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Abstract Cystic fibrosis (CF) is a complex inherited dis-
ease which affects many organs, including the pancreas and
liver, gastrointestinal tract and reproductive system, sweat
glands and, particularly, the respiratory system. Pseudomo-
nas aeruginosa is the main cause of chronic airway infec-
tion. In order to reduce morbidity and mortality due to lung
infection by P. aeruginosa, aerosol antibiotics have been
used to achieve high local concentrations in the airways
and to reduce systemic toxicity. In the course of this review,
the current treatments to control CF lung infections by P.
aeruginosa are presented. Some innovative aerosol formu-
lations such as liposomes and microspheres are herein
reviewed, which may improve the efficiency of anti-
pseudomonal agents, and ensure patients’ compliance to
treatments, by reducing dosing frequency and/or drug dose,
while maintaining therapeutic efficacy, preventing the oc-
currence of bacterial resistance and/or reducing adverse
effects due to their controlled-release properties.

Introduction to cystic fibrosis disease

Cystic fibrosis (CF) is an inherited, recessive and autosomal
disease which affects approximately one in 2,000 newborns
in Caucasian populations. It is, however, found in all ethnic
groups [1].

This disorder is caused by mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene on chro-
mosome 7. A deletion of phenylalanine in the amino acid
position 508 is the most common mutation [2], but more than
800 different mutations have been identified [1, 3]. In addi-
tion, CF is a multi-functional disease in which several organs
are affected, including the pancreas and liver, gastrointestinal
tract and reproductive system, sweat glands and, particularly,
the respiratory system [1, 4–6]. Some carriers of a single
CFTR mutation suffer from some pulmonary and gastrointes-
tinal symptoms, but not at a high level [4]. This review will
focus on respiratory symptoms caused by this disease. Be-
cause the CFTR protein regulates ion and water movement
across the epithelium, these mutations lead to malfunction of
the chloride channel in CF patients [1, 3, 4, 7]. Thus, the
scenario includes decreased chloride secretion into the air-
ways and increased sodium absorption from the airways that
lead to relative dehydration of the airway mucus [8]. There-
fore, the volume of the airway surface liquid (ASL) decreases,
leading to the accumulation of purulent secretions (expecto-
rated form is known as sputum) [4] and impaired mucociliary
clearance [9, 10]. Mucociliary clearance is an important de-
fence mechanism against pathogens and foreign substances,
but this mechanism is reduced in CF patients [4, 11–13],
leading to chronic infections [10, 14]. On one hand due to
the reduced mucociliary clearance in these patients, it is less of
a challenge to inhalational drugs delivery, but on the other
hand, mucociliary clearance could be improved when mucus-
thinning agents are co-administered [4]. In addition, from in
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vitro studies, Coakley et al. proposed that mucus adherence to
epithelial surfaces may be strengthened by the low pH of ASL
because of absent CFTR-dependent HCO3

− secretion [15].
This review will focus on Pseudomonas aeruginosa,

which is the main pathogen that leads to chronic CF lung
disease: 54.4 % of the whole CF patient population are
infected with this bacterium, which is found in 80 % of the
patients by the age of 18 years [16]. P. aeruginosa predom-
inates in the majority of adult CF patients [7, 17], whereas
Staphylococcus aureus (including methicillin-resistant S.
aureus, MRSA) [18] and Haemophilus influenzae are the
main pathogens in children [7, 10, 19, 20], as shown in
Fig. 1. However, it should be kept in mind that other patho-
gens, such as Burkholderia spp., Achromobacter spp. and
Stenotrophomonas maltophilia also contribute to morbidity
and mortality [1, 14, 21]. Recent studies have shown that the
organisms belonging to the Streptococcus milleri group may
also be an intrinsic component of the CF airway microbiome
and have recently been implicated as aetiological agents of
pulmonary exacerbations in adult CF patients [22]. Besides,
fungal and viral infections also play an important role in the
development of CF lung disease [17]. In addition, the bacte-
rial community in these patients appears to be polymicrobial
in nature, including several anaerobic species, such as the
genera Prevotella, Veillonella, Propionibacterium and Acti-
nomyces. These anaerobic bacteria are clinically relevant for

CF lung disease and consist in a complex issue which is
currently under investigation. The clinical significance of
these species remains unclear and it is the main reason why
clinicians have not specifically treated anaerobes. Neverthe-
less, some in vitro data suggest that P. intermedia may
contribute to lung disease in CF patients, which, if demon-
strated in vivo, may facilitate the decision for antibiotic
therapy [17, 23]. Culture-independent microbial profiling
methods showed that microbial communities in the airways
of CF patients are complex ecosystems with high microbial
diversity. Such new methods revealed the infraspecific di-
versity in Candida albicans, C. parapsilosis and Aspergillus
fumigates, and cryptic and new unculturable (or difficult to
grow in vitro) species, most of them described as human
pathogens. They also revealed the complex interaction be-
tween typical pathogens and microbiota, such as the associ-
ation between P. aeruginosa and anaerobes. P. aeruginosa
can grow under reduced oxygen tension (as described next),
as well as other anaerobic bacteria, and C. albicans can also
grow under anaerobic conditions [24]. Microbial community
diversity was shown to evolve with patients’ aging. Young
CF patients who show less airway inflammation and better
pulmonary function possess the greatest diversity of airway
bacterial species (including anaerobic community). With
aging, the diversity of the microbial communities tends to
be substantially reduced [24, 25], which might be linked to

Fig. 1 Prevalence of predominate bacterial infections in cystic fibrosis (CF) patients according to age. Reproduced from the Cystic Fibrosis
Foundation patient registry, annual data report 2011 [150], with permission
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the gradual decline in the lung function, as suggested by
some investigators [26, 27]. Some authors suggest that anti-
biotic treatments contribute to the loss of airway microbiome
diversity [27]. Still controversial and requiring further inves-
tigation, the management and preservation of the diversity of
the lung microbial communities might be a way to prolong
lung functions and life expectancies in CF patients, and
require new treatment strategies beyond the scope of the
present review [25, 26].

Infection with P. aeruginosa in CF patients

Development of chronic infection

Geller characterises the lung disease in CF as an endobronchial
infection, exaggerated inflammatory response, progressive air-
way obstruction, bronchiectasis and eventual respiratory fail-
ure [16]. P. aeruginosa is generally considered as the most
important pathogen associated with CF in terms of prevalence
and pathogenicity, and this opportunistic bacterium is the main
pathogen leading to advanced CF lung disease [14, 16, 19]. P.
aeruginosa is a Gram-negative bacillus (non-capsulate and
non-sporing) that affects particularly the lower respiratory tract
[28]. Without any treatment, P. aeruginosa infection persists in
spite of the recruitment of the host’s defence mechanisms and
leads to decreased respiratory function [14], and most patients
die at a young age of lung complications. Under intensive
treatment, the mean expected lifetime of CF patients is
>35 years, and in some centres, it is >50 years [1].

P. aeruginosa is transmitted by a direct contact between
carriers and via environmental reservoirs. The initial infec-
tion usually involves a planktonic, non-mucoid strain of P.
aeruginosa, which is able to penetrate the mucus by its
flagellar activity [2]. The initial infection is not associated
with an immediate and rapid decline in lung function, and
early P. aeruginosa isolates appear non-resistant to the an-
tibiotic treatment [16], giving an opportunity for an early
efficient therapeutic intervention [29]. Aggressive and early
antibiotic treatments of P. aeruginosa infection were shown
to increase the life expectancy of CF patients [16, 19].
Transmission between infected CF patients may occur and
be favoured in communities like day hospitals, wards where
CF patients come into contact with each other, leading to
replacement, under antimicrobial pressure, of initially ac-
quired more antibiotic-sensitive clones with resistant ones
[30]. In addition, P. aeruginosa was shown to persist and to
multiply in hospital equipments and bathroom sinks, which
suggests that high hygienic standards should be applied in
order to minimise the risk of cross-infection [31]. After the
initial infection, there follows a variable period of “intermit-
tent or transient infection”, which refers to patients with less
than 50 % of the monthly cough swab or sputum cultures

found to be positive for P. aeruginosa over a 12-month
period, according to the Leeds classification [32]. If left
untreated, the starting infection eventually evolves towards
a “chronic infection” which, according to the Leeds classi-
fication, refers to patients with more than 50 % of the
monthly cultures found to be positive over a 12-month
period [32]. Chronic infection involves mucoid strains of
P. aeruginosa, which synthesises an exopolysaccharide
(alginate) matrix or biofilm that protects bacteria against
antibiotics [10] and phagocytosis [3, 16, 29], as shown in
Fig. 2 (e.g. it may be difficult for neutrophils to penetrate
into mucus plaques). Though being aerobic, P. aeruginosa
within biofilm is able to survive in the hypoxic environment
of the CF mucus plug, which diminishes its sensitivity to
antibiotics [2]. In most cases, mucoid P. aeruginosa infec-
tions cannot be eradicated.

