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Similarities between pandemics 
and cancer in growth and risk 
models
Lode K. J. Vandamme1*, Ignace H. J. T. de Hingh2,3, Jorge Fonseca4 & Paulo R. F. Rocha5,6*

Cancer and pandemics are leading causes of death globally, with severe socioeconomic repercussions. 
To better understand these repercussions, we investigate similarities between pandemics and cancer 
and describe the limited growth in number of infections or cancer cells, using mathematical models. 
For a pandemic, the analysis shows that in most cases, the initial fast growth is followed by a slower 
decay in the recovery phase. The risk of infection increases due to the airborne virus contact crossing 
a risk-threshold. For cancers caused by carcinogens, the increasing risk with age and absorbed dose of 
toxins that cross a risk-threshold, may lead to the disease onset. The time scales are different for both 
causes of death: years for cancer development and days to weeks for contact with airborne viruses. 
Contamination by viruses is on a time scale of seconds or minutes. The risk-threshold to get ill and 
the number-threshold in cancer cells or viruses, may explain the large variability in the outcome. The 
number of infected persons per day is better represented in log–lin plots instead of the conventional 
lin–lin plots. Differences in therapies are discussed. Our mathematical investigation between cancer 
and pandemics reveals a multifactorial correlation between both fragilities and brings us one step 
closer to understand, timely predict and ultimately diminish the socioeconomic hurdle of both cancer 
and pandemics.

Humanity is currently confronted with an extraordinary challenge: the coronavirus disease (COVID-19), which 
is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The socioeconomic impact emerg-
ing from pandemics, such as COVID-19, cholera and influenza, is astronomical, spanning from global scale 
quarantines and lockdowns, to intergovernmental  disputes1.

In parallel, cancer remains a leading cause of death globally. According to the World Health Organization, 
it was responsible for nearly 10 million obits in 2018. This debilitating disease has a critical financial burden for 
both the patient and society. In the US alone, the total of all cancer-related healthcare costs, were more than $80 
billion in 2015. In the European Union, healthcare spending of more than €57 billion was equally  alarming2,3.

Early detection and prediction are critical in both these deadly challenges. Mathematical and physical models 
can provide a better understanding and timely flag complex realities, in addition to summarizing vital data for 
both governments and citizens, including patients. The aim of the current study is to demonstrate that in pandem-
ics and cancer similar problems may be solved and timely flagged, using analogous mathematical and physical 
models. The growth in the number of cancer cells, viruses or infected people in pandemics may converge in a 
similar growth function. Cancer and pandemic problems can be diminished by realizing that for both diseases, 
the risk to get ill increases with exposure time either to toxins for cancer or to viruses for pandemics. Although 
the time scale is quite different, early diagnosis is in both cases crucial. The variability in the diseases is explained 
by the difference in individual number thresholds for cancer cells or viruses, below which the body can handle 
the problem. The individuality of each cancer makes the treatment difficult, because number thresholds can be 
quite different between individuals and cancer types. This also holds for the different growth rates of cancer cells. 
But the general picture remains.

There is a long history of models for exponential, limited and the sub-exponential  growth4–16. Limited growth 
models can describe pandemics and growth in biology, botanic, and tumors. One reliable model often used to 
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explain limited growth scenarios has been proposed by  Verhulst5,6. Verhulst proposed a new rate equation for 
bacterial growth with a finite sugar stock. Verhulst coined his model as the logistic equation. In his model, the 
cumulative number, N(t) of infected people over time t, gives an S-curve. The new cases per unit time (often one 
day) vs t, give rise to the pandemic curve. The important diagnostic tool, the pandemic curve, can be expressed as:

Initially holds: N ∝ Ṅ ∝ et/τ . Afterwards, N(t) levels off to a value M and in the Verhulst-like model, Ṅ 
decreases as Ṅ ∝ e−t/nτ . There is a need to understand that real data show a slower recovery than in the growth: 
n > 1. We make a plea for log–lin plot of N and Ṅ instead of lin–lin plots, because the early warning exponential 
growth is presented as a straight line. Data between regions with different population size and number of infec-
tions can easily be compared in one plot and the noisy data is represented in a relative way.

