Amílcar Duque Prata

FOTOQUÍMICA DE TETRAZOLONAS

UM ESTUDO TEÓRICO

Dissertação no âmbito do Mestrado em Química, área de especialização em Química Avançada e Industrial, variante de Química-Física Experimental e Teórica, orientada pelo Professor Doutor Carlos Alberto Serpa Soares, coorientada pelo Doutor Pedro Jorge dos Santos Branco Caridade e apresentada ao Departamento de Química da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Julho de 2020

"Ninguém deve sair da universidade sem saber o quão pouco sabe" J. Robert Oppenheimer

Agradecimentos

Foram os verdes anos,

Foi Coimbra, cidade dos estudantes.

Ao Professor Doutor Carlos Serpa, meu orientador, e com quem tenho tido oportunidade de trabalhar há já vários anos, agradeço por todo o apoio e por toda a confiança que sempre demonstrou, quer ao longo deste estudo, quer em todos os outros desafios que foram surgindo. O espírito de querer saber sempre mais, e todo o conhecimento científico que me transmitiu foram muito importantes ao longo deste percurso.

Ao Doutor Pedro Caridade, meu coorientador, que prontamente se disponibilizou para embarcar neste desafio, e cujo apoio foi fundamental na realização deste estudo, agradeço por todos os ensinamentos transmitidos, por todas as longas discussões de resultados e de possíveis rumos a seguir, e pelo espírito crítico positivo que me transmitiu.

A todo o grupo de Estrutura, Energia e Reatividade, agradeço pelo ambiente de companheirismo, partilha de conhecimento e entreajuda que proporcionam. Ao Alexandre, ao Diogo, à Maria Inês, à Catarina e ao Hélder, agradeço pela boa disposição vivida no gabinete e pela disponibilidade que sempre tiveram. Ao Doutor Fábio Schaberle, à Doutora Catarina Jesus e ao Professor Doutor João Pina, agradeço por todo o conhecimento transmitido na utilização de diversas técnicas experimentais.

À Professora Doutora Maria de Lurdes Cristiano e ao grupo de Reatividade Orgânica e Química Medicinal do Centro de Ciências do Mar do Algarve, agradeço pela disponibilização dos compostos estudados.

Às pessoas que Coimbra me deu... agradeço de forma muito sentida, ao João, ao Frias e ao Tiago, companheiros e amigos em todos os momentos dos últimos cinco anos, com quem tive o privilégio de partilhar muitas histórias, e com quem sei que posso sempre contar. Em vocês vi sempre um porto seguro. À Rita, à Maria, à Carolina e ao Rui Santos, agradeço pela amizade e compreensão ao longo destes anos, e em especial pelo apoio, paciência e motivação nesta reta final vivida à distância. Agradeço ainda ao Pedro, à Joana, à Andreia e ao Aspeçada, por saber que apesar de já não tão presentes, mantêm o companheirismo de outrora. Agradeço às pessoas de quem a praxe me aproximou, em especial à Vanessa, à Ana Marques, à Bárbara, à Carolina Janeiro, à Joana Mascarenhas, à Margarida Cordeiro e ao Tiago Vicente, por todo o carinho e consideração que sempre tiveram. Agradeço também à Maëva, ao Alexandre e ao Bernardo pela amizade e pelos momentos vividos nas várias batalhas que travámos lado a lado. Agradeço ainda às pessoas que o Associativismo me trouxe e ao lado de quem tive o privilégio de poder fazer uma das coisas de que mais gosto – servir os meus pares. Por fim, agradeço a toda a comunidade do Departamento de Química da FCTUC: alunos, investigadores, professores e funcionários, por me terem feito sentir em casa ao longo destes 5 anos.

Aos meus meninos, meninas, homens e mulheres do Karaté, agradeço pela confiança que sempre demonstraram na minha capacidade de coordenação de realidades tão distintas, e pela compreensão do mau humor quando os cálculos não estavam a correr como eu queria.

Aos amigos e companheiros de Souselas, ao lado de quem não consegui estar tão presente como gostaria, agradeço a compreensão e a força que me dão sempre que nos cruzamos. Sei que sabem que valeu a pena.

À minha Família, agradeço por serem a base de tudo na minha vida. Ensinaram-me a lutar pelos meus sonhos, a querer ser sempre melhor, a querer aprender sempre mais, a fazer sempre mais, e a acreditar que tudo é possível. Ao meu pai e à minha mãe, agradeço por compreenderem as horas passadas à frente dos ecrãs, pelo apoio constante e pelas palavras de motivação nos momentos de maior aperto. Ao meu irmão, agradeço pela preocupação que sempre teve e por aceitar o meu "não" aos convites para as mais diversas coisas. Ao meu padrinho, à minha avó e aos meus teus tios, agradeço por todo o incentivo ao longo destes anos. E agradeço, por tudo, à minha bisavó Maria do Carmo, a quem a vida universitária tanto dizia, e com quem já não poderei celebrar fisicamente esta conquista, mas que certamente estará muito orgulhosa de mim, lá, do outro lado do caminho.

Todos moldaram o Amílcar que existe hoje, e todos contribuíram para esta conquista.

Um eterno Obrigado.

Amiliar Juare Trala Jun/2020

ÍNDICE

Abreviaturas	v
Nomenclatura de Estruturas	vii
Índice de Figuras	ix
Índice de Tabelas	xiii
Resumo	XV
Abstract	xvii
Capítulo 1: Introdução	1
1. Anel Tetrazólico	
1.1. Aplicações de compostos tetrazólicos	
1.1.1. Química Medicinal	
1.1.2. Materiais de Alta Densidade Energética	
1.1.3. Síntese Química	4
1.1.4. Outras Aplicações	4
1.2. Tetrazolonas	4
1.3. Fotoquímica de compostos tetrazólicos	5
1.3.1 Fotoextrusão de N ₂	5
1.3.2. Estudo isolado em matriz ou em solução	5
1.3.3. Fotoquímica de 1-fenil-4-alil-tetrazol-5-onas	5
1.4. Estudo computacional de mecanismos reacionais	9
Capítulo 2: Abordagem Teórica	
1. Métodos de Orbitais Moleculares	
1.1. Aproximação de Born-Oppenheimer	
1.2. Combinação Linear de Orbitais Atómicas	14
1.3. Hartree-Fock	
2. Bases de Funções	
2.1. Tipos de Funções	
2.2. Tipos de Bases	
3. Teoria do Funcional da Densidade	
3.1. Funcionais	
3.2. Densidade eletrónica	
3.3. Teoremas de Hohenberg-Kohn	21
3.4. O Funcional Energia	
3.5. Equações de Kohn-Sahm	

3.6. Funcional de Troca-Correlação	23
3.7. Teoria do Funcional da Densidade Dependente do Tempo	24
3.8. Análise crítica à DFT	25
4. Modelos de Solvatação	25
5. Pontos Estacionários na Superfície de Energia Potencial	26
6. Cálculo de Modos Vibracionais	
Capítulo 3: Métodos	31
Capítulo 4: Alil-tetrazolona	35
1. Definição do Nível de Teoria	
2. Alil-tetrazolona	
2.1. Espécies envolvidas no mecanismo de fotorreação	
2.1.1. Estado Fundamental	
2.1.2. Estados Excitados Singleto	40
2.1.3. Primeiro Estado Excitado Tripleto	41
2.1.4. Fotoextrusão de N2	42
2.1.5. Ciclização	48
2.2. Perfil Energético	52
2.3. Acompanhamento espectroscópico da reação	53
Continua E. Cialahan tatuahalana a 2 aialahan tatuahalana	
Capitulo 5: Cicionex-tetrazolona e 5-cicionex-tetrazolona	
1. Ciclohex-tetrazolona	55 57
1. Ciclohex-tetrazolona 1.1. Espécies envolvidas no mecanismo de fotorreação	55 57 57
1. Ciclohex-tetrazolona 1. Ciclohex-tetrazolona 1.1. Espécies envolvidas no mecanismo de fotorreação 1.1.1. Estado Fundamental	55
1. Ciclohex-tetrazolona 1.1. Espécies envolvidas no mecanismo de fotorreação 1.1.1. Estado Fundamental 1.1.2. Estados Excitados Singleto	
 Ciclohex-tetrazoiona e 3-ciclohex-tetrazoiona Ciclohex-tetrazoiona 1.1. Espécies envolvidas no mecanismo de fotorreação 1.1.1. Estado Fundamental	
 Ciclohex-tetrazoiona e 3-ciclohex-tetrazoiona 1. Ciclohex-tetrazoiona 1.1. Espécies envolvidas no mecanismo de fotorreação	
 Capitulo 5: Cicionex-tetrazoiona e 5-cicionex-tetrazoiona 1. Ciclohex-tetrazolona	
 1. Ciclohex-tetrazolona	
 1. Ciclohex-tetrazolona	55 57 57 57 57 58 59 60 63 63
 1. Ciclohex-tetrazolona	
 1. Ciclohex-tetrazolona	
 Capitulo 5: Cicionex-tetrazoiona e 5-cicionex-tetrazoiona	55 57 57 57 57 58 59 60 63 63 63 64
 1. Ciclohex-tetrazolona e 3-ciclohex-tetrazolona	55 57 57 57 57 58 59 60 63 63 66 60
 1. Ciclohex-tetrazolona	
 Capitulo 5: Cicionex-tetrazoiona e 5-cicionex-tetrazoiona. 1. Ciclohex-tetrazolona	
 Ciclohex-tetrazolona e 3-ciclohex-tetrazolona. 1.1. Espécies envolvidas no mecanismo de fotorreação. 1.1.1. Estado Fundamental. 1.1.2. Estados Excitados Singleto 1.1.3. Primeiro Estado Excitado Tripleto. 1.1.4. Fotoextrusão de N₂. 1.1.5. Ciclização. Via de ciclização com o grupo alílico. Via de ciclização com o grupo fenilo. 1.2. Perfil Energético 2. 3-ciclohex-tetrazolona. 2.1. Estados Fundamental. 2.1.2. Estados Indemental. 2.1.2. Estados Com o grupo de fotorreação. 2.1.4. Fotoextrusão de N₂. 	

Via de ciclização com o grupo alílico	76
Via de ciclização com o grupo fenilo	80
2.2. Perfil Energético	82
3. Comparação com resultados experimentais	83
4. Acompanhamento espectroscópico da reação	85
4.1. Ciclohex-tetrazolona	85
4.2. 3-ciclohex-tetrazolona	87
Capítulo 6: PBE0 - uma melhor alternativa?	91
Capítulo 7: Conclusões e perspetivas futuras	97
Referências bibliográficas	101
Referências bibliográficas Material Suplementar	101 107
Referências bibliográficas Material Suplementar Apêndice 1 – Espécies envolvidas no mecanismo da ATZ	101 107 107
Referências bibliográficas Material Suplementar Apêndice 1 – Espécies envolvidas no mecanismo da ATZ Apêndice 2 – Espécies envolvidas no mecanismo da CTZ	101 107 107 123
Referências bibliográficas Material Suplementar Apêndice 1 – Espécies envolvidas no mecanismo da ATZ Apêndice 2 – Espécies envolvidas no mecanismo da CTZ Apêndice 3 – Espécies envolvidas no mecanismo da 3CTZ	101 107 107 123 155
Referências bibliográficas Material Suplementar Apêndice 1 – Espécies envolvidas no mecanismo da ATZ Apêndice 2 – Espécies envolvidas no mecanismo da CTZ Apêndice 3 – Espécies envolvidas no mecanismo da 3CTZ Apêndice 4 – Propriedades da estrutura de N ₂ utilizada nos cálculos de energia relativa	101 107 107 123 155 191
Referências bibliográficas Material Suplementar Apêndice 1 – Espécies envolvidas no mecanismo da ATZ Apêndice 2 – Espécies envolvidas no mecanismo da CTZ Apêndice 3 – Espécies envolvidas no mecanismo da 3CTZ Apêndice 4 – Propriedades da estrutura de N ₂ utilizada nos cálculos de energia relativa Apêndice 5 – Método das otimizações parciais - estados de transição na CTZ	101 107 107 123 155 191 193
Referências bibliográficas	101 107 123 123 155 191 193 197

iv

Abreviaturas

- ATD Aproximação de Tamm-Dancoff
- DFT Density Functional Theory
- DZ Double Zeta
- GGA Generalized-Gradient Approximations
- GTO Gaussian Type Orbitals
- HOMO Highest Occupied Molecular Orbital
- ISC Intersystem Crossing
- LCAO Linear Combination of Atomic Orbitals
- LDA Local Density Approximation
- LSDA Local Spin Density Approximation
- LUMO Lowest Occupied Molecular Orbital
- PCM Polarizable Continuum Model
- RHF Restricted Hartree-Fock
- ROHF Restricted Open-shell Hartree-Fock
- SEP Superfície de Energia Potencial
- STO Slater Type Orbitals
- TD-DFT Time-Dependent Density Functional Theory
- UHF Unrestricted Hartree-Fock
- VDZ Valence Double Zeta

Nomenclatura de Estruturas

ATZ	1-fenil-4-alil-tetrazol-5-ona
CTZ	1-fenil-4-ciclohexenil-tetrazol-5-ona
3CTZ	1-fenil-4-(3-metilciclohexenil)tetrazol-5-ona

À abreviatura da molécula (ATZ/CTZ/3CTZ) adicionam-se os sufixos:

-B	benzimidazolona
-ET <i>n</i>	estado de transição n
-ET <i>n</i> a	estado de transição <i>n</i> da via reacional relacionada com o grupo alílico
-ET <i>n</i> f	estado de transição <i>n</i> da via reacional relacionada com o grupo fenilo
-I <i>n</i>	estado de transição n
-I <i>n</i> a	estado de transição <i>n</i> da via reacional relacionada com o grupo alílico
-I <i>n</i> f	estado de transição n da via reacional relacionada com o grupo fenilo
-P	pirimidinona
-S0	estado fundamental
-Sx	estados excitados singleto
- T	primeiro estado excitado tripleto

Índice de Figuras

Figura 1 – Representação esquemática de um anel tetrazólico	3
Figura 2 - Representação esquemática de uma tetrazolona	4
Figura 3 - Representação esquemática da reação de síntese de uma 1-fenil-4-alil-tetrazol-5-o	ma
(adaptado de Frija et al.)	4
Figura 4 – Representação esquemática do processo de fotoextrusão de N2	5
Figura 5 - Representação esquemática das vias reacionais possíveis para a fotorreação de uma 1-fer	iil-
4-alil-tetrazol-5-ona (adaptado de Frija et al.)	6
Figura 6 - Representação esquemática da fotorreação da ATZ em solventes próticos (adaptado	de
Frija et al.)	7
Figura 7 - Representação esquemática da fotorreação da CTZ em solventes próticos (adaptado	de
Ismael et al.)	8
Figura 8 - Representação esquemática da fotorreação da CTZ em solventes próticos (adaptado	de
Ismael et al.)	9
Figura 9 - Representação de uma superfície de energia potencial (adaptado de Zamarbide et a	al.)
Pontos assinalados: máximo (verde); mínimo (vermelho); ponto de sela (azul).	26
Figura 10 – Estrutura otimizada da espécie ATZ-S0	39
Figura 11 – Variação da energia relativa da estrutura otimizada da ATZ-S0 em função do valor	do
ângulo diedro N ₍₄₎ C ₍₇₎ C ₍₈₎ C ₍₉₎ . Valores obtidos através de otimizações parciais fixando apenas o va	lor
do ângulo diedro. A linha serve apenas para facilitar a leitura do gráfico	39
Figura 12 – Estruturas dos confórmeros da ATZ-SO	40
Figura 13 - Distribuição dos valores de energia de excitação vertical do estado fundamental da A7	٢Z
(ATZ-S0) sem e com aproximação de Tamm-Dancoff 74 obtidas com o nível de teoria T	D-
DFT/M06-HF/cc-pVDZ/PCM-metanol	40
Figura 14 - Comparação entre o espectro UV/Vis da ATZ obtido experimentalmente no decur	SO
deste trabalho e o calculado ao nível TD-DFT/M06-HF/cc-pVDZ/PCM-metanol recorrendo) à
aproximação de Tamm-Dancoff	41
Figura 15 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	ria
otimizada da ATZ-T	41
Figura 16 – Variação da energia relativa da ATZ-T em função do valor da distância $N_{(1)}N_{(2)}$	43
Figura 17 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) c	las
geometrias otimizadas para $N_{(1)}N_{(2)}=1,69$ A (linha de cima) e $N_{(1)}N_{(2)}=1,70$ A (linha de baixo)	43
Figura 18 – Estrutura do estado de transição AIZ-ETII.	44
Figura 19 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	ria
otimizada da AIZ-III.	44
Figura 20 – Variação da energia relativa da AIZ-III em função do valor da distancia $N_{(3)}N_{(4)}$	45
Figura 21 – Estrutura do estado de transição AIZ-EIZ	45
Figura 22 – Variação da energia relativa da AIZ-I em tunção do valor da distancia $N_{(3)}N_{(4)}$	40
Figura 23 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) do estado	de
transição AIZ-EIIa.	40
rigura 24 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	ria
Eigure 25. Estruture de este de de transieñe ATZ ET2 e	47
Figura 25 - Estrutura do estado de trafisição A12-E12a	4/ 10
Figura 20 – valiação da energia relativa da $\mathbf{A12}$ -11a em função do valor da distancia $\mathbf{N}_{(1)}\mathbf{N}_{(2)}$	+0
Figura $27 - 1$ struttura e localização das orbitais semipreencindas ($\Pi O M O$ -1 e $\Pi O M O$) na geomet	11a 19
Figura 28 - Variação da energia relativa da ATZ-12 em função do valor da distância NC.	+0 40
Figura 20 — Estrutura do estado de transição $\Delta T 7 F T^2$	72 /0
	EV.

