

Pedro Vide Simões

SPEECH SYNTHESIS FRAMEWORK

Internship report in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Amílcar Cardoso from the Department of Informatics
Engineering, co-advised by Prof. Fernando Perdigão from the Department of Electrical and

Computers Engineering and Pedro Verruma and Bruno Antunes from Talkdesk and
presented to the Faculty of Sciences and Technology / Department of Informatics

Engineering.

June 2020

SP
EE

CH
 S

YN
TH

ES
IS

 F
RA

M
EW

O
RK

Pe
dr

o
Vi

de
 S

im
õe

s

Faculty of Sciences and Technology

Department of Informatics Engineering

Speech Synthesis Framework

Pedro Vide Simões

Internship report in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof. Amílcar Cardoso from the Department of Informatics
Engineering, co-advised by Prof. Fernando Perdigão from the Department of Electrical and

Computers Engineering and Pedro Verruma and Bruno Antunes from Talkdesk and presented
to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

June 2020

This page is intentionally left blank.

Acknowledgements

Sendo este trabalho a conclusão de mais uma etapa, gostaria de deixar alguns agradeci-
mentos.

Quero começar por agradecer ao Bruno Antunes, Pedro Verruma, Liliana Medina e Marcos
Pires não só por todo apoio, disponibilidade, ensinamentos e conselhos mas também pela
forma como me receberam na Talkdesk.

Aos Professores Amílcar Cardoso e Fernando Perdigão, por me terem acompanhado con-
stantemente durante todo este trabalho, estando sempre disponíveis e prontos para ajudar,
esclarecer e motivar.

A toda a minha família por todo o suporte, por serem o meu pilar e acima de tudo pelo
apoio em cada decisão que eu tomo, não só em relação a este projeto mas em toda a minha
vida. Obrigado à Maria, Rafael, Gabriel e Enzo por me fazerem querer alcançar sempre
mais. Especial agradecimento aos meus pais, e avó, por serem quem são e nunca terem
falhado para comigo. São, e sempre foram, a minha maior fonte de inspiração e motivação.

Quero agradecer à Beatriz Precatado por estar lá sempre para mim. Por me ouvir, nos bons
e maus momentos, e pelo apoio constante. Por não me deixar duvidar de mim próprio e
me colocar sempre um sorriso na cara. Digo sinceramente que sem ti, não teria conseguido.

Agradeço igualmente à família Precatado da Silva, por se terem tornado uma segunda
familia para mim e por me ajudarem sempre que necessário.

A todos os meus amigos, com especial carinho ao Renato, Luís e Guilherme, pelo apoio,
motivação e todas as palavras amigas que foram ditas quando mais precisei.

Aos restantes membros da equipa da Talkdesk por todos os momentos quer dentro, quer
fora do trabalho.

iii

This page is intentionally left blank.

Abstract

The development of systems capable of understanding and synthesizing speech has seen
great progress in the last years, to a degree where such systems, more commonly known as
virtual assistants, are present in most of smartphones and computers used today. These
assistants are a conjunction between speech-to-text and text-to-speech systems, which
allow interaction using natural language, providing an easier and more intuitive way to
communicate between the user and the machine.

Seeing these quick technological advances, Talkdesk created the Virtual Agent project,
aiming at the development of a system capable of answering simple and recurrent ques-
tions on call-centers, allowing human agents to deal with more complex matters and, as a
consequence, optimize time and resources.

While the initial goal was the development of an in-house solution, all the research made
during the first internship allowed us to gather technical knowledge on the text-to-speech
field, bringing the conclusion that to make improvements over the existing open-source
implementations, a considerable amount of financial and temporal resources would be
needed. As such, a new, useful approach, was devised.

This dissertation proposes the development of an in-house deep learning speech synthesis
framework, for Virtual Agent’s text-to-speech module, aimed at detecting synthesization
errors and evaluate given text-to-speech solutions. The final goal is gathering knowledge
on how a certain system performs when synthesizing speech, looking at usual errors such
as robotic tones, presence of extensive silence mid phrases, among others.

Keywords

Virtual Agents, Text-to-Speech, Neural Networks, Deep Learning, Natural Language Pro-
cessing (NLP), Speech Synthesis, Spectrograms, Error Detection, System Evaluation

v

This page is intentionally left blank.

Resumo

O desenvolvimento de sistemas capazes de compreender e sintetizar fala tem visto grandes
progressos nos últimos anos, sendo que estes sistemas, mais conhecidos por assistentes
virtuais, já estão presentes em grande parte dos telemóveis e computadores usados nos
dias de hoje. Estes assistentes são compostos por dois sistemas principais, um de texto
para voz e outro de voz para texto, que permitem interação usando linguagem natural,
fornecendo assim uma forma mais fácil e intuitiva de comunicação entre o utilizador e a
máquina.

Ao aperceber-se dos rápidos desenvolvimentos tecnológicos neste campo, a Talkdesk de-
cidiu avançar com a criação do projeto Virtual Agent (Agente Virtual), cujo intuito é o
desenvolvimento de um sistema capaz de responder a simples perguntas recorrentes em
call-centers, permitindo assim que os agentes humanos se foquem em assuntos de maior
complexidade, o que leva a uma otimização em termos de tempo e recursos.

Embora o objetivo inicial fosse o desenvolvimento de uma solução interna, a investigação
realizada durante o primeiro semestre permitiu que a equipa adquirisse conhecimentos téc-
nicos nesta área, o que por sua vez permitiu concluir que para alcançar melhoramentos
sobre as implementação open-source existentes, seria necessário um investimento consid-
erável em termos financeiros e temporais. Sendo assim, uma nova solução foi pensada.

Esta dissertação propõe o desenvolvimento de uma ferramenta interna de sintetização de
fala, baseada em redes neuronais e aprendizagem profunda, para o módulo de texto para
fala do projeto Virtual Agent, tendo o objetivo de detectar erros ocorridos durante a
sintetização e permitir obter uma avaliação de vários sistemas de texto para fala de uma
forma rápida e eficaz. A meta final é adquirir conhecimento sobre como um determinado
sistema se comporta em relação aos áudio que gera, tendo em conta erros comuns como
vozes robóticas ou a presença de longos excertos de silêncio no meio das frases.

Palavras-Chave

Agentes Virtuais, Texto para Fala, Redes Neuronais, Aprendizagem Profunda, Processa-
mento de Linguagem Natural (NLP), Sintetização de Fala, Espectogramas, Deteção de
Erros, Avaliação de Sistemas

vii

This page is intentionally left blank.

Contents

1 Introduction 1

2 Background Knowledge 6
2.1 Machine Learning . 6

2.1.1 Learning with Data . 7
2.1.2 Problems and Algorithms . 8
2.1.3 Algorithms . 9
2.1.4 Neural Networks . 10
2.1.5 Performance Metrics . 14
2.1.6 Optimization Methods . 16

2.2 Natural Language Processing . 16
2.2.1 Phonology Phase . 17
2.2.2 Morphology and Lexical Phase . 17
2.2.3 Syntactic Phase . 18
2.2.4 Semantic Phase . 19
2.2.5 Discourse Phase . 20
2.2.6 Pragmatic Phase . 21

2.3 Speech Synthesis . 21
2.3.1 Key Concepts . 22
2.3.2 Sound Waves and Signal Processing Simplified 22
2.3.3 Approaches . 25

3 State of the Art 29
3.1 Existing implementations . 29

3.1.1 Text-to-spectrogram . 29
3.1.2 Vocoders . 33
3.1.3 End-to-End . 35

3.2 Evaluating Results . 36
3.2.1 Automatic Evaluation . 37

3.3 Datasets . 39
3.4 Competition . 41
3.5 Open-source implementations . 42

4 Proposed Approach 45
4.1 Requirement Analysis . 46

4.1.1 Functional Requirements . 46
4.1.2 Non-functional Requirements . 49

4.2 Risk Analysis . 50
4.2.1 Identified Risks . 50

4.3 Methodology . 52
4.4 Planning . 54

ix

Chapter 0

4.4.1 First Semester . 54
4.4.2 Second Semester . 55
4.4.3 Full Internship . 55

5 Development Approach 57
5.1 Developed Work . 58
5.2 Interrupted Development . 59
5.3 Developed Classifier Models . 59
5.4 Main Frameworks and Libraries . 61

6 Experimentation and Results 65
6.1 Classifier Summary and Overall Structure 65
6.2 Robotic Tone Classifiers . 68

6.2.1 Binary Robotic Tone Classifier (B-RT) 69
6.2.2 3 Class Classifier for robotic tone (3MC-RT) 74
6.2.3 4 Class Classifier for Robotic Tone (4MC-RT) 79

6.3 Binary Classifier for Excessive Silence (B-S) 81
6.4 3 Class Mixed Classifier (3MC-MIX) . 84
6.5 Final Overview . 86

7 Conclusion 89
7.1 Future Work . 91

x

This page is intentionally left blank.

Acronyms

3MC-MIX 3 Class Mixed Classifier. x, xvi, xviii, 65, 66, 84–86

3MC-RT 3 Class Classifier for Robotic Tone. x, xv, xviii, 65, 66, 74–79, 84, 86

4MC-RT 4 Class Classifier for Robotic Tone. x, xv, xviii, 65, 66, 79, 80, 86

API Application Program Interface. 1, 4, 41, 42, 61

B-RT Binary Classifier for Robotic Tone. x, xviii, 65, 66, 69, 74, 81, 86

B-S Binary Classifier for Excessive Silence. x, xvi, xviii, 65, 66, 81–86

CNN Convolutional Neural Networks. 12, 13, 39

CPU Central Processing Unit. 54

dBFS Decibels relative to full scale. 25, 63, 82

F0 Fundamental Frequency. 22, 23, 30

FC Fully-Connected. 67, 70–72, 75–77, 80, 81, 83, 85, 86

FN False Negative. 15

FNN Feedforward Neural Networks. 12, 13

FP False Positive. 15

GPU Graphics Processing Unit. 2, 43, 51, 54, 91

GRU Gated Recurrent Units. 13, 29, 31, 32

KNN K-Nearest-Neighbors. 9

LSTM Long Short-term memory. xviii, 13, 32, 38, 66, 67, 70–72, 75–77, 80, 81, 83, 85,
86, 90

ML Machine Learning. 6, 8–10

MOS Mean Opinion Score. 36–38

NER Named Entity Recognition. 19, 20

NLP Natural Language Processing. 13, 16, 17, 19, 21

POS Part-of-Speech Tagging. 17, 18

ReLU Rectified Linear Unit. 11, 12

RNN Recurrent Neural Networks. 12, 13, 32, 33, 35

xii

Acronyms

STT Speech-to-Text. 1, 17, 21, 43, 89

SVM Support Vector Machine. 10

TN True Negative. 15

TP True Positive. 15

TTS Text-to-Speech. 1–4, 17, 21–23, 25–27, 29, 31, 33, 36–38, 41–43, 45, 46, 57, 59, 65,
79, 87, 89–91

xiii

This page is intentionally left blank.

List of Figures

2.1 Overall dataset division(Shah, 2017). 7
2.2 Model Performance(Bhande, 2018). 7
2.3 Binary perceptron. 11
2.4 Basic Recurrent Neural Network (Olah, 2015). 12
2.5 Convolutional Neural Network (Saha, 2018). 14
2.6 The Transformer model architecture (Vaswani et al., 2017). 14
2.7 Learning rate effects (Jordan, 2018). 16
2.8 Dependency Parsing graph example(Jurafsky and Martin, 2019). 19
2.9 Continuous signal, represented by the green line, and a discrete represented

by the various blue samples (Sampling (signal processing) n.d.). 23
2.10 A representation of a Spectrogram in Mel Frequency Scale(Gartzman, 2019). 24
2.11 Mel to Hertz Scale(Mel Scale n.d.). 24
2.12 The overall TTS architecture evolution (X. Wang, 2019). 26

3.1 Original Deepvoice architecture (Arik et al., 2017). 30
3.2 Multi-Speaker Deepvoice 2 Architecture (Gibiansky et al., 2017). 31
3.3 Original Tacotron architecture(Y. Wang, Skerry-Ryan, et al., 2017). 32
3.4 Original FastSpeech architecture and FFT block (Ren et al., 2019) 33
3.5 Overview of Probability Density Distillation (Oord, Y. Li, et al., 2017). . . . 34
3.6 Overview of Clarinet Architecture (Ping, Peng, and J. Chen, 2018). 36
3.7 AutoMOS system architecture (Patton et al., 2016). 38
3.8 MOSnet system architecture (Lo et al., 2019). 39
3.9 LibriSpeech Overall Structure. 40

4.1 Gantt chart for the first semester. 54
4.2 Gantt chart for the second semester. 55
4.3 Gantt chart for the full internship. 55

6.1 Scatter plot of audio lengths (in seconds) distribution. 68
6.2 Spectrograms depicting the original, delta, delta delta and concatenated

representations of a Tacotron audio. 68
6.3 AutoMOS system architecture, already seen in 3.7 but duplicated here to

improve reading flow. 70
6.4 AutoMOS Network Tensorflow interpretation and implementation. 71
6.5 Graphical Confusion matrix and evolution of accuracy and loss across epochs

for the 60 Mel binary model. 73
6.6 Spectrograms for the various 6 original sources. 74
6.7 Graphical Confusion Matrix for 3 Class Classifier for Robotic Tone (3MC-

RT) model 2.1. 78
6.8 Accuracy and Loss for 3MC-RT model 2.1 78
6.9 Graphical Confusion matrixes for four class 4 Class Classifier for Robotic

Tone (4MC-RT) model 1 and 4MC-RT model 2. 80

xv

Chapter 0

6.10 Energy and Spectrogram representation of a signal suffering from excessive
silence. 82

6.11 Graphical Confusion matrix and evolution of accuracy and loss across epochs
for Binary Classifier for Excessive Silence (B-S) model 2.1. 83

6.12 Best performing network for B-S . 84
6.13 Graphical Confusion Matrix for 3 Class Mixed Classifier (3MC-MIX) Model 1 86

xvi

This page is intentionally left blank.

List of Tables

2.1 Caption for LOF . 20

3.1 The Mean Opinion Score ratings. 37
3.2 Overall state of the art systems comparison. 37
3.3 Overall best hyperparameters for AutoMOS 39
3.4 LJ Speech Structure. 41
3.5 Mean Opinion Score ratings. 42

5.1 Functional Requirements Status. 58
5.2 Example of metrics taken for a single utterance. 60
5.3 Example of metrics taken for a single dialog. 60

6.1 Developed classifiers overview. 66
6.2 Available hyperparameter, their description and presence on the original

AutoMOS paper. 67
6.3 Robotic audio dataset used for the Binary Classifier for Robotic Tone (B-RT). 69
6.4 Optimized hyperparameters values and corresponding phase. 70
6.5 Relationship between number of Long Short-term memory (LSTM) units

and possible fully connected layers configuration. 71
6.6 Best architectures for each number of mels tested. Note that the 60 mels

model is the best performing one. 72
6.7 Numerical Confusion Matrix of the 60 mels robotic model. 73
6.8 First approach to 3MC-RT labels. 75
6.9 Initial 3 best models for 3MC-RT . 75
6.10 Final dataset for 3MC-RT. 76
6.11 5 best models for 3MC-RT, including models with 50 samples for each class. 76
6.12 Final 5 best models for our 3MC-RT, after excluding the models where the

dataset size was 50. 77
6.13 Numerical Confusion Matrix for 3MC-RT model 2.1. 78
6.14 Dataset used for representing 4 robotic classes. 79
6.15 3 best models for our 4MC-RT. 80
6.16 Numerical Confusion Matrix for 4MC-RT model 1. 80
6.17 Excessive Silence dataset initial approach. 81
6.18 First iteration of 3 best models for B-S. 81
6.19 Improved silence dataset. 82
6.20 Second iteration of 3 best models for B-S after improving the dataset labels. 83
6.21 Numerical Confusion Matrix for B-S model 2.1. 83
6.22 Dataset used for representing the 3 classes for 3MC-MIX. 85
6.23 3 best models for 3MC-MIX. 85
6.24 Numerical Confusion Matrix for 3MC-MIX Model 1. 85
6.25 Comparison of the best model architecture for each classifier. 86

xviii

This page is intentionally left blank.

Chapter 1

Introduction

The development of systems capable of producing sounds with the goal of synthesizing
speech, dates back to the XVIII century. While these initial models were barely producing
the sound of vowels, current models are capable of generating fluent speech in a variety of
languages, different voices and even with specific intonation. State-of-the-art approaches
to speech synthesis use neural networks and deep learning, making use of trained models
to convert text into speech, with the most commonly known solutions being the ones
from giant technological companies such as Google1, Amazon2, Microsoft3 and Apple4.
These companies integrate their Speech-to-Text (STT) and Text-to-Speech (TTS) systems
in order to create virtual assistants, a feature present in most current smartphones and
computers.

Talkdesk5 saw these latest and quick technological advances as an opportunity, taking
advantage of them to start the Virtual Agent project. The Virtual Agent aims to help call-
center callers with simple and repetitive questions, such as reseting a password, allowing
human agents to focus on more complex matters and, as a consequence, optimizing their
time. In order to achieve it, a conjunction between TTS and STT systems must be made,
allowing the virtual agent to interact with a real person as if it was a human agent.

This work will have a special focus on Virtual Agent’s TTS component, studying its evo-
lution, current implementations, flaws and potential upgrades. While great quality TTS
Application Program Interface (API)s are currently available and would be able to fulfill
this task, they are often expensive when used in a large scale professional environment and
are difficult, or impossible, to modify and personalize if the need arise. This is the reason
why we have the goal of developing a more sustainable, high-quality, in-house solution with
the final objective of being fully integrated with the Virtual Agent project.

During the first semester, the aim was mainly:

• Search and study the already existing solutions for TTS, the technology behind them
and how it was applied.

• Use the available open-source solutions in public repositories and compare them in
terms of results and performance.

1https://www.google.com
2https://www.amazon.com
3https://www.microsoft.com
4https://www.apple.com
5https://www.talkdesk.com/

1

Chapter 1

• Start the development of a proof of concept.

However, as a result of our studies, we soon found out that in order to increase the perfor-
mance of these solutions beyond the already provided, extensively trained models, the cre-
ation of much better datasets with crystal clear sound would be needed to train new models,
which would require high-end machines with various Graphics Processing Unit (GPU)s,
to be achievable in a realistic timeframe. To summarize, we initially underestimated the
resources needed for experimentations, even after searching for various alternatives.

With this said, the initial internship’s goal changed across the time, with two main changes
taking place across the two semesters. The first change was going from the development of
an in-house TTS solution to an error detection system, while the second change consisted
in modifying the latter idea and develop a solution that would allow the evaluation of a
given speech synthesis system, taking into account some of the more common errors during
synthesization. Overall, the path made in this project can be divided into three distinct
phases.

First Phase

The first phase of this work consisted in the initial idea of developing an in-house neural-
network based TTS solution from the ground up, which would avoid the company having
to rely on third-party systems with their own costs and development schedules.

The first step was researching on the existing solutions and methods used to develop
them, leading to the discovery of the main state of the art systems. In order to better
understand the complex architectures of these systems, a deep-dive on various topics of
machine learning and neural networks also had to be done.

While researching, various open-source TTS implementations were found, developed using
some of the state-of-the-art algorithms, with some of these providing actual pre-trained
models allowing to completely skip the training phase while achieving surprisingly good
results. However, as with any system, flaws were found on most implementations which
led to the search of how they could be improved by modifying the existent code, datasets
and retraining the existing models. It did not take long for three main problems to appear:

• The considerable time and financial resources needed to retrain these models.

• The sheer complexity of the used algorithms.

• The uncertainty in how these already high quality datasets could be further improved.

The first and second problems are mostly correlated as, due to the complexity, there was
no certainty of achieving improvements with every modification and retrain. Furthermore,
the amount of time spent and hardware needed for training was completely out of the
current possibilities. After some calculations, it was concluded that the investment needed
for such a low degree of certainty would be unrealistic.

Finally, regarding the third problem, improvements to the the datasets would need to
be made with professional recorded audio and even then it was not ideal to use different
voices, as at the time the aim was at a single-speaker system with higher quality instead
of a multi-speaker one.

2

Introduction

Although various attempts were made in order to avoid these problems, they were mostly
unsuccessful. The degree of uncertainty on achieving improved results was too high, making
them unrealistic given the required costs.

With this in mind, one possible solution was externally improving the systems without
re-training, which led us to our second development phase.

Second Phase

Taking into consideration what was learnt on the first phase, we started planning on the
development of a system capable of identifying and solving the main problems of the exist-
ing open-source solutions during real-time started. This project would allow improvements
on these systems by solving some of their expected problems in a production environment
during runtime, without having to rely on retraining the existing models. Additionally we
would also add elements for making the system more real, such as background office noise,
making the interaction more realistic.

After designing some possible architectures, it became evident this was not the best ap-
proach for improving the existing systems, since building a production ready system with
the planned characteristics while also achieving good performance was overwhelming and
unrealistic on the given internship time-frame. With this in mind, it was decided the
project goal would slightly change one final time, leading to the third and final phase.

Third Phase

The third phase was the last iteration on the project’s direction, being the one where most
of the practical development was done. After going through the previous phases, there
was a clearer vision on the overall challenges that could be faced. However, one of the
questions that persisted was "Which is the best model for Talkdesk’s TTS system?". This
is not an easy question as each system has advantages over the others.

As an example, a given model is extremely quick during inference but lacks quality, suffering
from robotic audio in most cases. On the other hand, other model is considerably slow
but outputs very clean speech. Comparing systems proved to be a cumbersome and time
consuming task, which led to thinking in ways of automatizing the process.

The goal was then set in developing one or more classifiers that, given a large amount of
audios, would classify each of them according to previously identified errors. This would
be useful in quickly understanding if a given system generated more clean audios than
robotic ones or even the amount of audios with excessive silence or critical errors. This
would drastically reduce the time needed to have an overall evaluation of a TTS system
as it was no longer a necessity to manually hear a large amount of generated samples, by
quickly being able to see an overview on the performance of the given system.

This document will mainly focus on the work done in the first and third phases, since they
mostly correspond to the research and practical parts of the internship respectively. The
document is organized as follows:

• Chapter 2: Background Knowledge - The second chapter of this document
aims at giving readers the necessary knowledge to understand our work, with a
brief introduction to various concepts regarding machine learning, natural language
processing, neural networks and speech synthesis.

• Chapter 3: State-of-the-art - Our third chapter introduces the current existing

3

Chapter 1

state-of-the-art approaches regarding TTS systems and techniques used when evalu-
ating the output of these implementations. It also gives an overview of famous voice
datasets used for training these models and who is the current competition in terms
of public API’s for speech synthesis.

• Chapter 4: Methodology and Planning - The fourth chapter gives an overview
of the tools and processes used at Talkdesk’s Virtual Agent team during the intern-
ship, the requirements and risks of the projects and the overall project’s schedule
during the first and second semester.

• Chapter 5: Development and Tools - The fifth chapter is the shortest one, with
the aim of showing which requirements were fulfilled during the internship as well as
some frameworks and libraries used for development of certain features.

• Chapter 6: Experimentations and Results - The sixth chapter is aimed at
showing all the experimentation process and associated results. However, since this
work relies heavily on these aspects, it made sense to also include most of the infor-
mation regarding the developed classifiers and decisions here instead of the previous
chapter.

• Chapter 7: Conclusion - The last chapter consist on an overview of the work
done as well as a proposal for future work regarding the project.

4

This page is intentionally left blank.

Chapter 2

Background Knowledge

In this chapter, we aim at giving basic knowledge about the topics that are in the basis
of this work, from the definition of what is Machine Learning (ML), how we use data to
train models, some techniques to process text to some background on neural networks as
well as some approaches.

2.1 Machine Learning

By definition, ML (YourDictionary, 2019) is the field of study concerned with the design
and development of algorithms and techniques that allow computers to learn. Essentially,
it is a software that modifies and adapts itself by using example data or experience.

In computer science, algorithms can be seen as a means to achieve a solution when trying
to solve a given problem, a set of instructions given to a computer in order to transform
an input into the desired output. However, what happens when the input changes with
time or with a given environment? A static, linear algorithm will start to struggle, as the
input it was originally expecting is no longer the one being received.

