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Abstract 

 
Currently the majority of patients with locally advanced head and neck (H&N) cancer 

require radiotherapy, with intensity modulated radiation therapy (IMRT) being the gold 

standard for treatment. The highly conformal dose distributions produced by IMRT lead 

to steep dose gradients in the borders of the target volumes, which are extremely 

sensitive to positional errors and anatomic changes, especially in H&N cases, since there 

are many critical structures close to the target volumes. 

Several factors can lead to anatomic alterations of both the target volumes and organs 

at risk (OAR) during radiotherapy treatments which may originate discrepancies in dose 

delivery, namely underdosage of the target volume and/or to overdosage of the normal 

structures, potentially originating unexpected side effects.  

A possible solution to this problem is Adaptive Radiotherapy (ART). Recently a great 

deal of scientific attention has been drawn to this topic due to its encouraging potential 

benefits, but questions remain about whether patients benefit from a dosimetric 

improvement by ART, and about the identification of the patients that are more likely to 

need it. The purpose of this dissertation is to address these two issues. 

In the first part of this dissertation, the need for ART is assessed in a cohort of thirty 

patients from IPOCFG. This was done by using an automatic planning tool to generate 

plans simulating the scenarios with and without adaptation. Statistically significant 

dosimetric differences were reported for the target volumes, which presented lower near 

minimum dose in the non-adaptive scenario, and for the spinal cord, that showed a 

significant larger maximum dose in the non-adaptive scenario. 

The second part of the dissertation focuses on developing machine learning models to 

predict which patients will require adaptive radiotherapy prior to the beginning of 

treatment. Three support vector machine models were developed: 1) considering only 

pre-treatment clinical data from the patient; 2) considering only radiomic features 

extracted from pre-treatment computed tomography images; 3) using a combination of 

features from 1 and 2. The best classification results were obtained considering 6 

features (4 semantic and 2 radiomic) with median accuracy and area under the receiver 

operating characteristic curve of 0.821 and 0.843, respectively. 

Keywords: Radiotherapy, Adaptive Radiotherapy, Head and Neck cancer, Radiomics, 

Machine Learning 
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Resumo 
 

Hoje em dia a grande maioria de doentes com cancro da cabeça e pescoço localmente 

avançado requerem radioterapia, sendo a radioterapia de intensidade modulada (IMRT) 

o padrão para tratamento. As distribuições de dose altamente conformacionais obtidas 

com IMRT originam gradientes de dose acentuados nas margens dos volumes alvo, que 

por sua vez são extremamente sensíveis a erros posicionais e mudanças anatómicas, 

especialmente em casos de cabeça e pescoço uma vez que existem várias estruturas 

críticas muito próximas dos volumes alvo. 

Vários fatores podem contribuir para alterações anatómicas tanto nos volumes alvo 

como nos órgãos de risco (OAR) durante tratamentos de radioterapia, que podem 

originar discrepâncias na administração de dose, nomeadamente subdosagem dos 

volumes alvos e/ou sobredosagem dos órgãos de risco, potencialmente originando 

efeitos secundários não esperados. 

Uma possível solução para este problema é Radioterapia Adaptativa. Recentemente 

muita atenção tem sido direcionada a este tópico, devido aos seus encorajadores 

potenciais benefícios, no entanto, questões acerca do seu impacto dosimétrico e da 

identificação dos doentes com maior probabilidade de beneficiar de adaptação ainda 

permanecem por responder. O objetivo desta dissertação é abordar estes dois 

problemas. 

Na primeira parte da dissertação, a necessidade de radioterapia adaptativa é avaliada 

numa amostra de trinta doentes de cabeça e pescoço do IPOCFG. Recorreu-se a uma 

ferramenta de planeamento automático para gerar planos que simulam os cenários com 

e sem adaptação. Diferenças dosimétricas estatisticamente significativas foram 

encontradas para os volumes alvo, que apresentaram doses quase mínimas inferiores 

no cenário não adaptativo, e para a espinal medula, que apresentou uma dose máxima 

significativamente maior no cenário não adaptativo. 

A segunda parte da dissertação concentra-se no desenvolvimento de modelos de 

machine learning para prever, antes do início do tratamento, que doentes vão necessitar 

de radioterapia adaptativa. Foram desenvolvidos três modelos de support vector 

machine: 1) considerando apenas dados clínicos pré-tratamento; 2) considerando 

apenas atributos radiómicos extraídos de imagens de tomografia computorizada pré-

tratamento. 3) considerando uma combinação de 1 e 2. Os melhores resultados foram 

obtidos considerando 6 atributos (4 semânticos e 2 radiómicos) com precisão e área 

abaixo da curva ROC de 0.821 e 0.843 respetivamente. 
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Chapter 1 
 

Introduction 
 

The present dissertation focusses in the field of Adaptive Radiotherapy (ART). Since its 

introduction by Yan et al. [1] in 1997 a great deal of attention and research was drawn to 

the topic, due to its encouraging potential benefits for both tumoral control and ability to 

attenuate radiation induced side effects.  

In this work both the necessity and benefit of ART in Head and Neck cancer patients, as 

well as the ability to predict which patients would need this approach prior to the 

beginning of treatment will be addressed. 

 

1.1. Contextualization 
 

By 2025 it is estimated that there will be about 4 million new cancer patients in Europe, 

which represent an increase of 15.9% when compared to the 3.4 million diagnosed cases 

in 2012. The number of patients that will require radiotherapy (RT) at least once during 

their oncological treatment is also expected to increase from approximately 1,700,000 

patients in 2012 to 2,000,000 in 2025 (16.1% increase) [2]. 

In Portugal, oncological diseases are the second leading cause of death, preceded only 

by cardiovascular diseases, but they are also the cause of death with the highest 

increase rate over the last years [3].  

Currently, RT is one of the most used cancer treatment modalities, with a rapidly growing 

number of patients worldwide. It is estimated that more than 50% of all oncological 

patients in Europe require radiotherapy at some point of the treatment, and that by 2025 

the number of patients recommended for radiotherapy treatments in Portugal will be of 

57 436, representing a 16.8% increase compared with 2012 [2]. 

 

1.2. Motivation and goals 
 

Due to its magnitude and importance for the treatment of oncological diseases, 

radiotherapy has been a field with rapid and growing technological development through 

the years. 
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From the advent of intensity modulated radiotherapy, to the development of new 

treatment delivery techniques and the integration of image guidance in treatment units, 

the goal has always remained the same: to achieve the maximum possible tumour 

control with the least possible compromise of the surrounding normal tissues and organs. 

Recently there has been a growing tendency to shift the approach of healthcare in 

general from standardized processes to individualized applications, which are optimized 

to the specificities of each patient thus maximizing the treatment benefit.  This is referred 

to as precision medicine, and the radiotherapy field is beginning as well to incorporate it 

into its workflows, namely with the implementation of adaptive radiotherapy. Since its 

introduction there has been a great deal of development in the field of ART, powered by 

advances in technologies for automatic segmentation, deformable image registration 

and automatic planning [4]. 

These developments, aligned with the growing interest in applying machine learning 

techniques to the realm of health care (such as radiomics), potentiate the optimization of 

adaptive radiotherapy application and consequently the benefits it can bring to the 

patients’ treatment. Nevertheless, the implementation of ART into clinics’ workflow is still 

a rather expensive process, as it requires extra human and equipment resources, making 

it impossible for centres to perform it regularly for every patient. Furthermore, as will be 

exposed later, it has been shown that not all patients benefit equally from ART, making 

it an unnecessary effort for some. 

Currently, there are four main questions which still remain to be solved regarding the 

implementation of adaptive radiotherapy [5]: 

• Do patients actually need adaptive radiotherapy? Does it increase local control 

and/or decrease toxicity? 

• Which patients need adaptive radiotherapy? 

• What are the optimal number and timings for replanning? 

• Is there a positive trade-off between the increase in patients’ quality of life and 

the human and economic resources required for the implementation of adaptive 

radiotherapy? 

This dissertation is divided in two parts, addressing the first two questions. In the first 

part the goal is to assess the need for ART in Head and Neck patients. The dosimetric 

impact of the implementation vs non-implementation of ART for both the target volumes 

and surrounding organs at risk is investigated, using an automatic planning tool. The 

objective of the second part of this work is to develop models to predict which patients 

will require ART during treatment, in other words, which patients are more likely to  
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achieve the benefits found in the first part of the work through adaptive radiotherapy. 

Three different approaches to this problem were investigated: 1) using only patients’ pre-

treatment clinical data; 2) using radiomic features extracted from the target volumes; 3) 

using a combination of 1 and 2. 

 

1.3. Organization of the dissertation 
 

This dissertation is organized into 6 chapters: 

 

• Chapter 1 – Introduction: define the scope of the dissertation and 

corresponding goals. 

 

• Chapter 2 – Background Knowledge: in this chapter some important concepts 

for the full understanding of the work developed in this dissertation will be defined. 

Firstly, a brief section about the clinical rationale for radiotherapy is presented, 

moving to some of the more relevant technological developments, the 

implementation of image guided radiotherapy and finally adaptive radiotherapy. 

A section on head and neck cancer is also presented to contextualize the 

pathology. 

 

• Chapter 3 – State of the art: in this chapter a brief literature review is presented, 

considering the topics of anatomic modifications of both target volumes and 

organs at risk during radiotherapy treatments, the dosimetric impact of these 

alterations, the impact of adaptive radiotherapy and the prediction of adaptive 

radiotherapy in Head and Neck patients.  

 

• Chapter 4 – Assessing the need of adaptive radiotherapy in H&N cancer 

patients: In this chapter a retrospective planning study to assess the need for 

ART is presented. The work was based on an automated planning platform to 

generate plans in the adaptive and non-adaptive scenarios. The chapter is sub-

divided into 5 sections: purpose, material and methods, results, discussion, and 

conclusion. 

 

• Chapter 5 – Predicting the need for adaptive radiotherapy in H&N patients: 

in this chapter the work developed in predicting the need for ART from pre-
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treatment data and CT-based radiomics is presented. The chapter is sub-divided 

into 5 sections: purpose, material and methods, results, discussion, and 

conclusion. 

 

 

• Chapter 6 – General conclusions and future work: the global conclusions of 

the dissertation are presented, as well as the next steps need to complement the 

achieved results. 

 

The work described in chapters 5 and 6 was submitted to two relevant journals in the 

field of Medical Physics in the form of original research papers. 

In addition to these chapters there is a section of appendixes in the end of the dissertation 

which contain complementary information about the developed work, and which are 

appropriately referred to in the text. 
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Chapter 2 

 

Background Knowledge 

 

2.1. Radiotherapy  

 

Radiotherapy (RT) is a cancer treatment modality that relies on the usage of ionizing 

radiation, such as photons, electrons, protons, or heavy ions, to deliver toxic levels of 

energy to tumorous cells. The aim of the radiation is to cause damage to the cancer cells’ 

genetic material (namely to the deoxyribonucleic acid (DNA) molecules), leading to their 

controlled destruction as they lose the ability to proliferate [6].  

RT can be delivered externally, through linear accelerators (LINACs), or internally, by 

the placement of radioactive sources inside the patient (brachytherapy). For the purpose 

of this work, the term radiotherapy will be used to refer to external beam radiotherapy. 

RT can be used either as the only treatment approach, as a complement to surgery 

(adjuvant radiotherapy) or with concurrent chemotherapy. Furthermore, it can be 

performed either with a curative/definitive intention (radical radiotherapy) or with the goal 

of improving quality of life in patients for which curative treatment is not possible 

(palliative radiotherapy). 

The aim of RT is to deliver enough radiation to the tumour in order to achieve local 

control, whilst maintaining the dose to normal tissues sufficiently low to avoid serious 

complications. This goal is achieved by balancing tumour control probability (TCP) and 

normal tissue complication probability (NTCP) with respect to delivered dose. Although 

these are highly tumour-specific, both TCP and NTCP curves have sigmoid shapes 

which are shown in figure 1, being the optimum endpoint of radiotherapy to maximize 

TCP while simultaneously minimizing NTCP for a given tumour [7]. This corresponds to 

achieving the maximum of the curve represented in green in figure 1 (P+), which is the 

probability of achieving tumour control without normal tissue complications [8]. 
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Figure 1. The blue curve represents the tumour control probability and the pink curve the 

normal tissue complication probability with respect to dose (Gy). The green curve is the 

probability of tumour control without normal tissue complications (Adapted from [8]). 

 

RT is based on the idea that, generally speaking, the DNA repair capacity is greater for 

healthy cells when compared to tumorous ones [6]. The separation between the NTCP 

and TCP curves defines what is called the therapeutic window, which is the dose range 

in which treatment may successfully eradicate tumour while maintaining normal tissue 

tolerance. The therapeutic ratio, or therapeutic index, has been defined as the ratio 

between TCP and NTCP at a specified level of probability of response (typically 0.5) [7]. 

Both a larger therapeutic window and a larger therapeutic ratio are desirable, since a 

more narrow distance between the TCP and NTCP curves translates into the need for 

more strict and precise determination of administered dose to secure the success of 

treatment [8]. 

There are several ways to widen the therapeutic window, ranging from more conformal 

treatment delivery techniques (which will be discussed later on), to the application of 

radiosensitisers or concomitant chemotherapy [6]. 

Radiobiological studies have shown that delivery of the dose in multiple fractions spread 

out over a period of weeks (fractionated RT), improves the therapeutic ratio when 

compared to the delivery of a large dose in one single session. The rationale is that for 

fractionated RT the time span between the delivery of each treatment fraction allows for 

the repair of sub-lethal damage and repopulation of the normal cells, while increasing 

tumour damage by allowing reoxygenation of the tumour cells and their reassortment 

into a radiosensitive phase of the cell cycle [6].  
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Currently, the standard fractionation regimen consists of five daily treatments per week, 

with a two day pause on the weekends. This system integrates practical aspects of the 

dose delivery to the patient, a successful treatment outcome and the convenience for 

the staff delivering the treatment [7]. 

 

2.1.1. Radiotherapy Workflow 
 

A schematic representation of the typical general workflow of an oncological patient 

treated with fractionated radiotherapy is shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the diagnosis of the oncologic disease, there is a therapeutic decision appointment 

where the treatment modality or modalities to be used are defined by a qualified clinical 

board. If RT is the recommended treatment, the patient is referred for a first appointment 

with the radiation oncologist (RO), that evaluates the individual case and prescribes the 

RT treatment: dose to be delivered to the tumour and/or adenopathies and lymphatic 

nodes, as well as the fractionation regimen.  

After this first appointment, the patient is submitted to a planning computed tomography 

(CT) scan, on which the RO delineates the target volumes (tumour or tumoral site, and/or 

lymphatic nodes, adenopathies), and the surrounding organs at risk (OAR).  

Diagnostic Exam 

(CT, PET-CT, 

MRI) 

Therapeutic 

Decision  

1st appointment 

with Radiation 

Oncologist 

Treatment 

Prescription 

Planning 

CT 

Delineation of 

targets and 

OAR 
Treatment Planning Plan Approval 

Pre-treatment 

QA 

Treatment 

Delivery 
Follow up 

Yes 

No 

Figure 2. General RT workflow. The yellow, green and blue boxes represent tasks of the 

responsibility of the Radiation Oncologists, the Radiation Treatment Technologists and the 

Medical Physicists, respectively. 
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There are 3 target volumes defined in RT, according to the International Commission on 

Radiation Unites and Measurements reports 50 and 62 [9,10]:  

1) The gross target volume (GTV), which is the gross palpable or 

visible/demonstrable extent and location of the malignant growth. 

2) The clinical target volume (CTV), which is a tissue volume that contains the GTV 

and/or subclinical microscopic malignant disease, which must be eliminated. 

3) The Planning Target Volume (PTV), which is a geometrical concept defined to 

select appropriate beam sizes and beam arrangements, taking into consideration 

the net effect of all the possible geometrical variations and inaccuracies 

(positioning, motion, and anatomical changes) in order to ensure that the 

prescribed dose is actually absorbed in the CTV. 

A schematic representation of these volumes is shown in figure 3. In addition to these 

target volumes, the organs at risk that surround the tumour, and which should be spared 

to the maximum possible extent from incoming radiation also need to be delineated either 

manually or with the help of automatic contour software. 

 

 

Figure 3. Schematic representation of GTV, CTV and PTV, taken from ICRU report 50 [5]. The 

treated volume is the volume that receives a dose that is considered important for local control, 

and the irradiated volume is the volume that receives a dose that is considered important for 

normal tissue tolerance 

 

After the delineation of the volumes, the medical physicist is able to produce a treatment 

plan based on the planning CT, with the objective of delivering the radiation dose 
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prescribed by to the PTV(s), whilst reducing the dose received by the adjacent OAR to 

clinically acceptable values. 

The goal of radiotherapy treatment planning is to generate beam shapes and 

distributions that maximize tumour control and minimize normal tissue complications. 

This is done by the medical physicist or dosimetrist using computerized treatment 

planning systems (TPS), in which the patient’s tumour and anatomy are represented in 

three-dimensional (3D) models and dose distributions can be computed [7]. There is a 

complex multi-objective optimization problem inherit to treatment planning, making it still 

a rather time-consuming task, and the end result highly dependent on the planners’ 

experience and skill [11]. 

This plan is then assessed by the RO, whose responsibility is to verify that the dose 

constraints to the normal structures are being met and that the prescribed dose is 

delivered to the target volumes. This is routinely done through the analysis of dose 

volume histograms (DVH) for each structure, which can be either differential, showing 

the fractional volume that receives a specific percentage of the prescribed dose, or 

cumulative, showing the fractional volume receiving at least a specific percentage of the 

prescribed dose (figure 4) [12]. If the radiation oncologist approves the plan, there is a 

pre-treatment quality assurance performed by the medical physicist, following a protocol 

that is defined by each institution. After this step, the patient can start the treatment. 
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Figure 4. Cumulative and differential dose volume histograms. A) Cumulative DVH for target 

volume; B) Cumulative DVH for normal tissue or organ; C) Differential DVH for target volume; 

D) Differential DVH for normal tissue or organ. The typical curves are represented in blue and 

the ideal curves in dashed red. ([12] page 130). 