Early aggressive antibiotic treatment, which is crucial to
prevent or at least to delay chronic lung colonisation, implies
the early diagnosis of initial or recurrent contaminations. P.
aeruginosa is diagnosed in sputum, hypopharyngeal or
endolaryngeal suctions, or deep throat culture [3, 10]. Routine
bacterial cultures appear to have limited sensitivity for detecting
the initially very low numbers of bacterial cells. Several mo-
lecular assays, generally based on the polymerase chain reac-
tion (PCR) technique, and especially on its quantitative variant,
have, therefore, been proposed for the early detection of P.
aeruginosa and for confirming the respective eradication after
antibiotic treatment in young CF patients, but they still require
investigation of their clinical significance and relevance before
implementation in routine laboratories [33, 34].

Resistance to antibiotic therapy

Currently, antibiotic resistance is increasing and we need new
strategies to overcome this reality. In spite of intensive antibi-
otic therapy and defence mechanisms of the immune system,

Fig. 2 Macrocolonies in chronic infection by Pseudomonas
aeruginosa which resist to innate defences, including neutrophils.
Reproduced from reference [2], with permission
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P. aeruginosa has the ability to survive and persist for years in
the CF patient’s lungs, owing to its adaptivemechanisms [1, 3,
35, 36]. P. aeruginosa has the ability to form biofilms [37],
develop a mucoid phenotype and lack membrane porins (that
are important to antibiotic diffusion) [4, 38–40], or may de-
velop an active drug efflux mechanism [4, 10, 19, 41].

Additionally, different antibiotics display different modes
of action and, therefore, different “rates of resistance”: (a)
beta-lactams (e.g. carbapenems and the monobactam
aztreonam) interfere with bacterial cell wall synthesis [3,
28]; (b) quinolones inhibit DNA synthesis by acting on
topoisomerases, particularly topoisomerase II (DNA gyrase)
and IV (which are essential for maintenance of the appro-
priate DNA topological state for replication and transcrip-
tion) [42, 43]; and (c) aminoglycosides (e.g. tobramycin,
amikacin and gentamicin) [3, 28] inhibit protein synthesis
by binding bacterial ribosomal subunits or inhibiting ribo-
somal enzymes [3].

As described by Grégoire et al., P. aeruginosa becomes
resistant to fluoroquinolones through two known mechanisms:
drug efflux pumps that reduce the accumulation of antibiotics
in the cell and point mutations in the genes of the quinolone
target enzymes, DNA gyrase and topoisomerase IV, owing to
amino acid substitutions in the corresponding genes gyrA or
gyrB (for DNA gyrase) and parC or parE (for topoisomerase
IV) [42, 43]. According to some authors, fluoroquinolones
should be used prudently to avoid further resistance. In addi-
tion, this class of antibiotics is associated with cross-resistance
to other antibiotics (e.g. aminoglycosides) and act as selectors
for MRSA [18]. With respect to other antibiotic classes,
P. aeruginosa resists aminoglycosides mainly by reducing
their transport through the membrane [44] and reduces the
beta-lactam activity by some mechanisms as described in
Table 1. Recently, a study concluded that resistance to
tobramycin in P. aeruginosa isolates from CF patients under
antimicrobial therapy may occur, while colistin resistance ap-
pears to be rare [45].

As reported by Ibrahim et al., the strategy may rely on the
combination of antibiotics to avoid antibiotic resistance.
Recently, some inhalable particles co-encapsulating two or
more antibiotics displayed good results, especially when the
microorganism is difficult to kill with one antibiotic [4, 46].
One strategy consists in encapsulating the drugs in lipo-
somes or microspheres, as will be discussed in this review
[4]. When the resistance is due to the drug efflux mecha-
nism, the alternative consists in the administration of efflux
pump inhibitors [19]. With respect to CF, compounds such
as broad-spectrum efflux pump inhibitors in P. aeruginosa
are in clinical development for use as an aerosol [19, 47]. A
study has recently evaluated the efficacy of efflux pump
inhibitors in reducing ciprofloxacin and levofloxacin mini-
mum inhibitory concentrations (MICs), which concluded
that the activity of these inhibitors cannot be generalised to
all bacteria and to all antibiotics of the same class [47].

In what pertains to inhaled antibiotics, there are areas of
variable antibiotic concentrations in the airways. The low
concentration areas allow the selection of more resistant mi-
crobes. Alternating months of antibiotics reduce the selective
pressure on the bacteria, and it is necessary to understand
whether “drug holidays” or alternating chronic antibiotics
may prevent the emergence of multi-resistant organisms in
CF. Resistance may be transient and reverted when antibiotic
selective pressure is removed, a process known as adaptive
resistance [3]. According to some authors, there is no present
definition of in vitro resistance relating to the use of
aerosolised formulations [19, 48] because the analyses are
related to systemic administration and not to high concentra-
tions achievable in the pulmonary tract [14].

Pharmacokinetics and pharmacodynamics

Recently, some authors indicated that the MIC criterion is
insufficient to choose a drug, taking into account certain
aspects such as the individual variation in drug metabolism

Table 1 Antibacterial agents used in the treatment of Pseudomonas aeruginosa infection (mechanism of action and corresponding resistance
mechanism)

Antibiotic Mechanism of action in P. aeruginosa Resistance mechanism

Beta-lactams Interference with bacterial cell wall synthesis
[3, 28]

• Mutational derepression of the AmpC chromosomal
beta-lactamase

• Acquisition of secondary plasmid or transposon-mediated
beta-lactamases

• Reduced permeability

• Multi-drug efflux [139]

Aminoglycosides Inhibition of protein synthesis: • Reduction in the active transport through the membrane [44]
➢ Binding to bacterial ribosomes

➢ Inhibition of ribosomal enzymes [3]

Fluoroquinolones Inhibition of DNA synthesis (action on
topoisomerase II and IV) [42, 43]

• Drug efflux pumps

• Point mutations in topoisomerases [42, 43]
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and clearance, and, also, the mechanism of antimicrobial
killing.

The time over MIC (T > MIC), the ratio of peak concen-
tration to the MIC (Cmax/MIC) and the ratio of the area
under the concentration-versus-time curve to the MIC
(AUC/MIC) are usually the parameters used to predict the
antibacterial activity. The last two parameters are the mostly
used for fluoroquinolones [43].

Grégoire et al. studied a pharmacokinetic–pharmacody-
namic (PK-PD) model to describe the effects of ciprofloxa-
cin against P. aeruginosa in vitro and concluded that MIC is
inadequate to assess the susceptibility of a bacterial strain
leading to regrowth during time–kill studies. However, the
PK-PD model may be used to compare antibiotic efficacies
for different bacterial strains and to optimise the dose in
order to prevent the emergence of resistance [42]. Measures
other than the MIC, such as minimum eradication concen-
tration, have not been established, but studies are ongoing
[14].

Aminoglycosides and fluoroquinolones have a “concen-
tration-dependent” effect [16]. Thus, the AUC/MIC ratio is
associated with the extent of bacterial killing. High
Cmax/MIC ratios can suppress the selection of resistant
organisms for antibiotics [14]. However, concentration-
dependent killing may promote resistance, because of the
prolongation of the residence time in the airway at sub-MIC
levels (toward the end of a long dosing interval) [16].
Nevertheless, some studies demonstrated no statistical dif-
ference in the emergence of resistance between the high-
and low-dose arms, highlighting the need for more studies in
this area [43].

Technologies that increase residence time in the airways
make perfect sense for beta-lactams (time-dependent kill-
ing). In contrast to aminoglycosides and fluoroquinolones,
beta-lactams have a “time-dependent” effect [16]. Thus, the
percentage of a dosing interval in which concentrations
exceed the MIC is linked to antimicrobial effects and more
frequent dosing is required in order to keep the lung con-
centration above the MIC (% t > MIC) [14]. Maintaining the
concentration at a given multiple above the MIC for longer
portions of the dosing interval is associated with better
antibacterial effect, but increasing the concentration above
this multiple does not improve the killing effect [49].

Difficulties in the interpretation of antibiotic concentrations

In order to prevent antibiotic resistance by bacteria, such as
P. aeruginosa, antibiotics need to be administered taking
into account PK and PD parameters. The common method is
to measure the concentrations in tissue homogenates (e.g.
lung homogenate) and to compare these with measures
derived from the corresponding blood samples. However,
tissues are made of distinct compartments in which the drug

may not be homogeneously distributed. Therefore, the con-
centrations obtained may not represent the (active) concen-
tration of the antibiotic at the site of infection [50, 51]. Thus,
efforts have been made to measure the concentration of
antibiotics at infection sites (e.g. lungs) because the distri-
bution of antibiotics is, quite likely, different in a variety of
tissues and in the serum [52].