With a simple physical model, we explain four behavior rules in pandemics: distancing, hand washing, mask 
and face shield and ventilation with moderate air flow. A trapping model is proposed to explain the effect of 
absorbed dose of airborne viruses. The absorbed dose is often denoted in literature as ‘dose × exposure time’ for 
the integral dose. The individual risk increases with age and the effect of absorbed toxin holds for developing 
cancer. For some cancers the ‘exposure time’ is unknown or ultimately doesn’t exist. In our work, the ‘exposure 
time’ accounts for contact with viruses provoking an epidemic or with toxins provoking cancer. We note that for 
cancer, the contact time, has a scale of years and a scale of seconds or minutes for airborne virus contamination.

We want to understand the variability in age to get ill and variability in gravity of the diseases. The proposed 
crossing of a risk-threshold (virus or aggressive malign and benign cancer cell multiplication) is not terminal 
but explains that a person becomes ill under different conditions. Yet, in this work, the crossing of a number-
threshold means that growth is out of control and the disease can be deadly. Below the number-threshold, the 
body is in control and risk of dying is negligible.

Exponential growth and (generalized) logistic growth
The Poisson rate equation, exponential growth. N(t) and Ṅ are given by:

with N(0) ≡ N0 = 1 is Ṅ for exponential growth:

The Ṅ-curve is the pandemic curve describing the new infections per day. For cancer, the start of tumor 
growth and the ensemble averages are often exponential, as was recently observed in lung  cancer11,17. The risk 
probability on cell growth or infection is given by:

Note, the risk is represented by the slope of the straight line in the ln N vs lin t curve and not the slope of the 
curve in lin–lin. A small τ-value is an important indicator for the gravity of a pandemic or cancer growth. The 
gravity of a pandemic is also expressed in the doubling time, T2 for N and Ṅ . The doubling time of cancer cells 
may be 3 months, which means τ = 131 days. For a severe pandemic,  T2 can be one day, which is τ = 1.4 days. 
Here, days, weeks, months and years are henceforth abbreviated as: d, w, m, y, respectively. The reproduction 
number, R is also used to qualify pandemics. It is defined as the ratio between Ṅ(t) [d−1] at t +�t and at t. Hence, 
R depends on the choice for �t . Here, �t = 1d . Exponential growth means Ṅ ∝ et/τ and R > 1. In the recovery 
phase of a pandemic Ṅ ∝ e−t/τ and R < 1. For the exponential growth, the relations between the parameters: τ, 
R and T2 are given by:

with �t
τ

< 1 , then the parameter R is defined as:

The parameter τ can be extracted, leading to:

or, for R >  > 1 or �t
τ

≥ 1:

Equation (8) enables the calculation of parameter T2 as:

A daily increase by 39% in a pandemic means the reproduction number R = 1.39 and τ = 3 d. We note that 
small τ-values are an indication for the gravity of a dangerous epidemic, but large values aren’t. Table 1 is intro-
duced to shows the strong difference in sensitivity between the parameters: τ, T2 and R for exponential growth. 
To be specific, a range in R between 1.01 and 1.4 results in a range in τ between 100 and 3 d.

(1)dN(t)/dt ≡ Ṅ

(2)dN(t)
dt = N(t)

τ
→ N(t) = N(0)et/τ

(3)Ṅ
def= dN(t)

dt = et/τ

τ
= N(t)

τ

(4)h(t) ≡ dN
Ndt =

dlnN
dt = 1

τ

(5)R
def= Ṅ(t+�t)

Ṅ(t)
= N(t+�t)

N(t) = e�t/τ = 1+% change → 2 = eT2/τ

(6)R = e1d/τ ∼= 1+ 1d/τ

(7)τ
1d

∼= 1
R−1

(8)τ = 1d/lnR → R = e(1d×ln2/T2) ↔ % increase = (R − 1)× 100%

(9)T2 = 1d × (ln2/lnR) = τ × ln2
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The reproduction number R is close to one with a small range compared to the larger range in τ or T2. There-
fore, the communication to a broad pubic on growth is better in doubling time,  T2 or τ than in R-values. But R is 
also applicable for non-exponential growth and decay. The values  T2 and τ characterize only exponential growth.

