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“Success in creating AI would be the biggest event in human
history. Unfortunately, it might also be the last, unless we
learn how to avoid the risks.”

— Stephen Hawking
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Abstract

Machine learning applications are challenged by data difficulty factors, which are
responsible for the degradation of data quality and dealing with them is a demanding
task. Among the difficulty factors, class imbalance, which is noticeable in many
biomedical databases, is often tackled with preprocessing algorithms that effectively
improve classification performance.

Since the selection of an imbalance strategy for a problem often encompasses “brute-
force” approaches, recommendation systems have been developed to provide optimal
imbalance strategies for the problem at hand, based on the meta-characteristics of
the dataset. However, despite the success of such systems, arguably these do not
provide any insightful information, since only the inputs (datasets) and outputs
(recommended imbalance strategies) of these systems are provided.

Addressing this issue, the purpose of this dissertation is to provide a study of the rela-
tions between data meta-characteristics and imbalance strategies in the performance
of classifiers. To this end, a meta-learning-based framework was developed, based
on Exceptional Preferences Mining, which has proven to be suitable to deliver inter-
pretable conditions, concerning the relations between data meta-characteristics and
the ranking of preprocessing algorithms. Additionally, a novel metric was proposed,
which is suitable to highlight the subgroups where steep performance variations are
observable, among the performance of imbalance strategies.

The experiments considered 163 datasets, where meta-features from 8 groups were
extracted and preprocessed with 9 data-level imbalance strategies. The main find-
ings include that employing an imbalance strategy may not always be required and
that there is no evident relation with the imbalance ratio, rather with the association
of imbalance with other difficulty factors. Moreover, the domains of application of
individual imbalance strategies are described, among other findings suitable for the
design of novel recommendation systems.

Keywords—Imbalanced data, data difficulty factors, meta-learning, subgroup dis-
covery, algorithm recommendation.
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Resumo

As aplicações de aprendizagem de máquina são desafiadas pelos fatores de complex-
idade dos dados. Estes são responsáveis pela degradação da qualidade dos dados,
sendo que lidar com estes fatores é uma tarefa importante para evitar a degradação
do desempenho de classificadores. Dentro dos fatores de complexidade, o dese-
quilíbrio de classes, que é característico em diversas bases de dados biomédicas,
normalmente é abordado com algoritmos de pré-processamento, que são eficazes em
melhorar o desempenho de tarefas de classificação.

Dado que a seleção do algoritmo mais indicado para lidar com o desequilíbrio de
classes muitas vezes é baseada em abordagens de “força-bruta”, sistemas de recomen-
dação têm sido desenvolvidos de forma a providenciar a estratégia ótima a utilizar
para um dado problema, baseado nas meta-características do conjunto de dados.
No entanto, embora diversos sistemas de recomendação tenham sido bem-sucedidos,
estes não têm a capacidade de fornecer conhecimento interpretável, uma vez que
apenas a entrada (conjunto de dados) e a saída (estratégia recomendada) destes
sistemas são conhecidas.

De forma a solucionar este problema, o objetivo da presente dissertação é estudar
as relações entre meta-características dos dados e algoritmos de pré-processamento
no desempenho de classificadores. Para alcançar os objetivos, uma metodologia de
meta-aprendizagem foi desenvolvida, baseada em Exceptional Preferences Mining,
que demonstrou ser apropriada para fornecer condições interpretáveis, referentes
às relações entre as meta-características dos dados e o ranking de algoritmos de
pré-processamento. Em adição, uma nova métrica é proposta com a finalidade de
salientar os subgrupos onde grandes variações são observadas, no desempenho de
vários algoritmos de pré-processamento.

As experiências realizadas incluem 163 bases de dados, pré-processadas com 9 es-
tratégias a nível dos dados, de onde meta-características provenientes de 8 grupos
foram extraídas. Os resultados mais relevantes salientam que a utilização de uma
estratégia para lidar com o desequilíbrio de classes pode nem sempre ser necessária
e que não existe uma relação evidente com a proporção de pontos entre as classes
maioritária e minoritária, mas sim com a associação do desequilíbrio de classes com
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outros fatores de complexidade. Adicionalmente, os domínios de aplicação de es-
tratégias para lidar com distribuições assimétricas de classes são individualmente
descritas, para além de outros resultados úteis para o desenvolvimento de novos
sistemas de recomendação.

Palavras-Chave—Desequilíbrio de classes, complexidade dos dados,
meta-aprendizagem, análise de subgrupos, recomendação de algoritmos.
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Chapter 1

Introduction

Learning from imbalanced data is one of the greatest challenges in Machine Learning
(ML) [79] and this problem is noticeable when one class is underrepresented in com-
parison with the remaining. Along with class imbalance, many other data difficulty
factors have proven to be an issue for ML applications and are known to affect the
data quality. Biomedical databases often present disproportional class distributions,
for instance, when the number of ill patients is outnumbered by the healthy ones.
Therefore, it is especially important to mitigate this issue in healthcare applications,
since imbalance jointly with other data difficulty factors leads to poor classification
performance, thus potentially misdiagnosing patients and ultimately, being respon-
sible for the loss of human lives. Hence the criticality of healthcare-related machine
learning applications. Notwithstanding, this problem is also found in many other
areas, such as finances, biology, ecology, telecommunications, among others [60], and
solutions to deal with data complexity factors may be applicable to all fields.

1.1 Context and Motivation

In order to enable learning from imbalanced contexts, several imbalance strategies
have been proposed throughout the years, which have been deemed effective in deal-
ing with this problem. However, when a user is presented with a class imbalance
problem, the selection of an imbalance strategy from the plethora of available al-
gorithms may raise another problem. According to the “No Free Lunch” theory,
there is no single algorithm suitable for all classification problems [95]. Therefore,
the selection of an imbalance algorithm for a problem often encompasses “brute-
force” approaches, which includes experimenting with all available strategies [23],
although not reasonable in practice due to the elevated computational costs that
are associated.
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Chapter 1. Introduction

To overcome this issue, meta-learning-based recommendation systems have been pro-
posed, which are able to successfully recommend an imbalance strategy for a prob-
lem. In this domain, Meta-Learning (MtL) is a recent research area which is defined
as “the study of principled methods that exploit meta-knowledge to obtain efficient
models and solutions (...)” [9]. In other words, meta-learning consists in “learn-
ing” from the intrinsic properties of the data (also known as meta-characteristics or
meta-features), towards solving problems that conventional learning systems were
not successful at.

1.2 Research Goals

Despite the success of the recommendation systems proposed in the literature, based
on meta-learning, these approaches do not provide any meaningful information re-
garding the recommendation procedure, where only the inputs and outputs of the
models are known. Towards an informative selection of imbalance strategies, the
main goal of this work is:

Study the relationship between data meta-characteristics and
imbalance strategies in the performance of classifiers.

To achieve this goal, three Research Questions (RQs) have been formulated and are
answered in two experiments:

(1) What are the scenarios where not addressing the imbalance problem is benefi-
cial?

(2) Which relations exist between data meta-characteristics and the optimal pre-
processing algorithm?

(3) What are the data meta-characteristics that define the need for preprocess-
ing versus keeping the original dataset, based on steep performance variations
among preprocessing algorithms?

Concerning RQs (1) and (2), they are answered in the first experiment (Section
5.1), where Exceptional Preferences Mining was considered to deliver interpretable
rules. As for the RQ (3), it was posteriorly formulated after analysing the former
experiment’s results and extends the previous experiment by contemplating a novel
metric suitable to highlight subgroups where steep performance variation among
preprocessing algorithms are observable, instead of solely considering label rankings.
Additionally, while RQs (1) and (2) encompass the analysis of individual meta-
feature values, in RQ (3) the meta-feature groups that are indicative of taking a
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1.3. Research Contributions

given action are sought: keeping the original dataset, employing a preprocessing
algorithm or performing either of the previous actions. This RQ is answered in the
second experiment (Section 5.2) and the complete experimental setup designed for
each experiment can be respectively found in Sections 4.3 and 4.4.

1.3 Research Contributions

During the development of this dissertation, several contributions have been pro-
vided to the community, including Conference Papers and Software implementation
of new features for an open-source library.

Conference Papers

Two conference papers have been submitted, one of which has already been accepted:

[1] A. J. Costa, M. S. Santos, C. Soares, and P. H. Abreu, “A Meta-Analysis
on the Recommendation of Imbalance Strategies,” 7th ICML Workshop on
Automated Machine Learning (AutoML 2020), 2020.

• Submitted: 20th of May 2020;

• Accepted: 16th of June 2020.

[2] A. J. Costa, M. S. Santos, C. Soares, and P. H. Abreu, “Analysis of Imbalance
Strategies Recommendation using a Meta-Learning Approach,” 20th IEEE In-
ternational Conference on Data Mining, 2020.

• Submitted: 11th of June 2020 (waiting for authors notification).

Software Contributions

In the experiments performed, the Java-implemented Cortana Subgroup Discovery
Tool1 was used, which has an implementation of the Exceptional Preferences Mining
framework. The contributions developed for the framework are the following:

1Cortana website: http://datamining.liacs.nl/cortana.html
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Chapter 1. Introduction

• Improvements on the results export mechanism, since it was not able to export
the data of Exceptional Preferences Mining experiments correctly and some
columns were missing;

• Implementation of a post-processing pruning method, based on the Minimum
Improvement Criteria [78, 25].

1.4 Document Structure

The remaining contents of this dissertation are organised as follows: Chapter 2
overviews the background knowledge that supports this work. Following, in Chapter
3, a literature review on the topics of meta-learning for imbalance contexts and for
the recommendation of imbalance strategies is provided. Next, Chapter 4 describes
the architecture of the experimental setup that was designed for the simulations per-
formed, whose results and discussion are provided in Chapter 5. Lastly, conclusions
from this work are drawn in Chapter 6, where future research directions are also
indicated.
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Chapter 2

Background Knowledge

In this chapter the fundamental notions required to understand the contents of this
work are provided, including the necessary mathematical formulations, in order to
allow an easy, yet complete comprehension of the required concepts.

In brief, this chapter starts with the standardised mathematical notation that is
considered in this work, in Section 2.1. Next, Section 2.2 overviews the problem
of class imbalance and the data difficulty factors that are often associated with it,
followed by the imbalance handling strategies that have been proposed to deal with
this problem (Section 2.3). Moreover, the data meta-characteristics are considered in
Section 2.4, followed by the performance evaluation metrics (Section 2.5), which are
fundamental for the experiments of this work. The chapter ends with a description of
the Exceptional Preferences Mining framework, along with its associated concepts,
in Section 2.6.

2.1 Mathematical Notation

The methods described are meant to be clearly understood on its whole, without
disregarding the mathematical support that stands behind. For this matter, the
mathematical notation considered is inspired from recent machine learning research
papers and the book of Bishop, C. [6], which overviews the principal algorithms of
pattern recognition and machine learning domains.

The matrices and vectors notation is represented with bold letters, capital letters
(M) for matrices and lower case letters for vectors (v). Here we consider that
the vectors are, by default, row vectors, and the superscript T (vT ) stands for the
transpose of that matrix or vector. Furthermore, vectors can also be written in an
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Chapter 2. Background Knowledge

extended version, to allow representing its elements, such as v = (v1, v2, . . . , vn),
which in this case represents a row vector of size n and vT = (v1, v2, . . . , vn)T stands
for the analogous case of a column vector.

Regarding the pattern recognition domain, the feature space of a dataset is often
represented by X and the target class as y. Note that both may have a subscript to
indicate the train Xtrain or test sets ytest, or the size of that matrix. For instance,
X is a N ×D matrix, or simply X(N×D), composed by N patterns and D features.
The feature space of a pattern i that belongs to X can be represented by the row
vector xi = (x1, x2, . . . , xD). However, a pattern is fully specified by its features
and the class it belongs to, i.e., the pair {xi, yi}, where yi is an element of the
target class, represented by the column vector yT = (y1, y2, . . . , yN)T and yi ∈
{C1, C2, . . . , Cc}, where c stands for the number of classes. Alternatively, the whole
dataset (feature-space and target attribute) can be represented by the set D formed
by each sample and the respective class, such as D = {xi, yi}Ni=1 or more formally,
D = {(x1, x2, . . . , xD, y) ∈ RD+1 | xi ∈ xTi ∧y ∈ yT}. Note the calligraphic type font,
which is used to represent sets. When the objective is to describe points arbitrarily,
they may also be depicted as a vector which is assumed to hold its coordinates, such
as point p or point q.

The probabilities are designated by a capital P (·) and probability densities by p(·).
Regarding scalar values, they are often represented by italic letters (n and k), inde-
pendent of its capitalisation.

Finally, the remaining symbols may be described arbitrarily or even reformulated,
to allow special mathematical descriptions.

2.2 Class Imbalance and Data Difficulty Factors

The imbalance of classes is one of the 10 most studied topics in data mining [79].
This problem occurs when a class is significantly outnumbered by at least one of
the remaining classes of the dataset. In a binary classification context, the terms
minority and majority are often found in the literature, to respectively represent the
class with the least number of patterns and the one with the most. Furthermore,
in biomedical classification problems, the positive class is often the minority class,
i.e., the positive patients that have a disease are outnumbered when compared with
the healthy ones. Therefore, it is hereafter considered that the positive class is
always the minority class and the negative class is associated with the majority
class, without any loss of generality.
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Towards quantising the degree of imbalance that is present in a binary dataset D,
the Imbalance Ratio (IR) is a widely used measure. Considering that yi is the class
where pattern i belongs to, such as yi ∈ {Cmaj, Cmin}, we define nmaj and nmin as
the number of training instances that compose the majority and minority classes,
respectively. Naturally, the sum of these scalars is N (nmaj + nmin = N), the total
number of patterns of the dataset. Therefore, the imbalance ratio is defined on
Equation 2.1 [88].

IR =
nmaj
nmin

(2.1)

This measure can be interpreted as the number of majority class samples that stand
for each minority sample. For instance, considering a dataset composed by 1000
patterns, where 900 are of the majority class and 100 from the minority one, we
obtain IR = 9, meaning that in a set of 10 samples, 9 belong to the majority
class and 1 to the minority. Note that this measure is often found with different
formulations, such as the proportion of minority class samples (number of minority
class samples over N) [88], among others. For the sake of the consistency, when
mentioning imbalance ratio, it is assumed the formulation of Equation 2.1.

Class imbalance has proved to be a challenging problem in the machine-learning com-
munity. In the literature, researchers agree that this problem is severely worsened
when combined with other issues [88, 77, 49], denominated data difficulty factors.
Some examples are [60]:

• Small Disjuncts: Small meaningful clusters of the minority class, that are far
from the class’s centroid;

• Overlap: When both minority and majority instances are found in the same
region of the feature space;

• Lack of Density: Reduced representativity of the minority class, due to dis-
proportioned distributions;

• Noisy data: Presence of non-meaningful instances, that are characterised by
degrading the performance of learning systems.

In the following sections, these data difficulty factors are overviewed, where a de-
scription is provided along with some illustrative examples. Although they are
not specifically mentioned in the experiments employed, their presence is quantised
by the meta-features (Section 2.4). For instance, the overlap difficulty factor is
quantised by the complexity meta-feature F2, which translates the volume of the
overlapping region [61]. Hence the importance of understanding the data difficulty
factors on its whole.
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2.2.1 Small Disjuncts

A disjunct is a singular definition created by a concept-learning system. It can
be categorised according to its “coverage”, i.e., the number of patterns that the
disjunct correctly classifies [47]. Therefore, a small disjunct is simply defined as
disjunct whose coverage is low, which is depicted in Figure 2.1.

Majority
Minority

Figure 2.1: Example of small disjuncts in data.

The disjuncts with the lowest coverage often contain rare occurrences. A given
pattern is a rare instance if it lies far away from the class prototype it belongs to
[47]. The main difference between rare and noisy points is that the former repre-
sents a valid concept, whereas noisy points do not have any physical meaning. The
aggregation of these rare patterns form small disjuncts, which are small clusters of
under-represented subconcepts of the minority class [60]. They are characterised by
its small number, isolation from patterns of the same class and being distant from
the class prototype [34]. Furthermore, even though these concepts are outnumbered
by the majority class points (and larger disjuncts of the minority class), they often
represent the class of the utmost importance for the problem at hand or are evidence
of subconcepts of greater importance.

However, the main problem attributed to small disjuncts is that they are more error-
prone when compared to disjuncts of higher coverage [47]. The reasoning is the bias
introduced by classification algorithms, i.e., the set of assumptions conducted dur-
ing the algorithm formulation, do not take into consideration disproportional class
distributions. For instance, classifiers such as Decision Trees (DT) or Multi-Layer
Perceptron (MLP) are often optimised to increase the overall accuracy [49], which
is a performance metric that is not suitable for imbalanced scenarios, since it does
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not account for the imbalance ratio, nor the importance (or loss) of a misclassifi-
cation (please refer to Section 2.5 for performance metrics suitable for imbalanced
contexts).

2.2.2 Overlap

Overlap occurs when there is a significant portion of points from both classes which
are overlaid in the same region of the feature space. These patterns are charac-
terised by having very similar feature values while belonging to different classes. In
these overlapping areas, the estimated prior probabilities are almost the same [28].
Consequently, it is difficult to learn a decision boundary between the two classes.
An example of overlap is provided in Figure 2.2, where the overlapping region is
highlighted.

Overlapping region

Figure 2.2: Example of class overlap.

Moreover, in an imbalanced scenario, the minority class will likely be under-represented
in the overlapping region [85], which in turn will increase the classification error: the
decision surface is shifted towards the minority class and in the worst-case scenario,
the learner will consider the whole overlapping region as belonging to the majority
class [88].

According to [94, 67], the class overlapping problem has become one of the most
puzzling problems in both machine learning and data mining communities.
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2.2.3 Lack of Density

The lack of density or information problem is closely related to the imbalance itself.
Since one class has fewer samples, they may not be enough for a learning system
to make generalisations about the sample’s distribution. This challenge is further
aggravated by high dimensional data or higher imbalance ratio [60]. To illustrate,
Figure 2.3 shows a comparison between an imbalanced dataset with high density
and low density.

Majority
Minority

(a) High density data (100% training set).

Majority
Minority

(b) Low density data (15% training set).

Figure 2.3: Examples of an imbalanced dataset represented with different densities
and the same imbalance ratio (IR = 5).

It is noticeable that the lack of density is one of the main causes of small disjuncts
[60] since the sparsity of the minority class is responsible for the distancing between
subconcepts of the same class, originating the small disjuncts.

2.2.4 Noisy Data

The presence of noisy instances in a dataset often affects the learning system’s
behaviour. These effects are notorious in the minority class since it contains fewer
examples, hence less noisy instances are required to hinder a classification model
[60]. It must be noted that a noisy pattern does not represent any subconcept when
compared to a rare pattern.

In this domain, Napierala and Stefanwoski [70] have proposed a typology of minority
instances, based on the neighbourhood of each pattern. For each minority instance,
the ratio of the labels minority : majority respecting the 5-Nearest Neighbours is
evaluated as follows [70] and a visual representation is provided in Figure 2.4:
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• 5:0 or 4:1 → Safe example;

• 3:2 or 2:3 → Borderline example;

• 1:4 → Rare example;

• 0:5 → Outlier/noise example.

Safe

Rare

Borderline

Outlier

Figure 2.4: Typology of minority class instances.

Furthermore, when oversampling algorithms are employed jointly with noisy data,
they may inflate erroneous subconcepts [60], which may appear as small disjuncts,
but in fact, they are only noise replication, which further aggravates the noise prob-
lem.

2.3 Imbalance Strategies

The imbalance problem must be mitigated, in pursuance of diminishing the detri-
mental effects that the combination of imbalance with other data difficulty factors
may have on a classification task. Regarding this matter, in the latest years, several
algorithms have been developed to deal with this problem. These techniques can
be categorised into two main groups, based on the locus where the methods are
employed [88]. A visual representation of this categorisation is shown in Figure 2.5:

a) Data-level strategies, which are overviewed in Section 2.3.1, are characterised
by altering the data distribution;
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b) Algorithmic-level strategies, in Section 2.3.2, which emerge from modifications
of existent machine learning algorithms, enhancing them with the ability to
deal with the imbalance of classes.

Imbalance
Strategies

Oversampling

Data-Level

Undersampling

Hybrid Methods

Algorithmic-Level

Cost-Sensitive 
Learning

Bias Modification

Ensemble Methods

Figure 2.5: Categorisation of imbalance strategies.

In the following sections, an overview of the categories of imbalance strategies is
provided, along with its sub-categories. Regarding data-level strategies (Section
2.3.1), they are thoroughly described since they have greater focus on the Experi-
mental Setup (Chapter 4), especially the oversampling and hybrid algorithms. As
for the algorithmic-level (Section 2.3.2), each sub-category is outlined, along with
some examples of algorithms.

2.3.1 Data-Level Strategies

Imbalance strategies at the data-level consist of modifying the training set distribu-
tion to achieve a smaller imbalance ratio than the one that was originally observed.
These methods are sub-categorised into three categories, as depicted in Figure 2.5.
Oversampling is characterised by “inflating” the minority class with new instances,
whereas undersampling methods are associated with the removal of majority class
patterns, often associated with loss of information. Hybrid methods are distin-
guished by including a post-processing (e.g. data-cleansing) step after the over-
sampling procedure, thus being composed by both oversampling and undersampling
routines [88].

In this work, this category of imbalance strategies were selected for the experimental
setup, specifically oversampling and hybrid algorithms, since data-level strategies are
the most commonly used, due to its simplicity, efficiency and classifier-independence
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[84]. Undersampling methods were not considered since they may discard important
information.

The following sections describe several state-of-the-art data-level strategies. Here-
after, the terms data-level strategies, resampling or preprocessing algorithms are
referred to as equal terms, without any loss of generality.

Oversampling Algorithms

Oversampling techniques are distinguished by generating new synthetic patterns or
by replicating the existing ones, which are assigned to the minority class. Therefore,
a similar number of majority and minority instances is achieved or at least the
imbalance ratio is diminished up to a certain threshold.

ROS. Random Oversample (ROS) is the most simple oversampling technique,
attributed to its random formulation and non-heuristic character [3]. It consists of
randomly replicating instances of the minority class until the balance is achieved
or some objective imbalance ratio criteria are met. This algorithm is known for
increasing the chances of overfitting since it does not create new data, only replicates
the existent minority class instances [3].

SMOTE. The Synthetic Minority Oversampling Technique (SMOTE) algorithm
creates new synthetic instances that belong to the minority class, in the following
way: for each minority pattern p, new synthetic instances are generated along one of
the lines between the pattern and its k-Nearest Neighbours (k-NN) [16]. Considering
the example of Chawla et al. [16], if the oversample required is 200%, the algorithm
selects 2 lines from the k lines that connect p to its k neighbours, and randomly
generate a new synthetic pattern on each line. This synthetic pattern s is computed
according to Equation 2.2, where v is the vector coordinates of the chosen neighbour
and φ is a random number between 0 and 1 [84], also known as a gap.

s = p + φ(p− v) (2.2)

However, some assumptions considered by this algorithm can be questioned, such
as the fact that each minority class sample has the same probability of being picked
for oversample [88], which may lead to the over-generalization of this class. It is
argued that the instances that are in safe areas, i.e., the feature-space regions which
are further from the decision border, do not need to be oversampled as often as
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borderline instances since the former region is less error-prone than the latter [88].
To overcome these limitations, several modifications to this algorithm have been
proposed, where the basis of SMOTE is shared across them. These altered versions
can be grouped, based on the incremental step that is introduced: a) The selection
of a subset of minority instances to oversample [12, 42], and b) The addition of a
data-cleansing step (post-processing) after the oversample [90, 93]. The latter group
of SMOTE variants integrate the hybrid data-level strategies.

SafeLevel-SMOTE. This derivation of SMOTE uses the concept of safe-level
(sl), to generate new synthetic samples at the “safest” regions of the minority set.
These areas are determined based on the safe-level ratio (slratio) of two instances.
The concepts of safe-level and safe-level ratio are respectively defined on Equations
2.3 and 2.4 [12].

sl = Number of minority instances on the k nearest neighbours (2.3)

slratio =
sl of a minority instance
sl of a nearest neighbour

(2.4)

The evaluation of the slratio can lead to 5 different outcomes. Let p be a minority
class sample and n a randomly chosen nearest neighbour of p. In this case, slratio =

slp/sln. Afterwards, the slratio is evaluated and one of the following scenarios is
expected:

• slratio = ∞ and sln = 0: Both points lie on non-safe regions, the points are
considered noise and thus, are not oversampled;

• slratio = ∞ and sln 6= 0: In this case n is considered noise and the synthetic
sample is generated farther from n, by duplicating p (which is safe);

• slratio = 1: The safe-level of p and n are the same, so the new instance is
generated along the line that connects both;

• slratio > 1: This is indicative that the safe-level of p is greater than n and the
synthetic sample is generated closer to p than n, inside the interval [0, 1/slratio];

• slratio < 1: Contrasting with the previous case, this demonstrates that the
safe-level of n is greater than p thus, the sample is generated closer to n than
p, inside the interval [1− slratio, 1].
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Borderline-SMOTE Similar to SafeLevel-SMOTE, this method also shares the
SMOTE-like oversampling step, but only for the minority instances of the borderline
region. The authors [42] claim that the patterns near the borderline are more easily
misclassified than the ones that lie farther. The neighbourhood of the minority class
instances is determined and there are three expectable scenarios:

• If there are more majority class points than minority class: The point can be
easily misclassified and is assigned to the DANGER set;

• If there are more minority class neighbours than majority: The point is safe
and is not oversampled;

• If all nearest neighbours are from the majority class: The minority point is
considered noise.

