

João Miguel Simão da Costa

DEVELOPMENT OF AN ASYNCHRONOUS MOBILE GAME

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering, advised by Professor João Nunes Lopes Barata and Sara João and

presented to
Faculty of Sciences and Technology / Department of Informatics Engineering.

June 2020

D
EV

EL
O

P
M

EN
T

 O
F

 A
N

 A
SY

N
C

H
R

O
N

O
U

S
M

O
B

IL
E

G
A

M
E

Jo
ão

 M
ig

u
el

 S
im

ão
 d

a
C

o
st

a

This page is intentionally left blank.

Acknowledgements

First of all, I want to thank my family for all the support given throughout my University
years and my life in general. I especially thank my sister Joana that was always there for
me and gave me the encouragement I needed to finish this dissertation.

I wish to express my sincere gratitude to my advisor, professor João Barata, who was
always available to help and provide quality advice, in each step of the way.

Finally, I would like to thank the HYP Team, especially Daniel and Sara, for all the
support given throughout this internship and for the opportunity they gave me to learn
about things I was so interested in.

iii

This page is intentionally left blank.

Abstract

Since their first appearance, mobile devices have had an exponential technological growth
and have gained other functionalities that go beyond the standard calls and messaging
services. With the advent of smartphones, the mobile gaming market has grown enormously
to become the most widespread form of gaming across the world, reaching more corners
than any other gaming market.

The primary purpose of this project is to develop a Minimum Viable Product (MVP) of an
online multiplayer asynchronous mobile game using telepathy as a theme. In asynchronous
gameplay, one player plays the game while the other has to wait until their turn comes.

In this particular mobile game, players interact through different mobile devices and take
turns attempting to guess the answers given by other players to a given set of questions.
Additionally, there are no established time limits between turns, allowing for higher flexi-
bility on the part of individual players. Players are awarded points if their answers match
the answers previously selected by the other players.

The present report envisages describing the whole engineering process leading to the real-
ization of this particular mobile game, including a representation of the planning stages of
the project, a review of the state of the art, a system description, and an overview of the
development and testing phases.

Keywords

mobile game, mobile application, asynchronous game, multiplayer game, telepathy game,
software engineering.

v

This page is intentionally left blank.

Resumo

Desde a sua génese, os telemóveis foram objeto de um desenvolvimento tecnológico expo-
nencial e adquiriram outras funcionalidades para além das triviais chamadas telefónicas e
serviço de mensagem. Com o advento dos smartphones, o mercado de jogos para telemóveis
cresceu muito significativamente e converteu-se na forma de jogo mais difundida em todo
o mundo, alcançando mais utilizadores do que qualquer outro segmento do mercado de
jogos.

O objetivo principal do presente projeto é o desenvolvimento de um Produto Viável Mínimo
(MVP) de um jogo para telemóveis, online, assíncrono e para múltiplos jogadores, inspirado
na temática da telepatia. No jogo assíncrono, um dos jogadores interage com o jogo
enquanto o outro tem que aguardar pela sua vez de jogar.

Neste jogo para telemóvel em particular, os jogadores interagem através de dispositivos
móveis distintos e, alternadamente, tentam adivinhar as respostas dadas pelos outros jo-
gadores a um determinado conjunto de questões. A acrescentar, não existe qualquer limite
temporal definido entre turnos, assegurando uma maior flexibilidade. Aos jogadores são
atribuídos pontos se as respostas estiverem corretas de acordo com as respostas previa-
mente selecionadas pelos outros jogadores.

O presente relatório visa descrever todo o processo de engenharia conducente ao desenvolvi-
mento do jogo com as características descritas, incluindo uma representação das diferentes
etapas de planeamento do projeto, uma revisão do estado da arte, uma descrição do sistema
e uma análise das fases de desenvolvimento e de teste.

Palavras-Chave

jogo de telemóvel, aplicação de telemóvel, jogo assíncrono, jogo multijogador, jogo de
telepatia, engenharia de software

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals . 2
1.3 Structure of the Report . 3

2 State of the Art 5
2.1 Competition Analysis . 5

2.1.1 Words with Friends 2 . 6
2.1.2 Draw Something . 7
2.1.3 Ruzzle . 7
2.1.4 Lalaoke . 8
2.1.5 Trivia Crack . 9
2.1.6 Noumi: Do you know your friends 10
2.1.7 Comparisons and Conclusions . 11

2.2 Usability and Utility . 12
2.3 User Experience . 13

3 Project Management 15
3.1 Temporal Planning . 15

3.1.1 First Semester Expectation and Outcome 15
3.1.2 Second Semester Expectation and Outcome 17

3.2 Methodology . 18
3.3 Tools . 19

3.3.1 Mobile Development Frameworks . 19
3.3.2 Server-side/Backend Framework . 25
3.3.3 Database . 26
3.3.4 Support Tools . 26

3.4 Risk Management . 27

4 System Description 29
4.1 Game Concept . 29
4.2 User Stories . 30
4.3 Use Cases . 32

4.3.1 UML Use Case Diagrams . 35
4.4 Functional Requirements . 37
4.5 Non-functional Requirements . 38

4.5.1 Usability . 38
4.5.2 Scalability . 39
4.5.3 Availability . 40
4.5.4 Security . 40

4.6 Constraints . 41

ix

Chapter 0

4.7 System Architecture . 42
4.8 Entity-Relationship Diagram . 43
4.9 Navigation Diagram and Wireframes . 45

5 Development 51
5.1 Process and Organization . 51
5.2 Project Structure . 53

5.2.1 Server Side . 53
5.2.2 Client Side . 54

5.3 Requirements . 54
5.3.1 Tasks Completion Outcome . 55
5.3.2 Admin Panel . 55
5.3.3 User . 57

5.4 Security . 70
5.4.1 Mechanisms Utilized . 70
5.4.2 GDPR . 71

6 Testing 73
6.1 Functional Testing . 73

6.1.1 Unit and Integration Testing . 73
6.1.2 End-To-end Testing . 75

6.2 Load Testing . 76
6.3 Usability Testing . 77

6.3.1 Test Participants . 77
6.3.2 Test Procedure . 78
6.3.3 Test Results . 79
6.3.4 Test Conclusions . 81

7 Conclusion 83

x

This page is intentionally left blank.

Acronyms

API Application Programming Interface. 42

ER Entity-Relationship Diagram. 3, 43

HCI Human-Computer Interaction. 13

IDES Integrated development environments. 19

ISO International Organization for Standardization. 12, 13

MVC Model-View-Controller. 25

MVP Minimum Viable Product. 2

OS Operating System. 1

REST Representational State Transfer. 42

SDK Software Development Kit. 21

ToS Threshold of Success. 27, 84

UI User Interface. 13

URL Uniform Resource Locator. 42

UX User Experience. 13

xii

This page is intentionally left blank.

List of Figures

1.1 Gaming revenues per device [91] . 2

2.1 Words with Friends 2 . 6
2.2 Draw Something . 7
2.3 Ruzzle . 8
2.4 Lalaoke . 9
2.5 Trivia Crack . 10
2.6 Noumi . 11

3.1 First semester expectation . 16
3.2 First semester outcome . 17
3.3 Second semester expectation . 17
3.4 Second semester outcome . 18
3.5 Waterfall model with feedback (adapted from [59]) 18
3.6 Widgets inside widgets [13] . 21
3.7 Register Sample App Flutter . 22
3.8 React Native re-using styles . 24
3.9 Register Sample App React Native . 24
3.10 MVC model . 25

4.1 Game scenario example . 29
4.2 Diagram of user use cases . 36
4.3 Diagram of admin use cases . 36
4.4 System architecture . 42
4.5 Containers diagram . 43
4.6 Entity-relationship diagram . 44
4.7 Navigation diagram . 45
4.8 Mobile game wireframes 1 . 46
4.9 Mobile game wireframes 2 . 47
4.10 Mobile game wireframes 3 . 47
4.11 Mobile game wireframes 4 . 48
4.12 Mobile game wireframes 5 . 49

5.1 Project trello board . 51
5.2 Server file structure. 53
5.3 Client side file structure. 54
5.4 Tasks completion outcome . 55
5.5 User admin panel . 56
5.6 Create game type admin panel . 56
5.7 Questions admin panel . 57
5.8 Authentication layouts . 58
5.9 Facebook and recover password authentication layouts 59

xiv

List of Figures

5.10 Profile layouts . 60
5.11 Home and create game layouts . 60
5.12 Home screen after created game . 61
5.13 Answer Question . 62
5.14 Guess Answer layout . 62
5.15 Previous round and other rounds layouts . 63
5.16 Buy items . 64
5.17 Guess Answer layout . 65
5.18 Notification related layouts . 65
5.19 Badges and badge information layouts . 66
5.20 Advertisment layouts . 68
5.21 Tutorial and daily bonus layouts . 69
5.22 Buy coins layouts . 70

6.1 RSpec testing . 74
6.2 RSpec output . 74
6.3 Code coverage . 75
6.4 Detox test . 76
6.5 Pos-Questionnarie questions . 80

1 Flutter button . 95

xv

This page is intentionally left blank.

List of Tables

2.1 Game features comparison . 12

3.1 Frameworks comparison . 20
3.2 Risks . 27

4.1 User registration use case . 33
4.2 Create new game with a random player use case 34
4.3 Guess other player answer use case . 35
4.4 User authentication functional requirements 37
4.5 User profile functional requirements . 37
4.6 Game related functional requirements . 37
4.7 Shop functional requirements . 38
4.8 Other functionalities functional requirements 38
4.9 Admin functional requirements . 38
4.10 Non-functional requirement - Usability . 39
4.11 Non-functional requirement - Scalability . 39
4.12 Non-functional requirement - Availability . 40
4.13 Non-functional requirement - Security: Password Encryption 40
4.14 Non-functional requirement - Security: Unauthorized Access 40
4.15 Non-functional requirement - Security: Fraudulent purchases 41
4.16 Technical constraint - Ruby on Rails . 41
4.17 Technical constraint - PostgreSQL . 41
4.18 Technical constraint - AWS . 42

6.1 Load testing to endpoint test outputs . 77
6.2 Usability testing metrics expectation . 79
6.3 Number of clicks per user in each task . 79

1 User registration . 96
2 User authentication . 97
3 Facebook authentication . 97
4 Recover password . 98
5 Logout . 98
6 View profile . 99
7 View badges . 99
8 Edit profile . 100
9 Create game with a friend . 101
10 Create new game with a random player . 101
11 Submit question and answer . 102
12 Guess other player answer . 103
13 See last round statistics . 104
14 See previous rounds statistics . 104

xvii

Chapter 0

15 See shop products . 105
16 Buy product in shop . 105
17 Buy coins . 106
18 Win free coins . 106
19 View games list . 107
20 Delete game . 107
21 Receive daily bonus . 108
22 Send notifications . 108
23 Disable notifications . 109
24 Enable notifications . 109
25 Tutorial . 110
26 Add question . 110
27 Ban user . 111
28 Description of the devise endpoints . 112
29 Description of the user controller endpoints 113
30 Description of the user controller endpoints - part 2 114
31 Description of the game controller endpoints 115
32 Description of the avatars controller endpoint 116
33 Description of the badges controller endpoint 116
34 Description of the game types controller endpoint 116
35 Description of the purchasables controller endpoint 116
36 Test cases for the "create_game" endpoint 117
37 Test cases for the "reroll_question" endpoint 118
38 Test cases for the "submit_answer" endpoint 119
39 Test cases for the "guess_answer" endpoint 120
40 Test cases for the "guess_answer" endpoint - part 2 121
41 Test cases for the "new_round" endpoint 122
42 Test cases for the "use_helper" endpoint . 122
43 Test cases for the "use_powerup_coins" endpoint 123
44 Test cases for the "delete_game" endpoint 124
45 Test cases for the "index" endpoint . 125
46 Test cases for the "save_notifications_token" endpoint 126
47 Test cases for the "change_allow_notifications" endpoint 126
48 Test cases for the "validate_purchase" endpoint 127
49 Test cases for the "random_player_game" endpoint 127
50 Test cases for the "search_users" endpoint 127
51 Test cases for the "buy_shop_item" endpoint 128

xviii

This page is intentionally left blank.

Chapter 1

Introduction

The subject of this report is the development of an asynchronous mobile game by a student
of the Masters in Informatics Engineering as part of the curricular subject Dissertation/In-
ternship at the Faculty of Sciences and Technology of the University of Coimbra (FCTUC),
building upon a project proposal put forward by HYP.

The aim of this chapter is to describe the work developed, explaining its context and
motivation, the goals to be achieved, and the structure of this document.

1.1 Context and Motivation

Mobile technology has evolved significantly from a simple device used for phone calls and
messaging into a multi-tasking device that can be used for many useful purposes such
as internet browsing, GPS navigation, transfer of files, and much more [25]. Nowadays,
almost everyone owns a mobile device and uses it regularly.

Since the appearance of smartphones and their respective Operating System (OS) (mostly
Android, IOS, and Windows), anyone that owns such a device can easily download apps
from a vast collection available in their specific OS app market. For example, Android and
IOS - that own nearly 99 % of the Mobile Operating System Market Share Worldwide [4] -
have an app market available for multiple purposes, including games. A great part of these
games are free and normally revenues come from advertisement or in-game purchases [18].
This has opened a whole new market opportunity for games, and as phones become even
smarter and more powerful, so do mobile games. As a result, the mobile gaming market is
growing enormously, and has been the largest segment of gaming since 2017 [77], reaching
more corners than any PC, console, or handheld has ever reached before [56]. In 2019
mobile games are reported to own 45% of the global games market, generating 68.5 billion
dollars (Figure 1.1), and by 2022 it is predicted to reach 95.4 billion dollars, 49 % of the
global games market [91].

1

Chapter 1

Figure 1.1: Gaming revenues per device [91]

HYP, an acronym for Handling Your Problems, is a software company created in 2015.
The company’s primary focus is the design and development of websites, mobile apps,
and the creation of graphic design projects and illustrations [20]. In the context of the
above-mentioned Dissertation/ Internship, HYP presented a project proposal towards the
creation of an online asynchronous multiplayer mobile game using telepathy as the theme.
This report builds on that project proposal.

The project proposal presented itself as very auspicious from the author’s perspective.
People embed a natural inclination to share information with their peers and are easily
moved by the feelings of wanting to connect and get involved in a positive and effortless
manner. The project’s leading theme – telepathy – links intimately with those aspirations.
People connect with other people through their own devices with the purpose of sharing
and connecting. While playing the game, positive emotions are generated as people feel
engaged and entertained.

1.2 Goals

As mentioned before, the leading idea of the project proposal is the development of an
asynchronous multiplayer online mobile game using the telepathy theme, which can be
accessed from IOS and Android mobile phones. In this game, players will have to answer
questions about other players, based on what they think the other players responded
previously to the same questions. For example, for players X and Y to be awarded points,
player Y will have to give the same answer player X did before when asked for a car
brand; or, if given a set of four options regarding what player X would choose to do in a
given situation, player Y will have to match the same options previously selected by player
X. Considering the format of the game, as described, creativity, diversity, and market
orientation will also be essential for the development of ideas regarding the questions to
be inserted, in order to keep the players entertained and engaged.

Building on the above-mentioned theme, the overall goal of the project is to create a Min-
imum Viable Product (MVP) of the proposed mobile game, fulfilling at least all the “Must
Have” requirements. Achieving such goal will require going through a whole engineering
process involving several different stages. However, it is important to mention that the
game user interface look shall not be considered a priority, as the HYP team will develop

2

Introduction

it at a later stage.

Apart from the mobile game that needs to be built for the client-side, a server application
also needs to be developed so it can communicate with the mobile game and save players’
information in the database. The author of this dissertation has both the roles of developer
and contributor for the system requirements and description.

1.3 Structure of the Report

This document is divided into the following chapters:

• State of the Art (Chapter 2) The aim of this chapter is to conduct a competition
analysis, focusing on different mobile games that match certain criteria, selected ac-
cording to the scope of the project under development. Subsequently, the importance
of usability is highlighted and explained, since it is one of the main quality attributes
behind the success of an app.

• Project Management (Chapter 3) This chapter describes the temporal planning
of the first and second semesters, followed by a description of the chosen method-
ology. Subsequently, descriptions regarding the decisions concerning the different
technological tools to use for the client-side, server-side, database, and also support
tools, are presented. Finally, the different risks found during the development of the
project are identified, along with the mitigation plans.

• System Description (Chapter 4) Chapter 4 starts by identifying the user sto-
ries in order to assist the team in understanding all the features required for the
development of the mobile game. Later on, the use cases and the functional and
non-functional requirements for the mobile game are introduced. Finally, the Sys-
tem Architecture is presented, followed by the Entity-Relationship Diagram (ER),
the Navigation Diagram and the Wireframes.

• Development (Chapter 5) This chapter starts by identifying the organizational
methodologies employed by the author, followed by a description of the project struc-
ture. Afterward, the details of the implemented functionalities are specified joined
by the respective mobile game layouts, as well as the problems encountered.

• Testing (Chapter 6) This chapter focuses on the techniques used by the author
to validate the final MVP. Functional testing techniques are introduced, followed by
an overview of the load testing conclusions and a description of the usability test
results.

• Conclusion (Chapter 7) In this chapter are drawn the final conclusions of the
project, as well as the future work.

3

This page is intentionally left blank.

Chapter 2

State of the Art

The aim of the present chapter is to review the state of the art, focusing on games that
can relate to the scope of this project, selected according to a set of criteria determined in
the first meeting of the semester between the author and the HYP team.

Different asynchronous mobile games are reviewed and weighed against each other, meaning
that their various features are analysed and compared. That knowledge can then be used
to build an asynchronous mobile game that can fit today’s mobile gaming market. Finally,
the importance of usability, utility and user experience are highlighted, since they are main
attributes behind the success of many apps.

2.1 Competition Analysis

On this section, different mobile games that have the features of being asynchronous,
multiplayer based, and/or that have the telepathy as a theme are studied. Before starting
analysing asynchronous multiplayer mobile games, it is essential to define what does it
mean to be asynchronous.

Asynchronous gaming means that one player is taking part on the game while the other(s)
can ignore(s) it to do something else until their turn comes. Just like synchronous gameplay,
in asynchronous gameplay, the number of players can go from two to a lot more, depending
on the game. However, in asynchronous play, players never play at the same time. Instead,
they play in sequence, one after another. In some cases, they might even have time limits
in each turn. Depending on the asynchronous variant used, the turns progression may vary,
but turns are typically used to give players more time to think about their actions and not
focus so much on keeping track and controlling several things at once in real-time. This
means that asynchronous gameplay allows for more flexibility on the part of individual
players and demands fewer time synchronies, making it more casual [64] [87].

There are many types of asynchronous gameplay. For example, two friends may play chess
against each other using the same computer or, alternatively, they may play chess against
each other using different devices and with time limits; both are examples of asynchronous
gameplay since the players play alternately. That being said, the type of asynchrony
that characterizes the mobile game of the project under development has the following
attributes:

• It is supposed to be played by two players in different mobile devices,

5

Chapter 2

meaning that each user plays on their own device.

• There are no time limits between turns, meaning that a user can play their
turn whenever they intend to.

Each of the following sections will focus on a mobile game with the characteristics identified
earlier, followed by an analysis of what is different about these games and which features
they emphasize. Since the requirements have not been fully identified at this point, this
analysis will help the author realize what has been done on this particular market while
extracting positive and negative aspects from each one of the mobile games.

2.1.1 Words with Friends 2

Words with friends is a two-player mobile game developed by Newtoy (a video games
development company) for both IOS and Android Operating Systems, released in July
2009 [23]. This game is very similar to the board game Scrabble.

In this game, both players take turns forming words either vertically or horizontally on the
board (Figure 2.1 (b)) with the letters presented on the screen. Depending on the word
and where the player places it, they win a certain number of points. The player’s aim is
to score as many points as possible. At the end of the game the player with the higher
number of points wins.

In this game, players can invite their Facebook friends or play with random people. There
are daily challenges and bonuses that allow players to win different rewards, making the
game more entertaining. There is a store (Figure 2.1 (d)) in which players can spend
their coins in in-game items (that they won playing the game and doing the challenges).
Players are also able to buy these coins using real money. In the ranking screen, players
can see how good they are comparing with others, and in their profile screen, users can
see different statistics regarding their games. As represented in Figure 2.1(a), players can
view a tutorial so they can know how to play the game.

(a) Tutorial (b) Home screen (c) Gameplay (d) Store

Figure 2.1: Words with Friends 2

6

State of the Art

2.1.2 Draw Something

Draw Something is a two-player turn-based mobile app developed by OMGPop, launched
on February 6 2012, that is available for IOS, Android and Windows Phone [11].

A game can be created with a friend (invited by email or Facebook) or with a stranger.
After that, a player chooses one word out of three words that are displayed, where the
hardest words to draw give the most coins. Then, they draw the word they chose, whereas
they can change the thickness of the pencil and its color to draw it. In the end, they send
the drawing for the other player to guess.

The other player will view a stroke by stroke replay of the drawing (without pauses in
between) and has to guess the word with a set of given letters (Figure 2.2 (b)). If the
player has difficulties guessing the word, there is a help option available, that will allow
decreasing the letters or adding letters in the correct positions. After correctly guessing,
both players win coins, and a new turn begins, where all the explained game flow repeats.

This game also has daily bonuses (Figure 2.2 (d)) and daily challenges, where, for example,
players have to guess different drawings that allow them to win more coins. Players can
buy more coins with real money, and these can be spent in the game store to buy more
colors and bombs (which helps players guess drawings) as represented in Figure 2.2 (c).
Users that have this game installed also receive notifications about new game features or
current on-going games.

