

Eduardo Martinho Martins de Andrade

SECURITY FOR 5G COMMUNICATIONS IN CRITICAL

SYSTEMS

Dissertation in the context of the Master in Informatics Security, advised by Prof.
Doutor António Jorge da Costa Granjal and Prof. Doutor João Paulo da Silva Machado

Garcia Vilela and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra

June 2020

This page is intentionally left blank.

Abstract

The 5G technology will bring in a very close future, several new improvements to mobile com-

munication systems, namely in terms of bandwidth, latency and scalability, as well as opening

doors to new concepts and techniques. All of this makes 5G a serious candidate to be used in

new areas and contexts where mobile communications are not usually used.

One of these contexts is the Critical Systems. Given it’s strict performance requirements (very

low latency, high number of nodes), mobile communications like 4G/LTE, were not a feasible so-

lution on these environments, leading to the need of deploying dedicated closed networks, what

comes with increased cost. Some of these areas are railway signalling and power distributions

systems.

Shifting such systems to 5G networks means that systems usually using closed and dedicated

transmissions systems will be using open ones. Moreover, current protocols used on such areas

may not contain security mechanisms to prevent cyber attacks on open systems.

With this in mind, this research work addresses the security gap existing on protocols and critical

systems, namely on railway signalling and power distribution, that the shift to 5G technology

will create. We analyse the design of several solutions already being used, as well as other work

already developed on security mechanisms to these systems. We propose, develop and evaluate

a solution based on a bridging device and an expandable security library, containing several

recommended security mechanisms for Critical Systems using the Power Distribution Systems

as practical use-case.

This thesis is integrated in the 5G Mobilizer Project developed at the Centre for Informatics

and Systems of the University of Coimbra, whose goal is to research, develop and validate a set

of products running over 5G networks. The outcome of this work, will be integrated on the

5G Mobilizer project, more precisely on PPS3 - Products and Services for Machine-to-Machine

communications, providing a security library and a bridging device implementation, combined

to act as a Security Box to Critical Systems compliant with strict performance requirements.

Keywords

5G, Critical Systems, RaSTA, R-GOOSE, Railway Signalling, Power Distribution

iii

This page is intentionally left blank.

Resumo

A tecnologia 5G irá trazer num futuro próximo várias melhorias para os sistemas de comunicação

móvel, nomeadamente em termos de largura de banda, latência e escalabilidade, assim como abrir

portas à utilização de novos conceitos e técnicas. Tudo isto faz do 5G um sério candidato a utilizar

em novas áreas e contextos onde normalmente comunicações moveis não podem ser utilizadas.

Um destes contextos é o dos Sistemas Críticos. Dados os rigorosos requisitos de desempenho

(latência muito baixa, elevado número de nós), redes móveis como o 4G/LTE, não eram uma

solução válida para estes ambientes, levando à necessidade de criar redes fechadas e dedicadas,

o que representa um aumento signi�cativo do custo. Algumas destas áreas são os sistemas de

sinalização ferroviária e os sistemas de distribuição de energia elétrica.

A mudança destes sistemas para redes 5G, signi�ca que sistemas que por norma utilizam meios

de comunicação fechados e dedicados, passem a utilizar meios abertos. Para além disso, vários

protocolos utilizados por estes sistemas não foram projetados para meios abertos, pelo que não

implementam mecanismos de segurança para prevenir ciber-ataques nestes termos.

Com isto em mente, este trabalho pretende investigar as lacunas de segurança que existem em tais

protocolos e sistemas criticos, nomeadamente nos sistemas de sinalização ferroviária e sistemas

de distribuição elétrica, que a mudança para a tecnologia 5G irá criar. Iremos analisar as diferentes

soluções que são utilizadas atualmente, assim como outros trabalhos já desenvolvidos em prol

da ciber-segurança nestas áreas. Propomos, desenvolvemos e avaliamos uma solução baseada

num bridging device e numa biblioteca de segurança expansivel, contendo vários mecanismos

de segurança recomendados para Sistemas Críticos, utilizando os Sistemas de Dístribuição de

Energia como caso de estudo prático.

Esta tese está inserida no projeto Mobilizador 5G, a ser desenvolvido no Centro de Informática

e Sistemas da Universidade de Coimbra, cujo objetivo está na investigação, desenvolvimento e

validação de um conjunto de produtos que utilizarão redes 5G. O produto deste trabalho de in-

vestigação, será integrado no projeto Mobilizador 5G, mais precisamente, no contexto do PPS3

- Produtos e Serviços para comunicações Máquina-Máquina, fornecendo uma biblioteca de se-

gurança, que poderá ser integrada diretamente em IEDs (Intelligent Electronic Devices), e um

bridging device, sendo que em conjunto atuarão como uma Security Box para Sistemas Críticos,

em conformidade com os seus rígidos requisitos de performance.

Palavras-Chave

5G, Sistemas Críticos, RaSTA, R-GOOSE, Sistemas de Sinalização Ferroviária, Sistemas de Dis-

tribuição de Energia Elétrica

v

This page is intentionally left blank.

Aknowledgments

First, I would like to thank my thesis advisors, Prof. Doutor Jorge Granjal and Prof. Doutor João

Vilela, for accepting me in this project and for all of the help and support provided during this

dissertation.

Secondly, I would like to thank to all of my friends that were always present when needed. I

would like to specially thank André Reber for always being ready to help me, specially for all of

the corrections and suggestions that he made.

Finally, I would like to give a special thank to my family. For all of the support on all moments,

for all advises they gave me and for encouragement provided. Thank you for being tireless when

I needed anything.

This work is supported by the European Regional Development Fund (FEDER), through the Re-

gional Operational Programme of Lisbon (POR LISBOA 2020) and the Competitiveness and In-

ternationalization Operational Programme (COMPETE 2020) of the Portugal 2020 framework

[Project 5G with Nr. 024539 (POCI-01-0247-FEDER-024539)].

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context . 1

1.2 5G Mobilizer Project and Applications . 2

1.2.1 Self-healing solutions for monitoring electrical energy networks 2

1.2.2 Critical solutions for railway signalling 3

1.2.3 PPDR platform solutions . 4

1.2.4 Intelligent video-vigilance in Ultra-High Mobility using Edge Computing 4

1.3 Contributions . 5

1.4 Work Plan . 6

1.5 Document Structure . 7

2 Background Knowledge 9
2.1 Critical Systems . 9

2.2 Railway Signalling . 9

2.2.1 System Overview . 11

2.3 Power Distribution . 12

2.3.1 System Overview . 13

2.4 PPDR Platforms . 14

2.4.1 System Overview . 15

2.5 Safety Integrity Levels . 16

2.6 Chapter Wrap-up . 16

3 State of the Art 17
3.1 Communication Protocols . 17

3.1.1 Railway Signalling Systems . 17

3.1.2 Power Distribution Systems . 21

3.1.3 PPDR Platforms . 24

3.2 Standards and Requirements . 25

3.2.1 Railway Signalling Systems . 26

3.2.2 Power Distribution Systems . 28

3.2.3 PPDR Platforms . 32

3.3 Gap Analysis . 33

3.4 Security in Critical Systems Communications 35

3.5 State of the Art Conclusions . 40

4 Proposed Solution and Implementation 42
4.1 Initial Experiments . 42

4.1.1 Implementations . 42

4.1.2 Devices . 43

4.2 Proposed Solution . 44

4.3 Security Library . 45

ix

Chapter 0

4.3.1 Message Integrity and Message Authentication 46

4.3.2 Message Con�dentiality . 47

4.3.3 Protocol Related Functions . 48

4.4 Bridging Device . 49

4.4.1 Initial Approaches . 50

4.4.2 Linux Bridge and Net�lter . 51

4.5 Chapter Wrap-up . 53

5 Results and Analysis 55
5.1 Evaluation Strategy . 55

5.2 Functional Evaluation . 57

5.2.1 Cryptographic Functions . 58

5.2.2 Protocol Related Functions . 59

5.3 Performance Evaluation . 62

5.3.1 Cryptographic Functions . 62

5.3.2 Protocol Related Functions . 67

5.3.3 Raspberry Pi Bridging Device . 73

5.3.4 Security Gateway . 75

6 Conclusions and Future Work 77

Appendices 82

A Appendix A 86

x

This page is intentionally left blank.

Acronyms

3DES Triple Data Encryption Standard. 20, 21

4G/LTE 4th Generation Long-Term Evolution. 1

BLE Bluetooth Low Energy. 24, 25, 33

CCC Command and Control Center. 4, 14, 15, 25

CENELEC European Committee for Electrotechnical Standardization. 26

CISUC Centre for Informatics and Systems of the University of Coimbra. 2

D2D Device-to-Device. 3

DNP3 Distributed Network Protocol 3. 13, 22–24, 30

EC Execution Counter. 19, 21

GOOSE Generic Object Oriented Substation Event. 21, 22, 38–40, 43, 48

IEC International Electrotechnical Commission. 26, 29

IED Intelligent Electronic Devices. 1, 6, 13, 22, 43, 48, 49, 55, 72

IoT Internet of Things. 15, 25

IP Internet Protocol. 11, 18, 21, 22, 25, 29, 30, 55

LC Level Crossing. 1, 3, 4, 10, 11, 17

LDT Linha de Desenvolvimento Tecnológico. 2–5, 15

M2H Machine-to-Human. 2

M2M Machine-to-Machine. 2

MAC Message Authentication Code. 19, 21, 24, 46–48, 59, 64

MEC Mobile Edge Computing. 4

MQTT Message Queuing Telemetry Transport. 15, 25, 33

NFV Network Function Virtualization. 1, 11, 12

PDU Protocol Data Unit. 18

PPDR Public Protection and Disaster Relief. 2, 4, 14, 15, 34

QoS Quality of Service. 14, 15

xii

Acronyms

R-GOOSE Routable-Generic Object Oriented Substation Events. 13, 21, 22, 28–31, 33–35, 38,

40–43, 45, 48, 49, 53–57, 59, 61, 63, 65, 67, 73–76, 86, 87

RaSTA Rail Safe Transport Application. 11, 17–21, 33, 35, 37, 40

RBC Radio Block Centre. 19

RSSP-II Railway Signal Safety Protocol-II. 17, 20, 21

SCADA Supervisory Control and Data Acquisition. 13, 22, 29, 38, 39

SDN Software De�ned Network. 1, 11, 38

SIL Safety Integrity Level. 11, 16

TCP Transmission Control Protocol. 19, 21, 29, 30

TLS Transport Layer Security. 18, 19, 22, 25, 29, 30

TTS Triple Time Stamp. 19, 21

UDP User Datagram Protocol. 11, 18, 43, 55

V2X Vehicle-to-Infrastructure. 3

xiii

This page is intentionally left blank.

List of Figures

1.1 Eletrical energy network [47] . 3

1.2 Railway Signalling scenario [47] . 4

1.3 BodyKit Architecture [47] . 5

1.4 LDT 4 Architecture [47] . 5

1.5 Work plan 1st Semester . 6

1.6 Work plan 2st Semester . 7

2.1 Railway signalling operating on segments context [57] 10

2.2 Railway Signalling System diagram . 12

3.1 RaSTA Protocol stack [28] . 18

3.2 UNISIG Subset-098 Protocol Stack [56] . 20

3.3 R-GOOSE PDU [22] . 23

3.4 Transfer time representation [31] . 31

3.5 Throughput comparison of proposed algorithms by M. Heinrich et al. [28] . . . 38

4.1 Conversion from GOOSE to R-GOOSE . 44

4.2 Diagram of proposed Security Gateway . 45

4.3 Diagram of InsertHMAC/GMAC funtions . 49

4.4 Diagram of Encrypt/Decrypt funtions . 50

4.5 Bridge Diagram - Interaction between IPTables, Net�lter NFQUEUEs and user

space program in a one way communication . 54

5.1 Raspberry Pi Bridging Device Experimental Environment 56

5.2 Functional Experimentation - Relationship between cryptographic functions and

protocol related functions in testing . 57

5.3 Example of Functional Testing procedure for Cryptographic Functions 58

5.4 Functional testing of HMAC insertion and validation 60

5.5 ValidateHMAC function invalidating a packet 60

5.6 Encryption of an R-GOOSE packet . 61

5.7 Example of Performance Testing procedure for Cryptographic function 62

5.8 Progression of latency with input size in HMAC-based functions 64

5.9 Progression of latency with input size in GMAC-based functions 65

5.10 Progression of latency with input size in AES-based functions 66

5.11 Progression of latency with number of GOOSE Objects in InsertHMAC Function 68

5.12 Progression of latency with number of GOOSE Objects in ValidateHMAC Function 69

5.13 Progression of latency with number of GOOSE Objects size in InsertGMAC function 70

5.14 Progression of latency with number of GOOSE Objects size in ValidateGMAC

function . 71

5.15 Progression of latency with number of GOOSE Objects in Encrypt And Decrypt

Functions . 72

5.16 Diagram of Ping testing and relation with Transfer Time 74

xv

Chapter 0

5.17 Progression of latency with the rate of packets sent using Ping 75

xvi

This page is intentionally left blank.

List of Tables

2.1 Safety Integrity Levels on Continuous/High-demand Operation mode systems [32] 16

2.2 Safety Integrity Levels on Low-demand Operation mode systems [32] 16

3.1 Relationship between system categories and threats [19] 28

3.2 Railway Signalling System requirements and their description 29

3.3 Table of Maximum Transfer time for each Message Type and Performance Class

[31] . 31

3.4 Power Distribution System requirements and their description 32

3.5 PPDR Platform requirements and their description 33

3.6 Relationship between deployed RaSTA mechanisms and security requirements . 34

3.7 Relationship between deployed R-GOOSE mechanisms and security requirements 34

3.8 Relationship between PPDR Platform over-5G protocols (MQTT) deployed mech-

anisms and security requirements . 35

3.9 Application’s requirements and current state . 35

4.1 Implemented HMAC-based functions, key size in bits and output size in bytes . 47

4.2 Implemented GMAC-based functions, key size in bits and output size in bytes . 47

4.3 Implemented AES-based functions and key size in bits 48

4.4 Raspberry Pi 4B model Technical Speci�cations 50

5.1 Raspberry Pi 4B model Technical Speci�cations 56

5.2 HMAC Functions evaluation results . 58

5.3 GMAC Functions evaluation results . 59

5.4 AES Encrypt/Decrypt Functions evaluation results 59

5.5 Protocol Related Functions evaluation results . 61

5.6 HMAC Functions performance analysis, using medium size data input 63

5.7 GMAC Functions performance analysis, using medium size data input 64

5.8 Encryption/Decryption Function performance analysis, using medium size data

input . 66

5.9 InsertHMAC performance analysis, using medium size data input (20 GOOSE

objects) . 67

5.10 ValidateHMAC performance analysis, using medium size data input 68

5.11 InsertGMAC Functions performance analysis, using medium size data input . . 69

5.12 ValidateGMAC Functions performance analysis, using medium size data input . 70

5.13 Encryption Function performance analysis, using medium size data input 71

5.14 Total data transferred and Bandwidth measurements with bridge device in place 73

5.15 Total data transferred and Bandwidth measurements without bridge device in place 73

5.16 Bridge device latency measurements . 75

5.17 Bridge device latency (RTT) measurements . 76

A.1 HMAC Functions performances, using all size data inputs 86

A.2 GMAC Functions performances, using all size data inputs 87

xviii

List of Tables

A.3 AES Functions performances, using all size data inputs 87

A.4 InsertHMAC Functions performances, using all size data inputs 88

A.5 ValidateHMAC Functions performances, using all size data inputs 88

A.6 InsertGMAC Functions performances, using all size data inputs 89

A.7 ValidateGMAC Functions performances, using all size data inputs 89

A.8 Encryption/Decryption Functions performances, using all size data inputs . . . 90

xix

This page is intentionally left blank.

Chapter 1

Introduction

In this chapter, we will introduce the document and give the context to the research work. Also,

we will describe the 5G Mobilizer Project and its applications, namely the four development

branches. Finally, we will present the goals we want to achieve, the work plan to both semesters

and the document structure.

1.1 Context

The 5G technology will enter on the production phase by 2020, with the goal of replacing the

4th Generation Long-Term Evolution (4G/LTE). The technological developments provided by 5G

will improve the overall mobile communications, in terms of performance (bandwidth, lantency,

scalability, etc.) as also with the integration with concepts and techiques new to the area, such

as Software De�ned Network (SDN) and Network Function Virtualization (NFV). A very tempt-

ing step is taking advantage of those "new capabilities" and apply wireless communications on

scenarios that usually cannot operate with the restrictions inherent to these networks, such as

critical systems/applications and/or with an high number of components/devices connected to

the network.

Nowadays, the systems that cannot lay under the limitations of the conventional mobile com-

munications, mostly make use of cable networks, which implies a signi�cant increase in the cost

related to used material. On that scenario, the migration to a wireless environment is a common

desire.

The railway signalling systems to Level Crossing (LC) are an example where the usage of wireless

communication networks are quite interesting and promising. Those systems are composed by

lightning signals, access conditioning barriers, sensors and system controllers, and they must all

be interconnected. Also, the sensors and the controllers could be as far as 2km from each other,

and usually they are connected by copper cables.

Other application scenario for the new mobile communication generation could be the electri-

cal energy distribution. As a critical system, there are several strict requirements related to the

quality of the communication between the components, plus, the high number of system nodes

make it an even more interesting environment for 5G networks. The goal of these systems is

to manage the distribution of electrical power over the grid, having in consideration that the

system must be reliable and resilient to anomalous situations such as potential grid failures or

intentional attacks. That system is composed by a large number of devices, continuously in-

creasing, namely, Intelligent Electronic Devices (IED), substations and Reclosers. In order for the

1

Chapter 1

maximum quality of service to be achieved, it is really important that the controllers have access

to as much information as possible, as for the best case, information from all system nodes.

On both presented scenarios, 5G will allow the integration of a wireless network architecture

with an existing system in a critical scenario, taking care of the strict performance requirements

and allowing high system scalability.

Nevertheless, mobile communications and in this particular case, 5G, will imply the usage of

new and di�erent techniques of system’s monitoring and defence. On both presented cases, the

security mechanisms already deployed and existing on the market, may not be enough, given the

existence of new players and, therefore, we need to be aware of new threats and risks, making

crucial the development of new solutions for these environments.

1.2 5G Mobilizer Project and Applications

This research work is part of 5G Mobilizer project [2], whose goal is the design, development

and validation of products and solutions operating over the future 5G network, supplying new

services or replacing the existing solutions being used by the industry. There are several parties

working on 5G Mobilizer, such as the Centre for Informatics and Systems of the University of

Coimbra (CISUC), where this work was developed. The project reaches all 5G applications con-

texts, being divided in di�erent Products, Processes and Services (PPSs) with the given focus:

Access Domain, Core and Vertical sectors with Machine-to-Machine (M2M) and Machine-to-

Human (M2H) communications.

More precisely, this work was done on the context of PPS3, whose focus resides on development

of products and services for M2M communications. Those products are:

• Self-healing solutions for monitoring electrical energy networks supported over 5G

• Critical solutions for railway signalling supported over 5G

• Public Protection and Disaster Relief (PPDR) platform solutions supported over 5G

• Intelligent video-vigilance in Ultra-High Mobility, using Edge Computing over 5G

There are several partners working in PPS3 namely University of Coimbra, EFACEC Energia,

EFACEC Engenharia, OneSource, Ubiwhere and PDM&FC. Inside each development line of PPS3

presented, University of Coimbra is responsible for analysing and ensuring the networks security

where each application will operate. In the next subsections will be presented and described the

products with impact on this work.

1.2.1 Self-healing solutions for monitoring electrical energy networks

The goal of this "Linha de Desenvolvimento Tecnológico (LDT)" is the implementation and de-

velopment of electrical power management systems with the capability to detect and react to

faults and failures, in a quick, e�cient and precise way, by means of self-healing mechanisms.

Given the extension of the electrical power grid, as well as the under-laying network and several

possible architectures for the self-healing solutions (centralized, semi-centralized, distributed),

the implementation of this kind of systems might be very complex and expensive, since it is

necessary to have a network able to support critical communications e�ciently, having in con-

sideration the large volume of components, as well as the constant growing of the network.

2

Introduction

The introduction of 5G networks may satisfy those requirements, even if it is still important to

have in mind the overall requirements inherent to the system, as very low latency and additional

security measures.

The next �gure (1.1) illustrates the network architecture that 5G Mobilizer wants to implement.

There we can see all of the components connected over a 5G network, allowing the implemen-

tation of a fully distributed self-healing system.

Substation
Circuit Breaker Recloser

Recloser

Substation
Circuit Breaker

N.O. Recloser

Fe
ed

er
1

Fe
ed

er
2

5G

IED IED

IED

IEDIED

Figure 1.1: Eletrical energy network [47]

In this LDT the leading partner is EFACEC Energia. Their role is to implement the self-healing

solution for power grid over the 5G network, while the role of University of Coimbra is to protect

this system at the network level, on the 5G context and on the local systems.

1.2.2 Critical solutions for railway signalling

On the railway signalling environment, the usage of communication networks supported on

public access infrastructures is not a common practice nowadays, given the security requirements

and quality of service. However, this LDT intends to make use of 5G technology to support such

systems, optimizing the closed time for LC points while satisfying strict requirements of the area.

The main goals are the development of:

• Announcement solutions over Device-to-Device (D2D) communications between detec-

tion triggers and access conditioning components controllers;

• Solutions for communications between vehicle (train), access conditioning barriers and

signals controller (Vehicle-to-Infrastructure (V2X)), sharing information related to train

positioning and respective velocity;

• Solution for communication between the LC and the train in order to exchange information

and video-vigilance images from LC on crucial moments (train approximation to LC);

3

Chapter 1

Figure (1.2) shows a typical railway signalling system, pointing out where 5G communications

could be applied.

Figure 1.2: Railway Signalling scenario [47]

In this LDT the leading partner is EFACEC Engenharia. Their role is to implement the solutions

for railway signalling systems over 5G, while the role of University of Coimbra is to ensure the

security of such systems when operating over 5G networks.

1.2.3 PPDR platform solutions

The main objective of this LDT is the development of the productBodyKit -Wearable Situation
Awareness Platform. This will be a device with several sensing capabilities (heart rate, fatigue

levels, etc.) as well as other resources, as GPS, in order to give as much information as possible

to Command and Control Center (CCC) about PPDR operationals on the �eld. The product must

meet several strict requirements, mainly related to the security and reliability of communications,

as a critical point for the system.

BodyKit will allow a better management and security of the resources, monitoring the whole

operations scenario and all the means deployed on the �eld, from �re�ghters to police forces,

and, using the sensing capabilities, will also be possible to monitor the operations environment,

analysing temperature, radiation or chemical components. On Figure (1.3) is represented the

BodyKit architecture, including its main components and communication �ows.

In this LDT the leading partner is OneSource. Their role is to develop the BodyKit product. The

role of University of Coimbra is to provide support in the security area that the usage of 5G

networks will arise.

1.2.4 Intelligent video-vigilance inUltra-HighMobility using EdgeComputing

The fourth LDT has as main goal the development of a solution for optimizing the network

utilization of an operator, and provide to the clients a set of functionalities associated to video

surveillance, independently from the camera provider, as for example, a set of advanced statistics

and analytics, detection of anomalous events and automatic images quality di�erentiation to the

monitoring and controlling center, based on a Mobile Edge Computing (MEC) architecture. On

Figure (1.4) is represented part of system’s architecture, more speci�cally communication links

existing between components.

We should also highlight that the product developed by this LDT will be used on the use case of

intelligent video surveillance and transmission from LDT2, to detect obstacles at LC.

4

Introduction

Figure 1.3: BodyKit Architecture [47]

Figure 1.4: LDT 4 Architecture [47]

In this LDT the leading partner is Ubiwhere that is responsible for the development of the pro-

posed solution. At the same time, all of the other project partners will provide support in the

development, and more precisely University of Coimbra will provide support on the security of

the networks and systems.

1.3 Contributions

This research work is part of the 5G Mobilizer project and several contributions were made to it,

more speci�cally on the context of the work done at PPS3.

More precisely, the main contributions were:

• Identi�cation of security requirements for the applications on the context of PPS3 (appli-

cation speci�c requirements) and identi�cation of transversal PPS3 application require-

5

Chapter 1

ments, as well to the general critical applications that can be supported over 5G networks,

although focusing on highly critical applications, such as Railway Signalling and Power

Distribution systems

• Design of a security solution transversal to all PPS3 applications composed by a security

library and bridging device

• Development of a security library containing a set of security mechanisms that can be

applied directly on dedicated devices (IEDs) or used as a standalone solution

• Development of a bridging device to support the security library standalone version

• Assessment and validation of the developed mechanisms, taking in consideration the secu-

rity requirements, robustness and performance required by the applications and systems

This is an ongoing work in the context of the 5G Mobilizer project, thus the outcome product

of this research work is being integrated in a larger testbed along side with other products. In

this testbed, our work will be placed on the context of Power Distribution Systems, acting as a

security gateway for R-GOOSE communications providing security mechanisms to legacy IEDs

with less computational capabilities, and will also be included directly on more capable IEDs.