The DANGER set contains all borderline instances of the minority class, whose
k neighbourhood contains more majority than minority instances (but not only
majority patterns). The minority instances of this group are then randomly selected
for oversampling, according to the SMOTE algorithm.

ADASYN. The Adaptive Synthetic Sampling Approach for Imbalanced Learn-
ing (ADASYN) is characterised by adaptatively choosing the number of synthetic
samples to generate for each instance of the training set. For this, it considers a
density distribution as a criterion to select the number of points to generate for each
pattern of the minority class [41], assuming that the instances that are more difficult
to learn should be oversampled more often [84]. Afterwards, the algorithm proceeds
in a SMOTE-like fashion but the number of synthetic samples to generate for each
instance is the previously defined. According to the authors [41], this algorithm has
the advantage of enforcing the learning system to focus on the patterns that are
harder to classify.

ADOMS. This algorithm, Adjusting the Direction of the Synthetic Minority Class
Examples (ADOMS), combines Principal Component Analysis (PCA) with SMOTE.
It starts by randomly choosing a minority class instance p, whose neighbourhood is
then computed. Afterwards, the first Principal Component is calculated from the
local distribution formed by the instance p and its k neighbours [89]. Following, the
algorithm randomly selects one neighbour of p, which is noted as n, and generates a
new sample along the line that connects p to the projection of n, on the previously
computed first Principal Component, using the SMOTE algorithm [89].

— 15 —



Chapter 2. Background Knowledge

AHC. The Agglomerative Hierarchical Clustering (AHC) is a technique where a
clustering algorithm is employed to generate new instances, which correspond to the
cluster centroids (cluster prototypes) [84]. This process is then iterated until the
imbalance ratio is one. The authors of this method [18] argue that partitional clus-
tering methods, such as the k-means, are less suitable since this group of algorithms
share the characteristic of using a small, fixed number of partitions. On the other
hand, agglomerative hierarchical clustering does not have this limitation, because
the number of clusters can be increased without providing the number of clusters.

Undersampling Algorithms

Undersampling algorithms are characterised by removing majority class instances
to achieve class balance, with possible loss of information, which may include the
deletion of important concepts present in the data.

RUS. Random Undersample (RUS) is a simple undersampling algorithm, similar
to ROS, but instead of generating minority class instances at random, RUS randomly
removes majority class patterns until the class distribution is balanced [3].

CNN. The Condensed Nearest Neighbours rule is used to find a consistent subset
of examples C which is defined as a subset of the training space S (C ⊆ S), which
when used as a reference for the 1-NN algorithm, correctly classifies all points of
S [43]. Intending to incorporate Condensed Nearest Neighbours (CNN) on their
One-Sided Selection (OSS) undersampling algorithm, Kubat and Matwin [54] use
the following modification of the CNN, enabling it to be used as an undersample
technique:

• The subset S starts with one random majority class instance and all minority
patterns;

• Afterwards, an iterative process begins, where a 1-NN rule with the patterns
in C is employed on S. Each misclassified instance from S is added to C;

• This process repeats until no change in C occurs or all elements of S belong
to C (C = S).

TL. Tomek Links (TL) are a concept of an algorithm introduced as a modification
of the CNN algorithm. It consists of removing the points that are close to the
borderline, without degrading the performance of the CNN algorithm [90]. Likewise,
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it can also be considered a data-cleansing technique. Consider two points p and q,
one from the minority class and the other from the majority class. Let d(p,q)

be the distance between the two. The pair (p,q) is said to be a Tomek Link, if
there is no other point v whose distance to p and q is smaller than d(p,q), i.e.,
d(p,v) < d(p,q) or d(q,v) < d(p,q) [3]. After the identification of Tomek Links,
the majority point of each Tomek Link should be staged for removal, which will
ultimately lead to the undersampling of the majority class.

OSS. The One-Sided Selection is composed by two steps [54]: undersampling with
CNN, where the consistent subset C is kept as a new training set; followed by a
data-cleansing method, where all majority instances of C that are Tomek Links are
removed. These techniques lead to the removal of three types of points: the CNN
step removes the safe instances, that lie farther from the decision border and the
TL cleansing procedure allows the removal of both noisy and borderline instances,
which are considered “unsafe” [3]. The remaining instances that are not removed by
any of the previous steps form the final undersampled training set [54].

Hybrid Algorithms

The last group of data-level imbalanced strategies is the hybrid algorithms, which
encompass an oversampling and an undersampling process, often an oversampling
algorithm extended with a data-cleansing (undersampling) procedure.

SMOTE-TL. This method is a combination of the oversampling SMOTE algo-
rithm with the undersampling Tomek Links, leading to the categorisation as a hybrid
method. The algorithm begins by oversampling the training set using SMOTE, fol-
lowed by the undersampling routine, where the majority class instances that are
Tomek Links are removed.

SMOTE-ENN. The Edited Nearest Neighbours (ENN) algorithm is jointly em-
ployed with SMOTE to remove samples, after the SMOTE procedure. Similarly
to Tomek Links, the ENN algorithm undersamples the training set, but removes
patterns from both minority and majority classes. A given pattern p, that belongs
to class Ck, is removed if Ck is not the same class as the neighbourhood of p [93].
This technique leads to the removal of more points when compared to SMOTE-TL,
which achieves a higher depth of data-cleansing [3].
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2.3.2 Algorithmic-Level Strategies

Another approach when dealing with class imbalance is to conduct modifications on
standard machine learning algorithms, to specialise them for imbalanced scenarios.
The modifications employed can be further grouped based on its scope, mainly as
cost-sensitive learning, changes to the internal algorithm bias or modification of
ensemble learning algorithms.

Cost-Sensitive Learning

Cost-sensitive learning is a concept derived from the Bayesian decision theory.
Although some authors argue that these techniques can be incorporated in both
algorithmic-level or data-level groups [60, 33], they are here considered as a modifi-
cation at the algorithmic-level.

The objective criteria in decision theory can be two-fold [6]:

a) Minimise the misclassification rate;

b) Minimise the expected loss associated with each misclassification.

Regarding the former, one aims at minimising the probability of committing a wrong
classification. However, when the objective is to minimise the expected loss, the
concept of cost or loss of a misclassification is also considered for the problem.

These methods are especially important when the problem is of the medical domain.
In general terms, the positive class, which is often associated with holding a disease,
generally has a higher importance of being correctly classified, i.e., the cost of mis-
classifying a patient, that in reality has an illness (False Negative) is higher than
deciding that the patient has a sickness, when in fact the patient does not (False
Positive). In this scenario, it is acceptable to increase the number of False Positives
(erroneously diagnose healthy patients, also referred to as overdiagnose) as long as
the total cost remains low.

Similarly to cost-sensitive learning, the objective of cost-sensitive imbalanced strate-
gies is also to minimise the overall loss, where minority instances are assigned with
greater misclassification costs. The methods in this group can be further categorised
as [33]:
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• Methods that modify the training set distribution, where the loss matrix (def-
inition of the loss associated with each class) is taken into consideration on the
undersampling or oversampling, by either modification of decision thresholds
or assigning weights to instances;

• Modification of the classification algorithm, enhancing it with the ability for
cost-sensitive prediction, by minimising the overall cost instead of the pre-
diction error. Note that prediction error in imbalanced context can be very
small. For instance, if there are 99% of majority class instances and the clas-
sifier predicts every pattern as majority, then the prediction error is low (1%).
An example of these types of modification is the Decision Trees with Minimal
Costs algorithm [58] which modifies conventional DT in such way that the de-
fault splitting criterion, the minimal entropy, is replaced by the minimal total
cost ;

• Bayesian decision theory aiming for the minimisation of a loss function (similar
to the example provided, but with greater costs for the erroneous minority class
prediction).

Algorithm Bias Modification

It was reported that in some contexts, oversampling strategies did not affect the
classification performance [40]. For instance, Drummond and Holte [29] reported
that, on their experiments with the C4.5 induction algorithm, they observed that
oversample was ineffective in response to modifications of misclassification costs and
class distribution [40].

The majority of standard classification algorithms are internally biased towards
balanced scenarios. If the training set is imbalanced, the most likely scenario is
that the algorithm will be more apt to classify the majority class samples than
the minority instances. Regarding this matter, changes in the internal bias of an
algorithm is another procedure to deal with imbalance, that falls under the category
of algorithmic modifications. Next, an example of a modification to the widely
known k-NN algorithm, that makes it robust for class imbalance, is provided.

Class Confidence Weights (CCW) Weighted k-NN. The work of Liu and
Chawla [59] consists in modifying the original k-NN algorithm to be robust in scenar-
ios of class imbalance. The authors demonstrate that the classification mechanism
of k-NN has a suboptimal classification performance since it only accounts with the
prior probabilities to estimate class labels, by finding the label that has the highest
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prior. Considering p(Cmaj) the prior distribution of the majority class, they argue
that it would be expectable that the inequality p(Cmaj) � p(Cmin) would be veri-
fiable for the most regions of the feature space [59], strongly biasing this classifier
towards the majority class.

Moreover, they propose CCW to change the base of k-NN, replacing the priors with
the posteriors. The CCW aims at capturing the probability (confidence) of attribute
values, provided with a class label. When CCW is integrated on the maximisation
problem of the k-NN formulation, it replaces the prior distribution with a conditional
probability distribution, which translates the likelihood of attribute values, given a
class label.

Ensemble-Based Strategies

Ensemble learning is a methodology where several classifiers are used to make pre-
dictions, whose decisions are then combined into a final prediction. The goal of
this methodology is to improve the overall accuracy, where the ensemble accuracy
is significantly higher than each individual learners, also known as weak learners
[36]. The predictions outputted from each classifier are aggregated into a unique
prediction, for each test instance presented to the ensemble. Galar et al. [36] claims
that this idea arises from the human natural behaviour, where several opinions are
consulted (each learner of the ensemble), before taking “an important decision”.

The success of this type of methods is either due to the diversity of the base learners
included or because they are induced with diverse class distributions. The reasoning
is that by using classifiers with different biases it is more likely different types errors
will be committed, thus complementing each other [40].

These methods have gained attention to tackle the imbalance problem. In the latest
years, several ensemble-based methods have been proposed (or modified versions of
the original ensemble methods) that are targeted for imbalanced scenarios. Often,
they are a combination of ensemble learning methods with algorithmic or data-level
modifications [60]. Once more, this technique is considered as an algorithmic-level
modification, despite the possibility of the scope of the modification being the data
distribution (data-level). Following, two ensemble methods for imbalanced scenarios
are overviewed: SMOTEBoost and SMOTEBagging.

SMOTEBoost. It consists of combining the SMOTE oversampling algorithm
with the AdaBoost ensemble technique. AdaBoost, which stands for adaptative
resampling and combining, consists in training various weak learners (the individual
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learners whose combination form the ensemble), but after each iteration, it assigns
greater weights to misclassified instances. Moreover, the patterns that are harder
to classify are given greater attention, proportional to the attributed weight [36].
SMOTEBoost introduces a SMOTE routine before each round of boosting, that
enables each weak learner to train from more minority class instances, achieving
broader decision surfaces for this class [17]. Besides, not only this technique reduces
the bias associated with the learning procedure (a characteristic of ensemble tech-
niques) but also achieves a broader representation of the minority instances, without
deteriorating the accuracy of the dataset [17].

SMOTEBagging. This method integrates SMOTE with the Bagging (boostrap
aggregating) algorithm. Bagging consists in training the weak learners with boot-
strapped1 versions of the original training set. This resampling procedure originates
diversity and when a new test instance is presented to the ensemble, a votation takes
place to output the predicted class [36]. Considering the SMOTEBagging algorithm
it modifies the Bagging routine in a fashion where SMOTE-like minority instances
are generated after the bootstrap procedure [91], allowing a stronger representation
of the minority class by including the synthetic oversampled instances.

2.4 Data Meta-Characteristics

Data meta-characteristics, or simply Meta-Features (MFs), can be succinctly defined
as characteristic that is extracted from the original dataset and aims at capturing
an intrinsic property of the data itself. On a meta-level domain, we abstract from
the original classification task and apply techniques, such as MtL. The conception
of a meta-feature can be of various natures and any information about the dataset
can be, in theory, considered a MF. From the simpler ones, such as the number
of examples, to the most complex, like the entropy, there are plenty of possible
formulations. Therefore, to understand the purpose of a meta-feature and guide
the meta-feature selection procedure, it is imperative to understand both intrinsic
properties and the taxonomy associated. The following pages will broaden these
aspects, according to the latest research papers on the field of meta-learning and
data meta-characteristics, on Sections 2.4.1 and 2.4.2.

1Bootstrap is a method where, in short, a new dataset is generated by drawing new samples
with replacement from the original data set [31].
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2.4.1 Meta-Feature Intrinsic Properties

When extracting MFs from the data, one must consider the input and output specifi-
cations that are required for the extraction. Regarding this matter, the meta-feature
itself needs to be thoroughly described, since diverse meta-features can have different
input and output properties. The survey of Rivolli et al. [82] uses the categorisation
illustrated in Table 2.1. In short, the meta-feature specifications can be divided into
two main groups: input and output properties.

Table 2.1: Input and Output properties of a meta-feature extraction system [82].

Input

Property Values

Task
Classification
Supervised
Any

Extraction
Direct
Indirect

Argument
Some features (∗D)
All features (nD)
Target attribute (T )

Domain
Numerical
Categorical
Both

Hyperparameters
True
False

Output

Property Values

Range [min, max]

Cardinality k

Deterministic
True
False

Exceptions
True
False

Starting with the input properties, there are 5 sub-categories associated. The task is
the application context (supervised, classification or any) where the meta-feature can
be extracted. This is perhaps the most constraining characteristic since it can make
the computation impossible, for instance, when dealing with unsupervised contexts,
where the pattern labels are often absent. Additionally, some MFs may only be
computable in classification contexts, and some may have a broader application
area, where they can be used in supervised scenarios. Note that, even though in both
classification and supervised contexts the target attribute is available, in supervised
tasks it is allowed that the target attribute is a continuous variable, i.e., a regression
problem [82]. Contrasting, regarding the classification scenarios, the target attribute
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is categorical, which can be a constraint for some types of meta-features, leading to
an impossible extraction.

The extraction type refers to the complexity of the extraction process. The majority
of MFs can be directly extracted from the dataset. However, in some cases, there
is an intermediate step in-between. A good example of an indirect scenario is the
principal components of the covariance matrix. In order to compute the eigenvalues,
one must compute the covariance matrix beforehand [82]. For this reason, this meta-
feature is indirectly extracted from the dataset.

The input arguments are responsible for specifying if the target attribute is required
for the extraction and how many of the attributes are mandatory. The latter is
encoded by ∗D if all features of the dataset are required or with nD, if only n

features are necessary. For instance, to compute the mean of a feature, 1D features
are requested (each feature individually), even though the final cardinality of the
MF would be the same as the dataset dimensionality, i.e., a vector with the mean
of each feature. A 2D argument type can be exemplified by the covariance matrix.
To compute the covariance between 2 features, only those are required despite the
cardinality of a covariance being a D ×D matrix. The last argument specification
is if the true label (T ) is required for the computation of the meta-feature. It must
be noted that for both classification and supervised tasks, this is always mandatory.

The domain of a meta-feature can be continuous, categorical or both. Still, some
meta-features are only applicable for categorical features, and others solely for con-
tinuous scenarios.

Finalising the input arguments, the hyperparameters need to be specified if they
are expected by the extraction procedure since some meta-features require hyper-
parameter tuning. This can be exemplified by the correlation matrix, where the
correlation coefficient, such as the Pearson’s (R), Spearman’s (ρ) or Kendall’s (τ)
needs to be provided [82].

On the other edge of the MFs extraction, the outputted result can be further cate-
gorised. Its range can be continuous or discrete and may have a cardinality of 1 (e.g.
number of attributes), a vector of size D (e.g. feature means) or a D × D matrix
(e.g. covariance and correlation matrices).

Some MFs can have the same values for all computations in the same setup, i.e., a
deterministic behaviour. However, others are non-deterministic, whose value may
not be reproducible. For instance, if we consider as a meta-feature the silhouette
coefficient, computed after employing the k-means algorithm, this would be a non-
deterministic measure, since k-means is a non-deterministic algorithm by nature,
which depends on the centroids initialisation [82].
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Finally, implementations of MF extraction systems must be able to handle excep-
tions, such as a division by zero [82].

2.4.2 Taxonomy of Meta-Features

The recent literature has been focusing on providing a structured framework for
meta-feature categorisation [82, 87, 55, 20, 76, 27], even though not all researchers re-
fer all possible categories of meta-features (there are over one hundred meta-features
reported in the literature, with a tendency for new ones being proposed). These pa-
pers, especially the latest survey on this subject, Rivolli et al. [82], documents the
meta-features which have been more often reported on the field of meta-learning.
Regarding this matter, there are 5 categories which are regularly found in the lit-
erature: Simple, Statistical, Information-Theory, Landmarking and Model-Based
meta-features.

Information
Theory

Statistical Model-Based

Simple/General Landmarking

Meta-Features

Others

Figure 2.6: Taxonomy of meta-features proposed by Rivolli et al. [82].

This survey [82] reports these 5 categories thoroughly. Additionally, the authors
consider a new category, “Others”, which includes 3 subcategories: “Clustering and
distance-based”, “Complexity” and “Miscellaneous”. The taxonomy of Rivolli et al. is
illustrated in Figure 2.6. However, the complexity measures, originally proposed by
Ho and Basu [46] and later reformulated as meta-features in the works of Lorena et
al. [62, 61] are hereby considered as a main branch of meta-features, the Complexity-
Based meta-features. This is justified since they have been referred in several other
research papers [69, 64] and are implemented in open-source libraries2,3 [71, 62].

2More information about the DCoL repository at: https://github.com/nmacia/dcol
3More information about the ECoL repository at: https://github.com/lpfgarcia/ECoL
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Additionally, they are of great importance to define the datasets’ complexity. The
proposed taxonomy of meta-features is illustrated in Figure 2.7.

Following, the characteristics of each group of MFs will be overviewed, where some
examples of each branch of the taxonomy are provided, along with its intrinsic
properties, described on Section 2.4.1.

Simple Meta-Features

The first category of meta-features is composed by the most basic formulations,
which can also be found in the literature under the name general meta-features
[13]. They share the property of being easily observable and possessing reduced
computational complexity. The main goal of its formulation is to allow capturing
the size of the problem under study or measure its complexity [13]. Some examples
of simple meta-features, often found in the literature [75, 27, 35, 82], are described
in Table 2.2.

Table 2.2: Examples of simple meta-features.

Input Output

Task Argument Cardinality Range

nrInst Any ∗D 1 [1,+∞]

nrAttr Any ∗D 1 [1,+∞]

nrClass Classification T 1 [2, N ]

nrInstMissing Any ∗D 1 [0, n]

nrNum Any ∗D 1 [0, D]

nrCat Any ∗D 1 [0, D]

It must be noted that these meta-features can be found under different names,
formats (e.g. percentage of missing values vs imbalance ratio) or be transformed
by mathematical functions. For instance, the latter is illustrated in Souto et al.
[27] which uses the LgE (log10 of the number of examples) and LgREA (log10 of
the ratio between the number of data patterns by the number of features). These
features can be respectively mapped to the number of patterns of the dataset and
the number of features. Even though they provide the same meta-knowledge, they
exemplify the numerous transformations that this category of MFs may undergo.
Additionally, they share the property of being extracted directly, which means that
there are no hyperparameters to be tunned [82].
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Statistical Meta-Features

Statistical approaches of a problem are often characterised by possessing an “explicit
underlying probability model, which provides a probability of being in each class” [68].
Likewise, statistical meta-features aim at capturing the data distribution, which
includes the central tendency or dispersion of data points [82]. From another point
of view, Castiello et al. [13] states that the main goal of this class of meta-features
is to enable a learner to discriminate the “degree of correlation of numerical features
and estimate their distribution”.

Table 2.3: Examples of statistical meta-features.

Input Output

Task Argument Cardinality Range

cor Any 2D D2 [1, 1]

cov Any 2D D2 [1,+∞]

mean Any 1D D inherited from input

max Any 1D D inherited from input

min Any 1D D inherited from input

iqRange Any 1D D [0,+∞]

kurtosis Any 1D D [−3,+∞]

skewness Any 1D D [−∞,+∞]

This category of meta-features is mainly applicable for continuous attributes of the
dataset [74]. Furthermore, Rivolli et al. [82] extend this argument by referring that
statistical meta-features are solely for numerical attributes. Some other characteris-
tics of this class are that MFs are deterministic, some require hyperparameter tuning
and others may throw exceptions, such as division by zero or absence of another class
to compute the measure [82]. Table 2.3 contains some examples of MFs that are
often reported.

Information-Theory Meta-Features

Meta-features that belong to the information-theory group are employed to extract
the amount of information that the dataset contains [82]. Its applicability is mainly
for symbolic attributes [57], such as discrete and categorical features. However, they
can also be considered when dealing with continuous dimensions [68].
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Table 2.4: Examples of information-theory meta-features.

Input Output

Task Argument Cardinality Range

attrEnt Any 1D D [0, log2(N)]

classEnt Classification T 1 [0, log2(D)]

mutInf Classification 1D + T D [0, log2(N)]

nsRatio Classification ∗D + T 1 [0,+∞]

Furthermore, according to [82], they share the property of being directly computed,
free of hyperparameters, deterministic and robust. In terms of semantics, they
describe the variability and redundancy that is present in the data. Several examples
of MFs that compose this category are provided in Table 2.4.

Model-Based Meta-Features

Model-based meta-features represent properties from a model that is induced from
a dataset. The model is often a decision tree [74, 4], induced with either C5.0 or
C4.5 algorithms. The main idea of this group is to assess the data complexity, by
measuring the structure and size of a model that is induced from the dataset. Then,
these measures are adopted to predict the complexity of other learning algorithms
[74].

This category is designed for supervised contexts and all MFs are deterministic and
robust [82]. Since the induction of the model from the dataset takes place before
the meta-feature extraction, they can all be considered of indirect computation.
Also, there is the need to specify the predictive learning model and the respective
hyperparameters [82].

Some examples of this category of meta-features are represented in Table 2.5. There
are three main subcategories of model-based meta-features when the induced model
is a decision tree, which are identified by the following prefixes [82]:

• leaves : Measures focused on the leaves of the decision tree, which can be
informative of the complexity of the decision surface;

• nodes : Based on the nodes of the decision tree, extract information about the
balance of the tree;

• tree: Measures of the tree size, extract information from leaves and nodes.
They are suitable to describe the complexity of the dataset.
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Table 2.5: Examples of model-based meta-features.

Input Output

Task Argument Cardinality Range

leaves

leaves Supervised ∗D + T 1 [q, n]

leavesBranch Supervised ∗D + T N [1, N ]

leavesPerClass Classification ∗D + T q [0, 1]

nodes

nodesPerAttr Supervised ∗D + T 1 [0, n]

nodesPerInstance Supervised ∗D + T 1 [0, 1]

nodesPerLevel Supervised ∗D + T N [1, n]

tree

treeDepth Supervised ∗D + T N [1, n]

treeImbalance Supervised ∗D + T N [0, 1]

treeShape Supervised ∗D + T N [0, 0.5]

Landmarking Meta-Features

The idea that stands for landmarking arises from the experience in machine-learning
problems [75]. It consists of characterising a dataset, based on the performance
obtained using a set of simple learning algorithms, whose computation is faster
than the original learner. The main idea of landmarking is that the performance
of a simple learner is expected to be close to the performance of the “fully-fledged”
learner [39]. In this case, the performance of the latter is able to roughly mirror
the performance of the more robust learner, without the additional computational
costs. When employing this procedure in several datasets, similar performances
for the same learners may indicate that the datasets have some sort of similarity
between them.

Although the performance of any classification algorithm can be used as a land-
marker, some have consistently been selected as meta-features [82], which are shown
in Table 2.6. Since they are classifiers, landmarkers are only applicable in supervised
contexts. Additionally, there is the need to define some hyperparameters for the ex-
traction setup, such as the performance metric (e.g. accuracy, Area Under Curve
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Table 2.6: Examples of landmarking meta-features.

Input Output

Task Argument Cardinality Range

bestNode Supervised ∗D + T 1 [0, 1]

eliteNN Supervised ∗D + T 1 [0, 1]

naiveBayes Supervised ∗D + T 1 [0, 1]

linearDisc Supervised ∗D + T 1 [0, 1]

oneNN Supervised ∗D + T 1 [0, 1]

(AUC), F1-score) or the validation mechanism (e.g. k-Fold cross-validation, leave-
one-out). Also, landmarking is a non-deterministic approach, because the training
and test samples are arbitrarily chosen in cross-validation algorithms [82], which
makes it a non-reproducible procedure.

Complexity-Based Meta-Features

The work of Ho and Basu [46] documents twelve measures that characterise the
difficulty of a classification problem, describing the geometry of the classification
boundary. They argue that for the majority of classification problems there is a
physical or a behavioural model underneath, i.e., the classification problems are
mainly non-chaotic, even though data may have a stochastic component. Regard-
ing this issue, they state that the proposed measures may help comprehending the
essential characteristics of a class discrimination problem.