For a less steep and dramatic increase in N(t) than an exponential growth a sub-exponential growth is applied 
to study early outbreaks of infectious  diseases12–14.

The Verhulst model for limited growth. Verhulst proposed the logistic equation for bacterial growth 
with a finite sugar  stock5,6. The logistic equation explains the often observed limited growth. The risk of growth 
in the logistic equation is the time dependency. Initially the risk is constant but after a certain time,  tinf it shrinks 
to zero. The time dependency was accomplished by multiplying 1/τ in the Poisson equation by the factor, 
(1 − N(t)/M), with the sugar dependent parameter M > 0. Another study made by Richards, denoted this rate 
equation as the autocatalytic function and compared the three most used growth functions at that time: mono-
molecular, autocatalytic and Gompertz  growth4,10. Up to date reviews of models can be found in  literature16,18,19.

In a pandemic, the measured τ is in reality an effective value and depends among others on the virus intrin-
sic value of the incubation time but also on extrinsic contributions like contact frequency, exposure time and 
quality of contact tracing. For cancer, τ depends on the growth rate of typical cancer cells, but perhaps also on 
life style. The M-value depends on population size and group immunity. On the other hand, for cancer, M is the 
maximum number of tumor cells that can survive with the existing nutrients limited by the available supply by 
blood vessels and the presence of tumor killer cells. The τ-value depends on the division time of the tumor cell. 
The Verhulst rate equation and solution for N(t) and Ṅ with N0 = 1 are given  by5,6:

The cumulative growth, N(t) , results in an S-curve in a lin–lin plot, typical for sigmoid functions. On a 
log–lin scale, as in Fig. 1a, the exponential and limited growth starts as a straight line. At t = 0, we assume N(0) 

(10)dN(t)
dt =

(

1− N(t)
M

)

τ
× N(t) → N(t) = M

1+(M−1)e−t/τ = Met/τ

et/τ+(M−1)
→ Ṅ = M(M−1)e−t/τ

τ(1+(M−1)e−t/τ )
2

Table 1.  Parameters describing the exponential growth phase.

R reproduction number % increase per day T2 [d] doubling time τ [d] characteristic time 1/τ [d−1] risk

1 0 ∞ ∞ 0

1.023 2.3 30 43.3 0.023

1.104 10.4 7 10,1 0.099

1.21 21 3.63 5.24 0.191

2 100 1 1.44 0.694

(a) (b)

Figure 1.  The exponential and limited growth in log–lin and lin–lin representation. (a) log–lin plot of the 
cumulative incidence, N(t) and the pandemic curve, the new infected persons per day: Ṅ ≡ dN

dt
∼= �N

�t  for 
�t < τ . The values: R, tinf  and Ṅmax depend on τ and M. (b) lin–lin plot of (a). The black line in (b) is the 
so-called S-curve, not visible in the log–lin plot. The small values are not visible to the human eye, if presented 
with large ones in a lin–lin plot.
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≡ N0 = 1, which ascertains that growth starts with one infected person or one tumor cell for the simulations in 
Figs. 1, 2 and 3.

The Ṅ-curve is used to monitor the pandemic. The limited growth is a pure exponential growth for M → ∞. 
The symmetric Ṅ-curve starts as Ṅ ∝ e

t/τ and decays as Ṅ ∝ e
−t/τ . Yet, we note that real data often shows 

non symmetric Ṅ - curves, with a slower recovery than that of the growth phase. From the ‘1918-pandemic’ in 
 Philadelphia16 we inferred from a log–lin plot the following:

The Verhulst-like equation can fit these asymmetric Ṅ-curves, as discussed in the following section of this 
manuscript.

In a virulent pandemic, in the absence of medicine and vaccines and at a time t*, we often observe stronger 
rules for quarantine. These rules are proposed to ‘flatten the pandemic curve’. One expects that stronger 

(11)τrecovery = 1.76× τgrowth

(a) (b)

Figure 2.  The Verhulst-like model in log–lin compared to a lin–lin representation of Ṅ(t) . (a) The generalized 
logistic model or Verhulst-like model: N(t) and Ṅ(t) are compared between fast (n = ½), medium (n = 1) and 
slow (n = 2) recovery. The Verhulst-like solution with M → ∞ is nothing else than the exponential. (b) lin–lin of 
Ṅ in (a).