 

2.1.2. 3D conformal and intensity modulated RT 
 

The goal of technological advances in RT has always been to improve clinical outcome, 

by scaling dose to the target volumes and reducing toxicity in normal tissues [13]. This 

can be achieved by conforming the radiation dose to the tumour as closely as possible 

through beam shaping, which in the early days of RT was done through custom-designed 

metal blocks mounted in the head of the treatment machines (figure 5) [14]. Since the 

early 1990’s, these traditional shaping methods started to be replaced by multi-leaf 

collimators, which consist of small metallic leaves located in the head of the LINAC that 

can move independently in and out, blocking specific fractions of the radiation field and 

resulting in highly conformal dose distributions while maintaining versatility [7,14]. 
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Figure 5. Shaped block (left) and multileaf collimator (right). ( [12] page 296). 

 

From the 1950s to the late 1980s, the two-dimensional (2D) radiation therapy largely 

dominated the field. Conventional planar radiographies of the patient were acquired, on 

which bony anatomy reference points could be identified and used as clues for the 

volumes of interest. The plans were then created on a very limited range of images, using 

standardized beam arrangements, and only rectangular and symmetrical collimation was 

performed by manually applying shielding blocks [15]. 

The technological advances of the 1990’s, namely the advent of 3D imaging modalities 

such as CT, positron emission tomography (PET) and magnetic resonance imaging 

(MRI), which allowed for 3D target location, as well as advances in TPS technologies 

and delivery techniques, allowing for 3D treatment planning and delivery, potentiated the 

transition from 2D radiotherapy to a 3D, highly conformal paradigm [7,15]. 

According to the International Atomic Energy Agency (IAEA), 3D conformal radiotherapy 

(3D CRT) is “the term used to describe the design and delivery of radiotherapy treatment 

plans based on 3-D image data with treatment fields individually shaped to treat only the 

target tissue” [16]. In 3D-CRT, the beam arrangement (number, directions and intensities 

of the irradiating beams) is determined by the planner in a direct, trial and error approach, 

called forward planning. The radiation intensity is uniform within each beam, being the 

end goal to obtain a dose distribution as conformal and homogenous within the target as 

possible [14]. The only way to modulate the radiation intensities is through wedges, 

which are angled pieces of lead or steel placed in the beam, leading to modulation in just 

one direction [7]. 

Intensity modulated radiation therapy (IMRT) differs from traditional 3D-CRT since the 

beams have non-uniform radiation fluences, which create highly conformal dose 

distributions, with steep dose gradients in the tumour borders [9-12] . It has been shown 

that this technique can produce homogenous dose distributions within the target 

comparable to 3D-CRT, but it is able to achieve greater conformality, namely for concave 

or other complex-shaped target volumes, thereby further sparing surrounding normal 
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tissues [18]. Furthermore, it facilitates the achievement of non-uniform dose distributions 

in the cases where a volume is partially or completely contained in another volume [18]. 

This increase in dose conformation can be seen in figure 6, which shows the dose 

distributions for a head and neck patient achieved with 2D-RT, 3D-CRT and IMRT. It is 

clear that not only the total volume which receives dose is severely reduced from 2D-

CRT to IMRT, but also that the volume outside the target (yellow contour) which receives 

a high dose (represented in red) is significantly smaller.  

In practice, this illustrates the potential of IMRT to improve clinical outcome by widening 

the therapeutic window (see figure 1), both by increasing TCP and decreasing NTCP, 

with multiple studies showing its dosimetric and clinical benefits [16]. Since the mid 

1990’s, there has been a massive growth in the development and implementation of 

IMRT worldwide, replacing 3D-CRT as the gold standard for radiotherapy treatment [7]. 

The complex beam intensity patterns made possible by IMRT greatly increase the 

number of possible tuning parameters in planning, making forward planning no longer 

possible. Instead, an inverse approach was taken where the planner feeds the doses 

and dose/volume constraints for the tumour and surrounding normal organs to a dose-

optimization algorithm, which iteratively tunes all parameters (shape, direction, weights, 

etc.) and determines the fluence of each field in order to meet the objectives set by the 

planner [14,17]. 

 

 

 

Figure 6. Dose distributions in an axial CT slice of the same patient using 2D-RT, 3D-CRT and 

IMRT. The red areas represent higher doses and the blue areas lower doses. It can be seen the 

progressively larger high-dose conformation to the target volume (yellow contour), as well as 

normal tissue sparing [19]. 
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2.1.2.1. IMRT delivery 
 

The key element for the delivery of IMRT in LINACs is the MLC, which can operate in 

one of 2 ways: step and shoot (static delivery), where the leaves are fixed in a certain 

position, irradiate, stop irradiating, move to a different position, and so on, creating an 

intensity profile, or dynamic delivery, where the leaves are continuously in motion during 

delivery [20]. 

IMRT delivery by LINACs can be done in a fixed gantry angle or volumetric arc approach. 

In the fixed gantry angle approach the gantry sequentially moves to different incidence 

angles, only irradiating when it arrives at a fixed position. Alternatively, in volumetric arc 

therapy (VMAT) the LINAC’s gantry is continuously rotating around the patient while 

emitting a cone beam that can be modulated by the multileaf collimator, variable dose 

rate and variable gantry speed [15]. This allows for significantly reduced treatment times, 

as well as lower integral dose when compared to the fixed-gantry approach [20]. 

A more recent technology which was developed specifically for the delivery of IMRT is 

Helical Tomotherapy. The helical tomotherapy unit consists of 6 megavoltage (MV) 

LINAC mounted onto a CT-type ring gantry, which rotates with constant speed around 

the patient, while the patient’s couch slides through it [21]. In helical tomotherapy, the 

radiation is delivered continuously by the rotating 6 MV intensity modulated fan beam, in 

a “slice by slice” manner. This approach allows for very conformal dose distributions and 

treatment of larger fields when compared to VMAT or fixed gantry IMRT [15]. A picture 

of a LINAC and a schematic representation of a tomotherapy unit are shown in figure 7. 

 

Figure 7. LINAC [22] at the left and schematic representation of a helical tomotherapy unit [23] 

at the right. 

 

Each one of these treatment techniques has its own advantages and disadvantages, 

being the choice of which to use highly dependent on the specific patient anatomy, the 

intention of treatment and the clinic’s available resources.  
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2.2. Image Guided Radiotherapy 
 

Radiotherapy treatments typically have a duration of several weeks, during which there 

can be modifications to the patient’s anatomy (such as weight gain/loss, or tumour 

regression) that lead to discrepancies from the planning CT acquired prior to the start of 

treatment. Furthermore, the daily positioning of the patient can be itself a source of error, 

as a mismatch with the position in the planning CT would result in deviations on the 

delivered dose to the patient. 

In order to correct for day-to-day positioning errors relative to the planning CT, most 

centres perform daily position verification through imaging. This process is called Image 

Guided Radiotherapy (IGRT) and its general workflow is shown in figure 8. Imaging 

techniques such as in room kilovoltage CT (kV-CT), kilovoltage (kV) or megavoltage 

(MV) cone beam CT (CBCT) and helical MV-CT (in the case of Tomotherapy) are used 

to obtain a daily image of the treated area, which is then compared to the planning CT, 

and, if necessary, the patient’s and/or couch position is corrected before the delivery of 

the fraction. 

However, one of the main limitations of IGRT is that internal changes in size, shape or 

relative position of the target volumes or OARs compared with the initial planning CT 

cannot be corrected by rigid translational and/or rotational couch shifts, and may lead to 

deviations between the actual dose delivered to the patient and the planned dose. These 

dose deviations may result in underdosing of the target volume and/or overdosing of the 

OARs, leading to lower tumour control and/or more severe radiation-induced 

complications [24]. 
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2.3. Adaptive Radiotherapy 
 

One possible solution for this problem is adaptive radiotherapy (ART), which was first 

introduced by Di Yan, Frank Vicini, John Wong and Alvaro Martinez in 1997 as “a closed-

loop radiation treatment process where the treatment plan can be modified using a 

systematic feedback of measurements” [1].  

The goal of ART is to take into account any anatomical changes that might occur during 

the radiotherapy treatment and re-optimize the treatment plan in order to compensate 

for them, improving the overall treatment quality. 

With the advances in technology for daily imaging, deformable image registration, auto-

segmentation and dose re-calculation, ART has largely evolved since its appearance in 

1997 and can be currently classified in three types, according to the time when the 

process of re-optimization is performed [25]: 

1) Offline ART if the process occurs between fractions. 

2) Online ART if it occurs immediately prior to a fraction. 

3) Real-time ART if it occurs during a fraction. 

IGRT is intimately connected to ART, as daily imaging is a fundamental part of all kinds 

of ART workflows, being the trigger that warns the radiotherapy technicians, the medical 

physicists and radiation oncologists that an adjustment must be made. 
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Figure 8. Typical RT workflow. The orange boxes mark the IGRT steps. 
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2.3.1. Offline ART 
 

Offline ART is the most common type of ART due to its reduced complexity and to the 

fact that more advanced tools such as auto-segmentation and optimization are not 

routinely available for most clinics. An example of a typical workflow for offline ART is 

described in figure 9. 

The first step is detecting the need for an adjustment in the treatment plan. If the 

treatment centre has access to daily imaging this can be done by performing a rigid 

registration between the planning CT and the image of the day, thus obtaining a 

transformation vector, which can be translated into a 3D couch shift. If there is no access 

or daily imaging cannot be performed for all patients, direct observation of the patient’s 

anatomy (severe gain or loss of weight, poor fit of the thermoplastic mask) is used as an 

indication that replanning is probably needed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the verification that there is a mismatch between the planning CT and the daily 

image, calculation of the daily dose distribution in the new image or deformable dose 

mapping and estimation of cumulative dose can be performed in order to make the 

decision of whether a replan is necessary. 

If the obtained dose distribution is not acceptable, the treatment is interrupted, a new 

planning CT scan (re-CT) is acquired, and all the planning process is repeated. 

 

Figure 9. Typical offline ART workflow. The orange boxes mark the steps of a typical IGRT workflow (see 

figure 8) and the blue boxes those characteristic of offline ART. 
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2.3.2. Online ART 
 

The difference between offline and online ART is that not only the assessment for the 

need of replanning, but also the replanning itself occur immediately before the delivery 

of the fraction, while the patient is lying on the couch. In this way, there is no acquisition 

of a second CT scan and the daily image is used for the replanning, which needs to be 

fully automated as the overall process cannot take more than a few minutes. This 

requires the use of more advanced imaging technologies and techniques such as 

automatic segmentation and automatic planning, which are not commonly available for 

most centres [26]. 

Another ART approach that is a kind of combination between offline and online ART is 

the “plan of the day”. In this scenario, a library of plans is created for each patient, either 

in a generalized approach, by applying different population‐based margins around the 

planning CTV to generate different PTVs, or in a patient-specific approach, where 

different images of the patient are obtained, representing different possible anatomical 

arrangements (for example the bladder with different levels of filling), and a plan is 

generated for each of them [27].  

Then, at each fraction, the daily image is analysed, and the best fit plan is selected for 

treatment. This approach is more commonly used for bladder, rectum, prostate cancers, 

and other treatment sites that may present severe anatomical changes in a daily basis 

[27]. 

 

2.3.3. Real-time ART 
 
The concept of real-time ART arises from tumour and OAR motion caused by the 

patient’s respiratory, circulatory, digestive and muscular systems on a time scale of 

seconds and minutes, which cannot be captured by a single pre-treatment image of the 

treatment site. The objective of real-time ART is to address this issue by detecting, 

measuring and correcting for anatomic changes during treatment delivery [28]. 

This is a very complex and technologically expensive process, which requires that high-

quality imaging as well as automatic, almost instantaneous plan re-optimization occurs 

simultaneously to the delivery of each treatment fraction, with the plan to deliver the 

desired dose being continuously adjusted [28]. 

One of the main challenges for the implementation of real-time ART is that the images 

provided by the current in-room imaging techniques such as CBCT or MV-CT have low 

soft tissue contrast, making them unreliable for the definition of new target volumes. 
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Furthermore, these imaging techniques rely on the use of ionizing radiation, which 

translates into undesirable additional dose to the patient [29].  

These limitations led, in recent years, to the investigation of magnetic resonance imaging 

as a possible alternative, leading to the development of the first MRI-LINAC (MRIdian) 

by ViewRay in 2014 [30]. This new system has the potential of providing high quality 

magnetic resonance imaging, with enough soft tissue contrast for target delineation, 

without the extra radiation dose of CTs. These images can be obtained simultaneously 

with irradiation by the integrated LINAC, making real-time ART possible. 

However, there are major difficulties in the integration of a LINAC with an MRI machine, 

namely the geometrical problem of how to merge two very bulky systems and the 

physical problem of shielding the LINAC from the strong magnetic fields of the MRI 

machine, since many electronic components are susceptible to electromagnetic 

interference [29]. Currently, there are only two commercially available and clinically used 

models of the MRI-LINAC: the MRIdian from Viewray (USA) and the Unity from Elekta 

(UK), both of which are still not accessible for most clinics due to their cost. 

Real-time ART may be very useful for tumours in areas with constant motion such as the 

lungs due to breathing. However, the implementation of real-time ART comes at the cost 

of significantly more advanced and automated tools, as well as more strict quality 

assurance, and it has not yet been generally implemented [25]. 

The choice of which ART regime to apply depends largely on tumour location, clinical 

benefit and resources availability, being its implementation still not a reality for all 

centres. 

In the case of Head and Neck patients, as the main anatomical changes occur over the 

course of weeks, in a gradual manner, it is argued that online/real-time ART might be 

unnecessary for most patients, which has the benefit of making ART easier to 

incorporate in the workflow of most clinics [26,31].  

 

2.4. Head and Neck cancer 
 

Head and neck (H&N) cancer is currently the seventh most common type of cancer 

worldwide, with 550 000 new cases and 380 000 deaths every year [32]. The term H&N 

cancer refers to a heterogeneous group of tumours, arising from the upper aerodigestive 

tract (the oral cavity, lip, oropharynx, hypopharynx, nasopharynx, larynx), paranasal 

sinuses, and salivary and thyroid glands [33]. These tumours usually have their origin in 
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the squamous cells lying in the mucosal surfaces inside the head or neck, such as the 

mouth, nose and throat, and are classified as squamous cell carcinomas [34]. 

The most common risk factors for H&N cancer are tobacco and alcohol consumption, 

being the combined effect of both substances greater than one of them alone [35]. 

Another possible cause for H&N cancer is infection with the Human Papilloma Virus type 

16 (HPV-16) [36].  

Treatment of H&N cancer requires a multidisciplinary approach, often demanding a 

multimodal treatment, including surgery, radiotherapy, chemotherapy or targeted 

therapy.  The choice of treatment depends on several factors, such as tumour grade, 

stage and location [36], surgery and radiotherapy being the most used modalities [33].  

In current clinical practice, the vast majority of patients with locally advanced H&N cancer 

requires either definite, adjuvant or palliative radiotherapy, with or without concurrent 

chemotherapy [36]. 

Radiotherapy treatment of H&N cancer is a complex task as there are multiple structures, 

such as the spinal cord, the brainstem and the parotid glands, that are critical to the 

patient’s quality of life, located close to, and often overlapping, the target volumes. Acute 

side effects of radiotherapy include acute mucositis, leading to soreness of the mouth 

and throat, deterioration of the taste buds lining the tong, oral candidiasis (oral thrush), 

acute skin reactions, dysphagia (difficulty to swallow), and laryngeal edema 

accompanied by hoarseness [33]. These acute side effects, which typically start during 

treatment and can persist up to 3 months after its completion, can severely impair the 

ability for oral food intake, and may lead to the need for nutritional supplements via 

nasogastric tube [33]. As a result, H&N patients are very prone to substantial weight loss 

during treatment as well as dehydration [35]. 

As for late complications, the most common effect is xerostomia, arising from 

degradation of the parotid glands (which are responsible for the salivary function) by the 

ionizing radiation. Xerostomia manifests as a dryness of the mouth, which can be 

associated with a change in the composition of saliva or reduced salivary flow, and it is 

known as being responsible for difficulty in swallowing, nutritional deficiency, 

compromised oral hygiene, poor dental condition, altered taste sensation, impaired 

speech function and poor sleep quality [33]. 

Other late effects of radiotherapy include osteoradionecrosis, trismus, subcutaneous 

fibrosis of the soft tissues and laryngeal edema. Neurologic complications, such as 

cranial nerve injuries, are the most severe complications of radiotherapy for H&N 
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patients. Furthermore, optic nerve injury or radiation retinopathy resulting in blindness 

can also occur if the orbit and optic chiasm are over irradiated [33]. 

The highly conformal dose distributions produced by IMRT can help reduce the dose to 

the OAR (and consequently dim radiation induced side effects) whilst assuring full target 

coverage in H&N cancer patients. Several studies have concluded that IMRT significantly 

reduces the dose to the parotid glands, which are often very close to the targets, resulting 

in lower levels of xerostomia compared to conventional techniques [37–40]. 

However, the steep dose gradients resulting from IMRT are extremely sensitive to 

positional errors and anatomic changes, since small changes in position can result in 

large changes in dose to the tumour and OARs.  
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Chapter 3 

 

State of the art 

 

3.1. Anatomical and dosimetric changes during RT for H&N patients 
 

H&N radiotherapy treatments typically have a duration of 5-7 weeks. During this period, 

several factors can contribute to deviations between the dose distribution planned by the 

medical physicist, and approved by the radiation oncologist, and the actual dose 

delivered to the patient in subsequent fractions. These include daily setup variations, 

primary tumour or nodal volumes regression or progression, alteration in muscle mass 

and/or fat distribution, fluid shift within the body and weight loss, and may lead to changes 

in the locations, shapes and sizes of both tumours and OARs [41].  

Figure 10 shows such an example. In this case, a CT scan was acquired 2 weeks after 

the beginning of the treatment and the anatomical changes to the target volumes and 

OAR, combined with severe patient weight loss (which is very common in H&N cases), 

led to a loss of conformity of the original tumour contour. 

 

 

 

 

 

 

 

 

 

 

These alterations need to be detected and corrected as soon as possible, in order to 

prevent target underdose and/or OAR overdose, especially when dealing with IMRT due 

to the sharp dose gradients in the target-organ interfaces [42].  