(a) Home screen (b) Gameplay (c) Store (d) Daily bonus

Figure 2.2: Draw Something

2.1.3 Ruzzle

Ruzzle is a mobile game developed by a company named MAG Interactive that was firstly
published in the Apple Store in March 2012 and then a month later in Android, reaching
up to one million downloads three weeks after launch [85]. This game can be played against
a random online user, a friend in the friend’s list or chosen among Facebook friends. The
game is divided into three rounds. In each round, a player has to form the maximum
numbers of words from a 4x4 grid on the screen within two minutes (Figure 2.3(b)). The
number of points depends on the number of words found and the value of each one of them.
As shown in Figure 2.3 (c), at the end of each turn the round statistics appear with the

7

Chapter 2

number of words found by each player and the points they made. The winner is the player
awarded the higher number of points at the end of the three rounds.

In the Ruzzles home page (Figure 2.3(a)), a player can see when it is their turn or the
opponents’ to play, and also the already completed games. In any case, it is possible to see
the game statistics by clicking on the game. The game offers other gaming modes, such
as tournaments and a teamwork mode. It also has a store where players can buy items to
upgrade their performance (Figure 2.3 (d)).

(a) Home screen (b) Gameplay (c) Statistics (d) Store

Figure 2.3: Ruzzle

2.1.4 Lalaoke

Lalaoke is a two-player turn-based multiplayer mobile game developed by HYP that is
available for Android and IOS. To create a game, a player starts by inviting a friend,
searching by their name, or choosing to play with a random user. After that, they select
a music category out of three options, followed by a song choice also out of three available
options (Figure 2.4 (b)). In case the player does not recognise any of the three songs, they
can use a re-roll and new songs to choose from will appear (if he has re-rolls). Then, as
shown in Figure 2.4 (c), by clicking in the play button, this player has to hum the chosen
song and, when finished, click in the button send. Subsequently, the other player receives
a notification and has to guess which was the song hummed by the other player. If this
player gets it right, they win a point. After this, roles are inverted.

As illustrated in Figure 2.4 (a), there is a game list where players can continue their games
and see their results. The game has a shop where players can buy new song categories and
re-rolls (Figure 2.4 (d)). In Lalaoke, players receive a notification every time it is their
turn to play.

8

State of the Art

(a) Home screen (b) Choose Song (c) Sing (d) Shop

Figure 2.4: Lalaoke

2.1.5 Trivia Crack

Trivia Crack is a mobile game developed by Etermax and released in March 2013, available
for Android, iOS, Facebook and Windows Phone. It became the most downloaded game
in December 2014 from the Apple App Store as well as the most viewed advertisement on
all of the mobile phone services worldwide [90].

There are different modes available to be played in this game. In classical-mode, players
may start a new game by pressing the new game button on the app (Figure 2.5(a)). They
can choose to play against a random opponent, one of their Facebook friends, or search for a
specific player. After that, the player spins a wheel in which one of six different knowledge
categories can come up: Entertainment, Art, Sports, History, Science, and Geography
(Figure 2.5(b)).

Subsequently, a question appears regarding that category (Figure 2.5(c)), and if the player
gets it right, he can re-spin the wheel. If the player answers a question incorrectly, their
turn is over, a notification to their opponent is sent, and control of the game passes to
them. If a player does not know the answer to a question, they can use one of the items
represented in Figure 2.5 (c) underneath (if the player has any available). The first item
allows discarding two of the four possible answers; the second allows the player to play two
times in a row, and lastly, the final item gives the player the correct answer.

If the player gets the crown in the wheel, they can choose a category and, if they get the
answer right, they win the representative character. In-between rounds, players can see
the games statistic, which show the percentage of correct answers in each category (Figure
2.5(d)).

A game is over after either one of the players obtains all six characters, someone surrenders
or resigns, or they have played a total of 25 rounds.

The game has a shop where players can buy different items and also daily challenges and
bonuses that allow players to win coins.

9

Chapter 2

(a) Home screen (b) Category (c) Question (d) Statistics

Figure 2.5: Trivia Crack

2.1.6 Noumi: Do you know your friends

Noumi is an offline asynchronous mobile game developed by Treebit Technologies [26]. The
objective of this game is to guess what a friend answered on a previous question about
themselves. Because of this, the gameplay is very similar to the mobile game that is going
to be developed, with the exception that this one is offline and, therefore, must be played
on the same mobile phone.

The first step to start the game is too choose the number of players, insert their respective
names, and choose the desired rounds (Figure 2.6(a)). Then, one of the players gets a
question about themselves and answers it according to what fits them best (figure 2.6(b)).
After that, each one of the other players (one at a time), gets that same question about
that user and answers accordingly to what they think it fits them better (Figure 2.6(c)).
After all the players have answered, at the end of the round, the correct answer appears
on the screen, and whether the players got it right or not (Figure 2.6(d)). Then, papers
are inverted. This happens until all players have answered a question about themselves,
and after that, another round starts. At the end of the game, the overall results appear
with the players’ points.

10

State of the Art

(a) Game configuration (b) Home screen (c) Gameplay (d) Statistics

Figure 2.6: Noumi

2.1.7 Comparisons and Conclusions

Some of the features that prevail in the studied asynchronous mobile games are identi-
fied below, followed by the author’s opinion regarding their importance. Afterward, a
comparative table is presented.

• Game history. Game history corresponds to the presence of a games list where
players can keep track of their games. It is essential in these type of asynchronous
mobile games because players want to see their on-going games, know whether it is
their turn to play or not, and also see the results.

• Notifications. The identified mobile games that have notifications, use them to
warn the players when it is their turn to play, about new game features or daily
challenges. It can be a crucial feature in asynchronous multiplayer mobile games to
remind players of their respective turns to play.

• Shop. Having a shop where players can spend the coins they won playing the game
is a common feature not only in this type of mobile games but in many others. It is
not only a way of keeping users playing the game so they can buy new features, but
also a way of making them spend real money so the company can profit.

• Facebook. Many of the apps that require a login have Facebook integration. Face-
book login allows users to login into the apps without having to lose time in registering
first. In the majority of mobile games where players can play with friends, they can
also invite Facebook friends. This way, they can view which Facebook friends already
play the game and invite them.

• Tutorial. In some mobile games there are tutorials that can guide players throughout
different aspects of the game.

• Game statistcs. Every studied mobile game provided game statistics, such as the
current game results or inbetween round statistics. This way, players can see how
well they are performing against their opponents.

11

Chapter 2

• Daily bonuses and challenges. Increasing the players interaction with daily chal-
lenges and daily bonuses can be interesting features for players to get back in the
game, stay entertained, and possibly win coins to spend in the shop.

Table 2.1 compares the games under review in accordance with the features described
above.

Feature

Game
Words
With
Friends

Draw
Something

Ruzzle Lalaoke Trivia
Crack

Naoumi

Game History 3 3 3 3 3 7

Notifications 3 3 3 3 3 7

Daily Challenges 3 3 3 7 3 7

Daily Bonus 3 3 3 7 3 7

Shop 3 3 3 3 3 7

Game Statistics 3 3 3 3 3 3

Facebook 3 3 3 3 3 7

Tutorial 3 7 7 3 3 3

Table 2.1: Game features comparison

The main purpose behind the exploratory study of multiplayer asynchronous mobile games
is to be able to extract their most inherent features, in order to determine whether they
should be part of the mobile game to be developed.

As shown in Table 2.1, Naomi is the only studied mobile game that does not have most
of the described features. As mentioned earlier, this game is played offline and on the
same phone. Therefore, it does not need features such as Facebook integration (since it
does not require authentication) and notifications. However, its gameplay thematic is very
identical to the one that will be developed, since a player needs to guess what the other has
answered to a previous question. This provided some very useful insights about the design
format and structure when already in-game. The studied multiplayer online asynchronous
mobile games have many identical features, that are considered relevant functionalities for
the mobile game that is going to be developed.

This study will serve as a base for the Requirements Analysis and Specification phase.

2.2 Usability and Utility

Usability is defined in International Organization for Standardization (ISO) 9241-11 [79] as
the "extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use", and is important for
every piece of software, including mobile apps. It is related with how easy it is for a user
to use a specific user interface. There are five quality components that define usability[78]:

• Learnability: "How fast and easily can a user learn to use a system sufficiently
well?"

12

State of the Art

• Efficiency: "Once a user has learned how to use the system, how fast can they
accomplish the tasks?"

• Memorability: "When users return to the system after a period of not using it,
how easily can they reestablish proficiency?"

• Errors: "How many errors do user make while using the system, how serious are
these errors, how do users recover from these errors?"

• Satisfaction: "How pleasant is it to use the system?"

All of the five attributes mentioned above have high importance to ensure user satisfaction,
but there is another quality attribute that is also very important: utility. Utility refers
to whether the system provides the needed features, whereas usability refers to how easy
and pleasant these features are to use. These attributes together are what make a useful
system [78] [65] .

To ensure that all five usability quality attributes are met, it is essential to evaluate a
system by testing it with representative users, generally done on a stable version of the
product. During a usability test, typically, participants try to complete tasks while ob-
servers watch, listen, and take notes. The main goal is to identify any usability problems,
collect qualitative and quantitative data, and determine whether the participant is satisfied
with the product [35]. This can lead to necessary changes and improvements in the User
Interface (UI) to make sure the product is suitable for deployment.

Before performing a usability test is very important to map out the goals for the test
and discuss what areas of the system or product will be evaluated, as well as the desired
qualities of participants and characteristics of users or customers of the product that match
the target audience to provide the most accurate results possible [36]. After gathering all
the information needed, a good test plan can be designed.

Usability tests must be done at least at the end of the development phase of the mobile
game for the reasons already specified. To gather data, different metrics can be used in the
usability tests for the mobile game, depending on which features are going to be evaluated,
such as success rates, task time, error rates, and satisfaction questionnaire ratings.

2.3 User Experience

ISO 9241-210 [12] defines User Experience (UX) as the "user’s perceptions and responses
that result from the use and/or anticipated use of a system, product or service" and that
user experience "is a consequence of brand image, presentation, functionality, system per-
formance, interactive behaviour, and assistive capabilities of a system, product or service.
It also results from the user’s internal and physical state resulting from prior experiences,
attitudes, skills, abilities and personality; and from the context of use". This basically
implies that user experience involves features such as human factors, design, ergonomics,
Human-Computer Interaction (HCI), accessibility, marketing as well as usability [76].

In light of the above, it is clear that user experience is a much broader concept than
usability. While usability answers the question "Can the user accomplish their goal?",
user experience answers the question, "Did the user have as delightful an experience as
possible?" [7].

Designing a mobile game can be a complicated process. The team must keep in mind that
they are not creating a game for themselves but for a specific end-user, to produce great

13

Chapter 2

gaming experiences. While crafting a game is essential to continually guess how players
might learn, think, perceive, and react in order to inform the design of the game, and
therefore retain the user and make them come back [46].

14

Chapter 3

Project Management

This chapter focuses on the main aspects relevant to the project management: describing
the tasks and how they were divided throughout the semesters, which methodology was
used and why, the risks that were identified and how they will be controlled, and which
tools were used.

3.1 Temporal Planning

It was agreed at the beginning of the first semester, that the intern would have weekly
meetings (every Monday) with the HYP team with the purpose of presenting the work
performed in the previous week and preparing the work to be completed during the fol-
lowing week. Throughout the next sections, the temporal planning of the first and second
semesters are presented. For that purpose, the author made use of Gantt Charts, a project
management tool used for the planning and scheduling of projects that uses a bar chart to
define tasks and deadlines [40].

3.1.1 First Semester Expectation and Outcome

A Gantt Chart is presented in Figure 3.1, illustrating the expectations regarding the tem-
poral planning of the first semester.

15

Chapter 3

Figure 3.1: First semester expectation

In the first meeting with the HYP team, it was defined that the first subject to be studied
would be the State of the Art. This phase would extend for a month in which a market
analysis of mobile games should be completed, followed by the study and comparison of
different asynchronous mobile games.

Due to the author’s inexperience in mobile development tools, it became clear that the
study should start as soon as possible. This process involved a theoretical and practical
study of mobile frameworks to decide which framework would be the most suitable for
this particular project. Due to its importance, this stage was extended until the end of
November.

Afterward, the requirements phase would start with the creation of user stories, followed
by the use cases. Based on the user stories and the use cases, the functional and non-
functional requirements should be identified and prioritised. The expectation was that
this phase would extend until mid-December.

Subsequently, the effort would be centered on the system architecture, the entity-relationship,
the navigation diagram, and lastly, the wireframes.

During January, the focus would be to finish the report, filling up other aspects not specified
in Figure 3.1, such as the introduction, risk management, support tools, and temporal
planning. Finally, and after the delivery of the intermediate report, the author should
begin preparing for the intermediate presentation.

As illustrated in Figure 3.2, a temporal adjustment regarding the Competition Analysis
in the State of Art phase was required, as it had to be extended until the beginning of
November. The reason for this extension was the fact that the author needed more time
to explore the features of the mobile games studied in this section.

16

Project Management

Figure 3.2: First semester outcome

3.1.2 Second Semester Expectation and Outcome

The temporal planning for the second semester is represented in Figure 3.3. The main
focus was in developing and testing the mobile game.

Figure 3.3: Second semester expectation

Throughout the first and second weeks of February the intern was expected to become
familiar with Ruby on Rails (which is the framework that is going to be used for the
server-side), and learn the best practices.

The next phase was expected to last three months. It began with a discussion with the
HYP team aimed at determining the order by which the requirements should be developed.
The discussion also focused on the organisation of the project. Subsequently, the author
started developing the mobile game. Unit testing was executed every time a set of features
was completed.

The testing phase was expected to begin in the last month before the delivery of the
final project. Different types of testing methodologies took place in order to validate the
application.

The last two weeks of June were reserved for concluding and reviewing the final thesis
report. Subsequently, the author prepared the final presentation.

As illustrated in Figure 3.4, the testing phase had some alterations, since the functional
testing and the usability testing took longer than predicted.

17

Chapter 3

Figure 3.4: Second semester outcome

However, it is worth highlighting that the above-mentioned alterations did not entail signif-
icant deviation to the expected planning, considering that all tasks ended up being timely
developed.

3.2 Methodology

In the temporal planning section, there is a noticeable separation in the type of tasks out-
lined in the first and second semesters. The first semester was divided mainly in evaluation,
requirements analysis and identification, and design, while the second semester was divided
between development and validation. As determined since the beginning of the internship,
the process model to use is the Waterfall model. The Waterfall approach was the first
software development life cycle (SDLC) model to be used widely in Software Engineering,
firstly introduced by Benington [32].

Figure 3.5: Waterfall model with feedback (adapted from [59])

As presented in Figure 3.5, in the Waterfall approach the whole process of software devel-
opment is divided into separate phases: Requirements Analysis and Specification, Design,
Coding and Unit Testing, Validation, and Maintenance. However, this project started with

18

Project Management

the feasibility study, which includes the state of the art and the evaluation of technological
tools. In the Waterfall model, the outcome of one phase acts as the input for the next phase
sequentially and do not overlap [32]. Winston Royce enhanced this model by providing a
feedback loop so that each preceding stage could be revisited, making it iterative [84].

The iterative Waterfall Model allows making necessary changes to the classical Waterfall
Model so that it becomes applicable to practical software development projects [59]. When
errors are detected, changes are needed, or new information uncovered, the feedback paths
allow their correction or update during some phase by going back to previous process steps.
For example, if during testing a design error is identified, the feedback path allows the team
to go back to the design phase and make the necessary changes. Even though there can
be reiterations, these can cause significant delays in the development of the project, so it
is preferable to make sure that these do not happen by having each phase clearly defined.

One of the main criticisms to the Waterfall Model when compared with Agile Method-
ologies, is that change is unwelcome. When customers request requirement changes, it
can be very expensive to return to development or/and to redesign the project, whereas
Agile Methodologies allow changes because of the flexibility it offers [52]. However, in this
project, there is no specific customer in mind that are external to HYP; therefore, all the
requirements are discussed between the author and the HYP team, reducing the likelihood
of occurring changes. Furthermore, this methodology makes it easier to set milestones
and for the team to track progress, since all the detailed requirements are defined at the
beginning of the process [80].

3.3 Tools

Developing a mobile application can become a real challenge for someone that has little
experience in the field. That is why it is really important to study and decide which
technological tools to use, regarding the project.

In this section, different tools that can be used for the development of mobile games are
compared, in order to subsequently identify the ones that were chosen and the reasons
underlying the choice. The final decision about the tools was jointly made by the author
and the HYP Team.

3.3.1 Mobile Development Frameworks

For the client-side, the project proposal of the HYP team required the development of an
asynchronous multiplayer mobile game for both IOS and Android operating systems. For
this purpose, two different paths could be followed: implement native code for each one
of the OS, or use a framework able to release for both of them. The last-mentioned are
named cross-platform frameworks. A cross-platform framework is a development tool that
allows developers to use a single code base and release to both Android and IOS operating
systems (App Store and Play Store, respectively) [83].

Implementing native code for each OS instead of using cross-platform frameworks can
have its advantages, such as better performance and speed, and easier connection to the
device hardware features [68]. However, it has a significant disadvantage: the development
time. In native development, it is necessary to write different code for each OS using
distinctive languages (Java or Kotlin for Android and Swift for IOS) and two Integrated
development environments (IDES) (Android Studio and XCode). On the other hand, using

19

Chapter 3

a cross-platform framework not only allows the use of a single code base to release for both
platforms (and therefore decreasing the development time) but also facilitates when it
comes to testing and maintenance [68].

Taking into account the limited time frame for the development of this mobile game, and
that during such period the author could not afford to learn two different languages and
write two different codebases, it became apparent that using a cross platform framework
would be a wiser choice.

There are different options regarding the frameworks to use for the game development on
the client-side such as Ionic, Native Script, Xamarim, React Native, and Flutter. In the
next section, a feature comparison of all these frameworks is presented.

Comparison of cross-platform frameworks

Table 3.1 summarizes a comparison of different cross-platform frameworks with the purpose
of choosing the best option for this project. The selected features are:

• Language. Which language needs to be used for the mobile application development.

• Performance. Performance of the apps developed with that framework, that can
be crucial for a mobile game;

• Community Support. Amount of online support available, such as tutorials online,
third-party libraries available, projects (e.g., in GitHub) and number of answers to
possible problems (e.g., stackoverflow). These metrics can be used to see how popular
an open-source framework is.

• Documentation. Documentation can be an important feature, since it is where the
most trust-worthy information can be found regarding the specific framework and it
is the first guide to be used throughout the development.

• Hot Reload. Allows to inject new versions of the files that were edited at runtime
while the app is still running. It can be an essential feature for saving time [14].

The information contained in Table 3.1 was taken from multiple sources, namely [75] [61]
[60] [58].

Ionic Xamarim Flutter React Native Native Script
Language Angular JS C# Dart React TypeScript
Performance Medium High Very High High High
Community Big Small Medium Very Big Small
Documentation Good Good Good Good Good
Hot Reload Yes No Yes Yes No

Table 3.1: Frameworks comparison

Of the five frameworks described in the table above, Native Script and Xamarim reveal the
weakest community support. In almost every project, there are problems that developers
struggle to solve. As a result, community support can be an essential feature that leads
to solving problems and saving time. Choosing Native Script or Xamarin would be a risk
because it could jeopardise the timely achievement of the project’s goals since the author

20

Project Management

does not have experience in any of these frameworks, and their community support is weak.
Furthermore, neither of these frameworks has Hot Reload.

Ionic is a framework that uses HTML, CSS, JavaScript, and Angular for application de-
velopment, presenting strong community support. However, the fact that it renders its
graphic elements via a browser can make a more complex app perform weakly [63]. This
situation cannot happen in online mobile games.

For the reasons mentioned above, in one of the first meetings with the HYP team it was
defined that the primary frameworks to choose from would be React Native and Flutter.

With the main objective of assisting the author in understanding the development complex-
ity on both Flutter and React Native, it was suggested by the HYP team the development
of a Sample App, by implementing some core concepts to give some insight about the
right one to use. The structure of this app and the applicable requirements are outlined
in Appendix A.

In the sections below, these frameworks are introduced through a description of how each
one works. Subsequently, the final decision is presented.

Flutter

Flutter is an open-source mobile Software Development Kit (SDK) created by Google that
had its initial release in May 2017. As a cross-platform framework, it can be used to
create native-looking Android and iOS apps from the same code base that is written in
Dart [15]. Dart, also developed by Google, is a client-optimised programming language for
building apps for multiple platforms [9]. Unlike other frameworks that separate views, view
controllers, layouts, and other properties (such as React Native), Flutter has a consistent,
unified object model: the widget [15]. A Widget can be, for example, a text, a button, or
even a screen layout. The main idea behind it is to have widgets inside other widgets to
build the User Interface (Figure 3.6). Flutter is available with a considerable component
library, which means that there are a large amount of Widgets that can be used.

Figure 3.6: Widgets inside widgets [13]

Flutter works quite differently than other mobile frameworks. Apps built in flutter can
look like native iOS or Android applications, simply by using the right libraries. Cupertino
is for iOS, and Material is for Android, and each one has its own widgets. Because of this,
an app can look precisely the same for both OS because Flutter does not have native
controls or components. Flutter draws the UI output on a Skia Canvas and then sends it

21

Chapter 3

to the platform [82].

To get started with a Flutter project, the first step is to download the flutter package
from Flutters website https://flutter.dev/showcase, unzip it, and then create an en-
vironment variable pointing to a folder inside of the unzipped folder. Just like any other
framework, to be able to run a first flutter project, an Android or IOS emulator(or device)
and a IDE (in this case Visual Studio Code was used) are required. Then, it is necessary
to run the following commands in the terminal:

Listing 3.1: Create and run Flutter project
flutter create <name of app > # to create a project
cd <name of app > # go to project folder
flutter run <main file > # run project

Many frameworks and other technologies rely on the installation of external packages to
reach some development objective, and many times it is not easy to get them to work,
leading to time being wasted. While developing the Sample App with Flutter, the author
did not have to install many external packages because most of them already came by
default. However, if needed, a line with the dependency must be inserted on a project file
named "pubspec.yalm" and, by running the project, it gets installed automatically.