(a) (b)

Figure 3.  Merits of log–lin plots. (a) Real data (full lines) for the number of infections by COVID-19 
pandemics in Italy (black) and The Netherlands (red) over only 13 days, t = 0 corresponds to 7 March 2020. The 
inferred τNl = 4.7 d and τIt = 5.7 d from the log–lin plot suggest a different handling by authorities. (b) The merits 
of a log–lin plot by the simulation of N (full lines) and Ṅ (dotted lines).
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quarantine rules result in: Mnew < M and τnew > τ. With new quarantine circumstances, the infection process con-
tinues as depicted in Fig. 1a, but with new parameters. The new parameters are: 1 < N(t∗ = 0) ≡ N0 < Mnew 
and τnew > τ. By ignoring the incubation lag, the logistic equation comprises N0  = 1 as:

In a similar trend, the number of cancer cells can also level off. The growth could be limited when the tumors 
need more nutrition and energy than the one currently  available20. A change in M and τ can be provoked by a 
pharmaceutical agent to tackle metastasis. This results in irregular growth and is discussed in “Irregular growth 
kinetics for cancer and pandemics, simulation based on (12)” Section.

Figure 1a shows the N(t) as a function of time t, in a log–lin plot. The exponential and limited growth are 
represented by full lines. The simulation parameters are: τ = 5 d, M = 5 × 104 and τ = 10 d, M = 104. From the 
initially slope in the log–lin plot, an increase in number of patients by a factor of ten, in 12 days, is observed 
(τ = 5 d). The dotted lines show the symmetric Ṅ-curves. The reproduction number for the exponential parts is 
R = e1/5 = 1.221 (black) and in the recovery phase is R = e−1/5 = 0.818 . Around the top is R ∼= 1 and beyond 
is 0 < R < 1.

The inflection point, for N0 = 1 on the N(t)-curve is indicated on the lin–lin version of Fig. 1a, in Fig. 1b. A 
higher τ- and lower M-value result in a lower maximum of the pandemic curve. A strong exponential growth 
shows a steep slope in the log–lin plot and a low τ-value. This is a warning to ‘flatten the Ṅ-curve’, in order to 
keep the number of hospital patients below a critical level. The measures applied in behavioral epidemiology, to 
increase τ and decrease M span from home isolation, reducing contact frequency, controlling the size of contact 
bubbles, increasing social distancing, hygiene to timely tracing ‘super spreaders’, e.g., people that are not very ill 
but are spreading much more (10 to 100 times) viruses than contaminated people on the average.

The asymmetric pandemic curve from the general logistic rate equation. Von  Bertalanffy8,9 
studied the growth rate in weight of animals. The time dependent growth was split in an anabolism term ( y ) vs 
weight ( W ) as y ∝ Wα (where α is a dimensionless fitting exponent) and a catabolism term: y ∝ W . In contrast 
to phenomenological models such as the logistic and generalized logistic ones, the refined mechanistic model 
by Von Bertalanffy, suggests an analysis in first principles. But this is at the expense of more unknown param-
eters and complex set of equations. Models as Susceptible-Infectious-Recovered (SIR) and Susceptible-Exposed-
Infectious-Recovered (SEIR), have a set of 3 and 4 equations,  respectively16. Therefore, the flexible Verhulst-like 
model is presented here.

The risk decreases with time, for a susceptible group to get infected. This is modeled by the coefficient 
[

1− (N(t)/M)1/n
]

/τ with n > 0 . For n = 1 holds the Verhulst-model. However, for n  = 1 , the convenient Ver-
hulst-like rate equation results in an asymmetric Ṅ-curve, starting as:

and decaying as:

with n = τdecay/τgrowth . The Verhulst-like equation starts as an exponential, which is in contrast to the sub-
exponential growth. The rate equation is widely used and  discussed15. The substitutions: (N(t))1/n = T(t) , 
N(t) = (T(t))n and M1/n = m change the Verhulst-like rate equation in the Verhulst-rate equation:

Fast recovery occurs for 0 < n < 1. Slow recovery occurs for n > 1 and, for n = 1, the epidemic curve is sym-
metric. The solution for (15) in T(t) with the use of (10) is:

with N(t) = (T(t))n:

giving for N(0) = N0 �= 1:

The solution reported by  Ma16, below his Eq. (8) with: C(t) = N(t), K = M, r = 1/τ and α = 1/n is wrong. Because 
the term exp

(

− rtKα

Kα−Cα
0

)

 in the 2nd Eq. on page 140 in the section, ‘Richards model’ should be: exp(−rαt) , which 
is Eq. (18) in our symbols. The parameters: n and M are independent, hence, n  = 1−M−1/n or in the notation 
used by Ma,16: 1/α  = 1− K−α.

The Verhulst-like expressions for: N(t), Ṅ  , the maximum Ṅmax at the inflexion time, tinf and N(tinf ) are 
summarized in Table 2. It shows the Eqs. (19–23) and (19c), (20c), for ‘slow’ decay with τdecay = 2τgrowth and 
Eqs. (19a) and (20a) for ‘fast’ decay, with τdecay = τgrowth/2 . The equations are used in the simulation of Fig. 2 
to compare: ‘fast’, Verhulst-limited growth and ‘slow’ for N , Ṅ , tinf  , Ṅmax and N(tinf ) . The effect of the exponent 

(12)N(t) = N0×Mnew

N0+(Mnew−N0)e−t/τnew
= N0×Mnew×et/τnew

N0×et/τnew+(Mnew−N0)

(13)Ṅ ∝ et/τ

(14)Ṅ ∝ e−t/nτ

(15)dN(t)
dt = N(t)

τ

(

1−
(

N(t)
M

)1/n
)

→ d(T(t))n

dt = nT(t)n−1 × dT(t)
dt = T(t)n

τ
×

(

1− T(t)
m

)

(16)dT(t)
dt = T(t)

nτ

(

1−
(

T(t)
m

))

→ T(t) = m
1+(m−1)e−t/nτ ,T(0) = N(0) = 1

(17)N(t) = M

(1+(M1/n−1)e−t/nτ )
n

(18)N(t) = MN0

(N0
1/n+(M1/n−N0

1/n)e−t/nτ )
n



6

Vol:.(1234567890)

Scientific Reports |          (2021) 11:349  | https://doi.org/10.1038/s41598-020-79458-w

www.nature.com/scientificreports/

1/n in the generalized limited growth model is outspoken in the Ṅ - curves, in dotted lines, but have less effect 
in the N(t)-curves, in full lines.

In Fig. 2, ‘fast’ (n = ½) shows for Ṅ(t) a higher maximum than ‘slow’ (n = 2; blue dotted line) for the same 
M-value. The log–lin plots show that the curves N(t) and Ṅ start proportional to et/τ , from which τ can be cal-
culated. Simulations with n > 1 fit better real pandemic outbreaks of influenza, Zika,  Ebola16 and COVID-1921. 
Sub-exponential models only fit early growth. We infer from data on influenza, in  191816, that τ = 3.6 d and n = 1.7.

A useful model fits evidences, with only a few parameters that supply information in a physical comprehen-
sible manner. The reduction in risk for infection with n > 1 in Eq. (15), may be explained by an increase in path 
length and time between fewer susceptible persons and lesser spreaders of virus sources. An existing empirical 
power law capable of describing the number of infections per individual within a certain population size P, is 
given by:22

with β  = 1 in most cases. The indicator, y denotes the number of infections. For many urban indicators β > 1 . 
In biology, the value β = ¾ was often proposed wrongly as a universal constant. The pace of live decreases with 
increasing  mass23. In biology a broad spectrum of phenomena scale over an immense range of mass with β < 1 .

The merits of log–lin plots: the slope of the tangent line in ln N(t) vs lin t is the risk
Testing the quality of noisy data and validating a hypothesis is easier from a log–lin plot, of N(t) and Ṅ , rather 
than from a lin–lin  plot24. A straight line in a log–lin plot means an exponential growth, which means a constant 
relative change per time interval (percentage change).