 

Figure 10. In the right side of the image, the planning CT and tumour contour 

for a given H&N patient is shown. In the left side, a repeat CT for the same 

patient acquired 2 weeks after the beginning of treatment. 
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3.1.1. Target volumes 
 

One of the first studies to quantify the magnitude of anatomical changes to the GTV was 

conducted by Baker et al. (2004), using an on-board kV CB-CT to acquire 3 CT scans 

per week for each of the 14 patients in the study [42]. The GTV was manually delineated 

by a radiation oncologist in each of the CT scans and the volumes were then compared 

using a linear regression. The authors concluded that GTVs decreased in volume during 

treatment at a median rate of 1.8% per treatment day, corresponding to a median total 

relative loss of 69.5% of the initial GTV on the last day of treatment. They also concluded 

that this tumour loss was often asymmetrical, as the centre of mass of the GTV changed 

its position with time, reporting a median displacement of 3.3 mm at treatment 

completion. The authors observed that the absolute volume loss was larger for large 

initial tumours/nodes. 

Another study by Geets et al. (2007), analysed 10 patients treated with helical 

tomotherapy and concomitant chemotherapy [33]. The patients were weekly submitted 

to a CT, T2-MRI, fat suppressed T2-MRI and static and dynamic fluorodeoxyglucose 

(FDG)-PET scans during treatment. The authors concluded that the GTVs (and 

consequently CTVs and PTVs) significantly decreased throughout the course of RT 

(p<0.001) for all imaging modalities, with a relative tumour reduction by the 4 th week of 

treatment ranging from 54% to 70% in comparison to the pre-treatment GTV [43]. 

Bhide et al. (2010) conducted a prospective observational study of weekly volume 

changes during chemoradiotherapy with 20 H&N patients that had weekly CT scans in 

the course a 5-week treatment [44]. The authors reported that both tumoral and nodal 

CTVs reduced in volume during treatment, with the most significant reductions occurring 

at week 2, corresponding to a mean percentage volume reduction of 3.2% for tumoral 

CTV (p=0.003) and 10.5% for nodal CTV (p<0.001). They also observed that this 

reduction in volume resulted in a reduction of the minimum dose delivered to the PTVs 

throughout treatment, with a significant (p=0.002) mean reduction of 2 Gy for the tumoral 

PTV in the 2nd week of treatment. Finally, it was reported that the dose range across the 

PTVs also increased during treatment, indicating reduced dose homogeneity. This range 

increase was more significant from the beginning to week 2 of the treatment both for 

tumoral PTV (p<0.001) and nodal PTV (p=0.008). 

A more recent study by Mnejja et al. (2020), included 20 nasopharyngeal carcinoma 

patients treated with concomitant chemoradiotherapy in 33 fractions [45]. For each 

patient, three treatment volumes were defined from the nodal and tumoral GTVs: one 

high-risk PTV (PTV-H) that was prescribed 69.96 Gy, one intermediate-risk PTV (PTV-I)  
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that was prescribed 60 Gy and a low-risk PTV (PTV-L)  that was prescribed 54 Gy [45]. 

In addition to the planning CT, all patients had a 2nd CT scan at 38 Gy, around treatment 

fraction 20. The authors reported significant (p<0.001) reductions in both nodal GTV 

(58.56%) and tumoral GTV (29.52%) between the two CT scans. This reductions 

translated into a significant decrease in the mean dose received by 98% of the volume, 

corresponding to 1.4 Gy (p=0.007) for PTV-H, 0.3 Gy (p=0.03) for PTV-I, and 1.15 Gy 

(p=0.007) for PTV-L. 

Conversely to these results, some studies report that, despite the existence of volume 

reduction, dosimetric coverage of target volumes tends to be robust to anatomical 

changes in the GTV/CTV/PTV [31,46,47]. For instance, Wu et al. (2009) [31] showed 

that anatomical and dosimetric changes observed in several structures of 11 H&N 

patients that underwent weekly CTs did not lead to significant differences in the dose 

delivered to the primary (tumoral) CTV, with small increases in the minimum dose 

delivered to the nodal CTV [31]. 

 

3.1.2. Organs at risk 
 
Regarding the organs at risk, Brouwer et al. (2015) [48] published a comprehensive 

review article, where 51 papers that reported anatomical and dosimetric changes in 

several OARs during radiotherapy treatments were analysed. The majority of the studies 

focused on alterations in the parotid glands, due to the association between radiation 

induced effects on the parotids and xerostomia.  

The average reduction of the parotid glands’ volume was reported to be 26% ± 11%. 

One study by Sanguineti et al. (2013) [49] reported that this shrinkage was not linear, 

being more pronounced in the first half of the treatment. In addition to volume loss, a 

medial shift of the parotids was also reported by several studies. 

As for the dosimetric impact of these volumetric alterations, a mean increase of 2.2 ± 2.6 

Gy in the mean dose to the parotid glands was reported (24 papers). Furthermore, five 

studies found significant associations between these volume changes and complications 

such as increased xerostomia, reduced saliva production and increased mucositis, all of 

which leading to decreased patient’s quality of life. 

Three studies reported on the effects of RT on the submandibular glands, showing an 

average volume reduction of 22% (15–32%). One study also observed superior and 

medial shifts of the submandibular glands, as well as increased delivered dose when 

compared to the planned dose (52.8 Gy vs 51.9 Gy). 
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Regarding the spinal cord and the brainstem, several authors reported an increase in 

the maximum dose or in the D1% (the dose that is received by 1% of the volume - the 

near-maximum dose), being the highest reported average increase of 0.2% per fraction 

for the spinal cord and 0.09 Gy per fraction for the brainstem, which then results in an 

accumulated excess dose of 5.6 and 2.5 Gy, respectively, for the entire treatment course.  

The ultimate result of all these anatomical/dosimetrical changes is that highly conformal 

IMRT plans based on a single planning CT acquired several days  prior to the beginning 

of radiotherapy treatments may lead to decreased tumour control and/or unexpected 

complications, since the dose that was planned to be delivered to the target volumes 

may be misplaced to other organs, if anatomical and positional uncertainties are not 

adequately taken into account [41]. 

 

3.2. Dosimetrical and Clinical benefits of ART for H&N patients 

 

Deformable image registration, dose mapping and dose accumulation have made it 

possible to compare the dose distributions achieved by IGRT alone and ART [26].  

The first prospective study reporting the dosimetric effects of ART was developed by 

Schwartz et al. (2012) [50] and included 17 patients, all of which had 1 replan in the 

course of treatment, with 4 requiring a second replan. The study compared 4 different 

planning scenarios: 1) original IMRT plan aligned daily to the marked isocentre, 

simulating treatment with no correction; 2) original plan rigidly aligned daily to bone, 

simulating IGRT; 3) IGRT with 1 adaptive replan mid-treatment; 4) actual treatment 

scheme received by the patient (IGRT + 1 or 2 replans) [50].  

By using deformable dose mapping and dose accumulation, the authors were able to 

calculate the cumulative total delivered dose for each scenario. The results showed that 

one mid-treatment replan (scenario 3) reduced the mean delivered dose to the 

contralateral parotid by 2.8 %, corresponding to 0.6 Gy (p=0.003), and for the ipsilateral 

parotid by 3.9%, corresponding to 1.3 Gy (p=0.002) when compared to IGRT (scenario 

2). It was also observed that for the 4 patients which had a second replan there was a 

further reduction of the mean dose to the contralateral parotid of 0.8 Gy (p=0.026) and 

of the ipsilateral parotid of 4.1 Gy (p=0.001) when compared to IGRT. The authors also 

reported that ART significantly reduced the integral body dose and did not lead to 

underdosing of the CTV [50]. 

In a second study regarding these patients clinical outcomes, the authors report a 100% 

local and 95% regional disease control at 2 years (with a median follow up of 31 months), 
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and an acute toxicity at 1 year equivalent to toxicity profiles observed under conventional 

IMRT [51]. 

Zhao et al. (2011) [52] conducted a study that retrospectively analysed 33 patients which 

had one repeat CT scan and replanning in the course of treatment (ART group) and a 

control group with 66 patients that did not have any replanning (non-ART group). For the 

patients in the ART group, a “hybrid plan” was generated to represent the situation in 

which no replanning occurred, by applying the beam configurations of the first IMRT plan 

(including the intensity profile of each beam) to the anatomy of the second CT scan. 

By comparing the dosimetric results of the hybrid plan (no-replanning) with the adaptive 

replan for the ART group, no replanning showed decreased dose to the target volumes, 

with reductions to the dose received by 99% and 95% of the CTV, as well as the volume 

receiving at least 95% of the prescribed dose (p=0.034, p=0.052 and p=0.047 

respectively). No replanning also demonstrated an increased dose to the normal 

structures, with increased maximum dose to the spinal cord (p=0.002) and brainstem 

(p=0.007), as well as increasing in all dosimetric endpoints for the parotid glands [52]. 

As for the clinical impact of ART, the 3-year local relapse free survival for the ART group 

was of 72.71%, and the median local relapse free survival was of 50 months, while for 

the non-ART group the values were 68.16% and 48 months respectively. Despite these 

discrepancies, the survival differences were not statistically significant between the 2 

groups (p=0.34), but when looking at patients with tumour staging higher than T31 there 

was a significant improvement of the 3-year local relapse free survival for the ART group 

(p=0.03). Regarding early and late side effects, no significant differences were found 

between the two groups, despite a slight improvement in the severity of  mucosa injury 

and xerostomia for the replanning patients (p=0.05 and p=0.04 respectively) [52]. 

A more recent study by Surucu et al. (2017) [53], included 34 patients which had a 

second CT scan and a replan during treatment and compared the dose achieved by the 

replan and with the original plan calculated in the second CT. The authors reported a 

median reduction of 4.5%, 3.0%, 6.2%, and 2.5% for the maximum dose to the spinal 

cord, brainstem, mean ipsilateral, and contralateral parotid respectively in the ART 

scenario. 

 
1 TNM system is the most widely used cancer staging system. The T stage refers to the size of 

the main tumour, ranging from 0 (cannot be found) to 4 (maximum stage), the N stage refers to 
the number and location of the lymph nodes and the M stage to whether or not the tumour is 
metastasized [107]. 
 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000689095&version=Patient&language=English
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Zhang et al. (2016) [54] studied several different ART implementation alternatives, by 

varying the number and time point of replans, for 13 oropharyngeal cancer patients, in 

order to find the strategy that best optimized parotid sparing. Each of the patients had 

one planning CT and then 6 weekly CT scans during a 7-week IMRT treatment. For each 

of the weekly scans, a new plan was produced by the same physicist that conducted the 

original plan. A total of 63 ART alternatives were then simulated, by considering all 

combinations of number of replannings and their timings, and weekly non-ART 

distributions were estimated by calculating the original plan on each of the weekly CTs. 

The authors found that the maximum benefit, considering the parotid glands mean dose, 

was found when 6 replannings (1 for each week of treatment) took place, corresponding 

to a mean and maximum benefit of 1.6 Gy and 6.4 Gy, respectively, when compared with 

the planned dose to the parotids, and of 3.3 Gy and 10.8 Gy when compared with the 

estimated delivered dose without ART. It was also reported that 94% of this benefit could 

be achieved with only 3 replans, at weeks 1, 2 and 5, indicating that replanning is more 

impactful in the first half of the treatment [54]. For this 3-replan scheme, 54% of the 

patients had a benefit superior to 4 Gy in at least one parotid, and 15% in both parotids. 

Regarding target coverage, 73% of non-ART fractions led to an underdosage of CTV, 

and increasing the number of replans was effective in improving CTV coverage [54]. 

In a study regarding the improvement in patient’s quality of life with ART, Yang et al. 

(2013) followed a group of 129 patients, from which 43 did not undergo replanning during 

IMRT treatment and 86 had 1 mid-treatment replan [55]. By comparing global quality of 

life and other quality of life scales, the authors concluded that replanning had a significant 

impact for nasopharyngeal carcinoma patients. Additionally, the clinical outcome 

comparison indicated that ART significantly improved the 2-year local regional control 

(97.2% vs 92.4%, respectively) but did not improve the 2-year overall survival (89.8% vs 

82.2%, respectively). 

 

3.3. Predicting the need for ART  

 
Although several studies have successfully established both the clinical and dosimetric 

benefits of ART application, the implementation of ART into the clinical practice is still a 

rather labour-intensive and time-consuming process, making it impossible for most 

clinics to implement it for every patient. Furthermore, evidence shows that ART is not 

equally beneficial for all patients, potentially being an unnecessary effort for some [56]. 
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The percentage of patients that would benefit from ART has been reported to range from 

21% to 66% [57,58], which means that electively scheduling adaptive replanning when 

initiating treatment would be beneficial in order to optimize clinical resources and the 

gain for the patient. 

In a study by Capelle et al. (2012) [59], 20 randomly selected H&N patients treated with 

helical tomotherapy received a second CT scan at fraction 15, with a new plan being 

implemented from fraction 20 onwards [59]. This group of patients included both adjuvant 

(patients which had surgery prior to radiotherapy) and non-adjuvant 

(chemo)radiotherapy cases and, for each patient, the cumulative adapted and non-

adapted dose distributions were calculated. The authors arrived at the conclusion that 

ART presented no benefit for adjuvantly treated patients, and that the benefit for the non-

adjuvant group was minimal, being the patients with greater changes in weight loss the 

most benefited.  

Patient selection for ART can be performed at two time periods: either prior to treatment, 

based on pre-treatment patient characteristics or imaging, or during treatment, based on 

geometric and/or dosimetric changes during treatment that can be imaging related 

factors (e.g. density changes) or non-imaging related factors such as weight loss [48].  

It could be argued that the patients that would benefit the most from ART are the ones 

that will suffer greater anatomic changes in the course of treatment, and in this sense 

several studies have tried to identify pre-treatment factors that correlate with more severe 

anatomic modifications of both target volumes and OAR.  

In a 2015 review, Brouwer et al. [48] analysed several studies that reported on factors 

correlating significantly with anatomic and/or dosimetric alterations to several structures 

during treatment. The majority of the studies reported on changes to the parotid glands 

(18 studies) and the most commonly identified factors were weight loss, planned dose to 

the parotid glands and parotid glands’ volume loss. As for the spinal cord and the 

brainstem, some factors correlating with significant increase in dose parameters were 

changes in GTV volume, weight loss and changes in neck diameter at the level of the 

thyroid notch [48]. 

The main problem with this type of studies is that the selection of predictive factors is 

based on correlation tests, which only take into account the linear relationship between 

individual variables and the end-point (which in this case is anatomical modifications), 

not-considering multi-variable or non-linear interactions that could potentially improve 

prediction. To this date, there are relatively few studies that develop multi-variable 

models with the objective of predicting the need for ART. 
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3.3.1. Definition of performance metrics 
 

Before discussing the published literature on models predicting the need for ART, it is 

important to define the performance metrics used to evaluate the quality of those models. 

The classification performance of any model (classifier) regarding some test data can be 

summarized in a 2-dimensional matrix called the confusion matrix. The number of rows 

and columns of this matrix correspond to the number of different possible classes in the 

classification problem. For the purpose of this work, the dimensions of the confusion 

matrix will be 2x2, as represented in yellow in figure 11, as only two classes are possible: 

positive, if the patient needs ART, or negative otherwise. One dimension of the confusion 

matrix represents the true classification of the objects and the other dimension 

represents the class that the classifier assigns them to [60]. 

 

Outcome of 

the classifier 

Ground truth 

Positive Negative Row Total 

Positive TP FP 

TP+FP 

(total nº of objects with 

positive classification by 

the model) 

Negative FN TN 

FN+TN 

(total nº of objects with 

negative classification 

by the model) 

Column Total 
TP+FN 

(total nº of real positives 

in the testing sample) 

FP+TN 

(total nº of real negatives 

in the testing sample) 

N=TP+TN+FP+FN 

 (total number of objects 

in the testing sample) 

 

Figure 11. Example of a 2x2 confusion matrix (yellow). 

 

As shown in figure 11, there are 4 basic cardinalities in the confusion matrix: 

• True Positives (TP): the number of positive objects that are correctly classified by 

the model as being positive. 

• False Positives (FP): the number of negative objects that are wrongfully classified 

by the model as being positive. 

• False Negatives (FN): the number of positive objects that are wrongfully classified 

by the model as being negative. 

• True Negatives (TN): the number of negative objects that are correctly classified 

by the model as being negative. 
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From these cardinalities, several metrics used to assess the performance of a given 

classifier can be derived. Some of the most commonly used ones are as follows: 

• Accuracy, the proportion of true (both positive and negative) classifications 

calculated as: 

𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
       

 

• Specificity or true negative rate (TNR), the classifier’s ability to correctly identify 

an object as negative, calculated as: 

 

𝑇𝑁

𝑇𝑁+𝐹𝑃
       

 

• Sensitivity or true positive rate (TPR), the classifier’s ability to correctly identify 

an object as positive, calculated as: 

 

𝑇𝑃

𝑇𝑃+𝐹𝑁
       

 

• False positive rate (FPR), the probability that a positive result will be given by the 

classifier when the true value is negative, calculated as: 

 

𝐹𝑃

𝐹𝑃+𝑇𝑁
       

 

• False negative rate (FNR), the probability that a negative result will be given by 

the classifier when the true value is positive, calculated as: 

 

𝐹𝑁

𝐹𝑁+𝑇𝑃
       

 

• Positive predictive value (PPV), the proportion of positive results produced by the 

classifier that correspond to true positives:  

 

𝑇𝑃

𝑇𝑃+𝐹𝑃
       

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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• Negative predictive value (NPV), the proportion of negative results produced by 

the classifier that correspond to true negatives:  

 

𝑇𝑁

𝑇𝑁+𝐹𝑁
      

 

Typically, the output of a binary classifier is a certain score, which is a continuous value 

representing the probability that a given sample belongs to a specific class. In this way, 

the actual classification, and all the related performance metrics depend on a chosen 

threshold, which assigns the sample to one of the two possible classes according to 

whether their scores fall above or below the chosen threshold. 

A good classifier should have both high values of sensitivity, being able to detect positive 

cases when they occur, and of specificity, having a low “false alarm” percentage by not 

identifying negative cases as positive. 

The receiver operating characteristic (ROC) curve depicts the sensitivity versus the false 

positive rate which, as can be seen from equations 2 and 4 corresponds to (1 – 

specificity). 

An example of the ROC curves for 2 models, A and B, are shown in figure 12. All ROC 

curves start at (0,0) and end at (1,1), with each point representing the balance between 

specificity and sensitivity for a different threshold. The dashed line in the image 

(diagonal) represents the uninformative model, where the true positive rate is equal to 

the false positive rate, both being 50% which is the same as randomly classifying the 

data. 