Code organization is very important during development because code needs to be reusable,
readable, and should use the least amount of lines possible. However, implementing, for
example, a button in Flutter, can take more lines of code than expected. Fortunately,
Flutter uses Dart, which is an object-oriented language. For that reason, a class can be
created to return a button after passing it the variables one wants to use (e.g., width, color,
text), as illustrated in appendix B. This can be done for every widget to re-use.

Figure 3.7 shows the UI of the register page of the Sample App using Flutter and part of
the code that represents it.

(a) Register UI (b) Components (c) Layout return

Figure 3.7: Register Sample App Flutter

Figure 3.4(c) stands for the part of the code that returns the layout for the register screen,
which uses the variables from Figure 3.4(b). These variables use constructors in other
classes to build that particular component (as mentioned before for the button). Even
though it allows this type of re-usability, the author felt that the framework lacks code
readability. As can be seen on the examples, Flutter code can involve building fairly deep

22

https://flutter.dev/showcase

Project Management

tree-shaped data structures where there is no real separation between styles and other
properties.

React Native

Facebook released React Native in 2015 and has been maintaining it ever since. React
Native is a JavaScript framework based on React (a Facebook’s JavaScript library for
building user interfaces), but instead of targeting the browser, it targets mobile platforms
[30].

React Native invokes Objective-C APIs to render to iOS components, and Java APIs to
render to Android component, unlike other cross-platform app development options which
often end up rendering web-based views (such as Ionic). This is all possible because React
Native has a "bridge" which provides React with an interface into the host platform’s
native UI elements [81].

To set up everything, the "Getting Started" documentation was followed in the React Na-
tive official website (https://facebook.github.io/react-native/docs/getting-started),
Several installations may be needed, for example, node.js, Android Sdk, Java SE Develop-
ment Kit, an emulator/device, an IDE etc.

Once the required components are set up, the project can start by running the following
commands:

Listing 3.2: Create and run react native project
npx react -native init <name of project > # to create a project
cd <name of project > # go to project folder
npx react -native run -android # run project for android

Some members of the HYP team already had experience with this framework. As a result,
in case any difficulties arose during the development of the app, the author would easily
be able to get proper guidance. Before starting the development of the Sample App, the
HYP team taught the author some principles to apply when it comes to code structure
and organization of a React Native project.

The major problem faced in an early stage in the development of the Sample App in React
Native was the fact that it required the installation of many third-party libraries (libraries
that do not come by default with React Native). Unlike Flutter, React Native has a small
core library and relies heavily on third-party libraries to fill in significant functionality
aspects [75]. To install any library, a terminal must be opened in the projects folder and
run the line of code that corresponds to the installation of that library. But, for many of
them, it requires doing a lot more configuration, consuming a considerable amount of time.
For example, "react-navigation" - the one responsible for allowing the transition between
screens, and therefore necessary in almost every project -, took a long time to set up.

Since React Native uses JavaScript, all the core components accept a propriety named
"style". The style names and values usually match how CSS works on the web, except
the names are written in camel case (e.g., "fontSize" instead of "font-size"). One can
have these styles in particular JavaScript files for each component needed (Figure 3.8 (a)),
and then export them to be utilised for styling a component (Figure 3.8 (b)). This way,
there is no need to re-write the same code every time a specific styles are used, optimising
development time, and code organisation.

23

https://facebook.github.io/react-native/docs/getting-started

Chapter 3

(a) Styles folder (b) Button styles

Figure 3.8: React Native re-using styles

The register screen and the code of the render function (responsible for drawing the UI)
of the Sample App are presented in the Figures below.

(a) Register UI (b) Register code

Figure 3.9: Register Sample App React Native

The latter illustrates the clear separation between the styles and the other properties, that
improve code organisation and readability.

Decision

The final decision was made in a meeting between the author and members of the HYP
team in the last week of November. The weaknesses and strengths of each framework were
discussed, most pointed out before. Even though it was balanced, it was decided to go
with React Native. The fact that some of the members already have experience in this
framework was also heavily taken into consideration because, this way, they could better
assist the author throughout the development of the app. In the case of Flutter, even
though in the development of the Sample App there were not many complications, one
would not know what to expect in a more complex app and, if problems arose, the weaker
community support could be a significant risk. That could be a potential risk. Since the

24

Project Management

author was also interested in expanding web development skills, going with React Native
would also contribute to that aim, since the framework is based on JavaScript and the
library React.

3.3.2 Server-side/Backend Framework

The mobile game to be developed will be online multiplayer based and asynchronous.
Therefore, different player actions will have to go through a server first so that the latter
can respond to the requests made by the users and possibly store data in the database.
For example, when a user fills a registration form and clicks on the button "Sign Up",
a request to the server containing the filled information is sent, and if the information is
valid, the server will store the information on the database, and a successful response is
sent back to the user. On that account, a framework that can make it easier to develop
and maintain server-side code is necessary. One of the restrictions imposed by the HYP
Team was that the framework to be used in the server-side should be Ruby on Rails.

Ruby on Rails is a web application development framework written in the programming
language Ruby, an object-oriented programming language similar to Perl and Python, and
it is designed to simplify programming web applications and also to encourage habits that
increase productivity. Ruby on Rails stands on two guiding principles [29]:

• Do not Repeat Yourself. This is a principle that aims to reduce the repetition
of information that states that "Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system". By not repeating the same
information, the code is more maintainable, extensible, and less buggy.

• Convention Over Configuration. This is a web application development principle
that aims to reduce time and effort taken by developers, because in most frameworks
there is a need of writing pages of configuration while in Ruby on Rails these are
already configured by default.

Ruby on Rails also uses a Model-View-Controller (MVC) architecture, which aims to sep-
arate business logic and application data from the presentation data to the user, as repre-
sented in Figure 3.10.

Figure 3.10: MVC model

Each one of the of the MVC components has the following objectives [49]:

• Model. Model component corresponds to all the data-related logic, meaning that
all the interactions with the database will be done in this component.

25

Chapter 3

• View. The View component is used for presenting the data of the model. In this
case there will be no View, since the UI belongs to the mobile app,

• Controller. Controller works as a middleman between the model and the view
components. It listens to all incoming requests and performs an appropriate response
back to them, using the Model component.

Like most programming languages, Ruby leverages an extensive set of third-party libraries.
These are released in the form of gems, which are packaged libraries that can be installed
with a tool called RubyGems [21]. Such gems contain specific pieces of functionality, as well
as any files or assets related to that functionality; therefore are in line with the "Convention
Over Configuration" principle specified before. This principle also makes Ruby on Rails
a favorable choice, since the framework abstracts and simplifies common repetitive tasks.
The developer does not have to spend a lot of time configuring files to get setup since
Rails comes with a set of conventions that help speed up development [71]. This could be
beneficial considering the existence of a deadline and the fact that the author also had to
develop the client-side.

3.3.3 Database

A database can be defined as an organised collection of data, whereas a database system
(DBMS) is a software used to manage data [43]. For this project, the data needs to be
divided into different tables that can relate to each other. For this reason, it requires a
relational database management system (RDBMS). As described in [41], there are many
possibilities regarding which RDBMS to use, such as MySQL, PostgreSQL, Oracle DB,
and SQLite.

The use of PostgreSQL was a project restriction made by the HYP team, since it is the
database they most frequently pair with Ruby on Rails.

3.3.4 Support Tools

Other than the tools mentioned before for the client, server-side, and database, the follow-
ing tools were selected to assist the author throughout the project:

• Visual Studio Code. A source-code editor developed by Microsoft, that was used
for the development of the Sample App, and will possibly be used for the mobile
game development.

• Overleaf1. An online latex text editor used to write this paper.

• Slack. A messaging platform used to communicate with the HYP team.

• Draw.io2. A free online diagram editor that was used to create diagrams presented
in the section of System Description.

• GitLab3. Online, open-source git repository used to share code with the HYP team.

• TeamGantt4. Website that allows building Gantt diagrams.
1See more: https://www.overleaf.com/
2See more: http://draw.io/
3See more: https://gitlab.com/
4See more: https://gitlab.com/

26

https://www.overleaf.com/
http://draw.io/
https://gitlab.com/
https://gitlab.com/

Project Management

• Trello5. Website for project management used in the development phase, which
allows organizing and keeping track of project tasks.

3.4 Risk Management

Risk management is the process of identifying, analysing and responding to risk factors
during the lifetime of a project, to reduce the likelihood of an event occurring and/or the
magnitude of its impact [89]. The first step is to identify the risks that might affect the
project or its outcomes. Once the risks have been identified, these must be evaluated for
their probability of occurrence. These risks can be simple to measure or impossible to know
for sure, but it is essential to make the best predictions possible [88]. The probability of
occurrence can be divided into low(<40%), medium (40% to 70%), and high (>70%). The
next step is to evaluate the magnitude of their overall consequences and how they can
affect the Threshold of Success (ToS). The ToS represents the boundary between success
and failure of a project. In this project, it was defined that to reach the ToS, all "Must
Have" requirements had to be accomplished by the end of the project. Lastly, and most
importantly, a mitigation plan must be defined so that risks can be eliminated or at least
its impact minimised.

The following risks were identified during the time of the project:

• R_1. Inexperience in client-side mobile frameworks can cause some difficulty in the
adaptation to the project;

• R_2.Inexperience in Ruby on Rails can jeopardize the project;

• R_3 Additional requirements may be identified during the subsequent phases;

• R_4 Google takes longer than predicted to review the app, delaying its release on
Play Store;

• R_5 Testing phase reveals errors/bugs that will demand more time spent on devel-
opment;

ID Probability Impact Mitigation Plan Occurred
R_01 High High Study those frameworks using online

documentation, tutorials, and also
develop a simple app

Yes

R_02 Medium High Learn through tutorials and docu-
mentation

Yes

R_03 Low High Possibility to discard "Could Have"
requirements

No

R_04 Medium High - Yes
R_05 High Low Dedicate more time to testing and

software improvements
Yes

Table 3.2: Risks

Risk 1 was the one with a higher probability of occurrence due to the author’s inexperience
in mobile development frameworks. Notwithstanding, the risk impact was minimised since

5See more: https://www.teamgantt.com/

27

https://www.teamgantt.com/

Chapter 3

the author managed to gain experience with React Native, mainly due to the development
of the Sample App.

Despite the inexperience with language Ruby, the author had already worked with a similar
language (Python), which made it easier to adapt to the language and the framework, and
therefore the risk having a medium probability of occurrence.

Regarding Risk 4, at some point in the development phase the app needs to be released
to the Play Store in testing mode, with the purpose of adequately trying-out some of the
mobile game functionalities. At this stage, the app is made available for a selected public to
test it as well. Before the app gets release, Google needs to review it to check if everything
is as it should be. This process can sometimes take days and therefore jeopardize the
timely delivery of the project.

Concerning Risk 5, the testing estimated duration may have been too optimistic (especially
for functional testing). As a result, testing took the author longer than expected.

28

Chapter 4

System Description

This chapter begins by explaining the main concept of the mobile game, using a possible
game scenario as an example. Afterward, the user stories are described, which together
with the comparison of mobile games included in the previous section, helped to define
the requirements. Then, the use cases and the prioritised functional and non-functional
requirements for the mobile game are presented. Subsequently, the System Architecture is
detailed, followed by the Entity-Relationship Diagram, the Navigation Diagram, and the
Wireframes.

4.1 Game Concept

Before starting to explain the requirement identification process, it is essential to have a
clearer idea of the game concept inspired in telepathy.

To better understand the game flow, the figure below (4.1) represents a possible scenario.

Figure 4.1: Game scenario example

In the scenario presented in Figure 4.1, Player A starts a game with Player B. Each player
is using their own device. The mobile game asks Player A to name an expensive brand;
subsequently, when asked the same question, Player B will attempt to provide the same
answer. Once Player A submits their answer, Player B receives a notification informing
that Player A answered a question and that it is their turn to play. Player B will be
presented with the same question while being warned that the answer shall match the one

29

Chapter 4

given before by Player A. If both players provide a matching answer, they both win a point.
Afterward, Player B can start a new round, and the whole process repeats. As mentioned
before, the idea is that a player answers a given question based on what they believe the
other player is going to answer or has already answered.

The next section presents the user stories of the mobile game.

4.2 User Stories

A user story is a simple description of a feature told from the perspective of the person who
desires a functionality, usually a user or customer of the system [38]. These are usually
used in Agile methodology’s such as Scrum, but they can be helpful for any methodology
and are useful on-account-of it forces the team to put themselves in the user’s shoes and
start identifying requirements [70] [86]. They typically follow a simple template:

As a <type of user>, I want to <some goal> so that <some reason>

The user stories for the mobile game were identified during the requirements specification
phase through multiple sessions of discussion between the author and the HYP team; the
author would bring new ideas for each session. These sessions resulted in the following
user stories:

User stories about user accounts

(a) As a unauthenticated user, I want to register so that I can create an account

(b) As a unauthenticated user, I want to login so that I can enter the game with my
account

(c) As a unauthenticated user, I want to login with Facebook so that I can create an
account faster

(d) As a unauthenticated user, I want to recover my password so that I can login
again

(e) As a user, I want to logout so that I can leave my account

User stories about user profile and information

(a) As a user, I want to view my profile so that I can view my personal information

(b) As a user, I want to edit my profile so that I can change my profile picture

(c) As a user, I want to edit my profile so that I can change my username

(d) As a user, I want to edit my profile so that I can change my password

User stories about the gameplay

(a) As a user, I want to create a new game so that I can play the game with a player

(b) As a user, I want to want to invite friends so that I can play the game with them

30

System Description

(c) As a user, I want to want to play with a random user so that I can play the game

(d) As a user, I want to want to play with a friend so that we can have fun together

(e) As a user, I want to choose a game type so that I can answer a question within
that game type

(f) As a user, I want to answer a question so that my friend tries to get it right in
his turn

(g) As a user, I want to answer a question that my opponent already answered so that
I can get it right

(h) As a user, I want to answer to questions correctly so that I can earn coins

(i) As a user, I want to answer to questions correctly so that I increase my right
answer streak with a player

(j) As a user, I want to change a question so that I can get another that I like more

(k) As a user, I want to get help answering the questions so that I have a higher
probability of get them right

(l) As a user, I want to have a wide variety of questions within each category so that
they rarely repeat

(m) As a user, I want to watch advertisement videos so that I can win free coins

User stories related with the store

(a) As a user, I want to buy re-rolls with coins so that I can change questions

(b) As a user, I want to buy power-ups with coins so that I can increase the number
of coins I win in a round

(c) As a user, I want to buy power-ups with coins so that I can get help answering
the questions

(d) As a user, I want to buy coins with real money so that I can buy shop products

User stories related with other features of the game

(a) As a user, I want to see game results so that I can see how many questions me
and my friend got right in a row

(b) As a user, I want to view other rounds statistics so that I can see what me and
the other player answered

(c) As a user, I want to receive notifications so that I can know when it is my turn
to play

(d) As a user, I want to turn off notifications so that I don’t receive notifications
about the game

(e) As a user, I want to receives daily bonus so that I can receive more coins

(f) As a user, I want to see a tutorial so that I know how to play the game

31

Chapter 4

4.3 Use Cases

Use cases are used in system analysis to identify, clarify and organise system requirements.
A use case describes an interaction between the system and an actor with the objective of
reaching a certain goal [67]. Use cases can be represented through many forms. For each
one of the uses cases, it was decided to use a format that has the following fields:

• Name. A unique identifier that represents the purpose of the use case

• Actor. Actor involved in the use case

• Description. Goal to be achieved by use case and sources for requirement

• Pre-Conditions- State of the system before the use case scenario happens

• Post-Conditions. State of the system after the use case scenario happens

• Basic Flow. Steps that the actor follows to make sure that the purpose of the use
case is met

• Alternate Course. Represent alternate or undesirable paths to the user

To write this type of use cases, the team needs to have a clear idea of how the mobile game
is going to work. Usability was taken into consideration during the writing of use cases,
since these already describe how a user should interact with the mobile app to complete
the different tasks. For this reason, the team had to think in advance about features such
as the placement of the different components (e.g., "From where can I access the shop?"),
and the number of clicks until the completion of a task.

Even though all use cases used in this project are outlined in Appendix C, illustrated below
(Tables 4.1, 4.2 and 4.3) are three of the most important ones, regarding registration,
creating a new game with a random player, and guessing the other player answer.

32

System Description

Name Registration

Actor User

Description The user has to register so they can enter the mobile app

Pre Conditions 1. The e-mail that the user uses is not registered in the
database.

Basic Flow

1. Navigate to Registration screen

2. Fill name

3. Fill email

4. Fill password

5. Click in register button

Post-Conditions User account is created and registered in database successfully

Alternate Course

3. Email not in the right format

3.1. Message error appears

3.2 User stays in register screen

4. Password too short or long

4.1 Message error appears

4.2 User stays in register screen

5. Server error message

5.1 E-mail already exist in database

5.2 User stays in register screen

Table 4.1: User registration use case

33

Chapter 4

Name Create new game with a random player

Actor User

Description A user can create a new game with a random player

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Choose a game type

2. Select random player option

3. Clicks in button "Create Game"

Post-Conditions A new game with random player is created and database up-
dated successfully.

Alternate Course

a) 4. Server error message

4.1 No players available

b) 4. Server error message

4.1 Cannot create a game

Table 4.2: Create new game with a random player use case

34

System Description

Name Guess other player answer

Actor User

Description The user chooses a game from their list of games that has a
ongoing round. Then they answer the question that the other
player already answered

Pre Conditions

1. The user is authenticated

2. The user is in the Home Page

3. The user has at least one ongoing game in which it is his
turn to guess the other player answer

Basic Flow

1. Chooses a game from the games list

2. Fills input field with an answer

3. Submit answer

Post-Conditions User submits the answer and database is updated successfully.

Alternate Courses

2. User uses Power-Up to help him answer

2.1 User click in power-up helper

2.2 First letter of the other play answer appears

2.3 User answers the question

2.4 User submits answer

3. Server error message

3.1 Cannot submit answer

Table 4.3: Guess other player answer use case

4.3.1 UML Use Case Diagrams

Use case diagrams are normally used to describe a set of actions that some system or
systems should or can perform in collaboration with one or more external users of the
system (actors) [34]. In this case, diagrams were used with the purpose of ensuring a
better overview of the use cases and their corresponding actors.

35

Chapter 4

(a) Unauthenticated users (b) Users

Figure 4.2: Diagram of user use cases

Figure 4.2 presents two different types of users: unauthenticated users and authenticated
users. Unauthenticated users have the usual registration, authentication and password
recovery features available, while authenticated users have all game features available, as
specified in Figure 4.1.

Figure 4.3: Diagram of admin use cases

Admins will have an admin console (backoffice) in which they will be able to perform
CRUD (create, read, update and delete) operations in the various entities. However, the
most important ones are the possibility of banning users and add new questions to a specific
game type.

36

System Description

4.4 Functional Requirements

The purpose of this section is to specify the functional requirements, that are based on the
user cases described before. Functional requirements were prioritised in a meeting with
the HYP team in accordance with their importance for the project. For this prioritisation
the MoSCoW method of prioritization was used, which is divided in [1]:

• Must Have. Requirement is crucial for the project. Cannot deliver a viable solution
without it.

• Should Have. Requirement is important but not vital.

• Could Have. Requirement is wanted or desirable but less important.

User Authentication

ID Description Priority
FR_01 Register Must Have
FR_02 Login Must Have
FR_03 Login with Facebook Must Have
FR_04 Recover password Must Have
FR_05 Logout Must Have

Table 4.4: User authentication functional requirements

User Profile

ID Description Priority
FR_06 View profile Must Have
FR_07 Edit profile Must Have
FR_08 View badges Must Have

Table 4.5: User profile functional requirements

Game related

ID Description Priority
FR_09 Create game with friend Must Have
FR_10 Create game with random player Must Have
FR_11 Submit question and answer Must Have
FR_12 Guess other player answer Must Have
FR_13 Last round statistics Must Have
FR_14 Previous rounds statistics Should Have
FR_15 View game list Must Have
FR_16 Remove game Should Have

Table 4.6: Game related functional requirements

37

Chapter 4

Shop

ID Description Priority
FR_17 View products in shop Must Have
FR_18 Buy shop product Must Have
FR_19 Win free coins Should Have
FR_20 Buy coins Must Have

Table 4.7: Shop functional requirements

Others app functionalities

ID Description Priority
FR_21 Send notifications Must Have
FR_22 Enable/disable notifications Must Have
FR_23 Game tutorial Could Have
FR_24 Receive daily bonus Could Have

Table 4.8: Other functionalities functional requirements

Admin

ID Description Priority
FR_25 Ban user Should Have
FR_25 Add question Must Have

Table 4.9: Admin functional requirements

4.5 Non-functional Requirements

While functional requirements describe functions that a software should perform, non-
functional requirements define the quality attribute of a software system and how it should
work [39]. All of these are essential for a system to work correctly and therefore are
prioritised as Must Have.

4.5.1 Usability

As mentioned earlier, usability is a key attribute in every mobile application, since a bad
user experience can lead the user to never use an application again. It should be easy
for the users to achieve goals and to become familiar with the mobile application. This
attribute was taken into consideration during the creation of the use cases and also during
the wireframes design phase.