Figura 30 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da ATZ-I3
Figura 31 – Variação da energia relativa da ATZ-I3 em função do valor da distância $N_{(4)}H_{(16)}$ 51
Figura 32 – Estrutura do estado de transição ATZ-ET451
Figura 33 – Geometria otimizada da pirimidinona ATZ-P
Figura 34 – Perfil energético da fotorreação da ATZ
Figura 35 - Espectros de infravermelho calculados e normalizados das espécies envolvidas na
fotorreação da ATZ
Figura 36 - Estruturas dos enantiómeros s (em cima) e r (em baixo) da 3CTZ
Figura 37 – Estruturas dos confórmeros da CTZ, com energias relativas: A(0,0 kJ mol-1), B(1,0 kJ
mol ⁻¹), C(3,6 kJ mol ⁻¹) e D(6,5 kJ mol ⁻¹)
Figura 38 - Comparação entre os espectros UV/Vis experimental e calculado (normalizados) da CTZ
com o nível (TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD)
Figura 39 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-T
Figura 40 – Estrutura do estado de transição CTZ-ET1f 60
Figura 41 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I1f
Figura 42 – Estrutura do estado de transição CTZ-ET2f
Figura 43 – Estrutura do estado de transição CTZ-ET1a61
Figura 44 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I1a
Figura 45 – Estrutura do estado de transição CTZ-ET2a
Figura 46 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I2
Figura 47 – Ilustração da distância entre os átomos de azoto e hidrogénio envolvidos na transferência
de protão intramolecular na via de ciclização com o grupo alílico
Figura 48 – Estruturas da CTZ-I2 (à esquerda) e do estado de transição CTZ-ET1f (à direita)63
Figura 49 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I3a
Figura 50 – Estruturas dos estados de transição CTZ-ET4a1 e CTZ-ET4a2
Figura 51 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I4a65
Figura 52 – Estrutura do estado de transição CTZ-ET5a
Figura 53 – Geometria otimizada da pirimidinona CTZ-P
Figura 54 - Ilustração das distâncias entre os átomos de azoto e hidrogénio envolvidos na
transferência de protão intramolecular da via de ciclização com o grupo fenilo
Figura 55 – Estrutura do estado de transição CTZ-ET3f
Figura 56 – Estruturas otimizadas da CTZ-12 para os vários valores de N ₍₁₎ H ₍₃₂₎ , calculadas através
do método das otimizações parciais
Figura 57 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I3f
Figura 58 – Estruturas dos estados de transição CTZ-ET4f1 e CTZ-ET4f2
Figura 59 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria
otimizada da CTZ-I4f
Figura 60 – Estrutura do estado de transição CTZ-ET5f
Figura 61 – Geometria otimizada da benzimidazolona CTZ-B
Figura 62 – Perfil energético da fotorreação da CTZ

Figura 63 – Estruturas dos enantiómeros s e r da 3CTZ; (em cima enantiómero s; e	em
baixoenantiómero r)	.70
Figura 64 – Estruturas dos confórmeros da 3CTZ, com energias relativas: A(0,0 kJ mol-1), B(5,7	kJ
mol ⁻¹), C(2,6 kJ mol ⁻¹) e D(5,2 kJ mol ⁻¹)	.71
Figura 65 - Comparação entre os espectros UV/Vis experimental e calculado (normalizados)	da
3CTZ ao nível de teoria TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD	.72
Figura 66 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-T	.73
Figura 67 – Estrutura do estado de transição 3CTZ-ET1f	.73
Figura 68 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I1f	.73
Figura 69 – Estrutura do estado de transição 3CTZ-ET2f	.74
Figura 70 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-ET1a	.74
Figura 71 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I1a	.75
Figura 72 – Estrutura do estado de transição 3CTZ-ET2a	.75
Figura 73 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I2	.76
Figura 74 – Estrutura do estado de transição 3CTZ-ET3a	.76
Figura 75 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I3a	.76
Figura 76 - Estruturas dos estados de transição 3CTZ-ET4a1 e 3CTZ-ET4a2	.77
Figura 77 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na estrut	ura
otimizada da 3CTZ-I4a	.77
Figura 78 – Estrutura do estado de transição 3CTZ-ET5a	.78
Figura 79 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I5a	.78
Figura 80 – Variação da energia relativa da 3CTZ-I5a em função do valor da distância $N_{(1)}C_{(8)}$.79
Figura 81 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) o	das
geometrias calculadas para $N_{(1)}C_{(8)}=2,3$ Å (à esquerda) e $N_{(1)}C_{(8)}=2,2$ Å (à direita)	.79
Figura 82 – Geometria otimizada da pirimidinona 3CTZ-P	.79
Figura 83 – Estrutura do estado de transição 3CTZ-ET3f	.80
Figura 84 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	tria
otimizada da 3CTZ-I3 f	.80
Figura 85 – Estruturas dos estados de transição 3CTZ-ET4f1 e 3CTZ-ET4f2	.81
Figura 86 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geomet	iria
otimizada da 3CTZ-I4f	.81
Figura 87 – Estrutura do estado de transição 3CTZ-ET5 f	.81
Figura 88 – Geometria otimizada da benzimidazolona 3CIZ-B	.82
Figura 89 – Perfil energético da fotorreação da 3CTZ	.82
Figura 90 – Comparação das distâncias entre os átomos de azoto e carbono nas espécies análogas 1	nas
vias reacionais da CIZ: CIZ-14a á esquerda e CIZ-14f á direita	.84
Figura 91 - Comparação das distâncias entre os átomos de azoto e carbono nas espécies análogas i	nas
vias reacionais da $3 \bigcirc 1 \angle : 3 \bigcirc 1 \angle -14a$ a esquerda e $3 \bigcirc 1 \angle -14t$ a direita	.85
Figura $92 -$ Espectros de intravermelho calculados e normalizados das especies envolvidas	na
totorreação da $C1Z$ (via de ciclização com o grupo alílico)	.86
Figura 93 – Espectros de intravermelho calculados e normalizados das espècies envolvidas	na
totorreação da 3C1Z (via de ciclização com o grupo tenilo)	.88

Figura 94 - Distribuição dos valores de energia excitação vertical do estado fundamental da ATZ
(ATZ-S0) calculados com os funcionais M06-HF, B3LYP e PBE0 ao nível TD-DFT/cc-
pVDZ/PCM-metanol/ATD94
Figura 95 - Comparação entre os espectros UV/Vis obtido experimentalmente e os calculados com
os funcionais M06-HF e PBE0 da ATZ ao nível TD-DFT /cc-pVDZ/PCM-metanol/ATD94
Figura 96 - Perfil energético da fotorreação da ATZ com os funcionais M06-HF e PBE0 ao nível
DFT/cc-pVDZ/PCM-metanol95
Figura 97 – Espectros de infravermelho normalizados da ATZ-SO calculados com os funcionais M06-
HF e PBE0 ao nível DFT /cc-pVDZ/PCM-metanol

Índice de Tabelas

Tabela 1 - Comparação entre os valores de número de onda dos modos vibracionais calcul	ados ao
nível DFT/B3LYP com as bases 6-31G e cc-pVDZ, com os reportados na literatura para a	base 6-
311++G(d,p)	
Tabela 2 - Comparação entre os valores de número de onda dos modos vibracionais calculad	los com
o funcional B3LYP e os calculados com o M06-HF, ambos com a base cc-pVDZ	
Tabela 3 – Comparação entre os valores de número de onda dos modos vibracionais calcula	ados em
fase gasosa e os calculados com PCM-metanol, ao nível de teoria DFT/M06-HF/cc-pVDZ.	
Tabela 4 - Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tet	razólico
na geometria de equilíbrio da ATZ-SO	
Tabela 5 - Propriedades das excitações verticais do estado fundamental da ATZ (ATZ-SO)) sem e
com aproximação de Tamm-Dancoff obtidas com o nível de teoria TD-DFT/M06-	-HF/cc-
pVDZ/PCM-metanol	40
Tabela 6 - Valores de ordem de ligação entre os átomos constituintes do anel fenilo na ge	ometria
otimizada da ATZ-T	42
Tabela 7 - Valores de ordem de ligação entre os átomos constituintes do anel fenilo nas geo	ometrias
calculadas para N ₍₁₎ N ₍₂₎ =1,69 Å e N ₍₁₎ N ₍₂₎ =1,70 Å	43
Tabela 8 – Valores de ordem de valência livre na espécie ATZ-I1f	44
Tabela 9 - Valores de ordem de ligação entre os átomos constituintes do anel fenilo nas	espécies
ATZ-ET1a e ATZ-I1a	47
Tabela 10 – Valores de ordem de valência livre na ATZ-I1a	47
Tabela 11 - Valores de ordem de valência livre dos átomos constituintes da espécie ATZ-I2	48
Tabela 12 – Valores de ordem de valência livre na ATZ-I3	50
Tabela 13 - Valores de ordem de ligação entre os átomos constituintes do anel fenilo na AT	Z-P .52
Tabela 14 - Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tet	razólico
na CTZ-S0	58
Tabela 15 – Propriedades das excitações verticais do estado fundamental da CTZ (CTZ-SO) com o
nível (TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD)	58
Tabela 16 - Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tet	razólico
na CTZ-T	59
Tabela 17 – Valores de ordem de valência livre na CTZ-I1f	61
Tabela 18 – Valores de ordem de valência livre na CTZ-I1a	
Tabela 19 – Valores de ordem de valência livre na CTZ-I2	63
Tabela 20 – Valores de ordem de valência livre na CTZ-I3a	64
Tabela 21 – Valores de ordem de valência livre na CTZ-14a	
Tabela 22 – Valores de ordem de valência livre na CTZ-I3f	67
Tabela 23 – Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tet	razólico
	71
Tabela 24 – Propriedades das excitações verticais do estado fundamental da 3C1Z (3C1Z	2- SO) ao
nivel TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD	
Tabela 25 – Valores de ordem de ligação na 3CTZ-T	
I abela $20 - \text{Valores}$ de ordem de valencia livre na 3CTZ-III .	
I abela 2/ - Valores de ordem de ligação na 3CTZ-ETIa	
1 abera 20 - valores de ordem de ligação na 3012-11a	
$I abela 29 - Valores de ordem de valencia livre na 3\bigcup I Z-I3a$	
$1 \text{ abeia } 50 - \text{ valores de ordem de valencia livre na 3 \text{ J} \text{ L} \text{ L} \text{ - } \text{ I} \text{ 3 } \text{ .}$	80

Resumo

Os compostos tetrazólicos apresentam aplicações em áreas que se estendem da Química Medicinal até à indústria de materiais energéticos. As tetrazolonas incluem-se na família de compostos tetrazólicos, e distinguem-se por formarem um grupo carbonilo com o carbono do anel tetrazólico.

A fotoquímica destes compostos foca-se na clivagem do anel, apresentando, na maioria dos casos, azidas, isocianatos e aziridinas como produtos finais, estando descritas, no entanto, várias vias reacionais alternativas. Estas vias podem ser favorecidas ou impedidas consoante a natureza química e a flexibilidade conformacional dos grupos substituintes das tetrazolonas. Muitas das vias reacionais descritas envolvem o processo de fotoextrusão de azoto molecular, que pode ocorrer de forma concertada ou através da formação de espécies zwitteriónicas ou radicalares. O meio em que a fotorreação ocorre é relevante na seleção das vias reacionais. Estudos através do isolamento em matriz sólida limitam as opções a processos confinados, excluindo vias reacionais que dependam da difusão molecular. O estudo das fotorreações em solução depende de mais variáveis, das quais se destaca a natureza do solvente.

Neste estudo caracterizam-se três tetrazolonas (ATZ, CTZ e 3CTZ), que têm como substituintes um grupo fenilo e um grupo alílico, cuja estrutura é variável. A fotoquímica destes compostos já foi estudada experimentalmente, tendo sido caracterizados os fotoprodutos de cada tetrazolona e postulados os respetivos mecanismos de formação. Estão também publicados alguns resultados teóricos sobre estas moléculas, com o nível de teoria DFT.

Este trabalho parte dos mecanismos postulados para a fotorreação de cada tetrazolona, procurando caracterizar-se com o nível de teoria DFT (M06-HF/cc-pVDZ) todas as espécies envolvidas, assim como os estados de transição entre elas. Isto permitiu determinar as barreiras energéticas associadas a cada etapa da fotorreação, e avaliar a hipótese da seleção das diferentes vias reacionais ser devida a impedimentos energéticos.

Verificou-se que existem diferenças no processo de fotoextrusão de N₂ entre as moléculas estudadas. A avaliação dos perfis energéticos das fotorreações das moléculas CTZ e 3CTZ mostrou que a seletividade observada na formação dos fotoprodutos não é devida a barreiras energéticas demasiado elevadas. Atribuiu-se esta seletividade às diferenças observadas entre espécies intermediárias análogas nas vias reacionais competitivas, que se pensa terem influência no processo de formação do produto final, devido ao impedimento que as moléculas de solvente podem exercer no movimento dos diferentes grupos.

Com o nível de teoria TD-DFT, caracterizaram-se as excitações verticais destas tetrazolonas, o que permitiu simular os seus espectros de absorção UV-Vis. Elaborou-se também um guia interpretativo de suporte para estudos através de espectroscopia de infravermelho resolvida no tempo para as fotorreações das moléculas estudadas. Por fim, foi ainda realizado um breve estudo comparativo acerca da utilização dos funcionais M06-HF e PBE0 na caracterização destas fotorreações.

Abstract

Tetrazole compounds have applications in areas ranging from Medicinal Chemistry to the energetic materials industry. Tetrazolones are part of the tetrazolic compounds family and are characterized by forming a carbonyl group with the ring carbon.

The photochemistry of these compounds focuses on ring cleavage, yielding, in most cases, azides, isocyanates and aziridines as final products. However, several alternative reaction pathways are described. These pathways can be favored or hindered by the chemical nature and conformational flexibility of the tetrazolone substituting groups. Many of the described reaction pathways involve the photoextrusion of molecular nitrogen, which can occur in a concerted process or through the formation of zwitterionic or radical species. The reaction medium is relevant in the selection of the different pathways. Studies by isolation in solid matrix limit options to confined processes, excluding reaction pathways that depend on molecular diffusion. The study of photoreactions in solution depends on more factors, of which the nature of the solvent stands out.

In this study, three tetrazolones are characterized (ATZ, CTZ and 3CTZ), which have as substituents a phenyl group and an allylic group, whose structure is variable. The photochemistry of these compounds has already been studied experimentally: the photoproducts of each tetrazolone have been characterized and the respective formation mechanisms have been postulated. Some theoretical studies on these molecules are also published, with the DFT theory level.

This work is based on the postulated mechanisms for the photoreaction of each tetrazolone, by characterize all the involved species, with DFT (M06-HF/cc-pVDZ) theory level, as well as the transition states between them. This led to the determination of the energy barriers of each stage of the photoreaction, and to the study of the hypothesis that the selection of the different reaction pathways is due to energy impediments.

It was found that there are differences in the N_2 photoextrusion process among the studied molecules. The analysis of the energy profiles of the photoreactions of the CTZ and 3CTZ molecules indicated that the selectivity observed in the formation of the photoproducts is not due to too high energy barriers.

This selectivity was attributed to the differences observed between analogous intermediate species in the competitive reaction pathways, which are believed to have an influence on the formation process of the final product, due to the impediment that the solvent molecules can have on the rearrangement of the different groups.

With TD-DFT theory level, the vertical excitations of these tetrazolones were characterized, which led to the simulation of their UV-Vis absorption spectra. An interpretative support guide for studies through time-resolved infrared spectroscopy for the photoreactions of the studied molecules was also developed. Finally, a brief comparative study was carried out on the use of the functionals M06-HF and PBE0 in the characterization of these photoreations.

Capítulo 1: Introdução

1. Anel Tetrazólico

Os tetrazóis são moléculas não encontradas na Natureza até ao momento, tendo a primeira síntese de um composto deste tipo ocorrido acidentalmente em 1885, por J. A. Bladin.¹ O que caracteriza esta classe de compostos é o anel tetrazólico (Figura 1), um sistema cíclico aromático, constituído por quatro átomos de azoto e um átomo de carbono. A aromaticidade varia com o número de substituintes e com a sua posição no anel.²

Figura 1 – Representação esquemática de um anel tetrazólico

1.1. Aplicações de compostos tetrazólicos

Desde 1885 até aos dias de hoje, muitos compostos tetrazólicos têm sido sintetizados, e foram já descritos diversos tipos de aplicações para esta classe, principalmente nas áreas da Química Medicinal, da Química de Materiais Energéticos e da Síntese Química, estando também presentes noutras, no entanto, com menor incidência.