Originally, they propose 3 groups of measures that can describe the complexity of
a problem: 1) Measures of overlap of individual feature values, 2) Measures of class
separability and 3) Measures of geometry, topology, and density of manifolds [46].
Conversely, the latest survey on complexity measures, conducted by Lorena et al.
[61], proposes six categories of complexity measures, based on what each measure
captures. The six categories are as follows: 1) Feature-based measures, 2) Linearity
measures, 3) Neighbourhood measures, 4) Network measures, 5) Dimensionality
measures and 6) Class imbalance measures [61].
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Table 2.7: Examples of complexity-based meta-features.

Input Output

Task Argument Cardinality Range

Geometry-based

F1 Classification 1D + T 1 [0, 1]

F2 Classification 1D + T 1 [0, 1]

F3 Classification 1D + T 1 [0, 1]

T1 Classification ∗D + T 1 [0, 1]

T2 Any ∗D 1 [0, N ]

Linear classifier based

L1 Classification ∗D + T 1 [0, 1]

L2 Classification ∗D + T 1 [0, 1]

L3 Classification ∗D + T 1 [0, 1]

Nearest-neighbour based

N1 Classification ∗D + T 1 [0, 1]

N2 Classification ∗D + T 1 [0, 1]

N3 Classification ∗D + T 1 [0, 1]

N4 Classification ∗D + T 1 [0, 1]

Information
Theory

Statistical Model-Based

Simple/General Landmarking

Complexity

Others

Meta-Features

Figure 2.7: Proposed taxonomy of meta-features.
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The recent literature has acknowledged these complexity measures as meta-features
since they have been referred in several meta-learning and algorithm recommen-
dation papers [38, 44, 64, 37, 62]. This survey [82] groups complexity measures
under the category of “Other” meta-features, stated by the reasoning that they are
mentioned in the literature but are not broadly used. It can be argued that its con-
ception is compatible with the meta-feature formulation and due to its importance
for the present work, this group of meta-features is hereby considered a main class
of meta-features. Several examples of complexity MFs are provided in Table 2.7.
Regarding this matter, the proposed taxonomy of meta-features is shown in Figure
2.7.

Other Meta-Features

The last category of meta-features groups all remaining MFs that are singularly
found in the literature but can still be useful in certain meta-learning scenarios.
They all share the property of not being widely used, due to various reasons, such
as computational cost or domain bias, among others [82]. The universe of MFs that
do not fit in any of the previous categories is significantly vast, forming this category.
For this reason, only a few sub-groups of this type of meta-features are listed (Table
2.8). A more extensive description of “Other” meta-features can be found in [82].
Some examples of sub-categories are the following:

• Clustering and distance-based: Includes all measures (validation indexes) that
evaluate the quality of partitions originated by clustering algorithms;

• Time-based measures: The elapsed time to compute all meta-features within
each group;

• Data distribution measures: Metrics that indicate about the distribution of
the dataset in the predictive attribute space.
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Table 2.8: Examples of other meta-features.

Input Output

Task Argument Cardinality Range

Clustering and

distance-based

AIC Any ∗D 1 [0,+∞]

silhouette Any ∗D 1 [−1, 1]

Time-based

modelTime Supervised ∗D + T 1 [0,+∞]

landTime Supervised ∗D + T 1 [0,+∞]

Data distribution

measures

attrConc Any 2D D2 [0, 1]

sparsity Any 1D D [0, 1]

2.5 Performance Evaluation Metrics

In this section, a description of several classification performance evaluation metrics
is considered, focusing on metrics that are most suitable for disproportional class
distributions. Although only the F1-score was used for the experimental performance
evaluation, other viable options are still considered. It was opted for the F1-score
since it is suitable to handle class imbalance and has been widely used in related
research [65, 96, 21].

In a binary classification context, consider the following notation for a classification
outcome:

• True Positive (TP): Patterns correctly classified as positive;

• False Positive (FP): Patterns classified as positive, but in reality are negative;

• True Negative (TN): Patterns correctly classified as negative;

• False Negative (FN): Patterns classified as negative, but in reality are positive.
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Table 2.9: Example of a confusion matrix in binary classification.

True
Class

Predicted Class
Disease Healthy

Disesase
True
Positive

False
Negative

Healthy
False
Positive

True
Negative

These classification outcomes are often represented in a matrix form, also known as
a Confusion matrix, which is a c× c matrix that holds the classification outcomes (c
represents the number of classes of the problem, which in the medical field is often
c = 2). One axis holds the predicted class and the other the actual (true) class, as
illustrated in Table 2.9.

2.5.1 Accuracy and Error Rate

The most simple metric to evaluate classification performance is the Accuracy. This
metric simply captures the fraction of instances that were correctly classified and is
represented on Equation 2.5.

ACC =
TP + TN

TP + TN + FP + FN
(2.5)

The accuracy ranges in the interval [0, 1], where 0 stands for the incorrect classifi-
cation of all instances and 1 for a perfect classification.

Conversely, one can represent the accuracy with the Error Rate εr(%) (Equation
2.6). It stands for the percentage of misclassified patterns, thus ranging in the
interval 0-100%.

εr(%) = (1− ACC)× 100 (%) (2.6)

2.5.2 Recall and Precision

Recall and Precision are two concepts often found in imbalanced problems, whose
quantisation allows to capture information regarding the performance of classifica-
tion systems, with a greater focus on the positive class. In an optimal scenario, it is
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desirable to have both high recall and precision, but there is an associated trade-off
that needs to be set. In practice, one can either have a high recall or precision, but
not both at the same time [11].

On the one hand, Recall (also known as Sensitivity or True Positive Rate (TPR)),
represents the proportion of patterns that are correctly classified as positive (mi-
nority points), among all positive instances. This measure is an indicator of the
performance of correctly classifying minority class instances.

On the other hand, Precision (also referred to as Positive Preditive Value (PPV))
is the proportion of correctly classified positive instances, among all patterns that
are attributed to the positive class. It expresses the “purity” in classifying positive
instances. In other words, it is an indicator of the effectiveness in excluding the
irrelevant patterns (the majority class instances or in medical problems, the healthy
patients) [11]. The formulas of recall and precision are respectively represented on
Equations 2.7 and 2.8.

Recall =
TP

TP + FN
(2.7)

Precision =
TP

TP + FP
(2.8)

In an imbalanced scenario or biomedical classification system, the classification ob-
jective is often the same: improve recall (not miss sick patients), without com-
promising precision (overdiagnosing, considering all patients as having an illness).
However, these objectives are often incompatible in practice, since increasing the
number of correct positive-class predictions can also increase the number of false
positives [15], which suggests that overdiagnosing is being committed, as previously
mentioned.

When designing learning system, one can either evaluate these two scalars and anal-
yse them independently or unify them into a single metric, using a summarisation
function, which is the case of the F -score.

F -score

The goal of this metric is to unify the trade-off between precision and recall using
the harmonic mean, Fβ, which is defined by Equation 2.9.

Fβ =
(1 + β2) · Recall · Precision
β2 · Recall + Precision

(2.9)

The parameter β on Equation 2.9, is a weight that translates the importance assigned
to the recall. Commonly it is set β = 1, where recall is considered as important as
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precision, which originates the F1-score, or simply F1, whose simplified formula is
shown in Equation 2.10.

F1 = 2 · Recall · Precision
Recall + Precision

(2.10)

Note that the F1-score is the performance evaluation metric that was selected for the
experiments of this work since it captures the trade-off between precision and recall
and has been widely reported in the related literature in class imbalance [96, 65, 21].
Notwithstanding, an overview of other equally-suitable metrics is provided next,
which were specially designed for imbalanced contexts.

Other Metrics

Balanced Accuracy. The accuracy can be a deceiving metric due to classification
bias. For instance, classifiers are often biased towards the majority (negative) class
due to the lack of representativity of the minority one, which can be misleading.
Considering as an example a dataset which has an imbalance of 99 to 1 (majority
to minority class), if all patterns are classified as majority class, an accuracy of 99%
is obtained, even though all positive instances have been incorrectly labelled.

Motivated by this issue, the Balanced Accuracy considers the average accuracy that
is obtained from each class [10] (Equation 2.11).

Balanced ACC =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
(2.11)

MCC. The Matthews Correlation Coefficient (MCC) was first introduced on the
prediction of protein secondary structure, by Matthews, B. W. [8]. Rapidly, it
started being broadly used on biomedical research, especially in imbalanced scenar-
ios. It is based on the discretisation of the Pearson’s Correlation Coefficient (ρ) and
is defined on Equation 2.12 [8].

MCC =
TP× TN− FP× FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
(2.12)

This measure ranges on the interval [−1, 1] where 1 stands for a perfect prediction,
−1 for a complete disagreement and 0 shows that the performance is not better than
a random classifier. Furthermore, there are situations where the performance of this
measure might be degraded. For instance, the output is expectable to be relatively
high in cases where there are simultaneously low (or even none) False Positives and
True Positives [2].
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The experiments of Boughorbel et al. [8] with the MCC, AUC, accuracy and F1-
score demonstrate that MCC proved to be robust to imbalance and suitable to build
an optimal classifier for imbalanced data.

ROC and AUC. The Receiver Operating Characteristic (ROC) curve is another
method to evaluate the performance of a classification system. It is a graph of
the False Positive Rate (FPR) versus the TPR at different classification cut-off
thresholds. It is expected that as the sensitivity increases (TPR), the specificity
decreases (1-FPR).

A satisfactory ROC curve is supposed to lie above the identity line, which in the
negative case, evidences that the classifier is not better than randomly assigning
labels. On the other hand, the classification is as great as the ROC gets closer to
the top-left corner.

Since the ROC requires a visual interpretation, the AUC is often used to summarise
the ROC performance. This scalar is simply calculated by taking the integral of this
curve, in the interval [0, 1], i.e., a simple area computation.

When compared with the F -score, ROC curves describe the compromise between
True Positive (TP) and False Positive (FP), whereas the F -score represents the
trade-off between TP, FP, and False Negative (FN) [15].

2.6 Exceptional Preferences Mining

Towards delivering meaningful knowledge from datasets meta-characteristics, a min-
ing algorithm with this characteristic was required. In this domain, Exceptional
Preferences Mining (EPM) [24] was the framework of election since it is a crossover
between local pattern mining and preference learning [26], thus also accounting for
the performance ranking of imbalance strategies.

In this section, the EPM framework and the related concepts are introduced, such
as label ranking, in Section 2.6.1, and the quality measures considered in EPM,
in Section 2.6.3. The following concepts are accompanied with the mathematical
support, which is fundamental to understand the experimental setup (Chapter 4)
considered in this work.
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2.6.1 Label Ranking

Label Ranking (LR) is a learning process whose goal is to predict a preference rela-
tion (ranking) for each instance x of the feature space X [48]. A preference relation
can be defined as a strict total order over the target space L = {λ1, λ2, · · · , λm},
defined on the permutation space Ω, such as:

λπ(1) � λπ(2) � · · · � λπ(m),x ∈ X

Note that each λa represents a label, in this case a preprocessing algorithms. The
permutation ranking π ∈ Ω is a permutation of the set {1, · · · ,m}, where π(a)

stands for the position of λa in π [24]. For example, considering the strict total
order λ4 � λ3 � λ1 � λ2, the associated permutation vector is π = (3, 4, 2, 1).
However, to manage the case where two classes are assigned with the same rank (a
tie), the preference ranking is extended to a broader definition, a non-strict total
order [24], such as:

λπ(1) � λπ(2) � · · · � λπ(m), x ∈ X

In the event that λ4 and λ3 are assigned the same rank, we would obtain the pref-
erence relation λ4 = λ3 � λ1 � λ2, whose permutation vector is π = (2, 3, 1, 1).

2.6.2 Exceptional Preferences Mining Framework

The Exceptional Preferences Mining is a mining framework [24] based on Subgroup
Discovery (SD). SD consists in finding the subgroups of a population where there is
statistical evidence of its interestingness. For instance, a subgroup is “interesting” if
it has an unusual distribution (statistical properties) concerning the class it belongs
to [45]. Subgroup Discovery provides interpretable rules related to a discrete target
variable, which define the elements (patterns) of the subgroup. Likewise, EPM
also delivers interesting subgroups with the respective interpretable rules, i.e., the
exceptional subgroups, which are the ones where significant changes in label ranking
are observable when compared with the population’s average ranking. Yet, instead
of considering a discrete target class, it finds the subgroups whose label ranking
significantly deviates from the dataset’s average ranking, which is quantified by a
quality measure (Section 2.6.3).

To illustrate the Exceptional Preferences Mining and its advantages to deliver inter-
pretable conditions, consider a survey of movie preferences that is composed by the
demographics of the inquired subjects and their preference order among 4 arbitrary
movies: A (2019), B (2015), C (2000), D (1985). Suppose that the population’s
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average preference is as follows:

A (2019) � C (2000) � D (1985) � B (2015)

In this hypothetical scenario, an interesting subgroup could be the case where if
[age > 50] the subgroup’s preference relation is:

D (1985) � C (2000) � B (2015) � A (2019)

This could have the subjective justification that younger people may not have a
watched movie D, released in 1985, despite being a great movie. In this work, each
label represents a preprocessing algorithm and the analogous condition of [age > 50]

are the meta-feature values.

Arguably, considering only rankings of labels is advantageous since it allows extract-
ing interpretable knowledge while abstracting from numeric performance values.
Nevertheless, performance has to be taken into consideration after the extraction
procedure, since the performance differences among labels have to be evaluated,
otherwise, we may erroneously discard the last preferred algorithm, even though it
could only be insignificantly smaller than the top-performing one. This aspect is
addressed in Section 5.2, where a novel metric is proposed for this matter.

Furthermore, in a recent study, EPM authors [26] have compared their framework
with Distribution Rules [50], which is also a subgroup discovery method but analyses
a single continuous target variable instead. This comparison allowed the authors to
understand the limitations of EPM, such as the occurrence of significant subgroups
that are specialisations of other subgroups, with very similar preferences (if not the
same).

2.6.3 Quality Measures

The EPM quality measures consider the concept of Preference Matrix (PM) [24]
which is now provided. Let ω(λi, λj) be a function that returns an integer number,
based on the pairwise comparison of labels λi and λj (Equation 2.13).

ω(λi, λj) =


1, if λi � λj

−1, if λi ≺ λj

0, if λi ∼ λj (equal rankings)

(2.13)

For each ranking π, i.e., the ranking associated with each training instance, the
preference matrix Mπ is computed based on the pairwise comparison of λi and λj,
whose elements i and j are defined as represented on Equation 2.14.

Mπ(i, j) = ωπ(λi, λj) (2.14)
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This matrix holds the preference relations for a pattern of a subgroup and it is a
square antisymmetric matrix by definition, with trace tr(Mπ) = 0 [26]. In order to
capture the global preference relation in a subgroup S ⊆ D, where the set D repre-
sents the dataset, the preference matrices are compiled together into an aggregation
of preference matrices MS , by taking the piecewise average of the elements of Mπ

matrices, that compose S (Equation 2.15).

MS =
1

N

∑
π∈S

Mπ (2.15)

The elements i and j of MS can be interpreted as “how much is label λi preferred
when compared to λj”. Let mi,j represent an element of MS . For instance, mi,j = 1

means that λi was always preferred over λj (λi � λj), in subgroup S. Conversely,
mi,j = −1 represents the case where λj was always preferred over λi (λj � λi) [26].

The quality measures used in EPM assess the subgroups exceptionality, i.e., if the
subgroup’s label ranking significantly differs from the population’s label ranking.
These measures are composed by a term that considers the subgroups’ size, multi-
plied by another term that holds the distance matrix LS (Equation 2.16) between
the compiled Preference Matrices of the dataset (MD) and the subgroup MS. Since
the goal of EPM is to find exceptional subgroups from the population, the distance
matrix is used to quantise exceptionality of the subgroup when compared with the
population [24].

LS =
1

2

(
MD −MS

)
(2.16)

In order to find the subgroups of more interestingness, three quality measures, pro-
vided by [26] were considered in this work’s experiments, which discriminate three
categories of exceptionality: rankingwise, labelwise and pairwise. From the ranking-
wise group, RWNorm (rankingwise norm) was chosen, which is defined on Equation
2.17, where s represents the number of elements of the subgroup and n the num-
ber of elements of the dataset. These measures are characterised by “preferring”
the subgroups with exceptional complete rankings [26]. In other words, this metric
yields the highest value if the label ranking of the subgroup is the opposite of the
dataset’s preference ranking.

RWNorm(S) =
√
s/n ·

√√√√ k∑
i=1

k∑
j=1

LS(i, j)2 (2.17)

The LWNorm (labelwise norm) (Equation 2.18) is less strict when compared to the
previous measure and considers “interesting”, the subgroups where there is at least
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one label whose behaviour (rank) differs from the average ranking.

LWNorm(S) =
√
s/n · max

i=1,··· ,k

√√√√ k∑
j=1

LS(i, j)2 (2.18)

Lastly, the PWMax (pairwise max) measure (Equation 2.19) considers pairs of label-
vs-label and highlights the subgroups where at least one pair has an unusual ranking
[26].

PWMax(S) =
√
s/n · max

i,j=1,··· ,k
|LS(i, j)| (2.19)
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Literature Review

In this chapter, the meta-learning research for imbalance-related topics is overviewed.
The search for the academic articles was performed via the Google Scholar academic
search engine, with the joint keywords “meta-learning” and “imbalance”, without any
time restrictions (since meta-learning is a recent research topic) and only in English
language. The databases where the research papers are located are the following:
Elsevier (Science Direct), Springer (Springer Link), IEEE (IEEE Xplore), AAAI,
arXiv, SPIE Digital, IOSPress and the 36th International Conference on Machine
Learning, Climate Change: How Can AI Help?.

The works hereby considered are divided into two main groups: Section 3.1 that
considers meta-learning approaches that target the imbalance of classes or the en-
hancement of machine learning algorithms for imbalanced contexts, such as weight
adjustment or improvement of state-of-the-art imbalance strategies. Regarding Sec-
tion 3.2, a review of the research papers that specifically handle the recommendation
of imbalance strategies is provided.

3.1 Meta-Learning for Imbalanced Contexts

Meta-learning approaches have been employed on several imbalanced contexts, us-
ing different techniques. The reviewed papers address diverse types of problems, in-
cluding imbalance in high dimensional data, targeted meta-learning, novel ensemble-
based algorithms, enhancement of undersampling algorithms and reweighting meth-
ods for Deep Neural Networks. Despite the different types of applications, it is
noticeable that class imbalance and the use of meta-learning is transverse to all
these works.
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Dash [21] claims that traditional data sampling and algorithmic-level techniques are
not able to deal with high-dimensional imbalanced data, such as the microarray data
of their study. This type of data is characterised by having a reduced number of
samples in comparison with the dimensionality. Moreover, several data complexity
factors are often found on this type of data, such as high noise, high redundancy and
imbalance of classes. To this end, they propose an extension to the meta-classifier
DECORATE [66], by integrating it with ROS as a sampling technique. DECORATE
is an ensemble-based meta-learner, that generates diverse ensembles of classifiers
where new artificial training instances are created. The proposed framework was
tested with 2 imbalanced cancer microarray datasets, where the oversample amount
(percentage of the original dataset) was varied between 100% and 500%. The results
were benchmarked with several state-of-the-art ensemble techniques, such as Bag-
ging, AdaBoost, RandomSubspace and the base-learner J48. The proposed method
scored higher than the other techniques and demonstrated a significant improvement
in comparison with the remaining imbalance strategies, in some cases an increase in
F1-score over 0.12. The authors concluded that dimensionality has a strong impact
on classifier performance and that the novel framework has demonstrated good per-
formance on imbalanced microarray datasets. Further work must be conducted to
address the dimension of the feature space and the influence of this algorithm on
multi-class datasets.

Motivated by the fact that data-level strategies, specially undersampling, are heuristic-
based and do not take into account the classifier or evaluation metric, Peng et
al. [73] address this issue. Their work proposes a novel meta-learning-based un-
dersampling algorithm, that distinguishes itself from the standard undersampling
techniques since it possesses the ability to select which samples should be discarded.
Therefore, the algorithm guarantees that the least amount of meaningful information
is removed since undersampling is always associated with the deletion of majority
class patterns. The data-sampler is trained via reinforcement learning to optimise
classification performance, instead of using a heuristic. For this, the resampling
procedure is modulated by a Markov Decision Process, where the decision process
is solely based on the information of the current state to determine the next state
[32]. In this context, the sampling of each example is the action, the chosen subset
is the state and the performance of the classifier is modelled as the reward, in a
reinforcement learning context. The results on 2 artificial and 5 real-world datasets
demonstrated that the method outperforms heuristic-based techniques, such as over-
sampling and undersampling, where the performance difference (F1-score) between
the proposed method and the benchmarking algorithms ranged between about 0.296

to 0.012. Compared with state-of-the-art cost-sensitive algorithms, it achieves simi-
lar performance. In conclusion, they observed that heuristic methods vary consider-
ably between datasets and that the proposed method outperforms these strategies,
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evidencing “robustness and effectiveness”. Moreover, they refer that, even though
oversampling methods slightly improved the performance versus the proposed under-
sampling method, oversampling does not create many informative instances, rather
only changes the data distribution.

Kamani et al. [52] provides a novel targeted meta-learning framework which was
employed on weather-related datasets. Targeted meta-learning consists in utilising
a small target dataset (labelled) to drive the main learning process. This frame-
work has two parallel processes, also known as bi-level programming. One level is
responsible for the main training process, whereas the other consists in finding the
well-tuned target dataset. The samples of the target set are used to adaptatively
learn the optimal weights that guide the training process. In each iteration, the
target set provides the optimal weights that minimize the loss function of the main
learning process. It is highlighted that the “well-crafted” target dataset can either
be a subset of the training data or a separate set, similarly to how a validation set
is used. The main difference is that the “validation” is employed at each iteration
and not at the end of the training process. The experiments on radar images were
conducted by applying targeted meta-learning jointly with a ResNet20 model, where
the training phase demonstrated an “exceptional capacity in addressing biases”, on
the imbalanced radar image problem of their study. In conclusion, the bi-level ap-
proach of targeted meta-learning reduces the negative effects of imbalanced data, in
the performance of deep learning models.

On the deep-learning field, Ren et al. [80] address the reweighting procedure, to
compensate for training biases. Deep Neural Networks are known for easily over-
fitting to the majority class in the presence of training biases, such as imbalance
or noise, since it is the most represented one. Furthermore, the authors mention a
paradigm in training loss (cost-sensitive) approaches. On one hand, if the problem
has noisy examples, the instances with smaller training losses are preferable, in order
to obtain “cleaner” data. On the other hand, in an imbalanced scenario, the samples
of higher training loss are preferable since these often correspond to the class of
greater importance. These considerations are worsened in cases where the data is
both noisy and imbalanced, which leads to wrong model assumptions. Under these
conditions, the authors argue that to learn the general form of biases present in a
training set, a small unbiased validation set is necessary, to supervise the training
process. Similar to Kamani et al. [52], the validation procedure is conducted after
each iteration and not at the end of the training routine. In each validation step, the
weights attributed to training patterns are readjusted according to its importance,
which is referred to as an online reweighting method. On each iteration, a mini-
batch is sampled and the adjustment of the weights is according to the similarity
between the gradient descent direction and the validation loss surface. Therefore the
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computed mini-batch weights minimise the expected weighted loss. The technique
was tested with 2 benchmark datasets for Convolutional Neural Networks and they
found that the proposed method is less affected by changes in noise. Additionally,
it achieves test accuracies 3% higher than the state-of-the-art algorithms. It can be
concluded that this automatic meta-learning based reweighting technique is benefi-
cial in comparison to other reweighting methods since it considers multiple biases in
the training set. Moreover, this method can be directly applied to any deep learning
technique and is free of hyperparameters. Finally, the authors indicate that the
method appears to behave similarly to regularisation, but further investigation is
required to corroborate this affirmation.