38

System Description

ID NFR_01
Stimulus Source User
Stimulus User trying to access a specific functionality
Enviroment Normal/Fully functional
Artifact Mobile App
Response Functionality can be accessed in an efficient

and effective way
Metrics Time spent and number of clicks until com-

pleting an action

Table 4.10: Non-functional requirement - Usability

4.5.2 Scalability

Scalability is the ability of a system to handle increased workload [66]. It is an essential
attribute to ensure the normal functioning of the mobile game when handling a high amount
of requests. The server is going to be hosted in Amazon Web Services (AWS). AWS is a web
service that provides secure, resizable compute capacity in the cloud [8]. AWS has a service
that allows making use of horizontal scaling: AWS elastic beanstalk. This service permits
creating an Elastic Load Balancing load balancer for the environment, which distributes
traffic among the different server instances depending on the current traffic [22]. This
service helps making sure that users receive their responses in acceptable times, even when
the server is dealing with an high amount of requests. The System scalability was tested
later on during the testing phase, through load testing (request simulation).

ID NFR_02
Stimulus Source User
Stimulus High amount of server requests
Enviroment Heavy load of users
Artifact Server
Response Server responds to requests successfully with-

out much latency (<= 3 seconds)
Metrics Response time depending on number of re-

quest

Table 4.11: Non-functional requirement - Scalability

39

Chapter 4

4.5.3 Availability

From the user point of view, availability over a specified time interval is the percentage
of that interval during which the system is available for normal use [50]. Any downtime
can be critical for the success of the game and that is why availability is an important
attribute for the proper functioning of an application and user satisfaction. As mentioned
in their official documentation, AWS guarantees a 99.9% availability time per month of
their services [5].

ID NFR_03
Stimulus Source User
Stimulus Missing response from server
Enviroment Failure
Artifact Server
Response Server must be available 99.9 % of the time
Metrics Percentage of downtime per month

Table 4.12: Non-functional requirement - Availability

4.5.4 Security

Security is important for systems that store user data, since no one wants other people to
be able to access their information.

ID NFR_04
Stimulus Source User
Stimulus User tries to register account with acceptable

information
Enviroment Normal/Fully functional
Artifact System
Response Server encrypts user password and stores it

in the database encrypted

Table 4.13: Non-functional requirement - Security: Password Encryption

ID NFR_05
Stimulus Source Unauthorized User
Stimulus User attempts to access or modify informa-

tion that does not belong to them
Enviroment Normal/Fully functional
Artifact System
Response Server does not allow user to access informa-

tion and sends error message

Table 4.14: Non-functional requirement - Security: Unauthorized Access

40

System Description

ID NFR_06
Stimulus Source User
Stimulus User tries to fake a purchase event when buy-

ing coins
Enviroment Normal/Fully functional
Artifact System
Response Server does not allow user to buy coins and

sends error message

Table 4.15: Non-functional requirement - Security: Fraudulent purchases

4.6 Constraints

Tables 4.16, 4.17 and 4.18 present the main technical constraints imposed by HYP that
had to be respected during the development of the project.

ID TC_01
Source HYP
Title Back-end in Ruby on Rails
Description The server side must be developed in Ruby

on Rails since some HYP software engineers
already have experience in this framework

Table 4.16: Technical constraint - Ruby on Rails

ID TC_02
Source HYP
Title Database in PostgreSQL
Description The database that will store all the applica-

tion necessary information will be in Post-
greSQL since it is the databse that the HYP
team frequently pair with Ruby on Rails

Table 4.17: Technical constraint - PostgreSQL

41

Chapter 4

ID TC_03
Source HYP
Title Amazon Web Services
Description The web server is going to be store in Amazon

Web Services since its the cloud that HYP
team normally use to store most of their ap-
plications

Table 4.18: Technical constraint - AWS

4.7 System Architecture

The System Architecture is presented in Figure 4.4. This architecture is composed by
the mobile app, developed in React Native, that makes Representational State Transfer
(REST) requests to the server developed in Ruby on Rails. The server is composed of an
Application Programming Interface (API) that uses the Controller and Model components
from the MVC model to communicate with the mobile game, as mentioned earlier. The
admin console will use the complete MVC model that can be accessed through a specific
Uniform Resource Locator (URL) and will also make REST requests to the server.

The server retrieves information from the PostgreSQL database, using SQL queries. The
server is separated from the database because of the possibility of existing many server
instances, in case the system reaches an unbearable number of requests.

Figure 4.4: System architecture

The Containers diagram for the project is presented in Figure 4.5. A Containers diagram
zooms into the software system, showing the containers (applications, data stores, microser-
vices, etc.) that make up that software system, as well as their respective responsibilities
[6].

42

System Description

Figure 4.5: Containers diagram

As illustrated in Figure 4.5, other than the mobile game system already described in Figure
4.4, composed by the mobile app, the API, and the database, additional software systems
are going to be integrated, specifically:

• SendGrid API to send e-mails in case users want to recover their password.

• Google Pay API and Apple Pay API for payment purposes, in case a user wants
to buy coins in the game.

• Facebook API to retrieve users Facebook information in case they choose to login
with Facebook.

• Expo API to send notifications to a user device when another player answers a
question.

4.8 Entity-Relationship Diagram

An Entity-Relationship Diagram (ER) is a type of flowchart that illustrates how “entities”
relate to each other within a system [42]. The system ER diagram is presented in Figure
4.6, regarding the information to be stored in the database.

43

Chapter 4

Figure 4.6: Entity-relationship diagram

All entities have a primary key id (identifier). Table User has all the necessary information
for the user, such as username, password, email, facebook_token (if necessary), avatar
(profile image), the coins they currently have (and can spend in the store), the total coins
ever spent, and the different powerups (items to use in-game). One user can have many
games (relationship many-to-many because a Game has two users), many rounds in which
is their turn to play, many answers, has a relationship one-to-one with table BadgeLevel
because a user has a certain level in each one of the existent badges, and can have many
notifications tokens which has token and the device_id for the server to be able to send
notifications to this user.

On the table Game, the streak (current number of rounds won by both players in a row in
a game), and max streak (highest streak of rounds won) are saved. A game is played by
two users (table User), is composed of many rounds (table Round) and has an associated
game type (many-to-many because a game type can belong to many different games).

On the table Round, the number of coins associated with that round in case both players
win, the used_powerup_coins that tells if the powerup coins was used, the answer_helper
that represents the string in case a player uses powerup helpers, and the status representing
which user has to play next, are saved.

Table GameType is used because users can play different kinds of games. In table Game-
Type, the kind of the category and the related avatar are saved. A game type can belong
to many games and have many associated questions.

On the table Question, the text that represents that question is saved. A question belongs
to one game type and can be in many different rounds.

44

System Description

On the table Answer, the text that represents an answer is saved. An answer belongs to a
user and to a round.

On the table Badge, a description, an image and a kind of a specific badge are saved. Each
one of the badges can have many levels (relationship one-to-many). Each level has a kind
(Bronze, Silver ...), a score a user needs to reach to be awarded that level, and the coins
the user wins in case they reach that level.

On the table Purchasable, are saved the quantity, the price (in coins) and a kind (reroll,
helper, or powerup coins) of items that a user can buy in the shop.

Finally, the table Purchase represents a purchase that a given user did with real money
to buy coins to use in the store, and has a status field to see if the transaction is already
completed.

4.9 Navigation Diagram and Wireframes

The navigation diagram of the mobile application is presented in Figure 4.7, which shows
the application screen flow from the player’s perspective. Afterwards, the wireframes of
the mobile application are presented. Wireframes for the mobile app are a simplified visual
concept of the future app, without design, that helps to understand how the app works
[55].

Figure 4.7: Navigation diagram

When a user enters the mobile application for the first time, they encounter the main
screen (Figure 4.8 (a)). On this screen, the user can choose whether to login, login with a
Facebook account, or register. If they choose the first option, they navigate to the login
screen, where they have to fill the input fields with the correct information. In case the
user forgets their password, they can recover it by clicking in "Forget Password?". If the
user wants to register in the application, they can navigate to the register page (Figure 4.8
(c)) and fill the input fields. In both cases (login and register), if the information is valid,

45

Chapter 4

the user navigates to the home page (Figure 4.9(a)).

(a) Main screen (b) Login screen (c) Register screen

Figure 4.8: Mobile game wireframes 1

The user can access most of the application functionalities in the Home Page. They can
access their profile after clicking in their avatar (Figure 4.10(a)), the settings screen (Figure
4.12 (c)), the game shop (Figure 4.12(a)), view the game list (in which they can continue
their respective games), and also create a new game. A new game can be created by
choosing a game type on the home screen. Afterwards, the user navigates to the create
game screen (Figure 4.9 (b)), in which they can choose from playing with a random player,
a Facebook friend, or search for a username. After selecting a player, the user clicks "Create
Game", and a round begins. For the user that created the game, a question appears, and
they will have to answer depending on the kind of round (in Figure 4.8(c), both players
have to get the same answer). Before submitting their answer, the user can re-roll the
question (change it) or increase the number of coins to be won in case both get it right.
After submitting, a notification is sent to the other player, and the user navigates back to
the Home Page.

46

System Description

(a) Home screen (b) Create game (c) Submit question and an-
swer

Figure 4.9: Mobile game wireframes 2

Once a user submits their question and answer, the other player can access it by clicking
in the respective game in the Home screen. Subsequently, the same question appears, and
the player has to answer correctly on account of what the other player may have answered
(Figure 4.10(a)). Before submitting their answer, they can click in "Letter Help" (in case
they have them available), and the first letter of the correct answer will appear in order to
assist the player. After submitting, the results of that round can be seen (Figure 4.10(b)),
specifically the answers given by both players and the current and maximum correct answer
streak within that game type, with that player. In this screen, they can click in "Previous
rounds" to see other rounds results and statistics (Figure 4.10(c)), as well as start a new
round by clicking in "New Round", whereas the process repeats.

(a) Answer question (b) Last round statistics (c) Previous round statistics

Figure 4.10: Mobile game wireframes 3

47

Chapter 4

As said before, the user can navigate to their profile through the home screen (Figure
4.11(a)), in which they can view their information. In this screen, the user can logout,
navigate to the edit profile screen, and go to the badges screen. In the edit profile screen
(Figure 4.11(b)), the user can change their personal information, and in the badges screen
(Figure 4.11(c)) they can view their badges. Each badge represents goals that the user can
achieve, that will reward them with coins.

(a) Profile (b) Edit profile (c) Badges

Figure 4.11: Mobile game wireframes 4

In the shop screen (Figure 4.12(a)), which can be accessed through the home screen, the
user can view the different items they can buy and their respective cost (in-game coins).
They can buy three different types of items: re-rolls, power-up help, and power-up coins
(their goal already specified earlier). By clicking in "Win free coins", an advertisement
video appears, and if the user finishes watching it, they will be awarded coins. If the user
wants to buy coins, they can click in the button "Buy coins" and navigate to the respective
screen (Figure 4.12(b)). On this page, the user can spend real money to buy coins so that
they can spend it on shop items.

48

System Description

(a) Shop (b) Buy coins (c) Buy coins

Figure 4.12: Mobile game wireframes 5

This chapter provided a description of essential elements for the development of a new
asynchronous mobile game using telepathy as a theme. Chapter 5 details how it was
accomplished.

49

This page is intentionally left blank.

Chapter 5

Development

This chapter details the implementation phase of this project. It starts by explaining the
development process and the organizational standards followed by the author to accom-
plish the project goals. Subsequently, to ensure enough understanding of some essential
implementation details, a description of the server-side and client-side project structure is
provided. Finally, the requirements and their implementation details fulfilled during the
development phase are explained.

5.1 Process and Organization

As every other software project, being organized is a critical element that can contribute to
the likelihood of its success. For this purpose, a Trello Board was set up at the beginning
of the development phase. A Trello Board is a tool designed for organizing projects of any
size, by dividing the tasks in Trello Cards. In each one of these cards, comments may be
added, file attachments uploaded, checklists created, as well as labels and due dates, and
more [33]. These can be especially useful when working in a team because each member
can keep track of other people’s work.

Figure 5.1 is presentes the Trello Board of this project in its final stages of development:

Figure 5.1: Project trello board

51

Chapter 5

The Trello Board is divided in 7 columns:

• Backlog, list of tasks that need to be dealt with.

• To Do, list of tasks to start in a near future.

• In Progress, list of tasks being handled in the present.

• Code Review, list of tasks completed and awaiting review to be merged into the
development branch.

• Development, list of tasks already reviewed and merged into the development
branch.

• Staging, list of tasks pending on testing to be considered as fully completed.

• Done, list of fully completed tasks.

Tasks are picked from the backlog taking on account the following points:

• Their importance for the objectives of the project. For example, if a task
represents a "Must Have" requirement, it has a higher priority comparing with a
"Could Have" requirement.

• The dependency of tasks. Some tasks depend on others to be completed. For
example, for a user to be able to submit an answer to a given question, a game
needs to be created first. In this case, the task "Create game" must precede "Submit
Answer".

• The ease of the task implementation. Some tasks are easier to develop than
others. In the author’s point of view, developing easier tasks first is beneficial for his
learning curve.

At the beginning of the development phase, two repositories at GitLab were created: one
for the mobile app and another for the server-side. Every time the author completed a task,
he created a merge request to the “development” branch in its supposed project repository.
Then, a senior developer would review the code in the merge request. If the reviewer
understood everything to be correct, the merge request would be accepted, adding the
code to the “development” branch. If they identified errors, imperfections, or a need for
code improvements, they would comment on the respective code lines so that the developer
could address them as soon as possible. The “development” branch contains the code that
a senior engineer from HYP reviewed, but has not been fully tested.

When the developer makes a merge request to the “development” branch, he proceeds to up-
date the Trello Board, passing the respective task(s) card(s) to the “Code Review” column.
When the reviewer accepts the merge request, the author moves it to the “Development”
column. This way, the developer can always keep track of their tasks.

The reviewing code method is an effective quality assurance technique with the main goals
of discovering direct quality problems in the code [57].

52

Development

5.2 Project Structure

As mentioned in section 3.3.1, writing maintainable code is very important in any project
nowadays, especially when working on a project with a team. Maintainable code is code
easily modifiable, extendable, and readable [69]. A developer does not know if they will
need to go back to a past project, or if someone else will be a part of it in the future. For
this reason, it is crucial to set several rules and respect them accordingly; otherwise, it can
cause substantial delays (when fixing bugs, for example) and unnecessary code refractors,
among others. In light of the above, the author attempted to follow the frameworks and
company standards.

The following subsections present the file structure of both the server and the client-side to
understand some essential implementation details and the division of the files and folders
in each one of them.

5.2.1 Server Side

The server-side is mainly divided into two parts: the user area and the admin area. To
better understand this division and how the project is organized, the figure below represents
the server-side file structure joined by a description of three key folders: app, db and config.

Figure 5.2: Server file
structure.

Most of the work was conducted in the first folder ("app"), par-
ticularly in its subfolders: controllers, models and views.

Controllers are responsible for routing external requests to in-
ternal actions. Even though it is not visible in Figure 5.2, the
controller’s folder contains distinct controllers for the admin and
the mobile app.

The user API endpoints are presented in Appendix D. Each of
these includes a name, a description and the parameters received.
It is also important to mention that, for a user to be able to
make use of these endpoints, they must send on the header of
the request their uid (email), their client (unique identifier) and
their access token (unique identifier), which are used as a security
mechanism to identify the users.

The models folder contains the models’ files and each one repre-
sents an entity from the ER diagram in section 4.8, Figure 4.6
(e.g., user, game). Inside each file are written the associations
between the distinct entities and the necessary validations. Also,
it is where the CRUD operations are performed.

The views folder contains mainly the views for the admin console
written in the format "html.erb".

The db folder contains all the database information: the schema,
which lists all tables and columns on the database, and each
migration that introduced changes to the schema.

Finally, the config folder includes the Ruby Gems (libraries), the
routes that make Rails able to connect requests to a controller
action and configurations for the server and its environments
(development, staging, and production).

53

Chapter 5

5.2.2 Client Side

This subsection presents the client-side implementation details from the project developed
using the React Native framework. Figure 5.3 shows the client-side project structure.

Figure 5.3: Client
side file structure.

There are three main folders in this React Native project: the android
folder, which has the native code (written in java) needed to run the
app in an android platform; the app folder, where most of the code
is written (in javascript); and ios folder which has the native code
(written in Swift), as needed to run the app in an ios platform. At
the bottom of the file structure are other important files, such as the
“app.json,” that has essential variables for the project (such as the
app name, display name, among others). The “package.json” shows
the dependencies/libraries installed and used in the project, and the
“index.js” represents the starting point for the project to run.

Inside the app folder, each folder has different goals. Inside the screens
folder are all the application layouts, which are also divided into dif-
ferent folders depending on the related requirements (authentication,
shop...). In the assets folder is where all the app styles are defined,
which in turn are divided into different files depending on the related
component (buttons, images, texts ...). In the actions folder are the
files with the functions needed to send the desired requests to the server
API. These functions are called inside the layouts files when a specific
API request is required. In the config folder are the configurations and
global variables used in the project.

The reducers folder is related to an important library that was used on
this project: the redux. Redux is a state management tool, by which
the state of the application can be kept in store (even when the app
is closed) and be accessed from all components. For example, when
navigating to the profile screen, a user can see their username, email,
and avatar. To get these variables, no server requests are required
because they are already saved in the redux store since the player
logged in. However, for example, if a user changes their username in
the “Edit Profile” screen, the redux store needs to be updated after the
server responded. The files inside the reducers folder have the purpose
of changing the redux store when an update is required.

5.3 Requirements

This section elaborates on the requirements satisfied during the development of the project,
which were all accomplished. First, a Gantt Chart with the task completion time outcome
is introduced to show how the work was divided during the development phase. Then,
in the following subsections, are described the implementation details of the requirements
taking into account their context to the project, starting by the admin functionalities
implemented and then going into more detail for the implemented user’s features. The
requirements presented are joined by the representative layouts.

54

Development

5.3.1 Tasks Completion Outcome

Figure 5.4 shows a Gantt Chart representing the division of tasks during the development
phase.

Figure 5.4: Tasks completion outcome

After the Ruby on Rails adaptation phase, which lasted nearly two weeks, it was decided
that the first thing to do should be configuring the server-side project, which was done
with the help of a senior engineer at HYP. After that, the author started by implementing
some functionalities in the admin panel.

The functionalities of the admin panel were developed depending on its utility for the
client-side. For example, before starting developing authentication for the client-side, the
author made sure that it was possible to perform operations on the user model in the
admin panel because of the usefulness they could bring for those specific tasks.

5.3.2 Admin Panel

An admin panel can be practical since it allows for accessing and manipulating data within
the user interface of the website. For that reason, it allows admins to perform desired
CRUD operations in the database without the use of other more complex methods. When
the app goes live, the admin panel will be the primary resource for changing the database.

This subsection focuses on showing some functionalities available for the administrators,
which are accessible after an administrator logs in with acceptable credentials.

Users

Figure 5.5 illustrates the Admin Panel for the user’s section. Admins can perform multiple
operations in registered users, such as view their information, edit their information (which
can be useful for testing or if some transaction fails), delete a user, and ban a user.

55

Chapter 5

Figure 5.5: User admin panel

Game Types

As specified in the requirements, a user must first choose a game type to start a game.
Within this entity (game type), an admin can make all the CRUD operations. Figure 5.6
presentes the layout that allows creating a new game type, requiring the selection of an
avatar and a kind (e.g. Brands).

Figure 5.6: Create game type admin panel

Questions

An admin must have the ability to add questions to a specific game type. To make that
feasible, a “Questions” section was added to the admin panel, where they can make all the
CRUD operations. Figure 5.7 presentes the index page of the Questions. As mentioned
before, a question belongs to a game type and has a text field, which is the question itself.

56

Development

Figure 5.7: Questions admin panel

5.3.3 User

This section presents the implemented functionalities on account of the user requirements
identified in section 4.4, and others deemed essential for the application to work correctly.
The functionalities are presented by the order of their development, as pointed out in
Figure 5.4. In each functionality is explained the development process that resulted in the
requirement completion, the problems encountered (if any), and the resulting mobile game
layouts. Once again, it is important to refer that the final design is not yet integrated
in the mobile game; HYP’s designers will complete it at a later stage since it was not
considered essential for the core objective of the current project, which was to develop an
MVP. However, the author made and effort to make the components legible, to be able to
reach as many conclusions as possible in the usability tests.

Authentication

After configuring the React Native project, the first step was to implement user authen-
tication. The following requirements are included in user authentication: register, login,
Facebook login, password recovery, and log out. These are identified as “Must Have” re-
quirements since user identification is necessary for users to access their information and
keep the information secure.

Register, login, and logout authentication requirements make use of endpoints that are
generated from a Ruby Gem called “Devise Token Auth” 1. This gem, when installed,
automatically adds fields to the user model (such as email, password, among others), adds
many validations (e.g., checking if a user email is unique, when trying to register), provides
methods (endpoints) for these authentication requirements, refreshes the access tokens on
each request, and expires them in a short time, making the app more secure.

Figure 5.8 presents three layouts: the main screen, the register screen, and the login screen.
The main screen is the first screen that users see when they first open the app to be able
to authenticate. In the register screen, users have to insert the necessary information
to register in the app. This information must be valid; otherwise, the app can throw

1See more: https://github.com/lynndylanhurley/devise_token_auth

57

https://github.com/lynndylanhurley/devise_token_auth

Chapter 5

different errors such as: "Username already taken", "Password too short", "Password
doesn’t match Password Confirmations", among others. In the login screen, users must
type the information of an already existing account to be able to enter the app; otherwise,
the following error is shown: "Invalid Credentials".

(a) Main screen (b) Register (c) Login

Figure 5.8: Authentication layouts

To use the Facebook API for user login and register, the author had to first register the
app on Facebook developer’s website 2. After registering the app, an id was made available
to use on the client-side, to allow the app to connect with the Facebook API. When a user
uses the app’s Facebook login for the first time, Facebook asks the user for permission to
share their information with the app (Figure 5.8(a)). This information includes the user’s
email and name since these are necessary fields to create a new user account in the project
server. After accepting, the Facebook API will return a token. Subsequently, that token is
sent to the project server-side to confirm that the token indeed corresponds to a Facebook
account. After confirmation, the user’s Facebook email and name are retrieved (using the
token). If the user does not yet have an account, a new one is created using the user’s
Facebook email and name (username generated based on name). Finally, a JSON response
is sent to the mobile app with the freshly created information. This information is saved
in the redux store and the user is redirected to the Home Page, and can then make use of
the other mobile game functionalities.