1.1.1. Química Medicinal

Os compostos tetrazólicos têm surgido com diversas aplicações na área da Química Medicinal, muito devido à sua característica de bioisóstero para o ácido carboxílico. Os tetrazóis apresentam propriedades físicas e químicas bastante semelhantes aos ácidos carboxílicos análogos, como por exemplo o comportamento ácido/base, o tamanho, a orientação espacial relativa e o potencial eletrostático, pelo que originam interações recetor-ligando semelhantes.² Para além destas semelhanças nas propriedades, os compostos tetrazólicos têm como vantagem o facto de terem um tempo de vida maior, por terem maior estabilidade metabólica, maior deslocalização de carga e serem mais lipofílicos (o que facilita a penetração da membrana).^{3–5} Assim, devido a estas características, são considerados o melhor grupo funcional alternativo ao ácido carboxílico em questões relacionadas com a Química Medicinal.^{2,6}

Atualmente são conhecidos fármacos tetrazólicos com diversas propriedades, tais como antihipertensivos,⁷ antialérgicos,⁸ anti-inflamatórios,⁸ antibióticos,⁹ anticonvulsivos,¹⁰ analgésicos,¹¹ e são também utilizados no tratamento de várias doenças como o Vírus da Imunodeficiência Humana (VIH),¹² o Vírus da Hepatite C (VHC),¹³ a tuberculose,¹⁴ a doença de Alzheimer,¹⁵ a obesidade,¹⁶ a diabetes¹⁶ ou o cancro.¹⁷

1.1.2. Materiais de Alta Densidade Energética

Nas últimas décadas, o desenvolvimento de materiais de alta densidade energética tem-se aproximado da síntese de novos compostos tetrazólicos, devido ao facto de estes serem ricos em azoto.¹⁸ Para ser considerado um material de alta densidade energética ideal, um composto deve ter uma elevada entalpia de formação, uma elevada estabilidade térmica, uma boa performance explosiva e uma baixa sensibilidade a fatores externos, como por exemplo o choque.¹⁹ Do ponto de vista ambiental, o ideal seria libertar apenas azoto molecular, principal constituinte da atmosfera. Os compostos tetrazólicos encontram-se bastante perto dos idealmente desejados, pois através da utilização de substituintes adequados o seu teor de azoto pode ser superior a 70%, e o principal produto da sua combustão é $N_2.^{20}$ Este tipo de compostos é utilizado com diferentes aplicações, como por exemplo na indústria automóvel (agente gerador de gás no *airbag*),²¹ na indústria aeroespacial (no combustível propulsor),²² na indústria mineira (como explosivo)²³ e na indústria pirotécnica (na forma de complexos organometálicos responsáveis pelas diferentes cores).²⁴

1.1.3. Síntese Química

Os tetrazóis e seus derivados têm diversas aplicações na síntese química, muito devido à sua fotoquímica, que envolve a quebra do anel.²⁵ São, por isso, reagentes importantes em processos de preparação de compostos heterocíclicos com átomos de azoto. Estão descritas vias sintéticas para várias classes de compostos, utilizando tetrazóis ou derivados, como por exemplo 9H-pirimido(4,5-*b*)indóis,²⁶ diaziridinonas,²⁷ iminoaziridinas,²⁸ carbodiimidas,²⁹ oxazinas,³⁰ benzimidazolonas²⁹ ou pirimidinonas.^{31–34}

1.1.4. Outras Aplicações

Os compostos tetrazólicos estão ainda presentes noutras áreas, ainda que com uma expressão mais reduzida. Na indústria agrícola são conhecidos vários tetrazóis e derivados que apresentam propriedades relevantes como pesticidas (herbicidas e fungicidas) e na regulação do crescimento de plantas.^{35–38} Também são conhecidas aplicações de tetrazóis como agentes de biocontraste em imagiologia por ressonância magnética e como biossensores na deteção de proteínas ou de iões metálicos.^{39–41} No âmbito da indústria alimentar, os compostos tetrazólicos têm também potenciais aplicações como adoçantes artificiais.^{42,43}

1.2. Tetrazolonas

Dentro da família de compostos tetrazólicos, inclui-se o grupo tetrazol-5-ona (Figura 2), também denominado por tetrazolona. As tetrazolonas caracterizam-se por formarem um grupo carbonilo com o carbono (posição 5 do anel), e podem ter vários substituintes, principalmente nas posições 1 e 4.

Figura 2 – Representação esquemática de uma tetrazolona

Tal como para os compostos tetrazólicos em geral, para esta subclasse também são conhecidas várias áreas de utilização. Contudo, no caso das tetrazolonas, certas áreas têm sido mais exploradas, como por exemplo, a química de materiais energéticos ou a síntese química.^{24,25}

As 1-fenil-4-alil-tetrazol-5-onas são uma subclasse de tetrazolonas, que têm um grupo fenilo como substituinte na posição 1 do anel, e um grupo alílico na posição 4. Estes compostos são sintetizados através da reação de álcoois alílicos com 5-cloro-1-feniltetrazol, a partir da qual se obtém o 5-aliloxitetrazol correspondente ao álcool utilizado (Figura 3). Este produto, por ação da temperatura, transforma-se na respetiva 1-fenil-4-alil-tetrazol-5-ona.^{31,34}

Figura 3 – Representação esquemática da reação de síntese de uma 1-fenil-4-alil-tetrazol-5-ona (adaptado de Frija et al.)³⁴

Estão descritas várias aplicações para estes compostos na área da síntese química, nomeadamente na síntese de diaziridinonas,²⁷ benzimidazolonas²⁹ e pirimidinonas.^{44,45}

1.3. Fotoquímica de compostos tetrazólicos

A fotoquímica dos compostos tetrazólicos centra-se principalmente na clivagem do anel, e os produtos obtidos com mais frequência são azidas, isocianatos ou aziridinas. No entanto, a presença de átomos de hidrogénio lábeis no anel ou nos grupos substituintes pode conduzir a vias reacionais alternativas, que ocorrem em simultâneo com as outras vias fotoquímicas possíveis. Estes processos de clivagem fotoquímica podem ser favorecidos ou impedidos pela natureza química e pela flexibilidade conformacional dos substituintes ligados ao anel tetrazólico, influenciando assim as quantidades relativas de vários fotoprodutos.^{46–53} Em certos compostos, verifica-se a coexistência de vários processos fotoquímicos: o tautomerismo fotoinduzido e a clivagem do anel tetrazólico, com ou sem fotoextrusão de azoto molecular (N₂).^{46,47}

1.3.1 Fotoextrusão de N₂

Um dos processos mais frequentes na fotorreação de compostos tetrazólicos é a libertação de azoto molecular (N₂). A forma como ocorre a saída deste subproduto depende do composto, podendo ocorrer de forma concertada, com a formação de um novo anel de três membros, ou através da formação de espécies radicalares ou zwitteriónicas (Figura 4).^{31,46}

Figura 4 – Representação esquemática do processo de fotoextrusão de N_2

1.3.2. Estudo isolado em matriz ou em solução

A fotoquímica dos tetrazóis e dos seus derivados tem sido estudada quer em solução, quer por isolamento em matriz. A abordagem através do isolamento em matriz simplifica o estudo destes processos, pois permite apenas a ocorrência de processos confinados, eliminando vias reacionais alternativas que pudessem surgir por difusão molecular (com exceção de pequenas espécies produzidas), ou que dependam de rearranjos conformacionais (fortemente impedidos pela matriz). Devido a estas simplificações, os estudos espectroscópicos através de isolamento em matriz originam resultados com maior resolução e mais facilmente comparáveis aos obtidos através de simulações computacionais.^{31,32,46,48} O estudo da fotoquímica em solução tem mais variáveis associadas, pois sabe-se que o solvente (ou mistura de solventes) e outras condições reacionais têm uma influência direta no rendimento e na seletividade da fotodecomposição de compostos tetrazólicos.²⁵

1.3.3. Fotoquímica de 1-fenil-4-alil-tetrazol-5-onas

Para esta classe de compostos foram postulados cinco tipos de vias reacionais (Figura 5), cuja ocorrência depende de vários fatores, tais como o meio onde a reação ocorre (se ocorre em matriz ou em solução, e no caso da segunda hipótese, qual o solvente ou a mistura de solventes), as condições sob as quais a reação ocorre e a natureza e a flexibilidade conformacional do grupo alílico. Estas cinco vias podem originar diferentes produtos, nomeadamente isocianatos, azidas, aza-cicloheptatetraenos, pirimidinonas, diaziridinonas e benzimidazolonas.^{25,32,33}

Figura 5 – Representação esquemática das vias reacionais possíveis para a fotorreação de uma 1-fenil4-alil-tetrazol-5-ona (adaptado de Frija et al.)³²

As vias reacionais 1 e 2 estão descritas para reações isoladas em matriz, pois não implicam rearranjos conformacionais exigentes. Estas vias centram-se sobretudo na quebra do anel tetrazólico em dois produtos com diferentes quantidades de átomos de azoto - isocianatos e azidas, com um e três átomos de azoto respetivamente. No caso em que ocorre a formação da fenilazida (via reacional 1), pode ocorrer a fotoextrusão de N2, adicionando os aza-cicloheptatetraenos ao conjunto dos produtos da reação. A via reacional 3a também está descrita como possível em certas reações isoladas em matriz. Nesta via, o principal produto é a diaziridinona, no entanto, no leque de produtos obtidos pode figurar também a benzimidazolona correspondente, com um baixo rendimento devido à barreira imposta pela necessidade de um rearranjo conformacional entre o grupo benzílico e o anel de três membros. A produção de aza-cicloheptatetraenos e de diaziridinonas (e consequentemente a produção de benzimidazolonas) não é favorecida com o isolamento em matriz, devido à necessidade da saída do azoto molecular.32 Já a via reacional 3b, descrita para o estudo de reações em solução, descreve uma via de produção de benzimidazolonas através da fotoextrusão de N_2 com a formação de um intermediário birradicalar tripleto, que sofre um rearranjo conformacional com o substituinte benzílico, formando um novo anel, de 5 membros. Esta via ocorre em alternativa à via reacional 4, também ela identificada para reações em solução, e que leva à produção de pirimidinonas.^{31,32} A via 4 ocorre quando o intermediário formado após a saída de N₂ sofre um rearranjo através do grupo alilo. Se este grupo tiver pouca flexibilidade conformacional, o processo evolui pela via reacional 3b, produzindo benzimidazolas.25

Nas reações de produção de pirimidinonas, a escolha do solvente tem bastante importância, pois apenas a utilização de um solvente prótico permite a obtenção desta classe de compostos como produto final. Nos casos em que a reação ocorre numa solução de solvente aprótico, progride, originando isocianatos e anilinas.^{25,31} Isto acontece devido à capacidade dos solventes próticos estabelecerem interações por ligação de hidrogénio com as pirimidinonas em vários pontos. Estas interações permitem reações reversíveis de troca de protão, que atuam como mecanismo de

desativação do estado excitado, que é facilitado pelas restrições conformacionais impostas pela gaiola de solvente que envolve a pirimidinona.⁵⁴ Outro fator de estabilização é o facto da dissipação de energia ser mais eficaz no complexo solvatado, tornando mais improvável a ocorrência de vias reacionais que envolvam fotoclivagem.³¹

1-fenil-4-alil-tetrazol-5-ona

A fotoquímica da 1-fenil-4-alil-tetrazol-5-ona (alil-tetrazolona ou ATZ) já foi estudada, quer por isolamento em matriz³², quer em solução.^{31,34} Em matriz, foi identificada a coexistência de várias vias reacionais, nomeadamente as do tipo 1 e 2, e parcialmente a via 3a (consultar Figura 5). Nos estudos em solução, com solventes próticos, identificou-se a pirimidinona como principal produto (via reacional 4); nas soluções com solventes apróticos, a pirimidinona degrada-se, formando isocianatos e anilinas.

Foi postulado um mecanismo para a via reacional 4, que envolve a formação de um intermediário birradicalar tripleto, após a fotoextrusão de azoto molecular (Figura 6).^{31,34} A pirimidinona é formada após esse intermediário sofrer um rearranjo conformacional através do grupo alilo e uma transferência intramolecular de protão. Foram descritas algumas evidências que corroboram este mecanismo, nomeadamente o facto de a viscosidade do solvente afetar o rendimento da reação (uma maior viscosidade implica uma maior barreira energética no rearranjo conformacional). A transferência de protão foi também descrita como sendo intramolecular, pois a sua ocorrência é detetada quer em solventes próticos, quer em solventes apróticos.³¹

A nível teórico, a estrutura do estado fundamental da ATZ foi estudada em fase gasosa, recorrendo ao nível de teoria DFT, utilizando as relações funcional/base B3LYP/6-311G(d)³¹, B3LYP/6-31G(d,p)³² e B3LYP/6-311++G(d,p) – para o último caso, está também descrita a relação entre dados experimentais de espectroscopia de infravermelho com isolamento em matriz e dados calculados com este nível de teoria.³² Estão também descritos resultados com o nível de teoria semiempírico do Hamiltoniano PM-3.³⁴

Figura 6 – Representação esquemática da fotorreação da ATZ em solventes próticos (adaptado de Frija et al.)^{31,34}

1-fenil-4-ciclohexenil-tetrazol-5-ona

A fotoquímica da 1-fenil-4-ciclohexenil-tetrazol-5-ona (ciclohex-tetrazolona ou CTZ), em solventes próticos, apresenta resultados bastante semelhantes aos da ATZ – formação da pirimidinona correspondente. O mecanismo postulado (Figura 7) tem semelhanças com o apresentado anteriormente para a ATZ. No entanto no caso da CTZ, a transferência intramolecular de protão não se dá a partir do mesmo átomo de carbono, mas sim a partir do primeiro carbono insaturado, formando um produto em que os átomos de azoto integram um anel de 5 membros, enquanto que no caso da ATZ, os átomos integram um anel de 6 membros. Isto ocorre devido às diferenças

conformacionais no grupo alílico. No estudo desta reação foi detetado um estado transiente de longa duração, mas que não foi identificado.^{25,31}

Estudos computacionais focando a energia relativa das diferentes espécies envolvidas na fotorreação do enantiómero *s* da CTZ, com o nível de teoria DFT (B3LYP/3-21G*), em fase gasosa, admitem a ocorrência da via reacional 3b, formando uma benzimidazola, uma vez que seria uma via com um produto energeticamente mais estável. No entanto, indicam uma diferença energética entre nas espécies intermediárias mais favorável para a ocorrência da via que leva à formação de piridiminona (via reacional 4).²⁵

Figura 7 – Representação esquemática da fotorreação da CTZ em solventes próticos (adaptado de Ismael et al.)²⁵

1-fenil-4-(3-metilciclohexenil)tetrazol-5-ona

A fotoquímica da 1-fenil-4-(3-metilciclohexenil)tetrazol-5-ona (3-ciclohex-tetrazolona ou 3CTZ) em solução com solventes próticos é substancialmente diferente das anteriormente apresentadas (ATZ e CTZ), muito devido ao impedimento conformacional causado pela adição do substituinte metilo ao grupo alílico. A fotorreação deste composto (3CTZ) não resulta numa pirimidinona como produto final (via reacional 4), mas sim numa benzimidazolona (via reacional 3b). O mecanismo postulado para esta reação (Figura 8), à semelhança dos da ATZ e da CTZ, prevê a existência de um intermediário birradicalar tripleto e de uma transferência intermolecular de protão. No entanto, o intermediário sofre um rearranjo com o substituinte fenilo e não com o grupo alílico, que comparado com o da CTZ, tem menos flexibilidade conformacional devido à presença do metilo. A transferência de protão ocorre entre o grupo fenilo e o átomo de azoto a que este está ligado. Tal como para a CTZ, foi detetado um estado transiente de longa duração, sem conclusões quanto à sua natureza.²⁵ O estudo teórico efetuado sobre o mecanismo postulado para a CTZ - DFT (B3LYP/3-21G*) em fase gasosa - indica que apenas a via que conduz à formação da benzimidazolona é energeticamente possível.²⁵

Figura 8 – Representação esquemática da fotorreação da CTZ em solventes próticos (adaptado de Ismael et al.)²⁵

1.4. Estudo computacional de mecanismos reacionais

Os mecanismos reacionais postulados podem ser estudados a nível teórico, de forma a prever e interpretar as diferentes vias que podem ocorrer, analisando a estabilidade e as barreiras de energia inerentes à formação dos produtos.

A identificação e caracterização das diferentes espécies envolvidas no mecanismo, bem como dos estados de transição entre elas, pode permitir explicar o favorecimento de certas vias em detrimento de outras. Isto é conseguido através da comparação da energia relativa das espécies intermediárias, e do cálculo das barreiras energéticas inerentes à sua formação.

Os estudos espectroscópicos teóricos são úteis na medida em que permitem simular os espectros de absorção UV/Vis e de infravermelho das diferentes espécies, facilitando a interpretação de resultados experimentais obtidos através de técnicas de espectroscopia (técnicas estacionárias, no caso dos reagentes e dos produtos e técnicas resolvidas no tempo no caso das espécies intermediárias).
Capítulo 2: Abordagem Teórica

1. Métodos de Orbitais Moleculares

Quando se pretende caracterizar a distribuição eletrónica de um sistema atómico ou molecular, a Mecânica Quântica é a abordagem adequada, uma vez que os eletrões não podem ser descritos corretamente pela Mecânica Clássica, devido ao facto de serem partículas com uma massa extremamente baixa. Estes sistemas podem ser caracterizados através de métodos designados por *ab initio*, quando não recorrem a dados experimentais para estudar o problema, ou através de modelos semi-empíricos.^{55,56}

Para abordar estes problemas, recorre-se ao postulado fundamental da Mecânica Quântica, que afirma que existe uma função de onda Ψ para cada sistema químico, e que, quando um operador adequado ϑ atua sobre Ψ , devolve uma propriedade observável do sistema e. Em termos matemáticos, tem-se:

$$\vartheta \Psi = e \Psi \tag{1}$$

onde ϑ é um vetor próprio, Ψ uma função própria e e um valor próprio. Uma das observáveis que podem ser obtidas com este postulado é a energia do sistema E, que é dada pela equação de Schrödinger independente do tempo, cujo operador H é designado por Hamiltoniano, sendo expressa como:

$$H\Psi = E\Psi \tag{2}$$

Num sistema molecular, o operador Hamiltoniano tem cinco contribuições principais: a energia cinética dos eletrões T_e , a energia cinética dos núcleos T_n , a atração entre os núcleos e os eletrões V_{en} , a repulsão entre os eletrões V_{ee} e a repulsão entre os núcleos V_{nn} :

$$H = T_e + T_n + V_{en} + V_{ee} + V_{nn}$$
(3)

Em notação matemática e em unidades atómicas, o Hamiltoniano pode ser expresso como:

$$H = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{k} \frac{1}{2m_{k}} \nabla_{k}^{2} - \sum_{i} \sum_{k} \frac{Z_{k}}{r_{ik}} + \sum_{i < j} \frac{1}{r_{ij}} + \sum_{k < l} \frac{Z_{k}Z_{l}}{r_{kl}}$$
(4)

onde *i* e *j* dizem respeito a eletrões, $k \in l$ dizem respeito a núcleos, m_k é a massa do núcleo k, ∇^2 é o operador Laplaciano, e é a carga do eletrão, Z é o número atómico e r_{ab} é a distância entre as partículas $a \in b$.