As a simple and common example, let’s take a look at spam emails. To identify and filter
spam emails, algorithms must look at certain suspicious aspects of a given email such as
keywords, phrases and language, among others, to classify the email as spam or not spam.
This signifies they are expecting certain words or expressions as an input, and by detecting
them they will be able to classify the email. However, as soon as the spammers (people
or system who sends spam emails) realize how their emails are being filtered, they will
change them. After this change, a linear algorithm would stop being successful at filtering
as the expected input had changed. This is where ML starts to shine. ML algorithms use
past and current data and experience to learn what is or isn’t a spam email even after the
changes, in order to make predictions and automatically develop methods to catch them.
They evolve themselves to expect a different input and the more data we feed these type
of algorithms the better will those predictions be (Alpaydin, 2009).

In this section, a brief introduction will be made in how data can be used to learn or to
develop a system, the main ML problems, a description of the more common algorithms
and an overview of neural networks.

6

Background Knowledge

2.1.1 Learning with Data

Compilation of data from past experiences is called a dataset. These datasets are usually
divided into training, validation and testing.

In the training phase, the model sees and learns from the full spectrum of information in
order to adjust its parameters and improve in performance. The validation phase is an
optional phase, used to fine tune the model, by still seeing all the information but no longer
adjusting its internal weights. The developer, however, should use the validation results to
adjust the high level parameters by hand. Finally, the testing phase is used to evaluate the
results of the model. It is seen as the gold standard, only used once the model training is
complete. There isn’t a set rule in how the original dataset should be divided in order to
have these three different sets. It is important, however, to give the train set the biggest
size. The overall dataset division can be seen in figure 2.1.

Figure 2.1: Overall dataset division(Shah, 2017).

The size of each set can be related to under-fitting, where a model is underperforming, and
over-fitting, where a model is over-performing, which means it is too well adapted to the
given training set and will probably have bad performance when presented with unseen
information. Figure 2.2 illustrate well these scenarios, where appropriate-fitting should be
the objective when tuning the final model.

Figure 2.2: Model Performance(Bhande, 2018).

Instead of doing a fixed division of the dataset, a technique called k-fold cross-validation
can also be used, where the whole dataset is split into k sets and each of this sets is used
as the test set in k different runs. As an example, if k = 5, we would have 5 groups with
80% of the data for training and 20% for validation. 5 models would then be trained and
validated, each using a different group. After all the runs, the mean of the results should
be taken in order to understand how our model is performing. This is especially useful
when the dataset is small, as we are making use of all the data (Alpaydin, 2009).

It is common to go through the dataset information more than one time in iterative learn-
ing. Each one of these iterations is called an epoch. So, for example, in 200 epochs the
training dataset went trough the learning algorithm 200 times. Epochs are an important
parameters as it allows us to avoid under-fitting. However, when in excess, they will start
to cause over-fitting. Overall, under-fitting and over-fitting can be seen as a trade-off
between generalization and specialization on the training database.

7

Chapter 2

Another technique used is batched and unbatched training. In unbatched training, the
whole dataset is fed to the neural network at once, while in the batched method the
training dataset is divided in X smaller parts and fed separately in various iterations. In
this case, an epoch occurs every X iterations.

Datasets can contain labeled data or unlabeled data. Using the previous example, a labeled
spam email dataset would contain entries of email text and the target label (also called
tag or class) stating if each entry should be considered spam or not. Labeling data is
usually done by humans, which as a consequence, makes labeled datasets more scarce than
unlabeled datasets. In this last type of dataset, the categorization of each entry is yet to be
done. However, ML algorithms can also make use of unlabeled (or raw) data by applying
specifics techniques in the classification phase, which we will explain later.

With this said, there are three main learning methods: supervised, unsupervised and
reinforced learning (Alpaydin, 2009).

Unsupervised Learning

In Unsupervised Learning (Alpaydin, 2009) there is only raw data and, as such, the aim is
to find similarities and patterns in order to classify each entry. The most common method
to achieve this goal is clustering, where similar entries are grouped into cluster and each
cluster is considered a different class. We will dive deeper on clustering in the next section.

Supervised Learning

Supervised learning (Alpaydin, 2009; Bishop, 2006), as the name suggests, use labeled
datasets. Due to the existing labels, it is already known to which class does a group
of characteristics (features) belong, so each data entry is already part of a certain class.
While training and learning from the given labeled data, the model will adjust its internal
parameters in order to predict future outputs.

Reinforcement Learning

Reinforcement Learning (Yiu, 2019) is based on rewarding or penalizing the actions of an
agent, whose responsibility is exploring an unknown environment, always having an end
goal. In other words, it can be seen as unsupervised learning with an end goal defined.
Actions that bring the agent closer to the end goal bring a positive reward, while getting
farther away from the goal will bring negative rewards.

This learning approach is especially useful when previous data does not exist, as an agent
is essentially learning and building experience by trial and error.

2.1.2 Problems and Algorithms

As we just saw, labeling data is an essential task in ML in order to achieve results, but
different learning methods and types of data require different labeling techniques. Overall
there are four class of problems in ML, classification, regression, clustering and association
(Bishop, 2006).

Classification and Regression

8

Background Knowledge

Classification (Bishop, 2006) is one of the problems when supervised learning is being used,
where the main goal is to classify, or label, an entity into a certain class, always taking
into account the characteristics, more commonly referred to as features, of said entity. The
number of classes and type of features are defined in the input data, with the algorithm
knowing them beforehand by having access to the dataset. The algorithms tackling this
type of problems are usually known as classifiers.

Regression is another type of problem for dealing with data in supervised learning. While
classification outputs a given class or label, such as "spam" or "not spam", for each entity,
regression consists in the attribution of a real or continuous value given the input features.
As an example, we would need to use regression when trying to predict stock prices.

In simple terms, classification final output is categorical while regression output is numer-
ical.

Clustering and Association

Clustering (Bishop, 2006; Wagstaff et al., 2001; D. Xu and Tian, 2015) is a technique
that divides the available data into groups, referred to as clusters, where each cluster
has elements with similar characteristics and features. It is mostly used on unsupervised
learning problems, as it assumes there is no prior knowledge on the classification of the
elements in the dataset, although it can also be used when there is more background
knowledge.

Association (Harrington, 2012) problems rely on finding rules and relations that are capable
of describing a big percentage of our data, in order to find patterns and identify new data
points. These relationships have mainly two forms, frequent items sets with entities that
usually occur together, and association, when the probability of strong relationship between
two entities is high.

2.1.3 Algorithms

In order to solve the problems introduced in the previous section, ML algorithms are used.
There are no best or worse algorithms and when solving a given problem, more than one
algorithm should be used and tested, in order to find the one with greater performance for
the given situation. The most commonly used algorithms are the following:

• Naive Bayes - Based on Bayes Theorem, which states that the probability of an
event is conditioned by our prior knowledge of conditions related to that event, the
Naive Bayes algorithm assumes that the presence of a particular feature in a given
class is completely unrelated and independent to the presence of another, hence the
name naive (Alpaydin, 2009).

• Logistic Regression - Logistic Regression (Gandhi, 2018) uses a linear function
to perform classification, with the outputs going through the sigmoid equation (Lo-
gistic Function), which we will see in a future section, converting the output of our
algorithm in a 0 or 1. When misclassification occur, the cost is calculated using the
logarithmic loss function.

• K-Nearest-Neighbors (KNN)- KNN (Harrison, 2018) is based on proximity,
where the closest entities around the point we are trying to classify are taken into
account. The algorithm search the K closest entities of a certain point, finds the

9

Chapter 2

mean of those points and classifies our point according to that information. As an
example, if we were trying to classify emails with K = 5 and had a given point whose
closest neighbors were 3 spam entities and 2 non-spam entities, that point would be
classified as spam. For regression problems, the value of our point would be the
mean of the closest 5. In order to find the right value of K, experimentation must
be done as a very low or very high K will be more susceptible to classification errors.
In addition, K should also be an odd number, to avoid problems such as ties (for
example, 3 spam entities and 3 non-spam entities around our point).

• Support Vector Machine (SVM) - SVMs (Pupale, 2018) aim to create a line (for
binary classification) or hyperplane (for multi-class classification) between points in
order to define to which class those points belong. The goal is to maximize the
distance, referred to as margin, between the line or hyperplane and the support
vectors. The support vectors are the closest points from the various classes that are
closer to the margin. The bigger the margin, the better, as there is less chance of a
wrong classification. When a given problem is not linearly separable, the data must
be converted by, for example, adding one more dimension.

• Random Forest - Random Forest (Yiu, 2019) is an agglomeration of decision trees,
a simpler type of algorithm where decisions are made in a tree-shaped architecture
where each branch represents a decision and the leaves represent all the possible
outcomes. Each tree of our forest is independent from the others, where the final
classification of the given input is commonly referred to as a vote. The results are
then compared and the class with more votes is the one assigned to our input.

• K-Means - K-means is used to perform clustering, where the goal is to partition
the existing data into K clusters (and, as such, dividing the data into K different
classes). Initially, the algorithms chooses the k initial cluster centers, called centroids,
and optimizes them interactively with each interaction consisting on the following
simplified steps:

1. Compute the distance di from each entity and the closest cluster center.
2. Adjust the centroid computing the mean of all its entities.

Convergence is achieved when there are no more adjustments to be made. The
distance between elements and centroids can be computed using different methods,
with the most common being the Euclidean and the Cosine distance (Bishop, 2006;
Wagstaff et al., 2001; D. Xu and Tian, 2015).

• Apriori Algorithm - One of the main algorithms in association problems, the
Apriori Algorithm (Harrington, 2012) pairs entities in order to see how strong is
their relationship. Pairs with weak relationships are tossed out, while the others are
kept.

2.1.4 Neural Networks

ML’s neural networks (Nielsen, 2015) take inspiration from the human brain where neurons,
the brain single units, are connected to each other and transmit electric signals when they
receive a strong enough stimulus.

It can be said that artificial neural networks started with the perceptron, seen in figure
2.3, a simple system with binary inputs and a single binary output. In order to know the
output, inputs are multiplied by real numbers called weights, which express the importance

10

Background Knowledge

Figure 2.3: Binary perceptron.

of each input. If the weighted sum is bigger than given real number threshold, the output
is 1 and if its smaller it is 0 as seen in equation 2.1.

output =

(
0, if

P
j xjwj  threshold

1, if
P

j xjwj > threshold
(2.1)

In addition to the inputs and weights, it is usual to mention another variable with the
name of Bias, which can be seen as a measure of how easy it is to fire the perceptron,
obtaining the output with value 1. As we can see in equation 2.2, as the Bias value b
increases, the easier it is to reach 1 as the final output. Looking at both equations it is
easy to understand they are equivalent, with 2.1 using a vector multiplication instead of
the dot product and b = �threshold. In terms of overall notation, using equation 2.2 is
preferred over equation 2.1.

output =

(
0, if x · w + b  0

1, if x · w + b > 0
(2.2)

However, this binary approach proved to have some flaws, such as the XOR problem
(Ahire, 2017). Improving upon these problems, perceptrons were changed to allow inputs
and outputs between [0, 1] instead of being only binary. In order to calculate the value
of the output, the sigmoid function, see equation 2.3, was used. Using the name of this
function, the new approach was called "Sigmoid neuron", being the base of all the current
neural networks (Nielsen, 2015).

output =
1

1 + e�x
(2.3)

Currently there are alternatives to the sigmoid function such as Softmax, a function that
returns a probability distribution with a sum of 1 (essentially replacing sigmoid in multi-
class problems, as long as classes are exclusive) and the hyperbolic tangent activation
function (Tahn), see equation 2.4, a resized sigmoid function with a more convenient range
of [-1,1].

output =
ex � e�x

ex + e�x
= 2 ⇤ sigmoid(2x)� 1 (2.4)

These functions, however, do have problems when applied to very deep networks, due to
the vanishing/exploding gradient problem, where the transmitted error across layers tends
to vanish, causing the weights to stop being updated. In order to avoid this problem, the
Rectified Linear Unit (ReLU) function is used. It is a non-linear function, working in a
range of [0,1], where negative numbers are immediately assigned a value of 0 as equation

11

Chapter 2

2.5 shows, although slight alternatives such as the leaky-ReLU change this range. A good
comparison can be seen in (B. Xu et al., 2015).

output =

(
0, if xi � 0

xi, if xi < 0
(2.5)

Until now we only talked about isolated neurons, but in most cases they are actually
grouped. A group of neurons working in parallel is referred to as a layer, with a network
being capable of having multiple layers one after the other. The first layer has the name
of input layer, the last layer the output layer and in-between are the hidden layers, where
the input of each one is the output of the previous one. Networks with only one hidden
layer are commonly referred with the terms shallow networks and shallow learning, where
networks with various hidden layers are referred to with terms as deep networks and deep
learning (Nielsen, 2015).

There are various implementations of neural networks, each with its own advantages and
disadvantages. In the next paragraphs we will describe some different implementations,
such as Feedforward Neural Networks (FNN), Recurrent Neural Networks (RNN) and
Convolutional Neural Networks (CNN).

Feedforward Neural Networks

FNN (Nielsen, 2015) are the most common and basic type of neural networks, composed
by an aggregation of neurons where the information only flows in one direction, forward,
hence the name feedforward. A multilayer perceptron is considered to be a FNN, where we
receive the inputs, give them weights, pass them to the hidden layers and, finally, compute
the final output.

While FNN are relatively simple and useful in a variety of scenarios, they do prove to have
some problems when context matters, as the single flow of information does not provide
memory regarding past inputs.

Recurrent Neural Networks

RNNs can be seen as an improvement of FNN, having the capability of handling a variable-
length sequential input due to having an hidden state. This hidden state can be seen as a
feedback loop, where an output also becomes an input. In other words, each neuron has
two inputs, the normal one and one with the previously outputted information, allowing
it to have memory of almost all the information across time.

Figure 2.4: Basic Recurrent Neural Network (Olah, 2015).

Figure 2.4 illustrates how each previous output is fed to the next input in a simple RNN
architecture, where A stands for the neural network, xt for each input and ht for each
output. This is especially useful when context is important during decision making. The

12

Background Knowledge

most common example is text, where the meaning of a word usually depends on the context
of the phrase. However, RNNs suffer from short-term memory, having problems retaining
information in lengthy inputs. This is usually referred to as the vanishing gradient problem
and happens during backpropagation (Rumelhart et al., 1986).

To tackle this issue, Long Short-term memory (LSTM) networks were developed in 1997
(Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRU) in 2014 (Cho et
al., 2014).

LSTM’s introduce a memory cell with three gates in order to control the flow of information.
An input gate reads data into the cell, an output gate reads data from the cell and a forget
gate resets the content of the cell. With this mechanism, LSTM’s are able to decide whether
to keep existing memory or not and can easily carry information from early stages, hence
capturing potential long-distance dependencies. Improvements upon the original LSTM’s
have been as can be seen in (Chung et al., 2014).

GRUs only have two gates, a reset gate and an update gate, ditching the memory cell
state. They are seen as a quicker version of LSTM’s, however it does not always translates
into improved results (Chung et al., 2014).

Convolutional Networks

CNN (LeCun et al., 1998) are a special type of FNNs, inspired by the brain’s visual cortex
organization and characterized for having a varied depth and breadth, two variables that
control their capacity. When compared to simple FNNs, they are easier to train, having
fewer connections and parameters while also achieving similar levels of performance and
being especially good at image analysis, where a FNN would, more often than not, struggle
due to the amount of information (Krizhevsky et al., 2012).

CNNs apply filters (called Kernels) with shared weights to the input in order to simplify it
and extract the highest level features (for example, the edges of an image). This operation
is called the convolution operation and can consist of one or more convolutional layers,
where each layer applies convolutions to the output of the previous one. The pooling
layer comes after all the convolutional layers and has the objective of reducing spatial size,
by applying dimensionality reduction which has the consequence of reducing the needed
computational power. Finally, the resulting output of the previous layers, a considerably
simplified version of the original input, will be flattened into a column vector and fed to a
normal FNN. Figure 2.5 represents how the whole process is connected and how layers can
be repeated for improved simplicity. While CNN’s were originally associated with images,
they are becoming extremely useful when dealing with Natural Language Processing (NLP)
tasks (Kalchbrenner et al., 2018).

Attention and Transformers

Attention mechanisms (Bahdanau et al., 2014) are an important module in deep learning
as they greatly improve the context awareness of our neural networks. First introduced
with the aim of translation problems, attention tries to find the most relevant information
in a text sentence by encoding each word into a hidden state, instead of encoding the whole
sentence at once, and using weights for each hidden state. Self-Attention is a technique
that also looks at other words in the sentence before converting a given word to the hidden
state. Attention mechanisms were first introduced in order to improve RNNs and LSTMs.

To allow parallelization, Transformers (Vaswani et al., 2017) were introduced, being essen-

13

Chapter 2

Figure 2.5: Convolutional Neural Network (Saha, 2018).

tially composed of 6 encoders and 6 decoders. Each of the encoders is composed of two
sub-layers, a multi-head self attention and a feed-forward network. The decoders adds an
additional layer besides the ones in the encoder, where multi-headed attention is performed
on top of the output from the encoder. The decoder’s multi-head attention layers is also
slightly modified.

Figure 2.6: The Transformer model architecture (Vaswani et al., 2017).

As we can see in figure 2.6, the output of the decoder is fed into the linear and softmax
layers. In these layers, the output is transformed into a vector of probabilities. In a
translation problem, each word is associated with one of these probabilities, where the
transcription is assumed to be the most probable word.

2.1.5 Performance Metrics

In order to evaluate the results of our models, evaluation metrics are needed. Ideally, more
than one metric should be used, as a high score in one does not directly imply a good

14

Background Knowledge

overall performance of our model (Mishra, 2018; Sunasra, 2017).

Some of these metrics make use of a confusion matrix, an intuitive method which helps
us organizing output data. In a binary example, there are four main terms used in this
method, True Positive (TP), when the predicted class is correct with a value of 1, True
Negative (TN) when the predicted class is correct with a value of 0, False Positive (FP)
when the classification predicts 1 but the expected value was 0 and False Negative (FN)
when 0 was predicted but 1 was expected. In multi-class problems, the matrix can be
built with the expected values as columns and the predicted values was rows, where all the
correctly predicted values will be on the matrix diagonal(Mishra, 2018; Sunasra, 2017).

The main machine learning metrics are the following:

• Classification Accuracy - More commonly referred as simply accuracy, is the
ration of correct predictions and the total number of input samples. It is well suited
if there are an equal number of samples of each class. However, it does not take
into account the cost of misclassification, which is a major flaw. Making use of the
confusion matrix, it is the ration between the sum of TP and TN and the sum of all
elements the matrix elements using TP+TN

TP+TN+FP+FN .

• Precision - Precision tells us how precise our model was in predicting a certain class.
If we want to know the precision of TP, we would need to find the ratio between TP
and the sum of TP and FP using TP

TP+FP .

• Recall or Sensitivity - Recall tells us the number of cases a given class was pre-
dicted, across all the entities of that class. For example, we would find the ratio of
TP and the sum of TP and FN using TP

TP+FN .

• Specificity - Specificity is the exact opposite of recall, telling us how many negative
classes were predicted. To do this, the ratio of TN and the sum of TN and FP would
have to be calculated with TN

TN+FP .

• F1 Score - F1 Score aims to represent both precision and recall, making use of the
harmonic mean, represented by 2xy

x+y or, replacing the variables, 2⇤Precision⇤Recall
Precision+Recall . By

using this formula, the final performance metric will be much closer to the smaller
value, avoiding potential errors.

• Logarithmic Loss - Log Loss is suited for multi-class classification, where each
class has a given probability of occurring. If misclassification occurs, a penalization
is done. The higher the log loss, the worse is the performance of our model. Log loss
is also called cross-entropy.

• Area Under Curve - Area under the ROC curve is the area under the curve in
the plot of Specificity vs Sensitivity. The higher the area, the better as more True
Positives were predicted.

• Mean Absolute Error - This metric obtains the average of the difference between
original and predicted values, passing the information of how far were the predictions.

• Mean Squared Error - Mean squared error is similar to Mean Absolute Error
but uses the square of the difference in order to improve computation in terms of
gradient. In this approach, larger errors are more evident.

15

Chapter 2

2.1.6 Optimization Methods

We have previously seen that loss can be used to understand how well a given network or
algorithm is performing. As a rule of thumb, we should always aim at lowering our loss
while, simultaneously, increasing our accuracy. The loss output of our loss function is used
by the chosen optimization algorithm to update and improve our model.

One of the most popular optimization methods is the Gradient Descent, where the effect
on the loss of changing a weight is calculated. The aim is to find the minimum loss for
a given weight. However, this is susceptible to local minima, where we could think the
algorithm has achieved the lowest value of loss possible but it has simply found a local
minimum.

The degree of change of a given weight at each step is given by what is called Learning
Rate. This is usually a small number, such as 0.001, although it is highly dependent on
the problem and various values and scales should be tested. Ideally, a big learning rate is
not desirable, as big jumps are going to be made, while very small rates lead to very small
increments and computational time, increasing the probability of finding and getting stuck
in local minima. Figure 2.7 illustrates this situation.

Figure 2.7: Learning rate effects (Jordan, 2018).

In this thesis, two optimizers were mainly used, both being based on gradient descent
optimization. Adagrad (Duchi et al., 2011), as it was the one used on the AutoMOS paper
and Adams (Diederik P Kingma and Ba, 2014), a more recent and popular approach that
also leverages the advantages of Adagrad.

Regularization is used to avoid some weights to grow much bigger than the others, dom-
inating the overall formula of our model. By applying regularization, a penalty is being
made to big weights. In this work we will use two types of regularization, namely L1 (Lasso
Regression) and L2 (Ridge Regression) (Gupta, 2017).

2.2 Natural Language Processing

NLP (Chowdhury, 2003) is a subfield of various disciplines such as computer and informa-
tion sciences, linguistics, artificial intelligence and mathematics, aiming at exploring how
computers can be used to understand and use natural language in order to perform desired
tasks. The main objective of NLP is allowing humans to interact with machines verbally,
or textually, in the same way they would interact with other humans. In other words, the

16

Background Knowledge

aim is to surpass what is referred to as the Touring test, where a human can’t distinguish
if an interaction is being made with a machine or with a person (Turing, 2009). One of
biggest challenges in NLP is ambiguity, where words, phrases or punctuation are capable
of having different meanings.

Ambiguity is tackled in different ways, according to each phase of the overall NLP pipeline.
NLP problems are usually divided into sub-problems, where each sub-problem is treated
in a different phase, or level, better known as the linguistic levels of knowledge. While
the number of distinct phases may vary between authors, the most commonly referred are
the phonology phase, the morphology phase and lexical phase, the syntactic phase, the
semantic phase, the discourse phase and the pragmatic phase. We will delve into each one
in the following sections.

2.2.1 Phonology Phase

Phonetic analysis (Richards and Schmidt, 2013) is the study of how sounds are grouped in
order to form words. We will enter in greater detail about phonemes in the next section.
The phonology phase is mostly present in Speech-to-Text (STT) or Text-to-Speech (TTS)
applications, as phonology refers to sound. NLP tasks whose aim only deals with written
text usually have little need for this specific phase.

2.2.2 Morphology and Lexical Phase

A morpheme is the smallest, meaningful unit in a given language. While some words
consists of only one morpheme, such as kind, others consist of more than one such as
unkindness, that consist of three with a prefix (un) and a suffix (ness in addition to the
base one (Richards and Schmidt, 2013).

In the morphology and lexical phases the input text is segmented into words, phrases and
paragraphs. Lexemes, the smallest unit in the meaning system of a language, are identified
and converted to their base form to simplify the process. Inflected words such as give, gives
and given are considered to belong to the same lexeme give(Richards and Schmidt, 2013).
After the segmentation, Part-of-Speech Tagging (POS) occurs, where words are classified
as nouns, verbs, pronouns, prepositions, adverbs, conjunctions, participles and articles
(Jurafsky and Martin, 2019). This phase has challenges related to segmentation, which
we will discuss further, and to lexical ambiguity. As an example, the word silver can be
considered a verb, noun or adjective.