2See more: https://developers.facebook.com/

58

https://developers.facebook.com/

Development

(a) Facebook login (b) Recover password

Figure 5.9: Facebook and recover password authentication layouts

Clicking "Forgot Password?" in the login screen allows to recover the password (Figure
5.8(c)). After clicking, a pop up appears in which the user can insert the email, as repre-
sented in Figure 5.9(b).

After inserting the e-mail and clicking "Send", a request is sent to the server, including the
e-mail in the body of the request. On the server-side, if there is a user with the same e-mail
as the one inserted, a new random password is generated and saved in the database. Then,
an e-mail is sent to that user e-mail containing the new generated password to login. If
the user wants to change this password, they can do it in the "Edit Profile" screen, which
will be presented afterward.

View and Edit Profile

After developing authentication requirements, the author started developing the user pro-
file. As presented in Figure 5.10(a), the profile screen shows the user some of their personal
information, which includes their username, email, and avatar. After clicking in “Edit Pro-
file,” the user navigates to the screen presented in Figure 5.10(b), where they can change
their username, password and avatar (Figure 5.10(c) if the server accepts their input. If
the user inserts invalid information, they will receive a server error.

59

Chapter 5

(a) Profile (b) Edit profile (c) Choose avatar

Figure 5.10: Profile layouts

Create Game, View Games List and Remove Game

To get the “Create Game” requirement completed, firstly were implemented the models,
controllers, and views regarding the game types and the user games on the server-side
(since a user needs to choose a game type before creating a game). After adding game
types in the admin panel and implementing what was necessary on the client-side (such
as layouts, requests, and reducers), choosing a game type became available in the Home
screen (Figure 5.11(a)).

(a) Home screen (b) Create game

Figure 5.11: Home and create game layouts

After selecting the desired game type in the Home Screen (e.g., Brands), the user navigates

60

Development

to the “Create Game” screen (Figure 5.11(b)). To create a game, the user has two options:
play with a random user or search for a specific one. If they choose the first option, they
should click on the button “Random Player.” After doing so, a request is sent to a specific
server endpoint, which responds with a random player information (id, avatar url, and
username). This player is then displayed on the current screen of the mobile app, using
the received information (Figure 5.11(b)). The user can continuously click on “Random
Player” until they get the desired player. If a user wants to search for a specific player,
they can insert their email or username in the search input field. After inserting it and
clicking “Search,” the server responds with the users matching that input (maximum 5),
which are displayed in the mobile app. The user can then choose one of them to play with
(as displayed in Figure 5.11(c)). Then, they must click in “Create Game,” and a new game
is created between the two users within the chosen game type.

After creating the game, the user navigates to the “Answer Question” screen (which is
going to be presented in the next subsection). However, the user can go back to the Home
screen, where they can see the freshly created game (Figure 5.12).

Figure 5.12: Home screen after created game

The user can also remove a game with another player by clicking in the remove button at
the top far right of that game. After clicking, the user is asked if they want to remove that
game. If they answer "Yes", the game is removed from the database, and neither of the
players will be able to see that game on their game’s list.

Submit and Guess Answer

After clicking the “Create Game” button, the server creates a game between both users,
picks a random question within the chosen game type, and sends it to the user that created
the game. The mobile game saves the received information in the redux store, and the
user navigates to the “Answer Question” screen (Figure 5.13)

61

Chapter 5

Figure 5.13: Answer Question

Before submitting the answer, the user can re-roll the question as many times as they want
and/or increase the number of coins to win in that specific round (as long as they own
enough re-rolls/powerup coins). After clicking on the "Reroll" button, a request is sent
to the server and the last responds with a new question within the selected game type,
which replaces the previous. If the user decides to click in the "PowerUp" button, both
players can win an additional 30 coins if they win the round. When the player submits
their answer, they navigate to the Home screen and need to wait for the other user to play.

The other player is notified that it is their turn to play. If they open the mobile game (or
are already in it), the game will be displayed in their game list. Clicking on the game, the
user navigates to the "Guess Answer" screen (Figure 5.14).

Figure 5.14: Guess Answer layout

On this screen, the user has to guess the other player’s answer, as mentioned in the System
Description chapter. If a player owns power-up helpers, they can continually click on the
button "Helper" (for as long as these are available) to obtain letters included in the word(s)

62

Development

of the other player’s response, which will appear in the answer input field. Every time a
player uses a power-up helper, each additional letter must be saved in the server database.
Otherwise, if that user decided to log out when it is their turn to guess the answer, they
would lose the current state of the answer.

Game Statistics

After submitting the answer, both player’s answers are compared in the server. These
answers do not need to be exactly the same to win that round. To compare both strings
is used a Ruby Gem that allows using the Cosine similarity metric 3 on the server-side.
This algorithm allows measuring how similar two strings are. If the similarity between
both strings is higher than a certain value (0.9 in a range of 0 to 1), the round is defined as
won, both players win 20 coins (if powerup coins were used, they win 50 coins), the streak
between the players in the current round increases, and the max streak is increased if it
overtook the current max streak. If their answers do not match, the round is defined as
lost, neither of the players wins coins, and the current streak goes to 0. This information
is then sent back to the mobile game, it is saved in the redux store, and the user navigates
to the "Previous Round" screen. The other player can also view the last round statistics
if they click on that game in their games list. As represented in Figure 5.15(a), this screen
shows both player’s answers, displays if they won that round, and the current and max
streak reached within that game type.

(a) Previous round (b) Other rounds

Figure 5.15: Previous round and other rounds layouts

By clicking in the button "Previous Rounds"(in Figure 5.15(a)), the user navigates to a
new screen which shows a list of the previous round results (Figure 5.15(b)). Each of the
finished rounds shows the question, the given answers, the date in which the round ended,
and whether it was won (green if they won, red otherwise). If the player clicks in "Previous
Round" button, a new round is created, a new question is generated within the selected
game type, and the previous process can be repeated.

3See more: https://github.com/mhutter/string-similarity

63

https://github.com/mhutter/string-similarity

Chapter 5

View and Buy Shop Products

The functionalities that were developed next were viewing and buying shop products
("Must Have" requirements). After creating the necessary models, controllers, and views
related to the shop products in the server-side, the author added some shop products in
the admin console. Each one of these has a kind (reroll, powerup or helper), a price (in
coins), and a quantity.

After implementing the necessary code on the client-side, a user could already navigate to
the Shop screen through the Home screen. As shown in Figure 5.16, this screen displays
all the possible items a user can purchase.

Figure 5.16: Buy items

If a user decides to buy an item, they must click on the shop icon at the far right of the
desired item. Afterward, a request is sent to the server containing the product id in the
body; if the user has enough coins to buy that specific item, they receive the item quantity,
and a success response is sent back to the client-side. In case the user does not have enough
coins, the server renders an error message which is then displayed in the mobile app.

Notifications

As noted in the State of the Art chapter, notifications can be one of the most critical
functionalities in asynchronous multiplayer online mobile games, since they allow users to
obtain immediate information related to the mobile game. In this case, notifications let
users know when it is their turn to play and when a round finishes.

The libraries selected for notifications were the expo push notifications library for the
client-side and the expo-server-sdk-ruby for the server-side 4. When the user logins in the
mobile app, a request is sent to the expo API, which returns a token. This token is a
unique identifier that allows sending notifications to this user, on that particular device, if
the mobile app is installed. A user can have multiple notification tokens since they can be
logged in on multiple devices. This token is then sent to the project server, and it is saved
in the database for that specific user.

4https://docs.expo.io/guides/push-notifications/

64

Development

Figure 5.17 presents a diagram that allows understanding how notifications are sent.

Figure 5.17: Guess Answer layout

In a scenario where player A is playing with player B, after player A submits a question
and answer, a request is sent to the server. On the server-side, adding to all the opera-
tions involved after submitting an answer, a function is called that handles sending the
notification to Player B. This function receives the desired message and all of Player B’s
notification tokens. Then, for each of the Player B’s notification tokens, the expo API will
handle sending the message to the required devices. Figure 5.18 presents the notification
that Player B receives after Player A submits a question and answer.

(a) User receiving notifications (b) Activate/deactivate notifi-
cations

Figure 5.18: Notification related layouts

It is also important to point that, after a user logouts of the mobile app, it is necessary to
remove the notification token that belongs to that device from the database. Otherwise,
they would still receive notifications even though they logged out.

If the user desires, they can deactivate/activate notifications by navigating to the Settings
screen (Figure 5.18(b)).

65

Chapter 5

View Badges

Adding badges (or achievements) to the mobile game was identified as a "Must Have"
requirement since that is an important feature to increase user engagement and goal com-
mitment, which can result in using the mobile game more actively. In addition, the visual
elements of the badge itself and the included descriptions regarding the goal and how to
unlock a badge can give rise to intrinsic user motivations [73].

Two different badges were created: one regarding the sports category and another regarding
the brands category. Each type of badge has different levels (e.g., bronze, silver); a user
must reach a certain streak with another player within a category to win a new level. For
example, for a user to reach bronze in the brands’ badge, they must win two rounds in a
row (streak) in that specific category. If they do so, they earn 20 coins.

A user can access their badges by navigating to their profile and clicking "My Badges."
After doing so, a request is sent to the server, and the last responds with the information
of all badges and also the current user levels on those badges. Afterward, the user can see
the badges (Figure 5.19(a))

(a) Badges (b) Badge information

Figure 5.19: Badges and badge information layouts

Different border colors are used to distinguish the different user levels for each one of the
badges, since it is a common approach used by other mobile games (e.g., brown border for
bronze). If the user clicks in one of the badges, a pop up appears with the information
related with that badge (Figure 5.19(b)), which includes the badge description, the current
user level, the next level, the score they need to reach next level, and the coins they earn
in case they reach it.

Free Coins

As mentioned before in the System Description chapter, a user can watch an advertisement
to win 20 coins. For this functionality, a decision was needed regarding which advertise-
ment network to use. An advertising network is a company that connects advertisers to

66

Development

applications that want to host advertisements and make a profit from them [2]. To make
this decision, various factors were taken into consideration:

• Libraries available and documentation. Not all advertisement networks have
libraries available to use with React Native. Additionally, even if there is a library
available, several networks contain poor documentation and/or do not have an active
maintenance;

• Size of advertisement network. Bigger ad networks have more options when
trying to match an ad based on an app content. Better targeting can increase the
user engagement and result in a higher number of clicks [74];

• RPM. RPM or revenue per thousand impressions are the estimated earnings that
can be obtained for every 1000 impressions received (for every 1000 ads displayed)
[72];

• Fill Rate. Fill rate is the percentage of ad requests that get filled by the ad networks.
A fill rate of 0% means, in this case, that every time a user tries to watch the video
to win 20 coins, no ad is displayed, since the mobile app gets no response from the
ad network [92].

The final decision was to use Google’s advertisement network: AdMob. Other than being
one of the most popular ad networks and having a library with good documentation 5,
AdMob has a feature named AdMob Mediation, that allows apps to be server ads from
multiple sources, including the AdMob Network, third-party ad networks, and AdMob
campaigns. This feature helps maximize the fill rate and increase monetization because it
allows sending ad requests to multiple networks and fins the best ad network to serve ads
and to make a profit [24].

After registering the app in the AdMob website 6, the author was able to choose the type
of ad that he wanted to include in the mobile app (in the AdMob website). "Rewarded
video ads" were used, since the goal is for the user to be rewarded after seeing an ad video.
"Rewarded video ads" are full-screen video ads that users can watch in exchange for in-app
rewards (coins in this case) .

A user can watch an advertisement by navigating to the shop and clicking in the button
"Free Coins" (Figure 5.20(a)). Afterward, a random video ad is displayed. If the user
watches the add until the end, they are awarded 20 coins. Otherwise, if the user decides
to close the ad, an alert appears warning the user that if they close the ad, they will not
be awarded the prize (Figure 5.20(b)).

5https://docs.expo.io/versions/latest/sdk/admob/
6https://admob.google.com/home/

67

Chapter 5

(a) Ad display (b) Ad closed

Figure 5.20: Advertisment layouts

Tutorial and Daily Bonus

After finishing the "Free Coins" requirement ("Should Have"), the author implemented
two "Could Have" requirements: the tutorial and the daily bonus. The tutorial, which
is beneficial for users that do not understand immediately how the game works, only
required implementation on the client-side. To view the tutorial, a player must navigate to
the "Create Game" screen and click in "View Tutorial" (Figure 5.21(a)). After that, a pop
up appears displaying a set of instructions meant to give the player a deeper understanding
of the game. This tutorial is also displayed when a user registers in the mobile game, and
navigates to the home screen for the first time.

The daily bonus consists of a user winning 20 coins every time they make use of the app
since the day before. Having a daily bonus can be beneficial for the company since it can
exalt user motivation to use the app more often. Every time a user is about to receive the
daily bonus, they receive an alert on the mobile app (Figure 5.21(b)).

68

Development

(a) Tutorial (b) Daily bonus

Figure 5.21: Tutorial and daily bonus layouts

Buy Coins

The "Buy Coins" requirement was the one that took the author the longest to complete
(comparing with all other requirements). For an android user to buy coins using the Google
Pay system, the mobile app needs to be released in Play Store. For this purpose, the author
needed to publish the app in the Google Play Console website 7 in at least a closed test
track (which means that only selected people can download the app from the Play Store).
The app is not immediately available after publishing it in google play console because it
first needs to be reviewed by Google. As mentioned in the Google support website, the
review time usually takes a few hours for the app to be live in a testing track 8. Due to
the current pandemic situation (COVID-19), google issued a warning informing that the
review times could take longer than seven days [27].

The concern here was not only that it could take longer for the app to be published,
but also the fact that the author implemented this functionality without the possibility
of testing it (to test in-app purchases using Google Pay, the app needs to be published
in Play Store). In a first attempt, the app took six days to get released and it did not
work adequately. For this reason, the author had to find what was causing the error and
publish a new version of the app to Google Developers Console, which entailed a new review
period. Fortunately, review times for updates are shorter than for the first release. The
app required four updates to make the "buy coins" requirement completed; each update
took less than two days to be reviewed.

To buy coins, the user must navigate to the shop and click in "Buy Coins". After this, they
navigate to the "Buy Coins" screen (Figure 5.23(a)) in which a list of possible products
for purchase is presented. Each one of the options has the number of coins and their price.
These products were all inserted in the Google Developer Console, in the app section.

7https://play.google.com/apps/publish
8https://support.google.com/googleplay/android-developer/answer/3131213?hl=en

69

Chapter 5

If a user decides to buy coins, they must click in the shop icon at the right of the desired
product. After doing so, the user can proceed with the payment using their google account
(Figure 5.23(b)).

(a) Buy coins (b) Payment

Figure 5.22: Buy coins layouts

After purchasing a product, a request is sent to a server endpoint containing the purchase
receipt data, to validate the purchase using receipt validation. Receipt validation is a se-
curity mechanism whereby the payment platform validates that an in-app purchase indeed
occurred as reported, to fight against fraudulent revenue events [31]. In the server side of
the project, a request containing the receipt data is sent to the payment platform to make
sure the purchase indeed occurred. The user receives their coins after this confirmation.

5.4 Security

5.4.1 Mechanisms Utilized

This section identifies the mechanisms used to validate the security quality attributes
specified in section 4.5.4, some of which already mentioned in the previous section. In order
to protect the system against unauthorized access and fraudulent requests, the following
procedures were used:

• Use of Secure Sockets Layer (SSL). SSL is a cryptographic protocol to provide
security over internet communications, with the benefit of protecting against man-in-
the-middle (MitM) attacks that are trying to intercept communications between the
server and the client side [53]. This allows to secure any data transmitted between
server and the mobile app.

• Access tokens changing on each server request and expire in short time.
In order for a user to make successful requests to the server, they need to send their
last tokens in the header of the request; otherwise, the request will fail. Every time

70

Development

a user makes server requests, a new access token is generated for that user and sent
back to the mobile app to use in the next request, making it harder for attackers to
access the user’s information.

• Store encrypted password in database. The user password is the first line
of defense against unauthorized access, and it is very important keeping it secure.
User passwords are stored hashed in the database, to protect against attackers that
somehow gained access to the database (e.g. through SQL injection);

• Use of receipt validation. As specified before, the use of receipt validation is a
good mechanism to protect the system against fraudulent revenue events.

5.4.2 GDPR

Despite the fact that the mobile game was not yet release for public, it is crucial that
the app respects the GDPR law when it does get released. As mentioned in the official
documentation [17], General Data Protection Regulation (GDPR) "is the toughest privacy
and security law in the world. Though it was drafted and passed by the European Union
(EU), it imposes obligations onto organizations anywhere, so long as they target or collect
data related to people in the EU. The regulation was put into effect on May 25, 2018. The
GDPR will levy harsh fines against those who violate its privacy and security standards,
with penalties reaching into the tens of millions of euros."

The mobile game under development collects and utilizes users’ personal data. Therefore,
there are rules that need to be respected by the company [16], namely:

• Asking For User Consent. Every app must request a user to collect, use, and
transfer personal data. In almost every case, consent request is given in the step of
creating an account (normally through a checkbox).

• The Right to Access Data. If a user requests their data, the company needs to
honor that request and provide the user information within one month or two months
(two months in case the requested data is too large to fulfill in one month).

• The Right of Restriction of Processing. If a user asks the company to stop
processing their data, they must comply immediately.

• The Right to Rectification. If a user finds their data to be inaccurate or incom-
plete, they have the right to have it changed.

• The Right to Data Portability. Users have the right to transmit their data to
another mobile app.

• Right to Be Informed. It is the right of users to be informed about who is
collecting their data and for what purposes.

• Right to Erasure. Users have the right to erase their data, in case they want to.

These aspects need to be respected for the commercial version of the application.

The next chapter focuses in the testing phase of the project.

71

This page is intentionally left blank.

Chapter 6

Testing

Software testing is defined as the activity of checking if the current software results match
the expected results, to ensure that the software system is defect free and that a quality
product is delivered to the customers [51] [54].

This chapter focuses on the testing techniques and tools employed by the author. First,
functional testing is presented, which includes unit and integration testing in the server-
side and end-to-end testing the client-side. Afterward, some conclusions are drawn about
the load testing, which shows the different response times depending on the number of
requests using the current cloud characteristics. Finally, the usability testing and their
results are presented.

6.1 Functional Testing

Functional testing has the purpose of validating the software system regarding the func-
tional requirements/specifications [45]. This chapter describes the approach followed to
validate the functional requirements of the system.

6.1.1 Unit and Integration Testing

Unit testing is where individual units/components of the software are tested to make sure
they perform as desired [62]. Unit testing was executed manually during the development
phase, and also at the end, mainly through rails console. Rails console (command line)
allows the developer to interact with the application and can be useful since it can be used
to debug and make experiments within the application’s data [28].

Afterward, the author started the integration testing. Integration testing is where dif-
ferent modules/components are integrated to make sure that they work as expected [47].
Integration tests where performed in the different actions (endpoints) in each one of the
user controllers in the server-side of the project, to secure that when a user sends a server
request, they receive the expected response.

The tool used to write the integration tests was RSpec 1. RSpec is a unit/integration test
framework for the Ruby programming language, which focuses on the "behavior" of the
application being tested. All the test cases made with RSpec were white-box tests since

1https://github.com/rspec/rspec-rails

73

Chapter 6

the author knows the internal structure and implementation details of the code.

To understand how these type of tests work, Figure 6.1 presents a simple integration test
which tests one of the server endpoints. The endpoint tested is called every time a user
finishes watching an ad.

Figure 6.1: RSpec testing

After a user finishes watching an ad, a request is sent to the "reward_free_coins" endpoint
to increase the user coins. The test case illustrated in Figure 6.1 evaluates if the server
behaves as expected when that specific request is made. The code on line 23 saves the
user coins in a variable before the request; the following line generates a random number
of coins that are used to simulate the request on line 25. After this, lines 27, 28, and 29
verifies if the request executed as expected. Line 27 checks if the response sent to the user
was successful (without errors). Line 28 checks if the right amount of coins was sent in
the body of the response, and line 29 checks if the right amount of coins was saved in the
database regarding that specific user.

To check the output of the tests, it is necessary to run the file where the test belongs with
RSpec, and it will output the results (Figure 6.2).

Figure 6.2: RSpec output

If some value is not as expected, RSpec will output that value and provide information
regarding what went wrong. The test demonstrated in Figure 6.2 is a simple one since the
endpoint being tested does not have many possible paths. However, when performing tests
of higher complexity like the update endpoint - required when a user wants to update their
username, password or avatar -, there can be a lot more paths since the test can throw
multiple error messages such as "Username has already been taken" or/and "Password is
too short," among others. In this case, it is essential to check if the user is receiving the
expected error messages on the mobile game, depending on their inputs.

To verify if all the paths for the user API were covered, a code coverage analysis tool
for Ruby was used: SimpleCov 2. SimpleCov allows the tester to check the percentage
of code covered for specific files and also points out the lines of code that were not cov-
ered during the tests. Figure 6.3 displays the percentage of code covered in the files
"user_controller.rb" and "game_controller.rb", which are the controllers that handle the

2https://github.com/colszowka/simplecov

74

Testing

majority of the user requests.

(a) Game controller (b) User controller

Figure 6.3: Code coverage

The majority of the code in the game controller was covered with exception of some lines
of code that are triggered when some internal server error happens (e.g., failing to save
something in the database). For the user controller, 71,43% of the code was covered since
the Facebook login and the purchase validation endpoints need real values to cover some of
their paths, and therefore were not covered during automated testing; the Facebook login
endpoint needs a real token related to a real Facebook account, and the purchase validation
needs the JSON of a receipt after a user makes a real purchase in the app. Therefore, these
two endpoint were validated through manual testing.

