 1,3-Dipolar Cycloaddition.

Introduction

The β-lactam ring is one of the most studied moieties from a synthetic and medicinal chemistry point of view. Since the discovery of penicillins that had a huge impact on medicine, many researchers were inspired and turned their mind to the study of β-lactams. ${ }^{[1]}$

The use of spirocyclic frameworks is a broadly used strategy in drug design to rigidify a molecule by the fusion of two rings in one shared atom. The three-dimensional nature of spirocyclic compounds provides a good balance of conformational rigidity and flexibility for efficient interaction with a given molecular target. In fact, important interactions of a molecule with a three-dimensional binding site can be achieved more easily using a rigid core (e.g. spirocyclic) than a planar one (e.g. aromatic systems), making spiro containing compounds relevant in medicinal chemistry. ${ }^{[2]}$

In the last few years, spiro- β-lactams have attracted the attention of organic chemists since they can be used as building blocks for the synthesis of amino acids, alkaloids and other relevant
compounds. ${ }^{[3]}$ Furthermore, it is known that spiro- β-lactams are also interesting target molecules due to their relevant biological properties, namely as antibacterial and antiviral agents, and as cholesterol absorption inhibitors. ${ }^{[3 a, 3 b]}$ Thus, the search of new methodologies for the synthesis of novel spiro- β-lactam derivatives is a relevant research topic.

Pinho e Melo and co-workers described the first and unprecedented phosphine-catalyzed [3+2] annulation of allenoates to 6 -alkylidenepenicillanates leading to chiral spirocyclopentenyl- β lactams (Scheme 1A). ${ }^{[4]}$ On the other hand, 6 -alkylidenepenicillanates react with diazo compounds via 1,3-dipolar cycloaddition reactions to afford chiral spiropyrazolinepenicillanates (Scheme 1B). ${ }^{[5]}$ The microwave-induced denitrogenation of the spiro-1-pyrazoline- β-lactams leading to spirocyclopropyl $-\beta$-lactams was also reported. ${ }^{[5]}$ Among the set of synthesized spiropenicillanates, lead compounds with remarkable anti-HIV and anti-Plasmodium properties were identified. ${ }^{[6]]}$ The considerable geographic overlap between HIV and Plasmodium infections, mainly in sub-Saharan Africa, where coinfection is common, contributes to the spread of both diseases. Moreover, there is a significant risk of drug-drug interactions between anti-retroviral and antimalarial regimens making the identification of this novel class of compounds with potent activity against both infectious agents holds a particularly relevant contribution for the fight against both AIDS and malaria. Several other spiro-penicillanates as well as spiro- γ-lactams, corresponding to the replacement of the four-membered β-lactam ring by the five-membered γ lactam ring, with moderate to good activity against either HIV or Plasmodium were identified. The results suggest that the β-lactam ring is an important structural feature for the activity of these compounds against both HIV and Plasmodium. ${ }^{[66]}$

We envisaged that adding an additional medicinal chemistry structural motif (e.g. isoxazolidines) to the spiro-penicillanate core would lead to interesting scaffolds. Isoxazolidines are heterocyclic compounds known for having a labile N-O bond in the five-membered ring system. Taking advantage of this structural feature it is possible to explore their use as building blocks in organic synthesis namely in the synthesis of 1,3 -aminoalcohols. ${ }^{[7]}$ Furthermore, the isoxazolidine system is considered a mimetic of ribose, and can be found as constituent of biologically active compounds, namely nucleoside analogues with anticancer and/or antiviral activities. ${ }^{[8]}$

The [3+2] nitrone-olefin cycloaddition is an important and versatile synthetic route for the construction of the isoxazolidine ring, being the most explored approach to isoxazolidines. ${ }^{[9]}$ In the late 80 s and 90 s, some distinct research groups have reported their work on the synthesis of spiroisoxazolidines through dipolar cycloaddition reactions of alkylidene- β-lactams with nitrones. ${ }^{[10]}$ More recently, while exploring the reactivity of alkylidene- β-lactams, Wang and Dao Thi have described the synthesis of novel spiroisoxazolidines from benzaldehyde-derived nitrones. ${ }^{[11]}$ Nevertheless, all these advances were exclusively focused on the reactivity of alkylidenes derived from mono- β-lactams.

In this context, the 1,3 -dipolar cycloaddition of 6 -alkylidenepenicillanates with nitrones was explored as a strategy to synthesize novel chiral spiroisoxazolidine- β-lactams incorporating the penicillanate nucleus, a process involving the generation of three new consecutive stereogenic centers, including a quaternary chiral center (Scheme 1C).

B) 1,3-Dipolar cycloaddition with diazo compounds

C) This work, 1,3-dipolar cycloaddition with nitrones

Scheme 1. Synthesis of chiral spiro- β-lactams from 6-alkylidenepenicillanates.

Results and Discussion

Our study started with the synthesis of a wide range of 6 -alkylidenepenicillanates 1. 6Alkylidenepenicillanates $\mathbf{1 b} \mathbf{- m}$ were prepared and isolated by a known procedure, having 6aminopenicillanic acid (6-APA) as starting material, a well-known raw material used for the synthesis of compounds containing the penicillanic core (Scheme 2). ${ }^{[4]}$ This synthetic strategy involves the synthesis of 6-diazopenicillanate 3 from benzhydryl 6- β-aminopenicillanate hydrochloride salt 2 (obtained from 6-APA by a known procedure), ${ }^{[4]}$ followed by rhodium catalyzed oxidation of the diazo derivative in the presence of propylene oxide to give 6oxopenicillanate 4 . The Wittig reaction of the oxo derivative 4 with the appropriate phosphorus ylide 5 afforded the expected 6-alkylidenepenicillanates $\mathbf{1}$ in overall yields ranging from 28% to 50% (starting from 6- β-aminopenicillanate 2). We also carried out the synthesis of the previously described alkylidenes $\mathbf{1 a}, \mathbf{1 k}$ and $\mathbf{1 n} .{ }^{[4]}$

i. NaHCO_{3} (sat. aq. sol.)/DCM;
ii. Isoamyl nitrite, TFA, DCM, 1 h , rt;
iii. Propylene oxide, $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$, toluene, $15 \mathrm{~min}, 25-35^{\circ} \mathrm{C}$;
$i v$. Phosphorus ylide, DCM, $15 \mathrm{~min}\left(-55^{\circ} \mathrm{C}\right)$, then rt .
Overall yields from compound 2

1a $R=\mathrm{H}^{4}$	
1b $R=4-\mathrm{F}$	43%
1c $R=4-\mathrm{Cl}$	39%
1d $R=4-\mathrm{Br}$	34%
1e $R=4-\mathrm{NO}_{2}$	35%
1f $R=4-\mathrm{CF}_{3}$	39%
1g $R=3,5-$	31%
1h $R=3,5-\mathrm{CF}_{3}$	41%

$1 k^{4}$

$11 \mathrm{R}=\mathrm{Bn} \quad 47 \%$
1m R = CHPh_{2} 41\%
1n $\mathrm{R}=\mathrm{Me}^{4}$

Scheme 2. Synthesis of 6-alkylidenepenicillanates from benzhydryl 6- β-aminopenicillanate hydrochloride.

Initial screening of four C-aryl- N-substituted nitrones 6a-6e with 6 -alkylidenepenicillanate 1a was carried out (Table 1). ${ }^{[12]}$ The synthesis of nitrones $\mathbf{6 a - 6 e}$ was performed following a known procedure, and their structure was assigned as described in the literature and confirmed by NOESY experiments (see supporting information). ${ }^{[13]}$ The reaction of $\mathbf{6 a}$ with $\mathbf{1 a}$ was carried out with excess of nitrone (2 equiv) in toluene at room temperature for 16 hours, and the expected spirocyclic compound 7aa was obtained in 30% yield together with stereoisomer 8aa (6% yield). To further optimize the reaction conditions, the temperature was increased to $80^{\circ} \mathrm{C}$ enabling the isolation of compounds 7aa/8aa in 80% overall yield. It is noteworthy that a slight increase in the reaction time to 24 h led to compound 7aa in even higher yield (70\%).