1.4 Work Plan

The work plan for the 1st Semester were focused on studying and analysing the system inside

the scope of the work, the state of the art and related work. The main activities performed on

1st Semester were the following:

• Acquire background knowledge

• Study State of the Art

• Perform Gap Analysis

• Write dissertation document

The next image illustrates the work done on 1st Semester:

12-Sep 2-Oct 22-Oct 11-Nov 1-Dec 21-Dec 10-Jan 30-Jan

Acquire BK

Study SOA

Gap Analysis

Write Intermidiate Report

1st Semester

Figure 1.5: Work plan 1st Semester

The work during the 2nd Semester were focused on develop and evaluate a set of security mech-

anisms and all of the other components of our solution. Given that, the main activities performed

during the 2nd Semester were the following:

6

Introduction

• Implement a baseline environment (testbed without security mechanisms)

• Develop new security mechanisms or changes to protocol implementations

• Evaluate proposed mechanisms and analysing results

• Write dissertation document

The next image illustrates the work planned to the 2nd Semester:

20-Jan 9-Feb 29-Feb 20-Mar 9-Apr 29-Apr 19-May 8-Jun 28-Jun

Implement Testbed

Develop Security Mechanisms

Evaluate Mechanisms

Write Final Report

2st Semester

Figure 1.6: Work plan 2st Semester

1.5 Document Structure

The document is structured as follows. Chapter 2 presents some concepts and background knowl-

edge that was necessary to acquire, mainly related to the areas of focus. Chapter 3 is the State

of the Art, where we discuss current solutions used on Railway Signalling, Power Distribution

and PPDR Systems, we establish a set of requirements for each application and we perform a

gap analysis between those requirements and the security mechanisms already deployed in each

system. In Chapter 4 we propose our solution and we describe its implementation. The �fth

chapter is the Results and Analysis, were we present the functional and performance evaluation

done. Finally, Chapter 6 is the Conclusion and Future Work.

7

This page is intentionally left blank.

Chapter 2

Background Knowledge

In this chapter, some concepts and introductory topics will be explored, in order to establish an

important support base for the following phases. The critical systems topic will be addressed,

giving a possible de�nition and the di�erent categories into which they are subdivided. Then,

will be done an introduction to the di�erent scenarios and contexts addressed during this work,

such as railway signalling and power distribution grids.

2.1 Critical Systems

Critical systems are those that, in the event of a failure, can directly result in threats to human

life or an organization, also possibly leading to major economic and/or environmental losses. We

can further classify critical systems into three sub-classes: Safety Critical, Mission Critical e

Business Critical:

• SafetyCritical - Systems operating in scenarios that may lead to loss of human life, serious

injury or damage to the environment.

• Mission Critical - Systems that must assure that a certain goal or function are properly

performed, regardless of a component failure or inoperability.

• Business Critical - Systems that are directly related with the goal of the organizaion’s

business, and, when compromised, may cause economic costs or a�ect other business in-

dicators, such as its reputation.

For each of these system categories, there are properties that must be guaranteed, although it

may vary with the scenario and system. It is also important to mention that, given the potential

consequences in the event of a failure in these systems, there are strict rules and laws to ensure

a minimum level of con�dence on the security and safety of the systems, which will be covered

in the State of the Art section of this document.

2.2 Railway Signalling

Nowadays, railways are still widely disseminated, with large usage in European Union and other

countries like United States of America, China, Germany, Russia or India. Even in Portugal,

railways remain as a main public transportation, with almost the entire country being covered

9

Chapter 2

by the network. As a public transportation mean, it is intended to move a large number of users

(for example, an Alfa Pendular (Portuguese high-velocity train) has around 300 seats), meaning

that an accident will endanger a lot of people. Furthermore, the environment where it operates

(heavy vehicle, with steel wheels, running on a steel rail, which leads to a big breaking distance)

highly increments the probability of an accident.

Given that, several techniques emerged to control and monitor railways, such as tracks segmen-

tation and railway signalling. Track segmentation is the division of the railway into smaller

parts, not just in the portions between stations, but also dividing those on smaller segments. On

those segments it was easier to apply signalling, and, for example, it could be established that

there could only be one train per segment. Naturally, signalling methodologies and techniques

have been evolved from �xed blocks to moving blocks and train footprints, allowing a better

management of the overall system. Railway signalling is used in various situations and its goal

is to give information to train drivers related to the obstruction or possibility to keep moving for-

ward. Some of those situations are the circulation between track segments and the intersection

of the railways with roads, also called Level Crossing (LC).

For the blocks, the signalling system needs to assure that in each segment (or block), there is,

at most, one train at the same time, and that, in case of a failure, the following train can safely

break without crashing. The Figure (2.1) shows an example of the signalling system operating

between segments (blocks) of the track, where it is established that the safe distance between

trains is of two blocks, both represented by the yellow signalling lights. The green lighted blocks

are the ones where a train could travel to, while the red ones, are prohibited, due to the presence

of another train.

Figure 2.1: Railway signalling operating on segments context [57]

As for the LCs, there are other factors that must be taken into consideration. Inherent to LCs

are the cars crossing, which represent a di�erent safety threat, as they are not so predictable as

other trains. From the beginning until now, we stated that LCs are also a critical point for public

safety, as it is also a major point from pedestrian accidents. With safety as a major concern, it is

also important to optimize the closing time of LCs as it can also prevent risky movements from

pedestrians and road vehicles.

10

Background Knowledge

2.2.1 System Overview

Railway signalling systems have been su�ering several changes since the very beginning of rail-

way: from the non existence of signals at all, to the full automation of these systems. They are

composed by several components and devices: activating triggers, light signals, access condi-

tioning barriers, audible signals and LC controllers.

The activating triggers (or train sensors) have the function of detecting the passage of a train,

notifying the controller and other components that a new train is about to pass through. These

triggers are placed on the rails and are activated by train contact, representing a sensing compo-

nent to the system. The triggers are a crucial part of the system, if they fail to detect the train,

the entire safety of the system and their users is compromised.

The light signals, the access conditioning barriers and the audible signals are the actuators

of the system. That means that they respond with an action, when they receive some kind of

message or signal. Their function is to physically deny the access of road vehicles or pedestrians

to the intersection.

Finally, the LC Controller is the "mind" of the LC. It Is the component responsible for managing

the LC and controlling all the other system components, receiving data from triggers and send-

ing signals to actuators. This kind of component are speci�cally developed for this function by

several companies such as Siemens. Nowadays, these controllers are not limited to respond lin-

early to triggers, as they try to optimize the closed time of the LC. The controllers are constantly

measuring the distance between the train and LC, and with the information from the LC itself,

they can determine the optimal moment to close the barriers. However, this method cannot be

applied in every LC, as they usually use re�ectometry, and also, signi�cantly increase the overall

cost of the system.

In order for the entire system to work properly, it is necessary the existence of a communication

network that allows the multiple components to exchange data. The network itself is usually

simple, connecting all the components to the LC controller.

The network connections are usually made by copper cable, supporting normal network protocol

stack architectures as Ethernet for the Link Layer (or OSI layer 1-2), Internet Protocol (IP) on In-

ternet Layer (or OSI layer 3) and User Datagram Protocol (UDP) on Transport Layer (or OSI layer

4), taking in consideration the TCP/IP Protocol Stack. On top of those base protocols, exists others

to ensure some system properties, such as safety, reliability or security. A widely spread example

of such protocols is Rail Safe Transport Application (RaSTA), being another transport protocol

tailored speci�cally to meet the strict requirements of railway signalling systems. RaSTA rep-

resents an additional safety layer that must be included on protocol stack for railway signalling

systems, in order to ensure that safety-related requirements and Safety Integrity Level (SIL) is

achieved. In the Figure (2.2) is represented the railway signalling system existing in a LC. There

we can see the triggers, several actuators (light signals and barriers), the controller and the cable

based network that connects all the components.

The fact that those networks are supported over copper cables represent an obstacle in several

ways: it is expensive to deploy such network because sometimes the distance between triggers

and the controller can reach up to 2km; the time it takes to deploy such a network and the working

cost is also expensive, as it involves a lot of work; that kind of network makes it di�cult to deploy

new and innovative components, as well as it doesn’t support interesting new network features

such as SDN and NFV. Software De�ned Network (SDN) is a network architecture that uses

programmable software-based controllers to manage tra�c and communicate with hardware

infrastructure. This provides a centralized view of the network, allowing an holistic network

management and more granular security. Network Function Virtualization (NFV) allows the

11

Chapter 2

Figure 2.2: Railway Signalling System diagram

virtualization of common network functions, reducing the cost of deploying new components to

the network. As an example, using NFV, it is not necessary to buy new dedicated and expensive

hardware components to add speci�c network functions. Instead, it is possible to use a common

server or switch and deploy a software version of that network function.

An important aspect to point out is the classi�cation of the environment where these systems

operate. The occurrence of a system failure, in most cases, results in serious danger situations and

accidents. Those accidents will probably endanger the human lives and the environment itself.

Having this in consideration, we can characterize these systems as safety-critical. As mentioned

before, critical systems must comply with more strict rules and regulation, thus, there are several

standards they must address. The most important standards will be described and discussed later

in the State of the Art section.

2.3 Power Distribution

Power distribution systems represent a major and important infrastructure of the society since

its very early days, and now is even more deeply connected to the way we manage our lives.

We probably wouldn’t be able to do anything we do in a normal day, if entire power distribution

network goes o�ine.

As every new invention, electric energy distribution started with small grids and lines, and not

computer managed as it is today. However, as the grids and voltage rates started to evolve and

increase, there was obviously the need of automation on this environment. Nowadays, these

systems are responsible for one main function, receiving the generated electrical energy on the

entry point of the grid, and transmit it to the end-users, as for example, normal citizens or com-

panies. Inherent to their mission, this systems must assure that power distribution is safely done,

as well as assuring that all the clients are properly supplied.

In order to achieve that, these systems are composed by various components and several points

of management. Nowadays, the electrical grid is huge, with a lot of endpoints, so it is divided

in multiple sections, managed by substations [14]. This division allows the grid managers to

properly understand each section and also to easily identify the occurrence of failures. A failure

on these systems can be a problem in one of the transmission lines, meaning that some section

or part of a section of the grid might be "on the dark". A simple way used to resolved this kind

of problems was the construction of the grid in a ring "shape". Basically, grids usually are built

in ring shapes, meaning that they are a closed network, or that every node network has at least

two distinct paths to be reached. That way, if one of these paths has a problem, the station can

12

Background Knowledge

use the other.

However, managing this kind of systems is very complex, because it is constantly growing and

already has a huge amount of nodes. Some techniques used are based on self-healing, where the

grid has the ability of identifying where the failure occurred and deviate the power transmission

to a redundant line, covering the previous node. An actual challenge is related to the way this self-

healing capability is achieved, as some techniques, more precisely the distributed self-healing,

needs that various endpoint nodes have the ability to communicate with each other, which is

impossible with the technologies used on the �eld today. This challenge is one of the main

applications addressed by 5G Mobilizer Project.

2.3.1 System Overview

Given the importance of these systems and the large environment where they operate, they are

usually very complex, including a large amount of components. They are composed by power

generation stations, power substations, medium voltage power transmission lines and distribu-

tions lines, that connect several individual end-consumers. Nowadays, such systems use dedi-

cated networks to be managed.

Other important component are IEDs. These are microprocessors-based controllers of power

system equipments, and they operate by collecting data from sensors and issuing commands to

other system components, as well as raising events, such as signalling a failure. These compo-

nents, are of major importance as they allow the grid to be managed and to be supervised.

As for the mechanisms to recover from failures, self-healing mechanisms are usually used. Self-

healing of the grid can be achieved by various architectures, as it can be centralized, distributed

at substation level and distributed at feeder level. Di�erent solutions have di�erent advantages

and also limitations. In the �rst one, the centralized architecture, self-healing is controlled on the

central station, meaning that it is highly scalable, although this creates a single point of failure on

the central station. If a failure occurs there, managers will not be able to "see" that entire section,

as well as it will not be able to recover from a potential failure on the grid itself. Normally, this

scenario uses a Supervisory Control and Data Acquisition (SCADA) or similar scheme. On a

semi-distributed architecture, the self-healing is coordinated from several substations, meaning

that if a failure occurs on one substation, only that section will be o�, and the others won’t be

a�ected. However, such scheme is not so scalable as the last one, because there is also the need of

deploying new dedicated links. For the last architecture, the self-healing is done by coordinating

several IEDs, and they will identify and recover from the failure by themselves. This eliminates

the single points of failure, but tremendously increases the complexity and also requires the usage

of modern IEDs. On the context of the quality of service provided, this is a great solution, as it

represents the lower response time to a failure, given the proximity to the �eld of the recovery

mechanism.

All of those components are connected over dedicated networks, either inside the same substa-

tion (connecting the local IEDs) or interconnecting the substation’s networks. These networks

usually support normal network protocol stack architectures as Ethernet-IP-TCP/UDP and �-

nally the upper level protocols. At the upper level, the protocols are designed to ensure the high

availability, resilience and reliability that this system requires. Some examples of such protocols

are R-GOOSE and DNP3.

As we can see, this industry has a huge impact on today’s society, being one major infrastructure

that must be always working properly. In the event of a major fault the probability of great

impact with severe consequences sharply increases. As an example, we can imagine that, if the

entire power distribution grid goes o�ine, there exists the possibility that hospitals, air tra�c

13

Chapter 2

controllers, emergency response services and other critical services couldn’t operate, meaning

that a huge amount of lives and also the environment will be highly endangered. At the same

time, from the perspective of power distribution provider, a major fault will certainly endanger

their ability to achieve their mission, providing electrical energy to those who need it. Given

that, there are several Quality of Service (QoS) aspects that must be taken in consideration, such

as communication latency and security, being the aim of this research work. So, another function

that these systems must provide is the management of potential failures in the grid, as well as the

capacity to recover. From this analysis, we can categorize this system as critical, more precisely,

as safety-critical and mission-critical system.

2.4 PPDR Platforms

Public Protection and Disaster Relief (PPDR) agencies play a very import role on society. From

the Public Protection perspective, they are intended to maintain law and order, protecting life

and property, as well as responding to emergencies. Although, their objective is also responding

to disasters and situations that endanger or pose as a dangerous threat to human life, the society

itself, or the environment. With the increasing number of public safety related events [54], their

functions are more critical than ever.

Usually, when a disaster occurs and PPDR Agencies are called to operate, there is the Command

and Control Center (CCC) from where all of the operations are controlled. Thus, the system that

allows the communications and information exchange between CCC and the operationals on the

�eld, represents one of the most important assets.

Nowadays, PPDR systems rely on old and well tested protocols and solutions, because they o�er

an high level of con�dence and resilience. However, it has been proven that it is important that

such systems evolve in order to improve the quality of the service provided. As these systems

tend to be old, they do not easily allow the integration with new technologies, as well as the

extension of the current services. They mainly rely on voice communication, and radio trans-

mission systems, using protocols that were not designed for transmitting other types of data,

such as video.

Some of these PPDR solutions are TETRA, APCO P25 and DMR. TETRA Protocol stands for

Trans-European Trunked Radio, and it is a European standard for a trunked radio system that

was speci�cally developed for PPDR agencies. This is widely used in Europe, although it only

provides mission critical voice communications, SMS and low speed data transfers. APCO P25

is the corresponding standard to TETRA in America, and it was also designed speci�cally for

PPDR applications, providing mission critical voice communications, SMS and low speed data

trsnafer. DMR stands for Digital Mobile Radio and it is a standard de�ned by the European

Telecommunications Standards Institute. It is also used as a PPDR solution due to its lower cost.

All of that solutions lack on the capacity of transmitting general data with low latency, as for

example, sensorial data from operationals.

With this in mind, evolving such systems represents an important challenge to improve the qual-

ity of the service provided by these agencies, providing new systems capable of transmitting in

a fast and e�cient way new types of data to the CCC. One of the main goals of PPS3 of 5G

Mobilizer project, is to develop BodyKit Platform, that will provide and integrate new func-

tionalities, namely in terms of new sensing capabilities, as well as video transmission, to existing

PPDR platforms, using new technologies as 5G to achieve the strict requirements of these envi-

ronments.

14

Background Knowledge

2.4.1 System Overview

LDT3 of 5G Mobilizer project is responsible for the development of BodyKit product. BodyKit is

a platform to provide new capabilities to PPDR agencies, using 5G technology to enhance overall

system performance, as well as allowing the integration on new functions, such as real-time video

transmission from �eld agents.

This product has an IoT based architecture, considering the integration of multiple low-capacity

sensing devices to collect data in a scalable way. The main objective is to provide a full situation
awareness to the CCC, including real-time video transmission, location and sensing data from

�eld agents.

The system is composed by three major components:

• BodyKit Device

• BodyKit Servers

• CCC Application

The BodyKit device is then composed by two other components, the wearable device with the

sensors, and an application running on a smartphone, collecting data from the wearable device

and sending it to servers. The wearable device has several sensors divided in two categories:

biosensors, responsible for collecting data related to the �eld agent, and environmental sensors,

responsible for collecting data from the surrounding environment. The biosensors present in

BodyKit are the following: electrocardiogram, respiratory rate, blood pressure, heart rate and body
temperature. It is then equipped with the following environmental sensors: gas detection, smoke
detection, humidity, environmental temperature and GPS. Also, BodyKit allows video and audio

transmission and includes an emergency button, in order for the agent to request assistance in

case of an emergency.

The system is then composed by several servers to manage all of the information �ows. The

BodyKit Server is responsible for managing the communications between other servers and

the CCC application, as well as responsible for realizing heavy computing operations that low-

capacity wearable devices and smartphones are not capable of. More detailed, it has to do some

processing related to event detecting, as for example, stress conditions of agents to trigger an

alarm on CCC. Moreover, it con�gures the QoS of the network, because it might be necessary

to prioritize some data �ows. Finally, it is also responsible for part of the authorization and au-

thentication procedures for the communications. Other important server is the MQTT Server.

This is responsible for receiving data from BodyKit Device and managing the data exchanged,

while enforcing authentication of users and also providing access control lists. Under all of these

servers, there is a database to store several con�gurations, security policies and various mission

related information.

As we can see, there are several means of communication on the system, with the most impor-

tant being the communication channel between the wearable device and the smartphone, and the

communication channel between the smartphone and the BodyKit Servers, namely the MQTT

Server. In the 5G Project, for the communication between the wearable device and the smart-

phone, it is going to be used Bluetooth technology, more precisely, Bluetooth Low Energy, given

the proximity of both devices. The communication between the smartphone and the MQTT

Server will be done over 5G, using the MQTT protocol. A detailed analysis of such protocols will

be done in the State of the Art chapter.

15

Chapter 2

2.5 Safety Integrity Levels

On critical systems, specially safety-critical systems, a given function must be done taking in

consideration safety, meaning that the probability of the system entering on an unsafe failure

state must be minimal. However, failures and threats have a given risk, that is determined by

its probability of occurrence and the impact it has, and are also associate with a given function

or component. Given that, it is important that, in a safety-critical environment, such systems

enforce safety, possibly by including a safety layer.

Various standards, such as IEC 61508 [32], de�ned that such safety layer should exist and that

such layer must decrease the safety risk by a certain magnitude, that is related to the operating

environment. That magnitude, or level, is related to the SIL of the system. That magnitude is also

related to the importance of the function to be done, as well as the impact that a unsafe failure

could have.

On that standard are de�ned di�erent SILs, for continuous or high-demand functions, based

on their mode of operation, and the SIL is determined by assessing the probability of a failure

occurring. The identi�cation of the SIL that a given system needs is highly important, not only

because in such environments almost every time it is demanded by regulations and laws, but as

well as for developers and managers, which represents a major help and source of con�dence on

the system they developed or are managing. On the next tables are presented the SILs for both

continuous and low-demand modes, as well as the probability of occurring a failure.

Safety Integrity Level Probability of Occurring a Failure

1 ≥ 10
−6

to < 10
−5

2 ≥ 10
−7

to < 10
−6

3 ≥ 10
−8

to < 10
−7

4 ≥ 10
−9

to < 10
−8

Table 2.1: Safety Integrity Levels on Continuous/High-demand Operation mode systems [32]

Safety Integrity Level Probability of Occurring a Failure

1 ≥ 10
−2

to < 10
−1

2 ≥ 10
−3

to < 10
−2

3 ≥ 10
−4

to < 10
−3

4 ≥ 10
−5

to < 10
−4

Table 2.2: Safety Integrity Levels on Low-demand Operation mode systems [32]

2.6 Chapter Wrap-up

In this chapter we introduced several topics that are going to be important through this research

work. More precisely, we characterized Critical Systems as systems that in a event of a failure,

can endanger human life, the environment, its objective or the business itself. We also discussed

Railway Signalling and Power Distribution, giving a brief introduction on its main objectives and

how they are achieved. Finally, we analysed the concept of Safety Integrity Level and its relation

with safety-critical systems. On the next chapter, we will focus on analysing the communica-

tion protocols used by these systems, the standards they must comply with, and researching for

related work on these areas. From the standards, we will de�ne a set of requirements that each

system must comply with.

16

Chapter 3

State of the Art

In this chapter, we will focus on several important topics that will be approached during this

work. Firstly, we will analyse the communication protocols used on the 5G Project PPS3 use

cases, namely railway signalling systems, power distribution systems and PPDR platforms, un-

derstanding the security properties each one provides. Secondly, we will focus on the require-

ments of each application, either in terms of security or performance, having in consideration the

new open and wireless network scenario, the 5G. Then, using the conclusions from the previous

sections, we will make a gap analysis between the security properties that the communication

protocols already provide, and the requirements that these systems need to comply when used

over 5G. Finally, we will present a review of several works done on this area.

3.1 Communication Protocols

In this section we will present and analyse several communication protocols that are used by the

industry on the three applications. All of these protocols were designed speci�cally to be used on

critical systems, thus, they are focused on assuring the reliability of the communications, tending

to not address security.

3.1.1 Railway Signalling Systems

On the railway signalling systems, the communication protocol is responsible to exchange mes-

sages between the triggers, the LC Controller and the actuators, ensuring that the messages are

properly delivered withing a strict time frame. There are several network protocols that could

ensure the reliability of the communications, although only a few are tailored to operate under

extremely strict time restrictions.

Some of them are RaSTA, UNISIG SUBSET-098 and RSSP-II. On the next subsections, we will

describe in more detail each one of these protocols, focusing on the safety and security properties

they provide.

RaSTA

Rail Safe Transport Application (RaSTA) is a network transport protocol, designed speci�cally to

railway signalling systems. As so, it was developed to achieve and assure the properties inherent

to safety-critical systems, as reliability and resilience related to the network communications.

17

Chapter 3

Main objective of RaSTA is to provide a reliable connection in a safety-critical environment be-

tween two endpoint components.

RaSTA is composed by two layers, inserted between the Application Layer and the Transport

Layer, being Safety and Retransmission Layer and Redundancy Layer, as illustrated in Fig-

ure 3.1. Usually, RaSTA is used over UDP and Ethernet, having in consideration the normal

network composition. These two layers are intended to ensure transmission system require-

ments de�ned on EN 50159 [19]. RaSTA guarantees all four requirements: message sequence,

message timeliness, message integrity and message authenticity.

Application Layer Protocol

RaSTA

Safety and Retransmission Layer

UDP

Redundancy Layer

Ethernet

Figure 3.1: RaSTA Protocol stack [28]

From a top-down perspective, when a RaSTA message is sent, the Safety and Retransmission

Layer is responsible for identifying the clients (system components), inserting the sequence num-

bers on messages, timestamps and a checksum. The clients identi�cation is usually made by

number ID which, with other mechanisms, assures the authenticity of the message. The usage

of sequence numbers, mandatory by EN 50159, has the objective of identifying invalid packets

(forged or errors), as well as monitoring the reception of those packets by the client. In case of

a missing "acknowledgement" from the client relatively to a given sequence number, this layer

retransmit that message. Timestamps enforce the invalidation of old and outdated messages, that

shouldn’t be considered anymore. The message integrity is achieved by the checksum, safety-
code, added to the message payload, allowing the receiver to validate and con�rm it. Ultimately,

this layer is constantly monitoring the connection, using heartbeat messages. The second layer,

Redundancy Layer, has the responsibility of transmitting the message over redundant channels,

for example, over distinct UDP channels. These redundant channels should be physically distinct

in order to provide real transmission redundancy. After the encapsulation of the message on this

RaSTA data units, it is encapsulated on the remaining Protocol Data Unit (PDU)s, such as UDP

and IP.

More precisely, RaSTAs safety-code is an 8B checksum based on MD4 hash function. It uses all

the �elds of the RaSTAs PDU to generate the hash. It is also with the safety-code that RaSTA

allows network separation, by changing the initial vector of MD4 hash function. Using di�erent

initial vectors it is possible to separate RaSTA tra�cs within the same physical channel, as the

applications will only validate packets generated with their initial vector.