Em situações com maior complexidade, quando existe um potencial externo (proveniente de um campo elétrico ou magnético, por exemplo), ou quando se pretende considerar efeitos relativísticos, é necessário adicionar mais termos a esta definição do Hamiltoniano.⁵⁶

1.1. Aproximação de Born-Oppenheimer

A definição da função de onda Ψ em sistemas com várias partículas tem uma elevada complexidade, pois é necessário ter em conta a correlação entre elas. O Hamiltoniano descrito em **(3)** tem essa correlação expressa nos termos descrevem atrações e repulsões, o que impossibilita a sua definição exata. Para contornar este problema, recorre-se à Aproximação de Born-Oppenheimer.⁵⁵

A massa de um eletrão é cerca de 1800 vezes menor que a massa de um nucleão (protão ou neutrão), o que faz que em condições normais, os eletrões se movam de uma forma extremamente mais rápida que os núcleos.⁵⁶ Isto significa que quando existem alterações na posição dos núcleos os eletrões se adaptam de forma praticamente instantânea. Assim sendo, é possível (e conveniente para o problema) tratar o movimento eletrónico e o movimento nuclear de forma independente, calculando a energia eletrónica para posições nucleares fixas. Na prática, isto consiste em considerar o termo da energia cinética dos núcleos T_n como sendo independente dos eletrões, em ignorar a correlação no termo da energia potencial de atração V_{en} e em considerar a energia potencial de repulsão internuclear V_{nn} como uma constante V_N para uma dada geometria. Isto permite escrever um novo Hamiltoniano, o Hamiltoniano eletrónico H_{el} , que é definido como:

$$H_{el} = T_e + V_{en} + V_{ee} \tag{5}$$

$$H_{el} = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{i} \sum_{k} \frac{Z_{k}}{r_{ik}} + \sum_{i < j} \frac{1}{r_{ij}}$$
(6)

Considerando este Hamiltoniano, pode escrever-se a equação de Schrödinger eletrónica como:

$$(H_{el} + V_N)\Psi(\vec{r}; \vec{R}) = E_{el}\Psi(\vec{r}; \vec{R})$$
(7)

onde coordenadas eletrónicas r são variáveis independentes, as coordenadas nucleares R são parâmetros e E_{el} é a energia eletrónica. Como V_N é constante para uma dada geometria, e as funções de onda não variam com a existência de constantes no Hamiltoniano, a equação de Schrödinger eletrónica é resolvida sem ter em conta V_N , obtendo-se o valor próprio designado por energia eletrónica pura, ao qual se soma V_N para obter o valor de E_{el} .

Na esmagadora maioria dos casos, a aproximação de Born-Oppenheimer é justificável, e as suas consequências estão na base de muitas abordagens conceptuais, pelo que é utilizada e aceite como um dogma. É esta aproximação que permite definir o conceito de Superfície de Energia Potencial (SEP), através do cálculo de E_{el} sobre todas as possíveis coordenadas nucleares.⁵⁵

1.2. Combinação Linear de Orbitais Atómicas

A Equação de Schrödinger eletrónica independente do tempo pode ser resolvida de forma exata para sistemas monoeletrónicos, apenas com as limitações de considerar o Hamiltoniano não relativístico e a aproximação de Born-Oppenheimer.

Para um sistema molecular, podem designar-se as funções próprias sugeridas para a equação de Schrödinger eletrónica como orbitais moleculares ϕ , ainda que exista a restrição de a molécula ter apenas um eletrão. O princípio variacional estabelece que o valor próprio da energia calculado recorrendo a uma função de onda aproximada é sempre igual ou superior à energia exata. Uma vez que o valor próprio calculado para cada orbital molecular é a energia eletrónica do eletrão nessa orbital, pode-se avaliar a assim a qualidade das orbitais moleculares sugeridas – a que tiver menor energia é a mais aproximada à função de onda obtida pelo teorema Variacional.⁵⁵

Se para além da consideração de sistemas monoeletrónicos, se assumirem também sistemas mononucleares (átomos/iões), não há necessidade de sugerir funções próprias, podendo resolver-se o sistema de forma exata, uma vez que se podem utilizar as orbitais atómicas (1s, 2s, 2p, 3s, 3p, 3d, ...) como funções próprias para a resolução da Equação de Schrödinger. De forma análoga a este raciocínio, a abordagem através da Combinação Linear de Orbitais Atómicas (LCAO, *Linear Combination of Atomic Orbitals*) define uma orbital molecular a partir de orbitais atómicas φ , como:

$$\phi = \sum_{i=1}^{\infty} a_i \varphi_i \tag{8}$$

onde a_i é um coeficiente. É assim definido um conjunto de funções φ_i designado por base de funções (*basis set*). Note-se que a expansão da equação (8) apenas é exacta quando o conjunto é completo, ou seja, um número infinito de orbitais atómica. Nesta abordagem, é necessário ter em conta que existe

um limite superior N computacionalmente comportável, que representa o tamanho da base. No entanto, quanto mais orbitais atómicas forem tidas em conta na base, mais próximo se está da solução exata da transformação da base.^{55,56}

Uma tentativa de passar do formalismo monoeletrónico da LCAO para sistemas polieletrónicos foi apresentada na Teoria de Hückel, que assume que a energia de um sistema com mais que um eletrão pode ser determinada pela soma das energias das orbitais monoeletrónicas ocupadas, tendo em conta o limite de dois eletrões por orbital. No entanto, esta teoria é muito pouco precisa e falha na análise quantitativa da energia de sistemas polieletrónicos, sendo necessário recorrer a alternativas com melhores respostas.⁵⁵

1.3. Hartree-Fock

Douglas Hartree e Vladimir Fock propuseram uma solução para este problema, tendo estabelecido o método de Hartree-Fock. Este método tem uma abordagem variacional baseada na função de onda, que permite estudar problemas polieletrónicos. Tal como a Teoria de Hückel, este método parte de um formalismo monoeletrónico, uma vez que descreve os eletrões como ocupando funções de onda monoeletrónicas (também designadas por "orbitais-spin" ou "orbitais" apenas).

Para um sistema com N eletrões, o ponto de partida deste método consiste em definir uma função de onda Ψ , dependente de N coordenadas, a partir de N orbitais monoeletrónicas ψ dependentes de uma coordenada cada. As funções designadas como orbitais monoeletrónicas são obtidas a partir de uma base de funções. Assim, a função de onda pode ser definida como:

$$\Psi(\vec{x}_1, \dots, \vec{x}_N) = \psi_1(\vec{x}_1) \dots \psi_N(\vec{x}_N)$$
(9)

Esta definição é normalmente identificada como "produto de Hartree".⁵⁵ No entanto, esta definição não satisfaz os requisitos de antissimetria da função de onda. A exclusão dos efeitos relativísticos do Hamiltoniano faz com que tenha que se considerar o spin eletrónico como um efeito quântico. Cada eletrão tem número quântico de spin de ¹/₂, e na presença de um campo magnético, há dois estados possíveis, consoante o spin se alinha com o campo ou se opõe a ele, descritos respetivamente pelas funções de spin ortonormais α e β . Como os eletrões são partículas idênticas, indistinguíveis e com spin semi-inteiro, a função de onda é antissimétrica quando se trocam as coordenadas de dois eletrões, isto é, Ψ troca de sinal – isto é estabelecido pelo Princípio de Pauli. Esta antissimetria é conseguida através da construção da função de onda recorrendo à definição da função de onda como um único determinante – um determinante de Slater.⁵⁵ Quando se pretende descrever um sistema molecular num determinante de Slater, as orbitais moleculares ocupadas (ortonormais e resultantes do produto de uma orbital espacial e de uma função de spin) estão expressas nas colunas, enquanto que as coordenadas eletrónicas são expressas como linhas. Tendo o sistema *N* eletrões (e *N* orbitais), o determinante é dado por:

$$\Psi = \frac{1}{\sqrt{N!}} \begin{vmatrix} \psi_1(\vec{x}_1) & \cdots & \psi_N(\vec{x}_1) \\ \vdots & \ddots & \vdots \\ \psi_1(\vec{x}_N) & \cdots & \psi_N(\vec{x}_N) \end{vmatrix}$$
(10)

Desta forma, é possível definir a função de onda do estado fundamental, num único determinante, que satisfaz os requisitos de antissimetria da função de onda. Se na construção deste determinante não forem impostas restrições na componente espacial das orbitais-spin, a função de onda é designada por função de onda de Hartree-Fock irrestrita (UHF, *Unrestricted Hartree-Fock*). No entanto, se se pretender estudar uma função de onda de um estado singleto, com um número par de eletrões, normalmente é imposta a condição de, em cada orbital espacial existirem dois eletrões, com diferente spin. Esta abordagem é designada por função de onda de Hartree-Fock restrita (RHF, *Restricted*)

Hartree-Fock), também denominada como sistema de camada fechada (*closed shell system*). Existe ainda uma terceira abordagem, designada por função de onda de Hartree-Fock de camada aberta (ROHF, *Restricted Open-shell Hartree-Fock*), que surge da restrição de a componente espacial das orbitais-spin ocupadas com dois eletrões ser semelhante. Daqui resulta que os valores de energia obtidos através da abordagem UHF sejam menores do que os obtidos a partir das abordagens com restrições, pois a UHF permite ter diferentes componentes espaciais a definir eletrões na mesma orbital – uma perspetiva também designada como "diferentes orbitais espaciais para diferentes spins". A abordagem UHF tem, no entanto, uma desvantagem que a ROHF não tem, que é o facto de numa função de onda UHF poderem existir contaminações de spin, isto é, uma função de onda UHF utilizada para descrever um estado singleto pode conter contaminações de estados tripleto, ou superiores, e uma função do tipo dupleto pode conter contaminações de estados quarteto ou superiores.⁵⁶

Para descrever estados excitados, é necessário considerar orbitais-spin não ocupadas, que se designam por orbitais virtuais. Como podem existir vários estados excitados, dependendo no número de orbitais-spin consideradas, existem vários determinantes que definem esses estados, ao contrário do que acontece com o estado fundamental, que é descrito apenas por um determinante. Assim, a função de onda de um sistema de N eletrões pode ser definida através de uma combinação linear de todos os determinantes de um conjunto completo de bases de funções, isto é, definida pela soma do determinante do estado fundamental, com todos os determinantes correspondentes à excitação de um eletrão, de dois eletrões, etc, até à totalidade dos eletrões do sistema.⁵⁶ O nível de teoria Hartree-Fock foca-se apenas no determinante do estado fundamental, existindo outros níveis que incluem os termos de estados excitados, como, por exemplo, a interação de configurações (CI, *configuration interaction*).

Para perceber como se pode chegar à energia do sistema, com o nível Hartree-Fock, importa olhar para o Hamiltoniano expresso em **(6)**. Pela sua definição, verifica-se que é possível dividir os termos em dois operadores distintos: operador dos termos separáveis e o operador do termo não separável. O operador dos termos separáveis é formado pelos termos que dependem apenas de um eletrão, definindo-se como:

$$\sum_{i} h_{i} = -\sum_{i} \frac{1}{2} \nabla_{i}^{2} - \sum_{i} \sum_{k} \frac{Z_{k}}{r_{ik}}$$
(11)

O terceiro termo da definição do Hamiltoniano **(6)** não pode ser expresso como uma soma deste tipo devido a traduzir interações entre eletrões, dependendo assim de mais do que um eletrão. Desta forma, é possível considerar um novo operador, designado por operador de Fock, definindo-se como:

$$F_i = h_i + \sum_{j}^{N} (J_j - K_j)$$
 (12)

onde J_j e K_j traduzem respetivamente a interação eletrostática entre i e j, sendo j qualquer outro eletrão que não i. O operador de Fock é um operador para a energia de um eletrão, pois descreve a energia cinética do eletrão e a atração entre esse eletrão e os núcleos no termo h_i , e a repulsão entre esse eletrão e todos os outros. A repulsão é considerada como um valor médio no segundo termo da definição – daqui advém a designação de "aproximação do campo médio" para o método Hartree-Fock.^{55,56} Este operador permite escrever um conjunto de equações (equações de Hartee-Fock) de pseudovalores próprios para os valores da energia de cada eletrão – designa-se por "pseudo" porque o operador de Fock depende das outras orbitais moleculares, devido às interações eletrostáticas e de troca. Uma propriedade para uma orbital específica só pode ser determinada a partir do conhecimento de todas as outras orbitais, o que leva a que a resoluções iterativas. Nestas resoluções, o sistema é resolvido numericamente, através do método do campo autocoerente (SCF, *self-consistent field*), um método não linear, iterativo.⁵⁶

O valor da energia eletrónica total é calculado pela diferença entre a soma das energias provenientes das equações de Hartree-Fock e metade do valor de $\sum_{j}^{N} (J_{j} - K_{j})$, evitando assim a dupla contabilização da repulsão intereletónica. Para obter a energia total, soma-se à energia eletrónica o potencial da parte nuclear. Este valor da energia total não é exato devido à contabilização da repulsão entre um eletrão e os restantes eletrões através da aproximação do campo médio.^{55,56}

Ainda no âmbito do operador de Fock, surge o Teorema de Koopmans, que estabelece que o valor próprio resultante da aplicação deste operador sobre um estado monoeletrónico, descrito por uma orbital-spin, corresponde à energia necessária para remover o eletrão desse estado. Isto significa que, se se considerar a orbital ocupada de maior energia, o valor da energia de primeira ionização do sistema é igual, em módulo, ao valor de energia da orbital.

2. Bases de Funções

O conceito de base de funções (*basis sets*) está associado a todos os métodos *ab initio*, que recorrem a conjuntos de funções para descrever a função de onda. A expansão de uma função desconhecida em termos de uma base de funções é exata caso a base seja completa. Num sistema molecular, baseado em orbitais monoeletrónicas, este conjunto é infinito. Desta forma, para tratar numericamente o sistema é necessário truncar a expansão. Isto significa que quando se recorre a uma base de funções num método computacional, é feita uma aproximação: de forma geral, quanto menor a base, menor a qualidade da aproximação feita. Na verdade, o tipo de funções que constitui a base também influência a sua precisão, pelo que não se pode avaliar a performance de uma base apenas pelo seu tamanho, pois quanto melhor for o tipo de funções, menos são necessárias para descrever o problema de forma satisfatória. Uma vez que estes métodos dependem de resoluções iterativas, o tamanho da base e o tipo de funções que tem são bastante relevantes, pois uma base maior significa um maior número de operações a serem realizadas, mas um tipo de funções com mais qualidade, leva a uma convergência mais rápida.^{57,58}

2.1. Tipos de Funções

Na maioria dos cálculos de estrutura eletrónica de sistemas moleculares utilizam-se bases de dois tipos de funções: orbitais do tipo Slater (STO, *Slater Type Orbitals*) e orbitais do tipo Gaussian (GTO, *Gaussian Type Orbitals*).

As STO são definidas em termos de coordenadas polares como:

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = N r^{n-1} Y_{l,m}(\theta,\varphi) e^{-\zeta r}$$
(13)

onde N é uma constante de normalização, $Y_{l,m}$ são funções harmónicas esféricas, n, l e m são os números quânticos principal, de momento angular e magnético respetivamente, e ζ está relacionado, entre outras coisas, com o número atómico.