The cycloaddition reaction of nitrone $\mathbf{6 b}$, bearing a nitro group in para position of the aromatic ring, with alkylidene 1a was also explored under the optimized conditions (Table 1, entry 4), leading to compound $\mathbf{7 b a}$ in 56% yield. However, the analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of crude of reaction mixture showed that alkylidene $1 \mathbf{1 a}$ was not all consumed. Therefore, the reaction was carried out with longer reaction time giving, after 70 h , compound $7 \mathbf{b a}$ in 64% yield together with the formation of stereoisomer 8ba isolated in 10% yield (Table 1, entry 5).

Next, we extended the study to the reactivity of 6-alkylidenepenicillanate 1a towards other nitrones ($\mathbf{6 c} \mathbf{c} \mathbf{6 e}$). Unfortunately, complex mixtures were obtained from the attempts to carry out the cycloaddition with nitrones $\mathbf{6 d}$ and $\mathbf{6 e}$. Interestingly, the reaction with nitrone $\mathbf{6 c}$ led to the target spiro- β-lactam 7ca in 41% yield.

The studied reactions proved to be regioselective. Nevertheless, the formation of regioisomers 9aa $\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}\right)$, 9ba $\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, and 9ca $\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Ph}\right)$ in trace amounts could be detected in the ${ }^{1} \mathrm{H}$ NMR spectra of spiro- β-lactams 8aa, 7ba and 8ca respectively (purification by silica gel flash chromatography was ineffective).

Table 1. Screening of the reactivity of a 6-alkylidenepenicillanate towards different nitrones.

	 1a			Ph_{2}
Entry	$\begin{gathered} \mathbf{6} \\ R^{1}, R^{2} \end{gathered}$	Reaction Conditions		Isolated Yields
1	$\begin{gathered} \text { 6a } \\ \mathrm{Me}, \mathrm{Ph} \end{gathered}$	$\mathrm{rt}, 16 \mathrm{~h}$	$\begin{aligned} & \hline \mathbf{7 a a}, \\ & 30 \% \end{aligned}$	8aa, 6\% ${ }^{[a, b]}$
2	$\begin{gathered} \mathbf{6 a} \\ \mathrm{Me}, \mathrm{Ph} \end{gathered}$	$80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	$\begin{aligned} & \mathbf{7 a a}, \\ & 57 \% \end{aligned}$	8aa, 23\% ${ }^{[a, b]}$
3	$\begin{gathered} \mathbf{6 a} \\ \mathrm{Me}, \mathrm{Ph} \end{gathered}$	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$	$\begin{aligned} & 7 \mathbf{a a}, \\ & 70 \% \end{aligned}$	8aa, 11\% ${ }^{[a, b]}$
4	$\begin{gathered} \mathbf{6 b} \\ \mathrm{Me}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$	7ba, $56 \%{ }^{[a, b]}$	---
5	$\begin{gathered} \mathbf{6 b} \\ \mathrm{Me}, 4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \end{gathered}$	$80^{\circ} \mathrm{C}, 70 \mathrm{~h}$	7ba, $64 \%{ }^{[a, b]}$	8ba, 10\%
4	$\begin{gathered} \mathbf{6 c} \\ \mathrm{Ph}, \mathrm{Ph} \end{gathered}$	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$	7 ca , $41 \%^{[a, b]}$	---
5	$\begin{gathered} \mathbf{6 d} \\ t-\mathrm{Bu}, \mathrm{Ph} \end{gathered}$	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$		Complex Mixture
6	$\begin{gathered} \mathbf{6 e} \\ \mathrm{Bn}, \mathrm{Ph} \end{gathered}$	$80^{\circ} \mathrm{C}, 24 \mathrm{~h}$		Complex Mixture

${ }^{[a]}$ Isolated together with the corresponding regioisomer 9
${ }^{[b]}$ Yield of the major product determined by ${ }^{1} \mathrm{H}$ NMR

Considering the results obtained regarding the screening of different nitrones, the work was extended to 1,3 -dipolar cycloaddition reactions of nitrone $\mathbf{6 a}$ with 6 -alkylidenepenicillanates bearing different substituted benzoyl groups ($\mathbf{1 b} \mathbf{b} \mathbf{h}$), and derivatives where the aryl group was replaced by other aromatic systems such as naphthalene (2i) and furan (2j) (Table 2, entries 1-9). To our delight, spiroisoxazolidine- β-lactams 7ab-7ag, 7ai-7aj were obtained as major products,
which were isolated as pure stereoisomers in yields ranging from 43 to 69%. In contrast, spiroisoxazolidine- β-lactam 7ah was obtained in lower yield (26\%) and could not be isolated in pure form. From these reaction stereoisomers 8ab-8aj were also obtained as minor products (9$27 \%$).

The reactivity of 6-alkylidenepenicillanate $\mathbf{1 k}$, bearing an acetyl group substituent, towards nitrone 6a was also studied (Table 2, entry 10). The same stereoselectivity pattern was observed with the synthesis of chiral spiroisoxazolidine- β-lactams 7ak and 8ak in 30% and 7% yields, respectively.

Table 2. 1,3-Dipolar cycloaddition of nitrone $\mathbf{6 a}$ with alkylidenes $\mathbf{1 b}-\mathbf{k}$.

				CHPh_{2} CHPh_{2}
Entry		1, R	Products, I	lated Yields
1	1b	$p-\mathrm{FC}_{6} \mathrm{H}_{4}$	7ab, 66\%	8ab, 13\% ${ }^{[\mathrm{a}, \mathrm{b}]}$
2	1c	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	7ac, 69\%	8ac, 10\%
3	1d	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	7ad, 43\%	8ad, 12\%
4	1e	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	7ae, 57\%	8ae, $27 \% \%^{[a, b]}$
5	1f	$p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	7af, 53%	8af, 11\%
6	1 g	3,5-(F) $)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	7ag, 62\%	8ag, 14\%
7	1h	3,5-($\left.\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	7ah, $26 \%{ }^{[\text {a,b] }}$	8ah, $9 \%^{[\mathrm{a}, \mathrm{b}]}$
8	1 i	2-Naphthyl	7ai, 73\%	8ai, 10\% ${ }^{[a, b]}$
9	1j	2-Furyl	7aj, 67\%	8aj, 13\% ${ }^{[a, b]}$
10	1k	Me	7am, 30\%	8am, 7\%

${ }^{[a]}$ Isolated together with the corresponding regioisomer 9
${ }^{[b]}$ Yield of the major product determined by ${ }^{1} \mathrm{H}$ NMR

The stereochemistry of the major (7) and minor (8) adducts was determined based on twodimensional NOE spectra (NOESY) (Figure 1). The NOESY spectrum of compound 7af did not show any correlation between isoxazolidine ring protons and penicillanate core protons. However, cross-peaks were observed between protons within the penicillanate core ($\mathrm{H} 3-\beta \mathrm{Me}$ and $\mathrm{H} 5-\alpha \mathrm{Me}$) as well as between protons of the isoxazolidine ring ($\mathrm{H}^{\prime}{ }^{\prime}-\mathrm{NMe}$). Some of these correlations were also observed in the NOESY spectrum of compound 8af (shown as red arrows) which further revealed cross-peaks between proton H3' $(\delta=4.47 \mathrm{ppm})$ and proton H4' $(\delta=4.78$ ppm) confirming their cis configuration, and the latter proton showed correlation with protons of the β-methyl group of the penicillanate core $(\delta=1.44 \mathrm{ppm})$. However, no cross-peaks were observed between protons H 5 and $\alpha-\mathrm{Me}$. The observed correlations were in agreement with the estimated internuclear distances values (see below).