Comparing countries in a pandemic, makes more sense in log–lin plots of N(t) and Ṅ(t) , rather than in lin–lin 
plots. Steep slopes are a warning. Inferring from a log–lin plot, the parameter τ is simple. The risk of infection 
for susceptible per number infected is given  by24:

The tangent line analysis in lin N(t) vs lin t gives dN/dt, not h(t). The change of the relative risk, on an event 
after a cancer treatment, was recently discussed with log–lin survival  plots24. A log–lin plot is worth complicated 
statistical parameter testing.

The official diagnosed number of people, Nof, depends on the number of tests. Nof is often only 50% of the total 
number of infected people. The amount of virus patients in hospitals, NH, on intensive care, NIC, or deaths, N†, 
are fractions of Nof (t). For example, Nof(t) = f1N(t); NH(t) = f2Nof(t); NIC(t) = f3Nof(t) and N†(t) = f4Nof(t), with, in 
general, not constant values for f4 < f3 < f2 < f1 < 1. If the youngsters handle more viruses than the elderly people, 
then the fractions will depend on the parameter age. Data inhomogeneity often complicates the analysis.

Figure 3a shows real data from Italy and Netherlands (full lines). The simulation of three Ṅ-curves (dotted 
line) with: n = 2, M = 105, and τ = 5 d at the right hand scale, show the merits of log–lin plots. The effect of an 
arbitrarily chosen delay of 10 d between the rates: Nof (highest curve), NH (10%), and NIC (2%, lowest curve) 
results in parallel curves on log–lin scale. The low and high values are visible in log–lin plots and not in lin–lin 
plots. Figure 3b shows the merits of log–lin plots with a simulation for N(t) and Ṅ with Eqs. (10), (19c), (20c), 
for n = 1; n = 2; and (17) with n = 4.

Risk increases with time, speculations on risk- and number thresholds that explain 
the variability in outcome
Risk of infection increases with ‘exposure time’ for pandemics and for cancer. Airborne viruses 
are carried in small droplets and undergo Brownian motion. Brownian motion is at the origin of the diffusion 
time, till the virus is lodged at a sensitive spot in the body. The spread of the small droplets depends on the dif-
fusion coefficient and is given by the diffusion length LD:

(24)y = y0P
β → y

P = y0P
β−1

(25)h(t) ≡ dN
Ndt =

dlnN
dt = 1/τdyn(t)

Table 2.  Verhulst-like equations with N0 = 1, n =

τdecay
τgrowth

 with n = ½, 1 and 2.

N(t) = Met/τ

[(M1/n−1)+et/nτ ]
n  (19) Ṅ = M

(

M1/n−1
)

e−t/nτ

τ[1+(M1/n−1)e−t/nτ ]
n+1  (20)

tinf = nτ × ln
[

n
(

(M/N0)
1/n − 1

)]

 (21) Ṅmax = M
nτ × 1

(1+1/n)n+1  (22) N
(

tinf
)

= M
(1+1/n)n

 (23)

‘fast’ decay; n = 1/2
asymmetric Verhulst; n = 1; ‘medium’ symmetric ‘slow’ decay; n = 2 asymmetric

N(t) = Met/τ
[

(M2−1)+e2t/τ
]1/2  (19a) Met/τ

(M−1)+et/τ
 (19b)

Met/τ
[(√

M−1

)

+et/2τ
]2

 (19c)

Ṅ = M(M2−1)e−2t/τ

τ(1+(M2−1)e−2t/τ )
3/2  (20a) M(M−1)e−t/τ

τ(1+(M−1)e−t/τ )
2  (20b)

M(
√
M−1)e−t/2τ

τ

(

1+(
√
M−1)e−t/2τ

)3

 (20c)

tinf= τ
2
× ln

[

M2−1
2

]

 (21a) τ × ln(M− 1) (21b) 2τ × ln

(

2(
√
M− 1)

)

 (21c)

Ṅmax = 2

33/2
× M

τ
 (22a) 0.25× M

τ
 (22b) 4

27
× M

τ
 (22c)