From the security point of view, RaSTA allows three major security mechanisms: message hash-

ing, TLS and IPSec. Message hashing is achieved with the safety code, as mentioned previously.

More detailed, RaSTA hashes the entire PDU, containing the headers and payload, with MD4

algorithm, resulting on 16B, being then truncated into an 8B checksum. This provides message

integrity, however, the usage of MD4 algorithm also represents a risk, as it is already considered a

18

State of the Art

weak hashing algorithm, as analysed in [28]. Other major problem on RaSTA security, specially

when moving from a closed and isolated network to an open access network, is the way how

MD4 algorithm is applied. RaSTA allows separation of di�erent messages �ows, for example,

"networks" from di�erent railway stations. This is done, changing the initialization vector of

MD4 based on the network key. This system provides some degree of overall security, however,

if an attacker gains access to such key, it is able to forge valid messages, endangering the authen-

ticity of system messages. In [28] multiple attacks are described to explore such functionality,

demonstrating the weaknesses of MD4, also proposing the usage of other hashing algorithms as

BLAKE2b, SipHash-2-4 and HMAC-SHA256. The authors concluded that the enhancements made

by the usage of those hashing algorithms did not signi�cantly increased the delay on the system,

providing an higher level of security.

RaSTA doesn’t provide any encryption mechanisms, mainly related with the strict performance

requirements, although, one solution that could be applied is the usage of TLS or IPSec, providing

message integrity as well as possibly message encryption.

UNISIG SUBSET-098

The Subset-098 maintained by UNISIG, is a speci�cation on how safe communication between

Radio Block Centre (RBC) should work on railway signalling systems. UNISIG is a consortium

of organizations related to the railways industry, and it was created mainly to the development

of technical speci�cations to ERTMS/ETCS.

This Subset de�nes a safe communication interface, meaning it is responsible for multiple func-

tions related to safe communications on railways. More precisely, speci�es more than safety

layers, specifying communication protocols that can be used, having safety layer as part of the

standard.

The overall architecture for safe communications is very similar to other protocols, being divided

in several modules, each one with a speci�c safety/security-related function. Are de�ned two

major modules: Safe Functional Module and Communication Functional Module.

The Safe Functional Module is responsible for providing defences and protection against several

threats identi�ed in EN 50159, speci�cally for Open Transmission Systems (Category 2 and 3).

In more detail, it addresses Repetition, Deletion, Insertion, Re-sequencing, Corruption, Delay and

Masquerade of messages inserted on transmission system. On the standard, it is stated that in

order to protect from threats, it implements the security/safety measures recommended on EN

50159 [19], as Message Authenticity,Message Integrity, Message Timeliness and Message Sequence.
To achieve this, the module is separated in two sub-modules: Euroradio SL and SAI.

Euroradio SL is responsible for protecting messages against corruption, masquerade and inser-

tion, providing this by inserting MAC and connection identi�er, with source and destination.

As for SAI, it is responsible for protection messages against delay, re-sequencing, deletion and

repetition, providing this by insertion of delay defence, as EC or TTS and insertion of sequence

number. This layer, also provides interfaces for both, application and Euroradio SL, acting as in-

termediate point. It is speci�ed SAI Protocol on this subset as well as how all mechanisms should

be designed.

The Communication Functional Module is responsible for adaptation and transport messages. As

main functions, it is responsible for receiving the protected messages by upper layers and manag-

ing the redundancy of communication channels. It uses Adaptation Layer (ALE) to manage those

channels, specifying how it should be managed, although it is not speci�ed, nether physical links

nor the network architecture used. On this layer, is also de�ned the usage of TCP connections.

19

Chapter 3

In the Figure 3.2 is illustrated the protocol stack of UNISIG Subset-098. There we can see the

several layers previously described and how they related with each other. More precisely, we

can see the usage of ALE on top of TCP/IP protocols to manage the redundant communication

channels and other safety-related layers, as for example EuroRadio Safety Protocol.

(end to end) EuroRadio
Safety protocol

Application protocol (end to end)application
Process

RBC-RBC

ALE protocol

Transport protocol

(end to end) SAI protocol

IP

Transmission system

SAI

SL

ALE

TCP

IP

DLL

TCP

IP

DLL
Datalink protocol

Figure 3.2: UNISIG Subset-098 Protocol Stack [56]

For security aspects, Subset-098 itself, addresses partially key management systems and how

should it be used, however, this standard doesn’t address security directly, leaving it to other

Subsets being used, as for example Euroradio. On Euroradio case, we should note the usage

of 3DES for the creation of authentication tags to the messages sent over GSM-R. In this case,

overall security of the standard could be increased by using a more robust encryption algorithm,

such as AES-CMAC, as recommend by [40] and [28].

RSSP-II

Another safety communication protocol is Railway Signal Safety Protocol-II (RSSP-II). This pro-

tocol is used in Chinese Train Control System, although not very common on European Union.

It speci�es a stack of protocols to be used, as well as functional structure for the exchange of

safety messages. As mentioned for RaSTA, it is mandatory for these kind of protocols to comply

with standards such EN 50159 [19], so this one also addresses both open and closed systems, as

de�ned on that standard.

More precisely, the architecture of RSSP-II is divided in 3 Modules or Layers, the Application, Safe

Functional and Communication Functional Modules, each of them taking care of some aspects

related to safety and security. The �rst layer, Application Layer, is not directly provided by the

protocol stack, but it can be de�ned by the organization, allowing an easier integration of the

safety properties given by the protocol to di�erent devices.

The Safe Functional Module is also divided in two sub-layers: safety application intermedi-
ate sub-layer (SAI) and the message authentication of the safety layer (MASL). SAI has two main

20

State of the Art

functions: adding mechanisms against delay events and sequence numbers (SN) to the messages.

RSSP-II provides delay defences recurring to EC or TTS, as they allow to identify old messages.

As to Sequence Numbers, they are used with the same objective as in RaSTA, in order to detect

insertion, deletion or repetition of a message. The Message Authentication of safety Layers is pro-

vided by including on the message both identi�ers of source and destination, as well as a MAC,

in order to prevent message tampering. This layer generates the MAC using the 3DES.

The last layer, Communication Functional Module, is responsible for the transition between

safety-related layers, incorporating ALE as the adoption protocol. Usually, this protocol runs

over TCP/IP, also allowing a good integration with common and well known protocols and equip-

ment’s. Finally, it is stated that RSSP-II has SIL 4.

As mentioned before, this protocol uses 3DES, instead of RaSTA’s MD4, to generate the MAC tag

appended to messages. This might represent an improvement, although it would still be better

to use a more robust algorithm, such as those recommended before. In addition, on this research

work, we found lack of information on the way that symmetric keys are managed on the protocol

context, what could represent a serious security problem.

3.1.2 Power Distribution Systems

An interesting step to the management of power distribution systems is to move on a distributed

self-healing solution, and, in order to do that, we have to consider the sharp increase of the num-

ber of nodes on the grid. As mentioned before, nowadays, the network use dedicated channels,

what makes it very expensive and complex to use a distributed solution. Because of this, shifting

to IP-based networks is becoming very interesting in the area [26] [58]. On the context of 5G

Mobilizer project, the usage of public 5G network as transmission system, will simplify the way

we connect new devices, however, there are some important points to be taken in consideration.

The distributed self-healing solution on these systems requires that a huge amount of nodes

are be able to communicate with each other, as on a peer-to-peer communication. With public

5G network, it is simpli�ed, however, new security concerns arise. If we try to consider the

usage of deployed dedicated network on the �eld, the amount of resources needed to allow this

intercommunication would be very high, making this solution unfeasible.

Other important aspect is the network performance. On a distributed self-healing solution, it is

required real-time communication between the nodes, with high availability and low latency.

Given the fact that such systems are critical systems, and more precisely, safety-critical, it is

important to assure safety. One of the main points where safety might be compromised is by

"blinding" some nodes, not allowing the communications to �ow. Such situation may happen

due to an attack or even by a natural event. So it is very important to enforce safety on the com-

munications. Nowadays are used several protocols to address this problems, where R-GOOSE

and DNP3 are two of them, and will be described on the following subsections.

R-GOOSE

Routable-Generic Object Oriented Substation Events (R-GOOSE) is an extension of the Generic

Object Oriented Substation Event (GOOSE) protocol which provides fast and reliable mechanisms

to provide intercommunication of substations, by means of multicast or broadcast over Ethernet

[5]. GOOSE is de�ned on IEC 61850 [31]. As an extension of GOOSE, it provides the same main

functions but with the possibility of being used over IP based networks.

The main objective of both GOOSE and R-GOOSE is to deliver event data to other nodes on a fast

21

Chapter 3

and reliable way. In order to achieve this, the protocol uses multicast and broadcast mechanisms.

GOOSE messages are basically data sets of grouped data, as for example in a (status,value) format,

that are transmitted within a period of 4 milliseconds.

There are various mechanisms applied to achieve the various requirements of the operation en-

vironment. First of all, the GOOSE messages are embedded into Ethernet packets, and then a

publisher-subscriber scheme is used to deliver the messages. For R-GOOSE, those ethernet pack-

ets are encapsulated into layer 3 IP packets. As other mechanism, it implements VLAN tagging,

as in IEEE 802.1Q, allowing virtual separation and message prioritization. Another require-

ment addressed was the retransmission of messages. With safety as a priority, retransmission of

unreceived messages is a must.

As for the messages itself, they are event driven. As for security, these messages are not authen-

ticated, as for the original standard, although on IEC 62351 [33], authentication mechanisms

are de�ned to GOOSE messages, however, it is stated that should not be applied if they put in

danger the transmission performance requirements. Also, the subscriber do not acknowledge

the messages received. GOOSE messages contain a sequence number and a status number. These

�elds are meant to prevent replay and insertion/deletion attacks. Finally, to ensure the reception

of messages, sent messages are retransmitted until other event is raised.

As illustrated in Figure 3.3 there are several R-GOOSE header �elds. From there, we can note the

Security Information �elds, containing data relative to the key used by the security algorithms

and the Signature �elds, holding the HMAC tag of the packet. The TimeOfCurrentKey is a 4-

bytes long �eld representing the time in seconds since "epoch". The �eld TimeToNextKey is 2-

byte long �eld containing the number of minutes until a new key is used. The �rst byte of the

Security Algorithms �eld contains the encryption algorithm used, while the second byte contains

the algorithm used to generate the MAC. Finally, the KeyID �eld contains the information that

identi�es the key used, and is set by the Key Management System.

In terms of security, GOOSE mainly addresses data integrity and authentication, on default be-

havior. This is done by extending PDU with an authentication code, generated by a SHA256

hash using RSA. There is also the need of preinstall the X.509 certi�cates on system nodes, as

certi�cate distribution is not detailed. Given the performance restrictions, it is not included an

encryption algorithm by default, however it is possible to use end-to-end protection as TLS, pro-

viding extended security mechanisms. Although, on that case, it is necessary to make sure that

proper ciphers are used, in order to not compromise performance of system and time constrains.

In [36], Almenares et al. analysed the di�erent ciphers proposed on IEC 61850 [31], and also the

usage of more robust algorithms and their impact on performance, concluding that is possible to

use stronger algorithms without compromising performance. There are also other possibilities

to secure these communications such as the usage of IPSec tunneling, enabling data integrity,

authentication and con�dentiality.

DNP3

Distributed Network Protocol 3 (DNP3) is a communication protocol stack, used to provide com-

munication between SCADA system components. It is a widely used by US power distribution

sector. It is an IEEE-1815 standard, mainly used for substation automation and control systems

communication, within energy distribution context, as power and smart grids. This means that

it is intended to provided means of communications between stations, remote telemetry units

(RTUs) and IEDs.

In a simple way, DNP3 has two main operation modes. There are de�ned master stations and

the outstations. Master stations are control points to the system, while outstations are the ones

22

State of the Art

Figure 3.3: R-GOOSE PDU [22]

controlled by master stations. The �rst operation mode, is when master stations requests data

or send commands to outstations, working on a basic Master-Slave architecture. The second

operation mode is when an event occurs in a given outstation, and it noti�es the master stations

without the need of a request. Given this, there are various network architectures that can be

implemented: point-to-point, multi-drop and hierarchical. Point-to-point architecture is the

simplest one, where the system is composed by a master station that can send commands to a

speci�c outstation, as a unicast communication. Multi-drop architecture is when a master station

can communicate with multiple outstations. In this case, the communication can be done by a

multicast or broadcast communication. On a hierarchical architecture, one station can be a master

station and, at same time, an outstation.

This is a layered protocol, based on Enhanced Performance Architecture (EPA) of IEC 60870-5
[34]. EPA is composed by Application Layer, Data Link Layer and Physical Layer, although

DNP3 added Pseudo-transport Function Layer between application and data link layers.

The Application Layer is composed by DNP3 user software, providing a set of functions, such as

23

Chapter 3

the creation of requests and responses, specifying device identi�cation in terms of being a master

or a outstation, providing database storage and also cryptographic security mechanisms. Pseudo-
transport Function Layer is the intermediate layer between application and data link layers. It is

responsible for the �rst treatment of upper layer messages, mainly dividing data into smaller

pieces. The Data Link Layer is responsible for various functions, such as retrieving data by

polling classes and objects, and other safety/security functions, such as source and destination

identi�cation, frame synchronization, �ow control, link status, error detection and correction by

means of Cyclic Redundancy Code (CRC).

DNP3 is then used on top of a variety of other protocols, such as TCP/UDP and then IP, however it

can also be used over serial communications. When used over TCP/UDP - IP, DNP3 data packets

are encapsulated on respective protocol packets and transmitted as usual.

As a security enhancement of DNP3, on the application layer, exist DNP3-SA, standing for DNP3-

Secure Authentication. This is a security mechanism adopted from IEC 62351 [33], and its main

function is to ensure some security properties on messages exchanged on network. This mecha-

nism generates a MAC tag of the message and appends to it, providing security properties such

as origin authentication and data integrity. In order to do this, an HMAC-based algorithm is used,

such as SHA-HMAC or AES-GMAC (Advanced Encryption Standard - Galois Message Authen-

tication Code). Inherent to these algorithms, exists an encryption scheme and key management

system.

3.1.3 PPDR Platforms

In this subsection, we will present and analyse the communication protocols used within the

context of the 5G Mobilizer Project for the BodyKit application, namely those used to enable the

communications between the wearable device and the smartphone, the Bluetooth Low Energy

Protocol, and the protocol used to enable the communications between the smartphone and the

MQTT Server, the MQTT Protocol.

Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a smaller, highly optimized version of common classic Bluetooth

technology, being very di�erent on its core speci�cation and design goals. The original main

focus of BLE was to provide a radio standard with low power consumption, low cost and low

complexity, providing a great data exchange framework, capable of running on several low ca-

pabilities devices.

BLE is a protocol stack, being divided in several layers. We can divide the stack on three main

groups: Application, Host and Controller. The Application group is the user application that

provides an interface to the Bluetooth protocol stack, normally designed with a speci�c goal.

The Host is composed by the upper level layers of protocol stack. The Controller represents the

lower level layers of protocol, such as physical layer, the radio.

This technology also have some limitations. Mainly the data throughput can be considered lim-

ited, when compared to other wireless communications technologies. This limitation is inherent

to the protocol, but it can decrease given the low capabilities of the devices where this protocol

is supposed to run. Another possible limitation is the operation range, although, it is not really

intended for this technology to have a great range. In theory, this technology is capable of trans-

mitting data up to 30 meters, however, a range between 2 to 5 meters is a more realistic value,

given all the adverse possible conditions on real scenarios. Another interesting point of BLE

is the two network typologies it allows: Broadcasting and Connections. Broadcasting is when

24

State of the Art

a sending device broadcast data to several observer devices. On the other hand, Connection is

when a device establishes a connection directly with other device and then data is exchanged.

This technology uses Secure Simple Paring to connect and paring two devices. This is done by

exchanging a 6-digit code, using Elliptic Curve-Di�e-Hellman algorithm. It also uses a shared

secret, with the starting point on public key of devices. However, this method has some prob-

lems. As shown on [48], it is prone to Man-in-the-Middle attacks, being possible to reveal the

shared secret by eavesdropping since the very beginning of paring. On a general view, BLE does

not provide user authentication, point-to-point security, or non-repudiation. However, it is pos-

sible to use upper layer mechanisms to enhance several security properties, such as encryption,

authentication and integrity, but such protocols and algorithms were not designed to run on

low-capability devices, meaning it won’t be able to work on IoT devices and comply with per-

formance requirements. Finally, there is also other major problem related with this technology,

being related with denial of service attacks. There are several attacks that can lead to a denial of

service on this stack, compromising the entire systems using it.

MQTT

Message Queuing Telemetry Transport (MQTT) is a protocol for message exchanging that was

designed with the objective of being light-weight. This protocol is based on a publisher-subscriber

architecture. As mentioned before, it was designed to be used on low-capabilities devices, as well

as minimizing the bandwidth usage and computing capabilities of devices, at the sime time that

still provides some reliability.

In a more detailed way, MQTT is composed by two types of components: brokers and clients.

An MQTT broker is the server that receives messages from several MQTT clients, and that then

re-sends it to the respective clients. A client is a device that is connected to the broker and can

send and received.

MQTT uses an hierarchical architecture to organize messages and data that receives. This means

that, clients subscribe "topics", and publishers send data associated with a given "topic". When a

broker receives a message for a given topic, it transmits this data to all client that have that topic

subscribed. This allows an high scalability of the system. This also means that, a client device

can send data, as for example, sensors data, and at same time receive commands from a CCC.

There are various con�guration options provided by MQTT and related to the way that topics

and message transmission works, allowing several types of noti�cations. It is also possible to

con�gure redundant brokers, that clients should connect to in case of failure.

The basic MQTT protocol, doesn’t provide much security by itself, as it transmits connection

credentials in plain text and does not provide any authentication mechanism. Although, is the

possibility to use TLS to provide encryption with username and password protection or certi�-

cates. However, the majority of IoT devices may not have the capabilities to run such algorithms.

Other important point related to security is that, with the publish-subscriber and broker archi-

tecture, clients don’t know each other IPs, not even what devices/users are connected. There are

some research works focused on the usage of lighter ciphers to provide some degree of security

on a IoT environment. Among those ciphers are MISTY1 and KASUMI.

3.2 Standards and Requirements

The goal of this section is to present the deep analysis done on several standards that each ap-

plication must comply with. From this analysis, we collected and de�ned a set of requirements

25

Chapter 3

that each application should meet, so that later we can determine what security properties we

need to introduce and the performance restrictions we must not exceed.

Firstly, we will review the most important standards for each application, following a section

where we compile that analysis and present our set of requirements.

3.2.1 Railway Signalling Systems

In the world of railway signalling systems, there are several entities that actively produce and

disseminate standards, but in the European Union the responsible entity is the European Com-

mittee for Electrotechnical Standardization (CENELEC). This committee is responsible not only

for the standardization of railway systems, but for general eletrotechnical environment, working

together with multiple organizations, in particular with IEC. These standards primarily address

security aspects of the system, for both communication networks and for di�erent components

of the system.

EN 50159

This standard is titled "Railway applications - Communication, signalling and processing
systems - Safety-related communication in transmission systems" [19], and is therefore

responsible for indicating the basic requirements to be taken into account in safety-related and

not safety-related communications of the system, but that may interfere with components that

are safety-related. This is important because in the standard it is stated that if a safety-related
electronic system exchanges information between various locations, then the transmission sys-

tem becomes part of the overall safety-related system, so communication will need to be secure

from end-to-end, complying with this and others standards, notably EN 50129 [20]. Nevertheless,

this does not mean that we must apply "all" the security controls and techniques over the net-

work, because, given the environment, there is the need to balance security against performance

and safety.

The requirements to which the system must comply can still be divided in two parts, the safety-
related, which have to be taken into account in the development of the equipment itself, or can

be achieved through additional components placed on the transmission system and managed by

EN 50129 [20] standard, and the communication-related requirements, with the goal of ensuring

technical and functional safety, which are addressed in this standard.

The standard begins by stating that it is important to take in consideration the overall architecture

of the system, as it can be an open or closed system, which may or may not contain components

that are not safety-related, or which are not only present, such as a maintenance or diagnostic

device. With this in mind, three categories are de�ned for communications system architecture:

• Category 1 - Closed system, where the number of components is �xed and known, there is

no risk of unauthorized access and the physical characteristics of the system (transmission

medium, environment, etc.) are �xed over the life cycle of the system;

• Category 2 - Open system, however the risk of unauthorized access may be neglected; the

number of system components/users is not �xed, and is probably not known, and it may

be possible to connect new components, whether safety-related, not safety-related, or even

components that are not related to the system at all; the transmission medium may be of

any type and may be in�uenced by external factors;

26

State of the Art

• Category 3 - Fully open system, where unauthorized access is possible; system charac-

teristics as Category 2, however the di�erence is on the risk of unauthorized access, as on

this category cannot be neglected;

This classi�cation is very important to understand which threats the system may be subject to,

and the potential risks associated with them. Therefore, this classi�cation is made taking into

account three general principles/criteria:

• Knowledge about the network topology, namely the number and type of components, con-

sidering whether it is �xed and constantly known;

• Knowledge of the characteristics of the transmission system, including the transmission

medium as well as the environment where it is deployed, taking into consideration whether

it is �xed and known. As an example, we may think about the usage of copper cables, which

will be a known transmission medium and also constant, in contrast to the use of mobile

communications medium, which is provided by an external entity (ISP, telecommunica-

tions operator, etc.);

• The risk of unauthorised access to the system, whether or not it can be neglected;

The standard identi�es several threats that may be present such as broken cables, antenna mis-

alignment, hardware failures, thunderstorms, �res or earthquakes, or intentional attacks to the

system, such as wire-tapping, deliberated and unauthorized changes to the system/hardware or

unauthorized insertion of system messages. From this set of potentially harmful events, they

have de�ned the following threat categories:

• Repetition - Replay of an old message, whether it was deliberated or due to a system

component failure;

• Deletion - Elimination of a message before it is delivered to the recipient;

• Insertion - Insertion of an unauthorized message in the system;

• Re-sequencing - Changing the sequence number of a message; This could be caused

by a system error (hardware failure), or by an external agent, causing the message to be

considered invalid;

• Corruption - Changing some bits during message transmission, causing message corrup-

tion;

• Delay - Delay in message delivery; It can be caused by normal network congestion (not

being an attack), or due to and external agent (attack);

• Masquerade - When an attacker impersonates a legitimate component of the system and

directly interfere with it, leading to potentially unsafe situations;

Table 3.1 shows the relationship between the system categories and the threats associated.

To mitigate those threats, a set of defenses are suggested, in which their application is directly

related to the system category:

• Sequence number

• Time stamp

27

Chapter 3

Table 3.1: Relationship between system categories and threats [19]

Category Repetition Deletion Insertion Re-sequence Corruption Delay Masquerade

Cat. 1 + + + + ++ + -
Cat. 2 ++ ++ ++ + ++ ++ -
Cat. 3 ++ ++ ++ ++ ++ ++ ++

- Threat can be neglected.

+ Threat exists, but rare, weak countermeasures su�cient.

++ Threat exists; strong countermeasures required.

• Time-out

• Source and destination identi�ers

• Feedback message

• Identi�cation procedure

• Safety code

• Cryptographic Techniques

Finally, it should be noted that among the defenses presented, the standard points out that if

there is a possibility of unauthorized access, such as in the case of Category 3 systems, additional

security measures must be added, as conventional security techniques and applying speci�c
cryptographic techniques, for each speci�c case.

In the context of 5G Mobilizer Project, we are shifting the railway signalling system from a closed

or semi-closed network, to a fully-open network, therefore, we can categorize it as a Category 3

System. Consequently, we must consider that all of the threats before mentioned exists. Firstly,

we have to consider general security requirements of safety-critical systems, namely the high

availability of the system. This is one of the most important requirements because if, for any

reason, the system is unavailable or it is not capable of receiving or sending information, it will

drastically increase the risk of occurring an accident. More related to railway signalling, in a

Category 3 system, unauthorized access must be considered meaning that message authenticity

is a must. Allied to message authenticity we have to consider message integrity, in order to

prevent message corruption that could lead to system manipulation. Common to other critical

systems, message timeliness is also extremely important, as we need to have low latency and

low response time for message exchange. Finally, in this speci�c context, it is also important to

ensure the messages sequence. An "out of order" message, could lead to the system on entering

in a erroneous state, as the information inside that message may already be di�erent from the

reality, even if that message came within a valid time frame.

On the Table 3.2 we present a summarized version of the requirements for railway signalling

system, focusing on the communication channel.

3.2.2 Power Distribution Systems

In terms of standards, there are several related to the system’s design as well as for protocol

stacks to be implemented, as for example IEC 61850 [31], that describes a protocol stack to

be used for communications on power distribution systems, with R-GOOSE being one of them.