7af $\mathrm{Ar}=p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$

8af $\mathrm{Ar}=p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$

Figure 1. NOESY correlations of compounds 7af and 8af.

The bicyclic β-lactam-thiazolidine ring system of the penicillin core exists in a butterfly-like structure. This has been supported by X-ray crystallography studies, namely by the X-ray structure of 6-APA ${ }^{[14]}$ and by the X-ray structure of some spiropyrazolinepenicillanates. ${ }^{[12]}$ Thus, the approach of a given reactant by the convex face (α-side) of the penicillin derivative is usually more favourable. This is in agreement with the stereoselectivity observed in the 1,3-dipolar cycloaddition of 6 -alkylidenepenicillanates with nitrones where the major product results from the addition of the dipole to the less sterically hindered α-side of the penicillanates. Furthermore, these spiroisoxazolidine- β-lactams 7 were obtained via an endo cycloaddition.

Quantum chemical calculations, at the DFT level of theory (B3LYP/6-31G(d)), were carried out to determine the 3D structure of spiroisoxazolidine- β-lactams 7aa and 8aa. The optimized geometries revealed that these novel structures also have a butterfly-like structure with a more open shape in the case of β-lactam 7aa. Moreover, the endo product (7aa) was estimated to be $7.03 \mathrm{~kJ} / \mathrm{mol}$ more stable than the exo adduct (8aa) which corroborates the experimental results (Scheme 3).

In order to support the NOESY correlations, internuclear distance values were estimated from the optimized structures of derivatives 7aa and 8aa. The distance between H3'-NMe and $\mathrm{H} 3-\beta \mathrm{Me}$, in which cross-peaks were observed for both spiroisoxazolidine- β-lactams 7af and 8af, are similar in both cases (7aa: 2,376 \AA; 8aa: $2,387 \AA$ and 7aa: $2,416 \AA$; 8aa: $2,576 \AA$, respectively). Major differences were observed in the distances between $\mathrm{H} 5-\alpha$ Me and $\mathrm{H} 4^{\prime}-\beta \mathrm{Me}$ ($7 \mathrm{aa}: 2,713 \AA$; 8aa: $4,126 \AA$ and 7aa: $4,824 \AA$; 8aa: $3,025 \AA$, respectively) resulting from the more folded structure of the penicillanate core in 8aa. Therefore, cross-peaks between $\mathrm{H} 5-\alpha \mathrm{Me}$ were only observed for compound 7aa whereas the correlation H4' -3 Me was only observed for compound 8aa.

Scheme 3. Endo and exo-cycloaddition of alkylidene 1a with nitrone 6a, considering the approach of the dipole by the α-face. Optimized geometries (B3LYP/6-31G(d) level) of endo-adducts 7aa and 8aa.

The reaction could be readily extended to alkylidenes bearing a carboxylate substituent (11-n), as exemplified by the synthesis of spiro- β-lactams $\mathbf{7 a l}$-an and 8al-an (Table 3). The major products 7 al-an were obtained efficiently ($51-80 \%$ yield) and also resulted from an endo 1,3-dipolar cycloaddition with addition of the nitrone to the α-side of the β-lactams. The stereoisomeric exocycloadducts 8al-an were isolated as minor products ($10-16 \%$ yield). Noteworthy is the cycloaddition with the most hindered 6 -alkylidenepenicillanate $\mathbf{1 m}$, bearing a benzhydryl group, which led to our best result (entry 2), affording compound 7 am in 80% yield and its stereoisomer 8am in 10% yield, corresponding to 90% overall yield.

Table 3. 1,3-Dipolar cycloaddition of nitrone $\mathbf{6 a}$ with alkylidenes 11-n

${ }^{[a]}$ Isolated together with the corresponding regioisomer 9
${ }^{[b]}$ Yield of the major product determined by ${ }^{1} \mathrm{H}$ NMR

Conclusions

In summary, we have described the synthesis of a wide range of alkylidenepenicillanates which were used to explore the synthesis of novel spiro- β-lactams through a 1,3 -dipolar cycloaddition approach. The novel spiroisoxazolidine-penicillanates, containing four consecutive stereogenic centers, were synthesized in high overall yield using mild conditions. Due to the nature of the final products, the reported synthetic methodology opens the way to the construction of novel molecules with potential biological activity.

Experimental Section

Chemistry

General Information

Thin-layer chromatography (TLC) analyses were performed using precoated silica gel plates. Flash column chromatography was performed with silica gel 60 as the stationary phase. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on an instrument operating at 400 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an instrument operating at 100 MHz . Chemical shifts are expressed in parts per million (ppm) relatively to internal tetramethylsilane (TMS) and coupling constants (J) are in hertz. Infrared spectra (IR) were recorded in a Fourier Transform spectrometer coupled with a diamond Attenuated Total Reflectance (ATR) sampling accessory. Elemental analyses were carried out with an Elemental Vario Micro Cube analyser. High-resolution mass spectra (HRMS) were obtained on a TOF VG Autospect M spectrometer with electrospray ionization (ESI) or electronic impact (EI). Benzhydryl 6- β-aminopenicillanate hydrochloride salt (2), benzhydryl 6diazopenicillinate (3), benzhydryl 6-oxopenicillinate (4), and nitrones $\mathbf{6 a - d}$ and $\mathbf{1 1}$ were prepared as described in the literature. ${ }^{[4,12]}$

General Procedure for the Synthesis of 6-Alkylidenepenicillanates

Benzhydryl 6 -oxopenicillinate $\mathbf{4}(2.38 \mathrm{mmol})$ was dissolved in dichloromethane (12 mL), the solution was cooled to $-55^{\circ} \mathrm{C}$ under nitrogen, and the appropriate phosphorus ylide (2.26 mmol) in dichloromethane (30 mL) was added dropwise. Stirring was continued for 15 min , then the
solution was warmed to room temperature and washed with water $(20 \mathrm{~mL})$. The organic layer was separated, dried, and concentrated under reduced pressure. The products were purified by flash chromatography. The presented yields were global and calculated from benzhydryl 6- β aminopenicillanate hydrochloride.
(2S,5R,Z)-Benzhydryl 6-(2-(4-fluorophenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1b)
Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.90 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 3:1), compound $\mathbf{1 b}$ was obtained as a yellow solid ($509 \mathrm{mg}, 1.015 \mathrm{mmol}$, $43 \%)$. mp low melting point solid. $[\alpha]_{D}^{25}=+290\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ IR (ATR): $v=1011,1154$, $1228,1593,1636,1735,1741,1770$ and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.42(\mathrm{~m}$, $11 \mathrm{H}), 8.02(\mathrm{dd}, J=5.3$ and $8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,33.6,63.9,69.8$, $71.3,78.6,115.9,116.4(\mathrm{~d}, J=22 \mathrm{~Hz}, 1 \mathrm{C}), 127.2,127.7,128.4,128.5,128.8,128.8,131.6(\mathrm{~d}, J$ $=10 \mathrm{~Hz}, 1 \mathrm{C}), 133.6(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{C}), 139.2,139.3,156.8,166.5(\mathrm{~d}, J=256 \mathrm{~Hz}, 1 \mathrm{C}), 166.9$, 167.4, 186.8. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 102.74 (s, 1F). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{SF}: \mathrm{C}$, 69.45; H, 4.82; N, 2.79; S, 6.39. Found: C, 69.43; H, 5.04; N, 2.76; S, 6.28.