Neste tipo de orbitais, a dependência exponencial da distância entre o núcleo e o eletrão é feita à semelhança das orbitais exatas do átomo de hidrogénio. No entanto, a definição destas orbitais faz com que não apresentem nodos radiais, sendo estes apenas obtidos através da combinação linear de várias orbitais do tipo Slater. Em cálculos do tipo Hartree-Fock, estas orbitais são utilizadas essencialmente para descrever sistemas atómicos ou diatómicos, em que se procura uma maior exatidão, uma vez que têm um custo computacional substancialmente mais elevado que as GTO, que

podem ser definidas em termos de coordenadas polares ou de coordenadas cartesianas, como se representa nas Equações (14) e (15), respetivamente:

$$\chi_{\zeta,n,l,m}(r,\theta,\varphi) = N r^{2n-2-l} Y_{l,m}(\theta,\varphi) e^{-\zeta r^2}$$
(14)

$$\chi_{\zeta, l_x, l_y, l_z}(x, y, z) = N \, x^{l_x} y^{l_y} z^{l_z} \, e^{-\zeta r^2}$$
(15)

Comparando as duas vias de definir as GTO, verifica-se que quando se considera um espaço de coordenadas cartesianas, o número quântico de momento angular está dividido nas suas três componentes, cuja soma indica o tipo de orbital. Isto significa que para definir uma orbital do tipo d (a que corresponde o número quântico l = 2) num sistema de coordenadas cartesianas, se pode ter componentes do tipo x^2 , y^2 , z^2 , xy, xz e yz, pois $l_x + l_y + l_z = 2$, e sabe-se que este número quântico apenas admite valores inteiros. No entanto, no sistema polar, podem ter-se os componentes $Y_{2,-2}$, $Y_{2,-1}$, $Y_{2,0}$, $Y_{2,1}$ e $Y_{2,2}$, uma vez que -l < m < l. Este mesmo raciocínio pode ser tido para outros tipos de orbitais, definidas por valores de l superiores. Daqui é possível concluir que a definição num espaço polar necessita de menos componentes que a definição cartesiana, o que diminui o custo computacional relacionado com o número de operações realizadas.⁵⁸

Comparando os dois tipos de orbitais, chega-se à conclusão de que as GTO conduzem a integrais de muito mais fácil resolução do que as STO, tendo assim um custo computacional mais reduzido. No entanto, as GTO não são superiores às STO em todos os campos, quer pelo facto de a diferença na forma da exponencial (nas STO: $e^{-\zeta r}$ e nas GTO: $e^{-\zeta r^2}$) afetar a performance da descrição do comportamento nas proximidades do núcleo, quer porque "longe" do núcleo, as GTO decaem muito rapidamente, não descrevendo de forma satisfatória o comportamento real nessa zona. De facto, estes dois tipos de orbitais podem coexistir na mesma base de funções, numa tentativa de aproveitar as vantagens de cada um. Na maioria dos casos, as orbitais são centradas num núcleo, no entanto, em alguns tipos de cálculos esta podem ser centradas em ligações ou entre átomos que estão envolvidos em interações de van der Waals.⁵⁸

2.2. Tipos de Bases

Há diversos tipos de bases de funções, indicados para diferentes tipos de estudos, dependendo da sua natureza.59 Quando se recorre ao menor número possível de funções para definir um sistema, isto é, apenas as funções necessárias para conter os eletrões no estado fundamental, está-se perante uma base mínima. Uma melhoria que pode ser introduzida no sistema é a duplicação das funções, o que se designa por duplo zeta (DZ, Double Zeta), e que permite uma melhor definição em sistemas com ligações em que a distribuição eletrónica é diferente, $\sigma \in \pi$, por exemplo. No entanto, sabendo que as ligações químicas ocorrem envolvem essencialmente os eletrões de valência, não afetando os do core, a duplicação de todas as funções trazia custos computacionais acrescidos sem justificar a melhoria do cálculo, pelo que se adotou uma outra estratégia, que consiste na duplicação apenas das orbitais de valência, designando-se por VDZ (Valence Double Zeta). Seguindo o raciocínio de um maior número de funções poder representar mais detalhadamente o sistema, consideram-se bases do tipo triplo zeta (TZ/VTZ), quadruplo zeta (QZ/VQZ), etc. No sentido de melhorar o detalhe na descrição das ligações químicas, e em métodos que têm em conta a correlação eletrónica, alguns tipos de bases consideram também funções de polarização, para melhor descrever os efeitos de polarização de carga. Existe também outro tipo de funções, que podem ser adicionadas às bases, que são as funções difusas, úteis para descrever a função de onda nas regiões mais distantes do núcleo, menos importantes a nível energético.58-60

De facto, a performance a nível energético, que depende fortemente da descrição do *core* eletrónico, é o principal foco de muitas bases de funções. No entanto, a reatividade química debruça-se essencialmente sobre os eletrões de valência, pelo que se desperdiça poder computacional a caracterizar eletrões que não influenciam a reatividade. Nesse sentido, surgiram as bases de funções contraídas (*contracted basis sets*), que consideram constantes os coeficientes variacionais das funções do core, evitando a sua determinação a cada iteração. Isto reduz o custo computacional e permite utilizar bases maiores para melhor descrever a reatividade química na zona de valência.

Um dos tipos de bases de funções utilizados mais frequentemente foi desenvolvido pelo grupo de investigação de John Pople, e tem a forma geral *k-nlmG*. Nesta expressão, *k* é o número de funções GTO que descreve cada orbital do *core*. Se contiver apenas os números *nl*, a base é de valência duplicada (*double-zeta*), se contiver os *nlm*, é de valência triplicada (*triple-zeta*) – estes números indicam quantas GTO são usadas para a representação. Por exemplo, na base 6-31G, as orbitais do *core* são representadas pela contração de seis GTO, a parte interior da valência é representada pela contração de três e a parte exterior pela contração de uma. A estas bases podem ser acrescentados conjuntos adicionais de funções, sendo as difusas representadas por + ou ++, e as de polarização representadas depois do *G*, na forma *k-nlmG*.^{59,60}

As bases de funções de correlação-coerente (correlation-consistent), desenvolvidas por Dunning et al., são também bastante utilizadas nos dias de hoje. Estas bases de funções têm a forma de α -pVnZ, onde α significa correlação-coerente, p indica que têm em conta a polarização e o n indica o tipo de desdobramento que é feito (D para duplo-zeta, T para triplo-zeta, ...). A este tipo de bases podem acrescentar-se ainda funções difusas (indicadas com o prefixo -ang) ou correlação com o core, indicada por um C antes do V. Umas das vantagens da utilização deste tipo de bases é o facto de a partir dos resultados obtidos com vários valores de n, se poder extrapolar para $n=\infty$, o que seria uma base completa.^{58,60,61}

3. Teoria do Funcional da Densidade

O método Hartree-Fock, por ter em conta o número de eletrões (N), tem uma complexidade dependente do tamanho do sistema. Para resolver este problema, é necessária uma propriedade física que seja capaz de definir o sistema, sem aumentar a complexidade em função do número de eletrões. É neste sentido que surge a Teoria do Funcional da Densidade (DFT, da designação inglesa *Density Functional Theory*), admitindo a densidade eletrónica como propriedade caraterizadora do sistema, e baseando-se em equações autocoerentes, tal como o método Hartee-Fock.^{62–65}

A DFT é um método pós-Hartree-Fock, disponível na maioria dos códigos/programas comercializados hoje em dia, e é bastante utilizado para diversos tipos de cálculos. Distingue-se de outros métodos por se focar na densidade eletrónica do sistema, ao invés da função de onda, utilizada em muitos métodos *ab initio*, como o método de Hartree-Fock. Esta teoria surgiu pela necessidade de estudar sistemas de maiores dimensões, com maior número de eletrões, algo a que os métodos baseados na função de onda não conseguem dar resposta ^{62,65} A causa deste problema está na própria função de onda: pensando num sistema com *N* eletrões, a função de onda global é um campo escalar complexo e pode ser definida por:

$$\Psi(\vec{r}_1, \sigma_1; \dots; \vec{r}_N, \sigma_N) \tag{16}$$

onde \vec{r}_i é a coordenada espacial e σ_i a coordenada de spin do eletrão *i*. Na definição da função de onda, considerando a parte espacial definida num sistema cartesiano de três eixos (**x**, **y**, **z**), cada coordenada espacial está definida como:

$$\vec{r}_i = \vec{r}_{x_i} + \vec{r}_{y_i} + \vec{r}_{z_i}$$
(17)

Isto significa que a parte espacial da função de onda depende de 3N coordenadas. Se se pretender definir a função de onda no espaço, tendo em conta M pontos para a interpolação de cada

coordenada, está-se perante um problema com M^{3N} pontos.⁶² Sabe-se que o princípio variacional permite determinar a função de onda do estado fundamental Ψ_0 através da minimização do funcional energia, expresso por:

$$E_{[\Psi]} = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
(18)

onde \hat{H} é o operador Hamiltoniano que descreve o sistema, ao estabelecer que o valor de $E_{[\Psi]}$ é sempre superior ou igual à energia do estado fundamental E_0 , e $E_{[\Psi]} = E_0$ só se verifica quando a função de onda global é igual à função de onda do estado fundamental, $\Psi = \Psi_0$. Isto significa que no processo de minimização do funcional é necessário executar M^{3N} operações várias vezes, até se atingir o mínimo. Para sistemas com um número relativamente elevado de eletrões N, este processo é extremamente moroso, sendo incomportável aplicá-lo.^{62,65}

3.1. Funcionais

A DFT recorre a funcionais: um funcional é um elemento matemático que pode ser entendido de forma análoga a uma função. As funções transformam uma variável (ou várias) num número; os funcionais transformam funções em números. O uso de funcionais remonta aos cálculos de variações, através do princípio variacional, em que se procura uma função que minimize um certo funcional. Uma das principais aplicações práticas deste princípio já foi descrita – a minimização do funcional $E_{[\Psi]}$ para encontrar o estado fundamental.⁶⁵

Formalmente, um funcional é definido num espaço de funções, com valores no domínio real ou complexo, sendo descrito por uma letra maiúscula, seguida da função entre parênteses retos, sendo o argumento da função irrelevante para a definição do funcional. Por exemplo, considerando a função $f_{(x)}$, podemos ter o funcional F desta função expresso como $F_{[f]}$.

3.2. Densidade eletrónica

Partindo do facto de que a função de onda global é demasiado complexa e contém mais informação do que a necessária para a determinação das propriedades do estado fundamental, a densidade eletrónica $(n_{(\vec{r})})$ surge como uma alternativa, pois sendo função de apenas três coordenadas espaciais, é independente da dimensão do sistema.^{62,64}

A densidade eletrónica pode ser obtida através da componente espacial função de onda global $\Psi(\vec{r}_1; ...; \vec{r}_N)$ por integração, considerando os eletrões como partículas indistinguíveis e a antissimetria da função de onda, sendo $n_{(\vec{r})}$ definida por:

$$n_{(\vec{r})} = N \int d^3 r_1 \dots \int d^3 r_N |\Psi(\vec{r}_1; \dots; \vec{r}_N)|^2$$
(19)

Olhando para a definição da densidade eletrónica descrita acima, compreende-se que a forma mais convencional para determinar esta propriedade seja através da resolução da equação de Schrödinger, a partir da qual se obtém a função de onda. Isto significa que, obtendo o Hamiltoniano, é possível determinar a densidade eletrónica – esta forma de pensar pode ser definida como "do Hamiltoniano para a densidade eletrónica". No entanto, é também possível partir da lógica inversa, "da densidade eletrónica para o Hamiltoniano".⁶⁵ Como exemplo desta forma de pensar, pode considerar-se o estado fundamental de um átomo isolado, para o qual a densidade eletrónica ($n_{(\vec{r})}$) é conhecida de forma exata, e perceber como é possível chegar ao Hamiltoniano. Para este caso, o Hamiltoniano é

definido por:

$$H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \nabla_i^2 - \frac{Z \cdot e^2}{|\vec{r_i} - \vec{R}|} \right] + \sum_{i>j} \frac{e^2}{|\vec{r_i} - \vec{r_j}|}$$
(20)

onde Z é o número atómico e \vec{R} a posição do no espaço. A partir desta definição, conclui-se que o Hamiltoniano pode ser determinado assim que se conhecer Z, N e \vec{R} .

O valor de N pode ser obtido através da integração da densidade eletrónica do estado fundamental na totalidade do espaço⁶²:

$$N = \int d^3r \ n_0(\vec{r}) \tag{21}$$

A posição do núcleo, \vec{R} , pode ser identificada como o conjunto de coordenadas onde a densidade eletrónica do estado fundamental tem a sua singularidade cúspide. Considerando \vec{R} como a origem das coordenadas, a densidade eletrónica tem simetria esférica, sendo:

$$n_0(\vec{r}) = f_{(|\vec{r} - \vec{R}|)} \tag{22}$$

A carga nuclear, Z, pode ser determinada através do Teorema de Kato, que estabelece que a derivada da densidade eletrónica do estado fundamental junto à cúspide, é definida por:⁶⁶

$$Z = -\left[\frac{a_0}{2n_0(\vec{r})}\frac{\partial n_0}{\partial r}\right]_{r \to |\vec{R}|}$$
(23)

onde a_0 é o raio de Bohr do átomo de hidrogénico, definido como:

$$a_0 = \frac{\hbar^2}{me^2} \tag{24}$$

Daqui mostra-se que é possível passar da densidade eletrónica para o Hamiltoniano, definido com a obtenção de N, \vec{R} e Z. Tal significa que, uma vez que a função de onda pode ser obtida através do Hamiltoniano, o conhecimento detalhado da densidade eletrónica é suficiente para determinar as propriedades deste sistema (o estado fundamental de um átomo isolado).^{63,65}

3.3. Teoremas de Hohenberg-Kohn

Em 1964, Hohenberg e Kohn generalizaram a abordagem através da lógica "da densidade eletrónica para o Hamiltoniano" para um sistema com um número fixo de eletrões N e com potencial externo arbitrário. Esta generalização foi conseguida através de dois teoremas, então designados por teoremas de Hohenberg-Kohn.^{62,65,67}

Teorema 1 ou Teorema da Prova de Existência

O potencial externo é funcional único da densidade eletrónica n(r), o que significa que para dois sistemas de eletrões sujeitos a diferentes potenciais, e com a mesma densidade eletrónica, a diferença entre os potenciais é uma constante. Isto implica que n(r) determina a função de onda do estado fundamental e por conseguinte todas as propriedades eletrónicas desse mesmo estado. Assim, é possível definir a energia do estado fundamental E₀ como funcional da densidade eletrónica desse mesmo estado n₀(r), tendo-se: E_{0[n₀]}.

Teorema 2 ou Teorema do Princípio Variacional

 Uma densidade eletrónica proposta n(r) que tenha em conta os N eletrões, dá origem a um valor de energia E que satisfaz a condição:

$$E \ge E_0 \tag{25}$$

Esta condição ilustra a determinação variacional da densidade eletrónica do estado fundamental $n_0(\vec{r})$, uma vez que esta minimiza o valor da energia.

No entanto, o problema não fica resolvido, pois apesar de exatos na sua definição teórica, estes teoremas não explicam como é que a energia depende da densidade eletrónica no funcional $E_{[n]}$, e, exceto em alguns casos particulares, o funcional $E_{[n]}$ exato é desconhecido, pelo que todos os cálculos são realizados recorrendo a funcionais aproximados tendo em conta o desempenho na prática. A isto acrescenta-se o facto de os teoremas de Hohenberg-Kohn serem bastante restritos, aplicando-se apenas a sistemas de N eletrões no estado fundamental, excluindo, portanto, estados excitados e variações no número de eletrões.⁶⁵

3.4. O Funcional Energia

Uma parte fundamental da DFT é a construção do funcional energia a utilizar, pois quase a totalidade dos funcionais são aproximados, apresentando performances diferentes consoante o tipo de sistema em que são aplicados. Assim sendo, é essencial utilizar funcionais adequados ao sistema em estudo, que forneçam boas respostas à energia real e à sua dependência em relação a alguns parâmetros, como por exemplo a distância internuclear e os ângulos numa molécula.

A DFT começou a ser utilizada recorrendo a funcionais simples, como é exemplo o funcional Thomas-Fermi-Hartree (TFH). Este funcional é definido por:⁶⁸

$$E^{(TFH)}[n] = C \int d^3r \, [n(\vec{r})]^{5/3} + \int d^3r \, v_{\text{ext}} \, n(\vec{r}) + \frac{e^2}{2} \int d^3r \, \int d^3r' \, \frac{n(\vec{r})n\left(\vec{r'}\right)}{\left|\vec{r} - \vec{r'}\right|}$$
(26)

contendo, portanto, uma parte cinética T, uma parte potencial V e uma parte Coulômbica C, correspondendo de forma respetiva aos termos da soma apresentada.

Os funcionais deste tipo não são utilizados atualmente, pois não apresentam resultados satisfatórios. Tal deve-se essencialmente às aproximações que são feitas na descrição da componente cinética e na componente Coulômbica.⁶⁸

3.5. Equações de Kohn-Sahm

Em 1965, Kohn e Sahm sugeriram uma via alternativa para a implementação da DFT, numa tentativa de ultrapassar as fragilidades dos funcionais mais simples, como o $E^{(TFH)}$. Kohn e Sahm introduziram o conceito de energia cinética de um sistema virtual de N eletrões que não interagem e com a mesma densidade energética que um sistema com interação $(T_{s[n]})$, dividindo a componente cinética em:

$$T_{[n]} = T_{s[n]} + T_{c[n]}$$
(27)

onde $T_{c[n]}$ engloba a restante energia cinética, não contemplada em $T_{s[n]}$.⁶⁹

De forma semelhante, o funcional do potencial de Coulomb $C_{[n]}$ foi escrito como uma soma entre o termo de Hartree $E_{[n]}$ (que descreve o potencial eletrostático resultante da distribuição de carga

nos eletrões) e outra contribuição $\Delta C_{[n]}$, que tem em conta a natureza quântica dos eletrões em interação:

$$C_{[n]} = E_{H[n]} + \Delta C_{[n]} \tag{28}$$

Assim, por analogia aos funcionais mais simples, divididos nas componentes cinética, potencial e coulômbica, pode escrever-se $E_{[n]}$ como:

$$E_{[n]} = T_{s[n]} + T_{c[n]} + V_{[n]} + E_{H[n]} + \Delta C_{[n]}$$
⁽²⁹⁾

que pode ser expresso também por:

$$E_{[n]} = T_{s[n]} + V_{[n]} + E_{H[n]} + E_{XC[n]}$$
(30)

de onde surge um novo termo, o funcional de troca-correlação (XC, *exchange-correlation*) $E_{XC[n]}$, expresso como:

$$E_{XC[n]} = T_{c[n]} + \Delta C_{[n]} \tag{31}$$

Este funcional deve ter em conta os efeitos de troca (repulsões entre eletrões com o mesmo spin, descritas no Princípio da Exclusão de Pauli), a correção que compensa o termo da autointeração que aparece no termo de Hartree e os efeitos de correlação (que é a propensão que dois eletrões com spin diferente têm para escolherem orbitais diferentes e de se evitarem mutuamente no movimento ao longo do espaço). As propriedades do estado fundamental são então determinadas através da minimização do funcional $E_{[n]}$, conseguida com uma resolução autocoerente, recorrendo a bases de funções.⁶⁹

3.6. Funcional de Troca-Correlação

O funcional de troca-correlação $E_{XC[n]}$ surge devido à complexidade do problema polieletrónico neste termo. No cálculo de $E_{[n]}$, as principais contribuições vêm dos termos $T_{s[n]}$, $V_{[n]}$ e $E_{H[n]}$, pelo que o erro relativo provocado por $E_{XC[n]}$ é baixo, independentemente das aproximações feitas na definição deste termo. No entanto, na comparação entre diferentes sistemas, a contribuição de $E_{XC[n]}$ é relevante, podendo levar a diferenças significativas nos resultados obtidos.⁷⁰

Atualmente, conhecem-se várias aproximações para a definição deste funcional, de onde se destacam a Aproximação da Densidade Local (LDA, *Local Density Approximation*), a Aproximação da Densidade de Spin Local (LSDA, *Local Spin Density Approximation*) e as Aproximações de Gradiente Generalizado (GGA's, *Generalized-Gradient Approximations*).⁶⁴

A LDA é a aproximação mais simplificada, tendo sido concebida de forma análoga à existente no termo da energia cinética nos funcionais mais simples, como o $E^{(TFH)}_{[n]}$.⁶⁸ Esta aproximação tem em conta efeitos locais, desprezando os efeitos de longo alcance, como por exemplo interações de van der Waals. Mesmo as interações por ponte de hidrogénio, cuja relevância é conhecida em inúmeros sistemas, são descritas de forma não precisa, conduzindo a resultados diferentes dos observados experimentalmente. A LSDA é uma aproximação que partiu da generalização da LDA para sistemas de spin polarizado, onde os efeitos de spin devem ser tidos em conta. As aproximações do tipo GGA surgiram também como uma melhoria à LDA, tendo em conta a variação da densidade no espaço, através da inclusão de gradientes de densidade. A forma como estes gradientes são incluídos e os parâmetros envolvidos na sua inclusão dão origem às várias aproximações GGA utilizadas hoje em dia.^{63,64} Atualmente, existe um número bastante elevado de funcionais concebidos

para o estudo de diferentes sistemas, cujas diferenças se prendem com a forma como o funcional de troca-correlação é definido.