Conversely, a model that perfectly classifies all data points for any thresholds has a ROC 

curve that is an horizontal line in sensitivity=1 [61]. In this way, the closer a model’s curve 

is to the diagonal line the worse its performance is, and the closer it is to the line 

representing the perfect classifier, the better it will classify the data. 

In figure 12 we can see that, for a given classification task, model’s A ROC curve is 

closer to the dashed line, while model’s B curve is closer to the line of the perfect 

classifier, which means that model B is a better classifier. 

 

(7) 
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Figure 12. ROC curves for 2 models. The dashed line corresponds to random guessing. The 

grey area corresponds to the area under the curve for model A. 

 

The area under the curve (AUC, depicted in grey for model A in figure 12), represents 

the probability that a model will correctly classify an object. A perfect model will have an 

AUC of 1 and for the random model the AUC is 0.5. This means that better models will 

have AUC values closer to 1, making the AUC a very popular metric to assess classifier’s 

performances. Likewise, in figure 12 we can see that the AUC for model B is higher than 

for model A. 

 

3.3.2. Training and testing the models 
 

Regardless of the chosen method for classification, it is vital to keep in mind that the 

ultimate goal is not to produce a model which works perfectly for the available data, but 

one that will correctly classify new, previously unseen datapoints. 

In this way, it is very important to use independent train and test cohorts for model 

building, and a separate validation cohort, preferably from an external environment, to 

assess the model performance, in order to produce robust and reliable predictive models 

[62–65]. 

Furthermore, the splitting of the data into training and testing sets should be repeated 

multiple times, in order to prevent the results from being biased by specific selected sets. 

One of the most popular methods to perform this repetition is cross-validation, which 

consists of dividing the data set into k subsets (folds) and then repeating the classification 
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process k times, each time using one different subset for testing and all the k-1 remaining 

ones for training [66]. 

A specific variation of cross-validation which is also very commonly used is leave-one-

out cross-validation, in which the number k of folders is equal to the number of samples. 

In this case, in each repetition of the classification process, a different sample is used for 

testing, with all the remaining samples being used for training [67]. 

It is also very important that both classes are equally represented in the training and 

testing cohorts. If the data is highly imbalanced, with a significantly larger proportion of 

examples from one class, some of the metrics defined above can be misleading for the 

actual classification performance. For example, in a case where in the test set 90% of 

samples are from class A and 10% from class B, a model that classifies all samples as 

A would have 90% accuracy, despite misclassifying all examples from class B. 

 

3.3.3. Predictive models for the need for ART in H&N cancer 
 

Brown et al. (2015) [68] conducted a study with a sample of 110 H&N patients treated 

with definitive IMRT (with or without concurrent chemotherapy) in which all patients had 

a daily image prior to treatment and a repeated CT if significant differences (>1 cm at 

any point of the external contour) were detected between the daily image and the 

planning CT. The initial plan was then calculated in the repeat CT scan and, if the 

dosimetric discrepancies were perceived as detrimental by the radiation oncologist, a 

new plan was implemented. From the 110 patients, 21 had a repeated CT at some point 

during treatment, with 5 resulting in a new treatment plan. 

The authors carried out univariate and multivariate analysis to compare various factors 

between the two groups, finding statistically significant differences in nodal disease 

staging (more advance for the replanned group), dominant nodal size (larger for the 

replanned group), and diagnosis, with the majority of replanned patients (3 out of 5) 

having a nasopharyngeal carcinoma. These variables plus a binary variable representing 

initial weight (<100 kg or >100 kg) were used to generate two logistic regression models 

to predict the need for ART: one not weighted (model 1) and another that was weighted 

for the proportion of replanned patients (model 2). The post estimation results for 

sensitivity and specificity were 60% and 100% respectively for model 1, and 100% and 

92.31% for model 2 [68]. 

These predictive models were used to determine threshold values that would include a 

patient in an ART risk profile, using a process that could be implemented clinically. The 

high-risk class was defined as including patients with a probability of requiring a replan 
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greater than 80%. The intermediate risk class considered a probability greater than 60% 

[68]. 

This study presents some limitations, namely the imbalance of the data, since only 4.5% 

of patients had a replan, and the fact that the model is trained and tested on the same 

population, which could severely undermine its generalizability. 

Brouwer et al. (2016) [69] developed a linear regression model to identify patients for 

ART based on the parotid glands dose deviation, using a training cohort of 113 patients. 

The endpoint for the linear regression was defined as the difference between the mean 

dose to the parotids in the planning CT and that at a post-RT CT, acquired after the 

completion of treatment (∆Dmean).  

The authors performed both univariate and multivariate linear regression analysis 

between this endpoint and several pre-treatment factors. In the univariate analysis, 

multiple factors significantly correlated with the endpoint, namely initial body-mass index, 

chemotherapy, T-stage, N-stage, planned mean dose to the parotid glands, initial GTV 

volume, tumour location as well as overlap volume of the parotids with the target. 

However, from the multivariate analysis, the planned mean dose to the parotids was the 

only significant factor, which was then applied to the data to select patients for ART. In 

this study, it was defined that any patient with an absolute ∆Dmean > 3 Gy would be 

referred for ART. The proposed model established a threshold of 22.2 Gy for the mean 

dose to the parotid glands, meaning that patients who exceeded this value would be 

more likely to need ART [69]. 

When validating this model in an independent patient cohort of 43 patients, the authors 

obtained a sensitivity of 80% but a positive predictive value of only 19%, meaning that a 

large percentage of patients that did not need ART would be selected for it. In fact, only 

for 18% patients of the test cohort the ∆Dmean was higher than 3 Gy but the model 

selected 76% of the patients for ART [69]. 

Decision trees have also been used with the intent of identifying patients suitable for 

ART. In a study by Surucu et al. (2016) [70], two decision trees were developed to 

classify patients into high or low expected percentage of GTV volume change during 

therapy: one for primary and another for nodal tumours. Forty eight patients were 

included in the study and the whole dataset was used to develop the decision trees, both 

of which achieved an accuracy of 88%, but no test set was used to validate this result. 

Of the 14 predictive factors considered, the ones that were most discriminating between 

the two groups for both primary and nodal volume were: type of chemotherapy, age, 
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tumour appearance, site, Karnofsky performance status2, HPV status, primary tumour 

growth pattern and both primary and nodal initial tumour volume. 

In another study, Castelli et al. (2016) [71] developed a nomogram to predict parotid 

gland overdose from early treatment patient factors. Twenty locally advanced 

oropharyngeal cancer patients were included in the study and each of the patients had 

a weekly CT scan, in which the actual dose delivered weekly was estimated. These 

weekly dose estimations were then propagated to the planning CT using rigid and 

deformable image registration and then used to compute the cumulated dose on the 

planning CT, which was finally compared to the planned dose. Parotid gland overdose 

was calculated as the difference between the cumulated mean dose and the mean dose 

on the planning CT. Parameters from the first weekly CT were found to be more strongly 

correlated with parotid overdose and three factors were included in the model: the 

difference between the mean dose to the parotids from the planning CT to the first week 

CT, the difference between the CTV receiving 70 Gy in the planning CT and in the first 

week CT and finally the initial CTV volume percentage receiving 70 Gy [71].  

Using leave-one-out cross validation on the 20-patient cohort, they reported a sensitivity 

of 80% and a specificity of 60% when predicting whether the cumulative parotid dose 

would increase or decrease [71]. 

 

3.4. Radiomics Approach 
 

Two recent studies [72,73] employed a different, image-based, technique to predict the 

need for ART from pre-treatment factors: radiomics.  

Radiomics is a relatively recent concept in the fields of computational oncology and 

image processing, and can be essentially defined as the high-throughput extraction of 

quantitative biomarkers (features) from medical images, which can then be applied in 

mathematical models for several purposes, such as aid in diagnosis or prediction of 

outcome [62,65,74].  

The recent advances in medical imaging devices, imaging agents, image processing and 

analysis combined with the standardization of imaging protocols across different 

practices, made it possible to convert the imaging data, that so far had been used only 

 
2 According to the national cancer institute dictionary of cancer terms, the Karnofsky performance 

status is a standard way of measuring the ability of cancer patients to perform ordinary tasks. Its 
values range from 0 to 100, with a higher score meaning the patient is better able to carry out 
daily activities. It may be used to determine a patient's prognosis, to measure changes in a 
patient’s ability to function, or to decide if a patient could be included in a clinical trial [108].  



| Assessing and predicting the need for Adaptive RT in H&N patients | 

35 
 

for qualitative purposes by qualified experts, into quantitative information [74], which can 

be mined resorting to datamining and machine learning techniques with the purpose of 

improving decision support [62]. 

This conversion of digital medical images into mineable high-dimensional data is 

motivated by the concept that biomedical images contain information that reflect the 

underlying pathophysiology, and which are not detectable by the human eye. 

Consequently, these “invisible” relationships could be revealed via quantitative image 

features based on intensity, shape, size or volume, and texture [62]. 

The concept of radiomics has gained a lot of popularity in the recent years due to its 

potential towards individualized medicine without any need for invasive or extra 

interventions on the patient’s typical workflow in the clinic, since imaging is already a 

major part of any treatment process. For this reason also, large amounts of data are 

available for radiomics studies, since every patient has one or more sets of images and 

each image contains millions of voxels and hundreds of features that can be potentially 

explored in a radiomics approach [65]. 

 

3.4.1. Radiomics Workflow 
 

After the identification of the aim of the radiomics analysis and of a suitable patient cohort 

in which to perform the study, the general radiomics workflow can be broken down into 

6 steps, which are represented in figure 13. This workflow can be applied to any image 

modality. Since this work is based on CT scans the specific steps will be discussed in 

the realm of this modality only. 

 

3.4.1.1. Image Acquisition 
 

The process begins with the acquisition of high-quality medical images, which could be 

CT, PET-CT or MRI scans. The modern technologies in all of these modalities allow for 

a wide range of image acquisition parameters and reconstruction protocols, which can 

have an impact on the value of the extracted features [63–65,72,74,75].  

Using a standardized acquisition protocol across the different patients in the study is a 

way to eliminate this bias, but which can then lead to poor generalizability compared to 

cohorts in which the images are acquired with different parameters, with some authors 

defending the use of heterogeneous protocols in the training cohorts [64]. 
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3.4.1.2. Region of Interest (ROI) Delineation 
 

The delineation of the region of interest (typically the primary tumour (GTV) and/or nodal 

tumours) from which the radiomic features are to be extracted can be performed 

manually by a radiation oncologist, or automatic/semi-automatically by a software (such 

as Mirada RTx 1.6 and Workflow Box 1.4 by Mirada Medical Ltd., United Kingdom). 

This step has been described as the most challenging of all the radiomics process [62], 

since in most cases tumours do not have distinct borders, making manual segmentation 

still an expert-dependent process.  

Many studies have shown that both the inter and intra-operator variability of manual 

contouring of tumours is very high, and  it can be reduced with the aid of automatic/semi-

automatic tools, or multi-operator comparisons [76–78]. 

 

 

Image Acquisition ROI Delineation Image Pre-processing 

Feature Extraction  Feature Selection Model Building 

CT, PET-CT, MRI 

Image + ROI mask 

Interpolation 

Discretization 

Re-segmentation 

Morphological 

1st order statistics 

Texture 

Figure 13. General Radiomic workflow. The boxes in green represent steps in which the actual images 

and/or masks of the ROI are considered. The orange boxes represent the steps on which vectors of the 

quantitative features extracted from the images are considered. 
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3.4.1.3. Image Pre-processing 
 

Several image pre-processing steps must be followed before the extraction of the 

radiomic features. These steps may vary from study to study, according to the 

specificities of each dataset or the desired endpoint. In this work, the guidelines provided 

by the Imaging Biomarker Standardization Initiative (IBSI) [79] were followed and the 

general pre-processing steps are hereby succinctly presented. 

Right after image acquisition, it can be necessary to perform some post-acquisition 

processing, in order to enhance the quality of the image and to do some de-nosing. For 

instance, metal objects such as pacemakers and tooth implants introduce artefacts in 

CT images and may require artefact suppression.  

From the delineation of the ROI, a binary ROI mask is generated by assigning the value 

of 1 to all voxels inside the contour and 0 to all the other voxels in the image, which will 

then be used for feature extraction. 

The image’s voxel spacing has been shown to have a significant impact in texture 

features, so interpolation to an isotropic voxel spacing is an important step of image pre-

processing, allowing for comparison between image data from different samples or 

cohorts [64]. The binary ROI mask must also be interpolated to the same voxel spacing 

as the image. 

Rounding to the nearest integer value is usually done following interpolation, as some 

image voxels might be left with non-integer values, which in the case of CT scans is not 

possible since they represent Hounsfield Units (which are always integer).  

Additionally, range re-segmentation may be performed to remove voxels that fall outside 

a specified range and are not useful to the desired analysis, such as voxels with 

Hounsfield Units indication air or bone in CT images, since they do not provide any 

information about the ROI. 

Finally, it is necessary to discretize the range of intensity values inside the ROI in order 

to efficiently compute several texture features [80], which can be done either with a fixed 

number of bins or with a fixed bin width approach. 

 

3.4.1.4. Feature Extraction 
 

After all the previous steps have been executed, the image features, which consist of 

quantitative measures in the context of radiomics, can be extracted from the ROI in the 

image. 
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These features can be grouped in several families according to their characteristics. 

Several authors refer to first, second, or higher order statistical outputs with first order 

features describing the distribution of values of individual voxels without any concern for 

the spatial interactions between them, second order describing statistical 

interrelationships between voxels with similar (or dissimilar) contrast values and higher-

order features imposing filter grids on the image to extract patterns [62,65,81].  

In this work, the feature definition and grouping adopted by the Image Biomarker 

Standardization Initiative [79] will be used. The IBSI divides image features into 6 

families: 

a) Morphological features: which describe geometric aspects of a ROI, such as 

area and volume, as well as shape characteristics, such as sphericity, elongation, 

flatness, etc. 

b) Local intensity features: which use voxel intensities within a defined 

neighbourhood around a centre voxel to compute local and global intensity 

peaks. 

c) Intensity-based statistical features: which describe how intensities within a 

ROI are distributed, without requiring discretization, so that they can be used to 

describe a continuous intensity distribution. These features are only meaningful 

if the intensity values scale is not arbitrary. 

d) Intensity histogram features: which are obtained by discretizing the intensity 

values in the image to a fixed number of bins and generating a frequency 

histogram (intensity histogram) from which several statistics can be calculated. 

e) Intensity volume histogram features: which describe the relationship between 

each discretized intensity i, and the fraction of the volume that contains at least 

intensity i.  

f) Texture matrix-based features: which group the information of the voxels in 

matrixes, based on different types of relationships between them, and then 

extract different kinds of values from those matrixes: 

 

• Grey level co-occurrence matrix: which describes how combinations of 

discretized intensities of neighbouring pixels, or voxels in a 3D volume, are 

distributed along one of the image directions (figure 14 shows an example for 

a 2D matrix of grey levels).  

• Grey level run length matrix: which assesses run lengths, the length of a 

consecutive sequence of pixels or voxels with the same grey level along 

direction. 
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• Grey level size zone matrix: which counts the number of groups (or zones) of 

linked voxels (voxels with identical discretized grey level). 

• Grey level distance zone matrix: which counts the number of groups (or 

zones) of linked voxels which are at the same distance to ROI edge, capturing 

the relationship between position and grey level. 

• Neighbourhood grey tone difference matrix: as defined by Amadasun and 

King [82]. 

• Neighbouring grey level dependence matrix: as defined by Sun and Wee [83]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. a) Digital Image; b) corresponding grey level co-occurrence matrices for the 

horizontal direction (Adapted from Castellano et al. (2004) [84]). 

 

3.4.1.5. Feature Selection  
 

The features mentioned in the previous section can amount to hundreds per image, and 

this number can grow even further if filters, which can be used to enhance certain image 

characteristic as edges or blobs, are applied prior to extraction. This massive number of 

features is in staggering contrast with the reduced sample sizes that are available in 

most studies, which are often well below 100 patients. Therefore, it is unthinkable to use 

all extracted features in model building, as several of these extracted features may not 

be useful for the particular goal of the study and using all of them would inevitably result 

in reduced generalization power (the so called overfitting of the data) [65]. 

In this way, effective feature selection or reduction techniques are imperative for the 

development of adequate and useful radiomics models. Several such techniques exist, 

and the choice of which to use highly depends on the task-specific goal, the size of the 

sample and the computational resources available. 

(a) (b) 
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Typically, feature selection methods can be divided into 3 groups: filter methods, wrapper 

methods and embedded methods. Filter methods are classifier independent and 

essentially rank the features according to a scoring criterion, which can depend on each 

given feature relevancy towards the outcome (univariate methods), or can take into 

account the interactions between different features, being sensitive to feature 

redundancy as well as relevancy (multivariate methods). This type of methods are very 

computationally efficient, which makes them very appealing for radiomics studies due to 

the large quantity of imaging features that need to be taken into account [85]. 

Wrapper methods, on the other hand, are a classifier dependent approach, which 

resembles a search method, scanning the whole feature space to define a set of relevant 

and non-redundant features for a given classifier, being the training/validation accuracy 

of the classifier the measure of utility for the candidate feature subset.  

These methods can often produce better classification results when compared to filter 

methods, but they can also become very computationally expensive for a high-

dimensional feature space and produce feature subsets that are somewhat specific to 

the chosen classifier [85].  

At last, embedded methods are also classifier dependent methods which incorporate the 

feature selection in the training process. The most common example of this method is 

the decision tree algorithm, which selects a feature in each recursive step of the tree 

growth process, according to its ability to correctly divide the data. 

These methods are more computationally efficient when compared to wrapper methods, 

but have also the disadvantage of producing classifier-specific feature subsets [85]. 

In addition to these feature selection techniques, dimensionality can be reduced by 

combining and/or transforming the original feature set into a transformed smaller set, 

using methods like principal component analysis or linear discriminant analysis. These 

methods are computationally very efficient, but have as disadvantage the total loss of 

physical meaning of the final set of features [65]. 