Tokenization

Tokenization (Jurafsky and Martin, 2019) is the task of dividing text into individual words,
numbers and punctuation or, as the name implies and more often used, tokens. While
it may seem like a trivial task, the existence of special cases make this process more
challenging than it initially appears. As an example, URL’s, dates and prices should be
kept as one single token, being the system function to identify these specific cases, dealing
with them appropriately. While tokenizing, we can also improve the text by uppercasing
(or down-casing) all characters and normalize the text by transforming abbreviations and
numbers into their correspondent written words(Jurafsky and Martin, 2019). The following
example shows how phrase (1) would be transformed in the sequence of tokens in (2):

17

Chapter 2

An apple costs 1.05e. The Mr. wants 2 apples.

[this][apple][costs][one point zero five][euros][.][the][mister][wants][two][apples][.]

Sentence Segmentation

To understand the structure of a text, it is essential to identify where each sentence starts
and ends. While usually a sentence ending is identified by punctuation mark, there are spe-
cial cases that must be accounted for like abbreviations (for example, "Mr." and "Miss.").
The process of sentence segmentation (Jurafsky and Martin, 2019) does just that, separat-
ing all the sentences in the given text as we can see in the following example.

An apple costs 1.05e. The Mr. wants 2 apples.

[An apple costs 1.05e.][The Mr. wants 2 apples.]

Lemmatization and Stemming

Lemmatization (Jurafsky and Martin, 2019) is the task of determining if two words have
the same root. Essentially, verbs in different tenses, singular and plural words and different
gender words are all considered to have the same root, which is how they will be processed.
As a quick example, the words climbing and climbed would be processed as climb.

Stemming (Jurafsky and Martin, 2019) is a simplified version of Lemmatization, where
instead of a deep analysis of each word, the suffixes are simply stripped from the words in
order to achieve a good enough result.

Part-of-speech Tagging

As we mentioned previously, POS(Jurafsky and Martin, 2019), consists in giving each
word specific lexical categories. While the most used categories are verb, noun, adjective
and adverb, more can be used such as pronouns, prepositions, determinant, among many
others. POS is extremely helpful in understanding the relations between a given word
and its neighbors, giving the program a deeper knowledge about the overall context. An
important English reference tag-set was introduced in (Marcus et al., 1993), including 45
tags used of POS.

2.2.3 Syntactic Phase

The syntactic phase, as the name suggests, deals with the syntax of the input text. The
word syntax comes from the Greek syntaxis, meaning "setting out together or arrangement"
(Jurafsky and Martin, 2019), dealing with how words are combined to form sentences,
making some sentences valid and others invalid (Richards and Schmidt, 2013). During this
phase, syntactic ambiguity can occur, where the true meaning of the sentence is not clear

18

Background Knowledge

due to various possible interpretations. As an example, in the phrase I saw Carlos with
the binoculars, it is not clear if Carlos was carrying binoculars or if he was seen through
the binoculars.

Dependency parsing is done during this phase, resulting in a parsing tree, which is helpful
in minimizing syntax ambiguity as well as grammar errors. We mostly use this type of
parsing in dependency grammars, which are important for speech and language processing
systems, although other types of parsing such as constituency parsing exist and are used
when in the presence of different type of grammars (Jurafsky and Martin, 2019).

Dependency Parsing

Dependency parsing (Jurafsky and Martin, 2019) is used in order to establish relationships
between certain "head" words and "dependent" words. To illustrate this relationship,
labelled and directed arcs are usually used.

Figure 2.8: Dependency Parsing graph example(Jurafsky and Martin, 2019).

Each arc label describes the dependency that the arc is representing, initially defined and
further expanded after as we can observe in figure 2.8, an example taken from (Jurafsky
and Martin, 2019), with the phrase United canceled the morning flights to Houston.

2.2.4 Semantic Phase

The Semantic Phase (Jurafsky and Martin, 2019; Sarkar, 2016), aims at finding a meaning
behind the input words and how they fit in a given context. While the lexical and syntactic
phase deal with the overall structure of the input text, semantic only cares about the true
meaning behind our input. Similarly to the previous phases, ambiguity can also occur here
when the given sentence is capable of having more than one meaning. The main NLP task
of this phase is Named Entity Recognition (NER), which we will briefly describe in the
next paragraph.

Named Entity Recognition

In NER (Jurafsky and Martin, 2019), the goal is to find useful information about named
entities in our input, where a named entity is anything that can be referred to with a
name, be it a person, a company, a brand, etc. It is also usual to consider dates, prices,
expressions, among others to be entities as they can be referred to by a specific name.

In table 2.1 we can see a short list as an example of existing NER types, adapted from
Spacy1documentation. The number of entities to be used depends on the model used.

1https://spacy.io/api/annotation#named-entities

19

Chapter 2

Type Description
PERSON People, including fictional
NORP Nationalities or religious or political groups
ORG Companies, agencies, institutions, etc.
EVENT Named hurricanes, battles, wars, sports events, etc.
WORK_OF_ART Titles of books, songs, etc.
LANGUAGE Any named language.
QUANTITY Measurements, as of weight or distance.
MONEY Monetary values, including unit.

Table 2.1: A List of generic NER types.

2.2.5 Discourse Phase

The Discourse phase (AI - Natural Language Processing n.d.; Thanaki, 2017), commonly
known as discourse integration, deals with the connection between sentences and the sense
of continuity in the ideas transmitted by each of them. In other words, the meaning of
each sentence depends on the meaning of the one that precedes it and contributes to the
meaning of the succeeding one. As such, this phase deals with the coherence of the overall
input text, such as whole paragraphs or even the whole document. Coherence analysis can
be local and global.

Coherence Relations

There is more than one method for discourse organization and coherence. The most used
method is Rhetorical Structure theory, where relations are defined between spans of text,
defining a nucleus, a central part to the writer, and a satellite, a less central part that whose
meaning usually depends on the nucleus. These relations are represented graphically, in a
tree format with an arrow from the satellite to the nucleus (Jurafsky and Martin, 2019).

The second most used method is Penn Discourse TreeBank, where labelling is lexically
grounded, using discourse connectives such as because, although, when, since or as a result.
There are four major semantic classes, Temporal, Contingency, Comparison and Expansion,
with each of them having types and subtypes that express relations between sentences
(Jurafsky and Martin, 2019).

Due to their differences, each of these methods have individual techniques for structure
parsing, a task whose aim is automatically determine the coherence relations between
sentences.

Entity-based coherence

A discourse can also be coherent by being about some entity, where the discussion revolves
on that entity. There are two theories of this kind, Centering Theory and Entity Grid.
Centering theory bases itself on the fact that at a given time the overall text will be centered
(hence the name) around a specific entity. Entity Grid is a technique based around a
two-dimensional array, where columns are entities, rows sentences and cells represent the
possible appearance of an entity in a given sentence, with the values representing if the
entity has appeared and what is its grammatical role (subject, object, neither or absent)
(Jurafsky and Martin, 2019).

20

Background Knowledge

Global Coherence

While the previous techniques only deal with local coherence, Global Coherence analysis
(Jurafsky and Martin, 2019) is also present, with different types of discourse such as
argumentation and scientific (among others) having different types of global coherence
techniques.

2.2.6 Pragmatic Phase

Pragmatics (Richards and Schmidt, 2013) is the field of study in how language is used when
communicating, especially the relationship between sentences, context and situations. The
pragmatic phase (Thanaki, 2017), or pragmatic analysis, is the last step of a complete
NLP pipeline. This phase consists in gathering real world knowledge of what is the true,
real world meaning of the text (sometimes using external information) and how it was
communicated.

2.3 Speech Synthesis

Speech synthesis (Oord, Dieleman, et al., 2016; Richards and Schmidt, 2013) is the ar-
tificial generation of speech. A system used for this purpose has the denomination of
"Speech Synthesizer" with the final task of reading written text aloud in the most natural
way possible, ideally without the listener realizing the speech is being generated by a ma-
chine. In a very simplified manner, human speech production is done by using movements
and vibrations of muscles in conjunction with air-flow, generating periodic and aperiodic
components. These components are then filtered and their frequency characteristics are
modulated, generating speech. TTS systems aims to reproduce this process by computers.

In 1779, Christian Gottlieb Kratzenstein built a vocal track model that could produce
the five vowels. In the mid-1800s, Charles Wheatstone showed an improved version of
Kratzenstein’s model that could also produce the sound of almost all consonants and even
some words. However, it was only in 1939 that the first electrical speech synthesizer,
called "the Voder", was developed by Homer Dudley at Bell laboratories. The Voder had
a extremely high complexity degree, being almost unusable. With this said, Dudley also
released another device known by the name of "Vocoder", divided in two parts, the first
to analyze an incoming speech signal and the second to synthesize the sound, with this
system still being seen as the basis of most TTS systems today.

TTS systems can be viewed as a sequence-to-sequence (Sutskever et al., 2014), where
inputs and outputs may differ in size, mapping problem where a sequence of discrete
symbols (text) are converted into a real-valued time series (speech). These systems are
usually composed by two distinct parts, also referred to as the frontend and backend of the
system. The first part analyzes text by applying a variety of NLP techniques such as the
ones we saw before, outputting a phoneme sequence with a variety of linguistics contexts.
The second part generates the speech waveform by taking the phoneme sequence as input,
usually using prosody prediction and waveform generation.

One of the main uses of TTS, when in conjunction with STT, are virtual assistants. In
fact, these systems are already present in most of our day-to-day lives under the name of

21

Chapter 2

Siri2, from Apple (Capes et al., 2017), Cortana3 from Microsoft, Alexa4 from Amazon and
Google Assistant5 from Google.

2.3.1 Key Concepts

This section aims to expose some concepts that are used in the TTS field of study, being
commonly referred to when describing these systems.

Phoneme - A phoneme is usually considered to be the smallest unit of speech sound
in a language. It represents how vowels, consonants, and some aggregation of both,
sound. Words are composed by more than one sound and, as such, they represent a
group of phonemes working together. The English language has about 44 different sounds
which translate to 44 phonemes, but this number changes between different languages, as
phonemes are language-specific.

Grapheme - A grapheme is for writing, what a phoneme is for speech, or in other words,
the smallest unit of the writing system. However, a grapheme does not always correspond
to a single phoneme.

Speech Naturalness - Speech Naturalness is a degree of how natural a given speech is to
the listener. As an example, in speech synthesis, a robotic speech is considered to have a
low degree of naturalness as the listener can easily understand it is not a real human being
talking but a machine.

Intelligibility - Speech Intelligibility represents how clear the audio is and how easy it is
for the listener to easily understand what the transmitted message is.

Prosody - Prosody can be defined as the natural aspects that influence how speech sounds,
such as stress, irony or even the emotional state of the speaker. The differences caused by
these variables are usually reflected in a modification of pitch, loudness, timbre and length
of sounds.

Hertz - Hz, is the derived unit in the International System of Units and represents the
number of cycles per second. The human ear is able to hear frequencies between 20Hz and
20000Hz.

Fundamental Frequency - Fundamental Frequency, also referred to as "Fundamental
Frequency (F0)" or "Pitch", is the frequency of the lowest fundamental frequency in a
given voiced sound. In humans, it is represented by the vibrations on the vocal coords
being measured in Hz. A typical adult male voice will have a F0 of 85Hz to 180Hz and a
female between 165Hz and 255Hz.

Decibel - A decibel, or dB, is a measurement unit corresponding to one-tenth of a bel. It
is used to express power or intensity on sounds, tension, current, etc.

2.3.2 Sound Waves and Signal Processing Simplified

Sound is created with vibrations, specifically by sending waves of energy. These vibrations
travel through air, moving air particles and creating sound waves. These sound waves
can be graphically represented by waveforms, a representation of a wave’s displacement

2https://www.apple.com/siri/
3https://www.microsoft.com/en-us/cortana
4https://developer.amazon.com/en-US/alexa/alexa-voice-service
5https://assistant.google.com/

22

Background Knowledge

over time, where displacement measures how far air molecules move when vibrating, being
proportional to how loud a given sound is. Displacement is commonly represented in Y-axis
and time on the X-axis.

When using a waveform representation, two main measurements are used. Amplitude rep-
resents the maximum displacement of a given wave, while Frequency measures how many
times a waveform repeats itself in a given amount of time, a relation commonly measured
in Hertz, and associated to pitch. When a soundwave is sinusoid it is called "pure". Most
sound waves, however, are quite complex and composed by additional Harmonics and
Overtones. Harmonics are additional frequencies, always multiples of the fundamental fre-
quency and with lower amplitude, where the second harmonic has two times the frequency
of F0, the third harmonic has three times the frequency of F0, and it goes on indefinitely.
Overtones have a higher frequency than F0 but are not a multiple of F0. The addition of
Harmonics and Overtones to F0 creates the sound Timbre, allowing the ear to distinguish
different sounds with the same F0.

Finally, Period is the time required for the wave to perform a complete cycle in a given
point. Period is the inverse of frequency, as in equation 2.6, so a higher frequency corre-
sponds to a lower period.

period =
1

frequency
(2.6)

Signal processing is an engineering subfield aimed at studying, analyzing and modifying
signals such as sound and images. More recently, due to technology developments, more
and more digital methods are used for this end, culminating in the creation of a Signal
Processing subfield known as digital signal processing. While analog signals are continuous
in time, being represented by waves, digital signals are discrete and represented by samples.
Figure 2.9 depicts a comparison between the analog, or continuous, signal and a digital or
discrete one.

Figure 2.9: Continuous signal, represented by the green line, and a discrete represented by
the various blue samples (Sampling (signal processing) n.d.).

The amount of samples per second on a given sound is specified by the sampling rate,
in hertz or kilohertz , with a sample rate of 16 Khz or 16000 Hz translating into 16000
samples per second. Generally speaking the bigger the sampling rate, the crispier the audio
is, however at a certain point the human ear can no longer distinguish the differences. With
this said, the more common values are 16 Khz for speech signals and 44-48 Khz for music
signals. When analyzing a given sound signal, it is common to use a representation called
spectrogram, extremely used on modern TTS systems.

23

Chapter 2

Generally speaking, a spectrogram contains three dimensions, time is represented on the
X-axis, frequency on the Y-axis and the amplitude of the time-frequency bins, as seen in
figure 2.10 on a color intensity (heat) map. A brighter color represents a higher volume
whereas blacker colors represent lower volumes. It is important to note that in some
representations the axis are switched (Frequency on the X-axis and Time on the Y-axis).

Figure 2.10: A representation of a Spectrogram in Mel Frequency Scale(Gartzman, 2019).

Mel-spectrograms (Umesh et al., 1999) use the Mel Scale, with the word "mel" coming
from melody. This scale is based on the perception of pitch of the human ear, establishing
a relation between real frequency and perceived frequency. As an example, a human would
notice a bigger sound differences in frequencies between 100Hz and 200hz than between
11000Hz and 12000Hz, even if the total difference are the same 100Hz. As a general rule,
the main point of reference between a mel-scale and a normal frequency is 1000 mels =
1000 Hz.

Figure 2.11: Mel to Hertz Scale(Mel Scale n.d.).

In figure 2.11 the full relation between mels and hertzs can be seen. It should be noted
how it isn’t a linear relation, as a consequence of human’s decreased perception in sound
differences as frequency goes up to considerable amounts. While there is no universal
formula to represent this relation, most of the time equation 2.7 is used, where m represents
mels and f represents the original frequency, in hertz.

m = 2595 log10(1 +
f

700
) (2.7)

In order to go from a simple sound signal into a spectrogram, a technique called Fast Fourier
Transform must be used in order to compute the Discrete Fourier Transform which outputs

24

Background Knowledge

the frequency contents of a signal. However, this technique just outputs the overall result
instead of the time dependent one. To solve this, the Short-time Fourier transform (STFT)
is instead used, computing the DFT on windows that slide across the full signal. A bigger
window will increase the temporal resolution but decrease the frequency resolution, an
effect known as time-frequency localization tradeoff (Librosa - STFT n.d.). Additionally,
another variable usually referred to as hop length is considerably important, consisting in
how many samples are skipped, or jumped, between each window analysis. Changing these
two variables directly affects the final number of frames on the spectrogram. Choosing the
right size of the window according to each problem is important, with bigger windows being
more suited to music and shorter windows for speech analysis. The reason for this is that
the amount of useful information across time is much higher on speech signals. Practical
examples of how these variables interact with each other will be showed on chapter 4.

As a final concept, while dB are the overall used unit to measure sound level, Decibels
relative to full scale (dBFS) is a unit also used, representing a measurement for amplitude
levels in digital systems with a given maximum available peak. As an example, if a given
system had a maximum peak at 30 dB, the equivalent value of dBFS at that point would
be 0 and everything lower would have negative values.

2.3.3 Approaches

As we saw before, TTS systems are usually comprised by the frontend and backend, with
each module being perfected as technology advances, always aiming at overcoming the
main challenges of achieving high degrees of naturalness, intelligibility and prosody. How-
ever, there have been considerably bigger changes on the backend module, with two main
approaches being developed. In this section, we will describe each one of these approaches
and how they differ (Oord, Dieleman, et al., 2016).

Concatenative Approach

Concatenative Speech (Oord, Dieleman, et al., 2016) consists, as the name implies, in con-
catenating segments of previously recorded human speech. These segments, or utterances,
are called units and are saved into databases. Most of the time, they consist of words,
syllables, phonemes and other units of sound and speech in context positions. In order
to achieve the best quality speech, one has to find the most suited unit length. However,
there is a trade-off between shorter and longer units, where longer units are able to achieve
a bigger degree of naturalness, due to having less concatenation points, and more control
of coarticulation, but also require more recorded units in the database resulting in more
memory used. On the other hand, shorter units require less memory but sample collecting
and labeling procedures become more complex.

Overall, Concatenative methods are usually limited to one speaker and require more mem-
ory than other approaches although by having a large database, with a large number of
recorded units with varied prosodic and spectral characteristics, it is easier to generate a
more natural sounding speech.

Statistical Parametric and Deep Learning Synthesization

Parametric Speech Synthesization is considered to be the first truly data-driven approach,
taking advantage of generative models in order to synthesize speech and training them
on sets of data. Initially, statistical parametric approaches made use of Hidden Markov

25

Chapter 2

models which would extract parameters and linguistic features from a speech representation
in order to feed them to a vocoder, which would synthesize the speech waveform. When
compared to concatenative methods, two main advantages arise such as the big reduction
in the memory used, since a database with utterance is not needed in real-time and the
capability to alter some parameters in the waveform, altering the final generated speech.
However, as a downside, naturalness is often worse (Oord, Dieleman, et al., 2016).

Neural Network Speech Synthesis systems, as the name implies, use neural networks to
achieve speech synthesization. While some authors also consider these systems as para-
metric approaches by using a generative approach to predict the vocoder parameters, it is
mostly referred as a different deep learning approach. The main objective of these imple-
mentations is to synthesize speech while, at the same time, try to simplify the whole TTS
pipelines by only using simple datasets with <text,audio> pairs without additional nota-
tions. The final aim is creating a completely end-to-end system instead of a multi-stage
one, as we can see by the simplified evolution in figure 2.12.

Figure 2.12: The overall TTS architecture evolution (X. Wang, 2019).

In this type of approach, it is usual for the frontend to output a Mel-spectrogram, a
representation of the frequencies of a sound signal as it varies with time, used as an input
for the backend vocoder. This spectrogram has the phonetic properties of the original
input text encoded, used during the waveform synthesization.

As soon as the spectrogram is generated on the frontend it may be served as the input to the
backend, taking into account that most current state-of-the-art vocoder implementations
are expecting a spectrogram as the input. With this information, a speech waveform may
be predicted and synthesized.

This approach is extremely dependent on the training data, as the quality of the original
dataset may greatly increase or decrease the final quality of the synthesized speech.

Even with the quick improvements of neural speech synthesizers currently being made, this
approach still suffers from flaws such as:

• Robotic Tone - The most common error and one of the main challenges of TTS
systems is robotic tone where, as the name implies, the audio sounds similar to a
robot, with a lack of naturalness. This error may be very simple to detect based on
the sound characteristics and spectrogram if the robotic effect is extremely evident,
or very hard if the effect is subtle.

• Excessive silence - Excessive silence, or stammering, occurs when the system re-
peats itself or makes short (yet excessive when in the middle of phrases) pauses

26

Background Knowledge

before continuing. This usually happens in certain words or phonemes. After the
occurrence, the system may continue without further problems, although sometimes
it may affect the generation, leading to more errors.

• Random Artifacts - Random artifacts are random and sudden sounds that are
sometimes generated. Usually these have a very short duration although they are
still noticeable when hearing the generated speech.

• Critical Errors - Critical errors occur when the synthesization goes wrong, com-
pletely ruining the generated speech. This can happen at any point of the sentence,
with the generated speech having a much longer duration than the desired one and
being composed by continuous and random sounds.

• Background Noise - Although not that common, it is possible for random noise
to be generated alongside speech. The existence of noise in the training dataset can
be the cause of this problem.

• Pitch changes - Similarly to random artifacts, the generated speech pitch is also
subject to random sudden variations, although it is not that common for this error
to appear.

• Incorrect Prosody - Prosody is one of the hardest components to synthesize cor-
rectly. Incorrect or stale prosody happens regularly in the generated speech. This
error is complex to detect, being more easily corrected by improving the original
dataset, similarly to background noise.

• Long Sentences Struggles - When the text to be synthesized is unusually long, the
probability for the occurrence of the previous errors increases. Overall, the lengthier
the text, the more errors appear. To a certain degree, this can be solved by simply
dividing the phrase using punctuation.

These flaws are generally hard to predict, as a given trained model may be working perfectly
for some phrases while struggling with others. As a final note, errors such as excessive
silence and robotic tone are sometimes mentioned on the TTS community, but the above
flaws were observed during our own experimentations. Some error samples can be heard
on the following Google Drive link6.

6https://drive.google.com/drive/folders/1BbkqyFl5B61Bi6L7LG57uLQVe48aeHQh?usp=sharing

27

This page is intentionally left blank.

Chapter 3

State of the Art

In the previous chapter we talked about how Text-to-Speech (TTS) synthesis has the
final objective of generating an understandable speech waveform, given text as input.
In this chapter, we will take a look at existing state-of-the-art solutions, how they are
implemented, the methods they use to test these implementations and expose some public
available datasets.

3.1 Existing implementations

Current implementations can be divided in three separated groups, Text-to-Spectrogram,
VoCoders and End-to-End systems, according to their functions and architectures.

3.1.1 Text-to-spectrogram

Text to spectrogram implementations are considered the frontend of TTS systems. As we
mentioned previously, this part is responsible for reading the given text data, preprocess
it and map the given features and characteristics to a certain representations, which is
usually a mel-spectrogram.

DeepVoice 3

Deepvoice is a TTS system developed by Baidu1, a Chinese multinational technology com-
pany. Deepvoice had three iterations, Deepvoice 1 (Arik et al., 2017), Deepvoice 2 (Gib-
iansky et al., 2017) and finally Deepvoice 3 (Ping, Peng, Gibiansky, et al., 2017). The first
iteration consisted of a single speaker model that could be trained without a pre-existing
TTS system, which used a variant of Google’s Wavenet (Oord, Dieleman, et al., 2016) for
the vocoder. The system consisted of five main blocks:

• A grapheme-to-phoneme model based on an encoder-decoder architecture, that would
use a multi-layer bidirectional with a Gated Recurrent Units (GRU) for the encoder
and a deep unidirectional GRU for the decoder. This model had the final objective
of converting written text into the corresponding phonemes.

1https://www.baidu.com/

29

Chapter 3

• A segmentation model that would try to find the boundaries of each phoneme in
the speech waveform part of the pair (text,speech). In other words, it would try to
establish an alignment between the sequence of phonemes and a given utterance.

• A phoneme duration model for predicting the duration of each phoneme in a phoneme
sequence, where the input consist in an hot-vector with information about the phoneme
and the stress associated with that phoneme.

• A fundamental frequency model, that is actually part of the same neural network as
the previous model. It is related with the prosody of the sentence by predicting wether
a given phoneme is voiced and, in a positive case, also predicts the Fundamental
Frequency (F0).