Maldonado and Montecinos [65] address the imbalance problem of credit card cus-
tomer churn prediction using two ensemble strategies, jointly with several classi-
fication approaches. On the first phase, they used ensembles via a combination
of rules and on a second phase, they used stacking. The latter is a meta-learning
technique that consists in creating a new meta-dataset from the outcomes of sev-
eral classification models, induced from the original dataset. Then, a meta-model is
induced from the meta-database. On a test scenario, an instance is first converted
to the meta-domain (using the previous pool of models) and the meta version of
this instance (meta-instance) is then used to make the prediction [9]. In this work,
the pool of models is composed by two-class Support Vector Machine (SVM) and
one-class classification with Support Vector Data Description (SVDD) and Parzen
density estimation. Additionally, two meta-features are used: the class imbalance
and class overlap. As for the meta-learner, the Naive Bayes (NB) and SVM were
chosen. Several experiments were conducted on artificial and real-world datasets and
found that both standard classification methods and density-based methods (SVDD
with Parzen window) are capable of modelling different areas of the feature space,
in terms of class balance and noise, i.e., different strategies can cope with different
biases. In this domain, the top-performing classifier is improved by 4.2% when the
proposed ensemble is considered. The reasoning is that the ensemble’s weak-learners
may commit different types of errors. Therefore, ensemble strategies are known for
boosting the overall performance since different biases from different classification
strategies are taken into consideration. In conclusion, the researchers highlight that
no individual approach outperforms the remaining: two-class SVM depicts good
performance on imbalanced datasets with a low level of overlap. Contrasting, with
the increase of noise in the data, the one-class SVDD outperforms SVM. To this
end, ensemble strategies increase the overall performance by considering different
biases, where stacking performed better than a rule-based ensemble. Lastly, the
authors refer that the imbalance is not a problem for the standard classifiers, but
the presence of noise is an artefact that strongly degrades the performance, which
is widely agreed in the class imbalance research community.
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Still on the ensemble domain, Lin et al. [56] propose an ensemble-based meta-
learning technique, entitled Meta Imbalance Classification Ensemble (MICE). This
algorithm is based on the integration of meta-information, provided from subclassi-
fiers (meta-learners) trained on majority class partitions and the minority class. By
partitioning the former class, the effect of class imbalance is decomposed, achieving a
closer number of majority and minority patterns on the training of the subclassifier.
The ensemble is composed by linear SVM or Fisher’s Linear Discriminant Analysis
(LDA) classifiers and the final ensemble is constructed based on a logistic regression.
Additionally, they propose a feature transformation with the inner product between
majority and minority class instances, which has the advantage of preserving the
geometrical properties, such as distances and angles. Afterwards, the decision sur-
face values of each subclassifier are converted to probabilities and the final ensemble
is constructed with a logistic regression model. Therefore, it is possible to achieve
increased performance. The authors claim that the feature transformation step is
a key aspect for the success of MICE since meta-learning based on the inner prod-
uct of the transformed features retains geometrical relations between minority and
majority class instances. This partitioning method can be viewed as a projection
of the majority points on the minority class space. This algorithm was tested on 8
real-world and 5 synthetic datasets and benchmarked with 6 baseline approaches,
among them SVM, Fisher’s LDA and oversampling and undersampling combined
with AdaBoost. The results demonstrate a consistent increase of AUC, on average
0.046, with a maximum increase of 0.287. Also, it is observable that, in general,
the proposed method scored higher sensitivity and specificity than the benchmark
methods. The authors claim that the success of this algorithm is due to the use
of well-studied techniques, such as the k-means for partitioning, Fisher’s LDA and
SVM for the subclassifiers and logistic regression to aggregate the predictions of the
base-learners.

Zhao et al. [96] proposed a cost-sensitive miner, entitled Siamese Parallel Fully-
Connected Convolutional Neural Network (SPFCNN), which was incorporated into
an ensemble algorithm, where each base-learner is a SPFCNN. Regarding the parallel
siamese network, it is composed by a shallow and a deep network, stated by the
reasoning that the highest-level features can be learned from few examples and it
allows to extract both simple and complex features, by using the parallelism of
networks. In order to optimize the weights of the duality of siamese networks,
whose parameters are shared across both sides, the Normalized Expected Cost of
Misclassification (NECM) was employed, which takes into consideration the different
misclassification costs, and the weights of SPFCNN are adjusted according to the
change of NECM, where lower NECM indicates a better result. Regarding the
meta-learning approach, it is similar to the one of Lin et al. [56], where the meta-
learners are the SPFCNN-miners, which are trained on a majority class partition
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and the minority class, yielding a smaller training imbalance ratio. The meta-
information of the ensembles is then integrated with contrast functions. The feature-
space was also transformed using the inner product between majority and minority
class instances, such as in [56]. To test the proposed algorithm, two experiments were
conducted on 14 real-world datasets: without the cost-sensitive learning (NECM)
and including the cost-sensitive process. Regarding the former, it was observable
that the performance was better than the baseline methods, despite the marginally
higher computational cost due to the extensive training time of high-level features
of SPFCNN. As for the latter, including cost-sensitive learning achieved the best
results on the majority of datasets, where the proposed method obtained the lowest
average ranking of 1.214, among the benchmarking algorithms. In conclusion, they
highlight that the transformation of the feature space is beneficial, which agrees
with Lin et al. [56] that employed the same transformation. Moreover, the siamese
parallel network can effectively extract high-level features and has the advantage
of learning both simple and complex features adaptatively, as a consequence of the
duality of shallow and deep siamese neural networks. Finally, the authors point three
research directions: improve the partitioning algorithm of the ensembles (adaptive
clustering algorithm), explore the practical applicability of SPFCNN, due to limited
empirical research and extend with other strategies to handle overfitting, such as
early stopping and data augmentation, which was not explored in this work.

A summary of the reviewed research papers is provided in Table 3.1. Analysing this
table, these works can be categorised into three groups:

• Modification of existing algorithms: Dash [21] and Peng et al. [73];

• Reweighting algorithms: Kamani et al. [52] and Ren et al. [80];

• Ensemble-based algorithms: Maldonado and Montecinos [65], Lin et al. [56]
and Zhao et al. [96].

Although the results of these works consider very distinct experimental architec-
tures, it is noticeable that all succeeded at improving classification performance in
imbalanced contexts when compared to other benchmark classifiers.

Still, there are some similar considerations worth summing up. Concerning the
first group of scientific articles, they provided a modification of standard algorithms
to improve an imbalance handling strategy, ultimately leading to an increase in
performance. While Dash [21] integrates ROS with the meta-classifier DECORATE,
Peng et al. [73] optimises an undersampling algorithm, enhancing it with the ability
to learn which instances should be discarded or maintained, instead of a random
selection that characterises this algorithm.
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Table 3.1: Summary of the reviewed works on the topic of meta-learning for imbal-
anced contexts.

Authors Datasets
Imbalance

Strategies
Classifiers Quality Measures

Meta-Learning

Approach
Meta-Learner

Dash [21] 2 real-world 1 oversampling DECORATE

Accuracy

F1-score

AUC

Kappa-statistic

Ensemble with

resampling
DECORATE

Peng et al. [73]
2 artificial

5 real-world

Trainable

Undersampling

on RUS

Logistic Regression

SVM

k-NN

DT

Conv. NN

G-mean

MCC

AUCPRC

F0.5

AUCROC

Trainable

Undersampling

Reinforcement

Learning

Kamani et al. [52] 1 real-world n/a ResNet20
Accuracy

Recall

Targeted MtL

(for weight adjustment)
n/a

Ren et al. [80] 2 real-world n/a Conv. NN Accuracy

Mini-batch sampling

for online

weight adjustment

n/a

Maldonado and

Montecinos [65]

6 artificial

1 real-world
n/a

Two-class SVM

One-class SVDD

G-mean

F1-score

Balanced Acc.

MCC

Accuracy

Ensemble

Stacking

NB

SVM

Lin et al. [56]
5 artificial

8 real-world

Majority class

partitioning

for the ensembles

Fisher’s LDA

SVM (linear)

Logistic Regression

AUC

Accuracy

Specificity

Recall

Ensemble
Logistic

Regression

Zhao et al. [96] 14 real-world

Majority class

partitioning

for the ensembles

SPFCNN

Accuracy

F1-score

AUC

Ensemble
Contrast

Functions

Concerning the second group, these works focused on developing online reweighting
algorithms, i.e., the validation for the weight adjustment step occurs after each
training iteration, rather than at the end of the training phase. In this domain, both
Kamani et al. [52] and Ren et al. [80] use an unbiased small set for weight adjustment
of Neural Networks (NNs), where the former emphasizes that the unbiased dataset
can be sampled from another related dataset and not sampled from the training set.
The authors argue that these online reweighting approaches may behave similarly
to regularisation, although further research is required to corroborate this aspect.

Lastly, the third group considers ensemble-based algorithms. Maldonado and Mon-
tecinos [65] proposed a stacking model, using SVM and SVDD as the base learners.
As for Lin et al. [56] and Zhao et al. [96], despite considering similar experimental
architectures, the main difference lies at the ensemble’s weak-learners. While the
former considers Fisher’s LDA and linear SVM as the base learners, the latter uses
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a novel parallel siamese networks (SPFCNN). These authors agree that the weak-
learners of the ensembles are prone to commit different types of errors and for this
reason, the ensemble classifier leads to increased overall performance, in comparison
with each weak-learner. Furthermore, Lin et al. [56] and Maldonado and Montecinos
[65] point that future work should consider extending their algorithms to multi-class
since this can be achieved by using multiple binary classifiers.

3.2 Meta-Learning for the Recommendation of Im-
balance Strategies

In this section, an overview of related research on the topic of recommendation
of imbalance strategies is provided. These research papers provide recommenda-
tions methods, based on meta-learning, where novel methodologies are proposed.
Additionally, it is also included a paper that considers the recommendation of clas-
sification algorithms for imbalanced contexts, because despite not recommending an
imbalance strategy by itself, it is still relevant for this topic and contributes with a
novel meta-feature.

Loyola-González et al. [63] studied the effect of resampling strategies associated
with different classifiers, on 95 real-world datasets, using Contrast Pattern Miners.
In short, a contrast pattern is a descriptive expression, for instance, [SepalWidth ≤
3.7], that appears frequently in a class and rarely in the remaining classes of the
dataset [63]. The preprocessing algorithms employed were both oversampling and
undersampling algorithms. Backed by their findings, they proposed an empirical
recommendation of resampling algorithms, based on the 6-bins discretisation of the
Imbalance Ratio. They concluded that SMOTE, Tomek Links and SMOTE-TL are
the top-performing approaches. Furthermore, the authors refer that a knowledge-
seeking meta-analysis could bring new insights about the resampling algorithms’
behaviour and it would be beneficial to aid researchers when selecting a resampling
strategy, based on the meta-characteristics of the dataset.

Morais et al. [23] and Zhang et al. [95] proposed recommendation systems based on
a meta-learning approach, to provide the user with a preprocessing algorithm, along
with its optimal hyperparameters. The recommendation is inferred from a meta-
database, composed by the training datasets’ meta-features and the performance
associated with several imbalance strategies. For each new test dataset, the recom-
mended algorithm is the one assigned to the closest training instance (each instance
represents a dataset). The recommendation for this test instance is computed based
on the similarity between the meta-characteristics of the test and training instances,
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using the k-NN algorithm. The former work uses meta-features from Simple and
Statistical groups [82] and 7 under-sampling techniques, on 29 real-world datasets,
whereas the latter uses meta-features from the Simple, Statistical, Complexity, Land-
marking and Model-based groups and a more complete set of imbalance strategies,
including algorithms from both data-level and algorithmic-level domains [88], on 80
real-world datasets.
The experiments of Morais et al. [23] benchmark the proposed algorithm with a
“brute-force” approach, original scenario and a random search of imbalance strate-
gies (and its parameters). The results demonstrate that the proposed method scored
a Weighted Performance Metric (WPC)1 similar to “brute-force”, in some cases even
superior. Additionally, the random search always yielded the lowest performance
and the proposed algorithm performed better than the original scenario in 24 of 29
datasets (82.8%). Note that the datasets also include its transformations, such as
the Principal Components, thus the higher number of datasets.
On the other hand, the recommendation system of Zhang et al. [95] is an instance-
based learning algorithm since new test samples are incorporated into the meta-
dataset after the recommendation, thus augmenting the size of the meta-database.
The results evidence that the relative classification error lies in the range of 0.6-
3.7%. Therefore, the classification using a recommended algorithm is able to deal
with class imbalance, when using one of the top 3 recommendations, achieving a
classification performance comparable to the optimal case.
In the end, the works of both authors were successful at recommending imbalance
strategies and the authors agree that there is no preprocessing algorithm that suits
all scenarios.

Smolyakov et al. [86] provide a template to build recommendation systems and
document experiments with several resampling recommendation systems, using dif-
ferent classifiers for performance evaluation (such as k-NN and SVM), based on the
Recommendation Accuracy (RA). The database considered is composed by roughly
1000 artificial datasets and 100 real-world datasets. As for the chosen meta-features,
they are mostly from the Simple and Statistical groups. The results demonstrated
that SMOTE scored the highest average RA for all recommendation systems, with a
RA > 0.6 in all cases, which according to the authors, is a threshold that allows con-
cluding that using the recommendation systems is better than randomly selecting
a preprocessing algorithm. Additionally, they observed that the recommendation
systems that use the k-NN classifier recommended that no-resampling should be
selected. They argue that this occurs since no meta-feature indicated that there
was a resampling strategy that could increase the performance, in comparison with
keeping the original dataset. Future work is pointed towards the use of a larger

1Weighted Performance metric is a performance evaluation metric that considers a weighted
sum of accuracy, AUC, F1-score, specificity and negative predictive value [23]

— 49 —



Chapter 3. Literature Review

set of meta-features, to account for the “specific nature of imbalanced classification
tasks”.

The work of Borsos et al. [7] deviates from the recommendation of imbalance strate-
gies. Rather, it recommends a classification algorithm to be used with the imbal-
anced scenario. For this reason, it should also be included in this literature review.
The contributions of this paper include a novel meta-feature suitable to quantise
overlap and the definition of a set of meta-features that are specifically crafted for
capturing imbalance, overlap and data complexity. Even though the proposed meta-
learning approach addresses the recommendation of classification methods, the set
of meta-features, including the proposed measure, may be useful for the recom-
mendation of imbalance strategies. To this end, the authors propose an overlap
meta-feature which is based on the R-value and is motivated by the fact that, as the
IR increases, the R-value does not alter significantly but performance drops severely.
Thus, the novel augmented R-Value consists in changing the weighting term of the
R-value of a class. Furthermore, the set of proposed meta-features that are able to
cope with the aforementioned problems are:

• Imbalance: Imbalance Ratio;

• Overlap: Augmented R-value and Fisher’s Maximum Discriminant Ratio;

• Complexity: instances per attribute ratio, number of support vectors gener-
ated by SVM with a polynomial kernel of 1st and 3rd degrees and number of
leaves in a DT.

The experimental setup included 1000 artificial and 66 real-world datasets, to val-
idate the proposed meta-feature and the recommendation system. The augmented
R-value was compared with the R-value and IR, where it was observable that it
scored a moderate correlation with the absolute overlap of 0.462 versus 0.27 with
R-value. However, a high correlation with the performance of SVM classifiers was
observable, −0.903 and −0.782, respectively for polynomial kernel SVMs of degrees
1 and 3. According to the authors, this is expected since the augmented R-value is a
model-based metric, hence the higher correlation with SVM when compared to the
R-value, 0.149 and 0.019, respectively. Concluding, the augmented R-value shows
the potential to be used as a meta-feature in imbalanced scenarios. Additionally, the
IR is the poorest predictor as a meta-feature, since other complexity factors might
be present, such as overlap or noise, which are not captured by this measure.
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Table 3.2: Summary of the reviewed works on the topic of meta-learning for the
recommendation of imbalance strategies.

Authors Datasets
Imbalance

Strategies
Classifiers Quality Measures Meta-features Meta-Learner

Loyola-González

et al. [63]
95 real-world

9 oversampling

8 undersampling

3 hybrid

CPM

(LCMine + CAEP)

Accuracy

AUC
n/a n/a

Morais et al. [23] 29 real-world 7 undersampling
SVM

(Gaussian)
WPC

Simple

Statistical
k-NN

Zhang et al. [95] 80 real-world

2 oversampling

1 undersampling

1 cost-sensitive

6 ensemble-based

1 other

NB

DT (C4.5)

Random Forest

Rule-based Ripper

SVM

IBL

Spearman

Hit-rate

AUC

Simple

Statistical

Complexity

Landmarking

k-NN

Smolyakov et al. [86]
1000 artificial

100 real-world

No-resampling

2 oversampling

1 undersampling

1 bootstrap

DT

k-NN

Logistic Regression

AUC

Rec. Accuracy

(for recommendation)

Simple

Statistical
AdaBoost

Borsos et al. [7]
1000 artificial

66 real-world

No-resampling

1 oversampling

SVM (poly 1)

SVM (poly 3)

DT

AUC

Precision

Recall

Custom set of MF for

imbalance, overlap and

complexity, including

proposed Aug. R-value

Logistic

Regression

A summary of the reviewed papers is provided in Table 3.2. It is observable that
the majority of these works only employ data-level strategies. Also, the AUC is
considered in all works as a quality measure (note that WPC considers a weighted
sum that also includes the AUC). In sum, three general notes are highlighted, which
are important to bear in mind:

• Data-level strategies are the most used preprocessing algorithms in this area;

• All of these experiments succeeded at efficiently recommending imbalance
strategies, but there is no knowledge about how the recommendation is per-
formed;

• The authors agree that there is no suitable algorithm for all classification
contexts, thus the importance of creating efficient and robust systems for the
recommendation of imbalance strategies.

3.3 Conclusions

In the latest research on class imbalance, meta-learning has emerged as means to
mitigate diverse problems on this field, such as: weight adjustment, enhancement
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of state-of-the-art resampling algorithms or creation of new algorithms suitable to
deal with class imbalance. Therefore, it is noticeable that meta-learning-based ap-
plications have been successful in the enhancement of learning algorithms.

Additionally, the amount of available imbalance strategies, from both data-level and
algorithmic-level has increased substantially, which leads to a more demanding task
of selecting an imbalance strategy for the problem at hand. Instead of employing
“brute-force” approaches, i.e., experimenting with all available algorithms [23], the
meta-learning-based recommendation of imbalance strategies is a research topic that
aims for the automatic selection of preprocessing algorithms.

Notwithstanding, even though the related research successfully handles the recom-
mendation of imbalance strategies with meta-learning approaches, they do not pro-
vide any general knowledge about the scenarios of application of preprocessing al-
gorithms, nor how the behaviour of imbalance strategies can be related to data
meta-characteristics. In fact, all of these approaches are either ad hoc [63] or analo-
gous to black-box models. The latter analogy is established due to the impossibility
of understanding how the recommendation process is conducted inside the recom-
mendation algorithm. Motivated by these research papers, the experimental setup
designed (Section 4) not only considers a more complete set of meta-features and
datasets, but also essentially focus on delivering insightful knowledge, concerning
the recommendation of imbalance strategies, which has not been addressed in the
context of algorithm recommendation. From the author’s knowledge, there are no
other works that address these important questions.
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Experimental Setup

In this chapter, a thorough description of the experimental setup is provided. Briefly,
the setup encompasses the creation of a meta-dataset, which is described on Section
4.2, that is posteriorly used for the experiments with the Exceptional Preferences
Mining framework (Sections 4.3 and 4.4). Additionally, the formulation of the pro-
posed Pairwise Scores Difference (PSD) value is provided in Section 4.4.1, which is
a novel metric suitable to highlight EPM subgroups where significant performance
differences between labels are observable, thus retaining more potential for a de-
scriptive analysis. Lastly, the explanation of the heuristic developed to overcome a
known limitation of EPM, is provided in Section 4.4.2.

4.1 Datasets

A collection of 163 real-world binary datasets was retrieved from the UCI1, Kaggle2,
OpenML3 and KEEL4 repositories, containing numerical and categorical attributes,
where the latter were integer encoded from 0 to m − 1, where m stands for the
number of unique discrete values for each feature. These datasets have imbalance
ratios that range from 1 to 44. The IR is often higher than one, even though it was
also included a negligible number of balanced datasets (description of the properties
of these datasets is shown in Table A.1).

The pool of datasets is from various domains, such as medicine, finance and weather
events, among others. Therefore, it is expected that different data complexity factors

1UCI Machine Learning repository: https://archive.ics.uci.edu/ml/index.php
2Kaggle website: https://www.kaggle.com
3OpenML website: https://www.openml.org
4KEEL website: http://keel.es
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are present in the data, with different dimensionalities and number of patterns.

4.2 Meta-Dataset Preparation

The meta-dataset is composed by meta-characteristics that are retrieved from data,
such as meta-features, which are properties extracted from a dataset that are suit-
able for its characterisation. Additionally, since the EPM framework is consid-
ered for the experiments, the meta-dataset is also composed by a target attribute,
that in this case is not represented by a single class or a numerical value, but
a performance ranking of preprocessing algorithms (label ranking). An analogy
can be established with conventional datasets, where features are represented by
meta-features, the target attribute is a ranking of preprocessing algorithms and the
observations are the 163 datasets. To illustrate, consider the following example:
Let x = (F1, F2, . . . , FD|y) be the representation of an instance of a classification
dataset, which is composed by its features F1, . . . , FD, where D is the dimension-
ality of the dataset and y stands for the target class. Likewise, the meta-dataset
patterns are composed by xmeta = (MF1,MF2, . . . ,MFQ|y), where the attributes
are the extracted meta-features, Q is the number of meta-features and y is no longer
a discrete class but a ranking of preprocessing algorithms or a preference relation,
as previously exemplified. It is worth noting that each pattern xmeta of the meta-
dataset represents one of the 163 datasets considered. Therefore, the meta-dataset
is composed of 163 instances.

Regarding this matter, the assembly of the meta-dataset comprises two phases,
whose schematics are represented in Figure 4.1:

1. Partitioning and resampling of datasets;

2. Meta-features extraction and performance evaluation.

Concerning the first phase, the datasets were partitioned into 5 folds (stratified CV),
as depicted in Figure 4.1(a). In this work, oversampling and hybrid algorithms
were selected, due to its simplicity, efficiency and classifier-independence [84], as
previously mentioned in Section 2.3.1. The selected state-of-the-art oversampling
techniques are ROS, SMOTE, SafeLevel-SMOTE, Borderline-SMOTE, ADASYN,
AHC, ADOMS, including two hybrid algorithms, SMOTE-TL and SMOTE-ENN.
For a complete description of these imbalance strategies, please refer to Section 2.3.1.
The implementation of these algorithms chosen was the KEEL framework [1]. For
the SMOTE-based algorithms, which use the k-Nearest Neighbours to generate new
samples, the distance metric was modified to the Heterogeneous Value Difference
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4.2. Meta-Dataset Preparation

Metric (HVDM) [92], because this metric contemplates normalised distances and also
takes into consideration the target class [83]. The resampling procedures were run
10 times (for each dataset), due to the stochastic character of resampling techniques.
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(a) Datasets partitioning and resampling.
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(b) Performance evaluation and meta-feature extraction.

Figure 4.1: Experimental setup.

Regarding the second phase (Figure 4.1(b)), the F1-score of the SVM classifier was
evaluated on the 10 versions of each imbalance strategy and the original dataset,
considering the hyperparameters tuned for the original (non-resampled) dataset. In-
stead of a Grid Search strategy, it was opted for Random Search with 100 iterations,
since it has been proved, both empirically and theoretically, that Random Search
yields at least as good or better parametrisations while taking a fraction of the com-
putational time [5]. The implementation of SVM and Random Search considered
was the scikit-learn5 [72] library. Next, the performance of the 10 versions of each re-
sampling algorithm was summarised using the median and interquartile range, since
it is not affected by extreme values of performance (Table B.1). The median F1-
score (Section 2.5.2) respecting each label (9 preprocessing algorithms and original
dataset) was ranked, originating a ground-truth preference ranking of preprocessing
algorithms (including the original dataset). For instance, the preference relation can
be represented as [24]:

SMOTE � ADASYN � · · · � ORIGINAL
5Scikit-learn library website: https://scikit-learn.org
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Concerning the meta-feature extraction (also included on the second phase), the
open-source python pymfe6 [82] library was chosen and the extraction took place only
from the original datasets. All meta-features available on the library were extracted,
plus the custom-implemented typology of minority instances [70]. Therefore, the
groups of meta-features included were: Simple, Statistical, Info-theory, Complexity,
Landmarking, Model-based and Clustering groups and the typology of minority class
instances (a description of the MFs available on pymfe library is provided in Table
C.1). Note that the Clustering group of meta-features is not depicted in Figure 2.6,
since they are placed under the “Others” group of MFs, in the work of Rivolli et
al. [82]. Afterwards, the meta-dataset is constructed from the mean meta-features
of the 10 versions and the label ranking of the ground-truth performances of each
imbalance strategy and the not-resampled version of the datasets.

4.3 First Experiment

The input of the EPM implementation of the Cortana Subgroup Discovery Tool7 is
the meta-dataset and the output are the exceptional subgroups. In this experiment,
the parametrisation of the framework considered an on-the-fly 8 bins discretisation
and a beam-search strategy [24]. The subgroups shown have a depth of 1, i.e.,
the subgroups delivered are defined by a single interpretable rule, and undergone
a Distribution of False Discoveries (DFD) validation [30], at a significance level
α = 1%. The exceptional subgroups are deemed “exceptional” based on the labelwise
LWNorm quality measure, which is defined on Section 2.6.3.

4.4 Second Experiment

Concerning the second experiment, most of the framework parameters were main-
tained, except for the subgroups depth, which was modified to 2, and the EPM
quality measures, where in this case the RWNorm, LWNorm and PWMax were
considered. However, the results selected for analysis were all provided from the
simulation with the LWNorm quality measure, since higher PSD values were ob-
servable for this quality measure. Additionally, the extracted subgroups underwent
a post-processing step, where the proposed PSD values were computed for each
subgroup and then reordered in descending order, according to this measure. The
formulation of the PSD value is provided in Section 4.4.1.

6Pymfe library repository: https://github.com/ealcobaca/pymfe
7Cortana website: http://datamining.liacs.nl/cortana.html
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Moreover, since preliminary experiments demonstrated that an elevated number of
subgroups was being delivered by the EPM framework, as the depth increased, a
heuristic method was implemented to provide the user with a limited, yet meaningful
set of subgroups, whose formulation is considered in Section 4.4.2.