 

3.4.1.6. Model building 
 

After a suitable set of features is identified a predictive model can be built. This can be 

done resorting to both supervised and unsupervised approaches. In unsupervised 

techniques, such as k-nearest neighbour clustering, the classifier does not know the true 

class of the training samples, but aims to discover structure within the data itself, 
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grouping similar samples (according to some similarity metric which can be defined by 

the user) into clusters of data.  

Conversely, in supervised methods the classifier uses information about the true class 

of the training samples to produce an optimised mapping between the input features and 

the expected output classification of a new sample. Some examples of supervised 

techniques are neural networks, support vector machines, bayesian classifiers, random 

forests, among others. [65,85,86]. Here a brief description of the models used in the 

second part of this work, namely support vector machines, Bayesian classifier, decision 

trees and multi adaptive regression splines are presented. 

Support vector machines (SVM) were first introduced by Dr. Vladmir Vapnik in 1982-86 

as a pattern recognition method where input vectors are non-linearly mapped to a very 

high-dimension feature space in which a linear decision surface can be constructed [87]. 

The main idea behind SVM is the construction of a separating hyperplane (discriminative 

function) that optimally separates the boundary objects of each class, which are called 

support vectors. This is done by finding the hyperplane that maximizes the distance to 

these support vectors, which is called the margin of separation [61]. Figure 15 shows an 

example of the support vectors, optimal margin and optimal separation hyper-plane for 

a separable 2-dimensional case. 

It is shown [87] that this problem can be solved by finding the weights α𝑖 and bias 𝑏 for 

which: 

 

𝑐 = ∑ α𝑖𝑘(𝑠𝑖 , 𝑥) + 𝑏 
𝑖         

 

 

Being 𝑠𝑖 the support vectors, 𝑘(𝑠𝑖 , 𝑥) a kernel function (which can be linear, polynomial, 

gaussian, etc) 𝑥 a given object and 𝑐 its output classification. 

 

(8) 
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Figure 15. An example of a separable problem in a 2-dimensional space. The support vectors, 

marked with grey squares, define the margin of largest separation between the two classes [83]. 

 

Bayesian learning algorithms differ from SVM in the sense that they provide a statistical 

approach to classification, rooted on the assumption that the quantities of interest follow 

certain probability distributions which can be used to produce optimal decisions based 

on the observed data [88].  

Another very popular classification approach are decision trees. This type of classifiers 

classifies the examples by sorting them down the tree starting from the root and ending 

on a leaf node, which provides the classification. Each node of the tree refers to a feature 

of the example, and each branch descending from a node corresponds to the several 

possible values that the feature can take. An example of a decision tree is shown in 

figure 16. Each example is classified by going through the decision tree, starting at the 

root node, testing the specified feature at each node and proceeding down the 

corresponding branch, until a leaf node with the classification is reached [88]. 

 

Figure 16. Example of decision tree. This tree classifies Saturday mornings according to 

whether or not they are suitable for playing tennis ([88] page 53). 
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Another classification method is Multivariate Regression Splines (MARS). This is a 

nonlinear and nonparametric regression method, in which the features in the training 

data set are divided into separate piecewise linear segments (splines) of differing 

gradients (slopes). Essentially, the predictors are broken into groups according to a 

certain cut point, and the linear relationships between the predictors and the outcome 

are modelled within each group. This break originates two new features, one which has 

values of zero greater than the cut point, while the second feature is zero less than the 

cut point. The new features are then added to a basic linear regression model, creating 

a piecewise linear model where each new feature models an isolated portion of the 

original data [89]. 

 

3.4.1.7. Radiomics applications – ART 
 

In the past decade, there have been many applications of radiomics and texture analysis 

techniques in oncology, such as in tumour segmentation and pathologic classification, 

risk stratification and monitoring of alterations in normal tissue as a result of radiotherapy 

[90]. Recently, two studies were published exploring the capacity of using radiomics to 

predict the need for adaptive radiotherapy. 

The first study, by Ramella et all. [72], was published in November 2018 and investigated 

the feasibility of using radiomic features of the patient’s initial imaging to predict tumour 

reduction during chemoradiotherapy for non-small cell lung cancer (NSCLC) patients. 

The authors used a cohort of 91 NSCLC patients treated with concurrent 

chemoradiotherapy, of which 50 had an ART plan. Using an in-house developed 

software based on MATLAB, 12 statistics and 252 texture features were extracted from 

the Clinical Volume, which was manually delineated in the planning CT by a radiation 

oncologist.   

In addition to the radiomics features, nine semantic features, namely patients’ age, sex, 

smoking attitude, tumour staging scores and histology/gene mutation information, were 

included in the analysis. 

Feature selection was done resorting to a wrapper method with random forests. A leave-

one-out cross-validation loop was used to generate several feature subsets selected by 

the wrapper approach, and the frequency of selection of each feature was assessed. All 

the features that were selected in at least 10% of loop interactions were included in the 

model, which resulted in 12 features: 5 semantic (sex, N stage, histology, epidermal 



Chapter 3 || State of the art 

44 
 

growth factor mutation and smoking attitude), 2 GLCM, 4 Local Binary Patterns on three 

orthogonal planes (LBP-TOP)3 features and 1 statistical feature. 

These features were then used in a random forest method to classify the data into ART 

and non-ART groups, using LOO cross-validation to assess performance. The authors 

reported AUC of 82% (95% CI of 73%-91%), an accuracy of 78% (95% CI of 69.5%-

86.5%), a precision of 77.8% (95% CI 69.95%-86%), a sensitivity of 84% (95% CI of 

75.7%-92.2%), and a PPV and NPV of 65.7% (95% CI of 60.7%-70.7%) and 86.9% (95% 

CI 83.4%-90.4%) respectively. Furthermore, it was reported that the scores obtained 

using the semantic features alone were considerably lower than with the radiomic 

signature, showing a decrease of 4% in AUC and 6% in accuracy. 

The second study, by Yu et al. [73], was published in October 2019 and had the objective 

of predicting ART eligibility for advanced nasopharyngeal carcinoma patients (NPC), 

using radiomic features extracted from multi-parametric magnetic resonance images. 

The study cohort included 70 NPC patients treated with radical radiotherapy from which 

13 had a replan sometime during treatment. Pre-treatment contrast enhanced T1 

weighted (CET1-w) and T2 weighted (T2-w) MR images were acquired for each patient, 

and for each image 490 radiomic features were extracted, including 14 shape, 90 1st 

order intensity and 375 texture features. 

In order to reduce the number of features, the authors started by removing highly inter-

correlated features based on the computation of Pearson correlation coefficient between 

pairs of features, reducing the number of features to 53 out of the original 490. 

After this preliminary reduction, the authors applied the Least Absolute Shrinkage and 

Selection Operator (LASSO) algorithm to both further perform classification and reduce 

the number of features. For each of three cases: 1) CET1-w image features, 2) T2-w 

image features, and 3) combination of features extracted from both CET1-w and T2-w  

images, a three step process was defined, during which several models with different 

ratios between planned and replanned patients were used for training. Eight sets of 

radiomic features with a number of variables ranging from 3 to 10 were identified and 

analysed for prediction capability.  

For each set of features, 100 resampled iterations of 20-repeated 3-fold cross validation 

were performed for cases 1, 2 and 3, and the distribution of AUC values was computed. 

The authors identified 8 features for case 1 (CET1-w model), including 2 shape features 

and 6 Laplacian of Gaussian (LoG) based features, which yielded an average AUC value 

 
3  LBP-TOP are descriptors which assign to each pixel of the image a label comparing it with its 
neighborhood matrix computed from three orthogonal planes (top) [72]. 
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of 85.2% (95% CI of 84.7%-85.7%) in the testing sets. For case 2, 6 features were 

selected, including 2 shape and 4 LoG-based features, with an average AUC value in 

the testing sets of 75% (95%CI of 74.5%-75.5%). Finally, the best result was achieved 

for case 3, where 6 features were also identified, including one 1st order feature (kurtosis) 

and 5 LoG-based features, resulting in an average AUC value in the testing sets of 93% 

(95%CI of 92.8%-93.3%). No semantic features were included in the predictive models 

for this study. 

Both studies show that there is potential for the application of radiomics in the prediction 

of ART. 

 

3.4.1.8. Main challenges in Radiomics  
 

Despite the many areas where radiomics can be potentially applied, there are still some 

factors that are keeping it from being routinely implemented in clinical practice. 

For instance, several radiomic features have shown to be sensitive to a number of 

technical factors, such as image acquisition parameters and different reconstruction 

algorithms, which contributes to low reproducibility of the radiomic features across 

different machines or centres [80].  

Furthermore, different pre-processing techniques, may also affect the value of extracted 

features and, even for the same set of features, different feature-selection and 

classification methods can yield highly different results [63]. 

Another limitation of the radiomics process is that the extracted features are highly 

dependent on the delineated region of interest, but manual delineation of tumours is both 

time-consuming and prone to intra-observer variability. It is thus recommended that 

semi-automatic delineation tools are used for radiomic studies, but these tools are 

currently not available for all clinics [80]. 

These issues make it very important to include robustness analysis in radiomics studies, 

in order to assess whether the extracted features are not significantly influenced by 

variations in patient positioning, image acquisition and segmentation. This analysis can 

be done by test-retest imaging, which means imaging the patient twice at different 

timepoints (minutes or days of difference), usually with the same acquisition parameters. 

In this way, two slightly different images of the ROI are acquired and the level of 

resemblance of the extracted features between both can be assessed [91]. 

Unfortunately, test-retest protocols demand the utilization of additional material and 

human resources, as well as produce additional radiation to the patient, which makes it 
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a difficult procedure to routinely implement for every radiomic study. Furthermore, since 

the robustness of the features highly depends on the imaging modality, the type of 

cancer, voxel size, type of discretization, etc., the results cannot be easily transferred 

from one study to another [91].  

To overcome these difficulties, Zwanenburg et al. (2019) propose a different approach 

inspired by the deep learning computer vision field in which feature robustness is 

assessed through applying a series of perturbations to the images, which simulate 

differences in patient positioning, contour and levels of noise in the image [91]. In this 

way, by extracting the features from all perturbed images and calculating the intraclass 

correlation coefficient for each feature, considering all patients in the study, a good idea 

of the feature robustness can be obtained.  

As mentioned before, most radiomics studies have relatively small patient cohorts when 

compared to the enormous amount of extracted radiomic features. This imbalance 

results in a high-dimensional feature space with very sparse data points, which can easily 

lead to an overfitting of the data and large false positive rates, making it imperative that 

reliable feature selection methods are applied prior to model building [63]. 

All these aspects make it more difficult to produce stable models that have good 

generalizability and can be consistently reproduced across multiple cohorts from 

different institutions, which is necessary for the implementation of these models into 

clinical practice. For this reason, there has been an increasing number of initiatives for 

the standardization of the different steps of the radiomics pipeline, such as the Image 

Biomarker Standardization Initiative [79], in order to improve reproducibility of radiomic 

studies. 
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Chapter 4 

 

Assessing the need for Adaptive Radiotherapy in H&N 
patients 
 

4.1. Purpose 
 

The purpose of this study is to assess the need for ART in H&N patients by evaluating 

the dosimetric impact of performing a single replan in the course of treatment both on 

the target volumes and on seventeen OARs, using an automatic planning tool. The use 

of an automatic planning tool allows an unbiased analysis of the impact of ART 

considering the inter/intra user variability that is inevitable when the second plan is 

produced under different circumstances and/or by a different planner. 

 

4.2. Material and Methods 

4.2.1. Sample description 

 

The study sample consisted of 30 H&N patients treated with helical IMRT at IPOCFG. 

The treatment was delivered by a Tomotherapy HD (Accuray) unit, with (22 patients) or 

without (8 patients) concomitant chemotherapy. 

The vast majority (25 out of 30) of patients were prescribed 69.96 Gy to the tumour 

planning target volume (PTV-T), with two patients being prescribed 59.4 Gy and three 

being prescribed 50 Gy. The prescription to the lymphatic nodes’ PTVs (PTV-N) was 

50.4 Gy, 54 Gy or 59.4 Gy. There were 3 patients which were not prescribed dose to the 

lymph nodes. Depending on the prescription scheme, the treatment was delivered in 

either 33 (26 patients), 28 (1 patient) or 20 (3 patients) fractions. 

All patients had a planning CT (p-CT) scan in treatment position acquired at a median of 

14.5 days before the start of treatment, on which the target volumes were manually 

delineated by a radiation oncologist. This CT scan was acquired using the Somatom 

Sensation Open scanner from Siemens, with a 3 mm slice thickness.  

A summary of the patients’ characteristics can be seen in table 1. 
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Table 1. Summary of patients' characteristics. The mean and standard deviation is shown for 

the age and initial weight. 

Characteristic Value 

Age 61.4 ± 10.3 

Gender (M/F) 27/3 

T stage (1/2/3/4) 1/1/6/22 

N stage (0/1/2/3/) 4/1/20/5 

Initial Weight (Kg) 62.0 ± 15.1 

 

4.2.2. Adaptive Radiotherapy scheme 

 
All patients underwent a daily MV-CT scan, before each treatment fraction, to assess for 

differences between the current position and the one in the p-CT. A rigid registration was 

then performed between the MV-CT and the p-CT, and a transformation vector 

calculated, which translated into rigid couch and roll angle shifts to correct for positional 

errors.  

In the case where even after the rigid transformation significant discrepancies could be 

observed, the medical physicist was alerted, and a dose calculation was performed on 

the daily scan using the Planned Adaptive software module version 5.1.0.6 from Accuray. 

This dose distribution was then revised by the responsible radiation oncologist, which 

determined the need for a new treatment plan. If a replan was required, a second CT 

(verification CT) was acquired, and both the target volumes and OAR propagated from 

the p-CT to the verification CT by rigid and deformable image registration using Velocity 

AI, version 3.2. These volumes were then manually corrected by the radiation oncologist 

and a new plan was designed by the responsible medical physicist. 

 

4.2.3. Plan generation 

 
An automatic planning tool, iCycle [92], was used to generate three dose distributions 

for each patient in the cohort: 1) the dose distribution corresponding to the optimized 

plan for the planning CT (original plan); 2) the dose distribution corresponding to the 

optimized plan for the verification CT (ART-plan); 3) the dose distribution obtained with 

plan 1 but considering the verification CT (non-ART plan). 
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All plans were generated by the Erasmus-iCycle IMRT multicriterial optimization engine 

[92]. In this tool, plan generation is guided by a user defined wish-list, which contains 

both clinical constraints that must be strictly met, and prioritized objectives to be 

optimized. The optimization occurs through a constraint-based method, 2pεc method, 

which generates a single Pareto optimal IMRT solution for a given set of beams. The 

wish-list were built according to the guidelines established by Ventura, et al. (2018) [93].  

For the calculation of the non-ART plan, the isocentres of the two CTs (planning and 

verification CT) were aligned and the dose distribution obtained by the fluence and beam 

arrangement resulting from the original plan was computed on the verification CT. 

 

4.2.4. Dosimetric analysis 

 
The dosimetric endpoints for both target volumes and OARs were compared between 

the adaptive and the non-adaptive plan, to assess the impact of ART. The near minimum 

dose (D98%) was considered for the target volumes and the maximum and mean doses 

for OAR with serial and parallel architectures, respectively.  

First the normality and homogeneity of the variance were assessed using the Shapiro-

Wilk normality test and Levene’s test respectively, in order to determine whether 

parametric or non-parametric tests were suitable. Then, since all variables were non-

parametric the Wilcoxon sign ranked test, with a significance level of 0.05, was used to 

assess statistical significance. 

 

4.2.5. Plans assessment and comparison 

 
The dose distributions obtained for the ART-plan and the non-ART plan were then 

assessed and compared using the SPIDERplan quality assessment tool. This tool, 

described in detail by Ventura et al. (2018) [94], scores each structure of interest using 

a score function based on targets/OAR clinical constraints. These scores are inversely 

proportional to the quality of the plan regarding that structure, meaning that the closer 

the score is to zero the better the sparing of the OAR or coverage of the target volume. 

A score lower than unity is achieved when all planning aims are met, and a score higher 

than 1 means that the plan is not complying with the required dose constraints. The 

structures are organized within groups and weights, which reflect the radiation oncologist 

clinical preferences, are assigned to both groups and structures. The scores associated 

with each structure are then combined so that group scores and a global plan score 
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reflecting the clinical preferences are calculated. The results are presented in an intuitive 

graphical representation through customized radar plots. 

In this study, the structures were divided into five groups (PTV group, Critical group, 

DigestOral group, Bone group, Optics group and Other group) which were assigned 

different weights (50%, 30%, 5%, 3.5%, 10% and 1.5%, respectively). The different 

group structures depend on factors like the pathology and clinical preferences, 

established based on institutional or international protocols, and the different weights 

were assigned according to the group clinical relevance [94]. 

 

4.3. Results 

The results of the dosimetric and the SPIDERplan quality analysis for every target 

volume and each OAR are shown in table 2. The structures are organized in the table 

by the respective SPIDERplan groups, starting with the PTV group, and moving 

sequentially to the Critical, DigestOral, Bone, Optics and Other groups. The dosimetric 

analysis regarding the specified parameter (D98%, Dmax or Dmean) is presented first, 

followed by the group score for the respective group. Finally, the mean global plan scores 

for the ART and non-ART plans are also presented. The p-values lower than 0.05, 

representing statistical significance, are in bold and marked with a star. 

Figure 17 shows the SPIDERplan plot for a representative patient. The red line 

represents the structures’ scores for the ART plan and the yellow line the scores for the 

non-ART plan. It is clear that the scores for the ART plan are generally closer to the 

centre of the plot, meaning that they are closer to the aimed value. The largest 

differences are observed for the target volumes (PTV group), and for the DigestOral 

group. Furthermore, for this specific patient, a significant improvement is achieved in the 

spinal cord with the ART plan clearly complying with the dose constraint for this OAR 

(score below 1) which is not the case for the non-ART plan (score above the radius 1 

circle in the diagram). In fact, the scores in the ART plan are all bellow 1 (inner circle) 

with the exception of the thyroid, while the majority of the structures in the non-ART plan 

presents a score exciding 1, meaning that the required clinical constraints for plan 

acceptance are not achieved in this scenario. 
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Table 2. Results of the dosimetric and SPIDERplan analysis of the ART and non-ART plans. 