All the test cases performed during integration testing are described in Appendix E. Each
one of the tables relates to the different test cases made for a specific server endpoint. Each
test case has an id, a description, and most importantly the expectations (what is indeed
being tested). Even though some of the tests have not been successful in a first attempted,
eventually all tests passed.

6.1.2 End-To-end Testing

After making sure that every server endpoint was behaving as expected in each possible
request, it was time to test if the mobile app was acting accordingly. For this purpose, end-
to-end testing technique was used. End-to-end testing is a technique that tests the entire
software product from beginning to end to guarantee that the application flow behaves as
anticipated, by ensuring that all integrated pieces work together as expected. Its main
purpose is to test the user’s experience by simulating real scenarios and validating the
system and its components for integration and data integrity [44]. To achieve this purpose,
a end-to-end React Native library was used: Detox 3. Detox is an end-to-end grey-box
tool for the UI testing of React Native apps [10]. With this tool, the tester can write code
that is able to simulate multiple user actions in a simulator, with the purpose of checking
if the outcome of these actions are correct. Figure 6.4 presents the code of one of the test
cases regarding the user login.

3https://github.com/wix/Detox

75

Chapter 6

Figure 6.4: Detox test

The code snippet presented above simulates the process of a successful login since a user
enters the app for the first time. Each of the different lines from line 7 to 13, represent
different actions. For example, line 9 finds the component that has the id "email_input"
on the layouts (which is the email input field for login), and types "j@ggmail.com". In
this test case, after inserting valid login information and pressing the login button (line
12), is expected for the user to navigate to the home screen (line 13). This test case is not
enough to validate that the login is working correctly in the mobile app, since there is also
the scenario of a user inserting incorrect login information. In this case, it is expected that
the user stays in the login screen and receives an error message.

To check the output of the tests, it is necessary to run the file where the test belongs with
Detox, and it will output the results. Just like the integration testing with RSpec, if some
value is not the expected one, Detox will display information about what went wrong.

End-to-end testing was done taking on account all possible user actions within the app
and checking if the components of the app behave as expected for each test case.

6.2 Load Testing

The author proceeded to load testing after finishing the functional testing. Load testing
is a type of non-functional testing with the objective of understanding the behavior of the
application under a specific load to determine the system’s behavior under both normal
and at peak conditions [48].

In the final stages of development, the server side code was deployed to the AWS cloud to
ensure that users could test the app freely as soon as it was released in the app store in
testing mode. The AWS EC2 instance matches the lowest specification instance model (1
vCPU, 512 MB RAM and 20 GB of SSD) [3], since it is enough for at least the testing
phase of the project.

Even though the app will not be released to the public during the duration of this project,
it is important to study how much traffic the cloud can handle when dealing with a certain
number of users and server requests. Such analysis can help determine if a clouding upgrade
is needed when the app gets released, keeping in mind that the response time should not
exceed three seconds, as stated in the scalability scenario in section 4.5.2.

76

Testing

The tool used for benchmarking was ab apache 4. The tester can use this tool to simulate
a chosen number of requests to the server at the same time, and see conclusive data such
as: the number of failed requests, the requests per second that the server is capable of
serving, the average response time, among others.

The tests were performed to one of the API endpoints that requires a higher computation
effort (user_index), querying the database. Table 6.1 presents the test outputs, when
dealing with a certain number of simultaneous requests (concurrency).

Requests 20 80 200 350 400 450 550
Concurrency 1 4 10 20 25 30 40
Requests per second 3.92 10.98 14.6 14.98 14.74 14.38 14.76
Average latency (ms) 254.9 364.2 684.9 1334.8 1696.2 2086.9 2710.3
Max latency (ms) 271 478 881 2057 2494 3155 4780

Table 6.1: Load testing to endpoint test outputs

The maximum number of requests that the server can serve (third line of Table 6.1) never
overtakes the 15 requests per second.

As table 6.1 demonstrates, the maximum latency (3 seconds) is reached when the server
is dealing with 30 simultaneous requests at the same time. In the author’s belief, for the
server to be dealing with 30 concurrent requests at any time, the app would need to have
a considerable amount of users. Nevertheless, the number of users required to reach this
value is unpredictable since users will interact with the app differently (some will use it
more often, others less). Therefore, in the author’s point of view, the current AWS cloud
characteristics may be enough for the initial app deploy but require request monitorization
techniques. For example, ensuring close control of the number of simultaneous requests
so that admins get notified when these rise unexpectedly. In a scenario where the server
starts receiving nearly 30 simultaneous requests, the cloud should be upgraded through
vertical scaling (upgrading hardware) and/or vertical scaling (by increasing the number of
instances).

6.3 Usability Testing

After ensuring that the app was as much bug-free as possible through the functional testing,
a usability test plan was prepared. Even though the app’s design can make it impossible
to draw definite conclusions, the team believes that conducting usability testing at this
stage of the project can provide useful user feedback, positively contributing for the future
stages of development.

6.3.1 Test Participants

The usability test participants were selected taking into account if they matched the target
audience for the mobile game. In this case, according to the estimate made by the author
and the HYP team, the target audience is people that usually play mobile games with ages
ranged between fifteen and thirty years old.

Sources such as [19] and [37], understand that the ideal number of testers should be five
or six since it is deemed to be enough to get close to user testing maximum benefit-cost

4https://httpd.apache.org/docs/2.4/programs/ab.html

77

Chapter 6

ratio. Therefore, the author gathered five participants to perform usability tests with a
physical presence. Four of those participants are software engineering students that often
play mobile games, and the remaining person is a non-engineering student that occasionally
plays mobile games.

6.3.2 Test Procedure

The tests were performed in an undisturbed environment to ensure that there would be
no distractions and that all interactions would only take place between the author and
the tester. The test started with an explanation of the scope of the mobile game and
the objective of the test. Then the participant was asked to sign a consent form that, in
summary, attests to its voluntary nature and reinforces the commitment to raise or provide
information regarding any concerns that may arise during the test.

Each participant was asked to perform fourteen different tasks:

1. Register in the application;

2. Edit you username and avatar;

3. Explore one of the badges;

4. Buy 10 re-rolls;

5. Try to buy 100 coins, but do not finish the transaction;

6. Win free coins;

7. Deactivate notifications and then activate them again;

8. Create a game in the "Brands" category with a random player;

9. Create a game in the "Sports" category with player "JoaoCosta#1";

10. Go to the last created game, re-roll the question, and answer the question;

11. Upon receiving a notification, check the round results and then check the previous
rounds results;

12. Upon receiving another notification, go to the game identified by the notification,
use a powerup helper and answer the question;

13. Remove the last game;

14. Logout from the application.

Each task was performed by the order identified above. For each task, the author wrote
the number of clicks while also taking notes regarding the participant’s interaction with
the app.

After performing all the tasks, each tester filled an online satisfaction questionnaire con-
cerning their user experience while performing the above tasks.

Finally, the author asked the testers for improvement suggestions while they were freely
exploring the mobile app.

78

Testing

6.3.3 Test Results

Tasks

As mentioned in the previous section, the measuring metric used was the number of clicks.
Table 6.2 shows the usability testing expected number of clicks for each task.

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Clicks 6 6 4 2 3 2 3 3 3 4 2 4 2 2

Table 6.2: Usability testing metrics expectation

The table below shows the performance of each one of the users in the usability tests.

Participant

Task
1 2 3 4 5 6 7 8 9 10 11 12 13 14

User 1 6 6 4 2 3 2 3 3 4 6 4 4 2 2

User 2 6 6 4 4 3 2 3 3 3 4 3 4 2 2

User 3 7 8 10 3 3 2 3 3 4 4 4 4 2 2

User 4 7 7 4 3 4 2 4 3 4 4 4 4 2 3

User 5 6 6 4 2 3 2 3 3 4 5 4 4 2 2

Table 6.3: Number of clicks per user in each task

All the tasks were completed successfully by each one of the participants. The majority of
the tasks presented satisfactory results. The most discrepant values are marked with pink
in the table above.

As illustrated in table 6.3, users had more difficulties in tasks 2, 3, and 11. For user 3,
task 2 took longer to complete, as well as two additional clicks, because the user thought
that updating the username and avatar required inserting their password and password
confirmation. In task 3, user 3 was unable to find their badges in a first attempt (even
though the "View Badges" button was displayed previously while going through their
profile in task 2), as they first went to the settings screen and then to the shop.

Task 11 was where the test revealed a weaker performance. Upon receiving a game noti-
fication, the users though that, after clicking it, they would immediately navigate to that
game; however, when clicking in the notification, the users navigate to the home screen,
where they should then click in the respective game in their game’s list. This brought
confusion to some of the test participants, therefore resulting in more clicks and time
wasted.

Pos-Questionnaires

Figures below present some of the most relevant questions from the online questionnaire
that the usability tests participants needed to answer.

79

Chapter 6

(a) Question one

(b) Question two

(c) Question three

(d) Question four

Figure 6.5: Pos-Questionnarie questions

Overall, after observing the answers above displayed, the users understood the concept of
the game when they started playing and also found it easy to complete the tasks. Even
though they had a certain ease completing the tasks, they did not find the user interface
much pleasant to use, believing that it should be more engaging.

80

Testing

Recommendations

At the end of the tasks and questionnaire, the participants provided the following recom-
mendation:

• User 1 thinks that it would make more sense to have the logout button in the settings
screen.

• Users 1 and 2 shared that they felt difficulties understanding the purpose of the
powerups, while playing. Therefore, in their understanding, providing a way to
describe the powerups while playing would be a good idea.

• User 2 believes that after clicking the logout button, the game should ask for confir-
mation before leaving the account.

• User 2 is of the opinion that clicking in the back button in the home screen should
result in leaving the app.

• User 2 and 5 believe that the tutorial should be more engaging, and not only text.

• User 3 thinks that badges should be accessed from the home screen and not from the
profile.

• All users believe that after clicking the notification, the user should navigate to the
respective game.

• Three users believe that the last round results should be displayed in a more amusing
way (e.g., through an animation).

• Two users think that the buttons and input field in the create game screen should
be displayed in a different way, since it is confusing.

• All users believe that the overall user interface look should be improved.

6.3.4 Test Conclusions

Overall, the participants were able to perform the tasks efficiently and effectively, with
some exceptions. Regarding task 11, for example, it became apparent that it would be
preferable for the user to navigate to the respective game after clicking the notification,
since there was some hesitation on the participants side.

The participants understood the game objective, and four of them enjoyed the game the-
matics. However, all of them shared the understanding that more work should be put
on the user interface look. This feedback did not come as a surprise considering that, as
stated before, the look of the user interface was not a priority in this phase of the project.

In summary, the users were able to perform all tasks successfully and, given the fact that
the project result is, so far, an MVP, it was possible to obtain some relevant indications
for the future commercialization of the solution.

81

This page is intentionally left blank.

Chapter 7

Conclusion

The project proposal put forward by the HYP team required the development of an asyn-
chronous online multiplayer mobile game focused on telepathy as a theme. In order for
that project to become a reality, the author had to go through a whole engineering process
involving several different stages. The selected methodology was iterative Waterfall. The
first semester was divided into a feasibility study, requirements analysis and specification,
and design, whereas the second was divided into development and testing.

The project started with the study of the mobile gaming market, followed by a competition
analysis of mobile games sharing the features of being asynchronous, multiplayer based,
and/or inspired by the telepathy theme. The purpose was to provide the author with
insights about the characteristics of these specific types of games and therefore afford
guidance in the requirements identification.

The author’s inexperience in mobile development frameworks was perceived as an impactful
risk that could jeopardize the timely development of the mobile game. To minimize the risk
and associated impact, the author persisted in gaining experience in mobile development
throughout October and November (2019), using online documentation and developing a
simple app (Sample App) employing Flutter and React Native frameworks. At the end
of that period, it was decided that React Native would be the framework to use for the
development of the mobile game.

Throughout the following phase, the goal was to identify the functional and non-functional
requirements for the project. For that purpose, user stories were firstly used to help define
requirements, based on the most inherent features according to the State of the Art, on
the HYP team’s expectations (shared during the initial meetings), as well as on multiple
sessions of discussion between the author and the team. After completing the user stories,
the system use cases were assembled and then prioritized in a meeting with the HYP team,
in accordance with their importance to the project. Afterward, the author identified the
quality attributes deemed essential for the system to work correctly.

Subsequently, the system architecture was pointed out to define the structure and behavior
of the system and their respective interactions with other systems, followed by the creation
of a visual representation of the system’s data through an entity-relationship diagram.
Afterward, a navigation diagram was developed in order to understand the application
screen flow, and low-fidelity wireframes designed, displaying how the planned user interface
provides the functionalities.

In the second semester, after a two-week Ruby on Rails learning period, the author started
developing the mobile game. The development phase led to the fulfillment of all the require-

83

Chapter 7

ments which were completed in the planned time and resulted in the proposed Minimum
Viable Product. Considering that all "Must Have" requirements were successfully com-
pleted, as well as the remaining requirements ("Could Have" and "Should Have"), the ToS
was achieved.

To truly validate the functional requirements of the mobile game, the testing phase started
with functional testing, where three types of testing techniques were used: unit, integration,
and end-to-end testing. Even though the system revealed some bugs/errors at first, these
were successfully resolved in due time.

As for the security quality attribute, different security mechanisms were employed, namely:
using SSL, encrypting the password in the database, introducing user access-tokens that
change in each request, and receipt validation. Regarding availability, the current server
hosted in Amazon’s Web Services promises an availability of 99.99 %. Concerning scal-
ability and performance, the load testing showed that for this mobile game, the current
cloud characteristics are enough for the initial mobile game stages, but require continuous
monitoring.

Usability tests were conducted to detect possible problems with the mobile game and
to provide useful user feedback, which can positively contribute to future stages of the
development. Even though the mobile game user interface was not a priority, the author
made an effort for the mobile game components to be as comprehensible as possible.
Overall, the usability test participants efficiently completed the tasks assigned and provided
recommendations to be considered for the future.

The most significant challenges faced by the author arose from having to learn two new
frameworks and programming languages from scratch and from the need to provide in-
sightful contributes to the mobile game requirements.

Regarding future work, the conclusions and user recommendations resulting from the us-
ability tests should be evaluated before making changes to the app interface. App’s design
and accessibility are two essential features to make a good user experience that, other than
the functionalities themselves, will contribute to the app’s success. In the author’s opinion,
one of the biggest challenges will lie in finding exciting and engaging content (questions)
for each game type. As mentioned in the first chapter of this paper, creativity, diversity,
and market orientation will be essential for the development of the ideas to be translated
to the game, to keep the players entertained and engaged. Given the multiplicity of game
types, it can prove challenging for the team to fashion an endless number of questions
and quizzes for each game type. In parallel, poor choices on the content may negatively
impact the success of the app. As such, the author believes that it would be an interesting
option to insert a functionality in the app by which users can put forward or suggest new
questions or quizzes to add to specific game types; if a proposal succeeded, they could be
awarded a prize (e.g., coins).

The internship at HYP was a fruitful experience. The author had the opportunity to
acquire expertise not only in mobile development but also in Software Engineering since he
was under the guidance of experienced developers who encourage and stimulate discussion
and the use of software-oriented processes.

84

References

[1] 10 moscow prioritisation. https://www.agilebusiness.org/page/
ProjectFramework_10_MoSCoWPrioritisation. Accessed: 05/12/2019.

[2] Ad network. https://www.muvi.com/wiki/ad-network.html. Accessed:
13/05/2020.

[3] Amazon ec2 pricing. https://aws.amazon.com/ec2/pricing/on-demand/. Accessed:
09/06/2020.

[4] Android v ios market share 2019. https://deviceatlas.com/blog/
android-v-ios-market-share. Accessed: 09/10/2019.

[5] Aws systems manager announces 99.9% service level agreement. https://aws.
amazon.com/about-aws/global-infrastructure/regional-product-services/.
Accessed: 14/06/2020.

[6] The c4 model for software architecture. https://www.infoq.com/articles/
C4-architecture-model/. Accessed: 20/12/2019.

[7] Case: 7 ux considerations when designing lens hawk. https://baymard.com/blog/
ux-considerations-designing-lenshawk. Accessed: 22/06/2020.

[8] Cloud computing with aws). https://aws.amazon.com/what-is-aws/. Accessed:
14/06/2020.

[9] Dart. https://dart.dev//. Accessed: 18/10/2019.

[10] Detox: Superfast e2e react native ui testing. https://bitbar.com/blog/
detox-superfast-e2e-react-native-ui-testing/. Accessed: 09/06/2020.

[11] Draw something historical timeline: February 6, 2012 launch
to march 21, 2012 $183m sale. http://www.stevepoland.com/
draw-something-historical-timeline-february-6-2012-launch-to-march-21-2012-183m-sale/.
Accessed: 19/10/2019.

[12] Ergonomics of human-system interaction — part 210: Human-centred design for in-
teractive systems. https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:
v1:en, note = Accessed: 24/06/2020.

[13] Flutter : From zero to comfortable. https://proandroiddev.com/
flutter-from-zero-to-comfortable-6b1d6b2d20e. Accessed: 15/11/2019.

[14] Flutter hot reload. https://flutter.dev/docs/development/tools/hot-reload.
Accessed: 19/12/2019.

[15] Flutter technical overview. https://flutter.dev/docs/resources/
technical-overview/. Accessed: 17/10/2019.

85

https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation
https://www.muvi.com/wiki/ad-network.html
https://aws.amazon.com/ec2/pricing/on-demand/
https://deviceatlas.com/blog/android-v-ios-market-share
https://deviceatlas.com/blog/android-v-ios-market-share
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://www.infoq.com/articles/C4-architecture-model/
https://www.infoq.com/articles/C4-architecture-model/
https://baymard.com/blog/ux-considerations-designing-lenshawk
https://baymard.com/blog/ux-considerations-designing-lenshawk
https://aws.amazon.com/what-is-aws/
https://dart.dev//
https://bitbar.com/blog/detox-superfast-e2e-react-native-ui-testing/
https://bitbar.com/blog/detox-superfast-e2e-react-native-ui-testing/
http://www.stevepoland.com/draw-something-historical-timeline-february-6-2012-launch-to-march-21-2012-183m-sale/
http://www.stevepoland.com/draw-something-historical-timeline-february-6-2012-launch-to-march-21-2012-183m-sale/
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://proandroiddev.com/flutter-from-zero-to-comfortable-6b1d6b2d20e
https://proandroiddev.com/flutter-from-zero-to-comfortable-6b1d6b2d20e
https://flutter.dev/docs/development/tools/hot-reload
https://flutter.dev/docs/resources/technical-overview/
https://flutter.dev/docs/resources/technical-overview/

Chapter 7

[16] Gdpr compliance for apps. https://www.privacypolicies.com/blog/
gdpr-compliance-apps/#The_Right_To_Access_Data. Accessed: 22/06/2020.

[17] General data protection regulation (gdpr). https://gdpr.eu/tag/gdpr/. Accessed:
22/06/2020.

[18] How do free apps make money on android and ios in 2019. https://thinkmobiles.
com/blog/how-do-free-apps-make-money/. Accessed: 12/10/2019.

[19] How many test users in a usability study? https://www.nngroup.com/articles/
how-many-test-users/. Accessed: 19/06/2020.

[20] Hyp. https://hyp.pt/about. Accessed: 10/10/2019.

[21] Libraries. https://www.ruby-lang.org/en/libraries/. Accessed: 09/06/2020.

[22] Load balancer for your elastic beanstalk environment. https://docs.aws.amazon.
com/elasticbeanstalk/latest/dg/using-features.managing.elb.html. Ac-
cessed: 14/06/2020.

[23] A look behind the ’words with friends’ iphone gam-
ing phenomenon. https://techcrunch.com/2010/06/10/
a-look-behind-the-words-with-friends-iphone-gaming-phenomenon/. Ac-
cessed: 19/10/2019.

[24] Mediation. https://developers.google.com/admob/android/mediate. Accessed:
14/06/2020.

[25] Mobile technology, its importance, present and future
trends. https://www.finextra.com/blogposting/14000/
mobile-technology-its-importance-present-and-future-trends. Accessed:
23/12/2019.

[26] Noumi. https://play.google.com/store/apps/details?id=es.treebit.noumi&
hl=en. Accessed: 28/12/2019.

[27] Publish an app. https://support.google.com/googleplay/android-developer/
answer/6334282?hl=en.

[28] The rails command line. https://guides.rubyonrails.org/command_line.html.
Accessed: 18/06/2020.

[29] Rails getting started. https://guides.rubyonrails.org/getting_started.html#
what-is-rails-questionmark. Accessed: 19/12/2019.

[30] React native. https://facebook.github.io/react-native/. Accessed: 15/10/2019.

[31] Receipt validation. https://www.appsflyer.com/mobile-fraud-glossary/
receipt-validation/.

[32] Sdlc - waterfall model. https://www.tutorialspoint.com/sdlc/pdf/sdlc_
waterfall_model.pdf. Accessed: 10/11/2019.

[33] Trello board. https://trello.com/en/tour. Accessed: 08/05/2020.

[34] Uml use case diagrams. https://www.uml-diagrams.org/use-case-diagrams.html.
Accessed: 10/12/2019.