4.4.1 Pairwise Scores Difference

The EPM algorithm extracts the exceptional subgroups based on changes in la-
bel ranking, as previously mentioned. These labels are often associated with user
preferences, such as the studies of [24, 26] on sushi preferences, among other pref-
erence datasets. Therefore, there is no “correct” label among the possible ones,
since the preference for a determined type of sushi is purely subjective. How-
ever, these experiments consider labels λi that represent imbalance strategies, where
λi ∈ {SMOTE,ADASYN, ...} (please refer to Section 4.2 for the preprocessing al-
gorithms employed). These algorithms are associated with performance values and
the “correct” one is intuitively the one that scored the highest performance, i.e.,
the label ranking is objectively defined. It is argued that considering label rank-
ings has the advantage of abstracting from the true values of performance, since
performance is not quantitatively evaluated, rather compared with the remaining
algorithms. Notwithstanding, it may also be important to investigate the scenarios
where steep performance variations are observable and correlate these cases with the
exceptional subgroups. This limitation can be illustrated, since the last preferred
label can have a performance that is only marginally lower than the first preference
but might be promptly considered as not suitable, since it is the last preference.

Identified this limitation, the Pairwise Scores Difference value is proposed, which
highlights the EPM subgroups that have higher inter-label performance variations,
in comparison with the population’s inter-label performance variations.

Let S(λi) be a function that provides the performance when the oversampling strat-
egy λi was employed. Motivated by Preference Matrices (Section 2.6), the PSD
matrix for a ranking π (Pπ) is defined as the difference of performance associated
with labels λi and λj, on Equation 4.1.

Pπ(i, j) = S(λi)− S(λj) (4.1)

The PSD matrices for each rank in a subgroup S are aggregated by taking the
piecewise average of the elements ofPπ (Equation 4.2). Each element ofPS holds the
average difference of performance between a pair of labels (e.g. in our application,
pairs of oversampling algorithms). Let pi,j be an element of PS . For instance, pi,j =

0.1 means that, on average, the difference of performance when the oversampling
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algorithms λi and λj were employed is 0.1. The higher values of PS elements is
indicative that a steep performance variation exists between the pair of labels.

PS =
1

N

∑
π∈S

Pπ (4.2)

The highest performance variation in a subgroup is the maximum of PS . However,
since we want to quantify the highest change in performance, in comparison with
the population PSD matrix PD, the PSD value is defined as the maximum absolute
difference between PSD matrices of the dataset and the subgroup, as defined on
Equation 4.3.

PSD = max
{
|PD −PS |

}
(4.3)

It must be noted that there is always a pair of PSD values since the PSD matrices
are antisymmetric (A = −AT ) and it considers the absolute values of the difference
between PD and PS . Thus, there are two maximum values which correspond to
indexes pi,j and pj,i.

Similarly to the visual representation proposed by Sá et al. [24], a visual repre-
sentation of PSD matrices is provided, to allow the comprehension of this concept.
Consider that each element of PD and PS is visually represented by one of two
colours: green for positive values and red for negative ones. Therefore, the pairwise
comparison between i and j is represented with green if the overall performance
of λi is greater than the performance of λj and red otherwise. Illustrating, Figure
4.2 shows the PSD matrices of an arbitrary subgroup. The image respectively de-
picts the matrices PD (base model or population), PS (subgroup) and the difference
between the two: PD −PS .
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Figure 4.2: Visual representation of PSD matrices and the highlighted PSD value.

The elements from the right-most matrix of Figure 4.2, that are highlighted in blue,
represent the computed PSD value which is the maximum of the absolute values
of the difference matrix. Note the duality of this scalar, since PSD matrices are
antisymmetric by definition, as previously referred. In this example, it is concludable
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4.4. Second Experiment

that the highest performance difference is observable when the original dataset is
considered instead of SMOTE-TL.

The PSD value is used to rearrange the order of the exceptional subgroups (initially
ordered based on EPM quality measures), in a post-processing step, yielding on top
the subgroups which have higher performance variations. Therefore, these subgroups
are the most interesting ones to be staged for descriptive analysis, where relations
between the meta-feature values and performance of oversampling algorithms can
be interpreted.

4.4.2 Heuristic-Based Subgroups Selection

Preliminary simulations of the second experiment demonstrated that a very large
number of subgroups were returned from EPM, despite the threshold selection of
EPM quality measures. In fact, a closer inspection allowed to understand that
this high amount is due to the occurrence of subgroups that were specialisations of
other subgroups, whose label ranking and rules were very similar, and in some cases
actually the same. This limitation was also reported by [26] on their experiments
with the same framework.

To minimise this, a heuristic method was implemented, that selects several sub-
groups for a descriptive analysis since a complete individual analysis of the universe
of subgroups is not a feasible task. In short, this method selects subgroups in such
way that conditions from all meta-feature groups are included, which are associated
with the highest PSD values. The heuristic employed is depicted in Algorithm 1.

Algorithm 1: Heuristic method to select subgroups for analysis.
Input: A set of all subgroups from EPM and a list of MF groups
Output: A set of subgroups where the MF families of each conditions respect the

combinations of MF groups
1 begin

/* Create combinations of MF groups taken two at a time (depth=2) */
2 combinations = createCombinations(groups, 2)
3

/* Iterate over the set of all subgroups ordered by ’PSD’ */
4 selection = []
5 foreach s in subgroups.orderBy(’PSD’) do
6 if s.getMFGroups().isIn(combinations) then

/* Save the id and remove from the ’combinations’ list */
7 id = subgroup.getId()
8 selected.add(id)
9 combinations.remove(id)

10

/* Stop if all ’combinations’ have found a matching subgroup */
11 if combinations.size() == 0 then
12 break

13 filtered subgroups = subgroups[selection]
14 return filtered subgroups
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The algorithm starts by computing combinations of families of meta-features taken
two at a time without repetition, i.e., combinations of 8 (meta-feature groups) taken
2 (subgroups depth) at a time (C8

2), which means that 28 sets of meta-feature groups
were obtained, forming a pool of combinations (Equation 4.4). Afterwards, for each
combination, the subgroup with the highest PSD whose conditions respect to the
elements of that combination, is selected for the descriptive analysis.

Cn
k =

n!

k!(n− k)!
⇒ C8

2 =
8!

2!(8− 2)!
= 28 (4.4)
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Chapter 5

Results

In this chapter, the results of the experiments performed are provided, along with a
descriptive analysis, in Sections 5.1 and 5.2, for the first and the second experiments,
respectively. At the end of this chapter, Section 5.3 provides a comparison between
both experiments, along with a global discussion of the simulations performed.

Regarding the construction of the meta-dataset, the boxplots of the classification
performance (F1-score), per imbalance strategy, are shown in Figure 5.1, in order
to provide insights concerning the ground-truth global efficiency of each algorithm
(the performance values of each imbalance strategy are shown in Table B.1).
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Figure 5.1: Boxplots of classification performance, grouped by imbalance strategy
and sorted in descending order by the median F1-score.
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Despite the use of imbalance strategies, the highest median F1-score corresponds to
the case where no preprocessing strategy was considered, in 76 datasets (46.6%),
followed by SMOTE-TL, in 57 datasets (35%). On the other hand, ADASYN was
the algorithm that obtained the lowest median F1-score, being the least preferred
alternative in 29 datasets (17.8%) (Table B.1). From Figure 5.1, one may conclude
that taking an imbalanced strategy is not always the best solution. This fact will
be further addressed by the research questions formulated.

5.1 First Experiment

In this experiment, EPM simulations with depth of 1 were performed, which means
that the exceptional subgroups delivered have a single interpretable rule associated.
The main goal of this experiment is to investigate the relation between the classifi-
cation performance of each resampling strategy and the characteristics of datasets,
identifying scenarios where some strategies are more advantageous or where dismiss-
ing any preprocessing can be beneficial. To this end, two RQ were formulated:

(1) What are the scenarios where not addressing the imbalance problem is
beneficial?

(2) Which relations exist between data meta-characteristics and the optimal
preprocessing algorithm?

To answer these questions, two simulations with EPM were performed (for the ex-
perimental setup, please refer to Section 4.3). Regarding the first RQ, the subgroups
were extracted with a ranking composed of 10 labels (including the original dataset),
whereas for the second RQ only the labels of the 9 preprocessing algorithms were
used. The reasoning is that since only a description of preprocessing algorithms is
sought for the latter, there is no need to also include the original dataset, whose
description is already covered by the former RQ. The most relevant subgroups of
the simulations performed are shown in Tables 5.1 and 5.3, respectively for each
research question. Note that the complete set of exceptional subgroups is not shown
due to its extent and only the most relevant for the descriptive analysis of the results
were included. Additionally, preprocessing algorithms were encoded with letters a-j
for representation purposes, as follows:

• a: ADASYN

• b: ADOMS

• c: AHC

• d : Borderline-SMOTE

• e: ROS

• f : SMOTE

• g : SMOTE-ENN

• h: SMOTE-TL

• i : SafeLevel-SMOTE

• j : Original
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What are the scenarios where not addressing the imbalance

problem is beneficial?

The motivation of this question is to infer, in an imbalanced context, the meta-
characteristics that indicate that it may not be necessary to preprocess such dataset.
To this end, an in-depth descriptive analysis of the subgroups delivered from this
simulation, which are indicated in Table 5.1, is provided next.

It is shown that simpler classification tasks may not require preprocessing,
which is illustrated by the solid performance of landmarkers (simple and fast learning
algorithms that characterise the dataset [82]). In these cases, it was evident that

Table 5.1: Exceptional subgroups reporting to the first research question (population
average ranking: c>j>d>f>e>b>h>a>i>g).

Coverage LWNorm Ranking Conditions

(×10−2)

No preproc.

21 3.3992 j>c>d>e>bf>i>a>h>g statistical_kurtosis >=17.9168

21 2.8934 j>b>d>e>f>c>i>a>g>h statistical_cov <= 0.0234

21 2.7911 j>b>d>c>f>e>a>i>g>h statistical_eigenvalues <= 0.2581

21 2.7911 j>b>d>c>f>e>a>i>g>h statistical_var <= 0.2581

42 2.3839 j>c>d>ef>b>i>h>a>g general_nr_inst >= 376.0

21 2.8448 j>c>e>d>f>b>h>i>g>a complexity_n1 <= 0.0675

41 2.8327 j>c>e>d>b>f>h>i>g>a complexity_l2 <= 0.0421

24 2.6046 j>c>d>e>f>b>i>h>a>g complexity_t3 <= 0.0031

41 2.2675 j>c>e>d>b>h>f>gi>a complexity_n4 <= 0.0611

21 2.4585 j>c>d>e>f>b>h>i>g>a typology_border <= 0.0858

41 2.2161 j>c>d>b>e>f>h>i>g>a typology_safe >= 0.5334

41 2.9260 j>c>e>d>b>f>h>i>g>a landmarking_linear_discr >= 0.9225

21 2.7286 j>e>c>d>b>f>h>i>g>a landmarking_nn >= 0.9750

41 2.7001 j>c>e>d>b>f>h>i>a>g landmarking_nn >= 0.9052

Do preproc.

21 3.0865 h>c>d>f>ae>i>g>b>j statistical_kurtosis <= -1.3063

21 2.2963 h>a>ci>b>d>f>j>e>g statistical_sparsity >= 0.4085

21 2.7049 h>c>bg>i>d>f>a>e>j typology_border >= 0.6555

21 2.4990 h>a>d>b>c>e>g>fi>j complexity_t3 >= 0.0668

22 2.2101 h>a>g>c>f>e>d>i>b>j complexity_t2 >= 0.1250

41 2.1513 c>h>f>b>a>d>e>i>j>g complexity_f3 >= 0.9831

41 2.1513 c>h>f>b>a>d>e>i>j>g complexity_f4 >= 0.9831

21 2.3544 h>c>b>a>f>d>ei>g>j landmarking_elite_nn <= 0.5788

21 2.9550 h>c>a>b>f>dg>i>e>j landmarking_best_node <= 0.6557
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the original imbalanced dataset scored the first rank. Furthermore, when the overall
complexity of the dataset is reduced (complexity of the decision surface or
dimensionality) using the original dataset is also the best option. The complexity
meta-features [61], scored low values for L2 (error rate of a linear classifier), N1
(fraction of borderline points), N4 (non-linearity of NN classifier) and T3 (average
number of PCA dimensions per points).

Regarding the statistical meta-features, there is evidence that not performing re-
sampling benefits classification performance, if the data distribution has low
variance. This is corroborated by the low variance, covariance and first eigenvalue
of the covariance matrix. Still concerning statistical properties, leptokurtic (posi-
tive kurtosis) and positive skewness are other distribution characteristics that favour
maintaining the dataset imbalanced.

There are also some findings worth highlighting, concerning the typology of minority
class instances. There is evidence that when a high proportion of safe instances
and a small amount of borderline instances is present, it is also favourable to
keep the original dataset.

Conversely, several situations are observable where the exceptional subgroups favoured
the cases where resampling was employed. For instance, preprocessing is beneficial
if the dataset is of high dimensionality, which is captured by the increase of T2
(average number of features per dimension) and T3 complexity measures. Also,
it is observable that when the number of borderline instances is elevated,
preprocessing needs to be performed, otherwise strong performance degradation is
observable.

The findings concerning the first RQ are summarised on Table 5.2.

Table 5.2: Guidelines indicating when the dataset should be kept imbalanced versus
employing preprocessing, concerning the first research question.

Keep Dataset Imbalanced Apply Preprocessing

• Low complexity of dataset shape • Dimensionality increases
• Easy classification tasks • Classification difficulty increases
• Significant number of instances • Platykurtic distibution
• Low variance, leptokurtic and

positively skewed distributions
• High fraction of borderline instances

• High ratio of safe instances
• Low ratio of borderline instances
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Which relations exist between data meta-characteristics and

the optimal preprocessing algorithm?

The goal of this research question is to highlight the behaviour of the meta-features
that evidence the use of a determined imbalance strategy. It is worth noting that
some algorithms do not appear in any interesting subgroups if the ranking does not
shift significantly from the average ranking or the subgroup’s coverage (the number
of patterns included on the subgroup) is reduced [26]. The subgroups delivered from
the EPM framework are shown in Table 5.3.

Table 5.3: Exceptional subgroups reporting to the second research question (popu-
lation average ranking: c>d>f>e>b>h>a>i>g).

Coverage LWNorm Ranking Conditions

(×10−2)

AHC (c)

24 2.7773 c>d>e>f>b>i>h>a>g complexity_t3 <= 0.0031

41 2.7519 c>e>d>b>f>h>i>g>a complexity_l2 <= 0.0421

41 2.6012 c>e>d>b>f>h>i>g>a complexity_n1 <= 0.1603

41 2.3660 c>e>d>b>h>f>gi>a complexity_n4 <= 0.0611

41 2.7980 c>e>d>b>f>h>i>g>a landmarking_linear_discr >= 0.9225

22 2.4826 c>d>e>b>f>h>gi>a landmarking_linear_discr >= 0.9634

21 3.0606 c>de>bf>i>a>h>g statistical_kurtosis >= 17.9168

21 2.6686 c>bf>d>e>i>a>h>g statistical_skewness >= 2.2407

21 2.4160 c>f>e>d>bh>i>g>a typology_safe >= 0.7375

21 2.5195 c>d>e>f>b>h>i>g>a typology_border <= 0.0858

SMOTE-TL (h)

21 3.2202 h>c>d>f>ae>i>g>b statistical_kurtosis <= -1.3063

21 2.5242 h>c>a>b>f>g>d>i>e landmarking_best_node <= 0.6557

22 2.3170 h>a>g>c>f>e>d>i>b complexity_t2 >= 0.1250

21 2.3748 h>a>d>b>c>e>g>fi complexity_t3 >= 0.0668

21 2.2878 h>c>g>b>i>d>f>a>e typology_border >= 0.6555

41 2.2846 h>f>c>a>d>i>e>b>g typology_rare >= 0.2062

ADOMS (b)

21 3.0807 b>d>e>f>c>i>a>g>h statistical_cov <= 0.0234

21 2.9587 b>d>c>f>e>a>i>g>h statistical_eigenvalues <= 0.2581

21 2.9587 b>d>c>f>e>a>i>g>h statistical_var <= 0.2581

21 2.6592 b>d>c>f>e>a>i>g>h statistical_sd <= 0.4629

21 2.4649 b>c>d>f>a>e>i>h>g statistical_mad <= 0.1955

ROS (e)

21 2.4550 e>c>d>b>f>i>h>g>a info-theory_attr_ent >= 2.5827

21 2.8046 e>c>d>b>f>h>i>g>a landmarking_one_nn >= 0.9000
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AHC. There is evidence that this algorithm is more suitable when presented with
less complex problems with reduced dimensionality. Since one limitation of
Hierarchical Clustering algorithms is that the performance is severely degraded in
high dimensional feature spaces, it is expected that this algorithm would only be
suitable for datasets with low dimensionality. This is corroborated by the values
inferior than 0.1 of complexity measures T3, L2, N1 and N4 (except for N1 which
indicates a value smaller than 0.1603), which depicts that both lower dimensionality
of the problem and simpler decision boundaries favour this algorithm. Moreover,
this strategy is also suitable when there is a high proportion of safe points (over
73%) but a low percentage of borderline instances (smaller than 8.5%) has to be
guaranteed otherwise, loss of performance is expectable.

SMOTE-TL. It is the most suitable algorithm for harder classification tasks
and high dimensional datasets. This is demonstrated by the fact that this
algorithm scored the highest ranks when the landmarker meta-features scored low
accuracies and higher T2. Furthermore, it is also applicable when there is a high
amount of borderline instances (over 62%). This agrees with the Tomek Links data-
cleansing procedure since it aims at removing the borderline samples which are
classified as Tomek Links, thus reducing the complexity of the decision surface at
the borderline regions [3].

ADOMS. This algorithm was preferred when the subgroup elements have low
variance and small first principal component of the covariance matrix.
It consists of generating a new SMOTE-like instance along the line between the
minority instance and the projection of the chosen neighbour, onto the first principal
component (more information on this algorithm is available in Section 2.3.1). Even
though the first principal component’s direction is chosen, which explains the highest
amount of variance of the dataset, it is observable that this algorithm seems to be
only favourable when the overall variability of the training data is reduced.

ROS. Random oversampling showed to be more suitable when the attributes
entropy is high. The entropy is a measure of randomness in a variable [13] and
can be informative of the attributes capacity for class discrimination. For instance,
if the attributes entropy is elevated, it indicates that the discriminatory power is
significant [82]. One possible explanation is that since there is higher redundancy
on the data, algorithms that lack of heuristics might be more suitable. Furthermore,
since the discriminatory power is significant, the remaining algorithms may degrade
performance since the generation of synthetic instances may diminish the discrimi-
natory power (this is known as the problem of over-generalization for SMOTE-like
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approaches [84]). On the other hand, ROS randomly replicates minority class in-
stances and no further information is added to the training data [84], therefore the
discriminatory power is maintained.

5.2 Second Experiment

From the first experiment, it was noticeable that only label rankings were considered
for the analysis and the actual performance values were not taken into considera-
tion. Notwithstanding, a second experiment was designed to tackle this issue by
considering the novel PSD value (Section 4.4.1), which takes into consideration the
subgroups where steep performance variations are visible. The EPM’s parametrisa-
tion is identical but considers a maximum depth of 2 instead, i.e., the exceptional
subgroups will be defined by at most two interpretable conditions. For more infor-
mation on the setup of this experiment, please refer to Section 4.4).

As mentioned in Section 4.4.2, a heuristic was developed to filter the subgroups
delivered by the EPM framework, since the high number of redundant subgroups
provided from preliminary experiments was not compatible with a descriptive anal-
ysis. This heuristic is able to stage a fair number of subgroups for analysis, taking
into consideration the ones where higher performance variations are noticeable, in-
cluding conditions from all meta-feature families. To this end, the following research
question was defined:

(3) What are the data meta-characteristics that define the need for prepro-
cessing versus keeping the original dataset, based on steep performance
variations among preprocessing algorithms?

This question, albeit similar to the first RQ of the first experiment, is an extension of
the former. While the first experiment identified interesting subgroups defined by a
single meta-feature, the goal of this experiment is to identify meta-feature categories
that provide insights whether a certain category is more suitable to indicate when
resampling is recommended to be employed or if no-resampling is preferable (for
more information on meta-feature categories, please refer to Section 2.4.2).

Analysing Table 5.4, the first observation is that, from the 28 subgroups selected
by the heuristic, 19 (about 68%) demonstrated that no-resampling was preferable
over preprocessing and the remaining subgroups showed that taking an imbalanced
strategy proved to be beneficial for classification performance. Additionally, it is
observable that SMOTE-TL (h) and no-resampling (j ) are often found on the edges
of the label ranking.
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Table 5.4: Exceptional subgroups selected for analysis, ordered by the proposed
PSD value, reporting to the third research question (population average ranking:
c>j>d>f>e>b>h>a>i>g).

Group Coverage LWNorm Ranking PSD Condition 1 Condition 2

(×10−2)

1-prep 11 4.1356 h>f>c>ai>d>e>g>b>j 0.6083 clustering_vdb >= 12.8504 ∧ info-theory_joint_ent <= 2.2081

1-prep 11 4.2217 h>g>a>f>cd>i>e>j>b 0.5265 clustering_vdb >= 8.4904 ∧ landmarking_elite_nn >= 0.7573

2-orig 15 4.5228 j>d>e>c>f>b>i>a>g>h 0.4864 general_nr_bin <= 0.0 ∧ typology_rare >= 0.1375

3-orig 16 5.1514 j>b>c>e>d>f>i>a>g>h 0.4202 model-based_tree_shape <= 0.0616 ∧ general_attr_to_inst >= 0.0067

3-orig 14 4.8187 j>b>c>e>d>f>i>a>g>h 0.4143 model-based_tree_shape <= 0.0616 ∧ landmarking_naive_bayes <= 0.8007

3-orig 14 4.7922 j>c>b>e>d>f>i>a>g>h 0.4017 model-based_tree_shape <= 0.0616 ∧ clustering_int >= 4.3485

3-orig 16 5.2078 j>b>c>e>d>f>i>a>g>h 0.4014 model-based_tree_shape <= 0.0616 ∧ statistical_w_lambda <= 0.9716

3-orig 14 4.7922 j>ce>b>d>f>i>a>g>h 0.3840 model-based_tree_shape <= 0.0616 ∧ complexity_f3 <= 0.9906

2-orig 16 4.3792 j>d>c>b>e>f>i>a>g>h 0.3799 general_nr_inst >= 376.0 ∧ landmarking_naive_bayes <= 0.8027

4-orig 16 3.9667 j>c>de>b>f>i>a>g>h 0.3575 statistical_kurtosis >= 17.9168 ∧ typology_outlier >= 0.0471

2-orig 21 4.4730 j>d>c>e>b>f>i>a>g>h 0.3335 general_nr_inst >= 376.0 ∧ statistical_nr_outliers >= 7.8000

3-orig 14 4.8796 j>b>c>e>d>f>i>a>g>h 0.3131 model-based_tree_shape <= 0.0616 ∧ typology_rare <= 0.2235

3-orig 14 4.9139 j>b>c>e>d>f>i>a>g>h 0.3107 model-based_tree_shape <= 0.0616 ∧ info-theory_class_conc >= 0.0068

4-orig 16 4.1777 j>c>d>e>b>f>i>g>a>h 0.3068 statistical_kurtosis >= 17.9168 ∧ landmarking_linear_discr >= 0.7705

4-prep 27 4.4002 h>a>i>f>cd>bg>e>j 0.3045 statistical_can_cor <= 0.2399 ∧ complexity_t4 >= 0.6667

5-orig 24 4.3318 j>e>c>d>b>f>i>a>h>g 0.2850 info-theory_attr_conc >= 0.0745 ∧ statistical_w_lambda >= 0.5138

2-orig 27 4.1957 j>c>b>e>d>f>i>a>h>g 0.2680 general_nr_inst >= 376.0 ∧ complexity_t2 >= 0.0067

5-orig 26 3.3261 j>c>e>d>b>f>i>a>h>g 0.2396 info-theory_attr_conc >= 0.0860 ∧ typology_rare >= 0.0229

5-prep 21 4.3150 h>c>a>b>d>f>i>g>e>j 0.2347 info-theory_attr_conc <= 0.0561 ∧ landmarking_linear_discr <= 0.7409

4-prep 39 4.4392 h>c>a>f>d>i>e>b>g>j 0.2176 statistical_kurtosis <= -0.4553 ∧ clustering_sil <= 0.0649

6-prep 26 3.8672 h>c>a>f>b>di>e>g>j 0.2068 complexity_f3 >= 0.9831 ∧ clustering_ch <= 4.0814

1-prep 38 3.9952 h>c>f>a>d>i>e>g>b>j 0.2061 clustering_pb >= -0.0524 ∧ general_nr_attr <= 6.0

7-prep 14 4.1586 h>c>a>g>bf>i>d>e>j 0.1796 landmarking_best_node <= 0.6557 ∧ typology_outlier <= 0.0778

5-orig 39 4.5822 j>c>e>d>f>b>i>h>a>g 0.1621 info-theory_attr_conc >= 0.0745 ∧ general_attr_to_inst <= 0.0833

7-prep 14 4.2431 h>c>g>a>d>bf>e>i>j 0.1425 landmarking_random_node <= 0.5978 ∧ complexity_t4 >= 0.2800

5-orig 47 3.8170 j>c>e>d>f>b>i>h>a>g 0.1150 info-theory_attr_conc >= 0.0745 ∧ complexity_t3 <= 0.0506

8-orig 24 3.9403 j>c>e>d>f>b>h>i>g>a 0.0852 typology_safe >= 0.3378 ∧ complexity_l2 <= 0.0353

1-orig 36 3.7731 j>c>e>bf>d>i>h>a>g 0.0686 clustering_ch >= 25.5793 ∧ typology_safe <= 0.9858

Notwithstanding, the results are further analysed, focusing on the relations between
meta-feature categories and the optimal preprocessing action to consider, as previ-
ously mentioned. To this end, meta-feature categories will be grouped based on the
actions they are more suitable to indicate, such as:

• Do Not Resample;

• Resample;

• Both actions.