(2S,5R,Z)-Benzhydryl 6-(2-(4-chlorophenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1c)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.937 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, $3: 1$), compound 1c was obtained as a yellow solid ($486 \mathrm{mg}, 0.938 \mathrm{mmol}$, $39 \%)$. mp low melting point solid. $[\alpha]_{D}^{25}=+280\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ IR (ATR): $v=1007,1233$, $1587,1636,1735,1741$ and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.48-7.52(\mathrm{~m}, 2 \mathrm{H})$, 7.91-7.95 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,33.6,63.9,69.8,71.2,78.6,115.8$, 127.2, 127.7, 128.4, 128.5, 128.8, 128.8, 129.5, 130.1, 135.4, 139.2, 140.9, 157.0, 166.8, 167.3, 187.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{ClNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 518.1187$; found 518.1188.
(2S,5R,Z)-Benzhydryl 6-(2-(4-bromophenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1d)
Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(1.038 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 3:1), compound 1d was obtained as a light yellow solid ($461 \mathrm{mg}, 0.82$ mmol, 34%) . mp $135.4-137 .{ }^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+220\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=1005,1265$, $1583,1631,1719,1749$ and $1758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.28(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.42(\mathrm{~m}, 11 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,33.6,64.0,69.8,71.3,78.6$, $115.7,127.3,127.7,128.4,128.5,128.8,128.8,129.8,130.2,132.6,135.8,139.2,139.3,157.1$, 166.8, 167.3, 187.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BrNO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 562.0682$; found 562.0693.
(2S,5R,Z)-Benzhydryl 6-(2-(4-nitrophenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1e)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.96 \mathrm{~g}$, $2.26 \mathrm{mmol})$, as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 3:1), compound 1e was obtained as a yellow solid ($445 \mathrm{mg}, 0.842 \mathrm{mmol}$, $35 \%) . \mathrm{mp} 68,3-70,3^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+270\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1009,1223,1341,1523$, 1735, 1741 and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{~s}$, $1 \mathrm{H}), 6.15(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 11 \mathrm{H}), 8.11-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.35-8.39(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.5,33.8,64.1,69.8,71.3,78.7,115.2,124.4,127.2$, 127.7, 128.4, 128.6, 128.8, 128.8, 129.8, 139.2, 139.3, 141.3, 150.9, 158.6, 166.7, 166.8, 187.0. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: \mathrm{C}, 65.90 ; \mathrm{H}, 4.58$; N, 5.30; S, 6.07. Found: C, 66.02; H, 4.83; N, 5.11; S, 6.07.

(2S,5R,Z)-Benzhydryl
 3,3-dimethyl-7-oxo-6-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethylidene)-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1f)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide (1.013 g , $2.26 \mathrm{mmol})$, as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 4:1), compound $\mathbf{1 f}$ was obtained as a yellow solid ($518 \mathrm{mg}, 0.94 \mathrm{mmol}$, 39%). mp low melting point solid. $[\alpha]_{D}^{25}=+270\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=1010,1168$, $1319,1735,1741,1744$ and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 11 \mathrm{H}), 7.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,33.7,64.0,69.8,71.3,78.7$, 115.6, 126.2, 126.3, 127.3, 127.7, 128.4, 128.6, 128.8, 128.8, 129.1, 139.2, 139.3, 139.6, 157.8, 166.8, 187.6. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.24 (s, 3F). Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}$, 65.33; H, 4.39; N, 2.54; S, 5.81. Found: C, 65.60; H, 4.39; N, 2.47; S, 5.05.

(2S,5R,Z)-Benzhydryl 6-(2-(3,5-difluorophenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1g)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide (0.94 g , $2.26 \mathrm{mmol})$, as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 3:1), compound $\mathbf{1 g}$ was obtained as a white solid ($386 \mathrm{mg}, 0.743 \mathrm{mmol}$, 31%). mp $150,8-152,8^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+290\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=1066,1121,1251$, 1297, 1593, 1640, 1719 and $1758 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.29(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{tt}, J=2.3$ and $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.42(\mathrm{~m}, 10 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.6$, $33.7,64.0,69.8,71.3,78.7,109.6(\mathrm{t}, J=25 \mathrm{~Hz}, 1 \mathrm{C}), 111.7(\mathrm{~d}, J=19 \mathrm{~Hz}, 1 \mathrm{C}), 111.8(\mathrm{~d}, J=18$ $\mathrm{Hz}, 1 \mathrm{C}), 115.1,127.2,127.7,128.4,128.6,128.8,128.8,139.2,139.3,139.8(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{C})$, $158.2,163.3$ (d, $J=251 \mathrm{~Hz}, 1 \mathrm{C}), 163.4$ (d, $J=251 \mathrm{~Hz}, 1 \mathrm{C}), 166.8,166.9,186.0 .{ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 106.90 (s, 2F). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 67.04 ; \mathrm{H}, 4.46 ; \mathrm{N}, 2.70 ; \mathrm{S}, 6.17$. Found: C, 66.93; H, 4.33; N, 2.63; S, 5.61.

(2S,5R,Z)-Benzhydryl 6-(2-(3,5-bis(trifluoromethyl)phenyl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1h)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide (1.167 g , 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 4:1), compound $\mathbf{1 h}$ was obtained as a yellow solid ($601 \mathrm{mg}, 0.97 \mathrm{mmol}$, 41%). mp low melting point solid. $[\alpha]_{D}^{25}=+230\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=1074,1132$, 1277, 1456, 1647, 1744 and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~s}$, $3 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.41(\mathrm{~m}, 11 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H}), 8.42$
$(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=25.5,33.9,64.0,69.8,71.3,78.7,114.5,122.9(\mathrm{q}, J=$ $273 \mathrm{~Hz}, 2 \mathrm{C}), 124.2,127.2,127.7,128.4,128.6,128.7,128.8,128.8,133.0(\mathrm{q}, J=34 \mathrm{~Hz}, 2 \mathrm{C})$, $138.4,139.2,139.3,159.4,166.6,166.7,185.8 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.02 (s, 6F). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 620.1325$; found 620.1321.
(2S,5R,Z)-Benzhydryl 3,3-dimethyl-6-(2-(naphthalen-2-yl)-2-oxoethylidene)-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1i)
Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.973 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, 3:1), compound 1 i was obtained as a yellow solid ($355 \mathrm{mg}, 0.66 \mathrm{mmol}$, 28%) $\mathrm{mp} 100,7-102,7{ }^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+250\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=997,1126,1252$, $1457,1623,1719,1769$ and $1771 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.30(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}$, $3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.57-7.68(\mathrm{~m}, 3 \mathrm{H})$, $7.88-8.00(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=1.7$ and $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.6,33.6,63.9,69.9,71.3,78.6,116.4,123.9,127.2,127.3,127.7,128.1,128.3,128.5,128.7$, $128.8,129.2,129.4,130.0,131.1,132.6,134.6,136.1,139.3,139.4,156.3,166.9,167.7,188.2$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$534.1734; found 534.1734.

(2S,5R,Z)-Benzhydryl 6-(2-(furan-2-yl)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1j)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.837 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, $3: 1$), compound $\mathbf{1 j}$ was obtained as a yellow solid ($562 \mathrm{mg}, 1.18 \mathrm{mmol}$, 50%). mp low melting point solid. $[\alpha]_{D}^{25}=+290\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=1153,1251$, $1458,1560,1566,1629,1636,1735,1741,1770$ and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=1.28(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=1.6$ and 3.6 Hz , $1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.41(\mathrm{~m}, 11 \mathrm{H}), 7.68(\mathrm{dd}, J=0.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.5,33.8,63.8,69.8,71.2,78.6,113.3,116.4,119.5,127.2$, 127.7, 128.3, 128.5, 128.7, 128.8, 139.3, 139.4, 148.0, 153.4, 156.2, 166.9, 167.4, 176.2. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 68.48 ; \mathrm{H}, 4.90 ; \mathrm{N}, 2.96 ; \mathrm{S}, 6.77$. Found: C, 68.44; H, 5.02; N, 3.09; S, 6.66.