Related to security, exists one major standard, IEC 62351 [33], that speci�es several mechanisms

28

State of the Art

Table 3.2: Railway Signalling System requirements and their description

Requirement Description
System Availability The system must be available any time it is required, even if a

given communication line is down

Message authenticity Must be possible to identify and con�rm who is the message

sender

Message integrity Must be possible to verify if the message received did not

su�ered any change since it was sent (either by natural or

unnatural causes)

Message timeliness The messages should not be accepted if are not "fresh" but also,

we should guarantee the low latency of communications

Message sequence Messages older than the last accepted message should not be

accepted

that should be added on top of other standards, as for example IEC 61850, and protocols, such

as R-GOOSE. On the next subsection will be described IEC 62351, specially parts related with

protocols that are going to be used, such as R-GOOSE, and mechanisms related with network

and communications.

The development of these standards is done by International Electrotechnical Commission (IEC),

that created a technical committee, IEC TC57, with the responsibility of creating standards for

data exchange and transmission in energy and other systems where this kind of guides can also

be applied, such as SCADA and distributed automation systems.

IEC 62351

This standard was developed to address speci�cally security issues on systems and protocols used

on power distribution environment, mainly those developed by TC57. It speci�cally addresses

security related on the data exchanged between several components of the system, trying to

achieve security properties such as con�dentiality, integrity, non-repudiation and availability. A

relevant aspect of the standard is that it gives speci�c technical details on the security mecha-

nisms recommended.

The standard is divided in ten parts, each one addressing a speci�c part of the overall system,

as for example protocols based on TCP or protocols described on IEC 61850, as R-GOOSE. On

this section, the standard will be described, pointing out the most relevant parts to this research

work.

The �rst mechanisms provided are for TCP/IP based protocols. For this protocols, the standard

recommends the usage of Transport Layer Security (TLS) with X.509 certi�cates. This provides

two main properties: authenticity and integrity of data, preventing data tempering as well as im-

personating or message insertion, mainly mitigating man-in-the-middle attacks. Other property

that can be ensure is con�dentiality. This mechanism intents to provide secure communications

from point-to-point, and device authentication. From a technical perspective, the standard gives

support to revocation and validity analysis of certi�cates. More related to ciphers used, it does

not states what to use, although, it requires the support of RSA and DSS for digital signature

algorithms, as well as specifying the usage of 2048 bit keys with RSA. For the key-exchange, it

requires support to Di�e-Hellman, with 2048 bit key, however, 1024 keys could also be supported

for backwards compatibility.

29

Chapter 3

The standard also addresses security for 60870-5 and similar standards and protocols, such as

DNP3. For these, it is recommended the usage of a challenge-response authentication mecha-

nism, using HMAC with pre-shared keys. This mechanism aims to ensure data integrity.

Other protocol inside the scope of this standard is R-GOOSE and IEC 61850, namely Sampled

Values (SV). In this case, there are usually strict requirements related to the performance of the

system, what makes di�cult to implement good security mechanisms. When it is possible, it is

recommended to add an RSA-based signature to the PDU, ensuring data integrity of those frames.

Also, if possible without compromising performance requirements, could be applied encryption

mechanisms.

The last important part is related with access control to the system, stating that is important to

specify a role-based access control, with minimum privilege principle and pre-de�ned rights.

There are some analysis already done on this standard, such as [44], where Schlegel et al. point

out some restrictions on the standard. As for the TCP/IP based protocols, it does not specify the

cipher used by TLS, opening the possibility of usage of insecure algorithms, such as RC4. Also,

the standard allows the usage of TLS without encryption, what can always be seen as a downside.

For IEC 60870-5 and alternatives such DNP3, it does not addresses encryption, not providing con-

�dentiality to the communication. Also, [44] points out a potential problem of this mechanism,

where an attacker can make the system perform denying actions, such as session keys invalida-

tion, allowing a Denial-Of-Service to be successful. Finally, for the R-GOOSE and IEC 61850, the

recommendations might be very di�cult to implement without a�ecting performance. Usage of

RSA won’t be possible on application with 3ms response time restrictions, as demonstrated by

[21] and [24]. Although [44] proposes the usage of HMAC, that can be implemented in hardware,

or even HMAC implemented in software, given that it computational overhead is signi�cantly

minor and complies with time constrictions.

IEC 61850

The analysis of the performance requirements of this system plays an important role on this

work, as adding extra security mechanisms will certainly add delay to the communications, being

necessary to assess the time window that exists. These requirements are established on the �fth

part of IEC 61850 standard [31], addressing specially the performance requirements for R-GOOSE

messages.

The standard speci�es a maximum message transfer times, given the type of message and the

application. The transfer time is the complete transmission of a message, including time that

devices take to handle it at both ends, meaning it starts when the sender puts some data on the

transmission stack, until the moment the receiver retrieves it from its transmission stack. Figure

3.4 illustrates transfer time.

Given this, transfer time includes processing time in both physical devices (ta and tc) and trans-

mission time over the transmission system (tb).

There isn’t a single transfer time requirement for transmitting messages, as di�erent applications

and functions inside the system might have di�erent necessities. Messages are divided in types,

where they are grouped by similar performance needs. Some message types are also divided in

performance classes, as, depending on the context of the event, it may require di�erent timings.

There are the following message types de�ned:

• Type 1A - Fast Messages - Trip - Example: Circuit breaker commands, States

• Type 1B - Fast Messages - Others - Example: Circuit breaker commands, States

30

State of the Art

Communi-
cation
processor

f1 f2

Physical device PD1 Physical device PD2

Transfer time t = ta + tb + tc

ta tb tc

Communi-
cation
processor

IEC 1918/03

Figure 3.4: Transfer time representation [31]

• Type 2 - Medium Speed Messages - Example: RMS values from Raw Data Messages

• Type 3 - Low Speed Messages - Example: Con�gurations, Non-electrical measures

• Type 4 - Raw Data Messages - Example: Digital electrical measurements

• Type 5 - File Transfer Functions - Example: Data for recording

• Type 6 - Time Synchronization Messages - Example: IED internal clock synchronization

• Type 7 - Command Messages with Access Control - Example: Messages with Secure Pro-

cedure

On the Table 3.3 are described the transfer time requirements for each message type and perfor-

mance class.

Table 3.3: Table of Maximum Transfer time for each Message Type and Performance Class [31]

Type P Class Max. Transfer time Application

1A

P1 10ms Fast M. - Trip

P2/3 3ms

1B

P1 100ms Fast M. - Others

P2/3 20ms

2 - 100ms Medium S. M.

3 - 500ms Low S. M.

4

P1 10ms Raw Data M.

P2/3 3ms

5 - ≥1000ms File Transfer

6 - - Time Sync.

7 - - Control Commands

For the scope of this work, we will focus on both Type 1A and Type 1B messages, as they are

the ones transmitted by R-GOOSE protocol.

The same way as in the railway signalling systems, in the context of 5G Mobilizer Project, we are

moving to fully or semi-open networks, therefore, several new security threats arise. Again, as a

critical system, we have to consider availability as a main requirement for the system and for the

31

Chapter 3

communications. From the standard IEC 62351 [33], we understand that message authentication

and message integrity is also a must. Obviously, as we may face unauthorized access we must

ensure that only valid messages, that were sent by authorized devices will be accepted, as well

as only messages that were not tampered are accepted. In the same standard, we can see that

con�dentiality should also be considered, specially if the system uses open networks, although,

this should not compromise the timeliness and low latency/response time of the system. Finally,

from the standard IEC 61850 [31] we can specify the exact values that this system has to comply

with in terms of latency. The values, as shown on the Table 3.3, are between 3ms and 10ms,

meaning that very low latency is required on the communications. This requirement is of partic-

ular importance for testing and validation of our solution, as performance can not be decreased

to a latency higher than 3ms.

On the Table 3.4 we present a summarized version of the requirements for power distribution

systems, focusing on the communication channel.

Table 3.4: Power Distribution System requirements and their description

Requirement Description
System Availability The system must be available any time it is required, even if a

given communication line is down

Message authenticity Must be possible to identify and con�rm who is the message

sender

Message integrity Must be possible to verify if the message received did not

su�ered any change since it was sent (either by natural or

unnatural causes)

Message
con�dentiality

Must be impossible to an unauthorized user understand the

contents of the message, the messages should be encrypted

Message
timeliness/very low
latency

The messages should be delivered in the minimum time

possible, never exceeding the maximum Transfer Time of

3ms/10ms (depending on the scenario)

3.2.3 PPDR Platforms

The analysis of the requirements for PPDR Platforms were not made based on standards, instead

was done based on several documents related to the 5G Mobilizer Project, specially the document

"Deliverable D3.2 and D3.3" [47], containing the security requirements for this system, and the

analysis of the system and it’s communications.

Again, as a critical system, one of the major requirements is availability. If, for any reason, a part

of the system or even the communication channel became unavailable, the entire mission and the

lives of the assets may be endangered. This system will use two types of communications: BLE

and 5G networks. In both of them, the communications are prone to man-in-the-middle attacks,

leading us to the message integrity and message authentication requirements. At the same time,

message con�dentiality could also be included as open-networks are used, although this should

not be a priority as the devices used have low capacities and should be considered lightweight

methods. Finally, another requirement is mentioned on [47], privacy, although not having max-

imum priority. This system directly deals and exchanges data collected from sensors belonging

to operations on �eld, therefore data privacy should be preserved, but only on scenarios where

it does not penalize signi�cantly the overall performance of the system.

On the Table 3.5 we present a summarized version of the requirements for PPDR platforms,

32

State of the Art

focusing on the communication channel.

Table 3.5: PPDR Platform requirements and their description

Requirement Description
System Availability The system must be available any time it is required, even if a

given communication line is down

Message authenticity Must be possible to identify and con�rm who is the message

sender

Message integrity Must be possible to verify if the message received did not

su�ered any change since it was sent (either by natural or

unnatural causes)

Message
con�dentiality

Must be impossible to an unauthorized user understand the

contents of the message, the messages should be encrypted

Data privacy The data inside each message should not be associate with the

individual who generated it

3.3 Gap Analysis

In this section, we will use the analysis done on the previous two sections to determine the

gap between what protocols that will be used already provide, in terms of security, and what

will be needed, given the shift to 5G technology. On the context of 5G Mobilizer Project, the

communication protocols are already de�ned, being RaSTA for the railway signalling system,

R-GOOSE for power distribution system, and BLE and MQTT for the BodyKit Platform. For the

power distribution system, the already deployed mechanisms taken into account were based

on the practical implementation we had access, and from the knowledge shared by other 5G

Mobilizer Project partners, more precisely, EFACEC.

The main di�erence we can see from the usage of 5G networks on the speci�ed scenarios, is the

shift from a closed and isolated network, to an open network, being prone to several new types of

attacks, namely those related with unauthorized access and eavesdropping. It is also important to

note the di�erent security requirements of each application, where, for example, con�dentiality

is less relevant than message integrity or system availability. For a proper gap analysis we need

to have in consideration the security requirements that these scenarios demand, already having

in consideration the usage of 5G networks, and the security mechanisms already in place.

In a general overview, the system availability is a requirement common to all of the critical

systems and it is already addressed in all of our scenarios. RaSTA, R-GOOSE and PPDR plataform

communication protocols, already implement mechanisms to enforce high availability, as for

example, transmission channel redundancy and message acknowledgements.

For the railway signalling system, we summarize the mechanisms that RaSTA already provides

and the requirements each one addresses in Table 3.6. From the table, we can see that all of the

requirements have at least one mechanisms deployed, although, RaSTA and these mechanisms,

were developed for closed networks and, when deployed on open networks, these mechanisms

don’t guarantee the compliance with the requirements. More precisely, the message authenticity

is ensured on closed networks by source and destination identi�ers inserted on the packet, as

well as the procedure identi�cation. However, if an attacker captures a packet, he can easily

craft valid source and destinations [28]. As for the message integrity, the Safety Code is an

MD4 hash code of the entire PDU, providing integrity protection on close networks, but on open

networks an attacker can easily tamper with the packet and update the safety code. The same

33

Chapter 3

could be applied to message sequence, as sequence number of the message can easily be changed

to perform several types of attack, invalidating valid messages, for example [28].

Table 3.6: Relationship between deployed RaSTA mechanisms and security requirements

Requirement Mechanisms E�ective on
Open Networks

System Availability Redundant Communication Channels Yes

Message authenticity
Source and destination identi�ers

Identi�cation procedure

No

Message integrity Safety Code No

Message timeliness
Timestamp

Time-out

Yes

Message sequence Sequence Number No

On the power distribution systems, we will make this analysis comparing the mechanisms that

are common nowadays on the industry (knowledge shared by EFACEC), with the requirements

elaborated before. Table 3.7 summarizes and relate the deployed mechanisms with the security

requirements. Although in several standards related with R-GOOSE there are recommendations

to add security measures, namely for data authentication and integrity, a vast majority of the

implementations don’t support that. Those standards, as IEC 62351 [33], recommend the usage

of asymmetric cryptography (RSA), which compromises the very low latency requirement. In

terms of con�dentiality, the problem is similar, as the standard also proposes the usage of en-

cryption mechanisms including asymmetric cryptography, although it will severely compromise

the system’s performance.

Table 3.7: Relationship between deployed R-GOOSE mechanisms and security requirements

Requirement Mechanisms E�ective on
Open Networks

System Availability
Redundant Communication Channels

Message Retransmission

Yes

Message authenticity None No

Message integrity None No

Message con�dentiality None No

On the context of PPDR platforms and more precisely BodyKit, we analysed the gap only for the

protocol that will be used over 5G, that is MQTT. From the document [47] and the protocol anal-

ysis, we can verify that MQTT already allows the integration of SSL/TLS on its communications,

although it might be heavy for the devices used. Considering this possibility, we can state that

this protocol already addresses message authentication, message integrity, with the possibility

of achieving message con�dentiality. As for data privacy, MQTT does not includes any mecha-

nisms to ensure such property. Table 3.8 summarizes the requirements and mechanisms already

deployed for PPDR platforms.

The Table 3.9 presents the requirements for the applications, including it’s priority accordingly

to the analysis previously done, and identify which requirements are already addressed by each

protocol. From the analysis of Table 3.9,we can see there is a set of common requirements among

the three systems. It is important to note that the top priority requirements are also clearly identi-

34

State of the Art

Table 3.8: Relationship between PPDR Platform over-5G protocols (MQTT) deployed mecha-

nisms and security requirements

Requirement Mechanisms Open Network
e�ective

System Availability
Redundant Communication Channels

Message Retransmission

Yes

Message authenticity SSL/TLS Yes

Message integrity SSL/TLS Yes

Message con�dentiality SSL/TLS Yes

Data Privacy None No

Table 3.9: Application’s requirements and current state

Requirement

Application

Railway Signalling Power Distribution PPDR Platform

System Availability 5 5 5

Messages Integrity 5 5 5

Messages Authentication 5 5 5

Messages Con�dentiality 4 4 4

Messages Sequence 5 - -

Data Privacy 1 1 3

Already achieved

Not totally achieved

No controls deployed

Not applicable

1 - Lowest priority ; 5 - Top priority

�ed, being System Availability, Message Integrity and Message Authentication. Given the

very low latency requirement and the heavy computational capacity that encryption requires,

including encryption on this systems may not me possible, although, we consider it as an im-

portant requirement when shifting to open networks. Lastly, Data Privacy can be neglected in

both railway signalling and power distribution systems, given the type of data that RaSTA and

R-GOOSE messages exchange. However, in PPDR platforms, it should be considered as relevant,

as it exchanges data directly related with the �eld operationals. The "color classi�cation" of the

cells, re�ects the implementation or not of security mechanisms that enforce such requirements,

allowing us to understand what is needed in each context. Our objective is to achieve the top pri-

ority requirement that are not met yet, being Message Integrity and Message Authentication,

followed by Message Con�dentiality.

3.4 Security in Critical Systems Communications

There are several work already done on this areas that are important mention and to have in

consideration while developing this research work. Firstly, we will review work done on securing

railway signalling systems, related to analysis and enhancements proposed to speci�c protocols,

such as RaSTA, or system architectures/solutions that aim to improve the overall security of the

system. Then, will focus on security-related work on the context of Power Distribution systems,

35

Chapter 3

namely R-GOOSE and its security, GOOSE protocol and several security analysis that identi�ed

multiple vulnerabilities, research assessing the overall security of IEC 61850 [31] standard, which

GOOSE is part of, and several proposals to enhance security in these topics.

Security in Railway Signalling Systems

On the railway signalling security context, some projects and research work were conducted.

Firstly, in 2003, Smith et al. [52] introduced security as a problem capable of generating safety

issues, raising the awareness to the need of implement security mechanisms on these systems.

They analysed railway systems, mainly railway signalling system, identifying several vulnerabil-

ities and proposed a set of countermeasures, aiming to preserve Authentication, Con�dentiality

and Integrity of the system. Those proposes were made having in consideration the develop-

ments of that time, mainly by means of cryptography functions. They also used a real project as

"testbed" for their proposals, namely the Australian Rail Network.

In 2015, American Public Transportation Association (APTA) published a white paper on Attack
Modelling [4] on the context of Securing Control and Communications Systems in Rail Transit

Environments, followed by several other recommendations. As outcome of the work, they iden-

ti�ed as major properties to have in consideration the integrity and availability of the system.

They also speci�ed that asset characterization should be done based on the importance it has

from a safety-critical perspective of the system.

Other project conducted on this topic is Cybersecurity for Critical Infrastructures (CYSYS). CYSYS

is a German group composed by industrial and academic entities, which collaborate to identify,

investigate and resolve problems related to critical infrastructures, with railway infrastructure

as one of them. The project is still on going but some proposals already were made, as the intro-

duction of the concept of the security shell to the interlocking and signalling systems [23].

Previously, in 2012, started the project SECRET (SECurity of Railways against Electromagnetic

aTtacks). Although this research work isn’t directly related to the focus of our work, it is inter-

esting to mention as another project that addressed the information and computer security on

the railway signalling context. This work [55] analysed attacks and vulnerabilities that could

be exploited by electromagnetic interference to the European Rail Tra�c Management System

(ERTMS), raising the awareness to cybersecurity on the area.

Another project related to SECRET is ARGUS [35]. ARGUS was focused on railway signalling

systems. The main objective was to de�ne best practices on how to apply security to railway

signalling systems. They stated that in order to design a good security solution is necessary to

take in consideration security of the network, deployment of security mechanisms and also the

signalling security itself. They also propose risk analysis and assessment models to be applied in

this area.

In [49], Vateva-Gurova et al. analyse the challenges of including security in a safety-critical

environment like railway signalling systems. They state that one important think to have in

consideration is the several standards and regulation that software and hardware included on

these systems must comply with, and that changes made to it must also be re-validated under

those standards. At same time, the life-cycle of a security component isn’t always linear and

changes must be done very quickly. That was one major problem they identi�ed, because if

such security components are embedded on safety-critical components, any change must be

re-validated, not allowing dynamic modi�cations. With this in mind, they propose the usage

of a shell concept to address this problem. More precisely, they propose the development of a

"security box" to be placed between the several system components that communicate over the

network and the network itself. This box should provide security functions like integrity and

36

State of the Art

con�dentiality. With this approach, it is possible to separate security from safety at some level,

solving the �rst problem, at the same time as it is possible to integrate several security functions

to ensure di�erent security properties, while establishing a defence-in-depth approach.

In [10] and [27] M. Heinrich et al. kept developing the work done on [49], enunciating security

requirements to safety-critical railway signalling networks. They considered the entire system,

designing a solution to enforce security not only on the transmission system but to the entire

system. They stated speci�c requirements, such as con�dentiality of classi�ed data to illegitimate

users, or not usage of insecure transfer methods, but also included standard-related requirements,

such as the ones from EN 50159 [19]. They also de�ned the architecture to the solution they pro-

pose. As previously, they propose the usage of shell concept, introducing a "security box" to the

system. To do this, it is purposed a Multiple Independent Levels of Security (MILS) platform, that

consists of a separation kernel, the underlying hardware and several security partitions. They

propose the usage of a Trusted Platform Module 2.0 (TPM) to provide secure storage, execution

of cryptographic functions and other features, such as authenticated boot and update procedures.

On top of that, several security functions can be added, being proposed Intrusion Detection Sys-

tems, Firewall, Remote Attestation, Health Monitor, etc. As it is a on going project, work is still in

progress and by this time, there are not publicly available experimental results of the proposals.

At protocol level, there was some work done on RaSTA security analysis and some enhance-

ments proposed. In [28], M. Heinrich et al. analysed RaSTA protocol from a security point of

view, focusing the cryptographic functions and concepts it uses. On this paper, they analyse

RaSTA protocol and identify its major weaknesses. They concluded that the cryptographic al-

gorithm used to generate the 8B checksum (safety-code), an MD4-based hash function, is prone

to several attacks and is considered a weak cipher. Moreover, they point out that the network

key used as shared secret for authentication, can be disclosed or, if known by an attacker, he

can forge valid messages without much e�ort. As proposal, they made some enhancements to

the protocol, namely by replacing MD4 algorithm for a more robust option like SipHash-2-4,

BLAKE2 or HMAC-SHA256.

They validated their choices through experimental work, analysing the impact of the enhance-

ments on performance. MD4 was faster then all the new enhancements, as expected, however

they stated that every enhancement could be applied without compromising system perfor-

mance. More precisely, a single machine must be able to calculate 2000 RaSTA instances, meaning

it has to generate 6667 (2000 instances *
10

3
(an heartbeat at every 300ms)) safety codes per second,

plus being able to calculate other 6667 instances to validate those codes. From their experiments,

SipHash could perform 1 388 596 calculations per second, BLAKE2 perform 1 089 137 and even

HMAC-SHA256 could produce 499 676 code, meaning that those 13 334 hash calculations are just

a fraction of the throughput this algorithms can provide. This numbers are relative, as it varies

with the computing resources used, although the authors recommended SipHash to replace MD4,

and stated they believe that even HMAC-SHA256 could be used without compromising perfor-

mance requirements (Figure 3.5).

As �nal enhancement, they propose the usage of asymmetric cryptography (i.e., digital signa-

tures) to solve the network key problem, although the main drawback is its performance. Finally,

they point out that RaSTA packets could be sent through a secure transport channel, using IPSec

or TLS, however they don’t provide any experimental results to show it is a feasible solution in

terms of performance.

37

Chapter 3

24 24.81 26 27 28

101

102

Message Size [B]

T
hr
ou
gh
pu
t
[M
iB
/s
]

MD4
BLAKE2b
Siphash-2-4
HMAC-SHA256

Figure 3.5: Throughput comparison of proposed algorithms by M. Heinrich et al. [28]

Security in Power Distribution Systems

There is a lot of research done on the context of security in Power Distribution Systems, with

several focus. It is relevant to analyse topics such GOOSE security analysis and enhancements

because R-GOOSE is very similar to it [5], giving an insight of possible security problems that

exist in both GOOSE and R-GOOSE.

Several authors focused their research work on GOOSE protocol, analysing the security prop-

erties it provides and identifying vulnerabilities, designing attacks and suggesting countermea-

sures. Firstly, in [29] and [39], GOOSE protocol is analysed in terms of possible vulnerabilities.

N. Kush et al., in [39], looked to how GOOSE receivers (subscribers) processed the messages,

identifying a severe vulnerability through the StNum (Status Number) �eld. The vulnerabil-

ity consisted on the message validation. When a message is received, the subscriber checks

the StNum and compares it with the StNum of the last message accepted. If the new message

contains a lower StNum, then it is an invalid message, unless a roll-over occurs. If an attacker

could forge GOOSE messages with extremely high StNum, then it would invalidate all true-valid

messages. The authors designed three attacks. The �rst one was very basic, the attacker just

send one packet with StNum equal to 2
32 − 1, being the maximum number without triggering a

roll-over. The second attack was a High Rate Flooding Attack, where the attacker keep sending

GOOSE messages with increasing StNum, in a high rate. This means that, at some point, even

if the attacker started with a lower StNum than the real messages �ow, the attack �ow StNum

will become higher, invalidating legitimate messages. The third attack was an "intelligent" �ood

attack. The attacker �rst analyses normal tra�c and determines current StNum, as well as the

normal messages rate. Then the �ood attack begins with a slightly higher rate and already with

higher StNum, being a more stealthy attack. The attacks were all tested and successful.

In [29] and [13], J. Hoyos et al. and M. Franco, respectively, explorer a vulnerability on the GOOSE

message PDU, as they where able perform a spoo�ng attack, intercepting a message, changing the

reading boolean �eld and re sending it to the network, being accepted by the subscriber. In [13]

author proposed the usage of VLAN Tagging and SDN techniques to mitigate such vulnerabilities,

mainly by specifying exactly the tra�c allowed on the SDN network.

In [51], Dae-Yong Shin et al. performed a security analysis of SCADA systems based on IEC

61850 [31]. They considered the need for a protocol that guarantees message authentication

and integrity in such systems, having in consideration message-based communications protocols

present in the standard, such as GOOSE. Was identi�ed the lack of mechanisms to enforce such

38

State of the Art

properties and with that in mind they proposed the usage of message authentication codes, with

several variants, namely the usage of Block Ciphers and Keyed-Hashing. On the �rst method,

they proposed to encrypt a message in cipher block chaining (CBC) mode, and only keep the last

block, to be used as MAC for the message. They considered the usage of AES as block cipher.