N(tinf ) = M√
3
 (23a) M

2
 (23b) M

2.25
 (23c)
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with D the diffusion coefficient of 0.25 cm2 s−1 for water vapor in air and t represent the time of diffusion. The 
virus concentration and the contact ‘exposure time’ are important. The effect depends on absorbed dose, as was 
often experimentally verified for  toxins25. Large droplets with viruses go with the flow and fall on the ground. 
Larger droplets feel more the drag of the wind than the smaller ones that move more like Brownian motion. 
Large or small droplets depend on the speed of the air flow. In analogy, with the trapping model in physics, we 
propose that the risk of infection expressed as 1/τ  [s−1], for a susceptible person in contact with a virus source, 
can be modeled as:

with ϕ the effective surface  [cm2] of the receiver, or in a physicist language, the capture cross section. The capture 
cross section is reduced by a face shield and mask. The virus concentration n  [cm−3] at distance d between virus 
source and receiver, is in a limited range n ∝ 1/d2 . The concentration depends on the strength at the source, 
ns and due to diffusion on the contact ‘exposure time’. The proposed proportionality in a limited range of time 
and distance is:

This is the physical basis of the distancing rule. The effect of ‘exposure time’ is important. The speed, v of 
airborne viruses travelling on large or small droplets depends either on the speed of the air flow or the thermal 
velocity of small droplets. The air quality is high if filtered and UV disinfected.

The risk reduction in a pandemic translates into an increase of τ and a reduction of M. Each cancer has its own 
risk factors and population at risk. In our work, the risk for the onset of tumor growth depends on predisposi-
tion (including cancer specific and population risks) and effects depending on time, viz. ‘stress-dose’ × ‘exposure 
time’, and age. The absorbed dose has a mechanical (mesothelioma), chemical (toxins) or mental stress  origin25.

Speculation on variability in outcome of cancer and pandemics. Pandemics and cancer with small 
τ-values for growth are alarming. The risk, h(t), that cancer starts to develop, is assumed in analogy with the 
time dependent risk  as24:

with b < 0 and 0 < t < − 1
b . The parameter 1/τ0 [y−1] is the initial risk or predisposition for cancer. The param-

eter b [y−1] considers lifestyle, age (bt) and the absorbed dose impacts of stress, which may be a long list of pol-
lutants, including benzene, pesticides, tobacco and alcohol; that disturbs the endocrine behavior. Long lasting 
inflammations or a lack of lymphocytes reduces the immune system. The role of some bacteria that induced 
cancer by e.g., genotoxic pks (+) E. coli must not be  ignored26. These effects deteriorate the genes which control 
cell division.

In Fig. 4a, above an arbitrary risk-threshold level of 0.314 [y−1], cancer starts to develop in a conceptual 
diagram. The crossing of the risk-threshold, at different ages, and cancer specificity explains the variability in 
outcome. The risk profile of four individuals is shown. The individuals belong to groups denoted as: High Predis-
position and High Dose (HP-HD); High Predisposition and Low Dose (HP-LD); Low Predisposition and High 
Dose (LP-HD); and Low Predisposition and Low Dose (LP-LD). In our work, predisposition includes genetic 
susceptibility to cancer or infection, and simplistically accounts the different dynamics of the virus (and some 
cancers) in childhood and older adulthood. The LP-LD group, likely half of the world population, never reaches 
the risk-threshold in a lifetime. The risk-threshold is reached at the age, in years, of: t1 = 20 y for HP-HD; t2 = 40 
y for HP-LD; and t3 = 60 y for the LP-HD group. The arbitrary chosen τ0 and b-values in Eq. 29 characterize 
the different groups. On the other hand, for an airborne virus infection, a risk of infection that increases with 
contact time may be similar to Eq. (28), inspired by the diffusion time, until the viruses are lodged (time scale 
in seconds or minutes).

The sketch in Fig. 4b shows the exponential growth of cancer cells. The start of a tumor growth is assumed at 
the risk-threshold times: t1, t2, or t3 in Fig. 4a. We note that our body contains about 6 × 1013 cells and a tumor of 
242 gr counts about  1011 cells. A HeLa cell is about 2.42 ng27. In Fig. 4b, the number of cancer cells Ncells ranges 
from one to  1011. The number-threshold is arbitrarily chosen to be  105 cells, for simplicity reasons equal for all 
cases. Below that number, the body stays under control. Above, the immune and repair system is out of control.