86

https://www.privacypolicies.com/blog/gdpr-compliance-apps/#The_Right_To_Access_Data
https://www.privacypolicies.com/blog/gdpr-compliance-apps/#The_Right_To_Access_Data
https://gdpr.eu/tag/gdpr/
https://thinkmobiles.com/blog/how-do-free-apps-make-money/
https://thinkmobiles.com/blog/how-do-free-apps-make-money/
https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/how-many-test-users/
https://hyp.pt/about
https://www.ruby-lang.org/en/libraries/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.elb.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.elb.html
https://techcrunch.com/2010/06/10/a-look-behind-the-words-with-friends-iphone-gaming-phenomenon/
https://techcrunch.com/2010/06/10/a-look-behind-the-words-with-friends-iphone-gaming-phenomenon/
https://developers.google.com/admob/android/mediate
https://www.finextra.com/blogposting/14000/mobile-technology-its-importance-present-and-future-trends
https://www.finextra.com/blogposting/14000/mobile-technology-its-importance-present-and-future-trends
https://play.google.com/store/apps/details?id=es.treebit.noumi&hl=en
https://play.google.com/store/apps/details?id=es.treebit.noumi&hl=en
https://support.google.com/googleplay/android-developer/answer/6334282?hl=en
https://support.google.com/googleplay/android-developer/answer/6334282?hl=en
https://guides.rubyonrails.org/command_line.html
https://guides.rubyonrails.org/getting_started.html#what-is-rails-questionmark
https://guides.rubyonrails.org/getting_started.html#what-is-rails-questionmark
https://facebook.github.io/react-native/
https://www.appsflyer.com/mobile-fraud-glossary/receipt-validation/
https://www.appsflyer.com/mobile-fraud-glossary/receipt-validation/
https://www.tutorialspoint.com/sdlc/pdf/sdlc_waterfall_model.pdf
https://www.tutorialspoint.com/sdlc/pdf/sdlc_waterfall_model.pdf
https://trello.com/en/tour
https://www.uml-diagrams.org/use-case-diagrams.html

References

[35] Usability testing. https://www.usability.gov/how-to-and-tools/methods/
usability-testing.html. Accessed: 11/10/2019.

[36] Usability testing. http://webservices.itcs.umich.edu/drupal/
wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/
Usability-Testing-Basics.pdf. Accessed: 13/10/2019.

[37] Usability testing – how many users do you need? https://www.uxdesigninstitute.
com/blog/usability-test-how-many-users/. Accessed: 19/06/2020.

[38] User stories. https://www.mountaingoatsoftware.com/agile/user-stories. Ac-
cessed: 09/12/2019.

[39] What are the non-functional requirements? https://reqtest.com/
requirements-blog/what-are-non-functional-requirements/. Accessed:
14/12/2019.

[40] What is a gantt chart? https://www.apm.org.uk/resources/find-a-resource/
gantt-chart/. Accessed: 19/12/2019.

[41] What is a relational database management system? https://www.codecademy.com/
articles/what-is-rdbms-sql. Accessed: 04/01/2020.

[42] What is an entity relationship diagram (erd)? https://www.lucidchart.com/pages/
er-diagrams#section_0. Accessed: 04/01/2020.

[43] What is database ? https://www.geeksforgeeks.org/what-is-database/. Ac-
cessed: 04/01/2020.

[44] What is end-to-end (e2e) testing? all you need to know. https://www.katalon.com/
resources-center/blog/end-to-end-e2e-testing/. Accessed: 09/06/2020.

[45] What is functional testing? types examples (complete tutorial). https://www.
guru99.com/functional-testing.html. Accessed: 14/06/2020.

[46] What is games ‘user experience’ (ux) and how does it help? https://usabilitygeek.
com/the-difference-between-usability-and-user-experience/. Accessed:
24/06/2020.

[47] What is integration testing (tutorial with integration testing example). https:
//www.softwaretestinghelp.com/what-is-integration-testing/. Accessed:
17/06/2020.

[48] What is load testing in software testing? examples, how to do, importance, dif-
ferences). http://tryqa.com/what-is-load-testing-in-software/. Accessed:
18/06/2020.

[49] What is mvc architecture? https://www.w3schools.in/mvc-architecture/. Ac-
cessed: 19/12/2019.

[50] What is server availability. https://www.igi-global.com/dictionary/
performance-analysis-models-web-traffic/26559. Accessed: 12/12/2019.

[51] What is software testing? introduction, definition, basics types. https://
www.guru99.com/software-testing-introduction-importance.html. Accessed:
02/06/2020.

87

https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
https://www.usability.gov/how-to-and-tools/methods/usability-testing.html
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
http://webservices.itcs.umich.edu/drupal/wwwsig/sites/webservices.itcs.umich.edu.drupal.wwwsig/files/Usability-Testing-Basics.pdf
https://www.uxdesigninstitute.com/blog/usability-test-how-many-users/
https://www.uxdesigninstitute.com/blog/usability-test-how-many-users/
https://www.mountaingoatsoftware.com/agile/user-stories
https://reqtest.com/requirements-blog/what-are-non-functional-requirements/
https://reqtest.com/requirements-blog/what-are-non-functional-requirements/
https://www.apm.org.uk/resources/find-a-resource/gantt-chart/
https://www.apm.org.uk/resources/find-a-resource/gantt-chart/
https://www.codecademy.com/articles/what-is-rdbms-sql
https://www.codecademy.com/articles/what-is-rdbms-sql
https://www.lucidchart.com/pages/er-diagrams#section_0
https://www.lucidchart.com/pages/er-diagrams#section_0
https://www.geeksforgeeks.org/what-is-database/
https://www.katalon.com/resources-center/blog/end-to-end-e2e-testing/
https://www.katalon.com/resources-center/blog/end-to-end-e2e-testing/
https://www.guru99.com/functional-testing.html
https://www.guru99.com/functional-testing.html
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://www.softwaretestinghelp.com/what-is-integration-testing/
https://www.softwaretestinghelp.com/what-is-integration-testing/
http://tryqa.com/what-is-load-testing-in-software/
https://www.w3schools.in/mvc-architecture/
https://www.igi-global.com/dictionary/performance-analysis-models-web-traffic/26559
https://www.igi-global.com/dictionary/performance-analysis-models-web-traffic/26559
https://www.guru99.com/software-testing-introduction-importance.html
https://www.guru99.com/software-testing-introduction-importance.html

Chapter 7

[52] When to choose waterfall project management over agile. https://www.
smartsheet.com/when-choose-waterfall-project-management-over-agile. Ac-
cessed: 02/01/2019.

[53] Why all sites now require ssl (https). https://www.granite5.com/insights/
use-https-vs-http-benefits-switching/. Accessed: 14/06/2020.

[54] Why is software testing necessary? http://tryqa.com/
why-is-testing-necessary/#:~:text=Software%20testing%20is%20very%
20important,the%20implementation%20of%20the%20software. Accessed:
02/06/2020.

[55] Why is wireframing your mobile app so important? https://www.upwork.
com/hiring/for-clients/importance-of-wireframing-mobile-apps/. Accessed:
06/01/2020.

[56] Always on the move. 2014. Accessed: 07/10/2019.

[57] The choice of code review process: A survey on the state of the practice. 2017.
Accessed: 27/05/2020.

[58] Xamarin vs react native vs ionic vs nativescript: Cross-platform mobile
frameworks comparison. https://www.altexsoft.com/blog/engineering/
xamarin-vs-react-native-vs-ionic-vs-nativescript-cross-platform-mobile-frameworks-comparison/,
2018. Accessed: 20/10/2019.

[59] Iterative waterfall model | software engineering. http://www.geektonight.
com/iterative-waterfall-model-software-engineering/, 2019. Accessed:
20/10/2019.

[60] React native vs. ionic vs. flutter: Comparison of top cross-
platform app development tools. https://codeburst.io/
react-native-vs-ionic-vs-flutter-comparison-of-top-cross-platform-app-development-tools-71c8011309ac,
2019. Accessed: 20/10/2019.

[61] Where do cross-platform app frameworks stand in 2020? https://www.
netsolutions.com/insights/cross-platform-app-frameworks-in-2019/, 2019.
Accessed: 20/10/2019.

[62] Doroto Huiziga Adam Kolawa. Automated Defect Prevention: Best Practices in Soft-
ware Management. Wiley, 2007.

[63] altexsoft. The good and the bad of ionic mobile development. //www.altexsoft.
com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/,
2019. Accessed: 19/12/2019.

[64] Ian Bogost. Asynchronous multiplay, 2004. Accessed: 12/11/2019.

[65] Jorge C. S. Cardoso. Usability testing, 2018. Accessed: 12/10/2019.

[66] John B. Goodenough Charles B. Weinstock. On system scalability. 2006. Accessed:
02/01/2019.

[67] Alistar Cockburn. Writing Efective Use Cases. Wiley, 2000. Accessed: 05/12/2019.

88

https://www.smartsheet.com/when-choose-waterfall-project-management-over-agile
https://www.smartsheet.com/when-choose-waterfall-project-management-over-agile
https://www.granite5.com/insights/use-https-vs-http-benefits-switching/
https://www.granite5.com/insights/use-https-vs-http-benefits-switching/
http://tryqa.com/why-is-testing-necessary/#:~:text=Software%20testing%20is%20very%20important,the%20implementation%20of%20the%20software.
http://tryqa.com/why-is-testing-necessary/#:~:text=Software%20testing%20is%20very%20important,the%20implementation%20of%20the%20software.
http://tryqa.com/why-is-testing-necessary/#:~:text=Software%20testing%20is%20very%20important,the%20implementation%20of%20the%20software.
https://www.upwork.com/hiring/for-clients/importance-of-wireframing-mobile-apps/
https://www.upwork.com/hiring/for-clients/importance-of-wireframing-mobile-apps/
https://www.altexsoft.com/blog/engineering/xamarin-vs-react-native-vs-ionic-vs-nativescript-cross-platform-mobile-frameworks-comparison/
https://www.altexsoft.com/blog/engineering/xamarin-vs-react-native-vs-ionic-vs-nativescript-cross-platform-mobile-frameworks-comparison/
http://www.geektonight.com/iterative-waterfall-model-software-engineering/
http://www.geektonight.com/iterative-waterfall-model-software-engineering/
https://codeburst.io/react-native-vs-ionic-vs-flutter-comparison-of-top-cross-platform-app-development-tools-71c8011309ac
https://codeburst.io/react-native-vs-ionic-vs-flutter-comparison-of-top-cross-platform-app-development-tools-71c8011309ac
https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/
https://www.netsolutions.com/insights/cross-platform-app-frameworks-in-2019/
//www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/
//www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-ionic-mobile-development/

References

[68] Existek — Software Development Company. Hybrid vs native app:
Which one to choose for your business? :https://medium.com/existek/
hybrid-vs-native-app-which-one-to-choose-for-your-business-e51542554078,
2019. Accessed: 19/12/2019.

[69] Tony Davis. What is "maintainable code"? https://www.red-gate.com/
simple-talk/blogs/what-is-maintainable-code/, 2009. Accessed: 13/05/2020.

[70] MURIEL DOMINGO. User stories: As a [ux designer] i
want to [embrace agile] so that [i can make my projects user-
centered]. https://www.interaction-design.org/literature/article/
user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered,
2019. Accessed: 20/12/2019.

[71] Matthew Ford. Ruby on rails: What it is and why you should
use it for your web application. https://bitzesty.com/2014/03/03/
ruby-on-rails-what-it-is-and-why-we-use-it-for-web-applications/. Ac-
cessed: 21/06/2020.

[72] Kean Graham. Rpm vs cpm. https://www.monetizemore.com/blog/rpm-vs-cpm/,
2018. Accessed: 23/05/2020.

[73] Juho Hamari. Do badges increase user activity? a field experiment on the effects of
gamification. 2015. Accessed: 23/05/2020.

[74] VISHVESHWAR JATAIN. 5 things you need to consider when
choosing an ad network. https://www.adpushup.com/blog/
5-things-you-need-to-consider-when-choosing-an-ad-network/, 2015. Ac-
cessed: 23/05/2020.

[75] Amit Khirale. Comparison between flutter vs react native for mo-
bile app development. https://www.angularminds.com/blog/article/
comparison-between-flutter-vs-react-native-for-mobile-app-development.
html, 2018. Accessed: 22/11/2019.

[76] Justin Mifsud. The difference (and relationship) between us-
ability and user experience. https://usabilitygeek.com/
the-difference-between-usability-and-user-experience/. Accessed:
22/06/2020.

[77] newzoo. 2017 global games market report. 2017. Accessed: 10/11/2019.

[78] Jakob Nielsen. Usability 101: Introduction to usability. https://www.nngroup.
com/articles/usability-101-introduction-to-usability/, 2012. Accessed:
11/10/2019.

[79] International Organization of Standardization. Guidance on usability. 1998. Accessed:
10/10/2019.

[80] Tim Parsons. When to use waterfall vs. agile. https://www.macadamian.com/learn/
when-to-use-waterfall-vs-agile/, 2019. Accessed: 09/06/2020.

[81] Adam Pedley. How react native works. http://www.discoversdk.com/blog/
how-react-native-works, 2017. Accessed: 22/10/2019.

[82] Adam Pedley. How flutter works. https://buildflutter.com/how-flutter-works/,
2018. Accessed: 20/10/2019.

89

:https://medium.com/existek/hybrid-vs-native-app-which-one-to-choose-for-your-business-e51542554078
:https://medium.com/existek/hybrid-vs-native-app-which-one-to-choose-for-your-business-e51542554078
https://www.red-gate.com/simple-talk/blogs/what-is-maintainable-code/
https://www.red-gate.com/simple-talk/blogs/what-is-maintainable-code/
https://www.interaction-design.org/literature/article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered
https://www.interaction-design.org/literature/article/user-stories-as-a-ux-designer-i-want-to-embrace-agile-so-that-i-can-make-my-projects-user-centered
https://bitzesty.com/2014/03/03/ruby-on-rails-what-it-is-and-why-we-use-it-for-web-applications/
https://bitzesty.com/2014/03/03/ruby-on-rails-what-it-is-and-why-we-use-it-for-web-applications/
https://www.monetizemore.com/blog/rpm-vs-cpm/
https://www.adpushup.com/blog/5-things-you-need-to-consider-when-choosing-an-ad-network/
https://www.adpushup.com/blog/5-things-you-need-to-consider-when-choosing-an-ad-network/
https://www.angularminds.com/blog/article/comparison-between-flutter-vs-react-native-for-mobile-app-development.html
https://www.angularminds.com/blog/article/comparison-between-flutter-vs-react-native-for-mobile-app-development.html
https://www.angularminds.com/blog/article/comparison-between-flutter-vs-react-native-for-mobile-app-development.html
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.macadamian.com/learn/when-to-use-waterfall-vs-agile/
https://www.macadamian.com/learn/when-to-use-waterfall-vs-agile/
http://www.discoversdk.com/blog/how-react-native-works
http://www.discoversdk.com/blog/how-react-native-works
https://buildflutter.com/how-flutter-works/

Chapter

[83] Javier Ramos. Front end web development guide:
Web and mobile. https://medium.com/@javier.ramos1/
front-end-web-development-guide-web-and-mobile-67c47d674e0f. Accessed:
13/10/2019.

[84] Nayan B. Ruparelia. Software development lifecycle models. 2010. Accessed:
10/11/2019.

[85] Paul Sawers. The story behind ruzzle, the ridiculously popular mobile game
gaining 2 million new users per week. https://thenextweb.com/apps/2013/01/10/
zynga-mark-2-meet-mag-interactive-the-developers-behind-ridiculously-popular-social-word-game-ruzzle/,
2013. Accessed: 24/10/2019.

[86] Alexander Sergeev. User stories and waterfall. https://hygger.io/blog/
user-stories-and-waterfall/, 2016. Accessed: 09/12/2019.

[87] Ricardo Silva. Design of a tactical turn-based game for mobile devices, 2016. Accessed:
12/11/2019.

[88] John Snow. Developing a risk management plan, 2010. Accessed: 27/11/2019.

[89] Michael Stanleigh. Risk management. . . the what, why, and how. https://bia.ca/
risk-management-the-what-why-and-how/, 2011. Accessed: 25/11/2019.

[90] Edmonton Sun. ’trivia crack’ the top download. https://
edmontonsun.com/2014/12/16/trivia-crack-the-top-download/wcm/
1f7637d3-7034-458d-9553-19f52892a8f4, 2014. Accessed: 10/10/2019.

[91] Tom Wijman. The global games market will generate $152.1 billion in 2019 as the
u.s. overtakes china as the biggest market. 2019. Accessed: 07/10/2019.

[92] Melissa Zeloof. What is fill rate and how can app developers increase it? https:
//www.ironsrc.com/blog/what-is-fill-rate/, 2018. Accessed: 23/05/2020.

90

https://medium.com/@javier.ramos1/front-end-web-development-guide-web-and-mobile-67c47d674e0f
https://medium.com/@javier.ramos1/front-end-web-development-guide-web-and-mobile-67c47d674e0f
https://thenextweb.com/apps/2013/01/10/zynga-mark-2-meet-mag-interactive-the-developers-behind-ridiculously-popular-social-word-game-ruzzle/
https://thenextweb.com/apps/2013/01/10/zynga-mark-2-meet-mag-interactive-the-developers-behind-ridiculously-popular-social-word-game-ruzzle/
https://hygger.io/blog/user-stories-and-waterfall/
https://hygger.io/blog/user-stories-and-waterfall/
https://bia.ca/risk-management-the-what-why-and-how/
https://bia.ca/risk-management-the-what-why-and-how/
https://edmontonsun.com/2014/12/16/trivia-crack-the-top-download/wcm/1f7637d3-7034-458d-9553-19f52892a8f4
https://edmontonsun.com/2014/12/16/trivia-crack-the-top-download/wcm/1f7637d3-7034-458d-9553-19f52892a8f4
https://edmontonsun.com/2014/12/16/trivia-crack-the-top-download/wcm/1f7637d3-7034-458d-9553-19f52892a8f4
https://www.ironsrc.com/blog/what-is-fill-rate/
https://www.ironsrc.com/blog/what-is-fill-rate/

Appendices

91

This page is intentionally left blank.

Appendix A

93

Sample	app
The	objective	of	building	this	app	is	to	help	understand	its	development	complexity	on	both	 React	Native	and	Flutter.
Implementing	some	core	concepts	in	both	frameworks	will	give	us	some	insight	to	help	you	choose	the	right	development
framework	for	your	app.

What	is	the	Sample	app

Sample	app	is	a	MVP	app	that	has	the	core	functionalities	present	in	most	apps:	authentication,	register,	a	home	and	profile
page.	After	you	decide	what	framework	best	suits	your	needs,	the	code	you	created	can	be	used	later	for	your	app.

This	app	should	start	on	the	Login	screen.	From	there,	you	can	choose	to	login	or	register.	The	flow	of	the	app	is	represented
by	the	following	flow	diagram.

Notice	that	there	is	a	difference	between	navigations:	 Navigate	and	Replace.

When	you	navigate	to	a	new	screen,	you	are	pushing	the	new	screen	to	the	"navigation	stack",	keeping	the	old
screen.	This	allows	you	to	go	back	to	the	old	screen.

When	replacing,	you	are	removing	the	old	screen	and	adding	the	new	one.	This	prevents	you	to	go	back	to	the
old	screen.

This	distinction	is	important	because,	for	example,	you	don't	want	the	user	to	be	able	to	go	back	to	the	login
while	authenticated.

For	each	screen,	you	also	have	some	 fields,	buttons	and	views.	Fields	are	text	fields	to	change	information,	views	are	just
some	way	to	display	information	and	buttons	are	links	to	other	screens.

Requirements

Keep	in	mind	that	the	app	does	not	need	to	be	built	exactly	as	described.	The	important	thing	is	to	try
different	features	and	compare	how	hard	is	to	implement	them	in	Flutter/React	Native.

In	order	to	comparare	of	both	frameworks,	you	should	test	the	following:

Navigation	(already	included	in	flutter,	external	library	in	react	native)

Redux	(instead	of	saving	the	information	on	the	"state",	save	it	in	redux	store)

API	calls	(you	can	use	the	api	calls	form	the	 Lalaoke	Gitlab	repository	for	authentication/register/edit	profile)

Native	components	(buttons,	views,	images,	whatever	you	want	to	test)

Styles	(change	the	style	of	some	components)

Multiple	environments	(development,	staging,	production)	(use	something	like	react-native-config)

Chapter

94

Appendix B

Figure 1: Flutter button

95

Chapter

Appendix C

Name Registration

Actor User

Description The user has to register so they can enter the mobile app

Pre Conditions 1. The e-mail that the user uses is not registered in the
database.

Basic Flow

1. Navigate to Registration screen

2. Fill name

3. Fill email

4. Fill password

5. Click in register button

Post-Conditions User account is created and registered in database successfully

Alternate Course

3. Email not in the right format

3.1. Message error appears

3.2 User stays in registers screen

4. Password too short or long

4.1 Message error appears

4.2 User stays in register screen

5. Server error message

5.1 E-mail already exist in database

5.2 User stays in register screen

Table 1: User registration

96

Name Login

Actor User

Description The user needs to login so they can enter the mobile app

Pre Conditions
1. User is already registered in the database

2. User not authenticated

Basic Flow

1. Navigate to Login screen

2. Fill email

3. Fill password

4. Click in Sign In button

Post-Conditions User enters the mobile app successfully

Alternate Course

4. Server error message

4.1 Wrong email and password combination

4.2 User stays in login screen

Table 2: User authentication

Name Login with Facebook

Actor User

Description The user can login with their Facebook account

Pre Conditions 1. User not authenticated

Basic Flow 1. The user click in the button "Login with Facebook"

Post-Conditions User login with Facebook is successful

Alternate Course

1. Server error message

1.1. Facebook service fails

1.2. User stays in login screen

Table 3: Facebook authentication

97

Chapter

Name Recover password

Actor User

Description In case the user forgets their password they can recover it

Pre Conditions 1. The user is not authenticated.

Basic Flow

1. Navigate to the Login page

2. Click in "Recover Password"

3. Fills email

4. Click in recover button

Post-Conditions User recovers password successfully.