• An audio Synthesis Model, that essentially is a modification of Wavenet, for synthe-
sizing audio by combining the output of the previous models.

Figure 3.1: Original Deepvoice architecture (Arik et al., 2017).

Figure 3.1 represents the full overview of the original architecture of Deepvoice during
training (a) and inference (b) as well as the links between the five models described.
As said before, the duration prediction and fundamental frequency models are actually
training in conjunction and form the same neural network.

The second iteration was based on a similar pipeline as Deepvoice 1 but improved the qual-
ity of each block and separated the previously connected phoneme duration and frequency
models. In addition, Deepvoice 2 also introduced multi-speaker capabilities. To do this,
the models were augmented with a low-dimensional speaker embedding vector per speaker.
The parameters of each speaker are stored in a low-dimensional vector, which means that
almost all weights are shared between them, avoiding additional unnecessary work. These
speaker embeddings are included in multiple parts of each model as it wield better results
than only including them on the initial input.

In figure 3.2 we can see this system in action, as each speaker embedding are included on
various steps of segmentation (a), duration (b) and frequency (c) models.

The changes made to the third iteration, Deepvoice3, were much bigger than between
the previous two versions. This final iteration achieves a much more compact form by
using a fully-convolutional attention-based character-to-spectrogram architecture, which
also enables parallel computation allowing much faster training.

There are three main components, all of them fully-convolutional:

30

State of the Art

Figure 3.2: Multi-Speaker Deepvoice 2 Architecture (Gibiansky et al., 2017).

• An encoder used to convert textual features into an internal learned representation.
The encoder starts with a embedding layer to convert the input into vectors. These
vectors are then projected to a given dimensionality and go through convolution
blocks to extract time-dependent text information. Finally, they are projected back
to the original dimension in order to create attention vectors.

• A causal decoder, which takes the learned representation and decodes it into a
low-dimensional audio representation such as a mel-spectrogram. By using auto-
regression, it is able to predict future audio frames conditioned by past ones.

• A converter that predicts the final vocoders parameters from the decoder hidden
states. These final parameters may change according to the choice of vocoder. The
converter is non-causal and non-autoregressive being able to use future context from
the decoder to predict its outputs. In order to prove that Deepvoice 3 was inde-
pendent of the vocoder used, the authors adapted the outputs from the converter to
three different vocoders (Griffin-lim(Griffin and Lim, 1984), WORLD(Morise et al.,
2016) and Wavenet(Oord, Dieleman, et al., 2016)).

Tacotron2

Tacotron (Y. Wang, Skerry-Ryan, et al., 2017) was introduced in 2017 by Google as an
end-to-end TTS system that could be trained in simple <text,audio> with minimal human
annotation. Originally, Tacotron was based on a sequence-to-sequence model with atten-
tion, that would take characters as input and output the respective spectrogram frames.
To do this, an encoder block with a complex module, named CBHG by the authors, was
implemented. A CBHG module is composed by a 1-D convolution bank, a highway net-
work (Srivastava et al., 2015) and a bidirectional GRU, to extract sequential features. The
convolutional bank filters are used to extract local and contextual information. In order to
preserve original time resolution, a stride of 1 is used. The highway-network, an architec-
ture that introduced in (Srivastava et al., 2015) with the aim of simplifying the training
of very deep neural networks, is used to extract high-level features, while the Bidirectional
GRU is used to extract sequential features.

Just like Deepvoice 3, Tacotron also uses an encoder-decoder architecture where the encoder
converts each character of the input text into an hot-vector embedded into a continuous
vector.A set of non-linear transformations, which the authors call the pre-net, are then
applied to each embedding with the outputs being fed to the CBHG to achieve the encoder

31

Chapter 3

final representation used by the attention module. The decoder input is a concatenation of
the context vector and the attention Recurrent Neural Networks (RNN) cell output, while
the target is an 80-band mel-scale spectrogram as the authors considered a raw spectrogram
to be highly redundant when trying to learn alignments between speech signal and text.
Similarly to the encoder, the decoder also has a pre-net with dropout. Before the waveform
synthesis, the output of the decoder goes through a post-processing net, consisting of a
CBHG module, in order to get the vocoder parameters. For the waveform synthesization,
the Griffin-Lim algorithm (Griffin and Lim, 1984) was used, however this was due to time
constraints as the authors had the objective of making improvements at a later time. Figure
3.3 depicts the full architecture of the original Tacotron, from the character embeddings of
the original input text to the final synthesized waveform outputted from the Griffin-Lim
reconstruction.

Figure 3.3: Original Tacotron architecture(Y. Wang, Skerry-Ryan, et al., 2017).

In 2018, Tacotron 2 (Shen et al., 2018) was developed, mainly replacing the Griffin-Lim
algorithm of the original Tacotron for a modified version of the already existent vocoder
Wavenet while simplifying the original building blocks. For example, instead of the CBHG
modules and GRU recurrent layers in the encoder-decoder, Tacotron 2 uses vanilla Long
Short-term memory (LSTM) and convolutional layers. At the time of writing, Tacotron 2
has seen improvements to better allow control over various multi-speaker parameters and
generation, as we can see in the following work (Hsu et al., 2018; Y. Wang, Stanton, et al.,
2018).

Fastspeech

Fastspeech (Ren et al., 2019) was published in 2019, with the main goal of increasing syn-
thesization speed by making use of non-autoregressive approaches. Phonemes are extracted
from the given input text in order to generate a log-mel spectrogram, using a feedforward
network based on the self-attention Transformer (Vaswani et al., 2017), which was exposed
on the previous chapter, and in 1D convolutions. This structure was named "Feed-Forward
Transformer" on the original paper and can be seen in figure 3.4.

A length regulator is used to solve the problem of mismatching length between the phoneme
and spectrogram sequence in the FFT, while also controlling the voice speed and part of
the prosody.

Fastspeech was trained on the LjSpeech(see 3.3) and results almost match the ones achieved
with auto-regressive models. In order words, there is a tradeoff between Speed and overall

32

State of the Art

.

Figure 3.4: Original FastSpeech architecture and FFT block (Ren et al., 2019)

voice quality. With this said, the quality was only slightly lower while the inference speed
was several times quicker when compared to auto-regressive models.

3.1.2 Vocoders

Vocoders are the backend part of a TTS systems. They take the final representation of
the frontend, usually a mel-spectrogram, and convert the information to waveform format
in order to generate speech. In the following paragraphs, we will superficially describe the
existing state-of-the-art implementations of vocoders.

Wavenet

Wavenet (Oord, Dieleman, et al., 2016) was introduced in 2016, implementing a fully
probabilistic and autoregressive model by mainly using diluted convolutional networks.

According to the original Wavenet paper, a dilated convolution is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain
step.

Due to the nature of the input data, causal convolutions are used to avoid violations on
the ordering when modeling, while allowing faster training than RNN’s.

However, due to the causal nature, parallel inference is not possible although it can be
used during training as a consequence of the known time-steps of the ground truth. During
inference the predictions must be made sequentially, where each predicted sample is fed
back into to the network in order to predict the next one. This means that Wavenet is
extremely slow during inference, which presents a bottleneck for its use on a production
environment.

Wavenets can generate audio with a set of required characteristics by conditioning the
model on other input variables. Taking the example from the paper, in a multi-speaker
setting the speaker can be chosen by feeding the speaker identity to the model as an extra

33

Chapter 3

input.

To solve this problem, Parallel Wavenet was introduced in 2017 (Oord, Y. Li, et al.,
2017), combining the capacity of parallel sampling in Inverse Autoregressive flows (Durk
P Kingma, Salimans, et al., 2016) with the efficient training of Wavenet, creating, like
it is said in the original paper, a new form of neural network distillation referred to as
"Probability Density Distillation" where a already trained Wavenet model is used as a
teacher for a feedforward IAF model.

Figure 3.5: Overview of Probability Density Distillation (Oord, Y. Li, et al., 2017).

As we can see in figure 3.5 the main idea of the teacher-student framework is for the student
to attempt to match the probability of its own samples under the distribution learned by
the teacher.

Additional loss functions have been introduced as probability density distillation is not
enough to assure the student network generates high quality audio. These are power loss,
perceptual loss and contrastive loss.

Power loss ensures that the power in different frequency bands of the speech are on average
used as much as in human speech, to avoid generating whispering. Perceptual Loss aims
to penalize bad pronunciations. Finally, contrastive loss aims to minimize the Kullback-
Leibler divergence, which essentially is a measure of how different one probability distri-
bution is from another one, between the teacher and student when both are conditioned
on the same information and maximizes it in different conditioning pairs.

The quality of speech achieved with this improvement had no significant difference, however
the system was several orders of magnitude faster at inference than the original one. As
such, Parallel Wavenet has been deployed in a production environment with success.

WaveGlow

Waveglow (Prenger et al., 2019) is an open-source Vocoder implementation proposed by
Nvidia2 in 2018 that uses knowledge from Wavenet and Glow (Durk P Kingma and Dhari-
wal, 2018) (Hence the name Waveglow), in order to achieve high-quality audio synthesis
while rejecting the use of auto-regression and, as such, allowing parallel computation.

Glow is a work published by Nvidia, in 2018, that makes use of flow-based generative
models to manipulate images. This same model type is used on Waveglow, resulting in a
flow-based network that only uses a single cost function which results in simple and stable
training.

2https://www.nvidia.com/en-eu/geforce/

34

State of the Art

While there are other solutions where auto-regression is not used such as Parallel Wavenet
(Oord, Y. Li, et al., 2017) and Clarinet (Ping, Peng, and J. Chen, 2018), their imple-
mentations are far more complex to implement and train while achieving similar results
to Waveglow. With this said, Waveglow only supports a single-speaker while the others
support multi-speaker.

WaveRNN

WaveRNN (Kalchbrenner et al., 2018) was developed by Deepmind3 in 2018 and, as the
name implies, uses a single layer RNN’s with a dual softmax (a mathematical exponential
normalization function) layer and aims to reduce the number of parameters needed to
produce speech,while maximizing their performance gains with the objective of requiring
less computational power while sampling. The authors believe that large sparse WaveRNN
networks tend to outperform small dense ones, where a large sparse network

In short, a sparse network is a network with fewer links, which means that weights are
more relevant as each one has a bigger impact on the whole network. Dense networks are
the opposite.

In order to prune the weights, a binary mask is used. At start time, the weight matrix is
dense but every 500 steps the weights in each sparsified layer are sorted by their magni-
tude and the mask is updated by zeroing a set number of the weights with the smallest
magnitude.

z = Z(1� (1� t� t0
S

)3) (3.1)

Expression 3.1 represents the function used when pruning weights. Z is the target sparsity,
t0 is the starting pruning step in training and S is the total number of pruning steps. The
set number of weights to be zeroed every 500 steps is a fraction of z.

To allow training in GPU’s, a process based in sub-scaling is implemented. Sub-scaling
allows the generation of multiple samples at once in a single batch,where a tensor of scale
L is folded into B sub-tensors, each with a scale of L

B .

These sub-tensors are generated respecting their order, where each of them is conditioned
by the previous one. While this could prove to be a handicap to parallel processing, only a
small portion of the previous sub-tensor is needed and, as such, the generation of the next
sub-tensor may start soon after the start of the generation of the previous one.

The small numbers of parameters and low requirements on memory band-with, allows
implementations on low-power mobile platforms of real-time synthesis, being the first se-
quential neural model to achieve such feat.

3.1.3 End-to-End

End-to-End systems are capable of dealing with the whole process without the need of an
independent backend or frontend.

Clarinet
3https://deepmind.com/

35

Chapter 3

Clarinet (Ping, Peng, and J. Chen, 2018) was developed by Baidu as an improvement upon
DeepVoice 3. It is the truly first end-to-end TTS system as it does not need a text-to-
spectrogram or Vocoder to generate speech. It is a truly convolutional text-to-wave system.
In this architecture, the spectrogram representation usually used to bridge the two main
components is replaced by hidden states.

All the modules used in clarinet are convolutional, with the aim of avoiding RNN problems
such as vanishing gradient while allowing fast training.

Figure 3.6: Overview of Clarinet Architecture (Ping, Peng, and J. Chen, 2018).

As we can see in figure 3.6, the architecture is composed by four main parts:

• An Encoder and a Decoder, that share their implementations with the ones in Deep-
Voice 3, with the decoder outputting a log-mel spectrogram.

• The Bridge-net, a convolutional block that processes the hidden representation from
the decoder and predicts a log-linear spectrogram, while upsampling the hidden rep-
resentation from a frame-level to a sample-level.

• The Vocoder takes the final hidden representation of the bridge-net to synthesize the
waveform.

The waveform synthesization uses a teacher-student framework, similar to Parallel Wavenet,
by using a Gaussian autoregressive WaveNet as the teacher-net and the Gaussian inverse
autoregressive flow as the student-net. For loss computing, KL-divergence and power loss
is used as only using KL-divergence resulted in whispering.

3.2 Evaluating Results

Evaluating the quality, mainly the naturalness and intelligibility, of speech is usually a
very subjective task. As a consequence, the listening tests are usually regarded as the
most reliable way of assessing audio quality.

The most common way of evaluation is Mean Opinion Score (MOS) where volunteers are
usually asked to rate the audio in a scale of 1 to 5 in increments of 1 or 0.5 as we can see
in table 3.5. These tests should also be done in a controlled environment alongside a large
pool of subjects to guarantee the validity and accuracy of the test.

However, in recent years, most companies outsource the evaluation tests by crowdsourcing
them, with the most used platform for this end being Amazon’s Mechanical Turk (Kittur
et al., 2008). Using platforms such as this, however, means that a controlled environment is
no longer achievable as the hearing capabilities of the users, the quality of their surrounding

36

State of the Art

Written Score Numerical Score
Excellent 5

Good 4
Fair 3
Poor 2
Bad 1

Table 3.1: The Mean Opinion Score ratings.

regarding sound isolation and the system outputting the sound can’t be controlled. In 2011
Microsoft introduced CrowdMos (Ribeiro et al., 2011), an adaptation to MOS evaluation
that takes into consideration the price of the crowd and the different variables that were
introduced by the lack of control of the testing environment. In addition, CrowdMos also
has available a toolbox to make it easier to integrate the tests with Mechanical Turk.

It is usual to compare the MOS results with a ground-truth value. A Ground-truth can be
seen as the gold standard, the value that we should aim. In the case of Speech Synthesis,
the MOS score of a true human speech could be considered the ground truth.

System Type MOS
DeepVoice 3 (WaveNet) Text-to-Mel 3.78 ± 0.30

Tacotron 2 Text-to-Mel 4.526 ± 0.066
WaveGlow VoCoder 3.961 ± 0.1343
WaveNet VoCoder 4.41 ± 0.069
Clarinet End-to-End 4.15 ± 0.25

Table 3.2: Overall state of the art systems comparison.

Table 3.2 represents a comparison of all the scores, with a 95% confidence interval, between
all the systems and approaches from the previous sections.

It should be noted, however, that the MOS scores were taken from each individual paper,
resulting in a different testing environment for each entry. As a consequence, this table
only serves as a superficial comparison with no real scientific value.

3.2.1 Automatic Evaluation

Numerous systems have been developed with the aim of classifying a given audio sample
in terms of overall quality. These systems are usually classified into intrusive and non-
intrusive (Patton et al., 2016). Intrusive systems and measurements such as the Mel-
cepstral distance (MCD) (Kubichek, 1993), PESQ (Rix et al., 2001) and POLQA (Beerends
et al., 2013) have been developed. However, and by being intrusive, they are expecting a
good quality sample alongside the original for comparison which is not available in TTS
systems. While non-intrusive systems like ANIQUE (Kim, 2005), LCQA (Grancharov et
al., 2006) and P.563 (Malfait et al., 2006) have been proposed, they are mainly aimed at
evaluating telecommunication and telephony systems, not being ideal when focusing on
certain speech characteristics. With this said, the MOS remains the best way to evaluate
TTS implementations(Patton et al., 2016).

Since the MOS score relies heavily on manual and subjective human work, it was only
natural for automatic systems, based on neural networks, to be developed. These systems
mostly take into account a previous dataset of sounds with a given MOS as a label for each

37

Chapter 3

sample. In the following paragraphs two of these systems are briefly described.

AutoMOS

AutoMOS (Patton et al., 2016) is a non-intrusive system, developed in 2016 by Google, for
inferring the MOS score of a given audio in increments of 0.5, developed mainly using an
architecture based on LSTMs whose input is the mel-scale spectrogram of a given sample.
The original spectrogram is enhanced by adding information regarding it’s velocity and
acceleration (also known as delta and delta delta). Figure 3.7 depicts this implementa-
tion. Throughout the whole work, the authors give the following definition for synthesizer,
directly citing them: a synthesizer constitutes a snapshot of the evolving implementation
of a unit selection synthesis algorithm and a continually growing corpus of recorded audio,
combined with a specific set of synthesis/cost parameters.

Figure 3.7: AutoMOS system architecture (Patton et al., 2016).

Regarding training and testing data, the authors use an internal dataset with samples and
their respective naturalness MOS resulting from various year of developing and testing
TTS systems. More specifically, the available data is composed by 168086 ratings across
47320 utterances from 36 different synthesizers, with each originating a number of samples
between 64 and 4800.

To fine tune the hyperparams, Google’s Cloud HyperTune 4 was used, with the best
achieved results being displayed on table 3.3

In terms of results, AutoMOS tends to avoid the end of scale predictions (very high or very
low MOS results), however this may be reflecting the distribution of the training data.

MOSnet

MOSnet (Lo et al., 2019) was presented in 2019 with the aim of presenting a neural network
solution for evaluating voice conversion, which consists of trying to change a given speech
signal of a source speaker to sound as if it was uttered by the target one while keeping
the linguistic characteristics. While this implementation does differ from traditional TTS
systems, it still uses MOS as an evaluation metric alongside the comparison between the
original signal and the converted one. According to the paper, however, these two scores
consistently achieve similar results, which allows the development of a system that only
focus on the MOS.

4https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning

38

State of the Art

Description Range Explored Best Performer
Learning rate; decay / 1000 steps 0.0001 - 0.1; 0.9 - 1.0 0.057; 0.94

L1; L2 regularization 0.0 - 0.001 1.4e-5; 2.6e-5
Loss strategy L2 | cross-entropy cross-entropy

Synthesizer regression embedding dim 0 - 50 37
Timeseries type log-mel | pooled conv1d log-mel

Timeseries width (# mel bins, conv filters) 20 - 100 86
Timeseries 1-step derivatives (none) | vel. | vel. + acc. vel. + acc.

LSTM layer width; depth 20 - 100; 1 - 10 93; 2
LSTM timestep stride at non-0th layers 1 - 10 10
LSTM layers feeding hidden layer inputs all | last all
Post-LSTM hidden layer width; depth 20 - 200; 0 - 2 60; 1

Table 3.3: Overall best hyperparameters for AutoMOS

MOSNet bases itself on Convolutional Neural Networks (CNN), bidirectional long short-
term memory (BLSTMs) and CNN-BLSTMs for extracting valuable features from an in-
putted spectrogram, interpreting the problem as a regression. The overall architecture of
MOSnet has a considerable degree of complexity as shown in figure 3.8.

Figure 3.8: MOSnet system architecture (Lo et al., 2019).

In order to train, validate and test, a set of 20580 samples were used, divided into 13580,
3000 and 4000 samples respectively. Since the problem at hand consisted on speech, all the
audios were downsampled to 16 kHZ. In terms of results, the best architecture was found
to be CNN-BLSTM. At the date of the article writing, MOSNet was the first end-to-end
speech objective assessment for voice conversion.

3.3 Datasets

Speech Datasets are not easy to generate as they required heavy human interaction. With
that said, it is possible to find free datasets with really good quality, that were actually

39

Chapter 3

used in some of the state-of-the-art approaches. In this section we will describe some of
them.

LibriSpeech ASR Corpus

LibriSpeech (Panayotov et al., 2015)5 is a collection of more than 1000 hours of 16 Khz
read English speech. It was used in DeepVoice3 and was prepared by Vassil Panayotov
with the assistance of Daniel Povey. This is one the biggest datasets, containing more than
60 GB of multi-speaker data across all the files.

LibriSpeech is structured in development, training and testing sets. They are structured
by user ID, chapter ID and audio utterance ID’s. The dataset consists of a group of folders
whose name is the User ID. Inside the user ID folder, we can find folders with the chapters
that were used, also referenced by an ID. Inside the chapter folder, there are the audio
files, named with the structure "UserID-ChapterID-FileID.flac", and one transcript text
file name "UserID-ChapterID.trans.txt" with the text from each of the audio files.

Figure 3.9: LibriSpeech Overall Structure.

In figure 3.9 we see the four audio files that were gathered by user 1 reading chapter 101
as well as the the full transcript from those passages.

LJ Speech Dataset

LJ Speech Dataset (Ito, 2017)6 is a public domain speech dataset consisting of 13,100
short audio clips of a single speaker. The clips length varies from approximately 1 to 10
seconds and were automatically segmented according to silences of the recording, for a
total of about 24 hours of speech that translates to 2.6 GB of data. It was used when
training WaveGlow. This dataset structure is contained in a file called "metadata.csv". It
then has a folder named "wavs" which contains all the audio files, each with a unique ID
as the name. In table 3.4 we can see the overall structure of the dataset. Each entry in
the column ID corresponds to a file with the same name in the folder "wavs". Then we
have the text transcription of the audio on the column Transcription and in the column
Normalized Transcription we have the same text but with numbers, ordinals, and monetary
units expanded into full words.

CSTR VCTK Corpus

CSTR VCTK Corpus7, originally developed for building HMM-based TTS systems (Ya-
magishi et al., 2009), is a multi-speaker dataset, containing data uttered by 109 native

5http://www.openslr.org/12
6https://keithito.com/LJ-Speech-Dataset/
7https://datashare.is.ed.ac.uk/handle/10283/2651

40

State of the Art

ID Transcription Normalized Transcription
LJ002-0298 in his evidence in 1814, said it was

more
in his evidence in eighteen fourteen,
said it was more

LJ003-0050 (1) those awaiting trial; (one) those awaiting trial;

Table 3.4: LJ Speech Structure.

speakers of English, with various accents, where each speaker reads about 400 sentences.
The data was recorded using the same device across all speakers and was further com-
pressed and downsampled to a quality of 16 bits and 48khz. It has a size of about 10
GB and was also used in DeepVoice3, alongside the already mentioned LibriSpeech ASR
Corpus.

Mozilla Common Voice

Mozzila Common Voice8 is an initiative by Mozilla to build a high quality, free dataset of
various voice speakers and languages.

It is currently under development and increasing in a daily basis. At the time of writing, it
has 40 languages and 4257 recorded hours. The english dataset has 51072 different voices
and 1488 hours of speech, which translates to about 38 GB of data.

3.4 Competition

There are currently available TTS solutions for developers, with the use of Application
Program Interface (API)s. In general, these solutions have a good degree of quality but
their extensive use in a production environment can be costly. They also support a large
numbers of languages, voices and control over some variables but only a small part of them
are synthesized using neural methods.

Google Cloud Text-to-Speech

Google Cloud Text-to-Speech 9 has more than 180 voices spanned across more than 30
languages generated using concatenative, parametric and neural methods (using Wavenet).
As expected, the neural voices are considered premium and have a different pricing.

Additionally, it allows the modification of variables such as speed, pitch and volume and
the introduction of detailed elements such as pauses. It is also possible to select profiles,
developed to better suit certain target devices speakers such as wearables, phones, speakers,
among others.

In order to connect to this solution, developers can use REST or gRPC api’s protocols,
accepting inputs with raw text or speech synthesis markup language (SSML). It is possible
to convert the audio into base64 encoded audio and then decode it into mp3 format to
save in a file.

Azure Speech Services

8https://voice.mozilla.org/en/datasets
9https://cloud.google.com/text-to-speech/

41

Chapter 3

Azure Speech Service 10 is Microsoft solution regarding TTS. It has more than 80 voices
(81 standard and 5 neural), a number that can be expanded by using voice customization
with just a few minutes of training data, and 45 different languages. However, at the time
of writing, voice customization using neural methods has limited access and requires an
application in order to be enabled.