(2S,5R,Z)-benzhydryl 6-(2-(benzyloxy)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (11)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(0.927 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography (hexane/ethyl acetate, $4: 1$), compound 1 m was obtained as a white oil ($576 \mathrm{mg}, 0.976 \mathrm{mmol}$, $41 \%) .[\alpha]_{D}^{25}=+270\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (film): $v=1066,1153,1170,1249,1453,1496,1719$, 1774 and $2966 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})$, $5.22(\mathrm{~s}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 15 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz, CDCl_{3}): $\delta=25.5,33.8,64.1,67.6,69.3,70.9,77.5,115.8,127.2,127.6$, $128.4,128.5,128.7,128.8,128.8,128.8,128.8,135.1,139.2,139.3,157.1,163.7,166.4,166.8$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 514.1683$; found 514.1688.

(2S,5R,Z)- Benzhydryl 6-(2-(benzhydryloxy)-2-oxoethylidene)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (1m)

Prepared from 6-oxopenicillanate (2.38 mmol) and the corresponding phosphorus ylide $(1.099 \mathrm{~g}$, 2.26 mmol), as described in the general procedure. After purification by flash chromatography
(hexane/ethyl acetate, 3:1), compound 11 was obtained as a white solid ($579 \mathrm{mg}, 0.982 \mathrm{mmol}$, 41%) mp low melting point solid. $[\alpha]_{D}^{25}=+200\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=981,1065$, $1170,1248,1449,1496,1719,1735$ and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.25(\mathrm{~s}$, $3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.5,33.7,64.3,69.3,71.0$, $78.6,78.7,115.9,127.2,127.3,127.6,128.4,128.4,128.5,128.8,128.8,129.3,139.3,139.4$, 139.4, 157.1, 163.0, 166.4, 166.8. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 73.32 ; \mathrm{H}, 5.30 ; \mathrm{N}, 2.38 ; \mathrm{S}$, 5.44. Found: C, 73.12; H, 5.67; N, 2.31; S, 4.94.

General Procedure for the Synthesis of Spiroisoxazolidine Penicillanates

To a mixture of the appropriate 6-alkylidenepenicillanate $\mathbf{1}$ (1 equiv.) in toluene (2.5 or 5 mL), the corresponding nitrone $\mathbf{6}$ or $\mathbf{1 0}$ (2 equiv.) was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for the time indicated in each case. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5{ }^{\prime} S$)-Benzhydryl 4'-benzoyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7aa) and (2S,3'S,4'S,5R,5'S)-Benzhydryl 4'-benzoyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8aa)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6 -alkylidenepenicillanate $\mathbf{1 a}(100 \mathrm{mg}, 0.412 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, 5:1 $\rightarrow 3: 1$), gave, in order of elution, 7aa as a white solid $(90 \mathrm{mg}, 0.145 \mathrm{mmol}, 70 \%)$ and a mixture of $\mathbf{8 a a} / \mathbf{9 a}$ as a yellow oil (8aa: 11\%).
7aa: mp low melting solid. $[\alpha]_{D}^{25}=+280\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=981,1179,1258,1449$, $1456,1676,1741$ and $1776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $2.71(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}$, $1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 15 \mathrm{H}), 7.44-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=25.9,32.0,43.3,60.4,62.8,69.3,71.6,78.5,79.5,96.6,127.3,127.6,128.3,128.4$, 128.7, 128.7, 128.8, 128.9, 129.1, 129.1, 133.9, 137.0, 139.3, 139.4, 166.8, 173.8, 198.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$619.2261; found 619.2253.
8aa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.12(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.53(\mathrm{~m}, 20 \mathrm{H}) . \mathrm{MS}$ (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$found 619.23.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5^{\prime} S$)-Benzhydryl 4'-benzoyl-2',3,3-trimethyl-3'-(4-nitrophenyl)-7-oxo-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ba) and ($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5^{\prime} S$)-Benzhydryl 4'-benzoyl-2',3,3-trimethyl-3'-(4-nitrophenyl)-7-oxo-4- $^{\prime}$ thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ba)
Obtained from N-methyl- C-4-nitrophenyl nitrone $\mathbf{6 b}(74 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6alkylidenepenicillanate $\mathbf{1 a}(100 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, 5:1 $\rightarrow 3: 1$), gave, in order of elution, a mixture of $\mathbf{7 b a} / \mathbf{9 b a}$ as a yellow oil (7ba: 64\%) and 8ba as a yellow oil ($14 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \%$).
7ba: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.64(\mathrm{~m}, 15 \mathrm{H}), 7.66$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$found 664.21 .

8ba: ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29-7.36(\mathrm{~m}, 11 \mathrm{H}), 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 664.2112$; found 664.2111 .

($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S$)-Benzhydryl 4'-benzoyl-3,3-dimethyl-7-oxo-2',3'-diphenyl-4-thia-1- $^{\prime}$ azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ca)

Obtained from diphenylnitrone $\mathbf{6 c}(81 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6 -alkylidenepenicillanate $\mathbf{1 a}$ (100 $\mathrm{mg}, 0.206 \mathrm{mmol}$) as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave a mixture of 7ca/9ca as a white solid (7ca: 41\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.15(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H})$, $4.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.99(\mathrm{~m}, 4 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.64(\mathrm{~m}, 19 \mathrm{H})$. MS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$found 681.24.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S$)-Benzhydryl \quad 4'-(4-fluorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ab) and ($2 S, 3^{\prime} S, 4 ’ S, 5 R, 5 ' S$)-Benzhydryl 4'-(4-fluorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ab)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate $\mathbf{1 b}(103 \mathrm{mg}, 0.412 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ab as a white solid ($86 \mathrm{mg}, 0.135 \mathrm{mmol}, 66 \%$) and a mixture of $\mathbf{8 a b} / \mathbf{9 a b}$ as a yellow oil (8ab: 13\%).
7ab: $\mathrm{mp} 139,8-141,5^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+240\left(c 0.25\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=849,1151,1180,1194$, 1303, 1593, 1676, 1752 and $1774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14$ (s, 3H), 1.35 (s, $3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H})$, 6.94-6.99 (m, 3H), 7.30-7.36 (m, 14H), $7.46(\mathrm{dd}, J=6.6$ and $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{dd}, J=8.8$ and $5.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.0,32.0,43.3,60.4,62.8,69.3,71.5,78.5,79.5$, $96.5,116.0(\mathrm{~d}, J=22 \mathrm{~Hz}, 1 \mathrm{C}), 127.3,127.6,128.4,128.5,128.6,128.7,128.8,129.2,131.6$ (d, J $=10 \mathrm{~Hz}, 2 \mathrm{C}), 133.5(\mathrm{~d}, J=3 \mathrm{~Hz}, 2 \mathrm{C}), 136.9,139.3,139.3,166.3(\mathrm{~d}, J=257 \mathrm{~Hz}, 1 \mathrm{C}), 166.8$, 173.7, 197.3. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 103.59 (s, 1F). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 637.2167$; found 637.2185 .
8ab: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H})$, 7.03-7.50 (m, 17H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 105.09 ($\mathrm{s}, 1 \mathrm{~F}$). MS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ found 637.22.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5{ }^{\prime} S$)-Benzhydryl 4'-(4-chlorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ac) and (2S, $\left.\mathbf{3}^{\prime} S, 4^{\prime} S, 5 R, 5 ' S\right)$-Benzhydryl 4'-(4-chlorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ac)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate 1c $(106,7 \mathrm{mg}, 0.412 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h$)$. Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ac as a white solid ($93 \mathrm{mg}, 0.143 \mathrm{mmol}, 69 \%$) and $\mathbf{8 a c}$ as a yellow oil ($13 \mathrm{mg}, 0.020 \mathrm{mmol}, 10 \%$).