However, it is difficult to determine the antibiotic con-
centration at the site of the infection. In diseases such as CF,
antibiotic concentration in the epithelial lining fluid (ELF)
could represent antibacterial activity. This fluid is measured
on the interior surface of the alveolar wall, which is a
component of the blood–alveolar barrier. This barrier is
composed of another membrane, the capillary wall. These
two “walls” are separated by a fluid-filled interstitial space.
Regarding these characteristics, antibiotics measured in the
ELF need to cross these barriers.

However, the ratios of ELF to plasma concentrations are
different between antibiotics. The reasons are not clarified,
but it is known that some confounding factors may affect the
measures. The confounding factors may include physico-
chemical characteristics intrinsic to the molecules and tech-
nical factors or errors in the method of measurement (e.g.
bronchoalveolar lavage, BAL). ELF is a mixture of compo-
nents, including cells, which may be lysed during the mea-
surement and it could artificially increase or decrease the
measured antibiotic concentration. These “unreal” results
are related to the concentration of the antibiotic in cells
and in serum [52]. This error will vary with the antibiotic
concentration in cells and with the number of cells in the
ELF.

Technical errors exist, such as:

& (a) Correction of the volume of ELF sampled by BAL
and the amount of antibiotic contained in the sample for
drug-free saline during the BAL procedure. This correc-
tion is frequently performed with urea because it is used
as an endogenous marker that can easily cross the mem-
branes. Thus, it is assumed that the concentration of urea
in the ELF is the same as the serum concentration.

& (b) The “dwelling time” of fluid during the measurement
method because some additional urea appear to diffuse
from some tissues when the dwelling times are
prolonged. Thus, the ELF volume may be overestimated
[52, 53].

Other factors can affect antibiotic concentrations mea-
sured in the ELF. Moreover, some authors developed simu-
lations to estimate ELF concentrations of different
antibiotics considering the impact of protein binding, differ-
ent lipid solubilities and molecular weights, and lysis of
cells. However, in lung diseases such as CF, these studies
have to be performed taking into account the modifications in
the cells, tissues and fluids of these patients [52]. Additionally,
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the route of administration also has importance in these mea-
surements because antibiotics administered by oral or intrave-
nous routes need to cross the blood–alveolar barrier but
inhaled antibiotics do not (when a local effect is claimed).

Although these are interesting approaches, PK/PD pa-
rameters are usually expressed taking into account the serum
concentrations. Even though they are not deeply discussed,
it seems that these concentrations are directly related to
microbiological outcomes.

Treatment of patients with CF

Current treatment and some investigational approaches

The aim of CF treatment is to increase the life expectancy of
patients and to decrease their symptoms, attenuating disease
progression. Currently, antibiotics (such as aminoglycosides,
beta-lactams, polymyxins and fluoroquinolones [16]) and
anti-inflammatory drugs are used to control the inflammation
and infection of the respiratory tract, particularly by P.
aeruginosa, as previously remarked. In addition, bronchodi-
lators, mucolytics and osmotic agents are administered to
improve sputum and airway clearance [4]. Although these
agents will not be discussed in this review, several of their
features are particularly interesting: (a) osmolytes are not
actively transported and poorly absorbed (e.g. mannitol can
restore ASL volume) and (b) inhaled hypertonic saline agents
are able to draw water to the airway surface [2, 8]. However,
these agents show difficulties in demonstrating efficacy, ow-
ing to the short duration of active therapy [2].

In what relates to antibiotics, a number of integrated
factors must be taken into consideration to choose the drug
and delivery method: pharmacological and pharmacody-
namic considerations, toxicity, cost, patients’ characteristics,
lung function, symptoms and others [7]. Thus, there is no
standard treatment for patients with CF lung disease.

Antibiotics

Although there is no standard treatment, a combination
of at least two antibiotics is generally used to treat
infection by P. aeruginosa in CF patients, which includes
intravenous aminoglycosides (and nebulised tobramycin),
intravenous or oral fluoroquinolones, and intravenous
beta-lactams [4].

& Aminoglycosides

Tobramycin is an aminoglycoside which is currently used
as an aerosol nebulised antibiotic and accepted as a standard
treatment for CF patients [19]. The tobramycin inhalation
solution was approved in 1998 (TOBI® Novartis Pharma-
ceuticals, Basel, Switzerland) [14, 54] with the PARI LC

Plus nebuliser [16], and the administration of 300 mg (load)
twice daily has been investigated alternating 28-day on/off
treatment cycles in order to improve lung function (mea-
sured as FEV1—volume exhaled at the end of the first
second of forced expiration) and to avoid toxicity (due to
systemic absorption) [14]. Recently, a study concluded that
the use of tobramycin inhalation solution was associated
with significantly reduced mortality among patients with
CF [55]. However, the administration time is extended for
almost 20 min, which is a problem for patient compliance.
Taking into account the development of dry-powder inhalers
and sustained-release formulations, this problem may be
solved by faster and fewer daily administrations, as de-
scribed below in this review. In addition, aminoglycosides
have their activity impaired due to their low penetration in
mucus [16, 19]. This appears to result from the binding of
cationic moieties on the aminoglycosides to anionic sub-
stances present in the sputum of these patients [14].

& Fluoroquinolones

Fluoroquinolones are under investigation and may be
administered during the “off” cycle of tobramycin inhalation
solution to improve patient outcomes and to avoid drug
resistance [14]. They are being developed for inhalation
use, with particular focus on ciprofloxacin and levofloxacin,
as described next in this review [56]. In addition, their
antibacterial activity is not impaired by low diffusion into
the mucus, in contrast to aminoglycosides [14, 16]. Cipro-
floxacin is a second-generation fluoroquinolone and it is one
of the most widely available fluoroquinolone antibiotics,
with activity against several aerobic Gram-positive and
Gram-negative bacteria [57]. Introduced in 1985 as an oral
treatment of CF patients, it offered a safe and efficacious
alternative to standard parenteral therapy for acute pulmo-
nary exacerbations, despite its possible side effects, such as
cartilage toxicity, sunlight sensitivity rash [28] and rapid
emergence of resistance [3]. Levofloxacin is a third-
generation fluoroquinolone with Gram-positive and Gram-
negative antibacterial activity. This fluoroquinolone is used
for oral and intravenous administration, and other formula-
tions are being investigated [57].

& Beta-lactams

Beta-lactams that are used to fight pseudomonal infec-
tions in CF patients include aztreonam, anti-pseudomonal
carbapenems (doripenem, imipenem–cilastatin and
meropenem), penicillins (piperacillin–tazobactam and
ticarcillin–clavulanate) and cephalosporins (ceftazidime
and cefepime) [58, 59]. In contrast to aminoglycosides and
similarly to fluoroquinolones, beta-lactams do not have their
antibacterial activity impaired in sputum from CF patients
[14, 16]. Aztreonam, active against aerobic Gram-negative
bacteria, is available as both intravenous (for acute
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pulmonary exacerbations) and aerosolised (against chronic
airway P. aeruginosa infection) formulations. Carbapenems,
active against anaerobic, aerobic Gram-positive and Gram-
negative bacteria, are administered by intravenous route in the
treatment of acute pulmonary exacerbations [59]. Among
cephalosporins, generally active against both aerobic Gram-
positive and Gram-negative bacteria, only ceftazidime and
cefepime have activity against P. aeruginosa. They are often
used to treat P. aeruginosa-related exacerbations by intrave-
nous administration. The penicillins indicated above also have
a wide array of antibacterial activity against anaerobic, aerobic
Gram-positive and Gram-negative bacteria, including P.
aeruginosa, and are administered by the intravenous route in
acute pulmonary exacerbations [60].

& Colistin

Colistin, or polymyxin E, first marketed in the 1950s, has
been neglected up until very recently because of reports of
nephrotoxicity and neurotoxicity, but multi-resistance to
other antibiotics brought it back on stage as a last-resort
anti-infective drug and promoted modern pharmacokinetic
investigations and re-evaluation of dosing schemes [61].
Colistin is commercially available as colistin sulphate for
topic use (oral tablets) and as an inactive prodrug, colistin
methanesulphonate, or colistimethate, sodium salt, which is
given by intravenous route or via inhalation, alone or in
combination therapy to eradicate early infections and to
stabilise chronic infections [62]. Colistin sulphate is not
used for inhaled therapy due to throat irritation, cough and
severe bronchoconstriction. Well tolerated by inhalation,
colistimethate sodium is currently used to treat chronic
endobronchial P. aeruginosa infection as an extemporane-
ously prepared solution for inhalation [63, 64].

& Miscellaneous

Some other antibiotics may be used in specific situations
for the treatment of CF lung disease, not only against P.
aeruginosa but also against S. maltophilia, S. aureus and
other bacterium.