In order to expedite the comprehension of the subgroups delivered by the imple-
mented heuristic, they were grouped based on the meta-feature category of
the first condition, that composes each subgroup (e.g. clustering, statistical,
among others). These groups of meta-features were numbered as depicted in the
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group column of Table 5.4 and are referred to as, for instance, #1-orig or #1-prep,
where #1 stands for the Clustering category of MFs and orig or prep respectively
distinguish if the original dataset was among the top preferences or if preprocessing
actually scored better results. As such, the group #1-orig holds all subgroups whose
first condition’s MF is from the Clustering category and the label ranking showed
a preference for the original algorithm. Also, the oversampling algorithms were en-
coded with letters a-j, similarly to the first experiment, whose label encoding can
be found on Section 5.1.

Do Not Resample

The meta-feature groups that encompass keeping the original dataset correspond to
Simple, Model-based and Typology meta-features (#2-orig, #3-orig and #8-orig,
respectively). In general, they show a preference for no-resampling when simple
DTs are induced from the dataset and when there is an elevated quantity of safe
minority instances.

The Simple class of meta-features (#2-orig) may not extensively inform about the
complexity of a dataset because this group aims at capturing basic information [82].
However, when analysed together with a meta-feature of another family, they can
be suitable to refine the subgroups’ conditions. For instance, it is observable that
the absence of binary attributes and a moderate quantity of rare instances shows
that no-resampling is the best strategy. Similarly, when the number of instances of
a dataset is combined with the high performance of the Naive Bayes landmarker, it
can be indicative that the same decision should be taken.

Next, theModel-based group (#3-orig) demonstrates the meta-feature values that
suggest when no oversampling algorithm should be employed, otherwise, the perfor-
mance is severely hindered, as indicated by the high value of PSD. In this group,
the low value of tree-shape represents the entropy of probabilities associated with
arriving at various leaves, provided with a random “walking-down” the tree [4].
Therefore, low entropy indicates that the overall complexity of the induced DTs
is reduced, evidencing a simpler classification task. Moreover, several other meta-
features corroborate this finding, such as the low proportion of rare instances and
high performance with the Naive Bayes landmarker.

Also, Typology meta-features, which hold the quantity of minority class instances
that are classified as safe, borderline, rare or outlier, proposed by [70], provide in-
sights about the typology of the decision surface between minority and majority
classes. In this domain, group #8-orig indicates that, as the proportion of safe in-
stances increases and the complexity L2 (error rate of a linear classifier) tends to
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decrease, a preference for the original dataset is observable. However, the dimin-
ished PSD value indicates that all imbalance strategies are equally suitable and it
is recommended to select the original dataset since it is the simplest solution.

Resample

Following, the groups that indicated that an imbalanced strategy should be taken
into consideration are composed by the Complexity and Landmarking families of
meta-features, which are respectively represented by groups #6-prep and #7-prep.

Concerning the Complexity meta-features (#6-prep), a high value of maximum
individual feature efficiency (F3 ) [61] together with low Calinsky-Harabasz index
(CH) shows a preference for the SMOTE-TL algorithm. This measure (F3 ) assesses
the overlap between examples of different classes, where higher values indicate an
increased overlapping region between classes, thus a harder classification task [61].
Hence, in these conditions, SMOTE-TL is the recommended algorithm to be used.

With respect to Landmarking, it is indicative of the presence of a learning problem
of increased difficulty (group #7-prep), noticeable from the reduced performance of
best-node and random-node landmarkers, which represent the performance of a DT
induced from, respectively, the most informative attribute and a random attribute
[82]. Furthermore, these meta-features are associated with a boost of the complexity
T4 (ratio of PCA dimensions to the original dimension), where as larger as the T4
value is, more original attributes are required to describe data variability, suggesting
a more complex relationship between the predictive attributes [61].

Both actions

Lastly, the meta-feature groups that provide information concerning both actions are
now overviewed, which indicate that either keeping the original dataset or resampling
might be recommended, depending on the meta-feature values.

TheClustering group of meta-features (#1) is composed by subgroups whose rank-
ing consistently shows a preference for the SMOTE-TL oversampling algorithm (#1-
prep), except for one condition (#1-orig), where no-resampling demonstrated to be
the best approach. It is visible that in the former group, the Davies-Bouldin in-
dex (VDB) [22] obtains high values and the Point-Biserial coefficient (PB) shows
negative values and close to zero. The former meta-feature is indicative of poor
clustering performance since VDB identifies sets of clusters that are compact and
far apart from each other [81] and a high value of this index is suggestive of reduced
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clustering performance [19]. Regarding the latter, the Point-biserial Correlation is
the Pearson’s correlation when one of the attributes is dichotomous [53]. In this
case, since we are presented with a PB value close to zero, it indicates lack of cor-
relation, suggesting degradation of clustering performance. Accompanied by these
clustering meta-features, several other MF groups corroborate the poor clustering
performance. For instance, the small value of Joint Entropy, which indicates the
relative importance of the attributes to represent the target feature [82], also ev-
idences a poor capacity for class discrimination, which may justify unsatisfactory
clustering outcome. In this scenario, SMOTE-TL is the best option, but the most
important aspect to retain is that not employing preprocessing yields high differ-
ences in classification errors, between using an oversampling strategy or considering
the original dataset, as illustrated by the high PSD value. On the contrary, the
group #1-orig shows a high value of CH and an elevated fraction of safe instances.
A high CH value is obtained when the clusters have small intra-cluster distances
and high inter-cluster distances [14], indicating a satisfactory clustering procedure.
Therefore, it demonstrates that no-resampling is the best option, even though the
PSD metric for this subgroup is small enough to consider that all strategies would be
equally suitable. In other words, since the highest performance difference is reduced
(low PSD), choosing any preprocessing algorithm may not significantly hinder the
results, thus no-resampling strategy should be employed, since it is the simplest
action to take.

The Statistical family of meta-features (#4) is known for capturing information
about the distribution of the predictive attributes or performance of statistical al-
gorithms [82]. This group is also split according to the ranking preference, #4-orig
when keeping the original dataset was preferred and #4-prep when employing an
imbalance strategy led to the highest performance, in this case when the imbalance
strategy selected was SMOTE-TL. Regarding group #4-orig, a preference for the
original dataset is observable for leptokurtic distributions (positive kurtosis) and
a small number of outlier instances. Conversely, a preference for SMOTE-TL is
noticeable on #4-prep if the distribution is platykurtic (negative kurtosis) and the
Silhouette index, which is an internal clustering validation metric, has a reduced
value, which indicates poor clustering performance.

Lastly, Information-theory meta-features (#5) are characterised by quantifying
the amount of information that is present in the data. In this domain, the attributes
Concentration Coefficient or Goodman-Kruskal’s τ (whose interpretation is similar
to the Correlation Coefficient [51]) is a measure that depicts the average association
strength between pairs of attributes [82]. Although the values of #5-orig appear
to be reduced, they are within the 3 highest bins of the discretisation, meaning
that high attributes concentration is associated with a preference for no-resampling.
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Contrasting, #5-prep demonstrates that, as the attributes concentration starts to
decrease, paired with a decrease of the Linear Discriminant landmarker, a preference
for an oversampling strategy is visible.

Summarising, Table 5.5 depicts the meta-feature categories that are suitable for
providing knowledge regarding each of the previously referred scenarios.

Table 5.5: Summary of the application of meta-feature categories on the choice of
an action to deal with imbalance, concerning the second experiment.

MF Group

Scenarios
Do Not Resample Resample Both

Simple X - -

Model-based X - -

Typology X - -

Complexity - X -

Landmarking - X -

Clustering - - X

Statistical - - X

Information-theory - - X

5.3 Discussion

The frameworks proposed for the first and second experiments proved to be suitable
to answer the formulated research questions. Note the main difference between the
two. On the first experiment, a simpler experimental setup was designed, where
the exceptional subgroups delivered were composed by a single interpretable rule.
Concerning the second experiment, an enhanced experimental setup was designed,
with the following main alterations:

• Exceptional subgroups have at most a depth of 2 (maximum number of inter-
pretable rules);

• Classification performance was also taken into consideration, using the pro-
posed Pairwise Scores Difference value;

• An heuristic was implemented to overcome a known limitation of EPM, where
redundant subgroups are outputted.
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In this domain, the results of these experiments demonstrate a convergent behaviour,
where similar findings regarding meta-feature groups are observable across both ex-
periments. This observation is expectable since the meta-dataset is maintained
between experiments, where only a more robust experimental setup was designed
for the second experiment. On the contrary, differences between the delivered sub-
groups are observable, such as the different labels that appear as the first preference.
Specifically, it is noticeable that the first experiment delivers rules that show various
algorithms as the first preference, mainly: AHC, ADOMS, SMOTE-TL and ROS,
which enabled extracting interpretable knowledge suitable to indicate when each of
these algorithms would fit optimally in a problem. On the other hand, the second
experiment only depicts preferences for the Original or SMOTE-TL. The reasoning
is that many subgroups are delivered from this experiment and it occurred that the
ones that scored the highest PSD only have these two labels as a first preference.
By no means this is indicative that the latter experiment is not able to capture
information regarding other imbalance strategies, only that the heuristic filter was
not able to stage other subgroups with different label rankings for the descriptive
analysis.

Moreover, the EPM framework could be improved in what concerns the number
of subgroups delivered (which is large and often redundant in some cases). Two
possible causes for this issue are pointed:

1. The existence of many subgroups that are specialisations of other subgroups;

2. The significantly small ratio between instances and attributes (meta-features)
of the meta-dataset, since the number of patterns is roughly twice the number
of meta-features.

Concerning the former, it is a known limitation of EPM, which has been previously
reported by Sá et al. [26]. Regarding the latter, it is a consequence of meta-learning
databases, which are generally composed by a reduced number of observations (in
this case 163 observations, each representing a dataset), especially when compared
with other preference learning datasets, such as the Sushi or Cpu-small, which are
composed of 5000 and 8192 patterns respectively [24, 26]. The heuristic-based selec-
tion of subgroups helps to surpass this issue by establishing a pool of combinations
between families of meta-features, although a pruning post-processing step for EPM
could output a smaller, yet meaningful number of subgroups delivered to the user,
which would enable an easier analysis of the results.
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Chapter 6

Conclusion and Future Work

Imbalance strategies have proven to be effective in dealing with class imbalance,
which is noticeable in problems from various domains. Although multiple algo-
rithms exist to address this problem, there is no one-fits-all solution when selecting
a preprocessing algorithm and sometimes the best action to take is to not use any. In
this domain, meta-learning can be used to understand the behaviour of algorithms
but it is mostly used for recommendation. Instead, it is proposed the use of EPM
as an approach for meta-learning that enables the extraction of meta-knowledge,
which has proved to be an up to the mark tool to meet the established objectives.

Additionally, two contributions have been proposed to be used with EPM: a metric
that selects subgroups based on steep performance variations (PSD value) and an
adaptation that addresses some limitations of EPM and an heuristic to address a
known limitation of EPM. However, even though not empirically validated, these
contributions may be generalisable to other applications.

The experiments conducted have successfully answered the formulated research ques-
tions. For each RQ the following general conclusions are highlighted:

(1) What are the scenarios where not addressing the imbalance problem is benefi-
cial?

• Preprocessing may be dismissed when the complexity of the dataset is reduced (com-
plexity meta-features smaller than 0.1) and it is a simple classification task, evidenced
by high performance of landmarking meta-features;

• Preprocessing might be required when there is a high amount of safe instances and
low amount of borderline instances.
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(2) Which relations exist between data meta-characteristics and the optimal pre-
processing algorithm?

• AHC: Should be employed in problems of low complexity and low dimensionality;

• SMOTE-TL: Suitable for harder classification tasks and high dimensional datasets;

• ADOMS: Preferred when the dataset has low variance;

• ROS: Suitable when the attributes entropy is increased (it is indicative of high dis-
criminatory power).

(no significant rules were delivered for the remaining imbalance strategies.)

(3) What are the data meta-characteristics that define the need for preprocess-
ing versus keeping the original dataset, based on steep performance variations
among preprocessing algorithms?

• Keeping the original dataset was more often indicated by Simple, Model-Based and
Typology families of meta-features;

• Using an imbalance strategy can be suggested by Complexity and Landmarking meta-
features;

• Both actions may be indicated using Clustering, Statistical or Information-Theory
meta-features.

The scientific contributions provided by this dissertation will most certainly be useful
for future research on the topics of class imbalance and recommendation of imbalance
strategies. The proposed framework was empirically demonstrated that is suitable
to provide meaningful conditions concerning relations between meta-features and
imbalance strategies. The insights derived from this work have the potential to be
an asset for the future development of recommendation systems or adaptations to
existing methods, that address the shortcomings identified by this study. Effectively
handling data difficulty factors is of the utmost importance within the biomedical
field, where the increasing amount of data with disproportional class distributions
associated with difficulty factors has been a challenge for the related machine learn-
ing applications.

Future work may consider new experiments with a higher number of datasets in
order to increase the instances to attributes ratio, which is significantly smaller when
compared with other preference learning experiments [24, 26]. Despite considering
a more complete set of real-world databases than the related works on the topic of
recommendation of imbalanced strategies, several limitations of the EPM framework
are attributed to this issue.

Also, only data-level imbalance strategies were considered for the experiments per-
formed, mainly oversampling and hybrid algorithms. Therefore, future simulations
should include a broader number of algorithms, such as the algorithmic-level ones,
in order to capture relations concerning a broader set of imbalance strategies.
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Concerning the extraction of data meta-characteristics, only meta-features from the
original datasets were extracted in this study. However, the rate of change in meta-
features, before and after employing imbalance strategies, may bring new insights
to characterise scenarios of the applicability of algorithms.

Furthermore, EPM may benefit from a post-processing pruning routine, such as
adapting the association-rules minimum improvement threshold [78, 25] to label
ranking, achieving a reduced number of subgroups presented to the user. Concern-
ing the proposed PSD value, even though this metric was only empirically tested
with F1-score performance differences, it might be generalisable to be used with
other classifier evaluation metrics, although further research must be conducted to
corroborate this affirmation.
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Table A.1: Properties of the datasets considered for the experiments.

Datasets Type1 N D IR Datasets Type1 N D IR

alzheimer-v1 MIX 317 9 1.4961 dmft-all MIX 797 4 5.2756

alzheimer-v1-cat CAT 317 2 1.4961 dmft-all-cat CAT 797 2 5.2756

analcat-bank NUM 50 5 1.0000 dmft-diet MIX 797 4 5.0379

appendicitis NUM 105 7 4.2500 dmft-diet-cat CAT 797 2 5.0379

audit NUM 775 8 1.6817 dmft-health MIX 797 4 5.4274

balance_scaleBvsL NUM 337 4 5.8776 dmft-health-cat CAT 797 2 5.4274

bands NUM 365 19 1.7037 dmft-mouth MIX 797 4 4.1419

banknote NUM 1372 4 1.2492 dmft-mouth-cat CAT 797 2 4.1419

banknote-
authentication

NUM 1372 4 1.2492 ecoli-0-1-3-7_vs_2-6 NUM 281 7 39.1429

bc-coimbra NUM 116 9 1.2308 ecoli_0_vs_1 NUM 220 7 1.8571

biomed NUM 194 5 1.8955 Edu-Data-HvsL MIX 269 16 1.1181

breast-car NUM 106 9 4.0476 Edu-Data-HvsL-cat CAT 269 12 1.1181

broadway2 MIX 89 8 7.0909 Edu-Data-HvsM MIX 353 16 1.4859

broadway2-cat CAT 89 3 7.0909 Edu-Data-HvsM-cat CAT 353 12 1.4859

broadway3 MIX 89 8 7.0909 Edu-Data-MvsL MIX 338 16 1.6614

broadwaymult0 MIX 267 6 1.5189 Edu-Data-MvsL-cat CAT 338 12 1.6614

broadwaymult0-cat CAT 267 3 1.5189 esr NUM 32 2 4.3333

broadwaymult3 MIX 267 6 11.7143 fertility-diagnosis MIX 100 9 7.3333

broadwaymult3-cat CAT 267 3 11.7143 fertility-diagnosis-cat CAT 100 7 7.3333

broadwaymult4 MIX 267 6 9.6800 forest-d NUM 523 27 2.2893

broadwaymult5 MIX 267 6 11.7143 forest-fires MIX 517 12 5.8026

broadwaymult6 MIX 267 6 8.5357 forest-fires-cat CAT 517 2 5.8026

caesarian MIX 80 5 1.3529 glass1 NUM 214 9 1.8158

caesarian-cat CAT 80 3 1.3529 glioma16 NUM 50 16 1.2727

chall101 NUM 138 2 14.3333 gss-vw MIX 400 5 3.0000

cleveland MIX 297 13 1.1679 gss-vw-cat CAT 400 3 3.0000

cleveland-cat CAT 297 7 1.1679 haberman NUM 306 3 2.7778

cleveland_0_vs_4 NUM 173 13 12.3077 happy NUM 60 3 2.0000

climate NUM 540 18 10.7391 heart-statlog MIX 270 13 1.2500

colon32 NUM 62 32 1.8182 heart-statlog-cat CAT 270 6 1.2500

creditscore MIX 100 6 2.7037 hepatitis MIX 80 19 5.1538

creditscore-cat CAT 100 2 2.7037 hepatitis-cat CAT 80 13 5.1538

cryotherapy MIX 90 6 1.1429 hepato-PHvsALD NUM 294 9 1.5345

cryotherapy-cat CAT 90 2 1.1429 icu MIX 200 19 4.0000

ctg-pathologic NUM 2126 21 11.0795 icu-cat CAT 200 16 4.0000

cyyoung MIX 189 8 3.3953 immunotherapy MIX 90 7 3.7368

cyyoung-cat CAT 189 2 3.3953 immunotherapy-cat CAT 90 2 3.7368

dermatology6 NUM 358 34 16.9000 ionosphere NUM 351 33 1.7857

diu-bs10-cat CAT 322 5 31.2000 iris0 NUM 150 4 2.0000

diu-cat CAT 322 4 2.3196 irish MIX 468 5 1.2180

diu-ro10-cat CAT 322 5 9.0625 irish-cat CAT 468 3 1.2180

1Attribute types: numerical (NUM), categorical (CAT) or both numerical and categorical
(MIX).
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Datasets Type1 N D IR Datasets Type1 N D IR

kidney MIX 158 24 2.6744 sports NUM 1000 59 1.7397

kidney-cat CAT 158 13 2.6744 steel-plates-faults NUM 1941 33 1.8841

led7digit_0_2_4_5_6_7_8_9_vs_1NUM 443 7 10.9730 student-cg-cat CAT 131 21 1.3393

leukemia NUM 100 50 1.0408 student-g MIX 131 21 1.3393

liver-disorders NUM 345 6 1.3793 student-g-cat CAT 131 10 1.3393

lupus NUM 87 3 1.4857 student-mat MIX 395 30 1.5817

lymphography-normal-
fibrosis

MIX 148 18 23.6667 student-mat-cat CAT 395 21 1.5817

lymphography-normal-
fibrosis-cat

CAT 148 15 23.6667 student-p MIX 131 21 3.6786

lymphography-v1 MIX 142 18 1.3279 student-p-cat CAT 131 10 3.6786

lymphography-v1-cat CAT 142 15 1.3279 student-por MIX 649 30 3.9542

mammographic MIX 830 5 1.0596 student-por-cat CAT 649 21 3.9542

mammographic-cat CAT 830 2 1.0596 thoracic MIX 470 16 5.7143

newthyroid1 NUM 215 5 5.1429 thoracic-cat CAT 470 13 5.7143

page_blocks_1_3_vs_4 NUM 472 10 15.8571 thyroid-v1 MIX 534 21 2.2169

parkinson NUM 195 22 3.0625 thyroid-v1-cat CAT 534 15 2.2169

pbc MIX 276 17 1.4865 thyroid_3_vs_2 NUM 703 21 18.0000

pbc-cat CAT 276 6 1.4865 tourism-23457vs01 MIX 362 8 12.4074

pharynx-1year MIX 193 9 1.3537 tourism-23457vs01-cat CAT 362 4 12.4074

pharynx-1year-cat CAT 193 6 1.3537 tourism0 MIX 362 8 3.2588

pharynx-3year MIX 193 9 7.7727 tourism0-cat CAT 362 4 3.2588

pharynx-3year-cat CAT 193 6 7.7727 tourism2 MIX 362 8 26.8462

pharynx-status MIX 193 9 2.6415 tourism2-cat CAT 362 4 26.8462

pharynx-status-cat CAT 193 6 2.6415 toy NUM 1250 2 1.0000

pima NUM 768 8 1.8657 traffic MIX 135 17 1.4107

plasma-retinol MIX 315 13 1.3684 traffic-cat CAT 135 9 1.4107

plasma-retinol-cat CAT 315 3 1.3684 transfusion NUM 748 4 3.2022

poker_9_vs_7 NUM 244 10 29.5000 user-know-H NUM 403 5 2.9510

prnn_synth NUM 250 2 1.0000 vehicle0 NUM 846 18 3.2513

real-estate NUM 414 5 1.0700 vertebral-N NUM 310 6 2.1000

redwine-2c NUM 1599 11 1.1492 veteran MIX 137 6 2.1860

relax NUM 182 12 2.5000 veteran-cat CAT 137 3 2.1860

schizo MIX 112 13 1.1538 vowel0 NUM 988 13 9.9778

schizo-cat CAT 112 2 1.1538 wdbc NUM 569 30 1.6840

segment0 NUM 2308 19 6.0152 wifi1 NUM 2000 7 3.0000

servo MIX 167 4 3.3947 wine-1vs2 NUM 130 13 1.2034

servo-cat CAT 167 2 3.3947 winequality-white-
3_vs_7

NUM 900 11 44.0000

shuttle_c0_vs_c4 NUM 1829 9 13.8699 winequality_red_4 NUM 1599 11 29.1698

solvent NUM 52 8 1.0800 wisconsin NUM 683 9 1.8577

somerville NUM 143 6 1.1667 wpbc NUM 198 32 3.2128

sonar NUM 208 60 1.1443 yeast1 NUM 1484 8 2.4592

spectf NUM 267 44 3.8545
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Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

alzheimer-v1 0.5583 (0.0) 0.6103 (0.0120) 0.5861 (0.0183) 0.6163 (0.0000) 0.5799 (0.0119) 0.5705 (0.0096) 0.5920 (0.0202) 0.5635 (0.0267) 0.6316 (0.0259) 0.5901 (0.0205)

alzheimer-v1-
cat

0.6175 (0.0) 0.5686 (0.0267) 0.6175 (0.0000) 0.6239 (0.0000) 0.6303 (0.0000) 0.6249 (0.0181) 0.6207 (0.0084) 0.5080 (0.0048) 0.6623 (0.0331) 0.6175 (0.0079)

analcat-bank 0.8879 (0.0) 0.8879 (0.0000) 0.8879 (0.0000) 0.8879 (0.0000) 0.8879 (0.0000) 0.8879 (0.0000) 0.8879 (0.0000) 0.2778 (0.0000) 0.1111 (0.0000) 0.8879 (0.0000)

appendicitis 0.8894 (0.0) 0.7781 (0.0079) 0.8500 (0.0189) 0.8353 (0.0000) 0.8464 (0.0074) 0.8455 (0.0217) 0.8500 (0.0264) 0.7768 (0.0149) 0.7919 (0.0196) 0.8307 (0.0240)

audit 0.9676 (0.0) 0.9755 (0.0020) 0.9744 (0.0055) 0.9735 (0.0000) 0.9735 (0.0007) 0.9735 (0.0050) 0.9730 (0.0038) 0.9718 (0.0066) 0.9804 (0.0043) 0.9763 (0.0052)

balance_scaleBvsL 0.9404 (0.0) 0.6995 (0.0187) 0.7751 (0.0125) 0.9375 (0.0000) 0.9404 (0.0000) 0.9318 (0.0071) 0.7024 (0.0099) 0.6563 (0.0099) 0.6432 (0.0080) 0.5970 (0.0137)

bands 0.5502 (0.0) 0.5959 (0.0236) 0.5925 (0.0096) 0.6409 (0.0000) 0.5517 (0.0096) 0.5523 (0.0077) 0.5864 (0.0157) 0.6166 (0.0339) 0.6713 (0.0188) 0.6054 (0.0271)

banknote 0.9986 (0.0) 0.9964 (0.0008) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000) 0.9986 (0.0000)

banknote-
authentication

1.0000 (0.0) 0.9960 (0.0011) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

bc-coimbra 0.5964 (0.0) 0.6191 (0.0346) 0.6282 (0.0125) 0.6600 (0.0000) 0.6131 (0.0153) 0.6123 (0.0318) 0.6274 (0.0217) 0.4776 (0.0403) 0.6734 (0.0264) 0.6522 (0.0570)

biomed 0.7390 (0.0) 0.8447 (0.0239) 0.8004 (0.0245) 0.8251 (0.0000) 0.8105 (0.0147) 0.7999 (0.0168) 0.7963 (0.0117) 0.7786 (0.0245) 0.8631 (0.0112) 0.7688 (0.0119)