Parameter Structure 
ART Non-ART 

p-value 
Mean std Mean Std 

D98% (Gy) 

PTV69-T 67.3 0.729 58.00 8.323 0.000* 

PTV59-N1 58.31 1.053 44.46 13.20 0.000* 

PTV54-N2 52.88 0.385 40.60 10.39 0.026* 

PTV59-N2 57.34 0.68 49.73 7.686 0.002* 

PTV59-N 58.52 1.198 32.83 18.27 0.000* 

Group Score PTV group 0.977 0.010 2.447 5.975 0.000 

Dmax (Gy) 
Spinal Cord 35.58 10.57 41.52 13.45 0.017 

Brainstem 15.36 13.74 19.19 17.07 0.474 

Group Score Critical group 0.537 0.195 0.645 0.254 0.070 

Dmean (Gy) 

Left Parotid 23.46 8.987 26.41 11.97 0.512 

Right Parotid 24.00 10.07 25.11 11.88 0.522 

Oral Cavity 29.36 9.668 28.45 9.843 0.695 

Oesophagus 24.81 10.39 24.18 12.21 0.821 

Larynx 33.33 8.561 31.64 11.76 0.678 

Right Submandibular Gland 41.47 9.615 44.67 12.11 0.223 

Left Submandibular Gland 41.31 15.39 41.32 17.39 0.709 

Lips 17.54 5.833 17.77 5.637 0.915 

Constrictor Muscle 40.826 12.118 40.714 13.776 0.726 

Group Score DigestOral group 0.791 0.275 0.822 0.289 0.773 

Dmax (Gy) Mandible 63.111 13.546 65.748 14.412 0.069 

Dmean (Gy) 

Right Ear 6.578 9.200 9.623 12.846 0.959 

Left Ear 6.097 9.431 7.483 11.907 0.959 

Right Cochlea 16.820 18.970 16.085 20.874 0.559 

Left Cochlea 10.380 17.871 12.129 22.371 0.515 

Group Score Bone group 0.583 0.350 0.610 0.363 0.751 

Dmean (Gy) 

Right Lens 1.058 2.858 1.568 2.993 0.655 

Left Lens 1.500 3.752 1.455 2.821 1.000 

Right Optic Nerve 4.756 11.609 6.916 15.011 0.655 

Left Optic Nerve 6.567 14.655 8.900 17.238 0.634 

Right Retina 1.661 4.345 2.498 5.133 0.490 

Left Retina 2.058 5.087 2.497 5.014 0.743 

Chiasm 2.727 6.093 5.543 12.365 0.884 

Group Score Optics group 0.178 0.451 0.241 0.489 0.490 

Dmean (Gy) 

Right Lung 2.366 1.702 2.739 3.079 0.848 

Left Lung 2.257 1.690 2.534 2.873 0.763 

Thyroid 35.808 12.646 37.029 13.175 0.750 

Pituitary 3.026 10.012 3.967 10.847 0.961 

Group Score Other group 0.710 0.351 0.779 0.511 0.554 

Global score Plan score 0.773 0.091 1.621 3.359 0.000 
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Figure 17. SPIDERplan radar plot for one patient. The red line represents the scores for the 

adaptive plan for each structure and target volume while the yellow line shows the scores for 

the non-adaptive plan. 

 

4.4. Discussion 
 

In this work, the impact of plan adaptation (ART) in H&N patients was assessed by 

investigating the dosimetric differences between performing one replan in the course of 

treatment as opposed to delivering the initial plan with no modification.  

The dosimetric analysis was performed for all target volumes as well as seventeen 

OARs, providing a holistic view of the consequences of ART for the quality of the 

delivered treatment.  

Looking at the dosimetric differences reported in table 2, it is obvious that the most 

significant dosimetric impact of ART is observed in the target volumes, all of which 

presented much lower D98% (or near minimum doses) in the non-ART scenario. The 
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differences are so important that the requirement of the coverage of 95% of the PTV by 

95% of the prescribed dose is not met by any target, leading to the conclusion that, in 

the absence of a replan, dose coverage and tumoral control would be significantly 

impaired.  

Furthermore, it is clear that the standard deviation is much higher in the non-ART 

scenario for all structures. This greatly increased variance implies that not performing 

ART could contribute to more unpredictable side effects. The actual dosimetric 

consequences are highly patient specific, reinforcing the need for an individual 

assessment and identification of patients for ART. These results are corroborated by the 

SPIDERplan score for the PTV group, with both mean value and standard deviation 

significantly higher for the non-ART scenario. This score is also the only of the six groups 

which is greater than one, meaning that the minimum clinical criteria are not met for the 

target volumes in the absence of a replan. 

Regarding the OAR, most structures show an increase in the mean/maximum dose in 

the non-ART scenario, as can be seen in table 2. The majority of the published literature 

on the dosimetric impact of ART in OAR focuses on the parotid glands, due to their well 

known radiosensitivity which is associated with impaired salivary production, xerostomia 

and reduced quality of life [48,95]. There are currently relatively few studies which focus 

on other OAR that can also have a significant impact in the patients’ life if overly 

irradiated, including highly critical organs such as the spinal cord and the brainstem 

[48,95]. Our results clearly show that, although there is an increase in the mean dose to 

the parotids in the absence of ART, this is not statistically significant, and the more 

affected OAR is the spinal cord. The maximum dose to the spinal cord increased 

approximately 6 Gy in average, but a very high dose variation across patients was 

observed. This is in line with the results from other studies which report excess dose to 

the spinal cord, with Hansen et al.  [58] reporting an increase in the maximum dose 

ranging from 0.2 to 15.5 Gy in all patients of a 13 patient cohort, and Chitapanarux et al. 

[96] reporting a decrease in the Dmax to the spinal cord with ART in 95% of the patients 

in their cohort, with a dose difference ranging from 1.6 to 5.9 Gy. The average maximum 

dose to the spinal cord is still below the clinical threshold of 45 Gy in the ART plans, even 

with the observed increase. However, it is reasonable to infer that this value could 

escalate above the limit in the upcoming weeks of treatment, if the increase is not 

detected, or be a drawback in case of a future tumour recurrence needing a re-irradiation.  

Despite the most significant discrepancies emerging for the target volumes and the 

spinal cord, the SPIDERplan global score, which gives a measure of the overall plan 

quality by performing a weighted score of the six different groups of structures, is also 

https://europepmc.org/authors/0000-0002-8552-0149
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significantly higher for the non-ART scenario, with a much higher standard deviation 

compared to the ART case. This shows that the individual differences observed for each 

structure translate, in fact, into an overall loss of plan quality, which could potentially lead 

to a lower treatment outcome. It is also important to point out that using an automatic 

planning tool to generate the dose distributions eliminates other sources of differences 

between the plans, such as inter or intra planner variability. Additionally, the iCycle tool 

is a powerful optimizer that inherently produces high quality dose distributions, which 

could be the reason why no statistically significant differences were found in most OARs. 

Although these results highlight the advantages of ART in head and neck patients, further 

research on the long term impact of ART in patient survival and disease progression is 

still necessary to fully understand the impact and necessity of incorporating ART into 

routine clinical practice. 

 

4.5. Conclusion 

 
This study shows that the introduction of one adaptive replan during treatment translates 

into statistically significant differences in the coverage of the target volumes as well as 

the dose to OAR. Of the seventeen analysed OAR, most of them showed increased 

doses without ART, with the spinal cord presenting the only statistically significant 

differences. 

Overall plan quality was also impaired without ART, as is shown by a significant reduction 

in the global plan score obtained using the SPIDERplan assessment tool when 

compared with ART.  

Further work is needed to investigate the long-term effects of ART in head and neck 

patients. 
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Chapter 5 

 

Predicting the need for adaptive radiotherapy in H&N 

patients  

 

5.1. Purpose 
 
Adaptive radiotherapy can reduce the negative dosimetric and clinical impacts of 

anatomical changes during head and neck (H&N) treatments. Evidence shows that ART 

is not equally important for all patients, making it valuable to electively schedule ART to 

optimize both clinical resources and the benefit for the patient.  

The purpose of this study is to assess the feasibility of using both pre-treatment patient 

features and radiomic features from a pre-treatment contrast enhanced CT scan to 

predict the need for ART in H&N patients 

 

5.2. Methodology 
 

5.2.1. Sample description 
 
The study sample consisted of 72 (66 male and 6 female) H&N patients from IPOCFG, 

E.P.E., which were treated with helical IMRT delivered by a Tomotherapy HD (Accuray) 

unit, with (58 patients) or without (14 patients) concomitant chemotherapy. 

The vast majority (63 out of 72) of patients were prescribed 69.96 Gy to the tumour 

planning target volume (PTV-T), with 2 patients being prescribed 59.4 Gy. The 

prescription to the lymphatic nodes’ PTVs (PTV-N) was either 50.4 Gy, 54 Gy or 59.4 

Gy. Regarding the adenopathies, 48 patients were prescribed 69.96 Gy, 4 patients were 

prescribed 66 Gy, one patient was prescribed 50 Gy and one patient 59,4 Gy. The 

remaining patients did not present any adenopathies. There were 3 patients with a 

prescription of 50.4 Gy for both the PTV-T and the PTV-N, and 4 patients with dose 

prescribed to the PTV-T only (50 Gy for 3 patients and 70Gy for 1 patient). Depending 

on the prescription scheme, the treatment was delivered in either 33 (65 patients), 28 (4 

patients) or 20 (3 patients) fractions. 
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5.2.2. Patient Imaging 
 
All patients had a planning CT (p-CT) scan in treatment position acquired at a median of 

14.5 days before the start of treatment, on which the target volumes and OAR were 

manually delineated by a radiation oncologist. This CT scan was acquired using the 

scanner Somatom Sensation Open from Siemens, with a 3 mm slice thickness.  

For diagnostic purposes, patients undergo a contrast enhanced CT (d-CT) prior to the 

first appointment with the radiation oncologist (at a median of 27 days before the p-CT). 

This CT scan is often acquired at different external centres, leading to varying acquisition 

parameters, namely slice thickness and reconstruction kernels. The d-CT was available 

for 67 patients.  

 

5.2.3. Adaptive Radiotherapy scheme 
 
All patients underwent a daily MV-CT scan, before each treatment fraction, to assess for 

differences between the current position and the one in the p-CT. A rigid registration was 

then performed between the MV-CT and the p-CT, and a transformation vector 

calculated, which translated into rigid couch and roll angle shifts to correct for positional 

errors.  

In the case where even after the rigid transformation significant discrepancies could be 

observed, the medical physicist was alerted, and a dose calculation was performed on 

the daily scan using the Planned Adaptive software module from Accuray. This dose 

distribution was then revised by the responsible radiation oncologist, which determined 

the need for a new treatment plan. If a replan was required, a second CT (re-CT) was 

acquired, and both the target volumes and OAR propagated from the p-CT to the re-CT 

by rigid and deformable image registration. These volumes were then manually corrected 

by the radiation oncologist and a new plan was designed by the responsible medical 

physicist. 

From the 72 patients included in the study, 36 had at least one replan during treatment 

(ART group), with 3 requiring 2 replans. The remaining 36 patients were used as the 

control group for comparison and model development. 
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5.2.4. Semantic Features 
 
Thirty-six pre-treatment factors (features), which could potentially be predictive for the 

need of ART were acquired for each patient. 

Firstly, statistical tests were performed, to determine whether there were significant 

differences between the replan and control groups for each factor. For continuous 

features (like initial weight, GTV volume/surface area, parotid glands volume/surface 

area, prescription doses, etc)  the normality and homogeneity of the variance were 

assessed first, using the Shapiro-Wilk normality test and Levene’s test respectively in 

order to determine whether parametric or non-parametric tests were suitable. Then, the 

t-test and Wilcoxon sign ranked test were used to assess statistical significance in the 

parametric and non-parametric continuous features respectively.  

For categorical features (as drinking habits, smoking habits, TMN staging, 

chemotherapy, etc) the chi-squared test was used. As a real clinical dataset was 

considered in this study, there was some missing data and not all parameters had the 

information for all patients.  

 

5.2.5. Radiomics 
 
All the radiomic analysis was performed in MATLAB R2019b. The adopted workflow was 

based on the guidelines provided by the Image Biomarker Standardization Initiative 

(IBSI) [79], regarding both image pre-processing and feature extraction, as implemented 

by the Standardized Environment for Radiomics Analysis (SERA) [97]. SERA is a 

MATLAB-based framework developed at John Hopkins University in 2019, that can 

handle CT, PET, SPECT or MRI images, and extract standardized radiomic features in 

compliance with the IBSI’s guidelines. The adopted workflow was the one described in 

chapter 3, section 3.4.1. 

Image segmentation was done from the manual contour of the GTV by the radiation 

oncologist in the p-CTs. Rigid and deformable image registration of the GTV from the p-

CT was performed using the Velocity AI v. 3.2. software from Varian to define the region 

of interest (ROI) in the d-CT. 

To correct for differences in voxel spacing and slice thickness (d-CTs), all images were 

interpolated to an isotropic voxel spacing of 1 mm x 1 mm x 1 mm, using the tri-linear 

interpolation algorithm. Furthermore, the intensity range of the ROI was re-segmented 

to include only voxels between -150 HU and 180 HU, eliminating all bone and air voxels 

[98], and voxels with outlier intensities (outside the range of ± 3 standard deviations) 
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were removed. Lastly, intensities inside the ROI were discretized in a fixed bin number 

approach considering 32 bins. 

Having completed these pre-processing steps, 351 radiomic features (as defined by the 

IBSI [79]) were extracted from each ROI, which are summarized in table 3. 

After extraction, all features were normalized (z-normalization) and hierarchical 

clustering was performed to prevent redundancy. The clustering was based on the 

Spearman correlation coefficient, meaning that highly correlated features were assigned 

to the same cluster, and all feature clusters with intra-cluster correlation > 0.9 were 

replaced by a meta-feature which corresponded to the average of all features in the 

cluster. This reduced set of non-redundant features was fed to the feature selection 

algorithm.  

Table 3. Extracted Radiomic features. 

 

 

5.2.6. Feature selection  
 
Feature selection was made by a greedy search algorithm that, at each iteration, 

eliminates one feature based on the performance of classification. This was done 

considering 4 different classifiers: support vector machines (SVM), naïve-Bayes, 

decision trees (DT) and multi adaptive regression splines (MARS). Two versions of the 

algorithm were implemented: 1) At each iteration the impact of the removal of each 

Feature Family Number of features 

Morphological 29 

Local Intensity 2 

Intensity-based statistics 18 

Intensity Histogram 23 

Intensity-Volume Histogram 7 

Gray Level Co-occurrence Matrix (GLCM) 2D/2.5D/3D 100 

Gray Level Run Length Matrix (GLRLM) 2D/2.5D/3D 64 

Gray Level Size Zone Matrix (GLSZM) 2D/3D 32 

Gray Level Distance Zone Matrix (GLDZM) 2D/3D 32 

Neighbourhood Grey Tone Difference Matrix (NGTDM) 2D/3D 10 

Neighbouring Grey Level Dependence Matrix (NGLDM) 2D/3D 34 

TOTAL 351 
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available feature was tested by randomly splitting the data into 80% for training and 20% 

for testing, repeating the split 30 times and assessing the average accuracy, true positive 

rate (TPR) and true negative rate (TNR) of the classification; 2) The impact of the removal 

of each feature was assed using leave one out cross-validation for calculating the 

accuracy, TPR and TNR of classification. 

In both versions, the feature set with better performance moves on to the next iteration 

of the algorithm and the whole process repeats until there is only 1 feature left. 

Applying this method with different classifiers will produce possibly different feature 

selected sets, since the classification performance will be the best one obtained for the 

particular classifier used. 

This process was done for the semantic features alone, for the radiomic features alone, 

and then for a combination of both, using the 20 last-standing features from each. For 

the semantic features, all the missing values were replaced by the mean value of the 

existing data for that factor. 

 

5.2.7. Hyperparameter optimization 
 
After a suitable set of variables was determined, hyper-parameter optimization was 

conducted for the SVM using only the selected variables.  

A linear kernel was used, which means that the classification score 𝑓(𝒙) for each sample 

𝒙  was determined by: 

 

𝑓(𝒙) = (
𝒙

𝑠
)

′

𝛃 + b  

 

Where s is a constant referred to as kernel scale, 𝛃 are the model’s linear coefficients 

(the number of elements in 𝛃 is the same as the number of predictors in 𝒙), and b is the 

model bias. 

The parameters considered for optimization were the kernel scale and the box-

constraint, which is the parameter that controls the maximum penalty imposed on 

observations that violate the margin.  

A Bayesian optimization algorithm implemented in the built-in SVM function of MATLAB 

(fitcsvm), considering a 5-fold cross-validation was used to find the optimum values for 

these two parameters [99]. 

(9) 
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5.2.8. Classification 
 
The model building and classification was also performed in two ways: 1) using 30 splits 

of the data into 80% for training and 20% for testing, guaranteeing the balance of the two 

classes in both the training and testing cohort and 2) with 30 repetitions of leave-one-out 

cross-validation. The replacement of the missing values for scenario 1 was done based 

only on the training cohort at each split (average value in the training cohort). For both 

methods the accuracy, sensitivity, specificity, and area under the ROC curve were 

evaluated 

In option 2 it was necessary to repeat the LOO cross-validation classification 30 times 

because the output of the SVM classifier is a classification score, which needs to be 

translated into a posterior probability to build the ROC curve. The MATLAB function 

fitSVMposterior was used to obtain the optimal score to posterior probability 

transformation, and for this purpose it uses a 10-fold cross-validation, leading to small 

differences at each run. 

. 

5.2.9. Robustness analysis 
 
Feature robustness to variations in patient positioning, different degrees of noise in the 

image, and variation in the ROI delineation was assessed using the framework proposed 

by Zwanenburg et al. (2019) [91]. Based on the results obtained by the authors for a 

H&N squamous cell carcinoma cohort, four perturbations were selected: rotation, 

gaussian noise addition, volume adaption and contour randomisation, as shown in figure 

18 [91].  

The rotation perturbation affects both the image and the ROI mask and aims to simulate 

deviations in patient positioning. The imrotate3 function from MATLAB 2019b [100] was 

used to rotate the 3D images and masks around the z-axis considering an angle θ of 

rotation, with θ ϵ [-10°, -6°, -2°, 2°, 6°, 10°]. Trilinear interpolation was used to determine 

the intensities in the rotated image. 