Variable modification such as rate, volume and pronunciation is also possible by using
SSML. When using neural voices, the speaking style can be adjusted to better express
cheerfulness, empathy, or sentiment.

IBM Watson

IBM Watson TTS11 is available for 7 main languages, namely English, French, German,
Italian, Japanese, Spanish and Brazilian Portuguese, using neural and standard generative
methods. It supports various audio formats such as WAV, FLAC, MP3, among others.

Watson is available through an HTTP interface using REST API or WebSockets, allowing
the modification of variables such as pitch, rate and timbre by using SSML.

Amazon Polly

Amazon Polly 12 is Amazon’s TTS system. It allows two speaking styles, a Newscaster
type, tailored to news narration and a more Conversational type for more general cases
such as telephony applications. At the current time, it is available in 29 Languages with
more than one voice per each language, including male and female variants.

Amazon Polly is available to developers with the use of a REST API and also supports
variable modification such as loudness, pitch, speaking style and speech rate SSML.

Name Languages Voices Neural
Voices

Integration Feature
Control

Google Cloud TTS 30 187 95 REST; SDK Yes
Azure Speech Ser-
vices

45 81 5 REST; SDK Yes

IBM Watson 7 34 14 REST, Websockets;
SDK

Yes

Amazon Polly 29 61 13 REST; SDK Yes

Table 3.5: Mean Opinion Score ratings.

3.5 Open-source implementations

A variety of TTS systems are available as open-source implementations, with some of these
even providing pre-trained models. Each of these implementations bases itself on a given
TTS architecture and are more often than not improved by a community. Since they
follow an open-source philosophy, we did not see them as competition but as a possible
opportunity, especially when most of the licenses used allow modification and commercial

10https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
11https://www.ibm.com/watson/services/text-to-speech/
12https://aws.amazon.com/polly/

42

State of the Art

usage. After going through a variety of repositories on Github13, the ones with greater
overall quality were the following:

• Fatchord’s WaveRNN14 - An implementation of WaveRNN using Pytorch15, a
python deep learning framework, and allowing Graphics Processing Unit (GPU) us-
age for training and inference. While WaveRNN was used for the backend, a Tacotron
1 implementation was used for the frontend. The author has available two pre-trained
models, one for WaveRNN and one for Tacotron.

• R9y9’s Wavenet Vocoder16 - A Wavenet implementation using Pytorch. It is
strictly the backend module and, in order to make inferences, the mel-spectrogram
must be inputted instead of the original text. It also provides a pre-trained model.

• Keithito’s Tacotron17 - Tacotron implementation using Tensorflow18, a machine
learning framework. It also provides pre-trained models.

• Nvidia’s Tacotron 219 - Nvidia provides their own Pytorch interpretation and
implementation of the Tacotron 2 paper, using WaveGlow as the Vocoder. Models
are also provided.

• Nvidia’s Waveglow20 - This repository is the official Nvidia implementation from
(Prenger et al., 2019). It uses their own Tacotron 2 implementation, also open-source,
for the frontend module. Models are available for use as a direct download or as a
Pytorch import21.

• Mozilla TTS22 - This is Mozilla’s official TTS repository, seen as a part of the
Mozilla Common Voice project23, and implements tacotron 1 and 2 using both Ten-
sorflow and Pytorch. Regarding the vocoder, Griffin-lin is used.

• ESPnet24 - ESPnet is an end-to-end processing toolkit mainly focused in TTS and
Speech-to-Text (STT). It is considerably more complex than the previous presented
projects, as it includes a variety of architectures and is maintained by a community
of considerable size. Developed using Pytorch it includes a variety of models such
as Tacotron, FastSpeech and Transformer as well as integrations with vocoders such
as wavenet. Additionally, it also includes single and multi-speaker capabilities. It
can be said that, at the time of writing, this is the definitive toolkit used across the
open-source TTS community.

Across our experimentations, we used most of the described repositories to test various
TTS implementations. However, ESPnet is considerably more advanced and active in all
aspects when compared to the others. As a matter of fact, most of the authors of other
repositories are now actively working and helping in ESPnet. These clear advantages
regarding this toolkit led us to adopt it as our main tools for synthesizing speech.

13https://www.github.com
14https://github.com/fatchord/WaveRNN
15https://pytorch.org/
16https://github.com/r9y9/wavenet_vocoder
17https://github.com/keithito/tacotron
18https://www.tensorflow.org/
19https://github.com/NVIDIA/tacotron2
20https://github.com/NVIDIA/WaveGlow
21https://pytorch.org/hub/nvidia_deeplearningexamples_waveglow/
22https://github.com/mozilla/TTS
23https://voice.mozilla.org/en
24https://github.com/espnet/espnet

43

This page is intentionally left blank.

Chapter 4

Proposed Approach

As mentioned before, the initial goal of the internship was the development of an in-house
Text-to-Speech (TTS) solution, for single and multi-speaker. However, after diving deeper
into the field during the first semester, we concluded that training a new model with better
performance than those already trained and publicly available would demand exceptionally
powerful computational resources. Even if the hardware was easily available, it would take
more than few days of non-stop processing to completely train the text-to-spectrogram and
vocoder models. Furthermore, we concluded that the best way of significantly improving
performance would be by retraining with a better quality voice dataset. Using Talkdesk’s
own database of call records was not an option, not only due to legal constraints but also
due to the existent noise in those records, a consequence of all the compressions the sound
went through before being stored. Our only option would be to build an internal dataset
with professional speakers, resulting in extremely crisp and noise free sound. The time
and resources needed to build this dataset, and then train the models without having the
certainty of improvements, proved to be of extremely high risk.

After some thought, we decided to try to improve an existent solution while using the pre-
trained models, by predicting when errors such as excessive silence, robotic tone, sudden
artifacts and critical errors, such as the system blocking in a given word, would occur by
analyzing the spectrogram that originates from the frontend and is the input of the backend.
In case of detecting an error, a new, slightly modified text, would be generated to avoid the
problematic words of the original text. In addition, we also agreed to add improvements
such as background noise, simulating a working environment, and slight speech adaptations
by detecting if, for example, the caller is in a hurry by speaking quickly. In the end, we
believe these improvements would result in a more natural and personalized experience.
However, aspects such as performance during run-time and overall quality would prove to
be a considerable problem and the final goal was changed again.

With this final change, the goal was set to develop a evaluation system capable of quickly
outputting a radar/spider chart1 when the input was a group of synthesized audios from a
given TTS system. This would prove to be extremely useful in quickly evaluating various
implementations without loosing time in manually hearing samples.

The first section of this chapter will give an overview of the project requirements, where the
main tasks will be listed. In the second chapter, the risks associated with the development
requirements will be presented. The third section will show how the Talkdesk’s team where
the internship is taking place works, as well as some of the used tools. Finally, the fourth

1https://datavizcatalogue.com/methods/radar_chart.html

45

Chapter 4

chapter will show the overall schedule of the internship through two gantt charts, one for
the first semester and the other for the second semester.

4.1 Requirement Analysis

Software requirements (Wiegers and Beatty, 2013) are specifications of what should be
implemented, describing how a given system or feature should work and behave. They not
only express what should be implemented but also what may constrain this implementation.
In this section, we will describe the main requirement for implementing the above solutions.
Requirements are divided into four main types:

• Business Requirements - These requirements describe why the business, or orga-
nization, is implementing the system or feature and what benefits will originate from
it.

• User Requirements - Description of tasks or goals an user should be able to
perform and how it will achieve value from the system.

• Functional Requirements - Functional requirements describe what developers
should be implement and how the system should work in a given environment, always
fulfilling the business and user requirements.

• Non-Functional Requirements - These type of requirements often describe the
environment where the system should operate as well as proprieties such as avail-
ability, performance, security, usability and even compliance, regulatory, and certifi-
cation, among others.

4.1.1 Functional Requirements

As said before, functional requirements aim to describe what developers should implement,
taking into consideration business and user requirements. They are usually described with
an ID, Name, Description, Priority and Dependency. Each functional requirement may
depend on other requirement, so it is only natural that the dependent one has a lower
priority. In our project, we identified three different priorities, where 1 is high-priority and
3 is low-priority. The list of the functional requirements is the following:

ID: FR1
Name: Implement base TTS system.
Description: A base single-speaker TTS system should be implemented, making use
of already existing solutions.
Priority: 1
Dependency: None

ID: FR2
Name: Adapt TTS system to extract spectrogram information.
Description: Adaptations should be made to the TTS solution in order to better
extract information such as matrix and image representation about the generated

46

Proposed Approach

spectrogram during training and inference.
Priority: 1
Dependency: FR1

ID: FR3
Name: Build a robotic tone audio dataset.
Description: A dataset should be built containing various samples with different
degrees of robotic speech, in order to have different classes.
Priority: 1
Dependency: FR1

ID: FR4
Name: Build excessive silence audio dataset.
Description: A dataset should be built, containing good audio and audio with
excessive silence mid phrase.
Priority: 1
Dependency: FR1

ID: FR5
Name: Build critical errors audio dataset.
Description: A dataset should be built, containing audio that suffers from critical
errors.
Priority: 1
Dependency: FR1

ID: FR6
Name: Build random artifacts audio dataset.
Description: A dataset should be built, containing audio that suffers random
artifacts and noises mid phrase.
Priority: 1
Dependency: FR1

ID: FR7
Name: Build binary classifier to detect between robotic and non-robotic audio.
Description: An initial binary classifier should be built, with the aim of distinguish
between robotic audio and clean audio. In this case the various degrees of robotic
would not be considered.
Priority: 1
Dependency: FR3

47

Chapter 4

ID: FR8
Name: Build 3-class robotic audio classifier.
Description: Improving the classifier developed in FR6, the aim is to develop a 3
class classifier that should take into consideration 3 different degrees of robotic audio,
where the third class is clean audio.
Priority: 1
Dependency: FR7, FR1

ID: FR9
Name: Build 4-class robotic audio classifier.
Description: Improving the classifier developed in FR8, the aim is to develop a 4
class classifier that should take into consideration 4 different degrees of robotic audio,
where the fourth class is clean audio.
Priority: 2
Dependency: FR8, FR1

ID: FR10
Name: Build 5-class robotic audio classifier.
Description: Improving the classifier developed in FR8, the aim is to develop a 5
class classifier that should take into consideration 5 different degrees of robotic audio,
where the fifth class is clean audio.
Priority: 3
Dependency: FR9, FR1

ID: FR11
Name: Build binary classifier to detect extensive silence.
Description: A classifier should be developed to distinguish between normal audios
and audios with an unnatural amount of silence mid-phrase.
Priority: 1
Dependency: FR4

ID: FR12
Name: Build binary classifier to detect phrases with critical errors.
Description: A classifier should be developed to distinguish between normal audios
and audios that suffer from critical errors, where the speech eventually transforms
into random gibberish.
Priority: 1
Dependency: FR5

48

Proposed Approach

ID: FR13
Name: Build binary classifier to detect artifacts.
Description: A classifier should be developed to distinguish between normal audios
and audios that suffer from random artifacts, where there is suddenly a change on the
overall pitch or speech.
Priority: 2
Dependency: FR6

ID: FR14
Name: Build mixed classifier, using different errors.
Description: A classifier should be developed to distinguish between different errors
such as robotic tone, clean audio, excessive silence and critical errors.
Priority: 2
Dependency: FR7, FR8, FR11, FR12

ID: FR15
Name: Transform models outputs into radar chart.
Description: The various models output should be transformed into a radar chart,
to quickly interpret the various results and evaluate a given system.
Priority: 2
Dependency: FR7, FR8, FR11, FR12, FR13

4.1.2 Non-functional Requirements

Non-functional requirements, as presented before, aim at describing constraints and metrics
on how the overall systems should perform. The following were identified:

ID: NFR1
Name: Binary Models Accuracy
Description: The accuracy of binary models should be above 95%, since the two
classes are very different and have unique aspects.

ID: NFR2
Name: Multi-class Models Accuracy
Description: The accuracy of models consisting of more than two classes should be
above 80%.

ID: NFR3
Name: Programming Language.
Description: In order to maintain the integrity across the team’s programming lan-
guages, Python or Java languages should be used.

49

Chapter 4

ID: NFR4
Name: English Language.
Description: The system should be developed with a focus on the English language.

ID: NFR5
Name: Licenses.
Description: All the tools, data and libraries used must allow the use in a commercial
environment and should not have associated fees.

4.2 Risk Analysis

Software development projects, similarly other kind of projects, have risks associated with
them. These risks represent real problems that may arise during the development process,
each with unique consequences, solutions and a certain occurrence probability. Identifica-
tion and analysis of a project risks as soon as possible is of upmost importance in order to
design mitigation strategies, reducing their overall impact(Vieira, 2018/2019).

Each risk has three main attributes, Impact, measuring how much this risk would impact
the project or its threshold of success (TOS), Probability, measuring how probable is the
occurrence of the risk be and finally Timeframe, measuring when would the risk possibly
occur in the life of the project. Each of these attributes typically has three measurements:

• Impact - Catastrophic if project TOS becomes unreachable, Critical if TOS is only
possible with great effort and Marginal if TOS is still possible without much effort.

• Probability - High if the probability is higher than 70%, Medium if between 40%
and 70% and Low if it is lower than 40%.

• Time Frame - Long if longer than three months after the start of the project,
Medium if between one and three months and Short if only a few weeks after the
start.

Figure In this section we aim to expose the identified risks, classify them according tho the
previous attributes and suggest a possible mitigation strategy in the case of occurrence.

4.2.1 Identified Risks

For this project, the following risks were identified:

Name: Technology Constraints.
Description: The intern may not have experience with the techniques and technology
used for developing the solution.
Probability: High
Impact: Marginal
Timeframe : Short
Mitigation Strategy: In order to overcome this risk, the intern should study the

50

Proposed Approach

used technologies, do tutorials and ask his colleagues for help if needed.

Name: Hardware Constraints.
Description: The provided hardware by Talkdesk may struggle or be unable to
process data(in the case of Graphics Processing Unit (GPU) computing) during the
project, especially when training models and loading big data files.
Probability: High
Impact: Critical
Timeframe : Medium
Mitigation Strategy: In order to overcome this risk, a remote server with improved
hardware can be used.

Name: Remote Hardware performance Constraints.
Description: If a remote server is being used, the provided remote hardware may
still prove to be insufficient.
Probability: Low
Impact: Catastrophic
Timeframe : Medium
Mitigation Strategy: To overcome this risk, the team would need to ask for more
financial resources to be allocated to the project.

Name: Remote hardware usage limit.
Description: The remote servers used may have a given threshold for GPU usage,
only allowing training using CPU for a given time once this threshold is passed.
Probability: Low
Impact: Marginal
Timeframe : Medium
Mitigation Strategy: This risks may be mitigated by simply estimating the time
needed for development and experimentation based on CPU training times, which is
the worst case scenario.

Name: High Dataset creation complexity.
Description: The creation of the various dataset may prove to be harder than
initially thought, since the errors must be generated artificially to generate a high
enough number.
Probability: Medium
Impact: Critical
Timeframe : Short
Mitigation Strategy: The development of the datasets should be phased. For
example, initially only develop the robotic dataset and models and, only once this
section of the project is completed, start developing the next one. By doing this, it is

51

Chapter 4

possible to make and guarantee progress in at least one classifier.

Name: Limited Dataset size.
Description: The amount of samples generated and used must achieve a balance
between quality, generation time and training time. In the end, this could imply that
our datasets are relatively small for the task at hand, which would have a negative
impact on the final performance.
Probability: High
Impact: Critical
Timeframe : Medium
Mitigation Strategy: Due to our time-frame, the mitigation strategy passes for
carefully studying how the models are performing with the given datasets and, as a
last resort, slowly increase their size.

Name: Time Limitation.
Description: Developing all the proposed datasets and classifiers on the given
time-frame may prove hard to achieve, especially since the development relies on
external training conditions.
Probability: Medium
Impact: Critical
Timeframe : Long
Mitigation Strategy: Ignore the requirements with lower priority and focus on
errors that happen more regularly such as robotic tone and excessive silence.

Name: Low Performance.
Description: Achieved model performance may be lower than expected.
Probability: Medium
Impact: Critical
Timeframe : Long
Mitigation Strategy: Improve the dataset, and search for possible flaws in the
program and training methods.

4.3 Methodology

The company follows the software development processes introduced by the agile method-
ology Scrum (Rising and Janoff, 2000) and, as such, this is also the approach followed by
the text-to-speech team.

Scrum is an incremental approach to building software with the aim of keeping high pro-
ductivity and focus across the team during long periods of time while avoiding burnouts
by finding the right working pace for each team. Following Scrum guidelines, Talkdesk is

52

Proposed Approach

mostly composed of small teams with less than 10 members. These teams are then grouped
into larger clusters.

There are three distinct phases when approaching a new project:

• Planning Phase - Initially the team goes through a planning phase in order to
define crucial aspects of the project such as the initial approach, state-of-the-art and
competition analysis and architecture even though the latter can be changed at any
time during development.

• Development Phase - After the initial phase, the development takes place, divided
into smaller phases called sprints where each sprint can last from one to five weeks.

• Final Phase - This last phase is essentially the wrap-up and closure of the product
development, taking place after the last sprint.

The current identified tasks are listed and organized by priority in the backlog, a special
named list, at the start of each sprint. During the sprint, tasks are picked by the team
members for development and new tasks should’t be added to the current sprint backlog.
Once the sprint ends, new tasks are be listed and the cycle restarts. It is expected that
each sprint delivers a new part / improvement of the final product, being these the reason
to calling Scrum an incremental approach.

In order to keep track of the team progress, short daily meetings are usually held where
each members explains his current task, what he has done since the last meeting, current
difficulties and what he will do next. Additionally, weekly internship meetings were held
to track progress.

There are three main roles in a scrum methodology:

• Product Owner - Has the responsibility of understanding how the project should
progress in order to achieve success, taking into consideration what the clients want.

• Scrum Master - The Scrum Master has the responsibility of delegating the work
to the team while keeping track of the team productivity and burnout rate in order
find the right working pace. A close relationship should be held between the Scrum
Master and the Product Owner to ensure the project is going the desired way. All
the Scrum meetings should be leaded by the Scrum Master.

• Development Team - As the name implies, is the team responsible for developing
the product, consisting of two members at the time of writing.

In order to keep track of the tasks, two tools named Jira2 and another called Trello 3 are
used across the company. With these tools, teams can easily implement and follow the
scrum methodology, assign tasks to each member and visualize various charts to better
understand how the workflow can be further optimized.

For code versioning, the company uses Github 4, following a branching model called Gitflow
5. In Gitflow, each feature is developed on a independent branch, only being merged into

2https://www.atlassian.com/software/jira
3https://trello.com
4https://github.com/
5https://datasift.github.io/gitflow/IntroducingGitFlow.html

53

Chapter 4

the development branch when the code is ready. When a new feature is going to be
developed, it should be branched from the development branch.

When a certain release is ready, a new release branch should be created and deployed into
a test environment. After heavily testing this release, a merge to master and deploy to
production can be made.

In order to develop, any IDE could be used, however Google’s Colab6 was chosen to be
used since it also included free usage of Google’s Central Processing Unit (CPU) and
GPU hardware, even if this last one was sometimes limited according to usage, which is
extremely useful for quick testing and prototype development.

4.4 Planning

This section will show how the overall internship was planned during the first and second
semester by using Gantt7 charts. To design them, we used the free online tools provided
in TeamGantt8 website.

4.4.1 First Semester

During the first semester, the internship mainly consisted of gathering knowledge on Ma-
chine Learning, Natural Language Processing and Speech Synthesis. During the first three
weeks, Talkdesk provided activities and challenges to provide a better integration of the
interns in the company culture. The Gantt chart in figure 4.1 aims at giving an general
overview of how the internship was structured on the first semester.

Figure 4.1: Gantt chart for the first semester.

Each section includes not only the writing of the report but also all the time spent gathering
knowledge. We decided to start on the state of the art in order to see what the existing
approaches were and what technology was being used, to research on them during the
background knowledge phase. The review phase took longer than expected due to the
changes on the internship scope, due to reasons explained in the previous sections.

6https://colab.research.google.com/
7https://www.gantt.com/
8https://www.teamgantt.com/

54

Proposed Approach

4.4.2 Second Semester

During the second semester, the internship consisted mainly in developing the presented
solution, while trying to follow a total of 10 sprint phases. However, due to the nature
of the project, this was not always possible. In figure 4.2, the gantt chart for the second
semester can be seen.

Figure 4.2: Gantt chart for the second semester.

4.4.3 Full Internship

This section aims at showing the conjunction between the first semester and second
semester Gantt charts, seen on figure 4.3, to provide a complete overview of the full intern-
ship planning. As expected and exposed previously, the first semester was more focused
on gathering knowledge, while the second semester had a greater focus on development

Figure 4.3: Gantt chart for the full internship.

55

This page is intentionally left blank.

Chapter 5

Development Approach

As initially explained in chapter 1, this work went through 3 distinct phases, where each
one had a different end goal for the internship project. The first phase corresponded
mostly to the first semester, where the goal was developing an in-house Text-to-Speech
(TTS) solution. The knowledge gathered during the initial research, allowed the team to
understand that achieving this goal with good results would not be feasible, not only due to
the financial and time resources it would require but also due to the sheer complexity of the
project. Additionally, the discovery of high quality, open-source implementations, meant
we could just use this existing work as a starting point for our TTS system. However,
these implementations had flaws on the synthesized speech such as robotic tone, excessive
silence, random artifacts, among others.

This led the team to the second phase, the shortest one, where the new goal was developing
a system capable of detecting synthesization errors and correct them during run-time in a
production environment, avoiding outputting them to the listener (which, in a production
environment, would be a client.). Essentially, this was an attempt at improving the existing
implementations without having the need to re-train the already publicly available TTS
models. Additionally, background effect such office noise would also be added to the
synthesized sound, in order to improve realism to the listener. However, achieving the
needed performance on detecting the error and solving during run-time was not realistic.
Even if time was not a constraint, solving these kind of errors is a considerable challenge.

With this in mind, the third and last phase started, where the end goal was developing a
system capable of evaluating a given TTS implementation by taking into consideration the
more common errors. To do this, various classifier models would need to be built, trained
and connected in a pipeline so that the output could be a graphical representation on the
performance of the system we were evaluating. This was useful to quickly understand how
good an open-source (or even closed-source) system was quickly, while also understanding
its strengths and flaws.

In this chapter we describe the development process during the internship and the various
phases, taking a look at the original requirements and how the final outcome compares to
the initial planning. Since this work revolved mostly around experimentation, much of the
information regarding how things were built on the third phase will be made on the next
chapter, in conjunction with the obtained results. Additionally, a brief description of the
work done on the second phase will be made, as well as a small overview on some of the
tools that were used.

57

Chapter 5

5.1 Developed Work

On the previous chapter, the functional and non-functional requirements, as well as the
associated risks, were presented, with these being set before the actual development process
began. By setting these goals at the start of a project, it is possible to have a general
guideline of the expected work. However, it is not uncommon for the project outcome to
fail meeting all the planned requirements, especially if any of the predicted risks came to
happen. In table 5.1, the original goals can be seen as well as information regarding their
completeness, where each color has the following meaning:

• Green - The requirement was completely fulfilled.

• Yellow - The requirement was partly fulfilled or was discarded during development.

• Red - The requirement was not fulfilled.

Requirement ID Requirement Name Status
FR1 Implement base TTS system
FR2 Adapt TTS system to extract spectrogram information
FR3 Build a robotic tone dataset
FR4 Build extensive silence dataset
FR5 Build critical errors dataset
FR6 Build random artifacts dataset
FR7 Build binary classifier to detect between robotic and non-

robotic tone
FR8 Build 3-class robotic tone classifier
FR9 Build 4-class robotic tone classifier
FR10 Build 5-class robotic tone classifier
FR11 Build binary classifier to detect extensive silence
FR12 Build binary classifier to detect phrases with critical er-

rors
FR13 Build binary classifier to detect artifacts
FR14 Build mixed classifier, using different errors
FR15 Transform models outputs into radar chart

Table 5.1: Functional Requirements Status.