To the second method, they analysed the usage of a HMAC-MD5 based MAC. Both solutions

require a key sharing mechanism, which they also have in consideration, using a trusted server

of SCADA system to manage such keys.

Later, in 2016 and then in 2019, several works [44] [30] [11] proposed enhancements directly to

the GOOSE protocol and analysed recommendations from IEC 62351 [33]. In [44], R. Schlegel

et al. analysed the recommendations made on IEC 62351, including one part relative to GOOSE

messages. They suggest the usage of the PDU Extension, being used a signed hash to authenticate

the messages. It is suggested the usage of RSA-based signatures, however the authors �nd it

controversial because of the increased latency that asymmetric cryptography will add to the

system. Given that, the suggest the replacement for a HMAC-based or even Elliptic Curves

cryptography.

In [30], S. Hussain et al, analysed the usage of Message Authentication Codes for securing GOOSE

messages. On their work, they choose several algorithms and implemented various versions of

a modi�ed GOOSE protocol, S-GOOSE, to include such MACs. They choosed AES-GMAC and

HMAC-SHA256 as algorithms to test and, on a laboratory environment, they were able to con-

clude that both solutions, with a pre-shared key, performed in approximately 0.1ms, not com-

promising the 3ms of maximum latency.

Later in 2019, K. Boakye-Boateng and A. Lashkari [11], presented a solution where a One-Time

Pad scheme could be used to provide encryption and also authenticity and integrity to GOOSE

messages. The idea was to encrypt the important �elds of the message with OTP algorithm. More

precisely, it would generate a random, same size of message, byte array that would be used as

key, perform a XOR operation between the message and that key, and send the result byte array.

They tested the algorithm with some success, even if that solution require some more research,

specially on the PRNG that should be used, given the capabilities of the devices.

There were some work developed focusing on analyzing the standard IEC 62351 [33], which is

responsible for presenting security recommendations on several other standards like IEC 61850

[31] and therefore, GOOSE. In 2010, S. Fuloria et al [25], analysed Part-6 of the standard, focusing

on mechanisms to enforce authentication and integrity in GOOSE messages. The recommenda-

tion is to include RSA-based signatures on GOOSE’s PDU. They implemented such mechanisms

and tested if it was a feasible solution. They concluded that even hardware-based solution of

such algorithms would take more than 4ms, compromising the existing performance require-

ments. In order to overcome such problem, they suggest the usage pf Elliptic Cryptography as it

could achieve an interesting performance (around 1ms).

In a broader perspective, some authors analysed the security that is already in place on IEC

61850 based systems, having in consideration the general recommendations. On that �eld, [46]

and [18] analysed how these systems are designed, the security requirements it needs and also

the existing mechanisms. In [46], U. Premaratne et al, identify the main threats to these systems

like system disruption and gaining access to con�dential information, proposing several attack

scenarios and mitigation strategies. To validate their propositions, they did an extended security

assessment on a testbed, identifying multiple attack vectors. They conclude proposing the usage

of IDS, network and host-based, as a viable solution. In [18], A. Elgargouri et al, analyse security

requirements of these systems, mainly focusing on the attack detection and self-healing of the

grid. They don’t propose speci�c enhancements to protocols but, similar to [46], they recommend

the usage of IDS to detect such attacks. In [37], the authors propose and implement a security

gateway to provide security properties on power distribution systems. In this case, they aim to

39

Chapter 3

protect synchrophasors data, providing such properties to the protocol R-Sampled Values.

Finally, there are already some analysing and enhancements proposed to R-GOOSE protocol.

In 2016, J. Schuler et al [50], analysed if it was possible to use Digital Signatures on R-GOOSE

messages and what were the best algorithms to perform such task. They compared Salsa20 [9],

Poly1305 [8], AES, SHA1, SHA256 and HMAC. After an extensive practical analysis, they con-

cluded that Salsa20 and Poly1305 allowed to sign R-GOOSE messages in around 14us. They also

performed a more complete analysis on these algorithms, calculating the complete transfer time

to be around 668us, meaning they are feasible algorithms. Other work focusing on R-GOOSE was

[12], where D. Saraiva et al. compared the usage of GOOSE and R-GOOSE in the same LAN and

over a WAN. They also analysed the usage of IP or VPN and concluded hat both accomplished the

performance requirements mandatory by IEC 61850 [31]. Their work was performed with real

mobile and landline networks, di�erenciating from all of the other works based on simulators.

3.5 State of the Art Conclusions

On this chapter we analysed the most important communication protocols used on the three

critical systems on study in this work and we performed a critical analysis on the security they

already provide. From that analysis, we could state that these system were designed without

having security �rst, mainly because safety comes �rst, meaning it is crucial to achieve high

performance. On the other hand, security on the communication channel was relegated to second

place given the fact that these systems were designed to operate on top of a closed network, with

very low probability of occurrence of an attack.

Secondly, we reviewed the main standards and regulation from each area related with security

and performance. From those standards and the review we did on the communication protocols,

we performed a gap analysis between the requirements that each system would require to operate

in a open network, and the security properties that the current protocols already provide. From

that analysis, we realized that we need to address the following requirements in terms of message

security:

• Message Integrity

• Message Authentication

• Message Con�dentiality

• Very Low Latency

Although, we also stress the necessity of ensuring both High Availability and Very Low La-
tency on our solution with maximum priority.

Finally, we reviewed some work already done in these areas. On railway signalling systems, we

identi�ed two major solutions to enhance security, changing the system architecture to include

security by design, or adding security mechanisms to speci�c protocols, such as RaSTA. In [49]

[10] [27] the authors proposed a shell concept, where the core protocols and application could

be "inside" a security module that would provide security functions. In [28], the authors pro-

posed changing the outdated MD4 algorithm used in RaSTA to generate the safety-code, for a

more robust option like SipHash-2-4 or BLAKE2. On power distribution systems, several work

were conducted to demonstrate practical attacks and identify vulnerabilities on actual systems

[39] [29] [13], with emphasis on GOOSE protocol. There are also several proposals to enhance

security on GOOSE, by adding extra �elds to it’s PDU, as for example, an hash tag to validate

40

State of the Art

integrity and authentication of the packet [44] [30], or packet encryption [51] [11]. Other works

focused on evaluating performance of other security techniques, such as IDSs [46] [18]. Lastly,

one research work [50] focused on R-GOOSE, and analysed the usage of Digital Signatures to

provide authentication and integrity. They proposed the usage of Salsa20 or Poly1305.

41

Chapter 4

Proposed Solution and
Implementation

In this section we will present the initial experiments where we analysed the available open-

source implementations for the applications of 5G Mobilizer project and we describe the mod-

i�cations made to such implementations. Then, we propose a solution to provide the security

requirements de�ned on the previous chapter, describing the decisions taken during the devel-

opment process and discussing the implementation details. Furthermore, we explain the several

scenarios on how our solution could be applied, using the integration with 5G Mobilizer project

as a practical example.

Due to the lack of open-source implementations of communications protocols from the scenarios

of 5G Mobilizer project, that is explained on subsection 4.1 above, this proposal is focused on the

Power Distribution systems scenario. Our goal is to provide security mechanisms in a scenario

that demands very low latency.

4.1 Initial Experiments

In this subsection, we will present the initial experiments performed on the contexts of the 5G

Mobilizer project applications. The goal of these experiments were to evaluate the available open-

source implementations of protocols and devices that could be used to implement and validate

our proposal. Based on these experiments we performed a set of modi�cations to the implemen-

tations that we will explain in the next subsections.

4.1.1 Implementations

In this subsection will be addressed the several solutions that can be explored during this research

work, related to the protocol implementations, operating systems and devices used on the context

of each PPS3 application. Our main focus is to develop security mechanisms that could be applied

to all of PPS3 applications. However, at the experimental level, it was extremely di�cult to �nd

any available implementation or environment for Railway Signalling and PPDR systems. Given

that we decided that our experimental work will be focused on Power Distribution Systems.

Thus, there are several parts important to analyse on the testing environment for the lab work.

First, it is important to emulate the normal tra�c that exists on such systems, mainly, the R-

GOOSE messages. To achieve this, will be needed a library or an open implementation of such

42

Proposed Solution and Implementation

protocol. Two libraries were found: mz-automation/libiec61850 [42] and ALSETLab/Khorjin-

IEC61850-90-5 [3], both available on GitHub. Although, none of them fully address the needs

for this research work. The �rst one is an implementation of IEC 61850 [31], however it doesn’t

includes a R-GOOSE implementation. On some open topics related to the library, the authors

discussed the possibility of including such feature, although, there is no such feature yet.

The second library, Khorjin-IEC61850-90-5, is supposed to fully address the needs of this project,

as it implements R-GOOSE and R-SV (Routable-Simple Values), however, the code is not publicly

available, as it is still under development. Ultimately, we were able to gain access to an updated

version of mz-automation/libiec61850 made by Diogo Saraiva [15] from University of Aveiro,

having R-GOOSE already implemented.

R-GOOSE Implementation

Given that, we decided to use the mz-automation/libiec61850 [42] as baseline and perform some

changes to it, in order to emulate the generation of R-GOOSE packets. As GOOSE protocol

is a Layer 2 protocol, it was expected that the library was generating Ethernet packets. After

studying that library and, combined with the study of the R-GOOSE protocol, we add a section

on the library to encapsulate the generated GOOSE packet in a UDP packet, adding all of the

R-GOOSE headers.

More precisely, we created the UDP payload of the packet, as on the Figure 4.1. On the crafted

packet, we inserted all of the �elds, starting with the LI (0x01), followed by all of the other �xed-

values �elds. For the R-GOOSE speci�c �elds, like Session Identi�er and SPDU Number, we used

a �xed value, in this case the number 1 (one) encoded on the respective number of bytes. For the

Security Information �elds, the approach was the same as the Key Management was outside of

the time frame of this research work.

In the next step, we copied the data generated by the library to the remaining, as for example,

the APPID, APDU Length and the GOOSE PDU. Finally, we generated the Signature Field Tag, with

the �xed-value of 0x85, ending the new R-GOOSE packet with the Signature Lenth, in our case,

zero.

4.1.2 Devices

As mentioned on the previous section, we decided to focus on Power Distribution System. In this

section, we present the analysis made on devices and simulation environments available. Devices

are specially important on the Power Distribution Systems environment, as it is important to have

in consideration the physical devices existing on real systems, such as IEDs, as main communi-

cation source points that use R-GOOSE. In order to do this, there are several possibilities. Can

be used real devices, provided by an external entity, or it might be possible to emulate them, by

means of hardware and software, such as a Raspberry Pi, or by means of softwarization, using

virtual machines or speci�c software to emulate such devices. For this part, several solutions

exist to simulate such devices, although, all of them are proprietary and require a paid license

to use. Some of the solution are the follow: 61850 Test Suite Pro, from TriangleMicroworks, Inc.

and SmartGridware® IEC 61850 IED Simulator.

In some papers such as [7] and [38], the authors developed IED simulators, one being a low-

interaction honey pot. With this said, none of them fully address the necessities of this work, as

the �rst one simulates a real IED, although it is focused on Sample Values. It was developed using

LabView and C++. The second one, was developed with the focus on emulating MMS messages,

not fully addressing R-GOOSE messages, as it is needed.

43

Chapter 4

EtherType

Reserved 1

Reserved 2

UDP Header

IP Header

Ethernet Header

Figure 4.1: Conversion from GOOSE to R-GOOSE

4.2 Proposed Solution

Our goal is to develop a product to provide security mechanisms capable of ensuring a set of

common security requirements for critical applications. This set of security requirements was

de�ned in Section 3.2 - Requirements, and through the gap analysis done, we speci�ed that were

necessary security mechanisms to ensure Message Integrity, Message Authentication and Mes-

sage Con�dentiality. At the same time, we must guarantee that the new security mechanisms do

not compromise the performance of the system.

With that in mind, our proposal is to develop a framework capable of providing such mechanisms

to several critical systems. This framework is composed by two major components: a Security

Library and a Bridging Device.

The Security Library [16] is a library written in C, that will implement the security mechanisms.

In order for this library to be used in several contexts, it is divided in two levels: cryptographic

algorithms implementations and integration with protocols. On the �rst level, a collection of

cryptographic algorithms is implemented that can be used to integrate with speci�c protocols.

The integration with protocols uses the cryptographic functions to provide security directly to

protocols, dealing with the protocol speci�c questions. We should note that this library could be

used directly on the system devices (like IEDs) or could be used as standalone, as we use on our

44

Proposed Solution and Implementation

Security Gateway.

The Bridging Device [17] will be combined with the Security Library to provide the same security

properties to legacy devices or devices without su�cient computational capacity to perform such

operations without compromising their performance. This will be called our Security Gateway.

Figure 4.2 illustrates the interactions between both components. There we can see the Security

Gateway placed between the device that is intended to be protect (IED) and the network. Also,

inside the Security Gateway, we can see represented our Security Library, providing the security

mechanisms.

Figure 4.2: Diagram of proposed Security Gateway

In the following sections, both implementations will be described in detail, including the devel-

opment process and the decisions taken over that process.

4.3 Security Library

The Security Library provides a collection of functions ready-to-use by other applications, to

ensure security properties such as integrity, authentication and con�dentiality to packets. We

can divide the library in two parts: cryptographic algorithms and protocol related functions. The

�rst part contains a set of cryptographic functions, as for example HMAC-SHA256 or AES256-

GCM. The second part of the library is responsible to deal with speci�c aspects of each protocol,

as for example, encrypting the packet payload and changing all the other mutable �elds of the

protocol. In this implementation, we only developed functions to deal with R-GOOSE, being our

use case for this research work.

We developed this library to provide three security properties: Message Integrity, Message Au-

thentication and Message Con�dentiality. The selection of each algorithm present in the library

will be explained later, providing the standard or research work were each algorithm is recom-

mended. The following sections will explain how the library provides each of the properties.

Before entering in details, we should note that this library uses OpenSSL 1.1.1 Library, meaning

that it is necessary to con�gure OpenSSL before using our library.

Our library was developed in two versions. The �rst version was the implementation of crypto-

graphic algorithms and has the following features:

• HMAC Generation functions

• GMAC Generation functions

• AES-GCM encryption and decryption functions

45

Chapter 4

These functions are responsible for performing the cryptographic operations on a given data,

producing an HMAC or a GMAC as output, or encrypting and decrypting data. The implemen-

tation details of this version are detailed in subsections 4.3.1 and 4.3.2. In the second version

of our library we implemented the protocol related functions. These functions use the crypto-

graphic functions developed on the �rst version of our library to provide the security properties

to a given protocol, dealing with the protocol speci�c aspects, as for example the mutable �elds.

The implementation details of this version are detailed in subsection 4.3.3 and it has the following

features:

• R-GOOSE Authentication

1. Insert and Validate HMAC

2. Insert and Validate GMAC

• R-GOOSE Encryption

1. Encrypt R-GOOSE Payload

2. Decrypt R-GOOSE Payload

4.3.1 Message Integrity and Message Authentication

To provide Message Integrity and Message Authentication to packets the library provides two

type of cryptographic algorithms: HMAC and GMAC. These algorithms receive a chunk of data

and a symmetric key, producing a Message Authentication Code. In the case of HMAC, this MAC

is generated based on hash generated by other function. In order to provide authentication, the

�nal code is generated using both the message hash and the provided key.

There are several varieties of HMAC depending on the underlying algorithm used to generate

the hashs. Choosing this algorithm is very important and scenario dependant, as the hashing

algorithm will de�ne both the security of the MAC generated, and the performance e�ciency of

the HMAC generation.

The GMAC algorithm provides the same properties as HMAC, although it’s inner functionalities

are di�erent. In this case, the MAC generation is not only based on a hash, but also on a encryp-

tion algorithm. GMAC is a particular case of GCM (Galois/Counter Mode) encryption, that is

usually used to provided authenticated encryption with associated data. Although, it is possible

to use GCM without providing an input to be encrypted but only the data to be authenticated.

In that case, it is called GMAC. As it uses a symmetric encryption algorithm, that in our case is

AES, it is also necessary to provide an Initialization Vector (IV).

We decided to implement these two algorithms because they are recommended by several stan-

dards for communications within Critical Systems, and more precisely, on IEC 62351 [33] for

Power Distribution Systems.

For the implementation we used the OpenSSL version 1.1.1 Library. This library already has a

base HMAC implementation, as well as a great collection of hashing functions. Furthermore,

OpenSSL [45] is a well-known security library, widely used and very tested, representing a safe

solution for most of the cryptographic algorithms we need. OpenSSL does not include a full

GMAC implementation, however, we used the library to create a GMAC generation function.

As it is detailed by NIST on [53] and by IETF on RFC 4543 [41], to generate a MAC using GMAC, it

is necessary to use an encryption algorithm in Galois/Counter Mode (GCM), as for example AES,

and provide data to be authenticated without being encrypted. OpenSSL 1.1.1 already implements

46

Proposed Solution and Implementation

AES-GCM making it possible to construct the GMAC algorithm. Using the EVP interface of

OpenSSL, we implemented GMAC based on AES.

In the Table 4.1 are shown all of the HMAC variations implemented on our security library, the

length in bits of the provided key, and the size in bytes of the produced MAC. We should note

that the key and MAC length of each algorithm were recommended on the previously mentioned

standards.

Table 4.1: Implemented HMAC-based functions, key size in bits and output size in bytes

HMAC Algorithm Key size (bits) MAC size (bytes) MAC Alg. �eld value
HMAC-SHA256-80 256 10 0x01

HMAC-SHA256-128 256 16 0x02

HMAC-SHA256-256 256 32 0x03

HMAC-BLAKE2b-80 256 10 0x06

HMAC-BLAKE2s-80 256 10 0x07

In the Table 4.2 are shown the GMAC variations implemented on the library, the length in bits of

the provided key, and the size in bytes of the produced MAC. In this case, it must also be provided

the IV, although the size is not �xed as it can be speci�ed as an argument on our function.

Table 4.2: Implemented GMAC-based functions, key size in bits and output size in bytes

HMAC Algorithm Key size (bits) MAC size (bytes) MAC Alg. �eld value
AES128-GMAC-64 128 8 0x08

AES128-GMAC-128 128 16 0x09

AES256-GMAC-64 256 8 0x04

AES256-GMAC-128 256 16 0x05

For the HMAC implementations, we used a function already implemented on OpenSSL [45], the

HMAC() function. For the GMAC implementations, OpenSSL does not implements a ready-to-

use function. As mentioned before, we used the EVP interface to generate the MAC. The EVP

interface is a set of functions to create a cryptographic context. Inside this context, we can specify

the con�gurations and operations to be applied on a given input data. In this case, we wanted to

use the AES algorithm in GCM mode but without providing any plain text to encrypt, but only

data to be authenticated. To do this, we start be creating a new encryption context and de�ning

the encryption algorithm (AES-GCM variant). Then, we use the EVP functions to set the key, the

IV and the data to be authenticated. After that, we instruct OpenSSL to perform the encryption

and then we extract the MAC from the context. Finally, we truncate the obtained MAC to the

necessary length (depending on the algorithm provided by our library).

4.3.2 Message Con�dentiality

To provide Message Con�dentiality we included a set of AES variants on the library. These vari-

ants are all AES in GCM mode, as it is recommended by the IEC 61850 [31] and IEC 6235 [33]

standards. Once again, the implementation was made using OpenSSL 1.1.1, using the EVP inter-

face to create both encryption and decryption functions, using AES with several key lengths. Two

key size were used, with 128 and 256 bits, and for both of them, an encryption and a decryption

function were developed.

47

Chapter 4

The Table 4.3 shows the AES algorithms supported by our security library and their respective

key length. As for the Initialization Vector (IV), it can have an arbitrary size.

Table 4.3: Implemented AES-based functions and key size in bits

AES Algorithm Key size (bits) Encryption Alg. �eld value
AES128-GCM-Encrypt 128 0x01

AES128-GCM-Decrypt 128 0x01

AES256-GCM-Encrypt 256 0x02

AES256-GCM-Decrypt 256 0x02

The implementation of the encryption and decryption functions is very similar to the GMAC

implementation. We use the EVP interface to create and manage an encryption context. The

main di�erence from the GMAC implementation is that, in this case, we provide the input data

to be encrypted/decrypted instead of just being authenticated.

4.3.3 Protocol Related Functions

The second part of the library is a "layer" that will use the cryptographic functions on the packet

data. These functions will receive the unsecured protocol packet, and return a secured version.

These are the functions that will be applied directly on IEDs and on our bridging device, being

used every time a new packet is captured.

In this version of the library, we provide functions to deal with R-GOOSE protocol, following the

standards and protocol speci�cation related to security. This set of R-GOOSE related functions

include the insertion of an HMAC, the insertion of GMAC, validation of both authentication

mechanisms, payload encryption and payload decryption. Furthermore, these functions must

address all the mutable �elds of the protocol. For example, when adding an HMAC tag to the

R-GOOSE protocol, it is necessary to update several length �elds and the Security Information

�elds.

For R-GOOSE communications, we de�ned that we wanted to ensure Integrity, Authentication

and Con�dentiality. In order to achieve Integrity and Authentication, we implemented the func-

tions r_gooseMessage_InsertHMAC and r_gooseMessage_InsertGMAC. These functions are respon-

sible for generating a MAC tag and inserting it on the packet. By the protocol speci�cations,

the entire Session Protocol Data Unit starting from the Session Identi�er to the GOOSE Pay-

load should be authenticated. Figure 4.3 illustrates the operations performed by these functions.

There we can see that after generating the MAC tag it is inserted at the end of the packet, on the

Signature Fields Section. After this, the Security Fields are updated with the information from

the key and the algorithms used. This process will ensure message authentication, although we

should note that key management is outside of the scope of this research work. Finally, the length

�elds of the packet are also updated.

To validate such MAC tag, two functions were developed: r_gooseMessage_ValidateHMAC and

the function r_gooseMessage_ValidateGMAC were developed. These functions receive the packet,

generate the expected MAC tag using the information from the Security Fields and compare it to

the MAC tag present in the packet. If they are the same, then the packet is valid, otherwise, the

packet is considered invalid.

Con�dentiality is provided by the functions r_gooseMessage_Encrypt and r_gooseMessage_Decrypt.
They are responsible for encrypting and decrypting the packets, according to protocol speci�ca-

tions. On an R-GOOSE packet, only the GOOSE PDU should be encrypted. In both encrypting

48

Proposed Solution and Implementation

Key Management System

Figure 4.3: Diagram of InsertHMAC/GMAC funtions

and decrypting R-GOOSE packets, the Security Fields should also be updated with the used key

information and the algorithm used. Figure 4.4 illustrates the operations performed by these

functions on R-GOOSE packets.

4.4 Bridging Device

The Bridging Device is the framework component placed between the system component we

want to "protect", and the network it is connected to. It will capture the packets sent from the

protected device, analyse them and, if necessary, apply the security measures to ensure a given set

of security requirements. It will use the Security Library already described to apply the security

mechanisms. In terms of hardware, our bridging device is a Raspberry Pi 4B, running Raspbian

operating system and equipped with an USB-to-Ethernet adapter, to provide an extra Ethernet

port. More precisely, the technical speci�cations of the Raspberry Pi are presented in the Table

4.4.

This component needs to be particularly e�cient, because the total Trip Time of the packets

needs to be very low. Using as reference the power distribution system, the Trip Time of the

packet must be lower than 3ms (standard IEC 61850 [31]), meaning that capturing, analysing,

modifying and sending the packet on the bridge must be performed with extreme e�ciency.

This component will allow legacy and lower capacity devices to be protected with the necessary

security mechanisms, being a component of major important in the context of this work and the

5G Mobilizer project. Also, with this component we can prove that it is possible to use o�-the-

shelf hardware to improve the security on systems composed by specialized equipments as IEDs,

49

Chapter 4

Figure 4.4: Diagram of Encrypt/Decrypt funtions

Table 4.4: Raspberry Pi 4B model Technical Speci�cations

CPU Quad core Cortex-A72 (ARM x64)

1.5GHz

RAM 4GB

Ethernet Gigabit Ethernet

External Ethernet USB2.0 to Fast Ethernet

Operating System Raspbian GNU/Linux 10 (Buster)

that usually are not capable of performing such tasks.

4.4.1 Initial Approaches

The development process had several phases, where we �rst de�ned a strategy, we implemented a

skeleton of that strategy and then we analysed if it was a feasible solution in terms of latency and

performance. Our �rst strategies were based on developing an application that, using sockets,

would capture the tra�c in promiscuous mode, perform the modi�cations to the packets and then

re-inject them on the network. In brief, the strategy was using the library Libpcap. This library

provides a set of networking related functions to manipulate network interfaces and capture

tra�c. This strategy didn’t met the performance requirements, as it was taking between 250-

750ms to bridge each packet. Our second and third strategies were based on implementing a

C application using Raw Sockets where we bridged packets at Layer 3 (second strategy) or at

Layer 2 (third strategy). The Layer 3 (or Network Layer) is a layer from the OSI Model that is

50

Proposed Solution and Implementation

responsible packet forwarding and routing. The most common protocol used in this layer is the

IP. The Layer 2 (or Data link Layer) is a layer from the OSI model that is responsible for the

transfer of data between adjacent nodes on a network. In this case, an example of a protocol

used in this layer is Ethernet. As an example, an ICMP packet, that is encapsulated inside an

IP packet, would be bridged over a Layer 3 bridge, while an ARP packet, that is encapsulated

inside an Ethernet frame, wouldn’t. Although, in a Layer 2 bridged both of the packets would

be bridge because both of them must rely on a Layer 2 protocol as Ethernet. Again, none of this

strategies were e�cient enough, as they were running with the same latency metrics as Libpcap.