Fosfomycin is an antimicrobial agent with activity
against Gram-positive and Gram-negative bacteria, includ-
ing Pseudomonas spp. and, more specifically, multidrug-
resistant Pseudomonas [65]. This antibacterial agent is
available in oral formulations as fosfomycin calcium or
fosfomycin trometamol, and in intravenous formulation as
fosfomycin disodium. The repeated use of the same antibi-
otics usually leads to the development of resistance, patient
intolerance and side effects. In these patients, fosfomycin
may be co-administered with other antibiotics [66] because
its action mode is considered as unique (inhibition of the
initial step in cell wall synthesis) [19] and not affected by
other classes of antibiotics, preventing cross-resistance [65].
Mirakhur et al. noticed that intravenous fosfomycin in

combination with other antibiotics for pulmonary exacerba-
tions in CF patients colonised by multi-resistant P.
aeruginosa resulted in clinical improvement with low side
effects [66].

Azithromycin therapy effectively improves lung function
and reduces the frequency of pulmonary exacerbations in
CF patients chronically colonised with P. aeruginosa, but
these effects appear to be only temporary. Some authors
hypothesised that the mechanism of azithromycin therapy
failure could be linked to its antimicrobial properties and the
development of resistance in organisms resident in the CF
airway microbiome. Studies have shown that the long-term
exposure of CF patients to azithromycin leads to significant-
ly increased macrolide resistance in CF pathogens, such as
Haemophilus spp. [22].

Minocycline (by oral administration) may have an “ad-
junct role”, alone or in combination with other antibiotics in
the antimicrobial therapy of multidrug-resistant, respiratory
pathogens in CF [19]. More specifically, Kurlandsky and
Fader reported that minocycline had in vitro activity against
isolates of B. cepacia, S. maltophilia and, to a lesser extent,
P. aeruginosa cultured from the respiratory tract of patients
with CF lung disease [67].

Clindamycin and rifampicin are recommended for therapy
against S. aureus by oral or intravenous route [23]. Linezolid,
an oxazolidinone antibiotic, is an optional treatment against
MRSA infections in CF patients (with acute exacerbations)
[68]. Due to its unique mechanism of action, the probability of
cross-resistance with other antibacterial agents is low [69]. In
addition, linezolid has a good tissue penetration (especially in
the respiratory tract), which is an advantage in the treatment of
CF lung disease [70]. However, this antibiotic is expensive
and clinical experience is limited [23]. The combination of
amoxicillin with clavulanic acid by oral administration may
also be used when both S. aureus and H. influenzae infections
are present [23].

Other therapeutic agents

& Gene therapy

Gene therapy is under investigation and investigational
approaches are focused on molecules that restore CFTR
function or structure [4, 71, 72]. Although the lung epithe-
lium may be easy to reach by inhaled gene vectors as a
targeted treatment, efficient and safe formulations of viral
and non-viral vectors are still awaited [4, 73].

& Antimicrobial peptides

Antimicrobial peptides such as lysozyme and lactoferrin
are present in the ASL and their antimicrobial [2] (and anti-
inflammatory) activity have been investigated because the
levels of these peptides are increased in CF patients.
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However, the high salt concentration resulting from the
CFTR dysfunction reduces their activity [19, 74, 75]. Nev-
ertheless, the innate airway defence offers the opportunity for
the development of novel therapeutic approaches [75]. Secre-
tary leukocyte proteinase inhibitor and pre-elafin are other
resident lung molecules that demonstrated antimicrobial ac-
tivity against P. aeruginosa. The aim now is to determine the
role of protease inhibition in CF lung disease [19, 75, 76].

& Vaccination

The prevention of P. aeruginosa infection has an impor-
tant role in the treatment of CF patients. Some authors
concluded that anti-pseudomonal vaccination could be ef-
fective in preventing P. aeruginosa lung infection [35, 36,
77], and some concluded that nasal and oral vaccines are
promising candidates for inducing a specific antibody re-
sponse in the lungs of CF patients [35, 36].

Indications of anti-pseudomonal inhaled antibiotics
according to CF disease evolution

Antibiotic resistance and more pathogens in this disease lead
to new strategies in the life-long treatment of pulmonary
infection [19]. Some authors described the airways as the
major therapeutic target in this disease. Antibiotics given
systemically enter the bronchial secretions from blood by
simple passive diffusion and some of them diffuse poorly
across lipid membranes and into bronchial secretions [3].
Therefore, some drugs are delivered via inhalation to allow
high doses of drug at the site of action and decreasing
systemic absorption and side effects [4, 16, 19]. Thus,
inhalational drug formulations are an attractive and interest-
ing mode of delivery of some drugs to treat CF patients [4]
and, more particularly, inhaled antibiotics may be used as
prophylaxis, to eradicate early infection, to suppress chronic
infection or to treat acute pulmonary exacerbations [16].

Prophylaxis

Regarding prophylactic therapy, paucity of data supports its
use and it also has some risks, such as cumulative drug
toxicity and the investment of money and time in something
unproven [6, 16], but CF patients cannot recuperate previous
pulmonary function after pulmonary exacerbations and, there-
fore, aerosolised antibiotics may control this problem [14] .

Early eradication

Until now, there are no convincing data showing that the
eradication of P. aeruginosa improves the long-term prog-
nosis [6, 16]. However, an eradication protocol for the first
appearance of P. aeruginosa has been developed in CF
patients between 1995 and 2009 and included 2 weeks of

intravenous piperacillin and tobramycin, followed by oral
ciprofloxacin for 3 weeks and nebulised colistimethate for
6 months. The results showed clinical, economic and re-
source utilisation benefits [78]. Other studies have been
performed, such as inhaled tobramycin alone [7, 79],
tobramycin with oral ciprofloxacin [7] and nebulised colis-
tin with oral ciprofloxacin [6, 7, 80], and all of them showed
good efficacy. Nevertheless, there is a lack of evidence from
large randomised trials to define the optimal drug(s), doses,
delivery methods and duration of treatment for early P.
aeruginosa eradication [16]. Although more approaches
have been described, there are mainly two prospective
multi-centre studies (ELITE in Europe, EPIC in USA) that
tried to determine the best treatment regime with less ad-
verse effects [6, 80]. EPIC compared different regime ther-
apies: participants inhaled tobramycin with either oral
ciprofloxacin or placebo during treatment cycles, but the
results showed no significant differences between them [1,
81, 82]. ELITE concluded that TOBI® twice daily for
28 days was as effective as 56 days and was a well-
tolerated therapy for early P. aeruginosa infection in CF
patients [17]. In this study, almost all of the randomised
patients had negative cultures for P. aeruginosa one month
after the end of treatment and the majority continued to have
negative cultures 27 months later, but clinical outcomes
were not compared between patients who did or did not
become culture-negative for this bacterium. Nevertheless, a
recent 3-year prospective cohort study of adult patients with
CF from Canada examined the clearance of P. aeruginosa
from their sputum and its relationship to the clinical status of
patients. The study concluded that changes in the P.
aeruginosa sputum culture status may not reliably predict
an improvement in clinical status [83].

Chronic infection treatment

The best evidence regarding the indication of antibiotic aero-
sol is chronic infection with P. aeruginosa [6]. According to
the Cystic Fibrosis Foundation, inhaled tobramycin was
recommended for chronic use to improve lung function and
reduce pulmonary exacerbations (for children less than 6 years
old, no recommendation was made) [16, 49], but the new
European guidelines recommended inhaled antibiotics for
CF patients irrespective of lung function [6, 16, 49]. Inhaled
colistimethate is also used in Europe against chronic infection
but there were little evidence about its benefit [6].

Treatment of pulmonary exacerbations

These exacerbations in CF are usually treated with oral or,
more frequently, intravenous antibiotics and, as patients
recover, inhaled antibiotics are also used to suppress growth
of the bacterium [4, 49]. Some authors demonstrated that
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inhaled antibiotics reduce both the frequency of pulmonary
exacerbations and the number of hospitalisations [14]. How-
ever, due to the risk of toxicity, the Cystic Fibrosis Founda-
tion concluded that “there is insufficient evidence to
recommend for or against continued use of inhaled antibi-
otics in patients treated with the same antibiotics intrave-
nously for the treatment of an acute exacerbation” [3, 49]
and, thus, further studies are necessary [16]. Nevertheless,
both chronic and airway clearance therapies may be continued
during an exacerbation [49]. Different antibiotics are admin-
istered according to colonised pathogens in CF patients. As
previously described, P. aeruginosa was usually eradicated
with at least two antibiotics, including intravenous
aminoglycosides, intravenous and oral fluoroquinolones, and
intravenous beta-lactams [4]. According to the Cystic Fibrosis
Foundation, “once-daily dosing of aminoglycosides is prefer-
able to 3-times daily dosing” [49], as reported for tobramycin
[17]. In order to eradicate other pathogens, other antibiotics
such as amoxicillin–clavulanic acid, clindamycin, linezolid
co-trimoxazole and macrolides were also used [3, 4, 84].