Reproducible features should also be robust to varying image noise. In order to 

implement the noise perturbation, first the noise variance existing in the image was 

determined using the method described by Chang et al. (2000) [101,102], as 

implemented in the getImageNoise function in the PlanMetrics toolbox of the 

Computational Environment for Radiological Research (CERR) [103]. Then, random 

noise drawn from a Gaussian distribution with the same variance was added to each 

image voxel. 
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Figure 18. Image perturbations. The image is represented in blue and the region of interest 

mask in orange. The green squares represent added voxels to the mask, and the purple 

squares represent removed voxels from the mask. Adapted from [91]. 

 

Volume adaption and contour randomization aim to represent variance in the delineation 

of the ROI by different experts. In the volume adaption perturbation, the ROI mask was 

either augmented or shrunk by a given fraction β ϵ [-0.2, -0.1, 0, 0.1, 0.2], through 

recursive dilations/erosions. 

In the contour randomization perturbation, a super voxel-based segmentation algorithm 

was used to create an alternative contour of the ROI, using the Simple Linear Iterative 

Clustering algorithm as implemented by the function superpixels3 from MATLAB 2019b 

[104]. The ROI was then randomised based on the overlap of the super-voxel 

segmentation with the original contour (the probability of a given super-voxel to be 

included in the final mask was equal to its overlap fraction with the original mask).  

These perturbations were chained using the different values of θ for rotation and β for 

volume adaption, resulting in 30 perturbed images per patient. The features selected in 

the previous step were then calculated on each of these perturbed images and the intra-

class correlation coefficient ICC(1,1) [105] was computed to assess feature robustness 

using the MATLAB function implemented by McGraw, et al [106]. 

The intraclass correlation coefficient ICC (1,1) is defined in equation (10) and essentially 

describes how strongly units (the same feature extracted from different perturbed 

Original Rotation 

Contour Randomization Volume Adaption Noise Addition 
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images) in the same group (patient) resemble each other. In equation (10), BMS stands 

for between-targets mean squares and WMS for within-target mean squares, with k 

being the number of judges rating each target. In this case the targets are the patients 

and the judges are the features extracted from the different perturbed images. So, WMS 

is a measure of how much a given feature varies for the same patient, given different 

perturbed images, and BMS is a measure of how similar this variance across the different 

patients is. 

 

𝐼𝐶𝐶(1,1) =
𝐵𝑀𝑆 − 𝑊𝑀𝑆

𝐵𝑀𝑆 + (𝑘 − 1)𝑊𝑀𝑆
  

 

 

The ICC varies between 0 and 1, with 1 meaning that the feature is fully repeatable 

between the different image perturbations and lower values representing a higher 

variance in the feature value for the same patient considering different perturbations, 

which means lower repeatability. 

 

 

5.3. Results 
 

5.3.1. Statistical Analysis of Semantic Features 
 

From all the analysed variables, the only ones that showed a statistically significant 

difference between the control and the ART groups were the planned minimum dose to 

the GTV (Dmin GTV) and both the volume and the surface area of the initial GTV. These 

results, as well as some other pre-treatment features that were considered relevant, are 

shown in table 4. The complete analysis of all extracted features can be found in 

appendix 1. 

 

 

 

 

 

 

(10) 
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Table 4. Statistical analysis for pre-treatment factors. The mean ± standard deviation for each 

group is shown for the continuous variables age, initial weight, Dmin GTV, Dpresc ADNs and 

GTV volume (vol)/surface area (sa). The drinking habits correspond to 1- marked drinking 

habits, 2- moderate drinking habits, 3- no drinking habits and 4- former drinking habits. 

 

Feature Control ART p-value 

Age 57.28 ± 8.77 61.19 ± 10.24 0.102 

Gender (M/F) 32/2 32/4 0.157 

T stage (1/2/3/4) 2/4/12/18 1/1/10/22 0.243 

N stage (0/1/2/3/X) 4/5/25/1/1 4/1/26/5/0 0.242 

Drinking Habits 

(1/2/3/4) 
6/10/3/17 14/3/8/11 0.213 

Initial Weight (Kg) 67.05 ± 14.14 62.39 ± 14.59 0.140 

Dpresc ADNs (Gy) 52.14 ± 30,55 52.8± 29,50 0,889 

Dmin GTV (Gy) 67.47 ± 4.44 64.78 ± 6.67 0.031* 

GTV vol (cm3) 47.10 ± 46.02 85.56 ± 69.95 0.006* 

GTV sa (mm2) 4284.08 ± 3157,49 6367.05 ± 3778.02 0.007* 

 

 

5.3.2. Feature selection and model building 
 

5.3.2.1. Semantic features 
 

The best results for the feature selection were obtained using the SVM classifier with 

LOO cross-validation (table 5). The results for the feature selection using Bayesian 

classifier, DT and MARS can be found in appendix 2. 
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Table 5. Results for the feature selection using SVM considering both LOO cross-validation and 
80/20 splits. 

SVM 30 reps 80/20 splits SVM LOO 

Vars 
Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 
Vars Accuracy TPR TNR 

[1:10] 0,7077 0,627 0,796 [1:10] 0,833 0,833 0,833 

[1:9] 0,7179 0,628 0,837 [1:9] 0,833 0,833 0,833 

[1:8] 0,7513 0,665 0,840 [1:8] 0,764 0,694 0,833 

[1:7] 0,6949 0,647 0,784 [1:7] 0,750 0,667 0,833 

[1:6] 0,7385 0,668 0,821 [1:6] 0,750 0,722 0,778 

[1:5] 0,6692 0,504 0,842 [1:5] 0,736 0,750 0,722 

[1:4] 0,6641 0,629 0,728 [1:4] 0,667 0,556 0,778 

[1:3] 0,6795 0,650 0,726 [1:3] 0,681 0,583 0,778 

[1:2] 0,6846 0,655 0,720 [1:2] 0,681 0,583 0,778 

1 0,6436 0,927 0,305 1 0,611 0,389 0,833 

Var nº Name Var nº Name 

1 DrinkingHistory_2 1 DrinkingHistory_1 

2 DrinkingHistory_4 2 Dmin GTV 

3 Nstage_3 3 Initial Weight 

4 Dmean GTV 4 ADNS Presc 

5 Nstage_2 5 Age 

6 Nstage_0 6 Tstage_1 

7 BMI 7 Nstage_3 

8 Initial Weight 8 BMI 

9 DrinkingHistory_3 9 DrinkingHistory_2 

10 Smoking_1 10 Tstage_2 

 

As can be seen in the previous table, the best balance between accuracy, TPR and TNR 

was found with six selected variables using the greedy search method with LOO cross-

validation. These features were: age, initial weight, prescription dose to adenopathies 

(Dpresc ADNs), Dmin GTV, and the binary variables T stage=1 and marked drinking 

habits.  

After optimization of the parameters box constraints and kernel scale for the SVM 

classifier with the selected variables, the results achieved for both 30 splits 80/20 and 30 

repetitions of LOO cross validation for the accuracy, TPR, TNR, and area under the ROC 

curve can be seen in table 6. 
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The average ROC curves and respective upper and lower pointwise confidence bounds 

can be seen in figure 19. 

 

Table 6. Results for the classification using 6 semantic features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Average ROC curves for 30 repetitions of LOO cross-validation. The solid black 

curve represents the averaged ROC curve for all repetitions and the dashed blue and red 

curves the upper and lower pointwise confidence bounds respectively. The dashed black line is 

the plot diagonal. 

 

 

5.3.2.2. Radiomics 
 
The Radiomics pipeline was applied to both the d-CT and the p-CT. After the hierarchical 

clustering, the original set of 351 features extracted from the ROI was reduced to a non-

redundant initial set of 88 features for the d-CT and 81 features for the p-CT. 

 
Accuracy TPR TNR AUC 

Mean Med Std Mean Med Std Mean Med Std Mean Med Std 

30 splits 

80/20 
0.795 0.788 0.078 0.814 0.857 0.114 0.776 0.714 0.128 0.801 0.801 0.080 

30 reps 

LOO 
0.799 0.806 0.014 0.778 0.778 0.023 0.820 0.819 0.016 0.803 0.803 0.004 
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Several tests for feature selection were done with 3 different classifiers: DT, Bayes and 

SVM, with the best results arising for SVM, which was the selected method. The MARS 

classifier was not considered as it was too computationally expensive. For the radiomics 

features, due to the high dimensionality of the problem, only the version of the feature 

selection algorithm considering the 30 repetitions of 80/20 splits was applied.  

The best balance between accuracy, TPR and TNR was found using SVM for six 

selected features extracted from the ROI in the d-CT, which are shown in tables 7 and 

8. From the six selected features, features R4, R5 and R6 corresponded to original 

extracted features and R1, R2 and R3 to clustered features. Feature R2 consists of a 

cluster containing eighteen highly correlated features, namely the low grey level run 

emphasis and the short run low grey level emphasis from the 2D averaged, 2.5D 

direction merged, 3D averaged and 3D direction merged GLRLM, the low grey level 

emphasis and the small zone low grey level emphasis from the 2D and 3D GLSZM, the 

low grey level emphasis from the 2D and 3D GLDZM and the low grey level count 

emphasis and low dependence low grey level emphasis from the 2D and 3D NGLDM. 

 

Table 7. Results for the feature selection using SVM. 

Diagnostic CT Planning CT 

Vars 
Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 
Vars 

Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 

[1:10] 0,8071 0,804 0,815 [1:10] 0,6762 0,662 0,696 

[1:9] 0,7405 0,745 0,761 [1:9] 0,7738 0,797 0,766 

[1:8] 0,7786 0,760 0,806 [1:8] 0,7167 0,708 0,739 

[1:7] 0,7714 0,722 0,819 [1:7] 0,7738 0,747 0,806 

[1:6] 0,7762 0,738 0,819 [1:6] 0,7024 0,656 0,749 

[1:5] 0,7738 0,777 0,783 [1:5] 0,6810 0,670 0,676 

[1:4] 0,7357 0,712 0,761 [1:4] 0,6905 0,658 0,722 

[1:3] 0,7286 0,638 0,806 [1:3] 0,6643 0,697 0,625 

[1:2] 0,6976 0,790 0,646 [1:2] 0,6714 0,724 0,667 

1 0,5571 0,598 0,545 1 0,6452 0,606 0,725 
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Table 8. Six selected features from the GTV of the d-CT. 

 

 

Since the results were superior for the d-CT only those images were considered for 

classification. 

The results for the classification using the 30 splits after hyperparameter optimization are 

shown in figure 20 considering the SVM models with 3 to 6 features 

Table 9 shows the results obtained for the models with 6 and 3 features, after 

hyperparameter optimization. The 3-feature model corresponds to features R1 to R3 

from table 4, the 4-feature model to features R1 to R4, and so on for the models with five 

and six features. Figure 21 shows the ROC curves obtained for each set of variables 

considering LOO cross-validation. 

 

 

 

 Feature(s) Feature Families 

R1 
Grey level non uniformity 

normalised 

GLSZM 2D 

GLDZM 2D 

R2 
Cluster with 18 features 
(described in the text) 

GLRLM 2D/2.5D/3D (8 features) 
GLSZM 2D/3D (4 features) 
GLDZM 2D/3D (2 features) 
NGLDM 2D/3D (4 features) 

R3 
10th percentile 
Intensity at 90 

Intensity-based statistics 
Intensity-volume histogram 

R4 Centre of mass shift Morphology 

R5 Flatness Morphology 

R6 
Small distance low grey level 

emphasis 
GLDZM 3D 
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Figure 20. Boxplots of the accuracy (right) and AUC (left) obtained for 30 repetitions of 80/20 

train/test splits using 3 to 6 radiomic features in SVM. 

 

 

Table 9. Results obtained for the 6-feature and 3-feature radiomic models using 30 repetitions 

of LOO cross-validation. 

 

 

 

 

 

 

 

 

 
Accuracy TPR TNR AUC 

Mean Med Std Mean Med Std Mean Med Std Mean Med Std 

6-feature 

model 
0.783 0.776 0.008 0.755 0.758 0.009 0.810 0.824 0.015 0.798 0.799 0.004 

3-feature 

model 
0.761 0.761 0.000 0.727 0.727 0.000 0.794 0.794 0.000 0.765 0.765 0.003 
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Figure 21. ROC curves obtained for the models with 3 to 6 variables using LOO cross-

validation. 

 

 

5.3.2.3. Combination of radiomic and semantic features 
 

The best results from the feature selection were again achieved for six selected features, 

from which four were the semantic features: age, prescription dose to ADNs, Dmin to the 

GTV and marked drinking habits, and two were the radiomic features: a clustered feature 

comprising the zone-size non-uniformity normalized and the small-zone emphasis from 

the GLSZM 3D (feature R7), and feature R1 from table 4. The results obtained for 30 

repetitions LOO cross-validation are shown in table 10. The last three features standing 

after the greedy search were the Dmin to the GTV, R1 and R7. The results for the 3-

feature model are also shown in table 10. 

 

 

3 features 

4 features 

5 features 

6 features 
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Table 10. Results obtained for the 6-feature and 3-feature mixed models using 30 repetitions of 

LOO cross-validation. 

 

 

Regarding the robustness analysis, the results for the intra-class correlation coefficient 

(ICC (1,1)) obtained for each selected radiomic feature with the respective 95% 

confidence intervals are shown in table 11. 

 

Table 11. ICC (1,1) and respective 95% confidence intervals (CI) for the 7 radiomic features. 

 

 

 

 

 

 

 

 

 

 

5.4. Discussion 
 

In this study, three separate models based on SVM were built with the purpose of 

predicting the need for ART in H&N patients prior to the beginning of treatment: 1) 

considering only pre-treatment clinical data from the patient; 2) considering only radiomic 

features extracted from pre-treatment CT images; 3) using a combination of features 

from 1 and 2. 

The idea of applying radiomics to predict the need for ART is very recent, with only two 

published papers on the topic so far, to the best of our knowledge [72,73]. These studies 

were described in detail in section 3.4.1.7 of the State of the art. 

 
Accuracy TPR TNR AUC 

Mean Med Std Mean Med Std Mean Med Std Mean Med Std 

6-feature 

model 
0.817 0.821 0.016 0.778 0.788 0.029 0.856 0.853 0.014 0.844 0.843 0.005 

3-feature 

model 
0.726 0.731 0.009 0.672 0.667 0.011 0.779 0.779 0.015 0.777 0.776 0.005 

Feature ICC (1,1) 95% CI 

R1 0.602 [0.523, 0.690] 

R2 0.985 [0.980, 0.990] 

R3 0.785 [0.725, 0.842] 

R4 0.858 [0.813, 0.898] 

R5 0.954 [0.937, 0.968] 

R6 0.775 [0.713, 0.834] 

R7 0.887 [0.850, 0.920] 
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As can be seen from the statistical analysis (table 4), the planned minimum dose to the 

GTV is significantly lower in the ART group. However, when comparing the ratio between 

the Dmin to the GTV and the prescribed dose to the PTV-T no differences were found 

between the two groups, which indicates that the PTV-T underdosage is not significantly 

larger in the ART group than it is in the control group.  

Furthermore, statistically significant differences were found for the initial GTV volume 

and surface area between the two groups, with the ART group presenting on average an 

82% higher initial volume when compared to the control group. These results are in line 

with several published studies that identify higher initial volumes to be associated with 

greater anatomical changes in the course of treatment [42,48,69,70]. Nevertheless, the 

initial GTV volume was not identified as a predictive factor in any of the models, which 

suggests that it would not add additional predictive information to the interactions 

between the selected variables. 

Regarding the first predictive model, the features selected by the greedy-search 

algorithm using only pre-treatment semantic features were age, initial patient weight, the 

prescribed dose to the ADNs, T stage, the planned minimum dose to the GTV and 

whether the patient had marked drinking habits or not using the SVM model. These 

features are clinically relevant and in conformance with previously published results. 

Different studies have shown patient age to be predictive of both tumour [70] and parotid 

[49] shrinkage, as well as reported tumour staging to be significantly correlated with 

anatomical/dosimetric changes [48,69]. Looking at appendix 2 it can also be seen that 

the features Drinking History, T stage, Dmin GTV, age and initial weight were also 

selected for all three of the other tested classifiers, which confirms its ability to correctly 

discriminate between the need or not of ART. 

As is shown in table 6, using the six selected variables in an SVM classifier and 

performing 30 repetitions of LOO cross-validation we were able to obtain a median 

accuracy of 80.6%, TPR of 77.8%, TNR of 81.9% and AUC of 80.3%. These results 

demonstrate that it is possible to obtain a quite reliable prediction for the need of ART 

using only pre-treatment semantic variables. Although the results for the 30 splits in 

80/20 are comparable, the LOO cross-validation results should be a better 

representation of the real performance of the classifier, since the study cohort is relatively 

small and it is important to use as much as possible the available samples for training. 

Furthermore, using an 80/20 split could make the results too biased towards the training 

set, which is seen in the higher standard deviations of those results. As the final goal is 

to classify new samples using the whole of the cohort for training, the LOO cross-

validation results are a good representation of the classifier performance. 
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Moving to the radiomics model, the best predictive performance was obtained for six 

selected features from the GTV volume in the d-CT. The better results obtained using 

the d-CT when compared to the p-CT are explained by the use of contrast enhancement 

in the d-CT, which results in greater detail in the tumour area, reflecting on the predictive 

power of the extracted radiomic features. 

As the selected radiomic variables are highly dependent on the imaging modality, the 

cancer site and classification end-point, and this is the first study to assess CT radiomics 

for prediction of ART, more studies of this nature with different cohorts are needed to 

assess the consistency of the selected features. 

The results obtained with LOO cross-validation for six features presented a median 

accuracy of 77.6%, a median TPR of 75.8%, a median TNR of 82.4% and finally a 

median AUC of 79.9%, all with standard deviations ranging from 0.4% to 1.5%.  

It is very interesting to note that only three radiomic features are needed, namely the 

three meta-features, to reach very similar results: a median accuracy of 76.1%, TPR of 

72.7%, TNR of 79.4% and AUC of 76.5% with standard deviations lower than 0.3%. This 

observation is not valid considering semantic features, where it is clear that much more 

information is lost when the total number of features is reduced. It seems reasonable to 

conclude that the radiomic model could have a higher ability of generalization 

considering new data, since the use of fewer features decreases the possibility of 

overfitting. Nevertheless, the results obtained using just radiomics are in general weaker 

than the ones considering just the semantic features. 