We understood that to achieve minimum latency on our bridge we won’t be able to use normal

C applications in user space. With that in mind, we focused on understanding other solutions

using features directly from the kernel space.

4.4.2 Linux Bridge and Net�lter

The approach we followed was to create a Linux Bridge handled by the kernel. That bridge

would be capturing packets on the incoming interface, then move them from the kernel space to

an user space application. This application would modify the packets and re-send them again to

the kernel, that in turn would bridge the secured packet to the outgoing interface.

The Linux bridge handled by the kernel was achieved using the brctl-utils tool that connects

two physical ethernet interfaces creating a new logical interface to the bridge. It is necessary to

con�gure some Linux packages in order to be able to set up such Ethernet Bridge.

After setting up the bridge, it is necessary to move the packets from kernel space to user space.

During our research we realized that this could be achieved using IPTables alongside with other

Net�lter modules. IPTables is a program that uses several module kernels and the Net�lter kernel

framework to con�gure the networking stack and packet �ltering on the kernel, acting as a

�rewall. It is based on "chains". When a packet arrives to the machine, it is placed in a speci�c

chain, depending on the target of the packet. For example, using the default con�gurations, if a

packet arrives to Machine A with the IP address of that machine, it is placed on INPUT Chain,

while if Machine A is routing packets and the packet received is to other machine, then it is

placed on FORWARD chain.

A interesting feature of IPTables is that we can set a rule that moves a packet that arrives in a

given chain to a NFQUEUE for a custom packet �ltering by an user space application. This is a

functionality of Net�lter that allows a user to develop custom �ltering functions in user space,

giving the power to that application to set the verdict on a given packet. Even if it is not a default

behavior for IPTables and Net�lter, it is possible to modify or even craft a new packet at user

space and send it to kernel space, using the same interface.

However, IPTables rules are not applied by default on Linux bridges, because Linux bridge works

at Layer 2 and IPTables deal with Layer 3 packets. Nevertheless, we can change this behavior

using a Kernel Module. The br_net�lter Kernel Module allows the IPTables to �lter bridged

packets from a Linux Bridge, where we can just use the FORWARD Chain to collect such packets.

After setting the Linux Bridge and loading the br_net�lter Kernel Module it is necessary to create

an IPTables rule to move the packets arriving at our bridge to an user space application. Those

packets are placed on the FORWARD Chain of IPTables. Given that, we will add a new rule to

the FORWARD Chain, using the argument "-j NFQUEUE".

Finally, the user space application will be listening for packets moved by IPTables to the NFQUEUE.

Net�lter provides a library to manage such queues, being handled the same way as sockets. The

Algorithm 1 illustrates how the user space applications was implemented. To collect packets

51

Chapter 4

Algorithm 1 User Space Application

1: procedureMain(con�gurations)

2: handler← obtain socket �le descriptor (nfq_open)

3: bind handler to NFQUEUE (nfq_create_queue)

4: while true do
5: bu�er← receive packet (nfq_handle_packet)

6: Call callback(bu�er,handler)

7: close
8: procedure Callback(packet,handler)

9: if packet.protocol = con�gurations.transport_protocol then
10: if packet.destination_port = con�gurations.destination_port then
11: if packet.protocol_speci�c_�elds = con�gurations.protocol_speci�c_�elds then
12: if con�gurations.encryption = true then
13: bu�er ← Encryption function

14: Call setVerdict(bu�er, verdict)
15: if con�gurations.authentication = true then
16: bu�er ← Authentication function

17: Call setVerdict(bu�er, verdict)
18: else
19: Call setVerdict(bu�er, REJECT)
20: else
21: Call setVerdict(bu�er, ACCEPT)
22: else
23: Call setVerdict(bu�er, ACCEPT)
24: close

52

Proposed Solution and Implementation

placed in NFQUEUEs, �rst it is necessary to obtain a �le descriptor to the queue, using the li-

brary provided by Net�lter. Then, we implemented a loop cycle using the recv function on the

�le descriptor previously obtained. When a packet is received, we call a callback function to

process each packet. This is illustrated in pseudo-code on the procedure Main of the Algorithm

1.

Inside the callback function each packet is processed. This function can be customized and de-

signed to �t any other protocol. In our case, we created a set of con�gurations to process each

R-GOOSE packet namely, interface1 and interface2, the port where R-GOOSE is running, the

authentication algorithm and the encryption algorithm. In the Algorithm 1, this con�gurations

are represented by the variable con�gurations. The interfaces are used to distinguished the com-

munication �ow. For example, if a packet arrives from the IED, we may want to add an HMAC,

although if a packet arrives from the network we must verify the HMAC tag it contains. The

port is used to identify what packets are indeed R-GOOSE packets. Finally, the authentication

and encryption algorithms specify which algorithms will be used to encrypt or generate the

HMAC, although, they can be set to "None", skipping authentication or encryption.

The �rst thing we compare when addressing the R-GOOSE protocol is the transport protocol

of the packet. In this case, it must be UDP as R-GOOSE is sent over UDP (Algorithm 1, line 9).

After that, we analyse the destination port of the packet and we compare to the one that we

con�gured R-GOOSE to use (Algorithm 1, line 10). The next veri�cation compares some �xed-

value �elds of the packet, for example the initialization tags of the Session Protocol Data Unit

and the Session Header Length, in order to validate that we are indeed dealing with an R-GOOSE

packet (Algorithm 1, line 11). If all of the veri�cations are succeed, we use the Security Library

to apply the required security mechanisms that are de�ned on the con�gurations (Algorithm 1,

lines 12 - 17). If only the speci�c protocol �elds veri�cation fails, then the packet is rejected as it

has malformed �elds (Algorithm 1, lines 18 and 19). Otherwise, the packet is accepted as it is not

an R-GOOSE packet (Algorithm 1, lines 20 - 23). To reject, accept or re-inject a packet we use

the function setVerdict from the Net�lter NFQUEUE library (Algorithm 1, lines 14, 17, 19, 21 and

23). This function sends the verdict to IPTables and re-inserts the provided packet (bu�er on the

Algorithm 1) on the NFQUEUE in use.

When a valid R-GOOSE packet is identi�ed and if the security mechanism we are going to apply

will modify the packet size, then we make all of the changes in a copied version of the packet and

we send this new crafted packet to the kernel. If not, then all of the changes are made directly

on the original packet. To send the packet back to the kernel space, we just need to set a verdict

on that packet. This verdict will signalize IPTables that we already decided if we want or not

to accept the packet. In our case, accepting the packet means that it will proceed through the

bridge.

The Figure 4.5 illustrates our bridging solution, showing in detail the interactions between IPTa-

bles, NFQUEUE and our user space program. The blue arrows represent the path that an arriving

packet will do, while the green arrow represents the verdict issued by our program to IPTables.

In this example, the packet was accepted, although we can also reject the packet, leading IPTables

to drop it.

4.5 Chapter Wrap-up

This chapter covers the initial experiments, the solution proposed and it’s implementation. Firstly,

we analysed the available open-source implementations of protocols and devices that could be

used on the contexts of the 5G Mobilizer project applications. This was a challenging task as

there were no available implementations for protocols in Railway Signalling systems and PPDR

53

Chapter 4

Figure 4.5: Bridge Diagram - Interaction between IPTables, Net�lter NFQUEUEs and user space

program in a one way communication

platforms. For the Power Distribution system we found a GOOSE implementation and performed

several modi�cations in order to be able to send R-GOOSE packets.

Secondly, we presented our solution. Our solution has two components, a security library and

bridging device that combined form our Security Gateway. This library is written in C and con-

tains a set of cryptographic functions and several protocol integration functions. As we only had

access to the R-GOOSE implementation, we only developed functions to support this protocol. In

terms of the security mechanisms for R-GOOSE, we developed functions to ensure message au-

thentication, message integrity and message con�dentiality. The bridging device is a Raspberry

Pi 4B specially con�gured to bridge and modify packets. To achieve this, we created a Linux

Bridge using brctl-utils alongside with a Net�lter Kernel Module to move packets to a user space

application, using IPTables. In that user space application, we �lter R-GOOSE packets and we

apply the security mechanisms developed on our security library to them. The advantages of this

solution is that with o�-the-shelf hardware we can provide security mechanisms to specialized

devices that are not capable of performing such task, as legacy or low capability devices. In the

next chapter we will present and analysed the obtained results to evaluate the performance of

our solution.

54

Chapter 5

Results and Analysis

In this chapter, we present and analyse the obtained results from the practical evaluation. In

short, we focused on studying if the developed mechanisms were able to provide the security

requirements (Section 3.2) without breaking the performance requirements. Following the im-

plementation work (Chapter 4), we used the Power Distribution Systems as our practical use

case. In terms of security requirements, are goal is to provide integrity, authentication and con-

�dentiality to R-GOOSE messages. In terms of performance requirements, we want our Transfer

Time (Figure 3.4) lower than 3ms, as speci�ed in IEC 61850 [31]. On the next section, we will

present our evaluation strategy, detailing the experimental scenario and the tests performed. In

Sections 5.2 and 5.3, we present and analyse the results of each test.

5.1 Evaluation Strategy

Our evaluation strategy was focused in validating the security provided by our mechanisms and

the impact that they have in the system. We focused our experiments in two components: Secu-

rity Library itself and the Raspberry Pi Bridge. The purpose of evaluating the Security Library

by itself was to analyse its impact when incorporated in an IED or other dedicated device. To

perform such evaluation we ran our library only on the Raspberry Pi, as it is has lower compu-

tational capacities than normal PCs, as IEDs.

The goal of evaluating the Raspberry Pi Bridging Device was to analyse the impact of introducing

a new component into the system. In order to achieve that, we set up an experimental environ-

ment to simulate the communications between two nodes of a Power Distribution System. Our

experimental environment is composed by two PCs representing endpoint nodes of the network,

and our Raspberry Pi. All of the components are connect by Ethernet cables, as shown in Figure

5.1.

Some software components were developed to help in tra�c simulation and metrics collection.

The libIEC61850 [42] was modi�ed as explained in Section 4.1.1, allowing the generation of R-

GOOSE tra�c. Finally, an application was developed as an UDP Server, receiving R-GOOSE

packets and re-sending them to the source IP Address with the objective of measuring the com-

munications Round Trip Time (RTT).

Table 5.1 presents the speci�cations for the components illustrated in Figure 5.1 (Raspberry Pi

Bridging Device speci�cations can be found in Section 4.3).

We organized our evaluation in two parts: Functional Evaluation and Performance Evaluation.

In the functional evaluation, we performed several tests to evaluate the correctness and e�ective-

55

Chapter 5

Figure 5.1: Raspberry Pi Bridging Device Experimental Environment

Table 5.1: Raspberry Pi 4B model Technical Speci�cations

Component PC A PC B
CPU Intel Core Duo E6400 @ 2.13GHz Quad core i7-6500U CPU @

2.50GHz

RAM 4GB 16GB

Ethernet Gigabit Ethernet Gigabit Ethernet

Operating System Ubuntu 16.04 (Xenial) Windows 10

ness of our security mechanisms. For example, we analysed if the output of the cryptographic

functions was correct and if it was correctly placed inside the R-GOOSE messages. In the perfor-

mance evaluation, we focused on measuring the impact that our mechanisms had on the system,

specially in terms of latency. We started by evaluating the Security Library. By doing this, we

managed to select the best and the worst algorithms, in terms of performance, to be applied on the

bridging device, allowing us to de�ne the boundaries of the latency our solution will introduce.

On the Functional Evaluation phase we performed the following experiments:

1. Cryptographic Functions - Provide a given input based on standardized test vectors from

RFCs, to the cryptographic function and analyse the output, comparing with the expected.

All of the developed functions were tested.

2. Protocol Related Functions - Provide an unsecured R-GOOSE packet and analyse the

output. On the output, we analysed if the structure and the mutable �elds were properly

updated, having in consideration the protocol speci�cations. All of the developed functions

were tested using only one cryptographic function.

For the Performance Evaluation phase we performed the following experiments:

1. Cryptographic Functions - Set a timer before the function execution, provide an input

to the cryptographic function and set a timer at the end of its execution, measuring the

di�erence between them. All of the developed functions were tested.

2. Protocol Related Functions - Set a timer before the function execution, provide an unse-

cured R-GOOSE packet to the function and set a timer at the end of its execution, measuring

the di�erence between them. All of the developed functions were tested, using all of the

cryptographic functions developed.

56

Results and Analysis

3. Raspberry Pi Bridging Device - To properly evaluate the bridging device performance,

we evaluated measured the following metrics:

(a) Communications Bandwidth

(b) Tra�c Latency

4. Security Gateway - Generate R-GOOSE tra�c on the experimental scenario and analyse

the communications latency using the Security Gateway

(a) R-GOOSE Tra�c Latency - Only tested the best and worst performing cryptographic

functions, using the values measured from the protocol related functions in point 2

above.

On the next sections, we will present and analyse in detail the experimentation results from

Functional Evaluation (Section 5.2) and Performance Evaluation (Section 5.3).

5.2 Functional Evaluation

In this section, we will describe the method we applied to evaluate the functional requirements

and correctness of the mechanisms we developed. Firstly, we will present the Security Library

evaluation, starting with the cryptographic functions and followed by the protocol related func-

tions. Then, we selected one cryptographic algorithm per protocol related function (for HMAC

insertion and validation, GMAC insertion and validation, payload encryption and decryption).

Figure 5.2: Functional Experimentation - Relationship between cryptographic functions and pro-

tocol related functions in testing

This algorithm will be used to evaluate each protocol related function (Figure 5.2), where only 1

algorithm of the cryptographic functions is used at a time in the protocol related functions. All

of these tests were performed only on the Raspberry Pi.

If the functional validation of our Security Library is positive, then the functional validation of

the Security Gateway, in terms of ensuring security requirements to R-GOOSE packets, is also

guaranteed, since the same version is used.

57

Chapter 5

5.2.1 Cryptographic Functions

The Cryptographic Functions evaluation was performed by supplying a given input to the unitary

functions and analyse the output produced. Using the function hmac_SHA256_80 as an example,

we provided a key and an input to be authenticated. Then, we analysed if the generated HMAC

was equal to the expected one, as shown in the Figure 5.3

Figure 5.3: Example of Functional Testing procedure for Cryptographic Functions

In our library, we have three types of cryptographic functions: HMAC generation, GMAC gener-

ation and encryption/decryption using AES-GCM. In order to properly evaluate these functions,

we used standardized test vectors. In the case of HMAC generation, we used a set of test vectors

from the RFC 4231 [43] and RFC 7693 [6]. The �rst RFC contains the test vectors for HMAC-

SHA-based, while the second contains the test vectors for HMAC-BLAKE-based.

In the case of GMAC generation and encryption/decryption using AES-GCM, we used a set of

test vectors produced by NIST issued on the Special Publication 800-38D [53]. Attached to the

document, several �les contain multiple test vectors for both plain text encryption/decryption

with AES-GCM and data authentication with AES-GCM, in other words, GMAC. Those �les

contain around 8250 test vectors, of which only 1260 are related with GMAC, using di�erent key

and data sizes.

In the Tables 5.2, 5.3 and 5.4, we present the results from the functional evaluation of the cryp-

tographic functions:

Table 5.2: HMAC Functions evaluation results

Function Test Vectors Result
HMAC-SHA256-80 RFC 4321 PASS
HMAC-SHA256-128 RFC 4321 PASS
HMAC-SHA256-256 RFC 4321 PASS
HMAC-BLAKE2b-80 RFC 7693 PASS
HMAC-BLAKE2s-80 RFC 7693 PASS

Analysing the tables we can see that the output produced by our functions corresponded to the

expected in all the test cases. As for the inner security of each algorithm, it is guaranteed by the

usage of OpenSSL, which provides a good level of con�dence.

58

Results and Analysis

Table 5.3: GMAC Functions evaluation results

Function Test Vectors Result
GMAC-AES256-64 NIST SP 800-38D PASS
GMAC-AES256-128 NIST SP 800-38D PASS
GMAC-AES128-64 NIST SP 800-38D PASS
GMAC-AES128-128 NIST SP 800-38D PASS

Table 5.4: AES Encrypt/Decrypt Functions evaluation results

Function Test Vectors Result
AES128-GCM-Encrypt NIST SP 800-38D PASS
AES128-GCM-Decrypt NIST SP 800-38D PASS
AES256-GCM-Encrypt NIST SP 800-38D PASS
AES256-GCM-Decrypt NIST SP 800-38D PASS

5.2.2 Protocol Related Functions

The evaluation of Protocol Related Functions was similar to the Cryptographic Functions. In

this case, the input we supplied to the functions was an R-GOOSE packet generated with the

adaptations we made on libIEC61850 [42]. After the execution of the function, we compared the

resulting packet with the expected packet. As an example, when inserting an HMAC on an R-

GOOSE using the function r_gooseMessage_InsertHMAC, we analyse if the HMAC was inserted

on the right place and if all of the mutable �elds were correctly changed and calculated.

In this phase of the functional testing, we were not concerned with the MAC tag itself, but we

were focused on understanding if all of the changes were correctly performed and accordingly

to the protocol speci�cations [31]. Given that, we selected only one cryptographic algorithm for

each protocol related function to be used during these tests. To analyse the changes made by

each function, we developed a function that dissects each packet and displays the information in

a user friendly way.

We used the same methodology to evaluate HMAC and GMAC functions, and both insertion and

validation were done in the same tests. For HMAC/GMAC insertion, our functions must insert

the HMAC/GMAC, change signature size, update the Security Fields values and update the SPDU

Length. For the validation, the function doesn’t makes any change on the packet, although, it

evaluates the HMAC/GMAC on the packet with the HMAC/GMAC calculated by the function,

from the packet content and the key associated to the packet.

In the Figure (5.4) we demonstrate the application of InsertHMAC and ValidateHMAC on a R-

GOOSE packet. There we can verify that our function is properly modifying the mutable �elds

of the protocol according to the speci�cations. We must note that in this case only the MAC

Algorithm of the Security Fields was changed because we didn’t provide the other �elds, as

there is no Key Management System in place. We can also see that the function ValidateHMAC
is working properly. In this case, we add the HMAC to the R-GOOSE packet and immediately

after we called the validation function, that evaluated as a valid packet.

In the Figure (5.5) is the output of ValidateHMAC function when we deliberately modi�ed the

packet after the HMAC insertion, simulating an attack. The �rst red square, the "99" value, is the

modi�ed byte after the HMAC insertion. The red rectangle at the end shows that the validation

function invalidated that packet, as expected.

59

Chapter 5

Figure 5.4: Functional testing of HMAC insertion and validation

Figure 5.5: ValidateHMAC function invalidating a packet

60

Results and Analysis

For the functional validation of encryption and decryption, we gave an R-GOOSE packet as input

and we analysed the resulting packet. The encryption/decryption function should encrypt or

decrypt the GOOSE Payload of the packet and change the Security Information �elds with the

encryption algorithm and the provided key details.

In the Figure (5.6) is illustrated the encryption of an R-GOOSE packet. In this example, we pro-

vided forged information related to the key used. The �rst red box highlights the changes made

on the Security Information �elds, while second box highlights the encrypted/decrypted payload.

Figure 5.6: Encryption of an R-GOOSE packet

The Table 5.5 summarizes the tests and respective result on each Protocol Related Function de-

veloped.

Table 5.5: Protocol Related Functions evaluation results

Function Result
R-GOOSE_InsertHMAC PASS
R-GOOSE_ValidateHMAC PASS
R-GOOSE_InsertGMAC PASS
R-GOOSE_ValidateGMAC PASS
R-GOOSE_Encrypt PASS
R-GOOSE_Decrypt PASS

After analysing all of the functions in terms of security and functionality, we can state that all of

them achieved their objective, passing all of the tests performed.

61

Chapter 5

5.3 Performance Evaluation

In this section, we will describe the method we applied to evaluate the performance of each

component we developed. Firstly, we will present the Security Library evaluation, followed by

the Raspberry Pi Bridging Device evaluation and then the combination of both components, the

Security Gateway.

We will start by present the performance evaluation of the cryptographic functions (Section

5.3.1), where all were tested. Then, we analyse the performance of the Protocol Related Functions.

Here we analyse all of the combinations of protocol related function with cryptographic function

(Section 5.3.2). In other words, we fully tested the performance of the Security Library. These

test were only run on the Raspberry Pi. We de�ned that the execution of the protocol related

functions should take less than 0.3ms, corresponding to 10% of the maximum Transfer Time

allowed by the IEC 61850 standard [31]. This value allows us to have a su�cient time window

left for the bridging process and trip time of data.

The second component evaluated was the Raspberry Pi as a bridging device only. With this stack

of tests, we tried to understand if this component, acting as a simple bridge, would comply with

the performance requirements of critical systems. In order to achieve this, we evaluated two

metrics: bandwidth of the communications passing through the bridge, and latency it would add

to the communications.

Our �nal goal was to analyse if both components combined, acting as a Security Gateway, were

a feasible solution in terms of performance. This �nal tests must comply with the performance

requirements collected in Section 3.2.2. The testing �les used, the produced outputs and the

raw tables used to calculate the metrics presented can be found in the Security Library Github

repository [16], inside the test directory. Also, the complete testing tables for the Security Library

can be found on Appendix A.

5.3.1 Cryptographic Functions

Similar to the way we did the functional evaluation, here we perform this evaluation by supplying

an input to each unitary function. However, we were not focused on the output of the function,

instead we measured the time, in milliseconds, that the function took to produce the output.

This measurement was made using monotonic clock of the computer, setting a timer before the

execution, and another timer at the end. Then, the execution time is obtained by subtracting the

�rst value from the second value (Figure 5.7).

Figure 5.7: Example of Performance Testing procedure for Cryptographic function

62

Results and Analysis

To present a valid value for the latency, we repeated each experiment 500 000 times. From that

dataset, we calculated the average latency, the standard deviation, maximum and minimum value,

and the 95% con�dence interval. Also, we considered three input sizes to cover several operation

scenarios. Those data sizes were obtained by analysing several R-GOOSE messages. The �rst

input size was 196 bytes, corresponding to a small R-GOOSE message. The second data size was

256 bytes, corresponding to an intermediate R-GOOSE message. Lastly, the third data size was

572 bytes, corresponding to a intermediate/large R-GOOSE message. We chosen these values

after analysing several R-GOOSE messages generated with libIEC61850 [42]. The �rst data size

corresponds to a message containing 1 GOOSE object, while the second data size corresponds to a

message containing 12 GOOSE objects, and the last data size corresponds to a message containing

72 GOOSE objects. Using three di�erent data sizes will also allow us to understand how the

latency varies with the size of the input, that later could be used to decide which algorithm

should be used in each scenario.

Table 5.6: HMAC Functions performance analysis, using medium size data input

HMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

HMAC-SHA256-80 0.007 0.001 0.249 0.007 ± 0.002

HMAC-SHA256-128 0.007 0.001 0.249 0.007 ± 0.002

HMAC-SHA256-256 0.007 0.001 0.301 0.007 ± 0.002

HMAC-BLAKE2b-80 0.012 0.003 0.783 0.012 ± 0.004

HMAC-BLAKE2s-80 0.008 0.001 0.254 0.008 ± 0.002

Analysing the Table 5.6, we can see that all of the HMAC algorithms met the established re-

quirement for time execution. We can see that all of the SHA256 variations performed with very

similar times. It was expected, as the only di�erence between them is the size of the output and

the number of bytes copied. On the other hand, it is clear that BLAKE2b didn’t perform as well

as SHA256. As BLAKE2 variants were designed to achieve high performance, an explanation to

this behavior could be that these algorithms are not so optimized as SHA256 in OpenSSL Library

[45]. We can point out that BLAKE2b-80 clearly was the worst performing algorithm. Analysing

the con�dence intervals, they are all similar to all algorithms with some exceptions. In the case

of small input size, HMAC-SHA256-80 had a slightly higher value. In the case of medium input

size, HMAC-BLAKE2b-80 also had a slightly higher con�dence interval, and for the large input

size we should note that the con�dence interval of HMAC-BLAKE2s is higher than the rest. Also,

in all of this cases, the maximum is higher than the others. This behavior can be explained by the

presence of outliers. Finally, we must note that the maximum value is much higher than the aver-

age, although it is possibly due to other processes running on the Raspberry Pi in simultaneous.

Yet, these values were still lower than the targeted 0.3ms.