7ac: mp 140,6-142, º $^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+310\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1006,1089,1181,1303$, $1584,1677,1753$ and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 15 \mathrm{H}), 7.43-7.51(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.0,32.1,43.3$, $60.5,62.9,69.3,71.5,78.5,79.5,96.6,127.3,127.6,128.4,128.5,128.6,128.7,128.8,129.1$, 129.3, 130.2, 135.4, 136.8, 139.3, 139.3, 140.6, 166.8, 173.7, 197.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 653.1871$; found 653.1873.
8ac: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.11-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 13 \mathrm{H})$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{ClN}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 653.1871$; found 653.1867 .
($\left.2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S\right)$-Benzhydryl 4'-(4-bromobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ad) and ($2 S, 3$ ' $S, 4 ’ S, 5 R, 5 ' S$)-Benzhydryl 4'-(4-bromobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ad)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(27.8 \mathrm{mg}, 0.206 \mathrm{mmol})$ and 6-alkylidenepenicillanate $\mathbf{1 d}(57.9 \mathrm{mg}, 0.103 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ad as a white solid ($31 \mathrm{mg}, 0.044 \mathrm{mmol}, 43 \%$) and $\mathbf{8 a d}$ as a yellow oil ($8.7 \mathrm{mg}, 0.012$ $\mathrm{mmol}, 12 \%)$.
7ad: mp 134, $4-136,4^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+280\left(c 0.75\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $v=846,1004,1182,1303$, $1577,1676,1752$ and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}$, $1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 13 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.0,32.1,43.3$, $60.5,62.9,69.3,71.5,78.5,79.5,96.6,127.3,127.6,128.4,128.5,128.6,128.7,128.8,129.3$, $129.4,130.3,132.1,135.8,136.8,139.3,139.3,166.8,173.7,198.0$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$697.1366; found 697.1367.
8ad: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.18-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 14 \mathrm{H})$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}$697.1366; found 697.1364.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5{ }^{\prime} S$)-Benzhydryl 4'-(4-nitrobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ae) and ($2 S, 3^{\prime} S, 4$ 'S,5R,5'S)-Benzhydryl 4'-(4-nitrobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ae)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(27.8 \mathrm{mg}, 0.206 \mathrm{mmol})$ and 6-alkylidenepenicillanate $\mathbf{1 e}(54.4 \mathrm{mg}, 0.103 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ae as a white solid ($39 \mathrm{mg}, 0.059 \mathrm{mmol}, 57 \%$) and a mixture of 8ae/9ae as a yellow oil (8ae: 27\%).
7ae: $\mathrm{mp} 143,1-144,0^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+330\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1150,1179,1299,1456$, 1669,1749 and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}$, $3 \mathrm{H}), 3.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H})$, 7.30-7.40 (m, 13H), 7.45-7.48 (m, 2H), 7.69 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=25.9,32.3,43.2,61.2,63.3,69.2,71.4,78.6,79.7,96.9,124.0$,
$127.3,127.6,128.4,128.5,128.5,128.8,128.8,129.4,129.5,129.7,136.4,139.2,139.3,141.4$, 150.7, 166.6, 173.3, 198.1.

8ae: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 4.49(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.04-7.36(\mathrm{~m}, 15 \mathrm{H}), 7.58$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $7.99(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$found 664.21 .
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S$)-Benzhydryl 2',3,3-trimethyl-7-oxo-3'-phenyl-4'-(4-(trifluoromethyl)benzoyl)-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2carboxylate (7af) and ($2 S, 3^{\prime} S, 4^{\prime} S, 5 R, 5 ' S$)-Benzhydryl 2 ',3,3-trimethyl-7-oxo-3'-phenyl-4'-(4-(trifluoromethyl)benzoyl)-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2carboxylate (8af)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(27.8 \mathrm{mg}, 0.206 \mathrm{mmol})$ and 6-alkylidenepenicillanate 1f ($56.9 \mathrm{mg}, 0.103 \mathrm{mmol}$) as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7af as a white solid ($37,4 \mathrm{mg}, 0.054 \mathrm{mmol}, 53 \%$) and 8af as a yellow oil ($7.7 \mathrm{mg}, 0.011$ $\mathrm{mmol}, 11 \%$).
7af: mp 153,6-155,6 ${ }^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+280\left(c 0.25\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1066,1128,1259$, $1321,1456,1685,1748$ and $1776 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13$ (s, 3H), 1.33 (s, $3 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.9,32.2,43.2,60.9,63.1,69.3,71.4,78.5,79.6,96.8$, 123.5 ($\mathrm{q}, ~ J=273 \mathrm{~Hz}, 1 \mathrm{C}), 125.8,125.9,127.3,127.6,128.4,128.5,128.6,128.8,128.8,129.1$, 129.3, 129.4, 136.6, 139.2, 139.3, 139.7, 166.7, 173.5, 198.4. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.24 (s, 3F). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 687.2135$; found 687.2129.

8af: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 3 \mathrm{H}), 7.17-$ $7.20(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.36(\mathrm{~m}, 10 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.27 ($\mathrm{s}, 3 \mathrm{~F}$). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 687.2135$; found 687.2162 .
($\left.2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S\right)$-Benzhydryl 4^{\prime}-(3,5-difluorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ag) and ($\left.2 S, 3^{\prime} S, 4^{\prime} S, 5 R, 5 ' S\right)$-Benzhydryl 4^{\prime}-(3,5-difluorobenzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ag)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate $\mathbf{1 g}(107 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h$)$. Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ag as a white solid ($83.6 \mathrm{mg}, 0.128 \mathrm{mmol}, 62 \%$) and $\mathbf{8 a g}$ as a yellow oil ($19 \mathrm{mg}, 0.029$ $\mathrm{mmol}, 14 \%$).
7ag: mp 140, $4-141,4^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+260\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=977,1250,1265,1438$, 1596, 1688, 1720 and $1772 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $2.71(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 6.95(\mathrm{dt}, J=16.5$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 13 \mathrm{H}), 7.45-7.49$ $(\mathrm{m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=26.0,32.3,43.2,61.0,63.2,69.3,71.4,78.5,79.6$, 96.7, 109.2 (t, $J=25 \mathrm{~Hz}, 1 \mathrm{C}), 111.7$ (d, $J=19 \mathrm{~Hz}, 1 \mathrm{C}), 111.8$ (d, $J=19 \mathrm{~Hz}, 1 \mathrm{C}), 127.3,127.6$, $128.4,128.5,128.8,128.8,129.4,129.5,136.4,139.2,139.3,163.0(\mathrm{~d}, J=252 \mathrm{~Hz}, 1 \mathrm{C}), 163.1$ (d,
$J=252 \mathrm{~Hz}, 1 \mathrm{C}), 166.7,173.4,196.9 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 107.47 (s, 2F). HRMS (ESITOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 655.2073$; found 655.2075.
8ag: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 4.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{tt}, J=8.3$ and $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-$ $6.94(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.36(\mathrm{~m}, 10 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , CDCl_{3}): 108.52 (s, 2F). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 655.2073; found 655.2073.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5^{\prime} S$)-Benzhydryl $\mathbf{4}^{\prime}$-(3,5-bis(trifluoromethyl)benzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ah) and ($2 S, 3^{\prime} S, 4^{\prime} S, 5 R, 5^{\prime} S$)-Benzhydryl 4^{\prime}-(3,5-bis(trifluoromethyl)benzoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2carboxylate (8ah)
Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate 1h ($127.6 \mathrm{mg}, 0.206 \mathrm{mmol}$) as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, 5:1 $\rightarrow 3: 1$), gave, in order of elution, $\mathbf{7 a h} / \mathbf{9 h}$ as a yellow oil ($\mathbf{7 a h}: \mathbf{2 6 \%}$) and $\mathbf{8 a h} / \mathbf{9} \mathbf{a h}$ as a yellow oil (8ah: 9%).
7ah: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.16(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.47(\mathrm{~m}, 15 \mathrm{H}), 7.90$ $(\mathrm{s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.11 (s, 6F). MS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$found 755.20 .
8ah: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.15(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.00-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.17-$ 7.19 (m, 2H), 7.33-7.37 (m, 10H), 7.79 (s, 3H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 63.11 ($\mathrm{s}, 6 \mathrm{~F}$). MS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$found 755.20.
($\left.2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S\right)$-Benzhydryl 4'-(2-naphthoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ai) and ($2 S, 3^{\prime} S, 4$ 'S,5R,5'S)-Benzhydryl 4'-(2-naphthoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ai)
Obtained from N -methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate $1 \mathbf{i}(110 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7ai as a white solid ($101 \mathrm{mg}, 0.151 \mathrm{mmol}, 73 \%$) and a mixture of 8ai/9ai as a yellow oil (8ai: 10\%).
7ai: $\operatorname{mp} 138,3-139,0^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+300\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1124,1152,1178,1258$, 1457, 1670, 1741 and $1773 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.13(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $2.74(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.38(\mathrm{~m}, 13 \mathrm{H}), 7.46-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.57(\mathrm{ddd}, J=8.1,6.4$ and $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$. $7.81(\mathrm{dd}, J=8.3$ and $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{dd}, J=8.7$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.0,31.8,43.3,60.8,62.7,69.4,71.5,78.4,79.6,96.5,124.1,127.0,127.3,127.6,127.8$, $128.3,128.4,128.7,128.8,128.8,129.1,129.2,129.9,131.4,132.3,134.3,135.9,137.2,139.3$, 139.4, 166.9, 174.0, 198.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 669.2418; found 669.2413.