Surgery is one of the possible therapies for localized cancer, therefore in Fig. 4b the resection is indicated by 
vertical arrows (in black). Relapse occurs if the remaining cancer cells are above the number-threshold indicated 
by the red arrow. The cell growth rate, 1/τ, depends on the tumor type, with concomitant patterns of aggressive-
ness and growth. The arbitrarily chosen doubling times are: T2 = 1 w, 1 m and 3 m for the three types denoted 
as GH, GM and GL. In Fig. 4b, the time scale is in weeks and the number-threshold is assumed the same for all. 
The variability in outcome may be predisposition, tumor type, absorbed dose effects and a different sensitivity 
resulting in different thresholds.

Irregular growth kinetics for cancer and pandemics, simulation based on (12). Growth plateaus 
were observed for breast cancer suggesting irregular growth  kinetics11,28. Regularity is not a universal charac-
teristic of malignant growth. Figure 5a,b, shows irregular growth, for cancer and pandemics respectively, with 
timescales normalized on the characteristic time τ at the start of each process. For the COVID-19 pandemics, τ is 

(26)LD =
√
D × t ∝

√
t

(27)1/τ = (φvn)

(28)n(d) ∝ ns

(

LD
d

)2

∝ ns
Dt
d2

→ Dt
d2

< 1

(29)h(t) = 1

τ0(1+bt)2
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about 5 d and for cancer cell growth, τ is between 100 and 300 d. Figure 5a shows that after a period of dormancy 
the tumor can be triggered to disseminate very fast, the so-called growth spurt. Among others,  angiogenesis20 
and  inflammations28 are two candidates at the origin of a growth spurt in cancer. A weakening of the behavior 
rules can trigger a second wave in a pandemics. The arbitrary parameters are indicated in the inset of Fig. 5a. 
Figure 5b shows the effect of a reduction in risk of infection by increasing τ by a factor of three and reducing M 
by a factor of ten. What happens without behavior measures is shown by the blue dotted line (M = 106). The effect 
of cancer treatment is simulated by the black line.

Conclusion
Our study reveals that the number of infections or cancer cells can be described using a limited growth math-
ematical model. Specifically, the mathematical model for limited growth proposed by Verhulst was used to explain 
the dynamics of both the on-going COVID-19 pandemics and cancer.

(a) (b)

Figure 4.  Exponential growth of cancer cells. (a) Variability in cancer due to an increase in risk with age of 
four individuals belonging to groups indicated by: H, high; L, low; P, predisposition; D, dose. The values for 
predisposition are: τ0 = 5 y (HP), τ0 = 20 y (LP). The effect of age and absorbed dose is reflected by the values: b= 
− 0.01 y−1 (HD), and b = − 0.005 y−1 (LD). (b) Exponential growth in cancer cells after crossing the risk-threshold 
illustrated in (a).

(a) (b)

Figure 5.  Irregular growth simulation with the Verhulst logistic equation, given by Eq. (12), with arbitrary 
parameters. (a) A sudden increase in risk results in a second wave in pandemics and a growth spurt in cancer. 
(b) A reduction of risk for growth can result in flattening the curve in pandemics or the tumor shrink by e.g., 
radiotherapy for cancer.
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The analysis on Verhulst limited growth model reveals that:

• Early detection and prediction for both developing cancers and pandemics benefits from observations and 
analysis in a log lin format, where steep slopes are an important warning; In routinely used lin lin plots, small 
values are not perceptive to the human eye;

• The asymmetry in the growth and decay rate in a pandemic curve Ṅ ≡ dN/dt depends on n = τdecay/τgrowth . 
With n > 1, the N ̇-curve fits better the real data;

• The risk of developing cancer or an infection depends on different time scales. Years for toxin exposure in 
cancer and seconds or minutes for an infection by airborne viruses. The absorbed dose should be considered 
in the onset of an infection and cancer;

• Behavioral rules in a pandemic including confinement, social distancing, masks and face shields and air 
conditioning can be explained using physical models such as the trapping model and Brownian motion. 
The analogy reveals that apart from a few early diagnostic tests in cancer, an early detection of a pandemic 
is easier than that of cancer.

Ultimately, our multifactorial analysis contributes to timely diagnose cancer and early predict pandemic 
peaks.
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