On the Figure 5.8, we illustrate the data collected from testing with di�erent input data sizes.

From the graphic, we can also directly compare the performance of each algorithm for a spe-

ci�c data size. First, we should note that green, blue and red plots have very similar values,

being overlapping in the graphic. Secondly, we can see that for all data inputs, the best per-

forming algorithms are the SHA256 variants. As for BLAKE2s-80, it has similar performance

to SHA256 variants, although it is slightly worst performing, while BLAKE2b-80 is clearly the

worst performing algorithms of all. In this graphic we represented the interval of con�dence for

BLAKE2b-80 and SHA256-128 only due to the fact that all of the other series are very similar,

and presenting all of the interval of con�dence would make the graphic unreadable.

Analysing the Table 5.7, we realize that all of the algorithms performed with very similar execu-

63

Chapter 5

0.3

0 100 196 256 400 500 572 700

0.004

0.007

0.01

0.013

0.015

0.018

0.02

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

SHA256-80

SHA256-128

SHA256-256

BLAKE2b-80

BLAKE2s-80

Figure 5.8: Progression of latency with input size in HMAC-based functions

Table 5.7: GMAC Functions performance analysis, using medium size data input

GMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

GMAC-AES128-64 0.005 0.001 0.167 0.005 ± 0.001

GMAC-AES128-128 0.004 0.007 3.438 0.004 ± 0.010

GMAC-AES256-64 0.005 0.001 0.218 0.005 ± 0.001

GMAC-AES256-128 0.004 0.002 0.311 0.006 ± 0.002

tion times. Once again, it was expected, as the only di�erence is the size of the generated MAC.

In this case, we can see that the variants whose output is 64 bytes long, have a slightly higher

execution time. It happens because in this variants we needed to reduce the default size of the

MAC, doing an extramemcpy operation. Analysing the con�dence intervals, we can see that they

are all very similar for all input sizes. When using GMAC-AES128-128 with medium input size,

we calculated an higher con�dence interval (0.01 ms while all other are between 0.001 and 0.002).

At the same time, we can see that the maximum value is also higher, reaching 3.4ms. Again, this

behavior can be explained by the presence of outliers. As these outliers are only present in one

of the experiments of one algorithm, the probable cause is that other process started consuming

computing resources while the test was being performed.

Finally, as it happened on HMAC algorithms, here the maximum value is much higher than the

average, but still below the targeted 0.3ms.

64

Results and Analysis

0.3

0 100 196 256 400 500 572 700

0.003

0.004

0.005

0.006

0.007

0.008

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

AES128-64

AES128-128

AES256-64

AES256-128

Figure 5.9: Progression of latency with input size in GMAC-based functions

From Figure 5.9, we can see that the algorithms performed very similarly in all input data sizes,

with very small variations, specially when compared with HMAC algorithms. From this, we

can see that these algorithms are consistent when changing the input data size. In this graphic

we present the con�dence interval of the AES256-64 algorithm. We should note that from the

graphic, this algorithm has a slightly better performance with an input size of 256 bytes than

with 196 bytes. This behavior can be justi�ed with the con�dence interval. We can see that for

an input size of 196 bytes, the con�dence interval is higher than for an input of 256 bytes.

Finally, comparing HMAC algorithms with GMAC algorithms, we can clearly see that GMAC has

a better performance and are more consistent, either inside the same test (analysing the standard

deviations and con�dence interval), either comparing the latency di�erence when using di�erent

data sizes.

For encryption, we used di�erent input data sizes, being 51 bytes, 204 bytes and 408 bytes. We did

this because, for the same R-GOOSE packet, the amount of data used to generate the HMAC is not

the same amount of data that is encrypted. On Table 5.8, we present the latency measurements

for encryption and decryption algorithms.

From Table 5.8, the most important analysis we have to do is evaluating if this results show, or

not, if encryption is a possibility in Power Distribution Systems. Analysing the measurements,

we can say that having such algorithms running on a Raspberry Pi, make encryption feasible, as

the additional latency introduced by these algorithms is very low and under our limit of 0.3ms.

Analysing the graphic from Figure 5.10, we can note that these algorithms grow in similar ways,

except for AES256-Encryption, from small data sizes to intermediate. Again, this behavior can

65

Chapter 5

Table 5.8: Encryption/Decryption Function performance analysis, using medium size data input

Function Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES256-GCM-Encrypt 0.005 0.002 0.205 0.005 ± 0.002

AES128-GCM-Encrypt 0.009 0.004 0.337 0.008 ± 0.005

AES256-GCM-Decrypt 0.010 0.003 0.260 0.009 ± 0.005

AES128-GCM-Decrypt 0.008 0.003 0.271 0.007 ± 0.005

0.3

0 51 100 204 300 408 500

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

AES256-Enc

AES128-Enc

AES256-Dec

AES128-Dec

Figure 5.10: Progression of latency with input size in AES-based functions

explained looking at the con�dence interval. In this case it is not presented on the graphic but

for the input size of 51 bytes it is 0.0052ms and for the input size of 204 bytes is of 0.0025. This

di�erence could derive from a set of outliers.

In an overall perspective, we can say that our library met our requirements in terms of per-

formance. For the HMAC generation, we can clearly distinguish SHA256 variants with best

performance, and BLAKE2b with much worse performance. For GMAC generation, all of the

algorithms had similar performances, and all complied with the requirement. Finally, from the

evaluation of AES-based functions, we conclude that encryption may be a viable solution on

Power Distribution Systems, at least when used on the Raspberry Pi, more precisely, on our

Security Gateway.

66

Results and Analysis

5.3.2 Protocol Related Functions

In this section, we will present the performance evaluation of the Protocol Related Functions.

Similar to the method used to evaluate the cryptographic functions, we supplied an R-GOOSE

packet to each function and we measured the time, in milliseconds, it took to execute. Again, we

used the monotonic clock of the computer to measure that time.

As we did to analyse latency in cryptographic functions, we repeated each test 500 000 times,

in order to obtain more precise values. We generated the R-GOOSE packets with our modi�ed

version of libIEC61850, and we used three di�erent size packets. Our �rst packet is an R-GOOSE

packet containing 1 GOOSE object, representing the minimum number of GOOSE objects that a

packet could contain. The second packet contains 20 GOOSE objects and the last packet contains

220 GOOSE objects, representing the maximum number of GOOSE objects that an R-GOOSE

packet could contain.

We performed the evaluation on every Protocol Related Functions variations, in other words,

we analysed all combinations of Cryptographic functions for every Protocol Relation function.

The following tables present the latency measurements for the R-GOOSE packet containing 20

GOOSE objects. Each table presents the results for one Protocol Related Function, where each

entry indicates the cryptographic algorithm used.

Table 5.9: InsertHMAC performance analysis, using medium size data input (20 GOOSE objects)

HMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

HMAC-SHA256-80 0.011 0.010 1.018 0.01 ± 0.014

HMAC-SHA256-128 0.010 0.011 1.057 0.01 ± 0.015

HMAC-SHA256-256 0.011 0.009 0.932 0.01 ± 0.013

HMAC-BLAKE2b-80 0.018 0.012 1.009 0.017 ± 0.016

HMAC-BLAKE2s-80 0.011 0.011 0.951 0.011 ± 0.015

Analysing the Table 5.9 we can verify that the latency measured executing the HMAC insertion

on R-GOOSE packets isn’t much higher than the execution time of unitary functions. This ta-

ble is important because we will use this results to decide what cryptographic functions will be

used when testing the Security Gateway. Following the same pattern as the unitary functions,

we can identify the HMAC-BLAKE2b-80 as the worst performing function, being signalled in

red. HMAC-SHA256-128, highlight in green, had the best performance for this tests, and will

be used, as well as HMAC-BLAKE2b-80 to evaluate the Security Gateway. Analysing the con-

�dence intervals of these algorithms, we can state that all of them will comply with our 0.3ms

requirement.

In the Figure 5.11, is illustrated the evolution of the execution time with the number of GOOSE

objects for InsertHMAC function. From the graphic, we can analyse that HMAC-SHA256-128

(in red), performed much better in all of the input packet sizes. On the other hand, BLAKE2b-

80 is the worst performing algorithm, following the same pattern from the evaluation of the

cryptographic functions.

On Table 5.10, we present the measurements for the ValidateHMAC function with all of the cryp-

tographic algorithms, using the intermediate size R-GOOSE packet. As it was expected, the

HMAC validation is faster than insertion, due to the generated HMAC not being copied to the

original packet. Although, on the validation, we can see that the best performing algorithm is

di�erent from insertion. From the table it is clear that HMAC-BLAKE2b continues to have the

67

Chapter 5

0.3

1 20 50 100 220 250

0.004

0.007

0.01

0.013

0.015

0.018

0.02

0.023

0.025

0.028

0.03

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

SHA256-80

SHA256-128

SHA256-256

BLAKE2b-80

BLAKE2s-80

Figure 5.11: Progression of latency with number of GOOSE Objects in InsertHMAC Function

Table 5.10: ValidateHMAC performance analysis, using medium size data input

HMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

HMAC-SHA256-80 0.008 0.008 0.712 0.008 ± 0.011

HMAC-SHA256-128 0.008 0.007 0.915 0.008 ± 0.010

HMAC-SHA256-256 0.008 0.008 1.145 0.008 ± 0.011

HMAC-BLAKE2b-80 0.014 0.008 0.59 0.014 ± 0.011

HMAC-BLAKE2s-80 0.009 0.008 0.689 0.009 ± 0.011

worst performance, having much higher execution time than HMAC-SHA-based algorithms. Al-

though, when validating HMAC, we can see that HMAC-BLAKE2s variant is already very similar

to SHA-based algorithms. Analysing the standard deviation and con�dence interval, we can see

that even in the worst case scenario, all of the algorithms still comply with the requirements we

established.

In the Figure 5.12, we present the evolution of function performance when changing the size of

the input packet. Again, from the graphic it is clear the di�erence between BLAKE2b-80 and

the other algorithms in all of the input packet sizes. The SHA256 variants had very similar

performances, namely SHA256-128 and SHA256-256. Because of that and the high con�dence

intervals that both of the functions have, we cannot say exactly which one is the best performing

algorithm. Although, we choose SHA256-80 (green in the table) to be used on the protocol speci�c

68

Results and Analysis

0.3

1 20 50 100 220 250

0.002

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

SHA256-80

SHA256-128

SHA256-256

BLAKE2b-80

BLAKE2s-80

Figure 5.12: Progression of latency with number of GOOSE Objects in ValidateHMAC Function

evaluation. The reason behind this choice is that, when analysing the exact values, Table A.6

it has a slightly better performance in intermediate and large packet sizes. As for the worst

performing algorithm, we choose BLAKE2b-80 (red in the table), due to the big di�erence in

all of the packet sizes. We also present the con�dence interval of BLAKE2b-80. Having such

interval in consideration, we can state that even the worst performing algorithms complies with

our 0.3ms requirement.

Table 5.11: InsertGMAC Functions performance analysis, using medium size data input

GMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

GMAC-AES128-64 0.007 0.009 1.027 0.007 ± 0.012

GMAC-AES128-128 0.007 0.010 3.945 0.007 ± 0.014

GMAC-AES256-64 0.008 0.010 2.821 0.007 ± 0.014

GMAC-AES256-128 0.007 0.009 1.075 0.007 ± 0.012

On the Table 5.11 we present the results from evaluation on InsertGMAC function using interme-

diate size packet. Analysing such table and the graphic on Figure 5.13, we can state that all of the

algorithms have very similar behavior. This was expected as the operations performed in Insert-
GMAC are the same for all of the algorithms, and, as we can see in Table 5.7, the cryptographic

functions had very similar performances. All of the algorithms had very similar performances

and as the con�dence intervals are high, we cannot say exactly which one had the best perfor-

69

Chapter 5

0.3

1 20 50 100 220 250

0.002

0.005

0.01

0.015

0.02

0.025

0.03

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

AES128-64

AES128-128

AES256-64

AES256-128

Figure 5.13: Progression of latency with number of GOOSE Objects size in InsertGMAC function

mance. Although, analysing the complete testing tables, we can see that has a slightly better

performance in both small and intermediate packet sizes. As for the worst performing algorithm

we choose AES256-128, having the worst performances in small and large packet sizes. The con-

�dence intervals are similar for all of the algorithms except for AES256-128 using small input

sizes. In this case, the con�dence interval is 0.02 ms. We can also verify the existence of outliers,

as for example, the maximum value of 5.871 ms. Yet, all of the algorithms comply with the 0.3ms

requirement.

Table 5.12: ValidateGMAC Functions performance analysis, using medium size data input

GMAC Algorithm Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

GMAC-AES128-64 0.006 0.007 0.0774 0.005 ± 0.001

GMAC-AES128-128 0.005 0.006 0.852 0.005 ± 0.009

GMAC-AES256-64 0.006 0.006 0.679 0.006 ± 0.009

GMAC-AES256-128 0.005 0.006 0.704 0.005 ± 0.009

On the Table 5.12 we present the results from ValidateGMAC evaluation using intermediate

packet size. We can see that all of the algorithms performed with very similar latency times,

with latency oscillating between 0.005 and 0.006 milliseconds. As we stated before, the GMAC

generation functions had very similar performances, making this outcome expected. We must

note that, having in consideration the measurements for the average and the con�dence interval,

70

Results and Analysis

all of this algorithms comply with our performance requirement.

0.3

1 20 50 100 220 250

0.002

0.005

0.01

0.015

0.02

0.023

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

AES128-64

AES128-128

AES256-64

AES256-128

Figure 5.14: Progression of latency with number of GOOSE Objects size in ValidateGMAC func-

tion

Analysing the graphic on Figure 5.14, we realize that the variation of the latency with the size

of the input is small. For example, analysing AES128-128 in more detail, this algorithm took

0.005 ms to execute with intermediate packet size, and 0.012 with the large packet size. Having

in consideration that the large packet size is eleven times larger than the intermediate packet,

the increment on the latency can be considered reduced. Again, all of these algorithms had very

similar performances and high con�dence intervals. Given that, we cannot say exactly which one

is the best performing algorithm. Although, analysing the complete testing tables, we can see

that AES128-128 had the best performances for small and large packet sizes. On the other hand,

AES256-64 was considered the worst performing algorithm, having the worst performances for

small and intermediate packet sizes.

Table 5.13: Encryption Function performance analysis, using medium size data input

Function Average
(ms)

Standard
Devia-
tion

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES256-GCM-Encrypt 0.013 0.011 3.941 0.013 ± 0.015

AES128-GCM-Encrypt 0.011 0.009 0.797 0.011 ± 0.012

AES256-GCM-Decrypt 0.011 0.007 0.677 0.011 ± 0.009

AES128-GCM-Decrypt 0.011 0.007 0.870 0.011 ± 0.009

71

Chapter 5

The last table (5.13) of this section, presents the evaluation performed on Encryption and Decryp-

tion functions. They are presented together and, because of that, we selected two best performing

algorithms and two worst performing algorithms from the same table. Analysing the test case

presented, we can note that encryption could be a feasible mechanism to be applied on Power

Distribution Systems. Comparing each algorithm, we can see that AES with 128 bits key length

has a better performance. Another observation we must do is that the decryption functions have

better performance measurements against the encryption function, being a common behavior in

cryptography.

0.3

1 20 50 100 220 250

0

0.01

0.02

0.03

0.04

0.045

Input data size (bytes)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

AES256-Enc

AES128-Enc

AES256-Dec

AES128-Dec

Figure 5.15: Progression of latency with number of GOOSE Objects in Encrypt And Decrypt

Functions

From Figure 5.15, we note a downside on encryption and decryption. The execution time for

encryption and decryption grows much faster than execution time for HMAC/GMAC insertion

and validation. This was also expected, due to the inner properties and di�erences between en-

cryption and hashing. This values still show that encryption is a feasible solution when used

on the Raspberry Pi, however this fast growth may represent a serious problem when encryp-

tion is applied in IEDs. From the graphic and the table, we choose AES128 variants as the best

performing algorithms, while AES256 variants are the worst performing algorithms. We should

also note that AES256-Dec and AES128-Dec have very similar behaviors and, due to that, they

are overlapping in the graphic. Also, analysing the con�dence intervals of these algorithms we

can state that they comply with our 0.3ms requirement for all input data sizes.

After fully testing the Security Library, we state that all of the functions met the requirement of

executing in less than 0.3 milliseconds. In terms of HMAC insertion and validation, the SHA256

variants performed signi�cantly better than BLAKE2b variants, while BLAKE2s got a similar

performance to SHA256. For the GMAC insertion and validation, there were not signi�cant

72

Results and Analysis

di�erences between the algorithms tested. We can also state that GMAC had a better performance

than HMAC, with lower latency measurements in insertion and in validation. For encryption,

we should note two aspects: with these tests we showed that is possible to comply with the

performance requirements when applying encryption on the Raspberry Pi, but at the same time,

we realized that the execution time to encrypt an R-GOOSE packet grows considerably fast when

incrementing the packet size, what could compromise the performance in devices with limited

capabilities.

5.3.3 Raspberry Pi Bridging Device

In this section, we will present the performance evaluation of the Raspberry Pi acting as a bridg-

ing device. In this stack of tests, we analysed only the bridging component and the impact it has

on overall communications, not being focused on R-GOOSE.

We measured and analysed two metrics to evaluate the performance of the bridging device: band-

width and latency of communications. To measure the bandwidth, we used iPerf3 [1] tool. To

measure the latency, we used Ping tool, con�guring its arguments to modify the test conditions.

In these experiments, we used the setup illustrated in Figure (5.1).

Bandwidth Test

iPerf3 [1] is a tool used to measure the quality of communications in an IP network. This tool

allows to measure the maximum bandwidth achievable, the loss and other metrics about the

network. For our tests, we will be focused on measuring the bandwidth of communications, as

it will be one of the metrics that will have more impact on the Security Gateway performance

iPerf3 measures the bandwidth using a client and a server that must be installed in two endpoints

of the network. It establishes a connection between them and tries to transfer as many data as

it is possible during a given amount of time. With those values, it calculates the bandwidth of

that connection. We installed iPerf Server on PC A and the iPerf Client on PC B and we ran the

experiment during 10 minutes. The results were the following:

Table 5.14: Total data transferred and Bandwidth measurements with bridge device in place

Total data transferred 6.62 GBytes

Bandwidth 94.7 Mbits/sec

We then repeated the same test but without the Raspberry Pi, connecting both PCs directly and

we measured the following results:

Table 5.15: Total data transferred and Bandwidth measurements without bridge device in place

Total data transferred 6.63 GBytes

Bandwidth 94.9 Mbits/sec

Comparing Table 5.14 and Table 5.15 we can see that bandwidth decreased from 94.9 Mbits/sec,

when Raspberry Pi is not in place, to 94.7 Mbits/sec when it is in place. We can conclude that

our bridging device does not decrease signi�cantly the bandwidth of the network used.

73

Chapter 5

Latency Test

To measure latency that our bridging device introduces on the communications we used the well

known Ping tool. We used the setup as it is shown in the Figure 5.16 and we executed the Ping

command from PC B.

The Ping tool measures the RTT of an ICMP packet in a given network. In terms of latency, our

�nal goal is to analyse if our Security Gateway can apply the security mechanisms developed

without compromising the 3ms of latency per R-GOOSE packet. This 3ms are the Transfer Time,

as illustrated in the Figure 3.4. There we can see that it is an OTT (One Trip Time) and does not

include the latency introduced by the endpoint applications (R-GOOSE Applications).

Given that and the fact that Ping measures the RTT, we can de�ne our objective for this test

as achieving an RTT lesser to 6ms. If we assume that both trip times on Ping calculation are

very similar (as they use the same network and packet size are very similar), we can assume that

Transfer Time will be lesser than half of the RTT calculated by Ping, because Transfer Time does

not include the processing time on each application.

Figure 5.16: Diagram of Ping testing and relation with Transfer Time

For this test, we used a set of 12000 ICMP packets to measure the average latency of each packet.

Also, we repeated the test several times, changing the throughput rate of the ping command.

From R-GOOSE speci�cations, we can see that when an event is raised, a message is sent every

4ms at �rst, then incrementing this time interval. With this in mind, we analysed the latency

of the bridge, sending packets with a time interval of 4ms, 10ms, 20ms, 30ms, 40ms, 50ms and 1

second.

Analysing the Table 5.16, we can con�rm that our bridging device complies with the requirements

for the communications, more precisely, with the 3ms for Transfer Time. The averages for RTT

of ICMP packets are between 2.548ms and 3.242ms. From there we can estimate an OTT of

1.274ms to 1.621ms. Moreover, if we take in consideration the standard deviation the latency

measurements will still comply with the requirements. On the following graphic is plotted the

latency related with the time interval between packets. From the graphic, we can see that in the

case test simulating the packet rate after an R-GOOSE event been raised, we achieved the best

performance, increasing the latency with the time interval between packets. We can also note

that the RTT tends to a value closer of 2.8ms, as we can see for the test with 1 second of time

interval between packets.

From the analysis done in this subsection, we can conclude that our bridging device complies with

74

Results and Analysis

Table 5.16: Bridge device latency measurements

Time Interval Average (ms) Standard Deviation Maximum (ms) Minimum (ms)
4 2.548 0.566 13.361 1.736

10 2.611 0.515 10.501 1.890

20 2.652 0.411 8.579 1.957

30 2.669 0.490 9.081 1.694

40 2.719 0.547 9.135 1.970

50 2.771 0.515 9.464 1.880

1000 2.800 0.426 11.819 2.066

4 10 30 100 500 1 000

2.3

2.4

2.6

2.8

3

Time Interval between packets (ms)

L
a
t
e
n

c
y

(
m

i
l
l
i
s
e
c
o

n
d

s
)

Figure 5.17: Progression of latency with the rate of packets sent using Ping

the performance requirements for the communications in Power Distribution Systems. We esti-

mate that the OTT of the communications passing through the Raspberry Pi is between 1.274ms

and 1.621ms, leaving us much space to apply the security mechanisms without compromising

the 3ms requirement.

5.3.4 Security Gateway

In this section we will evaluate the performance of our Security Gateway, that is, our Raspberry Pi

Bridging Device applying the security mechanisms to R-GOOSE packets. In these tests we were

focused on analysing the latency on R-GOOSE communications passing through the Security

Gateway. To measure latency, we developed an application that was acting as an UDP/R-GOOSE

Server. This application was placed in PC A and was receiving R-GOOSE packets sent from PC

B. On PC B, packets were generated and sent using our modi�ed version of libIEC61850 [42].

We repeated each test 1000 times and we will present the measurements when the packets were

sent with a time interval of 4ms. The reason we choose this time interval is because it is the

packet rate used by R-GOOSE applications when events are raised. We tested all of the protocol

related functions of Security Library using two cryptographic algorithms selected in the Section

5.3.2. As explained before, we choose the best and the worst performing algorithm.

As we did in the analysis of Ping results for bridging device, in these tests we are also measuring

75

Chapter 5

Table 5.17: Bridge device latency (RTT) measurements

F. Name Average
(ms)

Con�dence
Interval
95%

Maximum
(ms)

Minimum
(ms)

Result

AddHMAC-SHA256-
128

3.165 0.749 8.126 1.829 Pass

AddHMAC-BLAKE2b-
80

3.122 0.735 7.687 2.315 Pass

AddGMAC-AES128-
128

3.100 0.807 12.148 2.266 Pass

AddGMAC-AES256-
128

3.121 0.781 7.011 2.231 Pass

ValidateHMAC-
SHA256-80

3.155 1.016 10.75 2.289 Pass

ValidateHMAC-
BLAKE2b-80

3.073 1.014 11.234 2.273 Pass

ValidateGMAC-
AES128-128

3.184 0.964 11.205 2.28 Pass

ValidateGMAC-
AES256-64

3.051 1.000 10.067 2.237 Pass

Encrypt-AES128 3.069 0.829 8,688 2.238 Pass

Encrypt-AES256 3.207 0.855 12.689 2.41 Pass

Decrypt-AES128 3.129 1.050 11.661 2.162 Pass

Decrypt-AES256 3.046 0.755 12.989 2.243 Pass

the RTT and not the Transfer Time. Although, as we showed on Figure 5.16, we can estimate

the OTT (that is always bigger than Transfer Time of Figure 3.4) and evaluate if the test was

successful or not. From the Table 5.17 we can see that all of the RTT values are between 3.046 ms

and 3.207 ms, from where we can estimate an OTT between 1.523 ms and 1.6035 ms. With this

OTT values, we can state that our Security Gateway complies with the R-GOOSE requirement

of a Transfer Time minor than 3ms.

Concluding this chapter, we tested each component that was developed. For the Security Li-

brary, we tested the functional requirements of each functions, using standardized test vectors

for cryptographic functions, and R-GOOSE packets for protocol related functions. All of the tests

performed were successful. In terms of performance, we analysed all of the functions individ-

ually. Our objective was to understand the latency that each function would introduce when

applied directly on another device, as an IED. All of these tests were successful. Finally, we anal-

ysed the performance of the bridge and the Security Gateway (Security Library combined with

Raspberry Pi Bridging Device). We evaluated the impact that the bridge would have in the com-

munications bandwidth, decreasing from 94.9 Mbits/sec to 94.7 Mbits/sec. Then we analysed the

latency of R-GOOSE communications and compared with the requirements from Transfer Time.