Alternate Course

3. Email not in the right format

3.1 Message error appears

3.2 User stays in login screen

4. Server error message

4.1 Email does not exist in database

4.2 User stays in login screen

Table 4: Recover password

Name Logout

Actor User

Description User can leave their account

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow
1. Navigates to the Profile screen

2. Clicks in "Logout"

Post-Conditions User logouts successfully

Alternate Course

2. Server error message

2.1 Can not perform logout

2.2 User stays in profile page

Table 5: Logout

98

Name View Profile

Actor User

Description User can view their profile information

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow 1. Clicks in the profile button

Post-Conditions User navigates to their profile and views their information suc-
cessfully.

Alternate Course None

Table 6: View profile

Name View badges

Actor User

Description User can see their badges

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow
1. Clicks in the profile button

2. Clicks in "View Badges"

Post-Conditions User navigates to the badges screen and views their badges suc-
cessfully.

Alternate Course
2. Server error message

2.1 Cannot navigate to badges screen

Table 7: View badges

99

Chapter

Name Edit profile

Actor User

Description A user can edit their profile

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Clicks in the profile button

2. Clicks in the edit Profile button

3. Can change information: username, password, avatar, de-
scription

4. Clicks in the update button

Post-Conditions User edits their profile information and database is updated
successfully.

Alternate Course

4. Password too short or long

4.1 Error message

4. Server error message

4.1 Cannot update profile

4.2 User stays in edit profile screen

Table 8: Edit profile

100

Name Create new game with a friend

Actor User

Description A user can create a new game with a friend

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Choose a game type

2. Search for a player name or choose a Facebook friend

3. Click in the player name

4. Click in button "Create Game"

5. Navigates to question screen

Post-Conditions A new game with friend is created and database updated suc-
cessfully.

Alternate Course

2. Inserted player name does not exist

5. Server error message

5.1 Can not create a game

5.2 User stays in create game screen

Table 9: Create game with a friend

Name Create new game with a random player

Actor User

Description A user can create a new game with a random player

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Choose a game type

2. Select random player option

3. Clicks in button "Create Game"

Post-Conditions A new game with random player is created and database up-
dated successfully.

Alternate Course

3. Server error message

3.1 No players available

3. Server error message

3.1 Cannot create a game

Table 10: Create new game with a random player

101

Chapter

Name Submit question and answer

Actor User

Description The user after choosing a game from their list of games, they
can answer a question so that the other player can answer it
next

Pre Conditions

1. The user is authenticated

2. The user is in the Home Page

3. The user has at least a game in which its their turn to submit
a answer and question about themselves

Basic Flow

1. Clicks in a game in the games list

2. Views last round results and clicks in play new round

3. Fills input field with an answer

4. Submit answer

Post-Conditions User submits questions and answer, and database is updated
successfully.

Alternate Course

3. User can:

3.1 Use a Re-rolls and/or use a power-up coins

3.2 Answer the question

4. Server error message

4.1 Could not submit answer

Table 11: Submit question and answer

102

Name Guess other player answer

Actor User

Description The user chooses a game from their list of games that has a
ongoing round. Then they answer the question that the other
player already answered

Pre Conditions

1. The user is authenticated

2. The user is in the Home Page

3. The user has at least one ongoing game in which it is their
turn to guess the other player answer

Basic Flow

1. Chooses a game from the games list

2. Fills input field with an answer

3. Submit answer

Post-Conditions User submits the answer and database is updated successfully.

Alternate Courses

2. User uses Power-Up to help them answer

2.1 User click in Power-Up helper

2.2 First letter of the other play answer appears

2.3 User answers the question

2.4 User submits answer

3. Server error message

3.1 Cannot submit answer

Table 12: Guess other player answer

103

Chapter

Name See last round statistics

Actor User

Description The user may view last round statistics at the end of a round

Pre Conditions

1. The user is authenticated

2. The user is in the Home Page

3. User has ongoing games, where they are waiting for the other
player to play

Basic Flow 1. Clicks in a game from their list of games

Post-Conditions User sees last round statistics successfully.

Alternate Course

1. There are no played rounds in that game

1.1 Game is unclickable

1. Server error message

1.1 Cannot navigate to last round statistics

Table 13: See last round statistics

Name See previous rounds statistics

Actor User

Description The user may view previous round statistics

Pre Conditions

1. The user is authenticated

2. The user is in the Home Page

3. The user has ongoing games, where they are waiting for the
other player to play

Basic Flow
1. Click in an game from their list of games

3. Click in the button of previous statistics

Post-Conditions User sees game statistics successfully.

Alternate Course

1. There are no played rounds in that game

1.1 Game is unclickable

1. Server error message

1.1 Cannot navigate to last round statistics

3. Server error message

3.1 Cannot navigate to previous rounds statistics

Table 14: See previous rounds statistics

104

Name See shop products

Actor User

Description In case the user wants to see game products, they can go to the
shop

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow 1. Clicks in the shop button

Post-Conditions User enters the shop successfully.

Alternate Course
1. Server error message

1.1 Cannot navigate to shop

Table 15: See shop products

Name Buy product in shop

Actor User

Description In case the user wants to buy re-rolls, power-up coins or power-
ups helpers they can go to the shop and buy them

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Click in the shop button

2. Choose a item

3. Click in the buy button

Post-Conditions User buys a shop item and database is updated successfully.

Alternate Course

1. Server error message

1.1 Cannot navigate to shop

3. User doesn’t have enough coins

3.1 User receives error message

3.2 User stays in shop screen

Table 16: Buy product in shop

105

Chapter

Name Buy coins

Actor User

Description In case the user wants more coins they can buy them with real
money

Pre Conditions
1. The user is authenticated.

2. The user is in the shop screen

Basic Flow

1. Click in buy coins button

2. Choose one of the available options

3. Click in the buy button

Post-Conditions User buys coins and database is updated successfully.

Alternate Course

3. Server message error

3.1 User doesn’t have enough money

3.2 User stays in buy coins screen

Table 17: Buy coins

Name Win free coins

Actor User

Description In case the user wants more coins they can watch an advertise-
ment video

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow

1. Click in the store button

2. Click in "Win free coins"

3. View advertisement video

4. Coins are added to wallet

Post-Conditions User buys coins successfully.

Alternate Course

3. Server message error

3.1 Advertisement does not load

3.1 User stays in store screen

Table 18: Win free coins

106

Name View games list

Actor User

Description The user can view their game list in the homepage

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow 1. Views their game list

Post-Conditions User views their game list successfully.

Alternate Course
1. There are no games in the games list

1.1 User is not part of any game

Table 19: View games list

Name Delete game

Actor User

Description The user can delete a game from their game list

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow
1. Choose a game from games list

2. Click in delete game

Post-Conditions User views deletes a game and database is updated successfully.

Alternate Course

1. There are no games in the games list

1.1 User is not part of any game

2. Server error message

2.1 Unable to delete game

Table 20: Delete game

107

Chapter

Name Receive daily bonus

Actor User

Description The user receives daily bonus for every day in a row they enter
the mobile game

Pre Conditions
1. The user is authenticated.

2. The user entered the game in the previous day

Basic Flow 1. Open the mobile game

Post-Conditions User receives daily reward.

Alternate Course
1. The user doesn’t receive the daily bonus

1.1 User did not enter the game the day before

Table 21: Receive daily bonus

Name Send notification

Actor User

Description In case the user submits a question and answer, a notification
is sent to the other player that they can play

Pre Conditions

1. The user is authenticated.

2. The user has at least game

3. The user submits a question and answer

Basic Flow 1. Send notification

Post-Conditions User sends notification successfully.

Alternate Course None

Table 22: Send notifications

108

Name Disable notifications

Actor User

Description In case the user doesn’t want to receive game notifications they
can disable them

Pre Conditions
1. The user is authenticated.

2. The user is in the Home Page

Basic Flow
1. Click in the Settings page

2. Unchecks option "Receive notifications"

Post-Conditions User disables notifications successfully.

Alternate Course
2. Server error message

2.1 Cannot to disable notifications

Table 23: Disable notifications

Name Enable Notifications

Actor User

Description In case the user wants to receive game notifications they can be
re-enable them

Pre Conditions

1. The user is authenticated.

2. The user is in the Home Page

3. The user previously disabled notifications

Basic Flow
1. Click in the Settings page

2. Checks option "Receive notifications"

Post-Conditions User enables notifications successfully.

Alternate Course
2. Server error message

2.1 Cannot enable notifications

Table 24: Enable notifications

109

Chapter

Name Watch tutorial

Actor User

Description When the user authenticates for the first time a tutorial should
appear so they can know how to play the game

Pre Conditions
1. The user has an account

2. The user never logged in

Basic Flow
1. Logins with a valid account

2. The system provides a tutorial that will appear right after
the first login

Post-Conditions User sees the tutorial successfully.

Alternate Course
1. Receives server error

1.1 Invalid combination email/password

Table 25: Tutorial

Name Add question

Actor Admin

Description An admin can add new questions to the database

Pre Conditions 1. The admin is logged in in the backoffice

Basic Flow

1. Click in "Add Question"

2. Choose game type

3. Insert question

4. Click in "Add"

Post-Conditions Admin adds question and databse is updated successfully.

Alternate Course
4. Server error message

4.1. Cannot add question

Table 26: Add question

110

Name Ban user

Actor Admin

Description An admin can ban users from the database

Pre Conditions 1. The admin is logged in in the backoffice

Basic Flow

1. Click in "Ban player"

2. Choose player

3. Click "Ban"

Post-Conditions Admin bans user and database is updated successfully.

Alternate Course 2. No users in the database

Table 27: Ban user

111

Chapter

Appendix D

Devise Endpoints Description

Endpoint Name Description Received Parameters
auth After a user inserts their information

in the register screen and clicks to
register, a request is sent to this end-
point which creates a user account if
the information inserted by the user
is valid

• email

• username

• password

• password confirma-
tion

auth_sign_in After a user inserts they login infor-
mation and click login, a request is
sent to this endpoint which checks
if the information inserted corre-
sponds to a user account

• email

• password

auth_sign_out After a user tries to logout, a request
is sent to this endpoint which will
invalidate the user’s authentication
token

None

validate_tokens When a user enters the app, a re-
quest is sent to this endpoint with
the current user tokens stored in the
app, to check if the tokens are valid.
If they are, the user navigates to the
Home screen. Otherwise they navi-
gate to the Main screen

None

Table 28: Description of the devise endpoints

112

User Controller Endpoints Description

Endpoint Name Description Received Parameters
index After a user successfully logins in to

the app, the app sends a request to
this endpoint so the user receives all
the information they need, includ-
ing their games and personal infor-
mation

None

reward_free_coins After a user finishes watching an ad,
the app sends a request to this end-
point so he can receive their coins

• number of coins

save_notification_token After a user successfully logins in to
the app, the app retrieves a token
used to send notification to that par-
ticular device. Then, sends a request
to this endpoint, that saves that to-
ken for that specific device.

• notification token

• device id

change_allow_notification When a user activates/deactivates
notifications, the app sends a re-
quest to this endpoint, that saves
that value

• value (true or false)

validate_purchase After a user completes a real pur-
chase, a request is sent to this end-
point to verify if the transaction is
trustworthy.

• purchase receipt

random_player_game When a user chooses to play with
a random player, the app sends a
request to this endpoint, that re-
sponds with a random player infor-
mation

None

search_user When a user tries to search for a
player to play a game with, the
app sends a request to this endpoint
which searches for players matching
the user input, and sends back a re-
sponse with the user found (if any).

• user input

buy_shop_item When a user tries to purchase a store
item, the app sends a request to this
endpoint, which finishes the trans-
action

• item id

Table 29: Description of the user controller endpoints

113

Chapter

Endpoint Name Description Received Parameters
forgot_password In case a user forgets their password and

insert their email to recover it, a request
is sent to this endpoint, that generates
a new password for the user and sends
them an email containing that password

• email

update After a user clicks the button to update
their profile, a request is sent to this
server endpoint which updates the user
information depending on the parame-
ters sent

• username

• password

• password confirma-
tion

• avatar

facebook_login The app sends a request to this endpoint
when a user tries to login with Facebook.
This endpoint creates a new user account
in case the user tries to loggin with Face-
book for the first time,.

• facebook token

Table 30: Description of the user controller endpoints - part 2

114

Game Controller Endpoints Description

Endpoint Name Description Received Parameters
create_game If a user clicks to create a game, a re-

quest is sent to this endpoint which has
the main purpose of creating a game be-
tween the current user and a opponent

• opponent id

• game type id

reroll_question After a user clicks to reroll a question in
a game, a request is sent to this server
endpoint which changes the that round
question to another from the same game
type (if the user owns powerup rerolls)

• round id

submit_answer The app sends a request to this endpoint
when a user submits their answer to a
specific question. This endpoint has the
main purpose of adding that answer to
the current round.

• round id

• answer

guess_answer The app sends a request to this end-
point when a user submits their answer
to a specific question that was already
answered by the other player. This end-
point has the main purposes of adding
the answer, checking if the round was
won, among others.

• round id

• answer

new_round After finishing a round, one of the users
can start a new one. When they click the
button to start a new round, a request is
sent to this endpoint that creates a new
round between the users with a random
question from the current game type

• game id

• answer

use_helper If a user decides to use a powerup
helper, the app requests this endpoint
that adds letters included in the word(s)
of the other player’s answer to a vari-
able and then sends that variable current
state back to the app (if the user owns
powerup helpers)

• round id

use_powerup_coins If a user decides to use a powerup
coins, the app requests this endpoint that
marks powerup coins as used for that
round (if the user owns powerup coins)

• round id

use_powerup_coins If a user decides to use a powerup
coins, the app requests this endpoint that
marks powerup coins as used for that
round (if the user owns powerup coins)

• round id

delete_game If a user decides to delete a game, the
app requests this endpoint that removes
that game from the database

• game id

Table 31: Description of the game controller endpoints

115

Chapter

Other Controllers Endpoints Description

Endpoint Name Description Received Parameters
index When a user want to changer their

avatar, a request is sent to this endpoint
which return all avatars

None

Table 32: Description of the avatars controller endpoint

Endpoint Name Description Received Parameters
index When a user enters the Badges screen,

a request is sent to this endpoint which
return all badges

None

Table 33: Description of the badges controller endpoint

Endpoint Name Description Received Parameters
index When a user enters the Home screen, a

request is sent to this endpoint which re-
turn all game types

None

Table 34: Description of the game types controller endpoint

Endpoint Name Description Received Parameters
index When a user enters the Store screen, a

request is sent to this endpoint which re-
turn all purchasables

None

Table 35: Description of the purchasables controller endpoint

116

Appendix E

Game Controller Test Cases

ID Description Expectations
TestCase_01 Game is created success-

fully • Response status: 200

• Game was inserted in the database

• Created game has the chosen game type

• Created game question belongs to the
chosen game type

TestCase_02 Game already exists be-
tween both users for that
game type

• Response status: 406

• Response message contains error: "You
already have a game with this user
within this game type"

• No game was created in the database

TestCase_03 Opponent does not exist

• Response status: 404

• Response message contains error: "User
not found"

• No game was created in the database

Table 36: Test cases for the "create_game" endpoint

117

Chapter

ID Description Expectations
TestCase_04 User has powerup rerolls

• Response status: 200

• Response contains the new question

• User loses 1 powerup reroll

• Round contains new question from the
correct game type

TestCase_05 User has no poweruop
rerolls • Response status: 406

• Response error message contains:
"Sorry you have no re-rolls"

• User powerup rerolls stay the same

• Question stays the same

Table 37: Test cases for the "reroll_question" endpoint

118

ID Description Expectations
TestCase_06 User submits question suc-

cessfully in a round • Response status: 200

• The saved round answer matches the
one in the request

• The round only has one saved answer

• The next turn belongs to the player the
user is playing with

TestCase_07 User submits empty answer

• Response status: 406

• Response error message contains:
"Sorry answer can’t be empty"

• Question stays the same

TestCase_08 User already submit an an-
swer • Response status: 406

• Response error message contains: "You
already submitted your answer"

• Question stays the same

Table 38: Test cases for the "submit_answer" endpoint

119

Chapter

ID Description Expectations
TestCase_09 User submits right answer

without using powerup
coins

• Response status: 200

• The saved round answer matches the
one in the request

• The answer was added to the round

• The Round was defined as won

• Both users won 20 coins

• Response includes the new round infor-
mation and the right amount user coins

• The round has two answers

• Game streak increments

TestCase_10 User submits right answer
without using powerup
coins

• Response status: 200

• The saved round answer matches the
one in the request

• The answer was added to the round

• The Round was defined as won

• Both users won 20 coins

• Response includes the new round infor-
mation and the right amount user coins

• The round has two answers

• Game streak increments

Table 39: Test cases for the "guess_answer" endpoint

120

ID Description Expectations
TestCase_11 User submits wrong

answer without using
powerup coins

• Response status: 200

• The saved round answer matches the
one in the request

• The answer was added to the round

• The Round was defined as loss

• Both users don’t win coins

• Response includes the new round infor-
mation and the right amount of user
coins

• The round has two answers

• Game streak increments

TestCase_12 User submits wrong answer
using powerup coins • Response status: 200

• The saved round answer matches the
one in the request

• The answer was added to the round

• The Round was defined as loss

• Both users don’t win coins

• Response includes the new round infor-
mation and the right amount of user
coins

• The round has two answers

TestCase_13 User submits empty answer

• Response status: 406

• Response error message contains:
"Sorry answer can’t be empty"

• Question stays the same

TestCase_14 User already submit an an-
swer • Response status: 406

• Response error message contains: "You
already submitted your answer"

• Question stays the same

Table 40: Test cases for the "guess_answer" endpoint - part 2

121

Chapter

ID Description Expectations
TestCase_15 User creates new round

successfully • Response status: 200

• Round is added to the current game

• A new question belonging to the current
game type is added to the round

• Response includes the round that was
just created

TestCase_16 User does not belong to
round • Response status: 406

• Response error message contains: "You
do not belong to this game"

• No Round is created in the database

Table 41: Test cases for the "new_round" endpoint

ID Description Expectations
TestCase_17 User uses helper success-

fully • Response status: 200

• User loses 1 powerup helper

• Answer helper is updated in the
database accordingly

• Response contains the new answer
helper

• Round contains new question from the
correct game type

TestCase_18 User has no powerup
helpers • Response status: 406

• Answer helper is not updated

• User does not lose any powerup helpers

• Response error message contains:
"Sorry you have no helpers"

Table 42: Test cases for the "use_helper" endpoint

122

ID Description Expectations
TestCase_19 User uses powerup coins

successfully • Response status: 200

• User loses 1 powerup coins

• Round "used_powerup_coins" column
is set to true in database

• Response contains the new answer
helper

• Round contains new question from the
correct game type

TestCase_20 User has no powerup coins

• Response status: 406

• Powerup coins stays the same

• User does not lose any powerup coins

• Response error message contains:
"Sorry you have no powerups"

TestCase_21 User already used powerup
coins • Response status: 406

• Powerup coins stays the same

• User does not lose any powerup coins

• Response error message contains: "You
already used powerups this round"

Table 43: Test cases for the "use_powerup_coins" endpoint

123

Chapter

ID Description Expectations
TestCase_22 Game is deleted success-

fully • Response status: 200

• Game does not exist in the database

• Response includes all the user games
exepect the deleted one

• Round contains new question from the
correct game type

TestCase_23 Game does not exists

• Response status: 404

• Response error message contains:
"Game does not exist or was already
removed"

Table 44: Test cases for the "delete_game" endpoint

124

User Controller Test Cases

ID Description Expectations
TestCase_24 User receives their informa-

tion with no daily bonus • Response status: 200

• User does not receive any coins from
daily bonus

• Response includes user information and
respective games information

• Response does not include daily bonus

TestCase_25 User receives their informa-
tion with daily bonus • Response status: 200

• User receives daily bonus coins

• Response includes user information and
respective games information

• Response includes daily bonus

Table 45: Test cases for the "index" endpoint

125

Chapter 7

ID Description Expectations
TestCase_26 Server creates new notifica-

tion token for a device suc-
cessfully

• Response status: 200

• User does not have a notification token
for that device

• Server creates a new column with
the device_id and notifications_token
from the request

• Response includes the created notifica-
tion token

TestCase_27 Server updates notification
token for a device success-
fully

• Response status: 200

• User has a notification token for that
device

• Notification token gets replace by the
new notification token from the request

• Response includes the updated notifica-
tion token

Table 46: Test cases for the "save_notifications_token" endpoint

ID Description Expectations
TestCase_28 User deactivates/activates

notifications successfully • Response status: 200

• Column "allow_notifications" belong-
ing to a user changes to true if it was
previously false, or to false if it was pre-
viously true

• Response includes the new value

Table 47: Test cases for the "change_allow_notifications" endpoint

126

ID Description Expectations
TestCase_29 Request includes invalid re-

ceipt data • Response status: 406

• User does not receive coins

• Purchase is saved in the database as
"invalid"

• Response includes error "Something
went wrong with your purchase"

Table 48: Test cases for the "validate_purchase" endpoint

ID Description Expectations
TestCase_30 User finds a random player

to play with • Response status: 200

• Response includes a random user data

TestCase_31 There are no player avail-
able • Response status: 404

• Response includes error message "No
users found"

Table 49: Test cases for the "random_player_game" endpoint

ID Description Expectations
TestCase_32 User finds players by user-

name/email successfully • Response status: 200

• Database has users that match that in-
put

• Response includes users that match the
requested username/email

TestCase_33 No users match the input

• Response status: 404

• Database has no users that match that
input

• Response includes error message "No
users found"

Table 50: Test cases for the "search_users" endpoint

127

Chapter 7

ID Description Expectations
TestCase_34 User buys items success-

fully • Response status: 200

• User had enough coins to buy the items

• User coins after purchase are correct

• User received the item quantity

TestCase_35 User has not enough coins

• Response status: 406

• Response includes error message "You
don’t have enough coins to purchase
this item"

• User does not lose any coins

• User does not acquire any items

Table 51: Test cases for the "buy_shop_item" endpoint

128