Generating random artifacts on purpose is considerably harder than generating other er-
rors, which led us to give a lower priority to requirement FR6. Furthermore, since this
error is not common, it was more logical to spend more time developing other datasets
and models first. Critical Errors are easier to artificially generate, and the dataset devel-
opment was initiated but went on hold when the time constraints became clearer. Since
these datasets were not generated, the associated models were also not developed, leading
to the not fulfilled status on FR5, FR12 and FR13. This fact was also the reason why the
mixed model only was partially developed, simply including robotic and extensive silence
errors.

The 5 class classifier for robotic tone requirement (FR10) was discarded after the develop-
ment of the previous 4 class classifier, since the amount of data available was not enough
for yielding minimum acceptable results, as will be explained on the next chapter. Finally,
the radar chart, FR15, was not developed due to time constraints and lack of more error
classifiers.

58

Development Approach

While most of the requirements were fulfilled during the third phase, where the final goal
was more clear, FR1 and FR2 were actually developed between the start of the internship
and the end of the second phase alongside the theoretical research. In order to implement
FR1, various open-source systems were tested, each one with their own implementations.
The goal was to search for various alternatives, comparing them in terms of how simple
it was to make them work locally or on Google’s Colab and how good their performance
was, in both overall quality and inference speed.

As previously said in 3.5, ESPnet was chosen as the default system to use, since it al-
lows the use of various algorithms and pre-trained models with only a few lines of code.
Furthermore, it is being constantly updated by a community of users from very reputable
companies. Of course that the constant updates also bring the occasional compatibility
issues with previous versions and code, however the pros of being able to constantly work
with the state of the art massively outweighs the cons in this case.

5.2 Interrupted Development

The adaptation of a TTS to extract spectrogram information (FR2) was developed during
the short second phase and using this requirement’s and FR1 output allowed us to better
understand the problem at hand. Initially the main problems were identified and cataloged
using an internal dialog dataset with 705 utterances spanned across 26 different dialogs.
Each of these utterances was synthesized by the three ESPnet’s models that were available
at the time, Transformer, Fastspeech and Tacotron, for a total of 2115 audio files.

Each of these audios was then individually heard, in order to identify the existence of errors
and classify them. By doing this, the aim was to start building a dataset for the future
system to use. During the synthesization process, a record of various metrics regarding
each utterance and each dialog was kept. In Table 5.2 and Table 5.3 an example can
be seen for one utterance and one dialog, respectively. Additionally, for each utterance 3
images were saved, the internal spectrogram generated by the frontend to be fed to the
vocoder, the final spectrogram from the generated audio and the final waveform.

The extracted metrics were used to check for patterns between audios with good quality
and audios with errors, while the spectrograms allowed to understand if the problems were
generated on the frontend or the backend of the TTS system. Most of the experiments
showed the flaws already came from the frontend module. An initial architecture for this
system was also designed and while some work was done regarding this implementation, it
was interrupted.

5.3 Developed Classifier Models

Taking into account table 5.1, a total of 5 different classifier models were developed. The
first three implementations focused on the problem of robotic tone, with each classifier
having a different amount of classes. Naturally, the higher the number of classes, the more
specialized it would be as it is able to distinguish more variable levels of robotic tone.
The fourth implementation focus are prolonged silences in the middle of the phrases, or
as we called it throughout this work, excessive silence. The final and fifth classifier mixes
the previous implementations, trying to distinguish audios with a robotic tone, excessive
silence and clear audio. These 5 implementations can be described as the following:

59

Chapter 5

Utterance Metric Variable Value
dialog_id fastspeech_text
utterance_id 1
original_text hello. Can you tell me, What type of movies do you

like?
treated_text HELLO. CAN YOU TELL ME, WHAT TYPE OF

MOVIES DO YOU LIKE?
no_punctuation HELLO CAN YOU TELL ME WHAT TYPE OF

MOVIES DO YOU LIKE
total_words 12
total_letters 42
total_chars 56
mean_letters_by_word 3.5
audio_duration 3.99
mode fastspeech
device cuda
generation_time 0.52
frontend_time 0.09
frontend_spectrogram_time 0.37
vocoder_time 0.04

Table 5.2: Example of metrics taken for a single utterance.

Dialog Metric Variable Value
id fastspeech_text
total_dialogs 2
dialog_utterance_num 404
dialog_mean_utterance_num 202
dialog_total_words 4425
dialog_word_mean 10.95
dialog_total_chars 22579
dialog_mean_char 55.89
dialog_total_audio_time 1508.54
dialog_mean_audio_time 3.73
mode fastspeech
device cuda
dialog_total_generation_time 29.45
dialog_mean_generation_time 0.07
total_generation_time_frontend 0.25
mean_generation_time_frontend 0
total_generation_time_frontend_inference 13.19
mean_generation_time_frontend_inference 0.03
total_generation_time_vocoder 8.68
mean_generation_time_vocoder 0.02

Table 5.3: Example of metrics taken for a single dialog.

• Binary classifier for robotic tone - Binary classifier with the goal of predicting if a
given audio file has a robotic tone or is considered good for a production environment.

• 3 Class classifier for robotic tone - An improvement upon the previous model,
which would classify the audio according to 3 classes. Class 1 has an extremely

60

Development Approach

robotic tone, class 2 has a slightly robotic tone and class 3 is good quality audio.

• 4 Class classifier for Robotic tone - This model simply added one more class,
splitting the previous model’s third class. The fourth class was only comprised of
audios from recorded human speech.

• Binary classifier for excessive silence - A binary classifier that would tell us if
a given audio had excessive silence mid phrase. This would not take into account if
the voice had robotic tone or not.

• 3 Class mixed classifier - A mixed classifier, based on the 3 class classifier for
Robotic tone, where the intermediate class was removed and replaced by a class
characterized by excessive silences. This classifier not only detects robotic tones but
also excessive silence.

The datasets used for these models were different according to the problem they were
tackling and were mostly developed internally as it was needed. In chapter 6, a more in-
depth view of each one of these classifiers will be made, as well all the development process
and obtained results.

5.4 Main Frameworks and Libraries

In order to develop the datasets and error models, a variety of tools, including frameworks
and libraries were used. This section an overview of these will be presented.

Sklearn

Scikit-learn1, also known as Sklearn, is a free library for python, aiming at simplifying the
process of implementing machine learning algorithms and neural networks. Methods such
as classification, regression, clustering, etc. are provided in a very user-friendly format.
In this work, the pure Sklearn library was used to implement k-fold validation across all
classifiers in order to confirm the validity of our results and making sure the original division
was not the reason of over or under-fitting.

Tensorflow

Tensorflow2 is an open-source framework developed by Google, mainly used to develop
machine learning, deep learning and mathematical projects. In this case, this project relies
heavily on this framework, making use of the provided Functional Application Program
Interface (API)3. Tensorflow is also heavily linked to Sklearn, making use of most aspects
of this library and simplifying the interactions between the user and the framework, while
allowing the use of GPU’s processing power.

Librosa

Librosa4 is an audio library with great capabilities aimed at manipulating and analyz-
ing audios, be it speech, music or simply sounds. The developed work relies on Librosa

1https://scikit-learn.org/stable/
2https://www.tensorflow.org/
3https://www.tensorflow.org/guide/keras/functional
4https://librosa.org/librosa/

61

Chapter 5

mainly for pre-processing tasks such as loading the dataset samples into time-series, mak-
ing transformations into spectrograms and calculating the velocity and acceleration of a
given audio.

Being more specific, the main used functions were the following:

• Load5 - Function used for loading a given audio into a floating point time series.
The default parameters were used except for the sampling rate (sr on the function)
which was set to 16 Khz or 16000 Hz since most of the datasets audio samples were
already using this rate as it is generally good enough for speech audios.

• Melspectrogram6 - This function takes as input a given audio time-series and
computes the associated mel-spectrogram. In terms of parameters, the used ones
were the number of mels (n_mels) and the n_fft. The n_fft value will directly
affect the hop length and window size, important variables seen in section 2.3.2,
influencing not only the number of columns on the outputted spectrogram but also
the amount of information it contains. More objectively, the window length will
assume the same value as the n_fft variable and the hop length will be equal to
n_fft
4 , as long as the default librosa values for these variables are used.

According to Librosa’s documentation, the used n_fft value should be 2048 for music
and 512 for speech processing, however tests were conducted using both values. As
seen before, these variables not only affect the overall shape of the output but also
other aspects such as the number of frames per second. The number of mels will
essentially translate to how many rows the outputted log-mel time-series will have,
directly relating to the number of features on our implementation.
Using a more practical example in order to see how these variables interact with
the output, lets take an audio sample with the total duration of 5 seconds. Since a
16 Khz sample rate is used, this audio will have 5 ⇤ 16000, or 80000, total samples.
If n_fft = 2048, then hop_length = 2048

4 which is 512. This means the resulting
spectrogram for this audio sample will have a total of 80000

512 , or 156.25, total frames.
In order to achieve our frames per second, the total frames are divided by the total
time in seconds which equals to 31.25 frames per second. If the same logic was
applied to the n_fft of 512 the resulting frames per second would be 125 which
contains considerably more information. Regarding the window size, if the value is
equal to 2048, the time per window is equivalent to 2048

16000 which is equal to 0.128
seconds, or 128 milliseconds. When analyzing speech, 128 ms is a considerably high
value and phonemes and spectral variations may not be discriminated, reducing the
overall amount of detailed information. On the other hand, if the value was 512, the
time per window would be 32 milliseconds, a more suitable value to achieve a more
detailed analysis. These simple calculation explains why Librosa advises different
n_fft values for music or speech.
Throughout our work, Librosa’s default values for hop_length and win_length were
used, which means that modifying the n_fft will be also affecting these variables.

• Power_to_db7 - This function simply converts the given power spectrogram to
use decibel units, essentially converting it to log scale.

• Delta8 - Function used to compute the derivate along a given axis. In this case it was
used to compute the delta, or velocity and delta delta, or acceleration. The outputs

5https://librosa.org/librosa/generated/librosa.core.load.html
6https://librosa.org/librosa/generated/librosa.feature.melspectrogram.html
7https://librosa.org/librosa/0.6.0/generated/librosa.core.power_to_db.html
8https://librosa.org/librosa/master/generated/librosa.feature.delta.html

62

Development Approach

were then concatenated to the original spectrogram increasing the total number of
features by 3 times.

Pydub

The python pydub9 library and packages are also aimed at extracting information from
audio sources, much like Librosa. In our case, however, it was only used to develop a system
that would help us assign stronger labels to the silence dataset, which we will describe in
greater detail on the next chapter.

The main feature used was the detect_silence10 function, which consists in an algorithm
that detects if there is a segment with length bigger than a given value and loudness lower
than a given threshold. In our specific case, the length must be bigger than 800 milliseconds
and loudness must be less or equal than -40 Decibels relative to full scale (dBFS)

MatPlotLib and Seaborn

Matplotlib11 and Seaborn12 are two libraries aimed at simplifying the process of generating
plots. They are widely used on the python ecosystem.

9https://github.com/jiaaro/pydub
10https://github.com/jiaaro/pydub/blob/master/pydub/silence.py
11https://matplotlib.org/
12https://seaborn.pydata.org/index.html

63

This page is intentionally left blank.

Chapter 6

Experimentation and Results

This chapter describes the development and experimentation process during the second
part of the internship, as well as the obtained results. The first section will present a
summary of the developed classifiers and main hyperparameters used, followed by a deeper
dive into each one of them on the second, third and fourth section. The last section will
give a final overview of all the classifiers.

6.1 Classifier Summary and Overall Structure

The main focus of this project went into the development of classifiers aimed at identifying
the main Text-to-Speech (TTS) problems, including robotic tones on the synthesized audio
and excessive silence in middle of phrases. While other errors exist and were identified,
they were left as future work due to time limitations.

As seen in chapter 5 a total of 5 classifiers were developed, each built in a specific timeframe
and inheriting most attributes from the previous ones. In order to simplify how the results
are exposed throughout this chapter, each classifier will be associated to an acronym, which
will be used as a prefix when explaining the various trained models of each classifier. The
5 classifiers, and associated prefixes, at the end of the internship were the following:

• Binary Classifier for Robotic Tone (B-RT)

• 3 Class Classifier for Robotic Tone (3MC-RT)

• 4 Class Classifier for Robotic Tone (4MC-RT)

• Binary Classifier for Excessive Silence (B-S)

• 3 Class Mixed Classifier (3MC-MIX)

In table 6.1 the information relative to each model can be seen in a more compact format.
Each of the models had the same set of hyperparameters, although with different values
according to the given experimentation. Table 6.2 shows the final hyperparameters, a
small description for each of them and if they were present on the original AutoMOS
implementation (Patton et al., 2016).

Naturally, the total amount of hyperparameters increased progressively as the development
advanced, starting only with the ones represented in AutoMOS, seen previously in table

65

Chapter 6

ID Classifier Problem Number
of
Classes

B-RT Binary Classifier for
Robotic Tone

Robotic Tone 2

3MC-RT 3 Class Classifier for
Robotic Tone

Robotic Tone 3

4MC-RT 4 Class Classifier for
Robotic Tone

Robotic Tone 4

B-S Binary Classifier for Exces-
sive Silence.

Excessive Silence 2

3MC-MIX 3 Class Mixed Classifier Excessive Silence and Robotic
Tone

3

Table 6.1: Developed classifiers overview.

3.3, and culminating with the ones seen on table 6.2. It is important to note that due
to time-constraints, the attention given to each of them was not the same across our
experimentations.

The size of the various sets was kept static through all the experimentations, with 80% for
the training set, 10% for the validation set and the last 10% for the testing set. While all
the results came from this training and testing techniques, cross-validation was also used
to confirm the results. By doing this, we made sure the final accuracy values from both
techniques were similar. 5 folds were used for classifiers B-RT, 3MC-RT, 4MC-RT and B-S
and 10 folds for 3MC-MIX.

The hyperparameters regarding masking, truncation and deltas are directly related to the
pre-processing of our data.

Setting the masking variable to true or false, toggled the use of a masking layer. Since
dataset length was variable, padding was used to make sure all the inputs had the same
length, a requirement of Tensorflow’s LSTM implementation. This was especially useful
when truncation was being used, since our dataset had very long and very short audios,
as seen in figure 6.1, which would cause small input to be expanded with more than 2 or
3 times its size in zeros, until the length was the same as the longest dataset sample.

The truncation variable allowed to choose if the samples bigger than a specific length,
computed by calculating the mean of the length of all audios plus the overall standard
deviation, should be truncated in order to avoid outliers.

Finally, the delta variable allows the addition of the velocity and acceleration, also referred
to as delta and delta delta, in each sample, effectively increasing the number of features
by three times, a technique used on the original AutoMOS paper. In figure 6.2, a normal
spectrogram is represented alongside it’s individual delta and delta delta representation,
as well as the spectrogram formed by concatenating the three representations. Note that
the concatenated representation lacks the y-axis scale, since it would need to have 3 times
the 0:8192 Hz scale of the previous plots as, in reality, it is composed by 3 different
spectrograms, each with its own 0:8192 scale.

66

Experimentation and Results

Hyperparameter Description Present in
AutoMOS

Train Ratio Percentage of the dataset to be used for training. No
Test Ratio Percentage of the dataset to be for Test. No
Validation Ratio Percentage of the dataset to be used for Valida-

tion.
No

Epochs Max number of epochs to be ran. No
LSTM Width Number of Long Short-term memory (LSTM)s to

be used. It should be between 1 and 2.
Yes

LSTM Depth Number of units on the LSTMs. Yes
Fully-Connected
(FC) Width

Number of Fully Connected layers to be used.
Should be between 1 and 2.

Yes

FC Depth Number of units for the first fully connected layer,
in case there are 2.

Yes

FC Output Width Number of units of the last layer, also called out-
put layer.

Yes

FC Activation
Function

Activation function to be used on the output layer. No

Loss Function Loss Function to be used. No
Global Metrics The type of accuracy to be used. No
Dataset Size If all the dataset should be used or if it is limited.

Useful for balancing all classes.
No

Cross Validation If cross validation should be used instead of the
fixed dataset split.

No

CV Fold Number Number of folds when using cross validation. No
Truncate If truncation of the audio should be applied. No
Deltas If the delta and delta delta (velocity and acceler-

ation) should be added to our input.
Yes

Masking If the masking layer should be enabled. No
Padding Type How padding should be applied, at the start or at

the end.
No

Truncate Value Fixed value for when to truncate the audio. No
Truncate Type How truncate should be applied, at the start or at

the end.
No

Optimizer The optimizer to be used between Adagrad and
Adam.

No

Learning Rate The learning rate of our model. Yes
Decay The applied decay for each 1000 steps. Yes
L1 Regularization The value of the L1 regularization. Yes
L2 Regularization The value of the L2 regularization. Yes
Number of Mels The number of Mels to use. Yes
Sample Rate The sample rate to be used in each audio. No
Pooling Size The size of the pooling to be applied on the pool-

ing layers.
No

Workers The number of workers to be used. No
Window Length The size of the window used when generating the

spectrogram from a given audio.
No

Table 6.2: Available hyperparameter, their description and presence on the original Auto-
MOS paper.

67

Chapter 6

Figure 6.1: Scatter plot of audio lengths (in seconds) distribution.

Figure 6.2: Spectrograms depicting the original, delta, delta delta and concatenated rep-
resentations of a Tacotron audio.

6.2 Robotic Tone Classifiers

The first objective was the development of the robotic tone dataset and the associated
robotic models. This section will dive into the first 3 developed classifiers, as well as the
experiments done and the associated results. While initially only a binary classifier was

68

Experimentation and Results

developed, it was further enhanced to allow classification of different degrees of robotic
tones.

6.2.1 Binary Robotic Tone Classifier (B-RT)

Being the first classifier developed, it was naturally the one where most experimentation
was done, which directly translates into a higher amount of time invested. From now on,
it will be referred as B-RT. Furthermore, it was also by developing this classifier and its
models that the knowledge regarding the used Tensorflow framework was gathered. As said
previously, the aim was to develop a classifier capable of distinguishing between robotic
tones, which consisted of various degrees of robotic and clear voice, that also had various
degrees of how clear they were depending on the source.

The sources for our initial dataset were the following:

• Concatenative System - Using an old and outdated concatenative system, we were
able to generate extremely robotic audios.

• Clone - This set of voices made use of an open-source project from github, named
Real-Time Voice Cloning by CorentinJ 1 and the generated voices suffered from low
quality and high noise.

• Fastspeech Model - Using the Fastspeech model provided by ESPnet.

• Tacotron Model - Tacotron Model provided by ESPnet.

• Transformer Model - Transformer Model provided by ESPnet.

• LibriSpeech Samples - Randomly selected samples from the LibriSpeech dataset, with
more than one voice being present.

A characterization of the dataset used can be seen in table 6.3, where each class has roughly
the same amount of audios, with 1000 audios for error class 0 and 1024 audios for the clear
audio class 1. In total, the initial dataset had 456 MB of data, spanning across 224 minutes
of audio. Samples for this dataset have been included on the following Google Drive link2.

Audio Source Number of Samples Class Categorical Numerical Class
Cloning 700 Robotic 0

Concatenative 150 Robotic 0
Fastspeech 150 Robotic 0
Transformer 150 Clear 1

Tacotron 150 Clear 1
LibriSpeech 724 Clear 1

Table 6.3: Robotic audio dataset used for the B-RT.

The development started by looking at Google’s AutoMOS paper (Patton et al., 2016)
as a starting point, whose architecture can be seen on figure 6.3. The starting point
was developing the same architecture using Tensorflow, with slight modifications to the

1https://github.com/CorentinJ/Real-Time-Voice-Cloning
2https://drive.google.com/drive/folders/1Zr8nmQV61xafGK2eQPJkaEQCAwGxswUa?usp=sharing

69

Chapter 6

output nodes, due to our desired binary output. Additionally, specific details of AutoMOS
architecture were not explicit and, as a result, certain parts of the network were susceptible
to our own interpretation of the paper. The developed Tensorflow network can be seen in
figure 6.4

In terms of differences between the original network and our interpretation, the masking
layer was added, as well as a pooling layer between both LSTMs, which is actually to
implement the stride depicted on the AutoMOS version instead of actual pooling. The
output layer was also changed, since our desired output was different.

Figure 6.3: AutoMOS system architecture, already seen in 3.7 but duplicated here to
improve reading flow.

Once the base architecture was complete, experimentation had to be done interactively
in order to fine tune the hyperparameters. Taking into account the limited time, the
approach taken was picking a first set of parameters to optimize and then, with the best
combinations from that first set, optimize a second set of parameters, with the final results
being considered our best architectures for the given problem. The distribution and tested
values can be seen in table 6.4.

Variable Values Phase
LSTM Width 4 ; 16 ; 32 ; 64 ; 93 1

N_fft / Window Size 512 ; 2048 1
Masking True ; False 1
Truncate True ; False 1
Deltas True ; False 1

Optimizer Adagrad ; Adam 1
Mels 20 ; 40 ; 60 ; 76 ; 86 ; 96 2

Learning Rate 0.001 ; 0.01 ; 0.056 ; 0.1 2
LSTM Depth 1 ; 2 2

FC Width 0 ; 15 ; 32 ; 60 2
FC Depth 0 ; 1 1

Output Layer Width 1 1 ; 2

Table 6.4: Optimized hyperparameters values and corresponding phase.

It is important to note that the fully connected layer width (FC width) and depth variables
were tested differently, even if they were also part of the second phase. While all combina-
tions of the other variables were tested, the fully connected layer always had a fixed value
for each value of LSTM Width. For example, the value of FC Width 15 was only used
when the LSTM had 32 units since it was approximately half the units. The aim of this

70

Experimentation and Results

Figure 6.4: AutoMOS Network Tensorflow interpretation and implementation.

extra layer was creating what can be called a funnel, avoiding a big jump between a LSTM
with various units to a very small output layer. Table 6.5 makes it easier to understand
this relationship. Note that when the LSTM had 4 and 16 units, there was no intermediate
fully-connected layer since the unit jump to the output layer was already relatively small.
In the case of a LSTM with 93 units, the FC width was 60 since it was the value used on
the AutoMOS implementation.

LSTM Width Possible FC Width Possible FC Depth
4 0 1
16 0 1
32 0; 15 1; 2
64 0; 32 1; 2
93 0; 60 1; 2

Table 6.5: Relationship between number of LSTM units and possible fully connected layers
configuration.

Taking into consideration the chosen parameters combinations, more than 1000 model

71

Chapter 6

experiments with different combinations were done. Once these were concluded, a large
amount of model architectures were available. However, the model selection was not simply
picking the overall best scoring ones. Instead, the best overall model for each amount of
mels tested was chosen, in order to have models with various amounts of features (as the
number of mels directly relates with number of features), increasing our overall diversity.
In addition, and in the specific case of the 86 mels, an extra model using spectrogram deltas
on the pre-process phase was also included since the original paper did use this technique.
The result of this selection is exposed on table 6.6, with further classifier models only
experimenting with these architectures.

20
Mels

40
Mels

60
Mels

76
Mels

86
Mels

86
Delta
Mels

96
Mels

Masking False False False False False False False
Deltas False False False False True False False
Truncation True True True True True True True
Optimizer Adagrad Adagrad Adagrad Adagrad Adagrad Adagrad Adagrad
LSTM
Width

64 93 64 64 32 32 64

LSTM Depth 1 2 2 2 1 1 2
FC Width 32 0 0 0 0 0 32
FC Depth 1 0 0 0 0 0 1
Output
Layer Width

1 1 1 1 1 1 1

Learning
Rate

0.01 0.01 0.001 0.01 0.01 0.01 0.01

N_FFT and
Window Size

2048 2048 512 512 2048 2048 512

Mels 20 40 60 76 86 86 96
Parameters
(weights)

378177 129736 77249 81345 42817 42817 465473

Train Accu-
racy

93.1% 91.4% 89.8% 89.9% 91.0% 95.6% 88.2%

Validation
Accuracy

91.3% 91.5% 93.0% 90.9% 88.6% 90.0% 90.8%

Test Accu-
racy

96.6% 96.0% 96.0% 95.5% 94.6% 94.6% 96.0%

Table 6.6: Best architectures for each number of mels tested. Note that the 60 mels model
is the best performing one.