3.7. Teoria do Funcional da Densidade Dependente do Tempo

A Teoria do Funcional da Densidade Dependente do Tempo (TD-DFT, *time-dependent density functional theory*), aplica a filosofia da DFT a problemas dinâmicos, dependentes do tempo, podendo ser, por isso, utilizada para descrever sistemas quânticos não estacionários. A TD-DFT fornece métodos com um formalismo exato para calcular energias de excitações eletrónicas verticais, partindo de um estado inicial – o estado fundamental. A TD-DFT é utilizada no campo da espectroscopia por permitir calcular energias de excitação e simular espectros de absorção UV/Vis.^{65,71,72}

Em 1984, Runge e Gross foram os primeiros a fornecer uma prova de existência para a TD-DFT, através da formulação de um teorema análogo a Hohemberg-Khon para a Equação de Schrödinger dependente do tempo. É a partir deste teorema que a TD-DFT é desenvolvida, de forma muito semelhante ao que foi descrito para o estudo do estado fundamental.⁷¹ O teorema de Runge-Gross demonstra que, em sistemas de vários corpos, como é o caso dos sistemas moleculares, existe uma correspondência entre o potencial externo dependente do tempo e a densidade eletrónica, tendo em conta um estado inicial fixo. A principal diferença entre Hohemberg-Khon e Runge-Gross é o facto de, enquanto que no primeiro caso se exprime o que se pretende estudar como funcional da densidade, no segundo é descrito como funcional da densidade dependente do tempo, e o estado inicial corresponde ao estado no tempo zero. A densidade, que no estudo independente do tempo é dada pela equação (**19**), neste caso é dada por:

$$n_{(\vec{r})} = N \int d^3 r_1 \dots \int d^3 r_N |\Psi(\vec{r}_1; \dots; \vec{r}_N, t)|^2$$
(32)

onde o tempo t surge como mais uma variável.65

A equação de Schrödinger dependente do tempo é expressa como:

$$H\Psi = i\hbar \frac{d}{dt}\Psi$$
(33)

onde *i* é a unidade imaginária, \hbar é a constante de Planck dividida por 2π e Ψ é a função de onda dependente do tempo. Esta equação corresponde a um problema diferencial de primeira ordem em relação ao tempo, pelo que a sua resolução precisa da definição de um estado inicial em $t = 0.7^{11}$ Esse estado é o estado fundamental. Para resolver este problema, considera-se a existência de um sistema idêntico sem interação entre as partículas, tal como Kohn e Sham consideram para o problema independente do tempo.⁷²

Quando se trata um problema dependente do tempo é preciso ter em conta que não existe um princípio variacional para a energia, uma vez que a energia total não se conserva ao longo do tempo. No entanto, existe outra propriedade análoga que se conserva, designada por ação mecânica quântica $A_{[\Phi]}$, que é tida em conta, uma vez que a função de onda dependente do tempo Ψ que conduzir a um ponto estacionário em A é a solução da equação de Schrödinger dependente do tempo.⁷¹ Assim, não existe um princípio de minimização, como para o estado fundamental, mas sim um princípio de identificação de um ponto estacionário que conduz à solução. A ação mecânica quântica nesse ponto é nula, $A_{[\Psi]} = 0$.

Assim, a partir do teorema de Runge-Gross é possível perceber que partindo apenas da densidade eletrónica dependente do tempo para um sistema com um determinado estado fundamental, é possível identificar o potencial externo que origina essa densidade. Uma vez que o potencial externo completa a definição do Hamiltoniano, juntamente com a energia cinética dos eletrões e o potencial

da interação entre si, a equação de Schrödinger dependente do tempo é resolvida e, por conseguinte, todas as propriedades do sistema são obtidas.

Na TD-DFT as equações de Kohn-Sham são, de forma geral, bastante semelhantes ao problema independente do tempo. No entanto, o funcional de troca-correlação é particularmente diferente, pois na abordagem da TD-DFT o potencial de troca-correlação é considerado não a partir da energia $(E_{XC[n]})$, mas sim a partir da componente de troca-correlação da ação mecânica quântica $A_{XC[n]}$. Este funcional tem uma natureza igualmente complexa, que é abordada através de aproximações que têm em conta o estado fundamental e o sistema não interativo de Kohn-Sham.^{65,71}

Por vezes, a TD-DFT recorre à Aproximação de Tamm-Dancoff,⁷³ que permite a simplificação dos cálculos e a consequente diminuição do custo computacional. A Aproximação de Tamm-Dancoff consiste em considerar apenas as transições de estados de menor energia para estados mais energéticos, negligenciando as transições em sentido contrário, e geralmente conduz a valores de energia de excitação bastante semelhantes aos calculados sem recurso a esta aproximação. A sua utilização é particularmente relevante quando se utilizam funcionais que têm a energia de troca-correlação descrita total ou parcialmente através da teoria de Hartree-Fock, uma vez que a utilização de TD-DFT sem a aproximação conduz a valores inferiores aos reais, o que é corrigido com a consideração de Tamm-Dancoff.^{73,74}

3.8. Análise crítica à DFT

A DFT é uma teoria bastante útil, uma vez que permite estudar sistemas com um grande número de eletrões, ao contrário dos métodos baseados na função de onda, partido de um formalismo em que concentra num termo toda a complexidade do problema – o funcional de troca-correlação. Como referido na secção 3.6, deste capítulo, este termo não é conhecido de forma exata, pelo que se recorrem a aproximações para o definir. Destas aproximações surgem alguns erros que, dependendo da natureza do sistema em estudo, podem afetar de forma acentuada os resultados obtidos. Isto significa que os resultados obtidos com recurso à DFT dependem da aproximação feita na definição do funcional de troca-correlação. Neste sentido, é necessário ter em conta as características do sistema e os objetivos do que se pretende estudar. De forma geral, quando se pretende avaliar grandes diferenças de energia, a DFT permite tirar conclusões com bastante qualidade. Quando as diferenças são menores, simulações espectroscópicas podem ser comparadas com resultados experimentais, de forma a validar os valores obtidos para as diferenças energéticas, permitindo assim que se façam estudos de dinâmica molecular com fundamento teórico. Uma vez que o funcional troca-correlação é construído a partir de um conjunto limitado de sistemas, quando se pretende estudar um sistema fora deste conjunto, a performance pode ter limitações.^{75,76}

4. Modelos de Solvatação

Os modelos de simulação de solvatação surgem de forma a permitir caracterizar sistemas mais complexos (como por exemplo uma molécula em solução) de uma forma mais aproximada ao que se verifica experimentalmente, tendo em conta os efeitos do solvente.

Para simular um sistema soluto/solvente, podem adotar-se modelos de solvatação explícita ou implícita. Os modelos de solvatação explícita consistem na colocação de moléculas de solvente em torno da molécula de soluto, simulando a solução. Esta abordagem leva a um aumento substancial no tamanho do sistema em estudo, que se traduz num custo computacional bastante mais elevado, tornando incomportável o estudo de sistemas em que o solvente não tenha uma dimensão muito reduzida, como por exemplo a água. Para além do aumento da complexidade do cálculo, os modelos explícitos têm também algumas limitações, não retratando bem os efeitos de polarização do solvente.⁷² No que toca aos modelos de solvatação implícita, estes podem ser divididos em dois tipos,

tendo em conta a sua definição: se partem de um formalismo da mecânica molecular ou se recorrem a uma aproximação do tipo contínuo, isto é, se ignoram a descrição microscópica do sistema adotando um modelo de um ambiente dielétrico contínuo. Ambos os tipos de modelos implícitos podem ser combinados com a formalização mecânica quântica do "soluto" em estudo.^{77,78}

Modelo Contínuo de Polarização

O Modelo Contínuo de Polarização (PCM, *Polarizable Continuum Model*) é um modelo que, como a própria designação indica, se baseia na consideração do ambiente como sendo um dielétrico contínuo. Este modelo é considerado como um dos melhores para a descrição combinada com a mecânica quântica de diversos sistemas, com vários solventes.⁷⁸

Quando este método é implementado na DFT, o funcional energia livre eletrostática é definido pela soma do funcional energia em fase gasosa (utilizado nesta teoria) com o funcional da energia de interação entre o soluto e o solvente, proveniente do método PCM:

$$G^{el} = E + \frac{1}{2} E^{int} \tag{34}$$

No entanto a energia livre resultante da utilização deste método vai para além das interações eletrostáticas G^{el} , podendo considerar-se também a existência de contribuições das interações de repulsão e dispersão. Em alguns casos, verifica-se ainda a existência de outro tipo de contribuição, designado por energia de cavitação, que representa a energia necessária para criar uma cavidade dentro do meio dielétrico.⁷⁸

5. Pontos Estacionários na Superfície de Energia Potencial

Uma superfície de energia potencial descreve a energia de um sistema em função de várias variáveis configuracionais (nos casos em que é apenas uma variável, não se tem uma superfície, mas sim uma curva de energia potencial). O conceito de superfície de energia potencial é aplicado frequentemente a sistemas moleculares como forma de estudar a sua geometria, através de otimizações. Uma otimização consiste na identificação de um ponto estacionário numa função, isto é, um ponto em que a derivada seja zero. Estes pontos são caracterizados como mínimos, máximos ou pontos de sela, consoante a sua segunda derivada seja positiva ou negativa, respetivamente. No estudo de sistemas moleculares, na grande maioria das vezes, o objetivo é identificar mínimos, que correspondem a geometrias de equilíbrio. No entanto, em alguns casos, pretende-se identificar pontos de sela, pontos que apesar de não serem nem mínimos nem máximos locais, têm derivada nula, e a nível químico, correspondem a estados de transição.⁷⁹

Figura 9 – Representação de uma superfície de energia potencial (adaptado de Zamarbide et al.)⁸⁰ Pontos assinalados: máximo (verde); mínimo (vermelho); ponto de sela (azul).

Há vários métodos para otimizar uma função, que de forma geral conduzem ao ponto estacionário mais próximo do estado inicial. Quando se pensa numa função de um sistema molecular, existem diversos pontos estacionários, o que significa que se deve ter especial atenção no tipo de estudo que é realizado. Este tipo de sistemas pode ser definido em função das coordenadas nucleares, ou de uma função de onda que depende de vários parâmetros variacionais. Na larga maioria dos sistemas que se estudam a este nível, os parâmetros variáveis são incluídos na função de forma não linear, o que significa que para se conseguirem obter os pontos estacionários é necessário recorrer a métodos iterativos. Dentro desses métodos, existem métodos mais indicados para a identificação de mínimos, e outros mais direcionados para a identificação de estados de transição.

Quando se pretende minimizar uma função, o raciocínio mais básico é alterar uma variável até atingir um mínimo, e depois fazer o mesmo de forma isolada para cada uma das outras. A simplicidade deste método está no facto de que apenas é necessário conseguir calcular o valor da função para um determinado conjunto de variáveis.⁷⁹ No entanto, como as variáveis não são independentes, a alteração de uma variável afeta as restantes, pelo que é necessário fazer várias iterações ao longo do conjunto completo de variáveis. Isto significa que, exceto para sistemas com um número muito reduzido de variáveis, este método é impraticável, uma vez que exigiria um número demasiado elevado de iterações.

Os métodos computacionais utilizados para a otimização de funções de sistemas moleculares assumem que a primeira e a segunda derivadas da função podem ser calculadas. A primeira derivada é designada por gradiente, *g*, e a segunda por Hessian, *H*. O cálculo destas derivadas depende do nível computacional, pelo que têm uma precisão condicionada, o que significa que os pontos estacionários não são calculados de forma exata – só é possível reduzir o módulo do gradiente até um certo limite inerente ao método computacional utilizado. Na prática, isto é conseguido pela indicação de que o gradiente é considerado nulo a partir de um determinado valor numérico.^{79,81} Se este limite for relativamente elevado, podem surgir alguns erros em zonas onde a superfície tem um declive bastante reduzido.

Os métodos computacionais para a minimização de funções podem dividir-se em três categorias: métodos de descida mais acentuada (*steepest descent*), métodos de gradiente conjugado (*conjugate gradient*) e métodos de Newton-Raphson. O método de descida acentuada é utilizado frequentemente quando se parte de um estado inicial fraco, isto é, um estado inicial distante de um mínimo, uma vez que este método é simples e rápido neste tipo de convergência. No entanto, nas imediações do mínimo, o seu comportamento já não é tão preciso, podendo levar a situações de oscilação em torno do valor, fruto da direção (*d*) do passo *n* depender apenas do gradiente no passo *n-1*.⁷⁹ A direção da procura ao longo da superfície de energia é definida por:

$$d_i = -g_i \tag{35}$$

Os métodos de gradiente conjugado já têm em conta não só o passo *n*-1, como também alguns dos passos anteriores, evitando retrocessos no processo de convergência, o que o acelera substancialmente. Esta consideração está expressa na equação (36), através do seu segundo termo, onde β_i é definido em função de g em passos anteriores.

$$d_i = -g_i + \beta_i d_{i-1} \tag{36}$$

O custo computacional dos métodos de gradiente conjugado é mais elevado do que o dos de descida acentuada, devido ao facto de os primeiros terem em conta mais etapas, no entanto, a diferença não é considerável, mesmo para sistemas de grandes dimensões.

O terceiro tipo de métodos, os métodos de Newton-Raphson, transformam a função real numa função truncada em segunda ordem, em torno do ponto inicial, expressa em notação matricial como:

$$f(x) \approx f(x_0) + g^{t}(x - x_0) + \frac{1}{2}(x - x_0)^{t} H(x - x_0)$$
(37)

Estes métodos, ao contrário dos anteriormente apresentados, que apenas permitem identificar mínimos, permitem também identificar pontos de sela, recorrendo não só ao gradiente, mas também à Hessian. O facto de estes métodos convergirem para pontos estacionários de qualquer natureza pode ser uma desvantagem se se pretender apenas identificar mínimos. A convergência deste método depende do quão distante se está do ponto estacionário: regra geral, apresenta uma convergência linear, no entanto, nas proximidades do ponto estacionário, a convergência aumenta substancialmente.^{79,81}

A identificação de estados de transição (pontos de sela) é bastante mais difícil que a identificação de pontos de energia mínima, pelo que não há nenhum método cuja fiabilidade seja sempre garantida. ⁷⁹ Os vários métodos que já foram propostos podem dividir-se em dois géneros: métodos de interpolação entre dois mínimos e métodos que recorrem exclusivamente a informação "local". No primeiro tipo, como é claro pela sua designação, o que se faz é considerar dois mínimos, o reagente e o produto, e tentar identificar o ponto de sela entre os dois. No segundo tipo de métodos, que recorrem a informação local, o processo consiste na consideração do gradiente e da Hessian do ponto que se pensa ser uma aproximação ao estado de transição e, a partir daí, tentar chegar à estrutura desse estado, sem recorrer a informação do reagente e do produto.

6. Cálculo de Modos Vibracionais

A Mecânica Clássica formula o problema da obtenção das frequências vibracionais tendo por base o sistema de coordenadas cartesianas. No entanto, este sistema não tem uma relação direta com fenómenos observados como elongações de ligações ou deformações angulares. Nesse sentido, surgiu a passagem para as coordenadas internas, que têm um significado físico-químico mais adequado ao que se pretende avaliar. Este sistema de coordenadas, para além de necessitar de menos equações para descrever o sistema, contém propriedades que podem ser replicadas entre diferentes sistemas, como por exemplo constante de elongação entre ligações semelhantes. A abordagem da Mecânica Clássica para a obtenção dos valores das frequências vibracionais designa-se por método FG de Wilson, que resulta da utilização de uma matriz F que descreve as constantes de força dos modos vibracionais e uma matriz G, relacionada com a energia cinética, em termos de coordenadas internas. Deste método surge também o conceito de coordenadas normais, que descrevem os modos de vibração de uma molécula, facilitando o cálculo das suas intensidades.⁸²

O papel da Mecânica Quântica na caracterização de sistemas através da sua geometria otimizada já foi descrito. No entanto, a partir daqui é possível caracterizar também modos normais de vibração de sistemas moleculares, uma vez que a matriz Hessian, que contém as segundas derivadas da energia em ordem às coordenadas nucleares leva ao campo de forças do sistema, e, após a diagonalização, leva aos valores próprios da energia vibracional, diretamente relacionados com as frequências dos modos vibracionais.⁸³ Na larga maioria dos casos, a DFT calcula matrizes Hessian que conduzem a boas aproximações entre os valores obtidos computacionalmente e os verificados experimentalmente. As intensidades dos modos de vibração estão relacionadas com os momentos dipolares, que também eles podem ser obtidos através de cálculos DFT, o que permite que vários tipos de espectros vibracionais possam ser calculados recorrendo a estes níveis teóricos.