We estimated that the OTT on our scenario would be between 1.523 ms and 1.6035 ms. With

these values, we can conclude that our solution complies with the performance requirements.

76

Chapter 6

Conclusions and Future Work

The objective of this research work was to develop and validate a set of security mechanisms

for Critical Systems, to ensure a new set of security requirements acquired with the shift to 5G

networks. In order to achieve such goal, we analysed three Critical Systems: Railway Signalling

Systems, Power Distribution Systems and PPDR Platforms. From those systems, we de�ned a set

of security and performance requirements that our solution must comply with.

During this work we faced some challenges. Initially, it was very di�cult to �nd information on

the protocols used by each system. The majority of such protocols are proprietary, and there is

few public information detailing its speci�cations. Moreover, was extremely di�cult to �nd open

implementations of such protocols. Fortunately, we found an open implementation of GOOSE

protocol, that later we modi�ed to generate R-GOOSE packets.

In terms of the analysis done of the protocols, the most relevant part is the requirements and

the gap analysis performed. To set the requirements, we analysed the standards and recommen-

dations that regulate each area. Then, in the gap analysis, we compared the requirements we

collected with the security mechanisms that each protocol was already implementing, and we

concluded that was necessary to ensure message integrity, message authentication and message

con�dentiality.

After the gap analysis, we had our objectives de�ned and, with that in mind, we proposed the

development of a Common Framework for Critical Systems, composed by a Security Library

and Bridging Device, that combined would provide a Security Gateway for Critical System’s

devices. The Security Library developed consists on a set of cryptographic functions that can

be used in any area, being based on the OpenSSL library. Moreover, the library includes a set

of protocol related functions that apply the security mechanisms to a speci�c protocol. In this

research work, due to the non existence of other open implementations that we had access to,

the protocol related part was only focused on Power Distribution Systems, more speci�cally on

the R-GOOSE protocol, although other protocols can be supported. We developed functions to

ensure Integrity, Authentication and Con�dentiality of R-GOOSE messages.

For the Bridge Device, we tried several methods to perform an e�cient bridging, using a Rasp-

berry Pi as hardware. Our �nal solution consists on establishing a Linux Bridge (brctl) and using

IPTables alongside with a Net�lter Kernel Module, to bridge packets and modifying them in a

user space application.

We evaluated all of the developed components in terms of functionality and in terms of per-

formance. For the functionality, we proved that our solution was able provide the security re-

quirements necessary. In terms of performance, we evaluate the Security Library by itself, the

bridging device and both combined, forming the Security Gateway. The �nal results showed that

77

Chapter 6

our Security Gateway was a feasible solution on the context of Power Distribution Systems. By

the requirements of protocol R-GOOSE, each message should have a Transfer Time of at most,

3ms. Adding our Security Gateway to the system, we were able to achieve an estimated Transfer

Time between 1.523 ms and 1.6035 ms, for integrity/authentication and encryption (when applied

in separate). Furthermore, from the analysis made on the Security Library by itself, we showed

that, on a device with similar capabilities of a Raspberry Pi 4B, all of the security mechanisms

could be applied without breaking the performance requirements.

As this research work is part of 5G Mobilizer project, our solution will be integrated in a big-

ger and more realistic testbed, that will allow us to understand the impact that our solution will

have in a much more realistic network, as well as analyse the performance of our Security Li-

brary when applied directly in IEDs. Also, as other future work, our Security Library could be

expanded to support other protocols used on Critical Systems. In this version of our library, it

already implements the mechanisms to provide authentication, although those mechanisms are

dependent of a Key Management System that is still not included on the library. The develop-

ment of such Key Management System should be considered in a future work. Finally, as there are

several legacy devices deployed on real environments that cannot even support R-GOOSE, arises

the opportunity of adding a module to our Security Gateway, capable of converting unsecured

GOOSE packets on secured R-GOOSE packets.

78

References

[1] " iPerf3 ". https://iperf.fr.

[2] 5G Mobilizer Project Consortium. " 5G Mobilizer Project ". Available: https://5go.pt/.

[3] ALSETLab. " Khorjin - An IEC 61850-90-5 Gateway for Synchrophasor Data Transfer with

support for IEEE C37.118.2 ". github.com/ALSETLab/Khorjin-IEC61850-90-5.

[4] American Public Transportation Association. " Securing Control and Communications

Systems in Rail Transit Environments ". Tech Rep APTA SS-CC-03-15, April 2015. [On-

line]. Available: https://www.apta.com/wp-content/uploads/Standards_Documents/APTA-

SS-CC-03-15.pdf.

[5] A. Apostolov. R-GOOSE: what it is and its application in distribution automation. CIRED -
Open Access Proceedings Journal, 2017(1):1438–1441, 2017.

[6] Jean-Philippe Aumasson and Markku-Juhani O. Saarinen. The BLAKE2 Cryptographic

Hash and Message Authentication Code (MAC). RFC 7693, RFC Editor, November 2015.

[7] Pavel F. Baranov, Sergey V. Muravyov, Almaz O. Sulaymanov, and Lyudmila I. Khudono-

gova. Software for Emulating the Sampled Values Transmission in Accordance with IEC

61850 Standard. 2nd International Symposium on Computer, Communication, Control and
Automation (3CA 2013), 2013.

[8] Daniel J. Bernstein. The Poly1305-AES message-authentication code. 2005.

[9] Daniel J. Bernstein. The Salsa20 family of stream ciphers. 2007.

[10] H. Birkholz, C. Krauß, M. Zhdanova, D. Kuzhiyelil, T. Arul, M. Heinrich, S. Katzenbeisser,

N. Suri, T. Vateva-Gurova, and C. Schlehuber. A Reference Architecture for Integrating

Safety and Security Applications on Railway Command and Control Systems: Extended

Abstract. In Proceedings of 4th International Workshop on MILS: Architecture and Assurance
for Secure Systems (MILS’18), 2018.

[11] Kwasi Boakye-Boateng and Arash Habibi Lashkari. Securing GOOSE: The Return of One-

Time Pads. In 2019 International Carnahan Conference on Security Technology (ICCST), pages

1–8, 10 2019.

[12] D. Saraiva, D. Corujo and R. Aguiar. IEC 61850 Data Transfer Evaluation over Public Net-

works. Wireless Personal Multimedia Communications Symp. - WPMC, 2019.

[13] Mauricio Gadelha da Silveira. IEC 61850 Network Cybersecurity : Mitigating GOOSE Mes-

sage Vulnerabilities. In 6th Annual PACWorld Americas Conference, Raleigh, North Carolina,

August 2019.

[14] M. Daoud and X. Fernando. On the Communication Requirements for the Smart Grid.

Energy and Power Engineering, 3, January 2011.

79

Chapter 6

[15] Diogo Saraiva. " LibIEC61850-R-GOOSE ". https://github.com/DiMSaraiva/LibIEC61850-R-

GOOSE.

[16] Eduardo Andrade. " R-GOOSE-SecLib ". https://github.com/slipz/R-GOOSE_SecLib.

[17] Eduardo Andrade. " RPi-Gateway ". https://github.com/slipz/RPi-Gateway.

[18] Ahmed Elgargouri, Reino Virrankoski, and Mohammed Elmusrati. IEC 61850 Based Smart

Grid Security. Proceedings of the IEEE International Conference on Industrial Technology
(ICIT), 2015, 03 2015.

[19] European Committee for Electrotechnical Standardization (CENELEC). "Railway applica-

tions - Communication, signalling and processing systems - Safety-related communication

in transmission systems". Standard EN 50159, Setembro 2010.

[20] European Committee for Electrotechnical Standardization (CENELEC). "Railway applica-

tions - Communication, signalling and processing systems - Safety related electronic sys-

tems for signalling". Standard EN 50129, Novembro 2018.

[21] Shaik Mullapathi Farooq, S. M. Suhail Hussain, and Taha Selim Ustun. Performance Eval-

uation and Analysis of IEC 62351-6 Probabilistic Signature Scheme for Securing GOOSE

Messages. IEEE Access, March 2019.

[22] Seyed Reza Firouzi, Luigi Vanfretti, Albert Ruiz-Alvarez, Hossein Hooshyar, and Farhan

Mahmood. Interpreting and implementing IEC 61850-90-5 Routed-Sampled Value and

Routed-GOOSE protocols for IEEE C37.118.2 compliant wide-area synchrophasor data

transfer. Electric Power Systems Research, 144:255–267, 03 2017.

[23] Working Group CYSIS – Subgroup Security for Safety. Security for Safety.

https://www.seceng.informatik.tu-darmstadt.de/media/seceng/ag_cysis/SD52018Kant.pdf,

2018.

[24] Shailendra Fuloria and Ross Anderson. The Protection of Substation Communications. In

SCADA Security Scienti�c Symposium, 2010.

[25] Shailendra Fuloria, Ross Anderson, Kevin Mcgrath, Kai Hansen, and Fernando

Alvarez. The protection of substation communications. 2010. Available:

https://www.cl.cam.ac.uk/ rja14/Papers/S4-2010.pdf.

[26] A. Hadbah, A. Kalam, and A. Zayegh. Powerful IEDs, ethernet networks and their e�ects

on IEC 61850-based electric power utilities security. In 2017 Australasian Universities Power
Engineering Conference (AUPEC), pages 1–5, Nov 2017.

[27] M. Heinrich, T. Vateva-Gurova, T. Arul, S. Katzenbeisser, N. Suri, H. Birkholz, A. Fuchs,

C. Krauß, M. Zhdanova, D. Kuzhiyelil, S. Tverdyshev, and C. Schlehuber. Security Require-

ments Engineering in Safety-Critical Railway Signalling Networks. Security and Communi-
cation Networks, July 2019.

[28] M. Heinrich, J. Vieten, T. Arul, and S. Katzenbeisser. Security Analysis of the RaSTA Safety

Protocol. In 2018 IEEE International Conference on Intelligence and Security Informatics (ISI),
Miami, FL, USA, 2018.

[29] J. Hoyos, M. Dehus, and T. X. Brown. Exploiting the GOOSE protocol: A practical attack

on cyber-infrastructure. In 2012 IEEE Globecom Workshops, pages 1508–1513, Dec 2012.

[30] S. M. S. Hussain, S. M. Farooq, and T. S. Ustun. Analysis and Implementation of Mes-

sage Authentication Code (MAC) Algorithms for GOOSE Message Security. IEEE Access,
7:80980–80984, 2019.

80

References

[31] International Electrotechnical Commission. " Power Utility Automation ". Standard IEC

61850.

[32] International Electrotechnical Commission. " Functional safety of electrical/electronic/pro-

grammable electronic safety-related systems ". Standard IEC 61508, 2010.

[33] International Electrotechnical Commission. " Power systems management and associated

information exchange - data and communications security ". Standard IEC 62351, 2018.

[34] International Electrotechnical Commission. " Telecontrol equipment and systems - Part 5:

Transmission protocols ". Standard IEC 60870, 2018.

[35] International Union of Railways. " ARGUS Project ", 2015. Available:

https://www.uic.org/com/uic-e-news/392/article/argus-kick-o�-meeting-paris-

19?page=modal_enews.

[36] O. Khaled, A. Marín, F. Almenares, P. Arias, and D. Díaz. Analysis of secure TCP/IP pro�le

in 61850 based substation automation system for smart grids. In International Journal of
Distributed Sensor Networks, p. 5793183, 2016.

[37] Ra�ullah Khan, Kieran Mclaughlin, David Laverty, and Sakir Sezer. Design and implemen-

tation of security gateway for synchrophasor based real-time control and monitoring in

smart grid. IEEE Access, 5:11626 – 11644, 06 2017.

[38] Kamil Kołtyś and Robert Gajewski. SHaPe: A Honeypot for Electric Power Substation.

Journal of Telecommunications and Information Technology, pages 37–43, January 2015.

[39] Nishchal Kush, Mark Branagan, Ernest Foo, and Ejaz Ahmed. Poisoned GOOSE : exploiting

the GOOSE protocol. Conferences in Research and Practice in Information Technology Series,
149, 01 2014.

[40] I. Lopez and M. Aguado. Cyber Security Analysis of the European Train Control System.

In IEEE Communications Magazine, vol. 53, no. 10, pp. 110–116, 2015.

[41] David A. McGrew and John Viega. The Use of Galois Message Authentication Code (GMAC)

in IPsec ESP and AH. RFC 4543, RFC Editor, May 2006.

[42] MZ Automation. " O�cial repository for libIEC61850, the open-source library for the IEC

61850 protocols ". github.com/mz-automation/libiec61850.

[43] Magnus Nystrom. Identi�ers and Test Vectors for HMAC-SHA-224, HMAC-SHA-256,

HMAC-SHA-384, and HMAC-SHA-512. RFC 4231, RFC Editor, December 2005.

[44] Sebastian Obermeier, Roman Schlegel, and Johannes Schneider. Assessing the Security of

IEC 62351. Proceedings of the 3rd International Symposium for ICS & SCADA Cyber Security
Research 2015, pages 11–19, 01 2015.

[45] OpenSSL. " OpenSSL 1.1.1 ". https://www.openssl.org/news/openssl-1.1.1-notes.html.

[46] Upeka Premaratne, Jagath Samarabandu, Tarlochan Sidhu, Robert Beresh, and Jian-Cheng

Tan. Security Analysis and Auditing of IEC61850-Based Automated Substations. Power
Delivery, IEEE Transactions on, 25:2346 – 2355, 11 2010.

[47] 5G Mobilizer Project. Deliverable D3.2 and D3.3 - Use cases, requirements and solutions

architecture for M2M critical communications, 2019.

81

Chapter 6

[48] G. Samta, S. Karmakar, M. Sharma, and S. Sharma. Bluetooth Secure Simple Pairing with

enhanced security level. In Journal of Information Security and Applications, vol. 44, pp.
170-183, February 2019.

[49] C. Schlehuber, M. Heinrich, T. Vateva-Gurova, S. Katzenbeisser, and N. Suri. Challenges

and Approaches in Securing Safety-Relevant Railway Signalling. In 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), 2017.

[50] J. Schuler and P. Favre-Perroz. IEC-61850, Inter-substation communication: Optimal signed-

crypted R-GOOSE and R-Sampled Values on IP-Multicast networks. 06 2016.

[51] Dae-Yong Shin, Sugwon Hong, Il Lim, and Seung-Jae Lee. Evaluation of Security Algorithms

for the SCADA System based on IEC 61850. EmbeddedCom-ScalCom, January 2009.

[52] J. Smith, S. Russell, , and M. Looi. Security as a safety issue in railcommunications. In Aus-

tralian Computer Society, Inc., editor, Proceedings of the 8th Australian workshop onSafety
critical systems and software-Volume 33, pp. 79-88, 2003.

[53] National Institute Of Standards and Technology. NIST Special Publication 800-38D Computer
Security - Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM)
and GMAC. NIST, Gaithersburg, MD 20899-8930, 2007.

[54] Swiss Re Institute. Natural catastrophes and man-made disas-

ters in 2017: a year of record-breaking losses, 2018. Available:

https://reliefweb.int/sites/reliefweb.int/�les/resources/sigma1_2018_en.pdf.

[55] The SECRET Consortium. " Security of railways against eletromagnetic at-

tacks ". UIC-ETF. ISBN: 978-2-7461-2465-3, November 2015. [Online]. Available:

https://cordis.europa.eu/docs/results/285/285136/�nal1-white-paper-security-light.pdf.

[56] UNISIG. "RBC-RBC Safe Communication Interface". Subset-098, May 2007.

[57] The Railway Technical Website. Signalling. http://www.railway-technical.com/signalling/.

[58] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. A survey on cyber security for smart grid

communications. Communications Surveys and Tutorials, IEEE, 14:998–1010, 01 2012.

82

This page is intentionally left blank.

Appendices

84

This page is intentionally left blank.

Appendices A

Appendix A

In this appendix we present the complete results from the performance testing of our Security

Library. The testing methodology used is explained in detail in Section 5.3. In brief, we used a

Raspberry Pi 4B to run each functions. In each test, we provide a given input with a given size

(speci�ed in each table entry), and we measured the execution time it took using Raspberry Pi’s

monotonic clock. Each experience was repeated 500 000 times.

Each table entry is speci�ed by the algorithm we are analysing and the input data size. For

each combination, we measure average in milliseconds, standard deviation in milliseconds, the

maximum value, the minimum value and the con�dence interval of 95%. A short version of each

table and respective analysis is presented in Section 5.2.

On table A.1 we present the complete results for the HMAC cryptographic functions evaluation,

followed by the Table A.2 presenting the evaluation of GMAC cryptographic functions. On Table

A.3 we present the results from the AES cryptographic functions evaluation.

HMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

SHA256-80

196 0.007095 0.003060 1.974 0.006 0.004241

256 0.007130 0.001429 0.249 0.007 0.001980

572 0.009113 0.001353 0.299 0.009 0.001875

SHA256-128

196 0.007100 0.001043 0.236 0.007 0.001445

256 0.007106 0.001495 0.249 0.007 0.002073

572 0.009154 0.001711 0.300 0.009 0.002371

SHA256-256

196 0.007085 0.000837 0.225 0.007 0.001160

256 0.007106 0.001181 0.301 0.007 0.001636

572 0.009176 0.002007 0.309 0.009 0.002781

BLAKE2b-80

196 0.012085 0.001621 0.689 0.012 0.002246

256 0.012157 0.002596 0.783 0.012 0.003597

572 0.017095 0.001666 0.286 0.016 0.002309

BLAKE2s-80

196 0.008108 0.001284 0.293 0.008 0.001779

256 0.008114 0.001279 0.254 0.008 0.001773

572 0.010114 0.005081 3.393 0.010 0.007042

Table A.1: HMAC Functions performances, using all size data inputs

Then we present the results from the evaluation of protocol speci�c functions, in this case R-

86

GMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES128-64

196 0.005023 0.000923 0.244 0.004 0.001278

256 0.005079 0.000755 0.167 0.005 0.001047

572 0.006140 0.001559 0.254 0.006 0.002160

AES128-128

196 0.004100 0.001040 0.232 0.004 0.001442

256 0.004146 0.006897 3.438 0.004 0.009558

572 0.006129 0.001757 0.578 0.006 0.002435

AES256-64

196 0.005103 0.001208 0.219 0.005 0.001674

256 0.005079 0.000730 0.218 0.005 0.000975

572 0.006181 0.001220 0.256 0.006 0.001689

AES256-128

196 0.004104 0.001111 0.238 0.004 0.001540

256 0.004106 0.002030 1.103 0.004 0.002814

572 0.006112 0.001716 0.311 0.006 0.002378

Table A.2: GMAC Functions performances, using all size data inputs

Enc/Dec
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES256-Enc

51 0.005363 0.003738 2.141 0.005 0.005180

204 0.005300 0.001788 0.205 0.005 0.002478

408 0.015028 0.004485 0.338 0.013 0.006215

AES128-Enc

51 0.005403 0.002560 0.302 0.004 0.003548

204 0.009107 0.003504 3.337 0.008 0.004856

408 0.012948 0.004250 0.279 0.011 0.005889

AES256-Dec

51 0.005325 0.002072 0.300 0.004 0.002872

204 0.010038 0.003260 0.260 0.009 0.004518

408 0.014901 0.004338 0.289 0.013 0.006012

AES128-Dec

51 0.004340 0.002102 0.245 0.004 0.002913

204 0.008111 0.003380 0.271 0.007 0.004684

408 0.012765 0.004057 0.341 0.011 0.005622

Table A.3: AES Functions performances, using all size data inputs

GOOSE. Table A.4 presents the evaluation of InsertHMAC functions, Table A.5 presents the

evaluation of ValidateHMAC, Table A.6 presents the evaluation of InsertGMAC and Table A.7

presents the evaluation of ValidateGMAC function. Finally, Table A.8 presents the performance

evaluation of both R-GOOSE Payload Encryption and Decryption functions.

87

HMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

SHA256-80

1 0.009438 0.010469 1.260 0.009 0.014510

20 0.010999 0.010252 1.018 0.010 0.014275

220 0.018339 0.010861 0.864 0.017 0.015052

SHA256-128

1 0.009454 0.010347 1.157 0.009 0.014339

20 0.010287 0.001429 1.057 0.010 0.014665

220 0.017368 0.001353 0.927 0.017 0.014760

SHA256-256

1 0.009420 0.009784 1.070 0.009 0.013559

20 0.010763 0.009487 0.932 0.010 0.013148

220 0.017879 0.010569 0.888 0.017 0.014648

BLAKE2b-80

1 0.016356 0.011396 6.310 0.016 0.019347

20 0.018312 0.011894 1.009 0.017 0.016484

220 0.021435 0.011314 0.850 0.020 0.015680

BLAKE2s-80

1 0.011262 0.010724 1.003 0.010 0.014862

20 0.011422 0.010808 0.951 0.011 0.014977

220 0.021403 0.011867 0.847 0.020 0.016446

Table A.4: InsertHMAC Functions performances, using all size data inputs

HMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

SHA256-80

1 0.007144 0.007236 0.997 0.007 0.010028

20 0.008205 0.008036 0.712 0.008 0.011137

220 0.015231 0.008107 0.582 0.015 0.011235

SHA256-128

1 0.007162 0.007920 0.753 0.007 0.010980

20 0.008154 0.006937 0.915 0.008 0.009610

220 0.015226 0.007758 0.673 0.015 0.010750

SHA256-256

1 0.007680 0.007337 0.730 0.007 0.010168

20 0.008169 0.007664 1.145 0.008 0.010622

220 0.015235 0.008377 0.837 0.015 0.011610

BLAKE2b-80

1 0.013214 0.007349 0.595 0.013 0.010180

20 0.014250 0.008113 0.590 0.014 0.011240

220 0.026332 0.008524 2.368 0.026 0.011810

BLAKE2s-80

1 0.008161 0.007125 0.725 0.008 0.009870

20 0.009185 0.008096 0.689 0.009 0.011220

220 0.018285 0.008311 0.640 0.018 0.011520

Table A.5: ValidateHMAC Functions performances, using all size data inputs

88

GMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES128-64

1 0.007167 0.008984 1.344 0.007 0.011065

20 0.007282 0.008822 1.027 0.007 0.012226

220 0.014428 0.009849 1.000 0.014 0.013649

AES128-128

1 0.006202 0.007197 0.875 0.006 0.009975

20 0.007239 0.010151 3.945 0.007 0.014068

220 0.014357 0.009642 0.904 0.013 0.013363

AES256-64

1 0.007230 0.008474 1.023 0.007 0.011744

20 0.008234 0.010012 2.821 0.007 0.013875

220 0.014353 0.009982 1.276 0.014 0.013834

AES256-128

1 0.007187 0.014322 5.871 0.006 0.019849

20 0.007454 0.008783 1.075 0.007 0.012172

220 0.014504 0.011468 1.316 0.014 0.015894

Table A.6: InsertGMAC Functions performances, using all size data inputs

GMAC
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES128-64

1 0.005128 0.006455 1.065 0.005 0.008946

20 0.005595 0.006871 0.774 0.005 0.009523

220 0.012295 0.008876 1.615 0.012 0.012301

AES128-128

1 0.005147 0.006555 0.830 0.005 0.009085

20 0.005128 0.006355 0.852 0.005 0.008807

220 0.012230 0.007611 0.808 0.011 0.010549

AES256-64

1 0.005111 0.005541 0.729 0.005 0.007679

20 0.006109 0.006147 0.679 0.006 0.008520

220 0.012196 0.007210 0.695 0.012 0.009992

AES256-128

1 0.005117 0.005593 0.703 0.005 0.007752

20 0.005138 0.006141 0.704 0.005 0.008511

220 0.012266 0.008412 1.590 0.011 0.011658

Table A.7: ValidateGMAC Functions performances, using all size data inputs

89

Enc/Dec
Algorithm

Data Size
(bytes)

Average
(ms)

Standard
Deviation

Maximum
(ms)

Minimum
(ms)

Con�dence
Interval
95%

AES256-Enc

1 0.011215 0.007693 0.639 0.010 0.010661

20 0.013319 0.010709 3.941 0.013 0.014842

220 0.034652 0.010920 1.009 0.034 0.015134

AES128-Enc

1 0.009238 0.007840 0.862 0.009 0.010865

20 0.011233 0.008631 0.797 0.011 0.011962

220 0.029677 0.011547 0.954 0.029 0.016003

AES256-Dec

1 0.008268 0.006511 0.745 0.008 0.009024

20 0.011179 0.006844 0.677 0.011 0.009485

220 0.032468 0.010302 3.285 0.032 0.014378

AES128-Dec

1 0.008719 0.006942 0.908 0.008 0.009621

20 0.011192 0.006772 0.870 0.011 0.009386

220 0.032388 0.007820 0.888 0.032 0.010837

Table A.8: Encryption/Decryption Functions performances, using all size data inputs

90