8ai: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.10(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 4.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 6.82-8.11(\mathrm{~m}, 32 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]^{+}$found 669.24.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5 ' S$)-Benzhydryl \quad 4'-(2-furoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7aj) and (2S,3'S,4'S,5R,5'S)-Benzhydryl 4'-(2-furoyl)-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8aj)
Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate $\mathbf{1 j}(97,5 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $4: 1 \rightarrow 3: 1$), gave, in order of elution, 7aj as a white solid ($84 \mathrm{mg}, 0.138 \mathrm{mmol}, 67 \%$) and a mixture of 8aj/9aj as a yellow oil (8aj: 13\%).
7aj: $\operatorname{mp} 137,2-138,5^{\circ} \mathrm{C} \cdot[\alpha]_{D}^{25}=+270\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=1155,1179,1297,1463$, 1660,1744 and $1786 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=3.5$ and 1.6 $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 13 \mathrm{H}), 7.45(\mathrm{dd}, J=7.3$ and $2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.54$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.9,32.5,43.2,60.6,62.9,69.2,71.6,78.5,79.3,96.1$, $112.7,119.3,127.3,127.6,128.3,128.5,128.7,128.7,129.0,129.0,139.3,139.3,147.8,152.9$, 166.8, 173.4, 186.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 609.2054$; found 609.2068 .
8aj: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.14(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $6.93(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.50(\mathrm{~m}, 16 \mathrm{H})$. MS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$found 609.20.
($2 S, 3^{\prime} R, 4^{\prime} S, 5 R, 5^{\prime} S$)-Benzhydryl 4'-acetyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1- $^{\prime}$ azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (7ak) and ($2 S, 3^{\prime} S, 4$ 'S,5R,5'S)-Benzhydryl $\mathbf{4 '}^{\prime}$-acetyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2-carboxylate (8ak)
Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol})$ and 6-alkylidenepenicillanate 1ak ($87.6 \mathrm{mg}, 0.206 \mathrm{mmol}$) as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $4: 1 \rightarrow 3: 1$), gave, in order of elution, 7ak as a white solid ($34 \mathrm{mg}, 0.061 \mathrm{mmol}, 30 \%$) and $\mathbf{8 a k}$ as a yellow oil ($7.8 \mathrm{mg}, 0.014 \mathrm{mmol}, 7 \%$).
7ak: $\operatorname{mp} 122,8-124,5^{\circ} \mathrm{C} .[\alpha]_{D}^{25}=+250\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=968,978,1258,1267$, 1718 and $1774 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$, $2.65(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}$, $1 \mathrm{H}), 7.28-7.44(\mathrm{~m}, 13 \mathrm{H}), 7.52(\mathrm{dd}, J=7.9$ and $1.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $26.0,32.7,33.5,43.1,63.0,65.4,69.2,71.2,78.5,79.0,95.9,127.3,127.6,128.4,128.4,128.5$, 128.7, 128.8, 129.2, 129.3, 137.2, 139.3, 139.3, 166.8, 173.4, 207.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 557.2105$; found 557.2108 .
8ak: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.20(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.91$ $(\mathrm{d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.36$ (m, 15H). HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 557.2105$; found 557.2107.

iro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2,4'-dicarboxylate (7al) 'S,4'S,5R,5'S)-Benzhydryl 4'-benzyl-2',3,3-trimethyl-7-oxo-3'-pheny

Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol}$) and 6 -alkylidenepenicillanate $\mathbf{1 1}(105.8 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h$)$. Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution, 7 al as a white solid ($68.7 \mathrm{mg}, 0.106 \mathrm{mmol}, 51 \%$) and a mixture of 8al/9al as a yellow oil (8al: 15\%).
7al: mp low melting solid. $[\alpha]_{D}^{25}=+190\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $\tilde{\gamma}^{\sim}=979,1155,1256,1456$, 1731, 1735 and $1779 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.18(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}$, $3 \mathrm{H}), 3.66(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.54(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.39(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}^{3}$): $\delta=25.5,33.4,43.2$, $62.7,67.3,68.8,71.5,78.5,78.9,95.0,127.3,127.6,128.3,128.4,128.5,128.6,128.7,128.7$, 128.7, 128.8, 129.0, 129.1, 135.3, 139.3, 139.3, 166.7, 170.8, 172.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 649.2367$; found 649.2362 .
8al: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21$ (s, 3H), 1.49 (s, 3H), 2.79 (s, 3H), 3.40 (s, 2H), 3.70 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.43$ ($\mathrm{m}, 20 \mathrm{H}$). MS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$found 649.24 .

(2S,3'R,4'S,5R,5'S)-Dibenzhydryl
 2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2,4'-dicarboxylate (7am)

Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol}$) and 6 -alkylidenepenicillanate $\mathbf{1 m}(121 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $5: 1 \rightarrow 3: 1$), gave, in order of elution $\mathbf{7 a m}$ as a white solid ($119 \mathrm{mg}, 0.164 \mathrm{mmol}, 80 \%$) and a mixture of $\mathbf{8 a m} / \mathbf{9 a m}$ as a yellow oil (8am: 10\%).
7am: mp low melting solid. $[\alpha]_{D}^{25}=+190\left(c 0.5\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). IR (ATR): $\boldsymbol{v}^{\sim}=953,978,1155,1254$, 1449, 1453, 1494, 1735 and $1777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.08(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}$, $3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$, 7.10-7.13 (m, 2H), 7.27-7.36 (m, 23H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.4,33.1,43.2,62.6$, $68.8,71.4,78.0,78.5,79.1,95.2,126.9,127.3,127.6,128.0,128.2,128.3,128.5,128.6,128.7$, $128.8,129.0,136.6,139.3,139.3,139.5,139.5,166.6,170.5,172.9$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 725.2680$; found 725.2683.
8am: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21$ (s, 3 H), 1.25 (s, 3H), 2.75 (s, 3 H), 3.79 (d, $J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.42$ $(\mathrm{m}, 25 \mathrm{H})$. MS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$found 725.27 .