A abordagem computacional a este problema centra-se no cálculo dos valores próprios λ_i , dados por:

$$\lambda_i = (2\pi\nu_i)^2 \tag{38}$$

onde v_i são as frequências dos modos vibracionais, através de:

$$\sum_{k=1,j>k}^{3n} H_{jk} X_{ki} = \sum_{k=1,j>k}^{3n} \lambda_i M_{jk} X_{ki}$$
(39)

onde n é o número de átomos no sistema, H_{jk} é a matriz Hessian, X_{ki} é a matriz que transforma as coordenadas cartesianas em coordenadas normais e M_{jk} é a matriz diagonal das massas atómicas. Dependendo do método computacional utilizado, as frequências calculadas podem ser superiores às observadas experimentalmente, pelo que é comum a utilização de fatores de escala quando se pretende ajustar a simulação a dados experimentais.⁸⁴ As intensidades dos modos normais de vibração são calculadas após a identificação dos valores das frequências destes, através de diferentes métodos, consoante o tipo de espectro que se pretende simular (intensidades de espectroscopia IV ou Raman, por exemplo).⁸⁵

Capítulo 3: Métodos

Todos os cálculos foram realizados recorrendo ao *software* GAMESS, de 30 de Setembro de 2018 (versão R3)⁸⁶, utilizando o nível de teoria DFT. Utilizaram-se os funcionais M06-HF⁸⁷, B3LYP^{88–91} e PBE0⁹², sendo o primeiro o utilizado na larga maioria dos cálculos que estão na base deste estudo, sendo o B3LYP e o PBE0 utilizados pontualmente em termos comparativos. A base de funções utilizada nos cálculos foi a cc-pVDZ (a base 6-31G foi utilizada apenas num cálculo espectroscópico comparativo, aquando da definição do nível de teoria do estudo). Os cálculos envolvendo espécies no estado fundamental foram realizados com funções de onda de campo autocoerente do tipo RHF, sendo ROHF o tipo selecionado para as espécies em estados excitados. Os cálculos das energias de excitação vertical foram realizados através de TD-DFT convencional (*excite*). Para a simulação dos efeitos de solvente, utilizou-se o método PCM, com metanol como solvente implícito.

Os estados de transição foram calculados por aproximação local, partindo de estruturas calculadas através de um método de aproximações parciais. Este método consiste em fixar a coordenada reacional que conduz o processo cujo estado de transição se pretende identificar, e otimizar todos os outros graus de liberdade. Comparando a energia das diferentes otimizações parciais, é identificado o intervalo de valores da coordenada reacional fixa em que o estado de transição deve ocorrer.

Os espectros de UV/Vis foram previstos a partir dos cálculos TD-DFT, considerando o perfil das bandas como gaussiano, e a largura a meia altura de 18 nm. Os espectros de infravermelho foram previstos a partir dos cálculos Hessian, considerando o perfil das bandas como Lorentziano (distribuição de Lorentz), com largura a meia altura de 20 cm⁻¹. Os espectros experimentais foram registados utilizando o espectrómetro Cary 5000 UV-Vis-NIR. Todos os espectros foram normalizados.

Capítulo 4: Alil-tetrazolona

⁹³ Prata, A. D., Serpa, C. & Caridade, P. J. S. B. Photochemistry of 1-phenyl-4-allyl-tetrazol-5-one: A theoretical study. *Molecules*, Submetido, (2020)

1. Definição do Nível de Teoria

Tendo em conta as dimensões dos sistemas que se pretende estudar, optou-se pelo estudo através da DFT. Antes de iniciar a caracterização dos mecanismos em estudo, definiu-se a base de funções e o funcional a utilizar. Para isso, realizaram-se alguns cálculos preliminares com o estado fundamental singleto (S₀) da ATZ, cujas propriedades estão reportadas na literatura com recurso à DFT, utilizando o funcional B3LYP e a base de funções 6-311++G(d,p).³² Esta base de funções permite definir estruturas comparáveis com outras bases, de maior dimensão, como por exemplo a base aug-cc-pVTZ.⁹⁴ No entanto, a base 6-311++G(d,p), que inclui funções de polarização e difusas, tem um custo computacional excessivamente elevado para o tipo de estudo que se pretende fazer em torno destes mecanismos, pelo que se decidiu recorrer a uma base de menor dimensão. Compararam-se as bases 6-31G (que não inclui funções de polarização ou difusas) e cc-pVDZ (que tem a polarização definida pela sua natureza e que não inclui funções difusas).⁹⁵

Avaliou-se a variação dos valores calculados para as energias de três modos vibracionais de fácil identificação na ATZ (\tilde{v}_1 : elongação da ligação CO; \tilde{v}_2 : elongações dos carbonos do grupo fenilo; \tilde{v}_3 : elongação da ligação N₍₁₎C₍₁₀₎), para as bases 6-31G e cc-pVDZ, em comparação aos resultados descritos na literatura, estando as diferenças expressas na Tabela 1.

Tabela 1 – Comparação entre os valores de número de onda dos modos vibracionais calculados ao nível DFT/B3LYP com as bases 6-31G e cc-pVDZ, com os reportados na literatura para a base 6-311++G(d,p)³²

	$\tilde{\nu}_1 = 1785,9$	$\tilde{\nu}_2$ =1640,7	$\tilde{\nu}_3$ =1529,1
$\Delta \widetilde{\nu}_{6-311++G(d,p)-6-31G}$	52,7	-23,0	-31,3
$\Delta \widetilde{\nu}_{6-311++G(d,p)-cc-pVDZ}$	-19,2	-14,0	-1,4

Analisando as diferenças obtidas, verifica-se que a base cc-pVDZ é a que menos se desvia dos resultados da 6-311++G(d,p).

Quanto ao funcional, os estudos descritos na literatura para moléculas deste tipo utilizam o funcional B3LYP.^{25,31,32} No entanto, está descrito que o funcional M06-HF tem uma performance melhor que o B3LYP num conjunto bastante alargado de sistemas, no que toca ao cálculo de barreiras energéticas e ao estudo de sistemas com eletrões π .⁸⁷ Este funcional, ao ser definido tendo em conta 100% de troca do tipo Hartree-Fock, elimina os erros de interações de autotroca (*self-exchange*) a longa distância. Por este motivo, é considerado como apropriado para estudos espectroscópicos, quer através de DFT quer através de TD-DFT.^{84,87,96}

Nesse sentido, e tal como realizado para avaliar as bases de funções, calcularam-se as diferenças entre os valores das energias de quatro modos vibracionais obtidos com o funcional M06-HF em relação aos obtidos com o B3LYP, recorrendo à base cc-pVDZ.

Tabela 2 – Comparação entre os valores de número de onda dos modos vibracionais calculados com o funcional B3LYP e os calculados com o M06-HF, ambos com a base cc-pVDZ

	$\tilde{\nu}_1$ =1805,1	$\tilde{\nu}_2 = 1654,7$	$\tilde{\nu}_3$ =1530,5
$\Delta \widetilde{ u}_{ m B3LYP-M06-HF}$	-47,2	-54,4	-44,2

Como é natural, os valores de energia obtidos são substancialmente diferentes, fruto da diferente natureza do funcional. No entanto, tal não significa que um dos funcionais seja uma má abordagem ao problema, no sentido em que, quando se ajusta um espectro teórico a partir do cálculo das energias e das intensidades dos modos vibracionais a um espectro experimental, as energias são multiplicadas por um ou vários fatores de escala, consoante a região espectral. Assim, podem ajustar-se de forma satisfatória resultados de diferentes funcionais ao mesmo espectro experimental.^{32,84} Como este estudo é realizado através de uma abordagem exclusivamente teórica, os espectros calculados que se

apresentam não sofrem o efeito de nenhum fator de correção de escala. No entanto, isto não afeta a análise qualitativa da evolução das reações que se pretende realizar, uma vez que essa incide sobre alterações evidentes no perfil dos espectros. Assim, no sentido de maximizar a relação qualidade/custo computacional, os cálculos efetuados ao longo deste estudo utilizam o funcional M06-HF e a base de funções cc-pVDZ.

Este trabalho tem como objetivo caracterizar reações em solução (com metanol como solvente), pelo que se torna necessário descrever a influência do solvente no processo de reação e estabilização das orbitais nas espécies estudadas. Para avaliar a influência da utilização do método PCM, e tal como realizado para as bases e para os funcionais, analisaram-se as diferenças nos valores das energias calculadas com PCM em relação aos correspondentes em fase gasosa, estando os resultados expressos na Tabela 3.

Tabela 3 – Comparação entre os valores de número de onda dos modos vibracionais calculados em fase gasosa e os calculados com PCM-metanol, ao nível de teoria DFT/M06-HF/cc-pVDZ

	$\tilde{\nu}_1$ =1852,3	$\tilde{\nu}_2$ =1709,1	$\tilde{\nu}_3$ =1574,7
$\Delta \widetilde{oldsymbol{ u}}_{ m gás-metanol}$	46,5	7,6	10,7

Os resultados mostram que, tal como previsto, a utilização do método PCM influencia os valores calculados. O modo vibracional $\tilde{\nu}_1$, que diz respeito à elongação da ligação CO, é o mais afetado pela consideração dos efeitos do metanol, uma vez que este grupo funcional tem uma interação mais forte do que os restantes grupos com este solvente, devido à possibilidade de formação de ligações por ponte de hidrogénio. Isto significa que a utilização deste método de simulação de solvatação é proveitosa no que toca a uma maior semelhança entre esta abordagem teórica e o esperado experimentalmente.

2. Alil-tetrazolona

2.1. Espécies envolvidas no mecanismo de fotorreação

Tendo como base o mecanismo postulado para a fotorreação da ATZ (Figura 6),^{31,34} estudaram-se as espécies nele descritas do ponto de vista energético e estrutural, bem como os estados de transição correspondentes aos diferentes processos.⁹³ Este mecanismo inicia-se com a excitação do estado fundamental singleto. Após a excitação, ocorrem ultrarrápidos processos de conversão interna, após os quais podem ocorrer vários fenómenos: emissão de fluorescência, desativação não radiativa e cruzamento entre sistemas (ISC *Intersystem crossing*), levando à formação de estados excitados tripleto.⁹⁷ Estudos realizados com 1-fenil-4-alil-tetrazolonas (incluindo a ATZ) indicam que não se observa emissão de fluorescência em sistemas deste tipo,³¹ o que, tendo em conta o elevado rendimento de formação dos fotoprodutos, permite sugerir que o ISC é o processo dominante após a excitação das tetrazolonas.³¹

2.1.1. Estado Fundamental

Calculou-se a estrutura eletrónica de mais baixa energia para a ATZ no estado fundamental singleto (**ATZ-S0**), obtendo-se a geometria ilustrada na Figura 10. Verifica-se que a estrutura da molécula envolve 3 planos distintos: o plano do anel tetrazólico (e do grupo carbonilo), o plano do anel benzílico e o plano do grupo alilo. Fora destes planos encontram-se apenas os átomos de hidrogénio ligados ao átomo $C_{(7)}$. Note-se que, por forma a não ter restrições, não se impuseram condições de simetria nos processos de otimização. A existência destas restrições, leva também ao aparecimento de frequências imaginárias na análise espectroscópica.

Figura 10 – Estrutura otimizada da espécie ATZ-SO

Através da análise dos valores de ordem de ligação (Tabela 4), é possível perceber que existe deslocalização eletrónica entre os átomos de carbono no grupo fenilo. No anel tetrazólico, a ligação N₍₂₎N₍₃₎ é mais forte que as existentes entre os átomos N₍₁₎ e N₍₂₎, e N₍₃₎ e N₍₄₎, como é possível verificar pelos valores da ordem de ligação.

Ligação Ordem de Ligação Ligação Ordem de Ligação C(10) C(11) 1,452 $N_{(1)}N_{(2)}$ 1,155 1,439 $N_{(2)}N_{(3)}$ 1,700 $C_{(10)}C_{(15)}$ C(11)C(12) 1,481 $N_{(3)}N_{(4)}$ 1,151 $C_{(12)}C_{(13)}$ 1,483 1,470 $C_{(13)}C_{(14)}$ 1,501 C(14)C(15)

Tabela 4 – Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tetrazólico na geometria de equilíbrio da ATZ-SO

A ATZ pode ter vários confórmeros, consoante a conformação do grupo alilo, definida pelo ângulo diedro $N_{(4)}C_{(7)}C_{(8)}C_{(9)}$. Através de uma otimização parcial da geometria da molécula, fixando apenas o valor do ângulo diedro em causa (Figura 11), avaliou-se a variação da energia eletrónica, verificando-se a existência de três possíveis confórmeros (Figura 12), sendo o de menor energia o isómero em que o carbono $C_{(9)}$ tem a mesma orientação que o átomo de azoto ($N_{(4)}C_{(7)}C_{(8)}C_{(9)} = 0^{\circ}$). A energia eletrónica calculada para este isómero (-681,1612060994 Eh) serviu de referência para a comparação entre as outras estruturas.

Figura 11 — Variação da energia relativa da estrutura otimizada da **ATZ-S0** em função do valor do ângulo diedro N₍₄₎C₍₇₎C₍₈₎C₍₉₎. Valores obtidos através de otimizações parciais fixando apenas o valor do ângulo diedro. A linha serve apenas para facilitar a leitura do gráfico

Figura 12 – Estruturas dos confórmeros da ATZ-SO

2.1.2. Estados Excitados Singleto

A partir da estrutura otimizada da **ATZ-S0**, e recorrendo à TD-DFT, calcularam-se as energias de excitação vertical para os primeiros cinco estados excitados do *manifold* singleto. Estas energias foram calculadas com e sem a inclusão da aproximação de Tamm-Dancoff (ATD)⁷³, estando os valores descritos na Tabela 5. Uma vez que o funcional utilizado (M06-HF) tem 100% da energia de troca proveniente de Hartree-Fock⁸⁷, deve utilizar-se a ATD nos cálculos com o nível de teoria TD-DFT.⁷⁴

Tabela 5 – Propriedades das excitações verticais do estado fundamental da ATZ (**ATZ-S0**) sem e com aproximação de Tamm-Dancoff⁷³ obtidas com o nível de teoria TD-DFT/M06-HF/cc-pVDZ/PCM-metanol

ATD	Estado	Energia Relativa/kJ mol ⁻¹	Momento dipolar de transição		Força do oscilador	
	S ₁	530,3	-0,3330	-0,1221	0,0553	0,0175
6	S_2	544,1	-0,0300	0,0125	-0,2851	0,0115
Sem ATD	S ₃	557,4	-1,9415	-0,1349	0,2167	0,5479
	S ₄	605,7	0,1759	0,0544	-0,0831	0,0063
	S ₅	647,6	-1,0123	-0,1574	0,0342	0,1744
	S ₁	542,6	0,2548	0,0990	-0,0488	0,0107
C	S_2	573,8	-0,0488	0,0136	-0,3475	0,0181
ATD	S ₃	581,6	2,0851	0,1603	-0,2364	0,6603
	S ₄	625,5	-0,2037	-0,0297	0,1090	0,0087
	S_5	676,9	-1,0043	-0,1280	0,0216	0,1779

Comparando os resultados obtidos com e sem a ATD, verifica-se que, tal como previsto na literatura, os valores obtidos com recurso à ATD são mais elevados, como é percetível na Figura 13. A partir dos dados relativos à força do oscilador, verifica-se ainda que a transição mais provável de ocorrer é entre S₀ e S₃.

Figura 13 – Distribuição dos valores de energia de excitação vertical do estado fundamental da ATZ (**ATZ-S0**) sem e com aproximação de Tamm-Dancoff⁷³ obtidas com o nível de teoria TD-DFT/M06-HF/cc-pVDZ/PCM-metanol

A partir dos resultados obtidos através do estudo por TD-DFT é possível simular o espectro de absorção UV-Vis da **ATZ-S0**. Comparando com o espectro experimental (Figura 14), verifica-se que o perfil da banda é semelhante, existindo, contudo, uma diferença no posicionamento do máximo: no espectro calculado, o máximo localiza-se a 204 nm, enquanto que no obtido experimentalmente no decurso deste trabalho, o máximo se encontra a 248 nm. A existência de diferenças entre os espectros calculados e os experimentais deve-se a vários fatores. Desde logo, nos espectros experimentais as bandas não são discretas, pelo contrário, são bastante difusas, o que leva à existência de uma maior incerteza na posição do seu máximo. Outro fator importante é o facto de nos estudos teóricos não ser possível considerar alguns efeitos, como por exemplo os efeitos vibracionais, as distorções de Jahn-Teller, os acoplamentos spin-orbital e as características do meio estudado. Mesmo com modelos de solvatação, verificam-se diferenças significativas entre os valores calculados e os dados experimentais.⁹⁸ Isto significa que, mesmo recorrendo a níveis de teoria elevados e bases de grandes dimensões, poderá haver diferenças consideráveis entre os valores absolutos calculados e o observado experimentalmente.

Figura 14 – Comparação entre o espectro UV/Vis da ATZ obtido experimentalmente no decurso deste trabalho e o calculado ao nível TD-DFT/M06-HF/cc-pVDZ/PCM-metanol recorrendo à aproximação de Tamm-Dancoff⁷³

2.1.3. Primeiro Estado Excitado Tripleto

Calculou-se a estrutura eletrónica de mais baixa energia para o primeiro estado tripleto da ATZ (T_1), tendo-se obtido a geometria ilustrada na Figura 15. A diferença de energia eletrónica entre **ATZ-T** e **ATZ-S0** é de 398,91 kJ mol⁻¹. À semelhança da geometria do estado fundamental, verifica-se a existência dos 3 diferentes planos, cujas orientações relativas são semelhantes às verificadas no estado S₀.