The number of parameters / weights depends on the used layers, expected outputs and
input length. As an example, the 60 Mels model has 77249 parameters, corresponding
to the sum of the weights in the first and second LSTM and the last output dense layer.
If the input has length m, the number of LSTM parameters in Tensorflow is given by
4(mn+n2+n), where n is the number of units. In the case of that specific model, the first
LSTM had 4(64⇤60+642+64), or 32000, parameters and the second had 4(64⇤64+642+64)
which is 33024 (n is 64, since the input here is the output of the previous LSTM). Finally,
the last output layer comes after a flatten layer whose output is an array of size 12224. Since
it has only one output node, the last layer parameters are equal to 12224 ⇤ 1 + 1 = 12225.
Summing all these values, 32000 + 32024 + 12225 = 77249.

The overall accuracy of these models was above 90%, which is a very positive result even if

72

Experimentation and Results

lower than the 95% threshold defined on the non-functional requirements. The confusion
matrix for the test set of the best performing model, which is the model using 60 mels,
can be seen in its numerical form in table 6.7, while image 6.5 shows it in a more graphical
format alongside the plot depicting the evolution of accuracy and loss across training and
validation epochs. Cross validation tests using k-fold validation, with 5 folds, were also
ran separately to provide more certainty regarding the obtained results.

Robotic Clear
Robotic 101 3
Clear 5 94

Table 6.7: Numerical Confusion Matrix of the 60 mels robotic model.

(a) Graphical Confusion Matrix of table 6.7. (b) Accuracy and Loss across epochs for the train-
ing and validation sets.

Figure 6.5: Graphical Confusion matrix and evolution of accuracy and loss across epochs
for the 60 Mel binary model.

In terms of architecture and parameters, improvements could probably be achieved by
changing aspects such as decay, pooling size and L1 and L2 normalization. However, since
the dataset has a very limited size, it may be the origin of this lack of accuracy.

Furthermore, the samples whose source is Fastspeech are considered as part of the robotic
class but can sound very similar to samples from Tacotron and Transformer,which are
classified as part of the clear audio class, since their speaker is similar as it was generated
from the same dataset even if with different techniques. Figure 6.6 shows the 6 spectro-
grams, relative to each source of our dataset. Note that the presented spectrograms are
not really comparable since they originated from audios with different contents in terms
of speaker and phrase. However, by looking at each representation we can say that audios
from concatenative and cloning sources are considerably different from the rest since their
speakers have more unique characteristics. In the case of the concatenative samples a, the
audio comes from a male voice, while in the cloning samples b the audio has a constant
noise. Looking at the other four images, the similarities are evident, which emphasizes the
thin separation between them. Actual experiments were done where Fastspeech samples
were not included, which did yield inconclusive results, probably due to only 150 samples
being from this source.

73

Chapter 6

(a) Concatenative (b) Cloning

(c) Fastspeech (d) Tacotron

(e) Transformer (f) LibriSpeech

Figure 6.6: Spectrograms for the various 6 original sources.

6.2.2 3 Class Classifier for robotic tone (3MC-RT)

Once B-RT was concluded, the next step was improving that system in order to detect
3 different degrees of robotic voice tones, which can be referred to as extremely robotic
audio, slightly robotic audio and clear audio. This classifier will be referred to as 3MC-RT.

The most evident change to the previous model was the activation function, as sigmoid is
not well suited for multi-class problems. Hence, softmax was applied, which also changed
how the loss and accuracy were computed on Tensorflow. The loss was manually changed
from binary cross-entropy loss3 to sparse categorical cross-entropy loss4 and the accuracy is
automatically changed by the framework according to the number of outputs and activation
function used.

With the change from binary to multi-class, each audio had to be reclassified since we
lacked multi-class labels. Ideally, the binary classification labels would have been obtained
by merging the existing multi-class ones but, since at this time we did not have those, this
method was not possible, which led to the complete reclassification. On a first approach,
the audios were divided according to source. The resulting classes can be seen in table 6.8.

In order to keep the dataset balanced and due to the low amount of samples representing
slightly robotic tones, or class 2, it was decided to limit the amount of audios of each class
to 150. The 3 best models results can be seen in table 6.9.

The achieved scores were considerably positive taking into account how small the dataset
was. In order to try to improve and give more confidence to the results, we decided to

3https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy
4https://www.tensorflow.org/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy

74

Experimentation and Results

Audio Source Number of Samples Classs Categorical
Numerical
Class

Cloning 700 Robotic 1
Concatenative 150 Robotic 1
Fastspeech 150 Slightly Robotic 2
Transformer 150 Clear Audio 3
Tacotron 150 Clear Audio 3
LibriSpeech 724 Clear Audio 3

Table 6.8: First approach to 3MC-RT labels.

3MC-RT
Model 0.1

3MC-RT
Model 0.2

3MC-RT
Model 0.3

Samples per class 150 150 150
Masking False False False
Deltas False False False
Truncation True True True
LSTM Width 64 93 64
LSTM Depth 1 2 2
FC Width 32 0 0
FC Depth 1 0 0
Output Layer Width 1 1 1
Learning Rate 0.01 0.01 0.01
N_FFT 2048 2048 512
Mels 20 40 76
Parameters (weights) 378243 172704 105795
Train Accuracy 80.8% 90.4% 95.2%
Validation Accuracy 86.8% 81.6% 79.7%
Test Accuracy 80.0% 80.0% 83.5%

Table 6.9: Initial 3 best models for 3MC-RT

strengthen our labels. Instead of simply classifying them according to source, the audios
were listened and manual labels were given. It is important to note that in the case of the
LibriSpeech and cloning sources, not all samples were listened, due to the large amount of
files. During this process, we concluded that the voices whose source was cloning were not
well suited for this dataset, as they actually only had a big amount of noise which didn’t
necessarily translate to being a robotic voice and would only cause confusion.

However, as our dataset had just got smaller, we had the need to increase it, especially for
classes 1 and 2. To do this, more audios were synthesized. For class 2, we simply used the
Fastspeech model as we had done previously. In case of class 1, we used the built-in mac
voice of MacOS in order to have different robotic tones. Table 6.10 represents our final
dataset for the 3MC-RT. Samples can be heard on the following Google Drive link5.

Using our new dataset, we trained our defined set of 7 models, using the architectures
from the previously seen table 6.6, in order to study the results. In addition, each of the
architectures was further tested by setting a different limit to the number of samples used
by each class. In other words, for each architecture a model was trained using 50, 250, 500
and all samples of each class.

5https://drive.google.com/drive/folders/1gF7cB9s2uYOmz0w8XBHRt9V6rPJfzAtn?usp=sharing

75

Chapter 6

Class Number of Samples Categorical Numerical Class
Extremely Robotic 572 1
Slightly Robotic 538 2

Clear 731 3

Table 6.10: Final dataset for 3MC-RT.

In total, 28 models were trained for our 3MC-RT, with table 6.11 showing the five best
models of these 28, when sorted by validation accuracy. Curiously, most of the models that
used a dataset with only 50 samples of each class scored an high percentage in training,
validation and testing accuracy, with the 4 best models being part of these.

3MC-
RT
Model
1.1

3MC-
RT
Model
1.2

3MC-
RT
Model
1.3

3MC-
RT
Model
1.4

3MC-
RT
Model
1.5

Samples per class 50 50 50 50 All
Masking False False False False False
Deltas False False True False False
Truncation True True True True True
LSTM Width 64 93 32 32 64
LSTM Depth 2 2 1 1 2
FC Width 0 0 0 0 0
FC Depth 0 0 0 0 0
Output Layer Width 3 3 3 3 3
Learning Rate 0.001 0.01 0.01 0.01 0.001
N_FFT 512 2048 2048 2048 512
Mels 60 40 86 86 60
Parameters
(weights)

101699 172704 53955 31939 101699

Train Accuracy 81.0% 82.1% 75.3% 71.3% 81.1%
Validation Accuracy 96.7% 86.7% 85.3% 83.3% 83.0%
Test Accuracy 73.3% 80.0% 93.3% 66.7% 77.3%

Table 6.11: 5 best models for 3MC-RT, including models with 50 samples for each class.

However, having such a low amount of samples for each set reduces considerably these
models credibility. As an example, our best model (3MC-RT Model 1.1) only had 4 samples
for class 1, 6 samples for class 2 and 5 samples for class 3 in the test set, while our
fifth best model (3MC-RT Model 1.5) had 63 for class 1, 50 for class 2 and 72 for class
3. The difference between class samples on each test set is due to how the dataset is
randomly ordered, which directly impacts the class distribution on the last 10% of the
dataset corresponding to the test set. With this in mind, it was decided that models
trained with only 50 samples for each class should be discarded despite their good results.
Our second iteration of 5 new best models can be seen in table 6.12. Note that the old
model 3MC-RT 1.5 is now named 3MC-RT 2.1 since it was the best model not using a
dataset sample size equal to 50.

Given theses results, there are 3 main aspects worth of our attention:

• The first aspect to note is that all 5 models use either the full dataset or 500 samples
for representing each class. While not depicted in the table, the models that made

76

Experimentation and Results

3MC-
RT
Model
2.1

3MC-
RT
Model
2.2

3MC-
RT
Model
2.3

3MC-
RT
Model
2.4

3MC-
RT
Model
2.5

Samples per class All All 500 500 All
Masking False False False False False
Deltas False False False False False
Truncation True True True True True
LSTM Width 64 93 64 32 64
LSTM Depth 2 2 2 1 2
FC Width 0 0 0 0 0
FC Depth 0 0 0 0 0
Output Layer Width 3 3 3 3 3
Learning Rate 0.001 0.01 0.001 0.01 0.01
N_FFT 512 2048 512 2048 512
Mels 60 40 60 86 76
Parameters
(weights)

101699 172704 101699 31939 105795

Train Accuracy 81.7% 89.3% 85.7% 82.8% 81.7%
Validation Accuracy 83.0% 81.3% 79.0% 78.5% 78.2%
Test Accuracy 77.3% 83.8% 79.3% 83.3% 77.8%

Table 6.12: Final 5 best models for our 3MC-RT, after excluding the models where the
dataset size was 50.

use of 250 samples had considerably worse results and, similarly to the ones with 50
samples, were discarded.

• The second aspect we should focus is that the architecture of all the best performing
models for the different dataset sizes, including the previously discarded models of ta-
ble 6.11, is the same, which could potentially imply that this is our ideal architecture
for our final goal.

• Finally, the third aspect, is the number of parameters (or weights) on all our top
ranking networks, where the maximum value is 172.704, with the rest being around,
or below, 100.000. By comparing to our lowest scoring models (not depicted on
any table), which have around 400.000 parameters, it is easy to understand we are
actually taking benefits in using simpler neural networks. This actually makes sense,
as our full dataset still is actually small for our task, and training a bigger number
of parameters would make this more evident.

Diving deeper into the results and focusing on 3MC-RT model 2.1, which is our overall best
for this classifier, table 6.13 shows us the numerical confusion matrix from the test set, while
figure 6.7 shows the exact same matrix in a more graphical, but less detailed, representation.
The overall architecture regarding the used layers is the same as the previous model, seen
in 6.4.

By looking at these matrixes, it is evident that class 1 is being well classified and dis-
tinguished, which was expected due to being so unique when compared to the other two
classes. However, it is also clear that the model is getting confused when classifying audios
from classes 2 and 3. While this lack of accuracy represents a flaw, we were already pre-
dicting it. The problem here is that those classes are represented by very similar audios,

77

Chapter 6

Class 1 Class 2 Class 3
Class 1 59 0 1
Class 2 2 35 22
Class 3 2 15 49

Table 6.13: Numerical Confusion Matrix for 3MC-RT model 2.1.

Figure 6.7: Graphical Confusion Matrix for 3MC-RT model 2.1.

which were manually labeled on the dataset based on the subjective opinion and hearing
capabilities of the listener. In fact, we made an experience with various listeners which
resulted in a single sample being classified differently, proving the degree of subjectiveness
when doing this kind of labeling.

This degree of subjectiveness in conjunction to the low amount of samples currently on
the dataset, made this outcome expected. In figure 6.8, the evolution of training and
validation accuracy, as well as loss, of our model across the epochs can be seen, with the
convergence happening before our defined max number of epochs. We strongly believe that
increasing the amount of samples, and the strength of their respective labels, might allow
us to improve this aspect, allowing the model to converge later and improve the results of
our model, while keeping the current architecture.

Figure 6.8: Accuracy and Loss for 3MC-RT model 2.1

78

Experimentation and Results

On an additional note, while class 1 had 4 misclassified samples, we found out that they
were actually well classified by the model and the problem was on the actual human
inputted labeling, which shows the model actually correcting human error.

6.2.3 4 Class Classifier for Robotic Tone (4MC-RT)

The 4 class classifier for robotic tone, 4MC-RT for simplification, is simply an extension of
the previous 3MC-RT. The aim is essentially the same, detecting various degrees of robotic
voices. When compared to the previous classifier, the main difference is the existence of
a fourth class, generated by simply splitting the previous class 3. Simply put, the audios
previously classified as class 3 whose source was a TTS model kept its label and the ones
where the origin was a dataset from a real human (LibriSpeech) were assigned the new
label of class 4. The exact number of samples per class can be seen in table 6.14. Samples
are available on the following Google Drive link6.

Audio Source Number of Samples Categorical numerical class
Extremely Robotic 572 1
Slightly Robotic 538 2
Clear synthesized 397 3

Clear Human Voice 334 4

Table 6.14: Dataset used for representing 4 robotic classes.

With the knowledge acquired from the previous experience in building and training 3MC-
RT, it was already known the models for this classifier would get confused, especially since
the amount of samples did not increase despite one more class being added. With this
said, however, the trained models did achieve surprising and curious results.

Table 6.15 represents the 3 best models for this classifier, with all of them having less than
200.000 parameters. Once again, this comes to emphasize that a simpler network works
best with our current dataset.

By looking at the various accuracy scores, we can, curiously, note that they are actually
not much different than the ones attained when classifying three classes. By adding one
more class, we were expecting the confused behavior between class two and three to be
extended to class four.

Taking a look at the confusion matrix of 4MC-RT model 1, depicted on figure 6.9 and table
6.16, it can actually be seen the model had no problems in differentiating class 4, which
directly translates into the confusion existing between the samples coming from synthesized
sources. For comparison, 4MC-RT model 2 confusion matrix was also included in figure
6.9, which has the same problem even if it is not as one-sided as 4MC-RT model 1. Once
again, regarding the layer architecture, it remained the same as the previous classifiers,
seen in 6.4.

While not being our original goal, by conducting experiment with four classes it allowed
us to have a better understanding about which samples were causing confusion. While
class 4 samples have great quality, they also have very unique traits since it comes from
real audiobooks. The speech characteristics have much more emotion and prosody when
compared to other classes, which could justify why it is being classified with so much
accuracy despite having a smaller amount of audios. The results obtained training this

6https://drive.google.com/drive/folders/1TCMEYrHvjTVSL5kxPNb-4hsl6jAEd51T?usp=sharing

79

Chapter 6

4MC-RT
Model 1

4MC-RT
Model 2

4MC-RT
Model 3

Samples per class All All All
Masking False False False
Deltas False False False
Truncation True True True
LSTM Width 93 64 32
LSTM Depth 2 2 1
FC Width 0 0 0
FC Depth 0 0 0
Output Layer Width 4 4 4
Learning Rate 0.01 0.001 0.01
N_FFT 2048 512 2048
Mels 40 60 86
Parameters (weights) 190468 113924 37508
Train Accuracy 88.4% 84.0% 82.4%
Validation Accuracy 82.3% 80.3% 80.3%
Test Accuracy 76.8% 76.8% 78.9%

Table 6.15: 3 best models for our 4MC-RT.

Class 1 Class 2 Class 3 Class 4
Class 1 61 0 0 0
Class 2 2 50 39 0
Class 3 0 0 0 0
Class 4 0 0 0 33

Table 6.16: Numerical Confusion Matrix for 4MC-RT model 1.

(a) 4MC-RT model 1. (b) 4MC-RT model 2.

Figure 6.9: Graphical Confusion matrixes for four class 4MC-RT model 1 and 4MC-RT
model 2.

classifier made us understand that further specialize to 5 classes while using the current
dataset was not feasible since the confusion was going to increase.

80

Experimentation and Results

6.3 Binary Classifier for Excessive Silence (B-S)

In order to detect excessive silence in the middle of phrases, a binary classifier for excessive
silence, or B-S was built. Being a different error problem, the previous dataset could
not longer be used and, as such, a new one was built. To complete this task, ESPnet’s
transformer model was used, since it is the one with higher speech quality, to generate a
grand total of 4114 samples, which were initially classified as shown in table 6.17. Samples
are available on the following Google Drive link7.

Class description Number of Samples Categorical Numerical Class
Clear Audio 2207 1

Excessive Silence 2207 2

Table 6.17: Excessive Silence dataset initial approach.

The neural network was adapted from B-RT since it was also a binary model, where the
main difference is the use of a sigmoid activation function (and the associated changes
on loss function and accuracy calculation) with only one output node on the last layer.
Additionally, the truncate variable was always set to false, to avoid truncating the error
audio before the actual silence, which would cause wrong labels on our system. The 3 best
results and the respective architecture can be seen on table 6.18

B-S Model 1.1 B-S Model 1.2 B-S Model 1.3
Masking False False False
Deltas False False False

Truncation False False False
LSTM Width 64 93 64
LSTM Depth 1 2 2

FC Width 32 0 0
FC Depth 1 0 0

Output Layer Width 1 1 1
Learning Rate 0.01 0.01 0.01

N_FFT 2048 2048 2048
Mels 20 40 76

Parameters (weights) 531777 144895 86657
Train Accuracy 91.4% 91.2% 89.4%

Validation Accuracy 89.0% 87.8% 87.6%
Test Accuracy 92.3% 90.1% 89.1%

Table 6.18: First iteration of 3 best models for B-S.

While the overall accuracies were not disappointing, improvements could be made, espe-
cially on increasing the strength of the given labels, since our initial approach was simply
splitting the audios and trusting the transformer synthesizer, as the amount of samples
was too large to hear and label manually. To overcome this difficulty, a simple system was
developed that would detect the presence of silences automatically on our samples and
label them accordingly.

An initial approach was analyzing the overall energy of the signal and search for sudden,
prolonged, breaks or increases, as seen on figure 6.10 alongside the corresponding spectro-
gram, by using the sample energy mean and standard deviation. However, this approach

7https://drive.google.com/drive/folders/1rSGrGuRMjHUi5HhYH1oSK-QWDi9aWoQV?usp=sharing

81

Chapter 6

proved to struggle when there was more than one silence segment on any given audio. As
an example, if various short silences were present alongside a long one in the same signal,
the system would stop considering the long one silence as the energy mean already had a
low value and thus it was not detected. In other words, the system was built around the
existence of an overall high mean energy. With this in mind, and to avoid the process of
reinventing the wheel, research was done and an existing library named Pydub was used,
which proved to be much simpler and worth regarding implementation complexity and
time efficiency. This library used the Decibels relative to full scale (dBFS) scale, where
the threshold of -40 dBFS is considered silence. On a final note, an extensive silence was
considered artificial if its duration was greater than 0.8 seconds, a value subjected to the
consensus of the whole team after hearing various audio samples since the start of the
project.

(a) RNS (Root mean square) Energy Variation.

(b) Spectrogram depicting excessive silence with
a value bigger than 0.8 seconds.

Figure 6.10: Energy and Spectrogram representation of a signal suffering from excessive
silence.

After inputting the previous dataset into the developed system, the output was a stronger
dataset, represented in table 6.19, whose results can be analyzed on table 6.20, with the
number of the models being 2.x since they were the second iteration of trained models for
this classifier.

Class description Number of Samples Categorical Numerical Class
Clear Audio 1882 1

Excessive Silence 2532 2

Table 6.19: Improved silence dataset.

The existence of improvements on the performance is evident, with none of the second
iteration models going below 91% of accuracy in any set, where the first iteration models
went as low as 87.62%. Additionally, and to strengthen this improvement, the best per-
forming model (B-S Model 1.1 for the first iteration and B-S Model 2.1 for the second)

82

Experimentation and Results

B-S Model 2.1 B-S Model 2.2 B-S Model 2.3
Masking False False False
Deltas False False False

Truncation False False False
LSTM Width 64 93 64
LSTM Depth 1 2 2

FC Width 32 0 32
FC Depth 1 0 1

Output Layer Width 1 1 1
Learning Rate 0.01 0.01 0.01

N_FFT 2048 2048 512
Mels 20 40 96

Parameters (weights) 531777 144895 635457
Train Accuracy 96.2% 95.3% 94.2%

Validation Accuracy 93.7% 92.6% 91.0%
Test Accuracy 94.3% 91.9% 93.4%

Table 6.20: Second iteration of 3 best models for B-S after improving the dataset labels.

architecture was the same before and after the dataset improvement, having increased the
validation set accuracy by 4.71% which implies the original dataset had wrongly classified
samples. The numerical and graphical confusion matrix, as well as the loss and accuracy
chart across epochs of model B-S model 2.1, can be seen on table 6.21 and figure 6.11.

Class 1 - Clear Audio Class 2 - Silence
Class 1 174 10
Class 2 15 243

Table 6.21: Numerical Confusion Matrix for B-S model 2.1.

(a) Confusion Matrix for B-S model 2.1 (b) Accuracy and Loss across epochs for B-S
model 2.1

Figure 6.11: Graphical Confusion matrix and evolution of accuracy and loss across epochs
for B-S model 2.1.

Looking at the plotted information, it is clear the confusion between excessive silence and
good audio is balanced, without neither class being excessively more misclassified than
the other. A probable cause for this small, yet existing confusion, could be audios whose
silence has a duration of, for example, 0.7 seconds, which are not considered an error by
our system since it does not reach our defined threshold. Due to the natural flow of speech,

83

Chapter 6

it is normal for this misinterpretation from both classes to happen, especially if a given
sample has more than one phrase, as the existence of punctuation between each may affect
this negatively by introducing bigger, yet natural, pauses. Additionally, it can be noted
that the loss and accuracy values are evolving progressively and without big differences
between the training and test sets, which also increases our confidence on B-S model 2.1.
The architecture can be seen in figure 6.12.

Figure 6.12: Best performing network for B-S

6.4 3 Class Mixed Classifier (3MC-MIX)

The final developed classifier, named 3 class mixed classifier or 3MC-MIX, consists on a
mix of the previous classifiers, where three classes were assigned. The first class correspond
to the extremely robotic audios, the second class corresponds to the audios with excessive
silence and the third class corresponds to clear audio. In other words, the same logic of the
3MC-RT was used, where the second class represented silences instead of slightly robotic
samples.

Table 6.22 shows the exact distribution of samples by class. In this case, class two is much
more represented than the other two, which makes the dataset unbalanced. However, this
fact does not seem to impact the overall final results. Samples can be heard on the following
Google Drive link8.

Table 6.23 shows the best three performing models and their respective values for this
classification problem. Overall, the results were considerably good, since we excluded the

8https://drive.google.com/drive/folders/1rSGrGuRMjHUi5HhYH1oSK-QWDi9aWoQV?usp=sharing

84

Experimentation and Results

Class description Number of Samples Class
Extremely Robotic 572 1
Excessive Silence 2532 2

Clear 731 3

Table 6.22: Dataset used for representing the 3 classes for 3MC-MIX.

class that introduced confusion in favor of a more easily distinguishable one. In fact, none
of the tested architectures had a validation score lower than 90%. As we saw on B-S, the
truncation was set to false as we could be excluding the silence segment of our audio while
still classifying it with class 2, which would introduce wrong labels on our data.