New perspectives of treatment by inhalation in CF
patients

Lung particularities

In order to understand the advantages due to inhaled antibi-
otics in the treatment of infection by P. aeruginosa in CF
lung disease, some issues related to lung characteristics have
been taken into account and are described below.

Briefly, the lungs may be divided into two main zones:
respiratory and conducting zones [85]. The main defence
mechanism of the conducting zone (trachea, bronchi and
terminal bronchioles) is the mucociliary escalator and poly-
morphonuclear neutrophils (PMNs) recruited from the re-
spiratory zone. This zone has cilia, goblet cells and
submucosal glands. In the respiratory zone (respiratory
bronchioles and alveoli), the defence system consists of
alveolar macrophages and defensins. In respect of P.
aeruginosa, the non-mucoid phenotype is located mainly
in the conductive zone, while mucoid strains are located in
both respiratory and conductive zones [1].

It should be noted that pulmonary delivery is a route of
administration that may be used as a means of systemic deliv-
ery, an alternative to parenteral routes, when the drug has poor
bioavailability by the oral route of administration [86]. Some
lung features, such as the large surface area for absorption, the
high solute permeabilities and the limited proteolytic activity,
make this method preferable to administering some drugs (e.g.
α2-adrenoceptor agonists, corticosteroids, antimycobacterials
and therapeutic macromolecules such as insulin) [87]. As
reported by Patton, in order to be absorbed from the lung into

the blood, a macromolecule must pass through several barriers,
including the monolayer of surfactant, the surface lining fluid
(airway fluid contains mucus in contrast to alveolar fluid), the
epithelium, the interstitium and the basement membrane and
the vascular endothelium [88].

The focus of the present review is on inhalation therapy
as a means to provide high local doses and limited systemic
exposure [86, 89, 90]. As reported by Pilcer and Amighi,
local delivery of drugs to the lungs is desirable, particularly
in patients with specific pulmonary diseases such as CF,
asthma or chronic pulmonary infections. The principal ad-
vantages include reduced systemic side effects and higher
drug doses at the site of drug action [91].

A study in the Copenhagen Cystic Fibrosis Centre con-
cluded that the intensive antibiotic therapy used at that
institution for chronic P. aeruginosa infections appears to
restrain but not eradicate the bacteria from the conductive
zone, while the remaining healthy respiratory zone may be
protected, for a prolonged period, from massive biofilm
infection. This strongly suggests that the conductive zone
serves as a bacterial reservoir where the bacteria, organised
in mucoid biofilms within the mucus, are protected against
antibiotics and host defences [92]. Other authors concluded
that nebulised colistin and tobramycin [93] reached high
concentrations in the conductive zone (sputum), but the
concentrations in the respiratory zone were very low. On
the contrary, antibiotics given via oral or intravenous routes
reached very low concentrations in the sputum and high
concentrations in the respiratory zone due to direct transport
by the alveolar blood capillaries [1]. Thus, it is easy to
understand the importance of combined oral, intravenous
and inhaled therapy to achieve high drug concentrations
throughout the respiratory tract.

The importance of particle deposition in the respiratory
tract

Understanding the process of particle deposition in the
respiratory tract is of great value to improve efficiency in
the drug delivery of inhaled drugs [94]. The main forces that
are involved in the deposition of particles include gravity,
inertia and impulse transfer from collisions with gas mole-
cules [95]. Therefore, particles are deposited by three main
basic mechanisms, including sedimentation, inertial impac-
tion and diffusion toward the surfaces of the respiratory tract
[94, 95], as represented in Fig. 3.

Gravitational sedimentation and inertial impaction are the
main mechanisms of deposition of particles over 0.5 μm and
below 5 μm aerodynamic diameter (da) in the small
conducting airways [91]. Impaction occurs principally at
the airway bifurcations. It is the main deposition mechanism
in extra-thoracic and large conducting airways and for par-
ticles with particle size >5 μm. Diffusion, which results
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from a Brownian motion caused by the impact of sur-
rounding air molecules, is the main deposition mecha-
nism in small airways and alveoli, and most common
for particles <0.5 μm [85, 91].

The aerodynamic diameter is defined as the diameter of a
sphere with a unit density (ρ) that has the same terminal
settling velocity in still air as the particle in consideration
[91, 94, 96]. For efficient lung deposition, inhalation aero-
sols should have aerodynamic diameter in the 1 (or 0.5) to
5 μm range [1, 91, 97]. Larger particles (>5 μm) impact in
the upper airway and smaller particles (<1 μm) are easily
exhaled [1, 97]. If particles have a density close to one,
aerodynamic diameters and geometric diameters (dg) are the
same, which is the case in most of the commercialised forms
(solid powder or nebulised liquids). However, there might
be some advantages of using low-density particles of larger
geometric diameter (given that da ¼ dg � ffiffiffi

ρ
p

), while keeping
the aerodynamic diameter within the optimal range [91]:
easier powder dispersion and lower macrophage uptake.
Thus, the key to the success of the controlled-release parti-
cles might be the highly porous nature with low density, i.e.
ρ ∼ 0.4 g/cm3 [98].

The aerodynamic size of particles can be determined in
vitro with cascade impactors. The mass median aerodynam-
ic diameter (MMAD) and geometric standard deviation
(GSD) are generally reported in the particle characterisation
in order to estimate the particle deposition in lungs. Several
mathematical models are used in predicting the deposition

patterns of particles in the lung, even considering different
disease states.

Additionally, there are two other mechanisms of particle
deposition, known as interception and electrostatic precipi-
tation, which are related to particle shape and electrostatic
charges, respectively [94], but are not discussed herein.

Particle deposition is influenced by other factors such as
the pulmonary physiology of patients and different pulmo-
nary diseases, including CF lung disease [91, 94]. In addi-
tion, patient factors can affect the efficiency of inhaled
therapy, particularly the respiration rate and tidal volumes.
Optimal conditions include slow and rhythmic inspiration in
order to promote a more homogeneous distribution of drug
particles [14].

Additionally, some issues complicate the aerosol formu-
lation, such as drug loss during inhalation, dosing difficul-
ties, enzymatic degradation within the lung and high costs of
production. To overcome these, a formulation must be able
to be incorporated into an aerosol form and to remain stable
against forces generated during aerosolisation. In addition, it
should target a specific site or cell population in the lung,
protect the compound against aggressive elements in the
pulmonary tract and release the compound in a pre-
determined mode within an acceptable period of time with-
out producing toxic byproducts. It should also be inert to the
surrounding tissue and contain no irritating or toxic addi-
tives [99].

CF sputum: a barrier to pulmonary administration

Drug delivery to the deep lung may be impeded by changes
such as mucus hypersecretion or thickening, fibrosis or poor
blood circulation. Thus, a deep understanding about the
impact of the disease (in this case, CF lung disease) on lung
pathophysiology is required in order to avoid or reduce the
risk of failing to deliver an inhaled particle [86]. More
particularly, Ibrahim et al. described the CF sputum as a
physical, chemical and biological barrier and as a stage for
bacterial resistance [4]. Normal mucus consists of a high
percentage of water (90–95 %) and a small amount of
mucins, DNA, lipids, electrolytes, proteins and cells. This
mucus is easily traversed by gas, ions, nutrients and pro-
teins, and can protect the organism against foreign sub-
stances such as toxins and pathogens [4, 100]. CF sputum
has less water (90 %) and intact mucins, and more DNA and
actin, which provides a higher viscosity to mucus [4]. In
addition, mucins have negative charge (carboxyl groups)
and form disulphide bonds, physical entanglement and
non-covalent interactions [4, 101]. P. aeruginosa is able to
evade antibiotic therapies, changing into mucoid strains and
forming biofilms. These biofilms, as mentioned above, are
resistant to phagocytosis and antibiotics. Their content in
oxygen and nutrients are low, which slows down the growth

Fig. 3 Schematic diagram representing particle deposition in the lungs
according to three main mechanisms related to particle size. It is
evident that the smaller particles are deposited in the lower airways
as opposed to the bigger particles. Reproduced from reference [94],
with permission

1240 Eur J Clin Microbiol Infect Dis (2013) 32:1231–1252



of the bacteria there and reduce their susceptibility to some
antibiotics.

Sputum has to be traversed by some drugs, including gene
therapeutics and ion-channel regulators. Other drugs such as
aerosolised antibiotics have to penetrate the sputum, where
they should be evenly distributed [4]. Thus, it is very impor-
tant for drug delivery to understand the interaction between
the drug and CF sputum. Some interactions between sputum
and drugs are reported, such as tobramycin, which provides
electrostatic interactions with mucus and biofilms, leading to
impaired activity, as previously discussed in this review [19].