breast-car 0.1491 (0.0) 0.5286 (0.0385) 0.8654 (0.0459) 0.5574 (0.0000) 0.4323 (0.0271) 0.1491 (0.0000) 0.5237 (0.0465) 0.8889 (0.0000) 0.8936 (0.0094) 0.2907 (0.0417)

broadway2 0.1569 (0.0) 0.3507 (0.0165) 0.2951 (0.0000) 0.2894 (0.0000) 0.3450 (0.0677) 0.2951 (0.0000) 0.3507 (0.0057) 0.3389 (0.0865) 0.3450 (0.0625) 0.3667 (0.0764)

broadway2-cat 0.9167 (0.0) 0.9167 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.9167 (0.0000) 0.9167 (0.0000) 0.9167 (0.0000) 0.9167 (0.0000) 0.9167 (0.0000) 0.9167 (0.0000)

broadway3 0.9444 (0.0) 0.9391 (0.0057) 0.9391 (0.0000) 0.9444 (0.0000) 0.9391 (0.0054) 0.9391 (0.0000) 0.9362 (0.0057) 0.9333 (0.0043) 0.9333 (0.0046) 0.9303 (0.0061)

broadwaymult0 0.5540 (0.0) 0.6187 (0.0208) 0.6142 (0.0198) 0.6194 (0.0000) 0.6176 (0.0172) 0.6225 (0.0180) 0.6162 (0.0352) 0.5945 (0.0241) 0.6833 (0.0118) 0.6138 (0.0125)

broadwaymult0-
cat

0.6846 (0.0) 0.6846 (0.0000) 0.6846 (0.0000) 0.6846 (0.0000) 0.6846 (0.0000) 0.6846 (0.0000) 0.6846 (0.0000) 0.5023 (0.0238) 0.8036 (0.0262) 0.6846 (0.0000)

broadwaymult3 0.6812 (0.0) 0.7046 (0.0311) 0.7090 (0.0053) 0.7799 (0.0000) 0.7100 (0.0058) 0.7191 (0.0000) 0.7356 (0.0301) 0.7247 (0.0309) 0.7401 (0.0522) 0.7285 (0.0018)

broadwaymult3-
cat

0.1601 (0.0) 0.8093 (0.0791) 0.4594 (0.0084) 0.6231 (0.0000) 0.4967 (0.0110) 0.6335 (0.0124) 0.8068 (0.0636) 0.1601 (0.0000) 0.8333 (0.0000) 0.8093 (0.0026)

broadwaymult4 0.1584 (0.0) 0.1900 (0.0359) 0.1584 (0.0017) 0.1584 (0.0000) 0.1741 (0.0349) 0.1584 (0.0000) 0.2056 (0.0360) 0.5833 (0.4666) 0.8333 (0.0000) 0.1584 (0.0013)

broadwaymult5 0.1601 (0.0) 0.1601 (0.0017) 0.1584 (0.0017) 0.1935 (0.0000) 0.1601 (0.0000) 0.1601 (0.0013) 0.1593 (0.0017) 0.8301 (0.1716) 0.8333 (0.0000) 0.1567 (0.0000)

broadwaymult6 0.1584 (0.0) 0.1909 (0.0254) 0.1567 (0.0000) 0.1584 (0.0000) 0.1584 (0.0000) 0.1584 (0.0000) 0.1584 (0.0000) 0.8333 (0.1271) 0.8333 (0.0000) 0.1862 (0.0213)

caesarian 0.5214 (0.0) 0.5575 (0.0325) 0.5821 (0.0574) 0.6048 (0.0000) 0.5317 (0.0252) 0.5266 (0.0371) 0.5611 (0.0781) 0.6149 (0.0716) 0.6706 (0.0515) 0.5472 (0.0587)

caesarian-cat 0.5147 (0.0) 0.7088 (0.0928) 0.7020 (0.0282) 0.7431 (0.0000) 0.7235 (0.0347) 0.7292 (0.0473) 0.7085 (0.0246) 0.6905 (0.0098) 0.7818 (0.0268) 0.6884 (0.0492)

chall101 0.8333 (0.0) 0.6096 (0.0164) 0.6571 (0.0143) 0.7727 (0.0000) 0.7503 (0.0403) 0.6560 (0.0368) 0.6597 (0.0402) 0.0230 (0.0000) 0.0230 (0.0000) 0.6942 (0.0400)

cleveland 0.7963 (0.0) 0.7920 (0.0100) 0.7865 (0.0049) 0.7865 (0.0000) 0.7966 (0.0055) 0.7883 (0.0108) 0.7850 (0.0109) 0.7043 (0.0300) 0.7471 (0.0097) 0.7831 (0.0190)

cleveland-cat 0.8231 (0.0) 0.8035 (0.0157) 0.7864 (0.0168) 0.8029 (0.0052) 0.7891 (0.0148) 0.7990 (0.0171) 0.8096 (0.0120) 0.8160 (0.0203) 0.6738 (0.0120) 0.8018 (0.0192)

cleveland_0_vs_4 0.8333 (0.0) 0.8333 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.0185 (0.0000) 0.0185 (0.0000) 0.8333 (0.0000)

climate 0.6718 (0.0) 0.7553 (0.0215) 0.7800 (0.0323) 0.7237 (0.0000) 0.7105 (0.0145) 0.7281 (0.0000) 0.7437 (0.0205) 0.8843 (0.0382) 0.8829 (0.0307) 0.8337 (0.0173)

colon32 0.8333 (0.0) 0.0833 (0.0000) 0.0833 (0.0000) 0.8333 (0.0000) 0.0833 (0.1458) 0.8333 (0.0000) 0.0833 (0.0000) 0.5833 (0.1458) 0.0833 (0.0000) 0.8333 (0.0000)

creditscore 1.0000 (0.0) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

creditscore-cat 0.1429 (0.0) 0.3231 (0.0250) 0.6611 (0.0000) 0.3009 (0.0000) 0.3092 (0.0742) 0.2675 (0.0458) 0.3052 (0.0764) 0.1429 (0.0000) 0.8333 (0.0000) 0.3731 (0.0319)

cryotherapy 0.8394 (0.0) 0.8394 (0.0163) 0.8579 (0.0163) 0.8394 (0.0000) 0.8394 (0.0139) 0.8394 (0.0139) 0.8491 (0.0185) 0.7311 (0.0644) 0.8676 (0.0096) 0.8394 (0.0072)
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Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

cryotherapy-cat 0.6004 (0.0) 0.6212 (0.0000) 0.6125 (0.0121) 0.6125 (0.0000) 0.6212 (0.0065) 0.6125 (0.0000) 0.6169 (0.0087) 0.6004 (0.0000) 0.8148 (0.0000) 0.6212 (0.0000)

ctg-pathologic 0.9716 (0.0) 0.8943 (0.0023) 0.9614 (0.0042) 0.9642 (0.0000) 0.9648 (0.0000) 0.9680 (0.0000) 0.9211 (0.0050) 0.9031 (0.0045) 0.9232 (0.0033) 0.8768 (0.0051)

cyyoung 0.8324 (0.0) 0.5659 (0.0000) 0.6059 (0.0250) 0.6232 (0.0000) 0.6677 (0.0252) 0.6046 (0.0221) 0.6088 (0.0201) 0.5602 (0.0000) 0.5602 (0.0057) 0.6096 (0.0190)

cyyoung-cat 0.8333 (0.0) 0.5715 (0.0000) 0.7234 (0.0000) 0.5715 (0.0000) 0.5715 (0.0000) 0.5715 (0.0000) 0.5715 (0.0000) 0.8333 (0.0000) 0.0580 (0.0000) 0.5715 (0.0000)

dermatology6 1.0000 (0.0) 0.9407 (0.0130) 0.9741 (0.0185) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.9643 (0.0025) 0.9618 (0.0025) 0.9692 (0.0204) 0.9150 (0.0093)

diu-bs10-cat 1.0000 (0.0) 0.7393 (0.0120) 0.7742 (0.0074) 1.0000 (0.0000) 0.9788 (0.0609) 1.0000 (0.0000) 0.7433 (0.0108) 0.6464 (0.0000) 0.7365 (0.0107) 0.7713 (0.0000)

diu-cat 1.0000 (0.0) 0.8618 (0.0652) 1.0000 (0.0000) 1.0000 (0.0000) 0.9981 (0.0037) 1.0000 (0.0000) 0.9883 (0.0202) 0.6633 (0.0000) 0.9942 (0.0348) 0.7949 (0.0028)

diu-ro10-cat 1.0000 (0.0) 0.8865 (0.0086) 0.9799 (0.0108) 1.0000 (0.0000) 0.9971 (0.0000) 1.0000 (0.0000) 0.9383 (0.0086) 0.3999 (0.0459) 0.9383 (0.0122) 0.8578 (0.0086)

dmft-all 0.1524 (0.0) 0.5002 (0.0201) 0.2107 (0.0117) 0.3235 (0.0000) 0.3683 (0.0126) 0.3473 (0.0227) 0.3725 (0.0155) 0.1524 (0.0000) 0.8333 (0.0000) 0.3470 (0.0138)

dmft-all-cat 0.1524 (0.0) 0.5506 (0.0000) 0.4001 (0.0000) 0.5638 (0.0000) 0.5634 (0.0314) 0.4483 (0.0874) 0.5634 (0.0314) 0.1524 (0.0000) 0.6840 (0.0321) 0.4608 (0.0240)

dmft-diet 0.1512 (0.0) 0.5332 (0.0273) 0.4615 (0.0201) 0.5516 (0.0000) 0.4241 (0.0344) 0.5268 (0.0285) 0.5336 (0.0307) 0.2716 (0.0236) 0.6351 (0.0229) 0.4895 (0.0138)

dmft-diet-cat 0.1518 (0.0) 0.5285 (0.0024) 0.4684 (0.0000) 0.5413 (0.0000) 0.5285 (0.0032) 0.5046 (0.0532) 0.5285 (0.0032) 0.1518 (0.0000) 0.7593 (0.0000) 0.5574 (0.0000)

dmft-health 0.1524 (0.0) 0.8127 (0.0127) 0.7982 (0.0162) 0.7995 (0.0000) 0.6080 (0.0328) 0.7946 (0.0253) 0.8161 (0.0023) 0.1524 (0.0000) 0.8333 (0.0000) 0.8092 (0.0037)

dmft-health-cat 0.1524 (0.0) 0.7362 (0.0000) 0.5166 (0.0000) 0.6292 (0.0000) 0.7362 (0.0000) 0.6292 (0.0173) 0.7362 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.6292 (0.0350)

dmft-mouth 0.1487 (0.0) 0.3172 (0.0251) 0.2718 (0.0134) 0.3476 (0.0000) 0.2577 (0.0250) 0.3619 (0.0424) 0.3393 (0.0210) 0.1487 (0.0000) 0.8333 (0.0000) 0.2862 (0.0001)

dmft-mouth-cat 0.1487 (0.0) 0.4235 (0.0309) 0.4343 (0.0000) 0.4739 (0.0000) 0.4397 (0.0363) 0.4285 (0.1199) 0.4397 (0.0363) 0.1487 (0.0000) 0.6708 (0.0161) 0.4880 (0.0000)

ecoli-0-1-3-
7_vs_2-6

1.0000 (0.0) 0.8348 (0.0102) 0.8403 (0.0095) 0.8818 (0.0000) 1.0000 (0.0023) 0.8567 (0.0000) 0.8333 (0.0064) 0.8111 (0.0061) 0.8202 (0.0030) 0.8423 (0.0023)

ecoli_0_vs_1 0.9883 (0.0) 0.9050 (0.0131) 0.9826 (0.0003) 0.9883 (0.0000) 0.9821 (0.0000) 0.9821 (0.0047) 0.9854 (0.0061) 0.9883 (0.0045) 0.9823 (0.0062) 0.9821 (0.0062)

Edu-Data-HvsL 0.9434 (0.0) 0.9255 (0.0060) 0.9374 (0.0060) 0.9434 (0.0000) 0.9373 (0.0059) 0.9404 (0.0060) 0.9403 (0.0060) 0.9374 (0.0002) 0.9432 (0.0057) 0.9374 (0.0043)

Edu-Data-
HvsL-cat

0.9627 (0.0) 0.9568 (0.0000) 0.9627 (0.0000) 0.9627 (0.0000) 0.9604 (0.0000) 0.9627 (0.0000) 0.9627 (0.0000) 0.9627 (0.0000) 0.9575 (0.0060) 0.9627 (0.0000)

Edu-Data-
HvsM

0.6642 (0.0) 0.7314 (0.0124) 0.7145 (0.0235) 0.7209 (0.0000) 0.7134 (0.0089) 0.7108 (0.0134) 0.7174 (0.0166) 0.6971 (0.0104) 0.8179 (0.0306) 0.7175 (0.0205)

Edu-Data-
HvsM-cat

0.7014 (0.0) 0.7508 (0.0245) 0.7529 (0.0144) 0.7701 (0.0000) 0.7418 (0.0131) 0.7274 (0.0050) 0.7496 (0.0174) 0.7068 (0.0158) 0.8271 (0.0180) 0.7240 (0.0199)

Edu-Data-
MvsL

0.8205 (0.0) 0.8806 (0.0115) 0.8667 (0.0198) 0.8530 (0.0000) 0.8594 (0.0121) 0.8433 (0.0208) 0.8595 (0.0295) 0.8495 (0.0104) 0.8921 (0.0225) 0.8622 (0.0088)

Edu-Data-
MvsL-cat

0.7591 (0.0) 0.8345 (0.0109) 0.8543 (0.0102) 0.8622 (0.0000) 0.8330 (0.0182) 0.8341 (0.0128) 0.8399 (0.0172) 0.8491 (0.0166) 0.8610 (0.0132) 0.8333 (0.0143)

esr 0.8333 (0.0) 0.7056 (0.0389) 0.7444 (0.0278) 0.8056 (0.0000) 0.7250 (0.0764) 0.7722 (0.0264) 0.7111 (0.0653) 0.2143 (0.2292) 0.0476 (0.0000) 0.6222 (0.0583)

fertility-
diagnosis

0.8333 (0.0) 0.6747 (0.0595) 0.7375 (0.0185) 0.7464 (0.0000) 0.7721 (0.0335) 0.7797 (0.0489) 0.6608 (0.0505) 0.0303 (0.0000) 0.0303 (0.0000) 0.7248 (0.0252)

fertility-
diagnosis-cat

0.8333 (0.0) 0.7193 (0.0453) 0.7401 (0.0207) 0.7925 (0.0000) 0.7936 (0.0225) 0.7563 (0.0455) 0.7290 (0.0257) 0.4676 (0.1364) 0.0303 (0.0000) 0.6972 (0.0430)

forest-d 0.9279 (0.0) 0.9532 (0.0059) 0.9486 (0.0009) 0.9436 (0.0000) 0.9553 (0.0000) 0.9436 (0.0053) 0.9493 (0.0012) 0.9480 (0.0047) 0.9528 (0.0013) 0.9499 (0.0051)

forest-fires 0.8504 (0.0) 0.8367 (0.0068) 0.8424 (0.0000) 0.8424 (0.0000) 0.8424 (0.0000) 0.8504 (0.0000) 0.8395 (0.0038) 0.0578 (0.0000) 0.0629 (0.0019) 0.8377 (0.0047)

forest-fires-cat 0.8333 (0.0) 0.6213 (0.0222) 0.5443 (0.0199) 0.6112 (0.0000) 0.6779 (0.0113) 0.5809 (0.0530) 0.6004 (0.0631) 0.8333 (0.0000) 0.0424 (0.0000) 0.5855 (0.0105)
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Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

glass1 0.8249 (0.0) 0.7541 (0.0121) 0.7966 (0.0123) 0.7980 (0.0000) 0.8016 (0.0138) 0.8062 (0.0147) 0.8012 (0.0082) 0.7473 (0.0253) 0.7086 (0.0178) 0.7963 (0.0224)

glioma16 0.7788 (0.0) 0.7788 (0.0000) 0.7788 (0.0000) 0.7788 (0.0000) 0.7788 (0.0000) 0.7788 (0.0000) 0.7788 (0.0000) 0.7639 (0.0112) 0.7788 (0.0000) 0.7788 (0.0000)

gss-vw 0.8278 (0.0) 0.5335 (0.0087) 0.5630 (0.0128) 0.5802 (0.0000) 0.5824 (0.0075) 0.5528 (0.0109) 0.5527 (0.0090) 0.5582 (0.0142) 0.4299 (0.0071) 0.5609 (0.0076)

gss-vw-cat 0.8333 (0.0) 0.4034 (0.0550) 0.4829 (0.0254) 0.4991 (0.0000) 0.5313 (0.0335) 0.4445 (0.0520) 0.4405 (0.0611) 0.8333 (0.0000) 0.0667 (0.0000) 0.4342 (0.0493)

haberman 0.8333 (0.0) 0.6942 (0.0216) 0.7241 (0.0047) 0.7076 (0.0000) 0.7008 (0.0113) 0.7223 (0.0072) 0.7299 (0.0073) 0.6707 (0.0165) 0.5611 (0.0258) 0.7425 (0.0125)

happy 0.8333 (0.0) 0.6979 (0.0878) 0.5699 (0.0662) 0.7083 (0.0000) 0.7292 (0.0312) 0.7812 (0.0417) 0.6979 (0.0781) 0.0833 (0.0000) 0.0833 (0.0000) 0.5958 (0.0285)

heart-statlog 0.8044 (0.0) 0.7851 (0.0145) 0.7801 (0.0166) 0.7797 (0.0000) 0.7761 (0.0128) 0.7810 (0.0086) 0.7782 (0.0094) 0.6996 (0.0116) 0.7230 (0.0157) 0.7699 (0.0131)

heart-statlog-
cat

0.8282 (0.0) 0.7861 (0.0208) 0.8004 (0.0125) 0.8060 (0.0000) 0.7871 (0.0153) 0.8060 (0.0042) 0.8004 (0.0091) 0.7985 (0.0273) 0.7171 (0.0097) 0.8004 (0.0140)

hepatitis 0.5167 (0.0) 0.6552 (0.1036) 0.5167 (0.0417) 0.6278 (0.0000) 0.5722 (0.0463) 0.5167 (0.0000) 0.6318 (0.1383) 0.7241 (0.0694) 0.6461 (0.0471) 0.6627 (0.0675)

hepatitis-cat 0.1556 (0.0) 0.7927 (0.0054) 0.7927 (0.0000) 0.7994 (0.0000) 0.6278 (0.0000) 0.7927 (0.0066) 0.7927 (0.0066) 0.8725 (0.0072) 0.8447 (0.0591) 0.8377 (0.0767)

hepato-
PHvsALD

0.7887 (0.0) 0.8017 (0.0199) 0.7987 (0.0133) 0.8043 (0.0000) 0.7814 (0.0108) 0.7887 (0.0019) 0.8048 (0.0089) 0.7777 (0.0176) 0.8108 (0.0223) 0.8093 (0.0109)

icu 0.2539 (0.0) 0.6268 (0.0335) 0.5431 (0.0027) 0.5697 (0.0000) 0.4830 (0.0417) 0.5962 (0.0389) 0.6189 (0.0231) 0.6912 (0.0224) 0.6877 (0.0240) 0.5962 (0.0216)

icu-cat 0.3607 (0.0) 0.6405 (0.0646) 0.5606 (0.0199) 0.5486 (0.0000) 0.5092 (0.0458) 0.5072 (0.0161) 0.5167 (0.0150) 0.4551 (0.0410) 0.5608 (0.0357) 0.4907 (0.0370)

immunotherapy 0.1458 (0.0) 0.1458 (0.0000) 0.1458 (0.0000) 0.1458 (0.0000) 0.1458 (0.0000) 0.1458 (0.0000) 0.1458 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1458 (0.0000)

immunotherapy-
cat

0.1458 (0.0) 0.5722 (0.1250) 0.4493 (0.0000) 0.5865 (0.0000) 0.4381 (0.0000) 0.5076 (0.0440) 0.5332 (0.0532) 0.1458 (0.0000) 0.8333 (0.0000) 0.5743 (0.1226)

ionosphere 0.8907 (0.0) 0.9079 (0.0093) 0.9058 (0.0078) 0.9061 (0.0000) 0.8994 (0.0064) 0.8909 (0.0000) 0.9031 (0.0102) 0.8844 (0.0079) 0.9381 (0.0102) 0.8955 (0.0105)

iris0 1.0000 (0.0) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

irish 0.9883 (0.0) 0.9735 (0.0029) 0.9682 (0.0091) 0.9916 (0.0000) 0.9900 (0.0033) 0.9883 (0.0000) 0.9760 (0.0028) 0.8767 (0.0135) 0.9638 (0.0056) 0.9654 (0.0053)

irish-cat 1.0000 (0.0) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

kidney 0.2234 (0.0) 0.8104 (0.0221) 0.8043 (0.0139) 0.9051 (0.0000) 0.8079 (0.0242) 0.2974 (0.0000) 0.8210 (0.0148) 0.8222 (0.0167) 0.8414 (0.0167) 0.7621 (0.0538)

kidney-cat 1.0000 (0.0) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

led7digit_0_2_4_5_6_7_8_9_vs_10.9366 (0.0) 0.8084 (0.0143) 0.8819 (0.0015) 0.8943 (0.0000) 0.9280 (0.0452) 0.8922 (0.0000) 0.8156 (0.0270) 0.7555 (0.0108) 0.7983 (0.0133) 0.7953 (0.0053)

leukemia 0.1111 (0.0) 0.1111 (0.0000) 0.1111 (0.0000) 0.1111 (0.0000) 0.1111 (0.0000) 0.1111 (0.0000) 0.1111 (0.0000) 0.5000 (0.0000) 0.8333 (0.0000) 0.1111 (0.0000)

liver-disorders 0.6318 (0.0) 0.6880 (0.0113) 0.6801 (0.0129) 0.6916 (0.0000) 0.6729 (0.0136) 0.6692 (0.0136) 0.6786 (0.0086) 0.6636 (0.0151) 0.7809 (0.0077) 0.6844 (0.0040)

lupus 0.8606 (0.0) 0.6449 (0.0265) 0.7738 (0.0167) 0.7571 (0.0000) 0.7601 (0.0167) 0.7889 (0.0341) 0.7738 (0.0250) 0.7795 (0.0306) 0.5025 (0.0327) 0.7780 (0.0277)

lymphography-
normal-fibrosis

1.0000 (0.0) 0.8959 (0.0265) 0.9883 (0.0057) 1.0000 (0.0000) 0.9940 (0.0615) 1.0000 (0.0000) 0.8901 (0.0323) 0.8813 (0.0213) 0.9208 (0.0223) 0.8589 (0.0000)

lymphography-
normal-fibrosis-
cat

0.8333 (0.0) 0.9036 (0.0207) 0.8186 (0.0057) 0.8276 (0.0000) 0.8159 (0.1265) 0.8333 (0.0000) 0.8923 (0.0471) 0.9034 (0.0090) 0.9005 (0.0163) 0.9706 (0.0000)

lymphography-
v1

0.6853 (0.0) 0.7964 (0.0255) 0.7265 (0.0139) 0.7259 (0.0000) 0.7895 (0.0205) 0.7388 (0.0221) 0.7414 (0.0189) 0.7479 (0.0243) 0.8661 (0.0338) 0.7335 (0.0165)

lymphography-
v1-cat

0.7800 (0.0) 0.8102 (0.0177) 0.7928 (0.0261) 0.8067 (0.0000) 0.8067 (0.0139) 0.8067 (0.0147) 0.8032 (0.0128) 0.7814 (0.0203) 0.8136 (0.0104) 0.8027 (0.0136)

mammographic 0.8626 (0.0) 0.8586 (0.0048) 0.8606 (0.0063) 0.8626 (0.0000) 0.8567 (0.0049) 0.8602 (0.0049) 0.8579 (0.0022) 0.7750 (0.0065) 0.7557 (0.0037) 0.8572 (0.0040)
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Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

mammographic-
cat

0.7731 (0.0) 0.7711 (0.0015) 0.7731 (0.0020) 0.7711 (0.0000) 0.7711 (0.0000) 0.7711 (0.0020) 0.7721 (0.0020) 0.5911 (0.0000) 0.5570 (0.0000) 0.7711 (0.0000)

newthyroid1 0.9954 (0.0) 0.9236 (0.0081) 0.9907 (0.0046) 0.9954 (0.0000) 0.9954 (0.0000) 0.9954 (0.0000) 0.9699 (0.0130) 0.9597 (0.0226) 0.9606 (0.0093) 0.9519 (0.0106)

page_blocks_1_3_vs_40.9286 (0.0) 0.7022 (0.0000) 0.7097 (0.0000) 0.7481 (0.0000) 0.7022 (0.0000) 0.9286 (0.0000) 0.7097 (0.0000) 0.6989 (0.0000) 0.7027 (0.0000) 0.9120 (0.0094)

parkinson 0.7020 (0.0) 0.8388 (0.0296) 0.8153 (0.0167) 0.8417 (0.0000) 0.8250 (0.0014) 0.8250 (0.0125) 0.8222 (0.0141) 0.8663 (0.0303) 0.8389 (0.0147) 0.8291 (0.0289)

pbc 0.8333 (0.0) 0.5952 (0.3690) 0.5000 (0.5298) 0.0952 (0.0000) 0.5952 (0.1667) 0.8333 (0.0000) 0.4167 (0.5119) 0.0952 (0.0000) 0.0952 (0.0000) 0.8333 (0.0000)

pbc-cat 0.9040 (0.0) 0.7574 (0.0000) 0.7205 (0.0290) 0.7395 (0.0000) 0.6031 (0.0076) 0.6713 (0.0732) 0.6839 (0.0853) 0.6010 (0.0051) 0.1255 (0.0051) 0.6738 (0.0979)