3MC-MIX
Model 1

3MC-MIX
Model 2

3MC-MIX
Model 3

Samples per class All All All
Masking False False False
Deltas False False False
Truncation False False False
LSTM Width 64 93 32
LSTM Depth 2 2 1
FC Width 0 0 0
FC Depth 0 0 0
Learning Rate 0.01 0.01 0.01
Output Layer Width 3 3 3
N_FFT 512 2048 2048
Mels 76 40 86
Parameters (weights) 173571 271191 62755
Train Accuracy 96.9% 95.5% 94.1%
Validation Accuracy 93.8% 93.6% 92.9%
Test Accuracy 93.2% 94.0% 93.5%

Table 6.23: 3 best models for 3MC-MIX.

In table 6.24 and image 6.13 the confusion matrix for the best performing architecture,
corresponding to 3MC-MIX Model 1, can be seen. It is possible to note that class 3 was
the one suffering from a higher degree of misclassification, being especially confused with
class 2, which is not a strange result since one of the sources from this third class is the
Librispeech dataset whose audios, as we already saw before, try to simulate emotion, being
easily misinterpreted as excessive silence. Regarding layer organization in 3MC-MIX model
1, it was identical to the one depicted in figure 6.4.

Class 1 Class 2 Class 3
Class 1 56 0 1
Class 2 1 244 22
Class 3 2 0 58

Table 6.24: Numerical Confusion Matrix for 3MC-MIX Model 1.

85

Chapter 6

Figure 6.13: Graphical Confusion Matrix for 3MC-MIX Model 1

6.5 Final Overview

In the previous sections we exposed the development process and obtained results while
training models for the five classifiers. During the development of the binary classifier for
robotic tones B-RT, various architectures were tested culminating in 7 different models that
would be used as a base for all future experimentations across all classifiers. Ideally it would
be better to test all possible combinations of hyperparameters for each classifier, this was
simply not possible due to the internship time constraints. After all the experimentations,
the best model for each classifier was chosen as the best overall architecture for the given
problem. Table 6.25 shows the overall best scoring model for each classifier side by side.

B-RT 3MC-RT2 4MC-RT B-S 3mc-mix
Masking False False False False False
Deltas False False False False False

Truncation True True True False False
LSTM Width 64 64 93 64 64
LSTM Depth 2 2 2 1 2

FC Width 0 0 0 32 0
FC Depth 0 0 0 1 0

Output Layer Width 1 3 4 1 3
Learning Rate 0.001 0.001 0.01 0.01 0.01

N_FFT / Window Length 512 512 2048 2048 512
Mels 60 60 40 20 76

Parameters (weights) 77249 101699 190468 531777 173571
Train Accuracy 89.8% 81.7% 88.4% 96.2% 96.9%

Validation Accuracy 93.0% 83.0% 82.3% 93.7% 93.8%
Test Accuracy 96.0% 77.3% 76.8% 94.3% 93.2%

Table 6.25: Comparison of the best model architecture for each classifier.

Looking at the final results, the overall accuracies on all sets for the 5 classifiers can be
seen as positive despite having room for improvements. Furthermore, simpler networks
seem to perform better across all the classifiers, with B-S having only one LSTM but using
an intermediate fully connected layer and B-RT, 3MC-RT, 4MC-RT and 3MC-MIX having
LSTMs but lacking the intermediate fully-connected layer, which could mean that using
more layers may not be beneficial. Additionally, B-S has a considerably higher number of

86

Experimentation and Results

parameters but is also the classifier with the biggest dataset, which makes sense.

Regarding the masking and deltas variables, none of the models made use of them, imply-
ing they are not beneficial for our classification task. Avoiding using deltas will actually
improve performance regarding training time and data size, since setting this variable to
true increased the number of features by 3 times. Truncation should be used whenever the
TTS problem only affects a certain sequence of the audio sample, such as excessive silence.

Focusing on the other variables, there does not seem to exist a direct relationship between
their value and the classifier problem. In order to find their ideal value, more experimen-
tations should be made.

87

This page is intentionally left blank.

Chapter 7

Conclusion

By deciding to tackle the Speech-to-Text (STT) and Text-to-Speech (TTS) fields, Talkdesk
is already developing a virtual agent focused on a call-center environment, capable of
dealing with simple and repetitive tasks, while real agents deal with complex matters,
with the aim of improving and optimizing the overall productivity and reducing downtime.
By developing an in-house solution, the company is capable of controlling their solution to
a much bigger degree, while lowering the usage costs.

During the initial phase of this internship, we successfully gathered as much knowledge as
possible of the field, given the timeframe, which eventually led to changing the original
plan of developing a TTS system from the ground up. Alternatively, the option of taking
a safer, and more logic, path by improving an already existent one, not only by predicting
and avoiding errors in runtime, but also by introducing realistic elements such as office
background noise to the generated waveform was chosen. By developing a system with
these requirements, it would be possible to improve an existing system.

However, this approach proved to have flaws that would hinder how useful the system
would be. With this in mind, the project was once again modified in order to bring more
usefulness to the company. Using Google’s AutoMOS paper as a source of inspiration, with
the final goal changed, now consisting in building various AI models capable of recognizing
and classifying errors that could occur on the existing TTS systems such as robotic tone,
excessive silence, critical errors, among others. Since the available time for this project was
quite limited, more attention was given to the robotic tone and excessive silence problems
since they were the easier ones to artificially replicate for building our datasets. In the
end, a total of 5 classifiers were developed.

• Binary Classifier for Robotic Tone - The binary classifier between clear and
robotic tones, used a total of 2024 audios from 6 different sources in order to avoid
over-fitting to a single fixed voice while having different tones. Each of these sources
has a certain degree of quality. The best performing models for this problem had
an accuracy ranging between 88% and 93%, which was slightly below the initial
defined quality threshold. However, taking into account the shortness of the dataset
as well as the overall bad quality of some samples, the results not having astonishing
values were expected. All the work and knowledge gathered by developing this first
classifier, was then used when building the next ones.

• 3 Class Classifier for Robotic Tone - Expanding upon the binary classifier, work
went into developing a 3 class classifier, taking into account three different degrees
of robotic tones. The dataset was slightly modified and manually labelled in order

89

Chapter 7

to strengthen the associated labels. While the results were positive, with values
ranging from 78% to 83%, all trained models proved to be considerably confused be-
tween slightly robotic audio and clear audio, which was expected, since the difference
between the audios representing these two classes are very slim, with the manually
assigned class being somewhat subjective to the human listener.

• 4 Class Classifier for Robotic Tone - For research purposes, a four class classifier
was also made, with the fourth class having only samples from a real audio book.
The outcome was interesting, with the trained models achieving good results when
classifying extremely robotic audios and the human audiobooks but still getting very
confused between the two slightly robotic classes. Overall, the accuracy of the trained
models was between 80% and 82%. This proved the developed classifier was being of
capable of extracting useful features from the real human voices when compared to
the samples generated by an artificial TTS such as Fastspeech or Tacotron. While
a 5 class classifier was initially planned, the lack of samples and results made it not
worth to test and develop.

• Binary Classifier for Excessive Silence - Tackling the excessive silence problem,
a binary model was developed, with silences bigger than 0.8 seconds being considered
excessive and classified as an error. A new dataset with more than 4000 was built,
with the models achieving a validation accuracy value as high as 89%. However, this
dataset was optimized using an audio library, resulting in improvements of around
5% on the model’s accuracy, with the best model achieving 93.7% accuracy on the
validation set. The overall results were good, with a clear distinction being made, and
the misclassification being mostly justified by the existence of pauses that naturally
occur in speech. This could be improved by making sure each sample only had one
sentence, avoiding the existence of punctuation.

• 3 Class Mixed Classifier - Finally, a mixed model was also developed, consisting on
a three class classifier responsible for separating robotic audio, clean audio and audio
with excessive silence. While this model inherited most of its characteristics from
the 3 Class Classifier for Robotic Tone, the final performance was actually much
better, ranging between 93% and 94%, since the class that previously caused the
model to be confused was swapped by excessive silence audio, which is much easier
to distinguish from the other samples since it has more unique features. Additionally,
by being able to distinguish most samples, this model proved that temporal features
were being considered, which increased confidence on the chosen Long Short-term
memory (LSTM)’s architecture.

While the project’s end goal changes did prove to be a challenge at the time, they were
actually positive as they allowed the gathering of more information and experience, which
would probably be skipped had these changes not been made, allowing a deeper understand-
ing of the older and current speech synthesis processes, systems and techniques. Starting
the development of a system with good base knowledge of all the systems involved, gave
us a good headstart in identifying certain aspects and possible future difficulties.

The knowledge gathered from the study of TTS fields and from building these models did
allow the team to greatly improve, which was evident during the development, especially
when going from one model to the other. As an example, the amount of time spent
developing the first classifier would be much lower if it had to be done again, since most
of the difficulties have already been identified, be it from a practical or theoretical point
of view, and the needed solutions found. While the original goal was to develop a system
capable of outputting, in a graphical format, the pros and cons of a given TTS system, the

90

Conclusion

limited time associated with limited resources in terms of hardware and datasets proved to
be a big obstacle. The decision to focus on robotic and excessive silence problems proved
to be the best option, due to how easy it was to generate samples with these kind of
errors when compared to others such as random artifacts. While the initial goal was not
completely achieved, the path forged until now allowed us to have proof that our classifiers,
with their architectures, were able to achieve good results given our constrained scenario.
In other words, the work done can be seen as a proof of concept for the given architectures.

Having already found flaws on our models, such as the confusion with Fastspeech, Tacotron
and Transformer on the three and four class models, will allow a much bigger focus on
building a strategy to tackle them since it is already known what the problem is.

7.1 Future Work

Taking into consideration the originally planned goal, there are not only improvements to
be made on the existing classifiers, possibly correcting their flaws, but also more classifiers
to build, tackling problems such critical errors and random artifacts on the speech.

In order to improve upon the existing models, one of the first steps is to considerably
increase the size of the existing datasets by more than 10 times. Since the line that
distinguishes each class is so thin, the more samples we have, more unique features and
patterns can be extracted. Additionally, each dataset should be composed of even more
different voice tones. This is important, since if a class is only represented by a single
voice, the model will most often than not classify audios based on voice and pitch features
instead of specific error features.

The hyperparameters of the current models should also be further tested. As was said
previously, only some were tested due to time constraints. More specifically, the pooling
layers, the L1 and L2 normalizations, decay value and even batch size were mostly left
untouched,assuming the default values depicted on Google’s AutoMOS implementation.
Changing these values may prove to bring benefits, as the currently they are optimized
for Google’s specific problem. Additionally, more metric should be recorded, such as pre-
cision and recall as they are considerably useful due to the confusion present on the clas-
sifiers. While these metrics are easily calculated with the available confusion matrix, an
autonomous recording would be an improvement.

In order to improve the training phase, it would also be beneficial to use specific machines
instead of Google’s Colab platform. The limited Graphics Processing Unit (GPU) usage
and sudden breaks when training a model did prove to be problematic and time consum-
ing. The faster and more stable the machine, the more architectural and parametrical
combinations can be safely tested, possibly improving the results. In other words, having
a more stable machine is something that could improve results in the future.

Finally, once all the error model are developed and as a final goal, a pipeline system should
also be made, where a batch of audios from a given TTS system are inputted, inferred by
all the different error classifiers and the output is a radar chart, depicting the weaknesses
and strengths of said system.

91

This page is intentionally left blank.

References

Ahire, J. B. (2017). The xor problem in neural networks. Retrieved from https://medium.
com/@jayeshbahire/the-xor-problem-in-neural-networks-50006411840b#:~:text=
The%20XOr%2C%20or%20%E2%80%9Cexclusive%20or , value%20if%20they%
20are%20equal. (Accessed: 2020-06-22)

AI - Natural Language Processing. (n.d.). https://www.tutorialspoint.com/artificial_
intelligence/artificial_intelligence_natural_language_processing .htm. Accessed:
2020-01-06.

Alpaydin, E. (2009). Introduction to machine learning. MIT press.

Arik, S. Ö., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., . . . Raiman,
J. et al. (2017). Deep voice: Real-time neural text-to-speech. In Proceedings of the
34th international conference on machine learning-volume 70 (pp. 195–204). JMLR.
org.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Beerends, J. G., Schmidmer, C., Berger, J., Obermann, M., Ullmann, R., Pomy, J., &
Keyhl, M. (2013). Perceptual objective listening quality assessment (polqa), the
third generation itu-t standard for end-to-end speech quality measurement part
i—temporal alignment. Journal of the Audio Engineering Society, 61 (6), 366–384.

Bhande, A. (2018). What is underfitting and overfitting in machine learning and how to deal
with it. Retrieved from https://medium.com/greyatom/what-is-underfitting-and-
overfitting- in-machine- learning-and-how-to-deal-with- it-6803a989c76. (Accessed:
2019-11-20)

Bishop, C. M. (2006). Pattern recognition and machine learning. springer.

Capes, T., Coles, P., Conkie, A., Golipour, L., Hadjitarkhani, A., Hu, Q., . . . Neeracher,
M. et al. (2017). Siri on-device deep learning-guided unit selection text-to-speech
system. In Interspeech (pp. 4011–4015).

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078.

Chowdhury, G. G. (2003). Natural language processing. Annual review of information
science and technology, 37 (1), 51–89.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.

93

Chapter 7

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12 (Jul), 2121–
2159.

Gandhi, R. (2018). Introduction to machine learning algorithms: Logistic regression. Re-
trieved from https://hackernoon.com/introduction-to-machine-learning-algorithms-
logistic-regression-cbdd82d81a36. (Accessed: 2020-01-14)

Gartzman, D. (2019). Getting to know the mel spectrogram. Retrieved from https : //
towardsdatascience . com/ getting - to - know - the - mel - spectrogram - 31bca3e2d9d0.
(Accessed: 2019-11-18)

Gibiansky, A., Arik, S., Diamos, G., Miller, J., Peng, K., Ping, W., . . . Zhou, Y. (2017).
Deep voice 2: Multi-speaker neural text-to-speech. In Advances in neural information
processing systems (pp. 2962–2970).

Grancharov, V., Zhao, D. Y., Lindblom, J., & Kleijn, W. B. (2006). Non-intrusive speech
quality assessment with low computational complexity. In Ninth international con-
ference on spoken language processing.

Griffin, D., & Lim, J. (1984). Signal estimation from modified short-time fourier transform.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 32 (2), 236–243.

Gupta, P. (2017). Regularization in machine learning. Retrieved from https://towardsdatascience.
com / regularization - in - machine - learning - 76441ddcf99a# : ~ : text = increasing %
20model%20interpretability.-,Regularization,linear%20regression%20looks%20like%
20this.. (Accessed: 2020-04-20)

Harrington, P. (2012). Machine learning in action. Manning Publications Co.

Harrison, O. (2018). Machine learning basics with the k-nearest neighbors algorithm. Re-
trieved from https://towardsdatascience.com/machine-learning-basics-with-the-k-
nearest-neighbors-algorithm-6a6e71d01761. (Accessed: 2020-01-08)

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9 (8), 1735–1780.

Hsu, W.-N., Zhang, Y., Weiss, R. J., Zen, H., Wu, Y., Wang, Y., . . . Shen, J. et al. (2018).
Hierarchical generative modeling for controllable speech synthesis. arXiv preprint
arXiv:1810.07217.

Ito, K. (2017). The lj speech dataset. https://keithito.com/LJ-Speech-Dataset/.

Jordan, J. (2018). Setting the learning rate of your neural network. Retrieved from https:
//www.jeremyjordan.me/nn-learning-rate/. (Accessed: 2020-06-24)

Jurafsky, D., & Martin, J. H. (2019). Speech and langauge processing.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., . . .
Kavukcuoglu, K. (2018). Efficient neural audio synthesis. arXiv preprint arXiv:1802.08435.

Kim, D.-S. (2005). Anique: An auditory model for single-ended speech quality estimation.
IEEE Transactions on Speech and Audio Processing, 13 (5), 821–831.

Kingma, D. P. [Diederik P], & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

94

References

Kingma, D. P. [Durk P], & Dhariwal, P. (2018). Glow: Generative flow with invertible
1x1 convolutions. In Advances in neural information processing systems (pp. 10215–
10224).

Kingma, D. P. [Durk P], Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M.
(2016). Improved variational inference with inverse autoregressive flow. In Advances
in neural information processing systems (pp. 4743–4751).

Kittur, A., Chi, E. H., & Suh, B. (2008). Crowdsourcing user studies with mechanical
turk. In Proceedings of the sigchi conference on human factors in computing systems
(pp. 453–456). ACM.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(pp. 1097–1105).

Kubichek, R. (1993). Mel-cepstral distance measure for objective speech quality assessment.
In Proceedings of ieee pacific rim conference on communications computers and signal
processing (Vol. 1, pp. 125–128). IEEE.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. et al. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86 (11), 2278–2324.

Librosa - STFT. (n.d.). https :// librosa .org/ librosa/generated/ librosa .core . stft .html.
Accessed: 2020-06-22.

Lo, C.-C., Fu, S.-W., Huang, W.-C., Wang, X., Yamagishi, J., Tsao, Y., & Wang, H.-M.
(2019). Mosnet: Deep learning based objective assessment for voice conversion. arXiv
preprint arXiv:1904.08352.

Malfait, L., Berger, J., & Kastner, M. (2006). P. 563—the itu-t standard for single-ended
speech quality assessment. IEEE Transactions on Audio, Speech, and Language Pro-
cessing, 14 (6), 1924–1934.

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated
corpus of english: The penn treebank.

Mel Scale. (n.d.). https://www.wikiwand.com/en/Mel_scale. Accessed: 2019-11-18.

Mishra, A. (2018). Metrics to evaluate your machine learning algorithm. Retrieved from
https://medium.com/thalus-ai/performance-metrics-for-classification-problems-in-
machine-learning-part-i-b085d432082b. (Accessed: 2020-01-18)

Morise, M., Yokomori, F., & Ozawa, K. (2016). World: A vocoder-based high-quality speech
synthesis system for real-time applications. IEICE TRANSACTIONS on Information
and Systems, 99 (7), 1877–1884.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination press San Fran-
cisco, CA, USA:

Olah, C. (2015). Understanding lstm networks. Retrieved from https://colah.github.io/
posts/2015-08-Understanding-LSTMs/. (Accessed: 2019-11-18)

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . . Kavukcuoglu,
K. (2016). Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

95

Chapter 7

Oord, A. v. d., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., . . .
Stimberg, F. et al. (2017). Parallel wavenet: Fast high-fidelity speech synthesis. arXiv
preprint arXiv:1711.10433.

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An asr cor-
pus based on public domain audio books. In 2015 ieee international conference on
acoustics, speech and signal processing (icassp) (pp. 5206–5210). IEEE.

Patton, B., Agiomyrgiannakis, Y., Terry, M., Wilson, K., Saurous, R. A., & Sculley, D.
(2016). Automos: Learning a non-intrusive assessor of naturalness-of-speech. arXiv
preprint arXiv:1611.09207.

Ping, W., Peng, K., & Chen, J. (2018). Clarinet: Parallel wave generation in end-to-end
text-to-speech. arXiv preprint arXiv:1807.07281.

Ping, W., Peng, K., Gibiansky, A., Arik, S. O., Kannan, A., Narang, S., . . . Miller, J.
(2017). Deep voice 3: Scaling text-to-speech with convolutional sequence learning.
arXiv preprint arXiv:1710.07654.

Prenger, R., Valle, R., & Catanzaro, B. (2019). Waveglow: A flow-based generative network
for speech synthesis. In Icassp 2019-2019 ieee international conference on acoustics,
speech and signal processing (icassp) (pp. 3617–3621). IEEE.

Pupale, R. (2018). Support vector machines(svm) — an overview. Retrieved from https:
//towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989.
(Accessed: 2020-01-08)

Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T.-Y. (2019). Fastspeech:
Fast, robust and controllable text to speech. In Advances in neural information pro-
cessing systems (pp. 3165–3174).

Ribeiro, F., Florêncio, D., Zhang, C., & Seltzer, M. (2011). Crowdmos: An approach for
crowdsourcing mean opinion score studies. In 2011 ieee international conference on
acoustics, speech and signal processing (icassp) (pp. 2416–2419). IEEE.

Richards, J. C., & Schmidt, R. W. (2013). Longman dictionary of language teaching and
applied linguistics. Routledge.

Rising, L., & Janoff, N. S. (2000). The scrum software development process for small teams.
IEEE software, 17 (4), 26–32.

Rix, A. W., Beerends, J. G., Hollier, M. P., & Hekstra, A. P. (2001). Perceptual evaluation
of speech quality (pesq)-a new method for speech quality assessment of telephone
networks and codecs. In 2001 ieee international conference on acoustics, speech, and
signal processing. proceedings (cat. no. 01ch37221) (Vol. 2, pp. 749–752). IEEE.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. nature, 323 (6088), 533–536.

Saha, S. (2018). A comprehensive guide to convolutional neural network. Retrieved from
https://towardsdatascience.com/a-comprehensive-guide- to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. (Accessed: 2019-11-18)

Sampling (signal processing). (n.d.). https://en.wikipedia.org/wiki/Sampling_(signal_
processing). Accessed: 2020-06-26.

96

References

Sarkar, D. (2016). Text analytics with python. Springer.

Shah, T. (2017). About train, validation and test sets in machine learning. Retrieved from
https : / / towardsdatascience . com/ train - validation - and - test - sets - 72cb40cba9e7.
(Accessed: 2019-11-20)

Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., . . . Skerrv-Ryan, R.
et al. (2018). Natural tts synthesis by conditioning wavenet on mel spectrogram
predictions. In 2018 ieee international conference on acoustics, speech and signal
processing (icassp) (pp. 4779–4783). IEEE.

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Highway networks. arXiv preprint
arXiv:1505.00387.

Sunasra, M. (2017). Performance metrics for classification problems in machine learn-
ing. Retrieved from https : / /medium . com/ thalus - ai / performance - metrics - for -
classification-problems-in-machine-learning-part-i-b085d432082b. (Accessed: 2020-
01-18)

Sutskever, I., Vinyals, O., & Le, Q. (2014). Sequence to sequence learning with neural
networks. Advances in NIPS.

Thanaki, J. (2017). Python natural language processing. Packt Publishing Ltd.

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test
(pp. 23–65). Springer.

Umesh, S., Cohen, L., & Nelson, D. (1999). Fitting the mel scale. In 1999 ieee international
conference on acoustics, speech, and signal processing. proceedings. icassp99 (cat. no.
99ch36258) (Vol. 1, pp. 217–220). IEEE.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polo-
sukhin, I. (2017). Attention is all you need. In Advances in neural information pro-
cessing systems (pp. 5998–6008).

Vieira, M. (2018/2019). Project management, risk management. Universidade de Coimbra.

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S. et al. (2001). Constrained k-means clus-
tering with background knowledge. In Icml (Vol. 1, pp. 577–584).

Wang, X. (2019). Tutorial on end-to-end text-to-speech synthesis: Part 1 – neural wave-
form modeling. Retrieved from https : / /www . slideshare . net / jyamagis / tutorial -
on-endtoend-texttospeech-synthesis-part-1-neural-waveform-modeling. (Accessed:
2019-10-10)

Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y., Weiss, R. J., Jaitly, N., . . . Bengio,
S. et al. (2017). Tacotron: Towards end-to-end speech synthesis. arXiv preprint
arXiv:1703.10135.

Wang, Y., Stanton, D., Zhang, Y., Skerry-Ryan, R., Battenberg, E., Shor, J., . . . Saurous,
R. A. (2018). Style tokens: Unsupervised style modeling, control and transfer in end-
to-end speech synthesis. arXiv preprint arXiv:1803.09017.

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations
in convolutional network. arXiv preprint arXiv:1505.00853.

97

Chapter 7

Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of
Data Science, 2 (2), 165–193.

Yamagishi, J., Nose, T., Zen, H., Ling, Z.-H., Toda, T., Tokuda, K., . . . Renals, S. (2009).
Robust speaker-adaptive hmm-based text-to-speech synthesis. IEEE Transactions on
Audio, Speech, and Language Processing, 17 (6), 1208–1230.

Yiu, T. (2019). Understanding random forest. Retrieved from https://towardsdatascience.
com/understanding-random-forest-58381e0602d2. (Accessed: 2020-01-14)

YourDictionary. (2019). Machine-learning. (n.d.) https://www.yourdictionary.com/machine-
learning/.

98