In addition, DNA and actin have the ability to form a
polymer that increases the sputum viscosity [4, 102] and, for
example, nanoparticles (e.g. used for the delivery of genetic
therapeutics) have difficulty in moving through the viscous
sputum.

Some authors proposed modifying the nanoparticles’ sur-
face with polymers such as polyethylene glycol (PEG) with
low molecular mass to reduce the interactions between these
particles and sputum, to limit their aggregation and to de-
crease alveolar clearance [4, 103, 104]. The administration
of mucolytics before nanoparticles administration may re-
duce the steric hindrance of mucus, but have two types of
outcomes [4]: (1) the delivery of particles with deoxyribo-
nuclease (DNase) and adenoviral genes is enhanced by
mucolytics such as N-acetylcysteine [4, 105–108]; (2) gene
transfection efficiency is, however, not improved [4, 108].
Pulmonary co-administration of antibiotics and mucus-
thinning agents may also be a good tool for local therapy
in CF patients. As reported by some authors, an inhalable
dry-powder system co-delivering DNase and ciprofloxacin
may kill the bacteria in sputum more efficiently than parti-
cles with ciprofloxacin alone [4, 109]. Some authors pro-
posed the osmotic agent mannitol as an alternative to DNase
and observed that it improved the antibacterial efficiency of
ciprofloxacin against P. aeruginosa. Mannitol has the ability
to increase the local water content in the mucus and en-
hances drug penetration into it [110, 111].

Antibiotic aerosol solutions

Aerosolised antibiotics are generally well tolerated, but
some adverse effects have been reported, such as cough
and throat irritation, which are more frequently observed
with dry-powder formulations. Dysgeusia and a decrease in
pulmonary function after administration have also been
reported. Nevertheless, these effects appear to be more
related to aerosolised particles than to the direct pharmaco-
logical effects of the drug [14].

In addition, nebulised drugs must be more potent and the
time of administration should be reduced in order to im-
prove compliance to therapy. The concomitant administra-
tion of nebulised antibiotics may form precipitates and may

lead to antibiotic resistance owing to antibiotic dispersion
into the ambient air [46]. Therefore, dry-powder formula-
tions may avoid these problems, as will be discussed herein.

As described previously, thickened mucous secretions
result in areas of low oxygen concentrations, which lead to
reduced potency/activity of aminoglycosides and beta-
lactams/monobactams, but less so for fluoroquinolones
agents. These differences may have important therapeutic
implications [2]. As reported by Bolon, fluoroquinolones
result from the addition of a fluorine atom at position 6 of
quinolones, a chemical alteration that improves both drug
penetration into the bacterial cell and activity against Gram-
negative bacteria [43]. With respect to this class of antibi-
otics, levofloxacin (inhaled) is being developed as a solution
for use in the eFlow mesh nebuliser. A recent study evalu-
ated the pharmacokinetics and safety of levofloxacin (single
180-mg dose of two formulations, followed by a multiple-
dose phase of 240 mg) and showed high sputum and low
serum levofloxacin concentrations [16, 112]. Additionally,
Cmax/MIC and AUC/MIC ratios in the airways were sub-
stantially larger than with oral or intravenous administration.
A phase 2b trial with levofloxacin (inhaled) demonstrated a
reduction of P. aeruginosa in sputum and improvements in
lung function. The phase 3 trial has been completed (Fig. 4).
According to previous information, levofloxacin appears to
be more potent against P. aeruginosa biofilms than
aminoglycosides and aztreonam. Thus, a high level of
levofloxacin readily achievable in the lung following aero-
sol delivery might be useful for the management of pulmo-
nary infections in CF patients [17].

With respect to beta-lactams, aztreonam, which has
antibacterial activity against Gram-negative aerobic bacte-
ria, has been proposed as an aerosolised formulation to treat
CF patients, although intravenous aztreonam formulation
appeared to be not appropriate for pulmonary administration
because it contains arginine, leading to airway inflammation
[19]. To overcome this problem, the drug has been
reformulated as a lysine salt for inhalation [16] and showed
improvements in pulmonary function and reduction in

Fig. 4 The Cystic Fibrosis Foundation dynamic ‘pipeline’ of anti-
infective therapy. Reproduced from the Cystic Fibrosis Foundation
[151], with permission

Eur J Clin Microbiol Infect Dis (2013) 32:1231–1252 1241



bacterial density in the lungs of CF patients with chronic
airway Pseudomonas infection [1, 113, 114]. Aztreonam
lysine for inhalation solution (AZLI; Cayston®; Gilead Sci-
ences, Foster City, CA, USA) has recently been developed
as an inhaled antibiotic and was approved by the US Food
and Drug Administration (FDA) in 2010 for the treatment of
chronic P. aeruginosa infection in patients with CF (Fig. 4).
This formulation is administered with the Altera® Nebulizer
System, which uses eFlow® electronic nebuliser technology
with a vibrating, perforated membrane that can generate
particles with optimal particle size for delivery to the small
conducting airways and over a period of about 2–3 min
(highly efficient delivery compared with jet nebulisers)
[114–116].

Tobramycin (TOBI® Novartis Pharmaceuticals, Basel,
Switzerland) is currently available as a nebulised solution
(Fig. 4), as previously described [4]. Recently, fosfomycin
in combination with tobramycin [93] has been investigated
for inhalation in a phase 2 study, with promising activity
against P. aeruginosa [1, 16, 117].

Dry-powder formulations

These formulations are particularly useful for potent drugs,
but they have also been used for less potent drugs, such as
antibiotics, leading to the administration of higher doses,
which reduce patient tolerance. It may be necessary to
administer drugs for several minutes and multiple doses
when higher doses are required [14]. However, dry-
powder formulations are more time-efficient and more hy-
gienic than nebulised liquid formulations [4]. As reported by
Høiby, dry-powder inhalers may deliver each dose in one-
third of the time required for nebulisation [1]. Being able to
deliver anti-pseudomonal therapeutics with a portable inhal-
er in a fraction of the time required to deliver the same drug
via nebulisation is expected to improve quality of life and
compliance by CF patients [118].

Currently, inhalable dry powders of some anti-infective
drugs, including ciprofloxacin, gentamicin, tobramycin and
colistin, have been studied in clinical trials [4].

Inhalable dry powder is being developed for ciprofloxacin,
alone or in association with recombinant DNase, which may
be a promising strategy for local anti-pseudomonal therapy
[17]. Additionally, inhaled ciprofloxacin hydrochloride [log P
(o/w)=0.28] is rapidly absorbed into the systemic circulation,
with peak serum levels observed within a few minutes post-
inhalation. A dry-powder, controlled-release formulation of
ciprofloxacin betaine as a micronised drug coated with a
porous layer of phospholipid is currently in clinical develop-
ment for the treatment of chronic P. aeruginosa infections in
CF patients. Insoluble betaine salt at neutral pH dramatically
increases the lung residence time [118]. Taking into account
that co-encapsulating two or more antibiotics reduces the

amount of powder to be inhaled, particularly if the drugs are
synergistic [46], Adi et al. evaluated formulations containing
ciprofloxacin, doxycycline, or a combination of both, with
polyvinyl alcohol (PVA) in order to obtain a controlled-release
pattern. The results demonstrated good particle size distribu-
tion, thermal stability, acceptable aerosol performance and
modified release profiles [119]. As reported by Tsifansky et
al., the development of antibiotic resistance in CF patients
may be avoided by the concomitant administration of antibi-
otics in the same formulation, such as microparticles with
ciprofloxacin and ceftazidime with dipalmitoyl phosphatidyl-
choline (DPPC), albumin and lactose as excipients and pre-
pared by the spray-drying method [46]. In addition, the
combination of co-spray-dried mannitol and ciprofloxacin
from a dry-powder inhaler appears to be an attractive ap-
proach to promote mucus clearance in the respiratory tract
while simultaneously treating local chronic infection in CF
patients. In this case, the delivery of both an osmotic agent
(such as mannitol) and an antibiotic in one single dry-powder
dose could have many advantages, such as physical stability
and an efficient aerosol powder, but further studies are re-
quired in order to understand the in vivo antibacterial and
mucociliary clearance enhancement of these formulations
[111].

With respect to aminoglycosides, tobramycin inhalation
powder (TIP), a novel dry-powder formulation (total dose
112 mg), may allow a faster and more convenient dosing
regimen compared to the tedious inhalation of nebulised
solutions [16, 17]. TIP produced comparable systemic ex-
posure to 300 mg tobramycin solution for inhalation, in less
than one-third of the administration time but with cough and
dysgeusia as the most common adverse events [17], and the
phase 3 trial has been completed (Fig. 4).