pharynx-1year 0.7386 (0.0) 0.6574 (0.0157) 0.6816 (0.0293) 0.7042 (0.0000) 0.6793 (0.0299) 0.7011 (0.0363) 0.6589 (0.0230) 0.6575 (0.0291) 0.4394 (0.0357) 0.6832 (0.0251)

pharynx-1year-
cat

0.8580 (0.0) 0.8580 (0.0088) 0.8542 (0.0211) 0.8580 (0.0000) 0.8580 (0.0000) 0.8580 (0.0000) 0.8580 (0.0000) 0.8580 (0.0000) 0.2358 (0.0595) 0.8580 (0.0000)

pharynx-3year 0.1574 (0.0) 0.1574 (0.0000) 0.1574 (0.0000) 0.1574 (0.0000) 0.1574 (0.0000) 0.1574 (0.0000) 0.1574 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1574 (0.0000)

pharynx-3year-
cat

0.1574 (0.0) 0.3844 (0.0443) 0.1428 (0.0304) 0.2357 (0.0000) 0.2690 (0.0396) 0.2248 (0.0277) 0.3440 (0.0257) 0.1574 (0.0312) 0.8333 (0.0000) 0.3440 (0.0000)

pharynx-status 0.1414 (0.0) 0.1414 (0.0000) 0.1414 (0.0000) 0.1414 (0.0000) 0.1414 (0.0000) 0.1414 (0.0000) 0.1414 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1414 (0.0000)

pharynx-status-
cat

0.1414 (0.0) 0.3573 (0.0677) 0.2343 (0.0362) 0.2031 (0.0000) 0.2328 (0.0371) 0.2488 (0.0638) 0.2979 (0.0380) 0.1414 (0.0319) 0.8333 (0.0000) 0.2913 (0.0257)

pima 0.8463 (0.0) 0.6832 (0.0041) 0.7150 (0.0071) 0.7253 (0.0000) 0.7102 (0.0049) 0.7229 (0.0199) 0.7077 (0.0076) 0.6303 (0.0041) 0.5913 (0.0051) 0.6961 (0.0090)

plasma-retinol 0.1233 (0.0) 0.1233 (0.0000) 0.1233 (0.0000) 0.1233 (0.0000) 0.1233 (0.0000) 0.1233 (0.0000) 0.1233 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1233 (0.0000)

plasma-retinol-
cat

0.2622 (0.0) 0.3750 (0.0646) 0.4744 (0.0187) 0.4440 (0.0000) 0.4806 (0.0598) 0.4403 (0.0300) 0.4354 (0.0630) 0.6076 (0.0000) 0.7741 (0.0125) 0.4347 (0.0477)

poker_9_vs_7 0.8333 (0.0) 0.7627 (0.0089) 0.7982 (0.0035) 0.8015 (0.0000) 0.8052 (0.0035) 0.8193 (0.0000) 0.7628 (0.0071) 0.7627 (0.0035) 0.7769 (0.0071) 0.7098 (0.0123)

prnn_synth 0.8513 (0.0) 0.8513 (0.0000) 0.8513 (0.0000) 0.8513 (0.0000) 0.8513 (0.0000) 0.8513 (0.0000) 0.8513 (0.0000) 0.8703 (0.0000) 0.8963 (0.0000) 0.8513 (0.0000)

real-estate 0.7949 (0.0) 0.7999 (0.0089) 0.8032 (0.0073) 0.7991 (0.0000) 0.8082 (0.0116) 0.8012 (0.0054) 0.8061 (0.0141) 0.7846 (0.0057) 0.8639 (0.0019) 0.8050 (0.0077)

redwine-2c 0.7393 (0.0) 0.7199 (0.0017) 0.7226 (0.0061) 0.7246 (0.0000) 0.7182 (0.0024) 0.7205 (0.0028) 0.7198 (0.0065) 0.6902 (0.0066) 0.6301 (0.0020) 0.7160 (0.0053)

relax 0.8333 (0.0) 0.5299 (0.0500) 0.4490 (0.0422) 0.6440 (0.0000) 0.6953 (0.0208) 0.5897 (0.0772) 0.6266 (0.0742) 0.0725 (0.0000) 0.0725 (0.0000) 0.5626 (0.0427)

schizo 0.6250 (0.0) 0.5644 (0.0347) 0.5569 (0.0281) 0.5505 (0.0000) 0.5461 (0.0294) 0.5669 (0.0670) 0.5500 (0.0290) 0.5082 (0.0660) 0.2150 (0.1140) 0.5438 (0.0281)

schizo-cat 0.4937 (0.0) 0.4937 (0.0000) 0.4937 (0.0278) 0.4937 (0.0000) 0.4798 (0.0139) 0.4867 (0.0139) 0.4937 (0.0000) 0.8333 (0.0000) 0.4626 (0.0278) 0.4937 (0.0000)

segment0 0.9979 (0.0) 0.9705 (0.0030) 0.9803 (0.0018) 0.9929 (0.0000) 0.9921 (0.0016) 0.9913 (0.0000) 0.9935 (0.0014) 0.9881 (0.0036) 0.9929 (0.0004) 0.9851 (0.0015)

servo 0.9608 (0.0) 0.9109 (0.0000) 0.9349 (0.0048) 0.9349 (0.0000) 0.9109 (0.0000) 0.9109 (0.0000) 0.9109 (0.0000) 0.9109 (0.0000) 0.9109 (0.0000) 0.9109 (0.0000)

servo-cat 0.8333 (0.0) 0.3881 (0.0204) 0.5441 (0.0066) 0.2583 (0.0000) 0.3954 (0.0260) 0.3633 (0.0753) 0.3724 (0.0301) 0.8333 (0.0000) 0.0583 (0.0000) 0.4360 (0.0673)

shuttle_c0_vs_c4 0.9965 (0.0) 0.9625 (0.0034) 0.9853 (0.0000) 0.9858 (0.0000) 0.9924 (0.0000) 0.9914 (0.0000) 0.9863 (0.0004) 0.9858 (0.0000) 0.9858 (0.0000) 0.9945 (0.0000)

solvent 0.7545 (0.0) 0.7545 (0.0333) 0.7545 (0.0159) 0.7545 (0.0000) 0.7545 (0.0000) 0.7545 (0.0000) 0.7333 (0.0212) 0.5914 (0.0455) 0.8333 (0.0000) 0.7545 (0.0159)

somerville 0.4651 (0.0) 0.4803 (0.0174) 0.4662 (0.0141) 0.4985 (0.0000) 0.4701 (0.0190) 0.4587 (0.0224) 0.4937 (0.0190) 0.5441 (0.0367) 0.5797 (0.0343) 0.4878 (0.0168)

sonar 0.8840 (0.0) 0.8904 (0.0163) 0.8914 (0.0105) 0.8767 (0.0000) 0.8912 (0.0003) 0.8912 (0.0076) 0.8872 (0.0075) 0.8843 (0.0092) 0.8260 (0.0105) 0.8840 (0.0145)

spectf 0.4397 (0.0) 0.6393 (0.0203) 0.4802 (0.0358) 0.4549 (0.0000) 0.4549 (0.0134) 0.4397 (0.0000) 0.6319 (0.0316) 0.8218 (0.0505) 0.7701 (0.0207) 0.7071 (0.0113)

sports 0.8432 (0.0) 0.7735 (0.0039) 0.8130 (0.0036) 0.7992 (0.0000) 0.8062 (0.0049) 0.8137 (0.0042) 0.8015 (0.0053) 0.7498 (0.0090) 0.7370 (0.0070) 0.7879 (0.0071)

—
99

—



A
ppendix

B
.
C
lassification

P
erform

ance
ofIm

balance
Strategies

Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

steel-plates-
faults

0.8358 (0.0) 0.8358 (0.0000) 0.8358 (0.0000) 0.8358 (0.0000) 0.8358 (0.0000) 0.8358 (0.0000) 0.8358 (0.0000) 0.0856 (0.0000) 0.0856 (0.0000) 0.8358 (0.0000)

student-cg-cat 0.5242 (0.0) 0.6127 (0.0335) 0.6079 (0.0471) 0.6265 (0.0000) 0.6044 (0.0325) 0.6037 (0.0446) 0.5975 (0.0447) 0.6204 (0.0607) 0.7286 (0.0224) 0.5806 (0.0492)

student-g 0.5425 (0.0) 0.5926 (0.0242) 0.5855 (0.0263) 0.5879 (0.0000) 0.6063 (0.0297) 0.5983 (0.0155) 0.6215 (0.0136) 0.6789 (0.0247) 0.7235 (0.0323) 0.6167 (0.0265)

student-g-cat 0.3859 (0.0) 0.5292 (0.0196) 0.5871 (0.0271) 0.5177 (0.0000) 0.5156 (0.0400) 0.4513 (0.0173) 0.4982 (0.0382) 0.5894 (0.0416) 0.8245 (0.0162) 0.4859 (0.0159)

student-mat 0.8723 (0.0) 0.7183 (0.0277) 0.7369 (0.0089) 0.7295 (0.0000) 0.7344 (0.0215) 0.7334 (0.0145) 0.7185 (0.0172) 0.6504 (0.0315) 0.3566 (0.0229) 0.7220 (0.0167)

student-mat-
cat

0.7341 (0.0) 0.5822 (0.0246) 0.6813 (0.0211) 0.6770 (0.0026) 0.6080 (0.0166) 0.6290 (0.0200) 0.6206 (0.0156) 0.5371 (0.0073) 0.3512 (0.0263) 0.6208 (0.0238)

student-p 0.1489 (0.0) 0.1489 (0.0000) 0.1489 (0.0000) 0.1489 (0.0000) 0.1489 (0.0000) 0.1489 (0.0000) 0.1489 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1489 (0.0000)

student-p-cat 0.3267 (0.0) 0.5221 (0.0908) 0.5722 (0.0926) 0.4750 (0.0000) 0.4819 (0.0241) 0.5097 (0.0919) 0.4799 (0.0667) 0.4808 (0.0391) 0.6949 (0.0665) 0.5105 (0.0640)

student-por 0.8768 (0.0) 0.7199 (0.0092) 0.8062 (0.0060) 0.7992 (0.0000) 0.7702 (0.0116) 0.7460 (0.0111) 0.7260 (0.0089) 0.6244 (0.0072) 0.6582 (0.0127) 0.6941 (0.0163)

student-por-cat 0.8409 (0.0) 0.6587 (0.0076) 0.7302 (0.0056) 0.6843 (0.0000) 0.6835 (0.0051) 0.6547 (0.0059) 0.6717 (0.0076) 0.6536 (0.0028) 0.6385 (0.0200) 0.6708 (0.0038)

thoracic 0.8333 (0.0) 0.7057 (0.0325) 0.7823 (0.0266) 0.8363 (0.0000) 0.8357 (0.0045) 0.8213 (0.0152) 0.7579 (0.0588) 0.0432 (0.0000) 0.0432 (0.0000) 0.8122 (0.0261)

thoracic-cat 0.8333 (0.0) 0.4361 (0.0278) 0.5904 (0.0295) 0.4108 (0.0000) 0.3614 (0.0281) 0.3874 (0.0608) 0.4662 (0.0223) 0.8333 (0.0000) 0.0432 (0.0000) 0.5013 (0.0127)

thyroid-v1 0.9760 (0.0) 0.8904 (0.0135) 0.9277 (0.0137) 0.9628 (0.0000) 0.9638 (0.0057) 0.9600 (0.0045) 0.9196 (0.0091) 0.9276 (0.0104) 0.8996 (0.0097) 0.9265 (0.0141)

thyroid-v1-cat 0.8872 (0.0) 0.7053 (0.0123) 0.3142 (0.0101) 0.6640 (0.0000) 0.7404 (0.0040) 0.6873 (0.0423) 0.7481 (0.0269) 0.6501 (0.0079) 0.2494 (0.0289) 0.7137 (0.0193)

thyroid_3_vs_2 0.8333 (0.0) 0.4373 (0.0022) 0.4334 (0.0022) 0.4326 (0.0000) 0.5663 (0.0013) 0.4160 (0.0236) 0.4340 (0.0013) 0.0159 (0.0000) 0.0798 (0.0129) 0.4328 (0.0019)

tourism-
23457vs01

0.1607 (0.0) 0.1607 (0.0000) 0.1607 (0.0000) 0.1607 (0.0000) 0.1607 (0.0000) 0.1607 (0.0000) 0.1607 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1607 (0.0000)

tourism-
23457vs01-cat

0.3507 (0.0) 0.7889 (0.0018) 0.5705 (0.0035) 0.6107 (0.0000) 0.5530 (0.0278) 0.5857 (0.0549) 0.5753 (0.0564) 0.5370 (0.0000) 0.6138 (0.0231) 0.5841 (0.0000)

tourism0 0.8350 (0.0) 0.7866 (0.0171) 0.8180 (0.0146) 0.7809 (0.0000) 0.8154 (0.0053) 0.8350 (0.0000) 0.7899 (0.0103) 0.2043 (0.0091) 0.2292 (0.0096) 0.7833 (0.0064)

tourism0-cat 0.8654 (0.0) 0.6035 (0.0176) 0.6880 (0.0048) 0.6395 (0.0000) 0.7124 (0.0045) 0.6687 (0.0303) 0.6385 (0.0115) 0.8513 (0.0376) 0.5703 (0.0184) 0.6265 (0.0176)

tourism2 0.1643 (0.0) 0.1643 (0.0000) 0.1643 (0.0000) 0.1643 (0.0000) 0.1643 (0.0000) 0.1643 (0.0000) 0.1643 (0.0000) 0.8333 (0.0000) 0.8333 (0.0000) 0.1643 (0.0000)

tourism2-cat 0.1643 (0.0) 0.9009 (0.0014) 0.7361 (0.0000) 0.8527 (0.0000) 0.6237 (0.0014) 0.9134 (0.0118) 0.9037 (0.0018) 0.1643 (0.0000) 0.9236 (0.0000) 0.9009 (0.0000)

toy 0.9016 (0.0) 0.9016 (0.0000) 0.9016 (0.0000) 0.9016 (0.0000) 0.9016 (0.0000) 0.9016 (0.0000) 0.9016 (0.0000) 0.9012 (0.0000) 0.8811 (0.0019) 0.9016 (0.0000)

traffic 0.8601 (0.0) 0.7559 (0.0193) 0.8043 (0.0224) 0.8066 (0.0000) 0.7861 (0.0182) 0.7959 (0.0224) 0.8069 (0.0289) 0.7826 (0.0345) 0.7031 (0.0377) 0.7923 (0.0276)

traffic-cat 0.8467 (0.0) 0.7578 (0.0353) 0.8428 (0.0287) 0.8285 (0.0000) 0.8428 (0.0286) 0.8285 (0.0234) 0.8324 (0.0176) 0.8364 (0.0104) 0.6728 (0.0658) 0.8285 (0.0000)

transfusion 0.8282 (0.0) 0.6322 (0.0084) 0.6758 (0.0082) 0.7511 (0.0000) 0.6377 (0.0094) 0.6805 (0.0321) 0.6808 (0.0159) 0.5041 (0.0091) 0.5075 (0.0046) 0.6622 (0.0104)

user-know-H 0.9972 (0.0) 0.9806 (0.0048) 0.9917 (0.0021) 0.9944 (0.0000) 0.9917 (0.0000) 0.9944 (0.0021) 0.9917 (0.0000) 0.9889 (0.0049) 0.9861 (0.0028) 0.9889 (0.0000)

vehicle0 0.9807 (0.0) 0.9231 (0.0060) 0.9621 (0.0026) 0.9781 (0.0000) 0.9775 (0.0032) 0.9775 (0.0013) 0.9486 (0.0057) 0.8961 (0.0117) 0.9306 (0.0078) 0.9004 (0.0048)

vertebral-N 0.7784 (0.0) 0.9111 (0.0090) 0.9024 (0.0102) 0.8851 (0.0000) 0.8894 (0.0025) 0.8882 (0.0099) 0.8868 (0.0172) 0.9236 (0.0065) 0.9211 (0.0110) 0.9031 (0.0089)

veteran 0.2773 (0.0) 0.3602 (0.0309) 0.3549 (0.0217) 0.4032 (0.0000) 0.3643 (0.0206) 0.3155 (0.0000) 0.3618 (0.0418) 0.6318 (0.0726) 0.7147 (0.0553) 0.3294 (0.0178)

veteran-cat 0.3363 (0.0) 0.7060 (0.0460) 0.5274 (0.0000) 0.6562 (0.0000) 0.7030 (0.0324) 0.6690 (0.0448) 0.6872 (0.0370) 0.5009 (0.0000) 0.7292 (0.0212) 0.7060 (0.0324)

vowel0 1.0000 (0.0) 0.9737 (0.0035) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 0.9802 (0.0063) 0.9895 (0.0044) 0.9936 (0.0050) 0.9617 (0.0040)

wdbc 0.9516 (0.0) 0.8571 (0.0021) 0.9492 (0.0018) 0.9468 (0.0000) 0.9419 (0.0022) 0.9491 (0.0045) 0.9502 (0.0047) 0.9469 (0.0023) 0.9427 (0.0041) 0.9491 (0.0018)

wifi1 0.9956 (0.0) 0.9939 (0.0000) 0.9956 (0.0004) 0.9956 (0.0000) 0.9969 (0.0000) 0.9969 (0.0000) 0.9961 (0.0006) 0.9956 (0.0000) 0.9956 (0.0006) 0.9961 (0.0004)
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Table B.1: Classification performance with various imbalance strategies. The values displayed are the median and interquartile range
(IQR, shown in parenthesis) of the 10 runs (single run for the original dataset).

Datasets Original ADASYN ADOMS AHC Bord.-SMOTE ROS SMOTE SMOTE-ENN SMOTE-TL SafeLvl-SMOTE

wine-1vs2 0.9591 (0.0) 0.9742 (0.0000) 0.9591 (0.0000) 0.9591 (0.0000) 0.9742 (0.0000) 0.9591 (0.0000) 0.9591 (0.0000) 0.9591 (0.0114) 0.9591 (0.0152) 0.9591 (0.0000)

winequality-
white-3_vs_7

0.9000 (0.0) 0.6969 (0.0047) 0.7517 (0.0026) 0.7235 (0.0000) 0.8258 (0.0043) 0.7846 (0.0045) 0.7109 (0.0051) 0.6958 (0.0013) 0.7090 (0.0039) 0.6896 (0.0037)

winequality_red_40.8333 (0.0) 0.8258 (0.0011) 0.8312 (0.0005) 0.8333 (0.0000) 0.8323 (0.0000) 0.8320 (0.0005) 0.8282 (0.0009) 0.0101 (0.0000) 0.0101 (0.0000) 0.8239 (0.0013)

wisconsin 0.9728 (0.0) 0.9579 (0.0014) 0.9681 (0.0019) 0.9690 (0.0000) 0.9599 (0.0000) 0.9672 (0.0019) 0.9690 (0.0014) 0.9662 (0.0019) 0.9672 (0.0014) 0.9709 (0.0019)

wpbc 0.8004 (0.0) 0.6490 (0.0236) 0.6517 (0.0365) 0.6599 (0.0000) 0.7327 (0.0221) 0.7033 (0.0133) 0.6628 (0.0233) 0.4129 (0.0209) 0.5029 (0.0230) 0.6309 (0.0219)

yeast1 0.8604 (0.0) 0.5848 (0.0046) 0.6586 (0.0062) 0.6468 (0.0000) 0.6603 (0.0041) 0.6681 (0.0051) 0.6386 (0.0050) 0.5692 (0.0143) 0.5441 (0.0040) 0.6278 (0.0051)
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Appendix C. Meta-Features Description

Table C.1: Description of the meta-features available on the pymfe library [82].

Group MF Name Description

statistical can_cor Compute canonical correlations of data.

statistical cor Compute the absolute value of the correlation of distinct dataset column pairs.

statistical cov Compute the absolute value of the covariance of distinct dataset attribute pairs.

statistical eigenvalues Compute the eigenvalues of covariance matrix from dataset.

statistical g_mean Compute the geometric mean of each attribute.

statistical gravity Compute the distance between minority and majority classes center of mass.

statistical h_mean Compute the harmonic mean of each attribute.

statistical iq_range Compute the interquartile range (IQR) of each attribute.

statistical kurtosis Compute the kurtosis of each attribute.

statistical mad Compute the Median Absolute Deviation (MAD) adjusted by a factor.

statistical max Compute the maximum value from each attribute.

statistical mean Compute the mean value of each attribute.

statistical median Compute the median value from each attribute.

statistical min Compute the minimum value from each attribute.

statistical nr_cor_attr Compute the number of distinct highly correlated pair of attributes.

statistical nr_disc Compute the number of canonical correlation between each attribute and class.

statistical nr_norm Compute the number of attributes normally distributed based in a given method.

statistical nr_outliers Compute the number of attributes with at least one outlier value.

statistical range Compute the range (max - min) of each attribute.

statistical sd Compute the standard deviation of each attribute.

statistical sd_ratio Compute a statistical test for homogeneity of covariances.

statistical skewness Compute the skewness for each attribute.

statistical sparsity Compute (possibly normalized) sparsity metric for each attribute.

statistical t_mean Compute the trimmed mean of each attribute.

statistical var Compute the variance of each attribute.

statistical w_lambda Compute the Wilks’ Lambda value.

concept cohesiveness Compute the improved version of the weighted distance, that captures how dense
or sparse is the example distribution.

concept conceptvar Compute the concept variation that estimates the variability of class labels among
examples.

concept impconceptvar Compute the improved concept variation that estimates the variability of class
labels among examples.

concept wg_dist Compute the weighted distance, that captures how dense or sparse is the example
distribution.

complexity c1 Compute the entropy of class proportions.

complexity c2 Compute the imbalance ratio.

complexity f3 Compute feature maximum individual efficiency.

complexity f4 Compute the collective feature efficiency.

complexity l2 Compute the OVO subsets error rate of linear classifier.

complexity n1 Compute the fraction of borderline points.

complexity n4 Compute the non-linearity of the NN Classifier.

complexity t2 Compute the average number of features per dimension.

complexity t3 Compute the average number of PCA dimensions per points.

complexity t4 Compute the ratio of the PCA dimension to the original dimension.

landmarking best_node Performance of a the best single decision tree node.

landmarking elite_nn Performance of Elite Nearest Neighbor.

landmarking linear_discr Performance of the Linear Discriminant classifier.

landmarking naive_bayes Performance of the Naive Bayes classifier.
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Table C.1: Description of the meta-features available on the pymfe library [82].

Group MF Name Description

landmarking one_nn Performance of the 1-Nearest Neighbor classifier.

landmarking random_node Performance of the single decision tree node model induced by a random attribute.

landmarking worst_node Performance of the single decision tree node model induced by the worst infor-
mative attribute.

clustering ch Compute the Calinski and Harabasz index.

clustering int Compute the INT index.

clustering nre Compute the normalized relative entropy.

clustering pb Compute the pearson correlation between class matching and instance distances.

clustering sc Compute the number of clusters with size smaller than a given size.

clustering sil Compute the mean silhouette value.

clustering vdb Compute the Davies and Bouldin Index.

clustering vdu Compute the Dunn Index.

model-based leaves Compute the number of leaf nodes in the DT model.

model-based leaves_branch Compute the size of branches in the DT model.

model-based leaves_corrob Compute the leaves corroboration of the DT model.

model-based leaves_homo Compute the DT model Homogeneity for every leaf node.

model-based leaves_per_class Compute the proportion of leaves per class in DT model.

model-based nodes Compute the number of non-leaf nodes in DT model.

model-based nodes_per_attr Compute the ratio of nodes per number of attributes in DT model.

model-based nodes_per_inst Compute the ratio of non-leaf nodes per number of instances in DT model.

model-based nodes_per_level Compute the ratio of number of nodes per tree level in DT model.

model-based nodes_repeated Compute the number of repeated nodes in DT model.

model-based tree_depth Compute the depth of every node in the DT model.

model-based tree_imbalance Compute the tree imbalance for each leaf node.

model-based tree_shape Compute the tree shape for every leaf node.

model-based var_importance Compute the features importance of the DT model for each attribute.

itemset one_itemset Compute the one itemset meta-feature.

itemset two_itemset Compute the two itemset meta-feature.

general attr_to_inst Compute the ratio between the number of attributes.

general cat_to_num Compute the ratio between the number of categoric and numeric features.

general freq_class Compute the relative frequency of each distinct class.

general inst_to_attr Compute the ratio between the number of instances and attributes.

general nr_attr Compute the total number of attributes.

general nr_bin Compute the number of binary attributes.

general nr_cat Compute the number of categorical attributes.

general nr_class Compute the number of distinct classes.

general nr_inst Compute the number of instances (rows) in the dataset.

general nr_num Compute the number of numeric features.

general num_to_cat Compute the number of numerical and categorical features.

info-theory attr_conc Compute concentration coef. of each pair of distinct attributes.

info-theory attr_ent Compute Shannon’s entropy for each predictive attribute.

info-theory class_conc Compute concentration coefficient between each attribute and class.

info-theory class_ent Compute target attribute Shannon’s entropy.

info-theory eq_num_attr Compute the number of attributes equivalent for a predictive task.

info-theory joint_ent Compute the joint entropy between each attribute and class.

info-theory mut_inf Compute the mutual information between each attribute and target.

info-theory ns_ratio Compute the noisiness of attributes.
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