($2 S, \mathbf{3}^{\prime} R, \mathbf{4}^{\prime} S, 5 R, 5$ 'S)-Benzhydryl \quad 4'-methyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2,4'-dicarboxylate (7an) and (2S,3'S,4'S,5R,5'S)-Benzhydryl 4'-methyl-2',3,3-trimethyl-7-oxo-3'-phenyl-4-thia-1-azaspiro[bicyclo[3.2.0]heptane-6,5'-isoxazolidine]-2,4'-dicarboxylate (8an)

Obtained from N-methylphenylnitrone $\mathbf{6 a}(55.6 \mathrm{mg}, 0.412 \mathrm{mmol}$) and 6 -alkylidenepenicillanate $\mathbf{1 n}(90 \mathrm{mg}, 0.206 \mathrm{mmol})$ as described in the general procedure (reaction time: 24 h). Purification of the crude product by flash chromatography (hexane/ethyl acetate, $4: 1 \rightarrow 3: 1$), gave, in order of elution, 7 an as a white solid ($67 \mathrm{mg}, 0.117 \mathrm{mmol}, 57 \%$) and a mixture of $8 \mathbf{a n} / 9 \mathrm{an}$ as a yellow oil (8an: 16\%).
7an: mp low melting solid. $[\alpha]_{D}^{25}=+220\left(c 0.5\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (ATR): $v=980,1169,1199,1255$, $1434,1454,1495,1735$ and $1779 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.22(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 2.67$ ($\mathrm{s}, 3 \mathrm{H}$), 3.64 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (br s, 4H), 4.59 (s, 1H), 5.54 (s, 1H), 6.95 (s, 1H), $7.30-7.37(\mathrm{~m}, 13 \mathrm{H}), 7.47$ (dd, $J=7.8$ and $1.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=25.6$, 33.4, 43.1, 52.6, 62.8, 68.8, 71.5, 78.6, 127.3, 127.6, 128.3, 128.4, 128.5, 128.7, 128.8, 129.0,
129.1, 139.2, 139.3, 166.7, 171.3, 172.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 573.2054$; found 573.2062.
8an: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.21(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.70$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.43$ $(\mathrm{m}, 15 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}-\mathrm{TOF}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$found 573.21 .

Computational Methodology

Quantum chemical calculations were carried out in order to explore the structure and the preferred conformations of molecules 7aa and 8aa. The structures were optimized at the Density Functional (DFT) level of theory, using the B3LYP hybrid functiona ${ }^{[15]}$ and the standard 6-31G(d) basis set. All calculations were performed using the GAMESS program package ${ }^{[16]}$ and graphical representations were produced with GaussView. The optimized structures are depicted in Scheme 3 and in Figs. (S62 and S63) of the Supporting Information. Energy values and Cartesian coordinates are given in Supporting Information.

Acknowledgements

Coimbra Chemistry Centre (CQC) supported by the Portuguese Agency for Scientific Research, "Fundação para a Ciência e a Tecnologia" (FCT) through project UIDB/00313/2020 and UIDP/00313/2020, co-funded by COMPETE2020-UE. AJSA thank FCT for the PhD fellowship SFRH/BD/128910/2017. We also acknowledge the UC-NMR facility for obtaining the NMR data (www.nmrccc.uc.pt).

References

[1] a) N. Arya, A. Y. Jagdale, T. A. Patil, S. S. Yeramwar, S. S. Holikatti, J. Dwivedi, C. J. Shishoo, K. S. Jain, Eur. J. Med. Chem. 2014, 74, 619-656; b) P. D. Mehta, N. P. Sengar, A. K. Pathak, Eur. J. Med. Chem. 2010, 45, 5541-5560.
[2] a) G. Chaubet, T. Coursindel, X. Morelli, S. Betzi, P. Roche, Y. Guari, A. Lebrun, L. Toupet, Y. Collette, I. Parrot, J. Martinez, Org. Biomol. Chem. 2013, 11, 4719-4726; b) Y. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med. Chem. Lett. 2014, 24, 3673-3682; c) E. Chupakhin, O. Babich, A. Prosekov, L. Asyakina, M. Krasavin, Molecules 2019, 24.
[3] a) A. Jarrahpour, E. Ebrahimi, E. De Clercq, V. Sinou, C. Latour, L. Djouhri Bouktab, J. M. Brunel, Tetrahedron 2011, 67, 8699-8704; b) T. Opatz, M. Dhooghe, H. D. Thi, Arkivoc 2019, 2018, 314-347; c) G. S. Singh, M. D'hooghe, N. De Kimpe, Tetrahedron 2011, 67, 1989-2012.
[4] B. S. Santos, T. M. V. D. Pinho e Melo, Eur. J. Org. Chem. 2013, 2013, 3901-3909.
[5] a) J. C. Sheehan, E. Chacko, Y. S. Lo, D. R. Ponzi, E. Sato, J. Org. Chem. 1978, 42, 4856-4859; b) D. Habich, K. Metzger, Heterocycles 1986, 24, 289-296; c) B. S. Santos, C. S. B. Gomes, T. M. V. D. Pinho e Melo, Tetrahedron 2014, 70, 3812-3821.
[6] a) T. M. V. D. Pinho e Melo, B. S. Santos, I. Bártolo, M. Prudêncio, N. Taveira, Novel Spiro-Lactam Compounds, Process and Uses Thereof, WO/2018/207165, 2018; b) A. J. S. Alves, N. G. Alves, C. C. Caratao, M. I. M. Esteves, D. Fontinha, I. Bartolo, M. I. L. Soares, S. M. M. Lopes, M. Prudencio, N. Taveira, T. M. V. D. Pinho e Melo, Curr. Top. Med. Chem. 2020, 20, 140-152;
[7] a) S. Cicchi, A. Goti, A. Brandi, A. Guarna, F. De Sarlo, Tetrahedron Lett. 1990, 31, 3351-3354; b) S. M. Lait, D. A. Rankic, B. A. Keay, Chem. Rev. 2007, 107, 767-796.
[8] a) G. Romeo, U. Chiacchio, A. Corsaro, P. Merino, Chem. Rev. 2010, 110, 3337-3370; b) P. Quadrelli, M. Mella, S. Carosso, B. Bovio, J. Org. Chem. 2013, 78, 516-526.
[9] a) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot, J. Martinez, Chem. Rev. 2016, 116, 15235-15283; b) K. V. Gothelf, K. A. Jørgensen, Chem. Commun. 2000, 1449-1458; c) L. Maiuolo, V. Algieri, F. Olivito, A. De Nino, Catalysts 2020, 10, 65; d) M. A. Chiacchio, S. V. Giofrè, R. Romeo, G. Romeo, U. Chiacchio, Curr. Org. Synth. 2016, 13, 726-749.
[10] a) J. E. Baldiwn, M. Otsuka, M. P. Wallace, Tetrahedron 1986, 42, 3097-3110; b) A. Basak, H. M. M. Bdour, G. Bhattacharya, Tetrahedron Lett. 1997, 38, 2535-2538; c) A. Strauss, H.-H. Otto, Helv. Chim. Acta 1997, 80, 1823-1830; d) S. Anklam, J. Lisbscher, Tetrahedron 1998, 54, 6369-6384.
[11] a) H. Dao Thi, B. Danneels, T. Desmet, K. Van Hecke, T. Van Nguyen, M. D'Hooghe, Asian J. Org. Chem. 2016, 5, 1480-1491; b) X. Wang, F. Meng, Y. Wang, Z. Han, Y. J. Chen, L. Liu, Z. Wang, K. Ding, Angew. Chem. Int. Ed. Engl. 2012, 51, 9276-9282.
[12] M. M. Andrade, M. T. Barros, R. C. Pinto, Tetrahedron 2008, 64, 10521-10530.
[13] A. Hassan, M. I. M. Wazeer, S. A. Ali, J. Chem. Soc. Perkin Trans. 2 1998, 393-399.
[14] S. Saouane, G. Buth, F. P. A. Fabbiani, Acta Crystallogr. Sect. C 2013, 69, 1238-1242.
[15] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; b) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
[16] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr, J. Comput. Chem. 1993, 14, 1347-1363.