Colistin has also been formulated as colistin sulphomethate
(i.e. methanesulphonate) dry-powder inhaler (Twincer® inhal-
er) and a clinical study showed that it was well tolerated by CF
patients. However, optimisation regarding particle size and
internal resistance of the inhaler is necessary to achieve
equivalent pulmonary deposition to liquid nebulisation
[120]. A dry powder for inhalation (Colobreathe®) has
recently received European marketing approval. Both
colistimethate solution and dry powder for inhalation were
found to be as effective against P. aeruginosa in chroni-
cally infected CF patients. Contrary to inhaled tobramycin
solution, inhaled colistimethate solution did not improve lung
function [121]. Colistimethate dry powder for inhalation was,
however, found to be non-inferior to inhaled tobramycin
solution towards lung function preservation, and is more
convenient in terms of administration procedure (1 min twice
a day vs. 20 min twice a day) and inhaler maintenance [122].

In spite of the advantages reported for dry-powder for-
mulations, i.e. mainly a shorter duration of administration
required over a solution of inhalation, there are some issues
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that need improvement. The deposition of high amounts of
dry powders on pulmonary epithelia may lead to adverse
effects, ranging from unpleasant taste, cough, throat irrita-
tion, dysphonia to haemoptysis, difficulty of breathing and
bronchospasm or even acute toxicity [64, 123]. In addition,
drug powders are immediate-release dosage forms that lead
to fluctuations of drug concentrations and necessitate fre-
quent administrations. To minimise these problems,
inhalable innovative drug delivery systems have been under
investigation [123] and will be discussed in the following
sections.

Innovative aerosol formulations

Sustained release of drugs in the lung may be achieved with
their incorporation in liposomes and other formulations,
such as biodegradable microspheres [89]. Controlled-
release formulations may increase and sustain lung concen-
tration, which contribute to better patient compliance due to
a decrease of dosing frequency and may reduce systemic
and/or local toxicity. Owing to these characteristics, these
formulations appear to be a good “tool” to deliver some anti-
infective drugs to treat P. aeruginosa lung infection in CF
patients.

However, the development of controlled-release formu-
lations for the lungs may be complicated by the multiple
clearance pathways (e.g. mucociliary clearance, macro-
phages clearance, systemic absorption, cough clearance)
and by concerns related to the safety and slow clearance of
retentive excipients (e.g. polymers) [118].

Liposomal formulations

Liposomes are one of the most investigated systems for
controlled pulmonary delivery, since they may be pre-
pared with phospholipids endogenous to the lung as
surfactants and may also incorporate both hydrophilic
and hydrophobic drugs [89]. Liposomes release the drug
over time and might reduce the dose frequency to once
a day or less [16], which may be important for CF
patients’ compliance. These formulations appear to be
able to maintain their integrity following nebulisation,
can penetrate mucoid biofilms [17, 118] and prolong the
residence time of the antibiotics in the lungs [16].
Triggering of antibiotic release from liposomes is medi-
ated by the rhamnolipids-produced biofilm-localised
bacteria [4]. However, other authors consider that the
nebulisation of liposomal formulations can cause struc-
tural disruption with consequent release of encapsulated
drug, and these formulations are unstable during storage
(even at low temperature). Thus, dry liposome powder
for inhalation may improve stability, which represents
an advantage of these forms [124].

Tobramycin liposome has shown significant increases in
both drug retention in the lung and antimicrobial activity
compared with classical formulations. However, the clinical
demonstration of the sustained release and long-term effica-
cy could not be demonstrated [19].

Sustained-release lipid formulation of amikacin
(Arikace™) is being developed for inhalation. It is delivered
in 10–13 min by Pari eFlow and showed superior clinical
benefit (e.g. improved lung function) and prolonged time
intervals between exacerbations as compared to placebo [16,
17]. In a phase 2 study, Arikace™ administered once daily
for 28 days was well tolerated [17] and a phase 3 study is
being developed, as demonstrated in Fig. 4. The enzymes in
sputum and factors associated with P. aeruginosa can help
amikacin release from the liposomes, thus, targeting the
drug to the bacterial microenvironment.

Some authors developed liposomal gentamicin formula-
tion to compare its activity with free gentamicin against P.
aeruginosa. The results showed that the liposomal formula-
tion protects the drug from bacterial enzymes and facilitates
its diffusion across the bacterial envelope, and has an MIC
significantly lower than that of corresponding free gentami-
cin [125, 126].

Also, a liposomal ciprofloxacin formulation for
nebulisation is under development. A study with CF patients
treated with liposomal ciprofloxacin showed both a decrease
in sputum density and an increase in lung function [16]. The
hydrochloride salt of ciprofloxacin described in dry-powder
formulations has also been encapsulated in liposomes [118].

Microspheres as a new approach for the treatment of CF
patients

Microspheres may be an alternative to deliver some of the
therapeutic agents previously described. These formulations
may facilitate the dispersion of drugs in the inhaled air and
reduce the deposition in the oropharynx through adequately
modulated physical properties, and may target specific re-
gions of the respiratory tract by modifying the size and
density ratios of the particles [95]. Additionally, it is possi-
ble to control the kinetics using adequate polymers and
formulation additives. This innovative formulation may re-
duce the direct contact of highly concentrated drug formu-
lations with the lung tissue (and reduce the toxicity) and
allows a sustained release [123]. Therefore, microspheres
are expected to overcome the problems related to dry-
powder inhalers and nebulised solutions of anti-infective
drugs for the treatment of CF patients. In addition, micro-
spheres appear to be more stable, from the physicochemical
point of view, in comparison to liposomes and, thus, a
slower release rate and a longer duration of action may be
obtained. Thus, biodegradable microspheres may be more
easily formulated in a suitable pulmonary delivery in
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comparison with liposomes due to higher stability [89, 91].
Microspheres (polymeric or non-polymeric) may be devel-
oped to achieve drug targeting and to improve drug absorp-
tion, and, at the same time, with fewer adverse effects and
lower dosing frequency, maintaining the therapeutic effect
[87].

Currently, several inhaled microspheres for lung diseases
such as asthma and chronic obstructive pulmonary disease
(COPD), pulmonary arterial hypertension, tuberculosis and
lung cancer are under investigational research and appear to
be a good alternative to lung delivery, as presented in
Table 2. Thus, we can understand how these controlled-
release formulations may represent an interesting mode of
drug delivery in CF patients.

Beyond the scope of the present review, issues related to
these formulations are discussed elsewhere and include the
methods by which they are formulated: spray-drying tech-
nology [4, 127], interfacial polymerisation [128], emulsion
solvent evaporation [128], membrane emulsification [129]
or coacervation [130]. Regardless of the method, they
should have some common characteristics, such as ease of
scaling up, accurate and reproducible control over the size,
uniformity of the particles (particularly important in lung
administration) and compatibility with drug (high tempera-
ture, organic solvents or physical forces may affect the
bioactivity of the drug) [128].

Applications of polymeric microspheres Microspheres may
be composed of a biodegradable polymer matrix in
which the drug is distributed, presenting some advan-
tages, such as the possibility of encapsulation of many
types of drugs, general biocompatibility (low immuno-
genicity and toxicity [98]) and high bioavailability, and
ability of sustained release for long periods of time.
Drug release may be affected by some factors, including
the type of polymer, polymer molecular weight, copol-
ymer composition, nature of excipients and microsphere
size [128].

These polymers may be used to develop microspheres for
pulmonary delivery as a formulation that provides a
sustained drug release and allows high local drug concen-
tration and fewer adverse effects. This scenario leads to
fewer daily administrations, and, therefore, better patient
compliance to the therapy, which may be important in CF
patients.

& Poly(D,L-lactic-co-glycolic acid) (PLGA) inhaled
microspheres

Particles prepared from PLGA have generated consider-
able interest in recent years for their use as delivery vehicles
for various therapeutic agents. PLGA is, by far, the most
common biodegradable polymer that is used for the con-
trolled delivery of drugs due to its early use, well-known

biocompatibility [98], biodegradability [123, 127] and safe-
ty in biomedical preparations, which has been approved for
human use by the FDA [97, 127, 131]. However, its use in
the lung is not established yet [97]. Thus, there are some
questions about its physiological and immunological toxic-
ity in lungs that should be assessed, as reported by
Sakagami and Byron [87]. According to Dailey et al., some
polymers such as PLGA may be not suitable for application
in the respiratory tract, especially when frequent adminis-
tration is necessary due to its prolonged degradation rate
[99]. Additionally, PLA [poly (lactic acid)] and PLGA
showed significant reductions in cell viability compared to
lipid particles, and long residence due to slow degradation
might lead to pulmonary accumulation of polymers [124].
Nevertheless, Mura et al. have recently concluded that the
PLGA nanoparticles may affect the viability of Calu-3 cells,
but at concentrations that are too high for clinical use and
studies with lung cells (e.g. the A549 cell line) confirmed
the low cytotoxicity and the absence of inflammation [132].
Therefore, PLGA appears to be a safe ingredient of micro-
spheres for pulmonary administration in CF patients.