A mixed model was also built using the information obtained from the feature selection 

procedure based on both the semantic features only and the radiomic features only. The 

feature selection algorithm showed the best performance for a set of six features, 

including four semantic and two radiomic features. The selected semantic features were 

also selected for the first model, confirming their predictive power. As for the radiomic 

features, one of them was the meta-feature including the grey level non uniformity 

normalised obtained from both the 2D grey level size and distance zone matrixes, which 

had also been selected in the radiomic-only model and which was the last standing 

feature in the radiomic greedy search, indicating its high predictive capacity. The other 

selected radiomic feature was also a clustered feature comprising the zone-size non-

uniformity normalized and the small-zone emphasis from the GLSZM 3D, which on the 

contrary was not selected for the radiomic-model alone. This mixed model presented the 

best results out of the three models, indicating that a mixture of both semantic and 

radiomic variables is the most likely to be able to predict whether a given patient will need 



| Assessing and predicting the need for Adaptive RT in H&N patients | 

73 
 

ART during treatment. Nonetheless, the model built using only the three last standing 

variables, and the two radiomic features could not match the performance of the 3-

feature model using only radiomic features. 

One of the potential drawbacks of using a radiomics approach is that some features’ 

values have shown to be affected by factors such as patient positioning, image 

acquisition parameters and segmentation [64,65]. In this way, it could be difficult to 

achieve a set of reproducible features, which in turn are able to generate generalizable 

models, if a robustness analysis is not included in the radiomic studies.  

In this study, a robustness analysis was performed by applying different image 

perturbations, namely noise addition, rotations, volume adaptations and contour 

randomizations, to mimic the effects of the above mentioned factors on the calculated 

features, as proposed by Zwanenburg et al. (2019) [91]. From the results of this analysis, 

6 out of the 7 radiomic features included in the models presented an ICC higher than 

0.75, indicating a good reproducibility across the perturbed images for each patient. 

The main limitation of this study is the fact that the sample cohort has a small number of 

patients and they all come from the same health institution. It would be interesting to 

assess the predictive capability of these models on unseen patients coming from 

different clinics. Despite this fact, the number of selected variables was six, which is a 

relatively low number for the size of the dataset, respecting the rule of thumb of having 

10-15 samples per feature [80].  

To the best of our knowledge this is the first study to use radiomic features from CT 

images to build a model to predict the need for ART in H&N patients. Furthermore, we 

compared the radiomic model with both a non-radiomic model built only with semantic 

features and a mixed model using a combination of radiomic and non-radiomic features 

These results are very promising and in conformity with the ones reported by Ramella et 

al. [72] and Yu et al. [73], suggesting the ability of using radiomics and pre-treatment 

factors to predict the need for ART in a clinical H&N cancer dataset. 

 

5.5. Conclusion  
 

The presented study successfully demonstrated the ability to predict the need for ART in 

H&N patients from both pre-treatment semantic features and radiomic features extracted 

from the GTV of a contrast-enhanced CT scan acquired prior to the beginning of 

treatment. The best classification results were obtained considering 6 features, of which 

4 were semantic and 2 radiomic features. A comparable result was achieved considering 
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only 3 radiomic features. A robustness analysis showed that 6 out of the 7 radiomic 

features that were used in the models presented good robustness across perturbed 

images. These models could be extremely valuable in order to optimize the ART 

workflow and the clinic’s resources, as well as the patient outcome. Future work is 

needed to validate the proposed models using an independent patient cohort preferably 

from a different institution to incorporate them into clinical practice. 
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Chapter 6 

 

Global conclusions and future work 
 

The purpose of this dissertation was to address adaptive radiotherapy in H&N cancer 

patients, starting from the dosimetric impact of replanning in the course of the treatment 

and moving to a priori predicting which patients would require ART, in order to optimize 

the clinical workflow and benefit to the patient. 

In the first part of the dissertation, it was shown that one adaptive replan translates into 

statistically significant differences in the coverage of the target volumes as well as the 

dose to OAR when compared to the scenario where no replanning occurs. Seventeen 

OARs were analysed and the vast majority of them presented higher mean/maximum 

doses in the non-ART scenarios, with the spinal cord showing the most marked 

differences in the maximum dose.   

Furthermore, these dosimetric results translated into an overall loss of plan quality 

without ART, as it was shown by a significant increase in the global plan score obtained 

using the SPIDERplan tool.  

These results support the idea that adaptation is required in some H&N cancer patients, 

and that it makes a significant difference in dosimetric terms both for targets and OAR. 

Nevertheless, further work is needed to investigate the long-term effects of ART in head 

and neck patients in terms of tumour recurrence, quality of life and overall survival. 

In the second part of the dissertation, the ability to predict the need for ART was 

successfully demonstrated using pre-treatment semantic features and radiomic features 

extracted from the GTV of a contrast-enhanced CT scan acquired prior to the beginning 

of treatment. 

The best classification results were an accuracy of 0.821 and AUC of 0.843, obtained 

considering 6 features, of which 4 were semantic and 2 radiomic features. A comparable 

result was achieved considering only 3 radiomic features, suggesting that radiomic 

features present higher generalizability than the semantic ones. Furthermore, the 

selected features showed an overall high robustness across perturbed images. 

These models could be extremely valuable in order to optimize the ART workflow and 

the clinic’s resources, as well as the patient outcome, but future work is needed to 

validate the proposed models using an independent patient cohort preferably from a 

different institution. 
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Appendix 1 – Pre-treatment feature statistical analysis 
 

The values of the extracted semantic features for the control and ART groups, as well 

as the respective p-values from the statistical analysis are shown in table A1. The 

categorical features histology, T stage, N stage, chemotherapy, smoking habits, drinking 

habits and dose levels are represented by the number of patients which presents the 

different levels possible for that feature. The smoking habits were categorized in 3 levels: 

0 for no smoking habits, 1 for former smoking habits, 2 for active smoking habits. The 

drinking habits were categorized in 4 levels: 1 for marked drinking habits, 2 for moderate 

drinking habits, 3 for no drinking habits and 4 for former drinking habits. 

For the continuous features, the mean ± standard deviation is shown for each group. 

 

Table 12. Results from the statistical analysis 

Feature Control ART p-value 

T stage (1/2/3/4) 2/4/12/18 1/1/10/22 0.243 

N stage (0/1/2/3/x) 4/5/25/1/1 4/1/26/5/0 0.242 

Gender (M/F) 32/2 32/4 0.157 

Age 57.28 ± 8.77 61.19 ± 10.24 0.102 

Chemotherapy (yes) 32 26 0.157 

Smoking Habits (0/1/2) 7/11/18/0 7/13/14 0.199 

Drinking Habits (1/2/3/4) 6/10/3/17 14/3/8/11 0.213 

Initial Weight (kg) 67.05 ± 14.14 62.39 ± 14.59 0.140 

Regular Weight (kg) 71.56 ± 12.40 68.75 ± 13.52 0.368 

Hight (m) 1.67 ± 0.07 1.65 ± 0.09 0.221 

BMI (kg/m2) 23.91 ± 4.33 23.08 ± 5.46 0.217 

Dose levels (1/2/3) 2/15/17 5/15/16 0.238 

Nº fractions 32.72 ± 1.16 31.69 ± 3.78 0.415 

Time Gap (days) *1 14.19 ± 4.22 15.97 ± 6.14 0.142 

Dpresc Tumour (Gy) *2 68.87 ± 4.54 67.09 ± 6.67 0.261 

Dpresc ADNs (Gy) *3 52.14 ± 30.55 52.98 ± 29.50 0.889 

Dpresc homo ln (Gy) *4 58.45 ± 2.49 51.94 ± 19.07 0.378 

Dpresc contra ln (Gy) *5 55.97 ± 3.02 50.57 ± 18.64 0.587 

Dmax GTV (Gy) 72.22 ± 5.36 70.66 ± 7.47 0.765 

Dmin GTV (Gy) 67.47 ± 4.44 64.78 ± 6.67 0.031 

Dmedian GTV (Gy) 69.31 ± 4.74 67.43 ± 6.74 0.147 

Dmean GTV (Gy) 69.37 ± 4.74 67.40 ± 6.66 0.277 

Dmax BM (Gy) *6 32.92 ± 5.04 32.87 ± 6.43 0.744 
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Feature Control ART p-value 

Dmax BS (Gy) *7 21.18 ± 12.74 24.98 ± 12.27 0.215 

Dmedian PH (Gy) *8 28.28 ± 9.01 25.72 ± 9.66 0.267 

Dmean PH (Gy) *9 30.52 ± 8.71 29.07 ± 10.14 0.879 

Dmedian PC (Gy) *10 25.85 ± 9.58 23.63 ± 8.60 0.554 

Dmean PC (Gy) *11 27.87 ± 8.75 27.34 ± 10.94 0.886 

GTV vol (cm3) 47.10 ± 46.02 85.56 ± 69.95 0.006 

GTV sa (mm2) 4284.08 ± 3157.49 6367.05 ± 3778.02 0.007 

PH vol (cm3) *12 23.69 ± 11.54 22.39 ± 19.23 0.076 

PH sa (mm2) *13 2130.12 ± 2193.31 1807.10 ± 777.54 0.325 

PC vol (cm3) *14 21.38 ± 8.92 19.96 ± 11.02 0.128 

PC sa (mm2) *15 1833.56 ± 612.93 1818.63 ± 810.47 0.569 

Homolat GG vol (cm3) *16 0.94 ± 0.94 0.88 ± 1.11 0.433 

Contralat GG vol (cm3) *17 0.61 ± 1.02 0.54 ± 0.84 0.843 

 

*1 Time gap: days between planning CT and 1st treatment fraction 

*2 Prescribed dose to the PTV 

*3 Prescribed dose to the adenopathies 

*4 Prescribed dose to the homolateral lymph nodes 

*5 Prescribed dose to the contralateral lymph nodes 

*6 Planned maximum dose to the bone marrow  

*7 Planned maximum dose to the brainstem  

*8 Planned median dose to the homolateral parotid  

*9 Planned mean dose to the homolateral parotid  

*10 Planned median dose to the contralateral parotid  

*11 Planned mean dose to the contralateral parotid  

*12 Homolateral parotid volume 

*13 Homolateral parotid surface area 

*14 Contralateral parotid volume 

*15 Contralateral parotid surface area 

*16 Volume of the intersection of the homolateral lymph nodes with the PTV 

*17 Volume of the intersection of the contralateral lymph nodes with the PTV 
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Appendix 2 – Feature Selection 
 

Pre-treatment data 

 

Table 13. Results from the feature selection algorithm considering only pre-treatment semantic 
features and using Bayes classifier. The results are shown for feature sets containing 1 to 10 

features. The mean Accuracy, TPR and TNR are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

Bayes 30 reps 80/20 splits Bayes LOO 

Vars 
Mean 

Accuracy 
Mean 
TPR 

Mean 
TNR 

Vars Accuracy TPR TNR 

[1:10] 0.723 0.627 0.821 [1:10] 0.722 0.611 0.833 

[1:9] 0.728 0.715 0.765 [1:9] 0.722 0.611 0.833 

[1:8] 0.715 0.666 0.806 [1:8] 0.722 0.611 0.833 

[1:7] 0.695 0.617 0.787 [1:7] 0.722 0.611 0.833 

[1:6] 0.723 0.629 0.807 [1:6] 0.694 0.583 0.806 

[1:5] 0.715 0.672 0.799 [1:5] 0.694 0.528 0.861 

[1:4] 0.692 0.582 0.839 [1:4] 0.708 0.611 0.806 

[1:3] 0.710 0.567 0.865 [1:3] 0.694 0.583 0.806 

[1:2] 0.641 0.447 0.930 [1:2] 0.667 0.556 0.778 

1 0.610 0.366 0.922 1 0.625 0.361 0.889 

Var nº Name Var nº Name 

1 Nº Sessions 1 Nº Sessions 

2 Dmin GTV 2 GTV vol 

3 GTV vol 3 Time Gap 

4 Age 4 Dmin GTV 

5 PH sa 5 Dpresc contra LN 

6 Dmax GTV 6 PH sa 

7 Smoking 7 Age 

8 Drinking History 8 Drinking History 

9 Dmean PC 9 Tumour Presc 

10 Dmedian GTV 10 Initial Weight 
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Table 14. Results from the feature selection algorithm considering only pre-treatment semantic 
features and using Decision Tress classifier. The results are shown for feature sets containing 1 

to 10 features. The mean Accuracy, TPR and TNR are presented. 

 

 

 

 

 

 

 

 

 

 

 

DT 30 reps 80/20 splits DT LOO 

Vars 
Mean 

Accuracy 
Mean 
TPR 

Mean 
TNR 

Vars Accuracy TPR TNR 

[1:10] 0.667 0.629 0.753 [1:10] 0.736 0.750 0.722 

[1:9] 0.721 0.720 0.710 [1:9] 0.722 0.694 0.750 

[1:8] 0.685 0.661 0.708 [1:8] 0.708 0.694 0.722 

[1:7] 0.672 0.653 0.711 [1:7] 0.722 0.694 0.750 

[1:6] 0.659 0.705 0.674 [1:6] 0.736 0.694 0.778 

[1:5] 0.623 0.568 0.727 [1:5] 0.722 0.667 0.778 

[1:4] 0.600 0.604 0.674 [1:4] 0.722 0.667 0.778 

[1:3] 0.646 0.591 0.761 [1:3] 0.722 0.667 0.778 

[1:2] 0.564 0.548 0.644 [1:2] 0.653 0.722 0.583 

1 0.695 0.665 0.731 1 0.681 0.611 0.750 

Var nº Name Var nº Name 

1 Drinking History 1 Drinking History 

2 Nº fractions 2 Age 

3 Dmean PC 3 Dmean PC 

4 Age 4 TimeGap1 

5 Nº Sessions 5 Dpresc contra LN 

6 Tumor Presc 6 GTV sa 

7 Dmin GTV 7 Dmax MED 

8 DmeanPH 8 PH vol 

9 Dpresc contra LN 9 Chemotherapy Protocol 

10 Dose levels 10 GTV vol 
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Table 15. Results from the feature selection algorithm considering only pre-treatment semantic 
features and using Bayes classifier. The results are shown for feature sets containing 1 to 10 

features. The mean Accuracy, TPR and TNR are presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARS 30 reps 80/20 splits MARS LOO 

Vars 
Mean 

Accuracy 
Mean 
TPR 

Mean 
TNR 

Vars Accuracy TPR TNR 

[1:10] 0.736 0.626 0.875 [1:10] 0.653 0.722 0.583 

[1:9] 0.708 0.572 0.845 [1:9] 0.653 0.722 0.583 

[1:8] 0.697 0.570 0.855 [1:8] 0.667 0.694 0.639 

[1:7] 0.713 0.590 0.838 [1:7] 0.681 0.722 0.639 

[1:6] 0.697 0.615 0.797 [1:6] 0.694 0.722 0.667 

[1:5] 0.726 0.671 0.819 [1:5] 0.694 0.722 0.667 

[1:4] 0.679 0.613 0.798 [1:4] 0.708 0.778 0.639 

[1:3] 0.697 0.588 0.846 [1:3] 0.708 0.778 0.639 

[1:2] 0.685 0.626 0.773 [1:2] 0.681 0.667 0.694 

1 0.600 0.864 0.260 1 0.597 0.639 0.556 

Var nº Name Var nº Name 

1 DrinkingHistory_2 1 GTV sa 

2 DrinkingHistory_4 2 Dmedian PH 

3 Nstage_1 3 PH vol 

4 Doselevels_2 4 Smoking_0 

5 Doselevels_1 5 DmedianPC 

6 Smoking_0 6 Tstage_4 

7 Doselevels_3 7 DmeanPH 

8 nSessions_2 8 Homolat GG vol 

9 nSessions_1 9 Dmean PC 

10 Tstage_2 10 Dmin GTV 
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Radiomics 

 

Table 16. Results for the feature selection classifier using 30 80/20 splits for the radiomic 
features in the diagnostic and planning CT, considering the Bayes classifier. The results for the 
mean accuracy, TPR and TNR for the feature sets containing 1 to 10 features are presented. 

Bayes Diagnostic CT Planning CT 

Vars 
Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 
Vars 

Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 

[1:10] 0.752 0.813 0.730 [1:10] 0.750 0.776 0.746 

[1:9] 0.748 0.800 0.673 [1:9] 0.731 0.677 0.797 

[1:8] 0.769 0.833 0.708 [1:8] 0.769 0.745 0.795 

[1:7] 0.790 0.862 0.718 [1:7] 0.774 0.814 0.750 

[1:6] 0.769 0.799 0.731 [1:6] 0.729 0.773 0.704 

[1:5] 0.757 0.818 0.701 [1:5] 0.771 0.781 0.753 

[1:4] 0.745 0.832 0.662 [1:4] 0.764 0.798 0.756 

[1:3] 0.743 0.846 0.664 [1:3] 0.712 0.661 0.785 

[1:2] 0.676 0.827 0.562 [1:2] 0.669 0.645 0.690 

1 0.674 0.721 0.650 1 0.636 0.675 0.618 

 

 

 

Table 17. Results for the feature selection classifier using 30 80/20 splits for the radiomic 

features in the diagnostic and planning CT, considering the Decision Trees classifier. The 
results for the mean accuracy, TPR and TNR for the feature sets containing 1 to 10 features are 

presented. 

  

Decision 

Trees 
Diagnostic CT Planning CT 

Vars 
Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 
Vars 

Mean 

Accuracy 

Mean 

TPR 

Mean 

TNR 

[1:10] 0.702 0.755 0.705 [1:10] 0.702 0.737 0.673 

[1:9] 0.726 0.704 0.719 [1:9] 0.740 0.785 0.696 

[1:8] 0.702 0.636 0.760 [1:8] 0.702 0.749 0.669 

[1:7] 0.760 0.750 0.760 [1:7] 0.736 0.774 0.701 

[1:6] 0.760 0.743 0.759 [1:6] 0.717 0.689 0.737 

[1:5] 0.736 0.733 0.762 [1:5] 0.717 0.741 0.706 

[1:4] 0.745 0.687 0.814 [1:4] 0.738 0.690 0.778 

[1:3] 0.755 0.702 0.829 [1:3] 0.662 0.652 0.674 

[1:2] 0.671 0.620 0.750 [1:2] 0.638 0.576 0.679 

1 0.698 0.678 0.689 1 0.662 0.622 0.731 
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