As already mentioned for effective pulmonary drug de-
livery, the physical properties of the particles are crucial and
the particle size range that is optimal for inhalation is 1–
5 μm. However, it is also ideal for phagocytosis and parti-
cles tend to agglomerate (due to Van der Waals and electro-
static forces) [133] and flow and disperse poorly [87]. For
effective pulmonary drug delivery, particles must avoid
phagocytosis by alveolar macrophages and should maintain
the appropriate aerodynamic diameter during storage. Large
porous microparticles may circumvent the previous prob-
lems, owing to their high geometric diameters and low
density, and smaller aerodynamic diameters improving lung
deposition [87, 133], as previously reported in this review
paper. Further engineering of the particle surface may im-
prove the dispersion and flow of PLGA microspheres by
minimising the particle–particle contact area. In order to
optimise the lung delivery of particles, two considerations
should be taken into account: size uniformity and
mucoadhesion. PLGA and PLA are both poorly adhesive
in comparison with other polymers (e.g. polyanhydrides),
possibly due to the limited hydrogen bonding potential with
mucus glycoproteins. However, they may be coated with
polymers with high densities of functional groups (e.g. poly-
amines) [98] and with polymers such as chitosan, as described
below in this review. Regarding PLGAmicrospheres, they are
commonly prepared by the solvent evaporation technique and
the water-in-oil-in-water (W/O/W) double emulsion is the
most common technique for encapsulating hydrophilic drugs.
Emami et al. proposed a single-phase oil-in-oil (O/O) solvent
evaporation technique to overcome several difficulties, such
as the low entrapment efficiency (EE) due to the leakage of
hydrophilic drugs to the outer aqueous phase. This study
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concluded that a low PLGA concentration and a high stirring
speed are necessary to obtain a small mean particle size and a
narrow distribution [97].

Yang et al. prepared non-porous PLGA microparticles by
a W/O/W double-emulsion method for pulmonary drug
delivery. However, most of the dry particles were present
in aggregates. Therefore, they aimed to improve the geo-
metric diameter and reduce MMAD to avoid macrophage
uptake. Hence, they prepared highly porous large PLGA
microparticles employing ammonium bicarbonate (an effer-
vescent porogen which is good for hydrophilic drugs) to
create porous microspheres. Subsequently, they encapsulat-
ed two model drugs, lysozyme and doxorubicin hydrochlo-
ride, in the highly porous large PLGA microparticles, and
concluded that this method is an efficient way of making
polymeric microparticles for sustained local drug delivery
by inhalation. Nevertheless, they tried to encapsulate cipro-
floxacin in the highly porous large PLGA microparticles,
but the resulting particles showed a very low fine-particle
fraction (FPF), because the majority of ciprofloxacin pre-
cipitated out as the pH of the internal aqueous phase in-
creased upon the ammonium bicarbonate addition.
Therefore, this encapsulation method would be of limited
use for the delivery of ciprofloxacin [133].

With respect to tuberculosis and, more specifically, to
infection byMycobacterium tuberculosis, some authors pre-
pared rifampicin-loaded PLGA microspheres. O’Hara and
Hickey compared double-emulsion solvent extraction and
spray-drying techniques in the production of microspheres
for inhalation, taking eight variables for the emulsification
in a factorial design and using a Box–Behnken statistical
approach to optimise the drug loading and particle size. The
authors concluded that the surface of the spray-dried micro-
particles appeared to have collapsed inwards and a had
smaller volume median diameter, in contrast to spherical
particles from the emulsion–extraction method [98, 134].
Based on the particle size, aerosol delivery to the lungs can
be more effective for the spray-dried products. However, its
efficacy has yet to be evaluated in in vivo studies. Recently,
Doan et al. have also prepared rifampicin-loaded PLGA
microspheres for sustained lung delivery by a dry-in-
emulsion [oil-in-water (O/W) or W/O/W emulsions] process
with a premix membrane homogenisation step, which was
proposed in order to produce monodisperse microspheres
with a high productivity [123].

In order to improve the antimicrobial efficacy of antibi-
otics for tuberculosis treatment, Giovagnoli et al. developed
large porous microspheres for capreomycin sulphate pulmo-
nary delivery prepared by the W/O/W double-emulsion
solvent evaporation method. The authors concluded that,
although this method was poorly applicable to large-scale
production, it was easy to implement and preserved PLGA
polymer characteristics. The obtained microspheres appearedT
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to be potentially useful as a tool for improving anti-tubercular
treatments. More detailed information is given in Table 2. A
potential liposomal capreomycin sulphate formulation has
also been developed for inhalation use [135].

With respect to pulmonary arterial hypertension, Gupta et
al. have recently studied the release of drug over a prolonged
period of time and the prevention of enzymatic degradation of
prostaglandin E1 by using prostaglandin E1-loaded PLGA-
based microspheres, which were formulated by the W/O/W
double-emulsion solvent evaporation method. These formula-
tions showed good metabolic stability and produced
prolonged release of prostaglandin E1 after pulmonary admin-
istration [136].

& Chitosan inhaled microspheres

In addition to the microspheres formulated with polymers
such as PLGA or PLA, natural polymers such as alginate,
albumin and chitosan (a natural cationic polysaccharide [127])
have also been used in the preparation of microspheres suit-
able for pulmonary delivery. They present several advantages,
including low cost, compatibility with a wide range of drugs,
minimal use of organic solvents, bio/mucoadhesion, stability,
safety and approval for human use by the FDA [130].
Bioadhesive properties are related to attractive electrostatic
forces between the negatively charged glycoprotein of mucin
and the positively charged amino groups of the polymer [137].
These properties allow an efficient absorption and enhanced
bioavailability, a much more intimate contact with the mucus
layer and a specific targeting of drug to the absorption [138].

Ventura et al. have prepared chitosan microspheres for
the intrapulmonary administration of moxifloxacin, a fluo-
roquinolone that may represent an interesting drug for the
treatment of CF lung disease. These microspheres were
prepared by the spray-drying method using glutaraldehyde
(GL) as the cross-linking agent. The produced microspheres
were spherical with suitable sizes for inhalation, as detailed
in Table 2. These authors concluded that formulation pa-
rameters such as concentrations of chitosan, moxifloxacin
and GL affect the microsphere sizes. For example, a higher
encapsulation efficiency (EE) was observed for higher chi-
tosan concentrations and the opposite is observed at the
highest GL concentrations [137].

As previously described about the strategy of coating poly-
ester polymers with other type of polymers, some authors
compared the particle stability during the nebulisation of
PLGA, chitosan and chitosan-coated PLGA microparticles
in delivering rifampicin to lung macrophages. PLGA micro-
spheres were formulated by an O/W solvent evaporation
method, while chitosan microparticles were prepared by the
precipitation method and particles with both chitosan and
PLGAwere prepared by the emulsion solvent diffusion meth-
od in water, as described in Table 2. These authors concluded
that PLGA polymer is better than chitosan for the preparation

of particles that could deliver rifampicin to alveolar macro-
phages after nebulisation. Nevertheless, a combination of the
two polymers leads to the formation of very stable micropar-
ticles with high loading capacity for rifampicin, lower cyto-
toxicity towards alveolar epithelial cells (compared to PLGA
microparticles) and equivalent (to chitosan microparticles)
mucoadhesive properties [130].

Moreover, several antibacterial (including anti-pseudomonal)
microspheres have been prepared for intravenous or ocular
delivery, and may represent an interesting tool for the develop-
ment of inhaled microspheres for CF lung disease, by adjusting
some formulation parameters. Some of these formulations are
present in Table 2.

Conclusions

Cystic fibrosis (CF) is a severe inherited disease which affects
particularly the lungs. Scientific research has been extensively
carried out on respiratory infections and their treatment in CF
lung disease. These respiratory infections are mainly due to
Pseudomonas aeruginosa infection and its treatment includes
anti-infective agents. More particularly, combined oral, intra-
venous and inhaled antibiotics are currently used to treat these
airways infections. Combination of antibiotics, including
aminoglycosides, beta-lactams and fluoroquinolones, are fre-
quently administered in order to avoid antimicrobial resistance.
Moreover, some innovative formulations for inhalation (e.g.
liposomes) are under investigation and appear to be a good tool
to improve quality of life in CF patients. These formulations
can achieve high local concentrations and may reduce antimi-
crobial resistance. They may also reduce adverse effects and
improve patient compliance to therapy. Other controlled-
release formulations such as microspheres may represent a
new approach in the treatment of this disease.
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