Figura 15 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da ATZ-T

A localização das orbitais semipreenchidas, juntamente com a análise da ordem de ligação, permite perceber as diferenças existentes entre a geometria do estado fundamental e a do estado tripleto. No estado tripleto, não se verifica a deslocalização eletrónica no grupo fenilo, descrita para o S₀, uma vez que os valores da ordem de ligação entre os átomos de carbono do grupo fenilo na espécie **ATZ-T**, descritos na Tabela 6, demonstram que a ordem de ligação entre os átomos $C_{(10)}$ e $C_{(13)}$ com os seus adjacentes no anel é diferente da ordem das ligações $C_{(11)}C_{(12)}$ e $C_{(14)}C_{(15)}$.

Ligação	Ordem de Ligação
$C_{(10)}C_{(11)}$	1,072
C(10)C(15)	1,052
$C_{(11)}C_{(12)}$	1,875
$C_{(12)}C_{(13)}$	1,100
$C_{(13)}C_{(14)}$	1,118
$C_{(14)}C_{(15)}$	1,878

Tabela 6 – Valores de ordem de ligação entre os átomos constituintes do anel fenilo na geometria otimizada da ATZ-T

2.1.4. Fotoextrusão de N₂

No mecanismo postulado para esta reação, o que se segue é a fotoextrusão de azoto molecular. Neste passo, duas ligações NN são quebradas ($N_{(1)}N_{(2)}$ e $N_{(3)}N_{(4)}$). Para interpretar este processo, importa perceber se as quebras ocorrem em simultâneo, ou de forma consecutiva.³⁴ No caso de as quebras não serem simultâneas, importa perceber qual é a mais provável de acontecer em primeiro lugar, isto é, qual tem uma barreira energética menor.

Para avaliar as barreiras energéticas inerentes a este processo, identificaram-se os estados de transição para cada uma das hipóteses. A identificação destes estados (pontos de sela), foi feita através de uma abordagem com um método de informação local, pelo que foi necessário partir de geometrias próximas às dos possíveis estados de transição. A obtenção destas geometrias foi feita através de um processo de otimizações parciais da geometria da molécula, de forma consecutiva, fixando apenas o valor da distância internuclear entre os átomos envolvidos na quebra da ligação em estudo. Em cada caso, o valor fixado *a priori* foi sendo sucessivamente aumentado, até se verificar através da comparação gráfica dos valores da energia relativa em função da distância internuclear, que a estrutura eletrónica correspondia a valores perto do topo de uma possível barreira energética deste processo. Essa geometria foi, então, utilizada como ponto de partida para a identificação do estado de transição.

No caso em que a primeira ligação quebrada é a que está mais próxima do grupo fenilo, entre os átomos N(1) e N(2), a diferença energética calculada entre o estado de transição ATZ-ET1f e o estado tripleto foi de 60 kJ mol⁻¹. Analisando os dados da Figura 16, que representa os valores de energia relativa obtidos em função da distância internuclear, que na ATZ-T é de 1,355 Å, verifica-se que as otimizações consecutivas indicam a possível existência de uma barreira energética de cerca de 90 kJ mol⁻¹, correspondente à distância internuclear de 1,690 Å. No entanto, quando se parte dessa geometria para a identificação do estado de transição, o cálculo converge para o mínimo correspondente à espécie ATZ-T. O estado de transição identificado, ATZ-ET1f (a azul na Figura 16) foi obtido a partir da geometria correspondente à distância internuclear de 1,760 Å. A diferença energética abrupta entre as geometrias correspondentes às distâncias de 1,690 e 1,700 Å ocorre devido à localização das orbitais semipreenchidas, que no primeiro caso estão situadas no anel benzílico e que no segundo estão situadas nos átomos de azoto, como se ilustra na Figura 17, permitindo que a ordem de ligação entre os átomos de carbono no grupo fenilo seja semelhante (Tabela 7), o que não acontece na ATZ-T. Daqui pode concluir-se que o aumento da energia relativa até 90 kJ mol-1 é devida à restrição imposta no valor da distância internuclear aquando das otimizações consecutivas.

Figura 16 – Variação da energia relativa da ATZ-T em função do valor da distância $N_{(1)}N_{(2)}$

Figura 17 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) das geometrias otimizadas para $N_{(1)}N_{(2)}$ =1,69 Å (linha de cima) e $N_{(1)}N_{(2)}$ =1,70 Å (linha de baixo)

Tabela 7 – Valores de ordem de ligação entre os átomos constituintes do anel fenilo nas geometrias calculadas para $N_{(1)}N_{(2)}$ =1,69 Å e $N_{(1)}N_{(2)}$ =1,70 Å

Distância N-N = 1,69 Å		Distância N-N = 1,70 Å		
Ligação	Ordem de Ligação	Ligação	Ordem de Ligação	
C(10)C(11)	1,044	C(10)C(11)	1,213	
C(10)C(15)	1,068	$C_{(10)}C_{(15)}$	1,215	
$C_{(11)}C_{(12)}$	1,850	$C_{(11)}C_{(12)}$	1,613	
$C_{(12)}C_{(13)}$	1,156	$C_{(12)}C_{(13)}$	1,371	
$C_{(13)}C_{(14)}$	1,145	$C_{(13)}C_{(14)}$	1,386	
$C_{(14)}C_{(15)}$	1,878	$C_{(14)}C_{(15)}$	1,602	

O estado de transição identificado, **ATZ-ET1f**, tem a geometria ilustrada na Figura 18, sendo a distância entre os átomos $N_{(1)}$ e $N_{(2)}$ de 1,721 Å. Destaca-se o facto de o átomo $N_{(2)}$ estar fora do plano dos restantes átomos que formavam o anel da tetrazolona.

Figura 18 – Estrutura do estado de transição ATZ-ETIf

Após este estado de transição, a reação evolui para a espécie **ATZ-I1f** cuja geometria é ilustrada na Figura 19. Nesta espécie, os átomos que formavam o anel principal da tetrazolona estão no mesmo plano do anel benzílico, e as distâncias $N_{(1)}N_{(2)}$ e $N_{(3)}N_{(4)}$ são de 2,644 Å e 1,378 Å respetivamente. Este intermediário tem uma energia de 318,4 kJ mol⁻¹ em relação à **ATZ-S0**. Através da análise da localização espacial das orbitais semipreenchidas, verifica-se que existe uma fraca sobreposição espacial, indicando o caráter birradicalar desta espécie. Através da análise dos valores de ordem de valência livre dos diferentes átomos (Tabela 8), é possível perceber que o caráter radicalar se distribui principalmente entre dois átomos: $N_{(1)}$ e $N_{(2)}$.

Figura 19 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da ATZ-IIf

Tabela 8 – Valo	res de ordem	de valência li	ivre na espéi	ie ATZ-I1f
-----------------	--------------	----------------	---------------	------------

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₂₎	0,465	C ₍₁₁₎	0,019
N ₍₁₎	0,113	C(10)	0,007
N ₍₃₎	0,049	N ₍₄₎	0,005
C ₍₁₃₎	0,028	O ₍₆₎	0,002
C(15)	0,021	C(5)	0,001

Partindo desta geometria, avaliou-se a quebra da segunda ligação, entre os átomos $N_{(3)}$ e $N_{(4)}$. Para a quebra desta ligação identificou-se um estado de transição **ATZ-ET2f** com energia superior à da espécie **ATZ-I1f** em 22 kJ mol⁻¹. Os valores de energia obtidos para as otimizações parciais da estrutura eletrónica da molécula fixando a distância internuclear entre os átomos $N_{(4)}$ e $N_{(3)}$ estão descritos na Figura 20.

Figura 20 – Variação da energia relativa da **ATZ-I11** em função do valor da distância $N_{(3)}N_{(4)}$

Este estado de transição, calculado a partir da geometria obtida para o valor de distância internuclear de 1,60 Å, apresenta a geometria ilustrada na Figura 21. Nesta espécie verifica-se que o grupo carbonilo já não se encontra no mesmo plano do grupo fenilo.

Figura 21 – Estrutura do estado de transição ATZ-ET2f

Avaliando as quebras em ordem inversa, começando pela ligação $N_{(3)}N_{(4)}$, que na espécie **ATZ-T** corresponde a uma distância internuclear de 1,336 Å, o estado de transição identificado **ATZ-ET1a** tem uma energia superior à do estado tripleto em 277 kJ mol⁻¹, um valor bastante elevado quando comparado com o calculado para a quebra da ligação $N_{(1)}N_{(2)}$ em primeiro lugar. Na análise das otimizações parciais, ilustrada na Figura 22, não se verifica nenhuma variação brusca entre os valores de energia, ao contrário do verificado na hipótese alternativa.

Figura 22 – Variação da energia relativa da **ATZ-T** em função do valor da distância $N_{(3)}N_{(4)}$

O estado de transição **ATZ-ET1a**, a azul na Figura 22, foi identificado partindo da geometria obtida para a distância internuclear de 2,15 Å. Analisando a estrutura obtida para este estado de transição, verifica-se que os átomos que formavam o anel da tetrazolona estão no mesmo plano, e que o grupo sofre uma deformação, justificada pelo facto do átomo $N_{(3)}$ estar mais distante do átomo $N_{(4)}$.

Verifica-se também que as orbitais semipreenchidas se localizam no grupo fenilo (Figura 23), com sobreposição espacial significativa, à semelhança do que acontece na espécie **ATZ-T**. Nesta estrutura, a distância entre os átomos $N_{(3)}$ e $N_{(4)}$ é de 2,295 Å. O valor da ordem de ligação entre os átomos $N_{(4)}$ e $C_{(5)}$ sofre um aumento entre **ATZ-T** e **ATZ-ET1a**, passando de 1,140 a 1,750.

Figura 23 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) do estado de transição ATZ-ET1a

A partir deste estado de transição, a reação evolui para a espécie **ATZ-I1a**, ilustrada na Figura 24, que tem uma energia de 366,0 kJ mol⁻¹ relativamente **ATZ-S0**. Neste intermediário, as distâncias $N_{(3)} N_{(4)}$ e $N_{(1)}N_{(2)}$ são de 2,659 Å e 1,387 Å respetivamente, e as orbitais semipreenchidas localizam-se em torno dos átomos de azoto, tendo os átomos de carbono do grupo fenilo ordens de ligação semelhantes, ao contrário do que se verifica no estado de transição (Tabela 9). A fraca sobreposição espacial das orbitais semipreenchidas, aliada à análise dos valores de ordem de valência livre (Tabela 10), permite afirmar que esta espécie tem um caráter birradicalar em torno dos átomos $N_{(3)}$ e $N_{(4)}$.

Figura 24 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da ATZ-IIa

Tabela 9 – Valores de ordem c	de ligação entre os átomos	constituintes do anel fe	enilo nas es	pécies ATZ-E	T1a e ATZ-I1a
-------------------------------	----------------------------	--------------------------	--------------	--------------	---------------

ATZ-ET1a		ATZ-I1a		
Ligação	Ordem de Ligação	Ligação	Ordem de Ligação	
$C_{(10)}C_{(11)}$	1,034	$C_{(10)}C_{(11)}$	1,468	
$C_{(10)}C_{(15)}$	1,062	$C_{(10)}C_{(15)}$	1,469	
$C_{(11)}C_{(12)}$	1,782	$C_{(11)}C_{(12)}$	1,484	
$C_{(12)}C_{(13)}$	1,248	$C_{(12)}C_{(13)}$	1,473	
$C_{(13)}C_{(14)}$	1,248	$C_{(13)}C_{(14)}$	1,481	
$C_{(14)}C_{(15)}$	1,784	$C_{(14)}C_{(15)}$	1,480	

Tabela 10 – Valores de ordem de valência livre na ATZ-I1a

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₄₎	0,684	O(5)	0,002
N ₍₃₎	0,436	C ₍₁₄₎	0,001
N ₍₂₎	0,057	H ₍₂₁₎	0,001
N(1)	0,005		

Para a quebra da ligação restante, entre os átomos $N_{(1)} e N_{(2)}$, identificou-se o estado de transição **ATZ-ET2a**, representado na Figura 25, que tem uma diferença energética de 15 kJ mol⁻¹ em relação à espécie **ATZ-I1a**. Neste estado, que foi calculado a partir da geometria obtida para a distância internuclear de 1,60 Å, a distância $N_{(1)}N_{(2)}$ é de 1,578 Å. A diferença de energia verificada entre os pontos calculados através das otimizações parciais e o estado de transição identificado (Figura 26) não é relevante (cerca de 3 kJ mol⁻¹) e possivelmente surge devido à restrição imposta no cálculo das otimizações parciais.

Figura 25 - Estrutura do estado de transição ATZ-ET2a

Figura 26 – Variação da energia relativa da **ATZ-11a** em função do valor da distância $N_{(1)}N_{(2)}$

Avaliou-se, seguindo o mesmo procedimento, a hipótese da quebra simultânea das duas ligações. No entanto, ao contrário do verificado para as quebras consecutivas das ligações, não se detetou nenhum estado de transição. Verificou-se ainda que a reação evoluía para a formação de uma espécie semelhante à **ATZ-I1f**, onde existe densidade eletrónica significativa entre os átomos $N_{(3)}$ e $N_{(4)}$. Conclui-se então que a fotoextrusão de N_2 ocorre devido à quebra consecutiva de duas ligações, sendo a hipótese mais favorecida energeticamente a quebra em primeiro lugar da ligação mais próxima ao grupo fenilo $N_{(1)}N_{(2)}$.

2.1.5. Ciclização

Após a fotoextrusão de N_2 , forma-se a espécie **ATZ-I2**, ilustrada na Figura 27, que tem uma energia de 201 kJ mol⁻¹ tendo como referência a **ATZ-S0**. Através da distribuição espacial das orbitais semipreenchidas, que se localizam em torno de átomos diferentes, sobrepondo-se apenas ligeiramente nos átomos de azoto, juntamente com a análise dos valores de ordem de valência livre, é possível perceber o caráter birradicalar desta espécie em torno dois átomos de azoto.

Figura 27 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da ATZ-I2

Tabela 11 – Valores de ordem de valência livre dos átomos constituintes da espécie ATZ-I2

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₄₎	0,722	C(11)	0,018
N ₍₁₎	0,150	O ₍₆₎	0,007
C ₍₁₃₎	0,023	C ₍₈₎	0,001
C(15)	0,019		

No mecanismo postulado, o que se segue é o rearranjo do grupo alilo de forma a que os átomos N(1) e C₍₉₎ fiquem mais próximos, facilitando a formação do novo ciclo, no passo seguinte. Este rearranjo é possível uma vez que o grupo alilo tem elevada flexibilidade conformacional. A análise computacional desta etapa podia ser feita através das otimizações parciais da estrutura eletrónica, fixando o ângulo diedro $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$, de forma a que passasse dos 46,7° que tem inicialmente, para um valor em que a proximidade entre os átomos C₍₉₎ e N₍₁₎ fosse maior. No entanto, devido à flexibilidade do grupo alilo, essa abordagem iria afetar o ângulo diedro $N_{(4)}C_{(7)}C_{(8)}C_{(9)}$. Este ângulo tem inicialmente o valor de 0,6°, apresentando a conformação eis, no entanto, com o aumento da proximidade entre os átomos C₍₉₎ e N₍₁₎, a otimização parcial da estrutura faria com que o ângulo N(4)C(7)C(8)C(9) adotasse uma conformação trans. Isto podia ser restringido, fixando também o valor do ângulo diedro $N_{(4)}C_{(7)}C_{(8)}C_{(9)}$, juntamente com o do $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$ aquando das otimizações parciais, no entanto, a inclusão de mais uma restrição aumentaria a tensão conformacional, podendo não levar a uma boa aproximação para o cálculo de um estado de transição. Contudo, existe outra forma de abordar este problema, tirando partido da flexibilidade que o grupo alilo apresenta. Esta abordagem consiste na realização de otimizações parciais da estrutura do intermediário, fixando o valor da distância internuclear entre os átomos C(9) e N(1), reduzindo-o sucessivamente. A Figura 28 descreve os valores de energia relativa obtidos para essas otimizações, em função da distância internuclear, assim como o estado de transição identificado para este processo (ATZ-ET3), cuja geometria de ilustra na Figura 29.

Figura 28 – Variação da energia relativa da **ATZ-I2** em função do valor da distância $N_{(1)}C_{(9)}$

Figura 29 – Estrutura do estado de transição ATZ-ET3

Este estado de transição, que apresenta uma energia superior à da espécie **ATZ-I2** em 53 kJ mol⁻¹, foi obtido tendo como ponto de partida a otimização parcial calculada para a distância internuclear de 2,14 Å. Nesta espécie, o valor da distância é de 2,137 Å, um valor muito próximo da estimativa inicial, como é percetível na Figura 28. Uma das principais diferenças entre a espécie **ATZ-I2** e este estado de transição é a posição do plano do grupo fenilo em relação ao do grupo carbonilo, passando o valor do ângulo diedro $C_{(5)}N_{(1)}C_{(10)}C_{(11)}$ de 9,6° em **ATZ-I2** para -27,3° em **ATZ-ET3**. Esta alteração é devida à aproximação do grupo alilo, pois o átomo $C_{(15)}$ está inicialmente mais perto deste grupo do que o átomo $C_{(11)}$, o que faz com que a sua aproximação cause um impedimento estéreo maior na proximidade do átomo $C_{(15)}$ do que na do átomo $C_{(11)}$. De forma a minimizar este impedimento, o grupo fenilo roda à medida que o grupo alilo se aproxima. O evoluir da reação após este estado de transição conduz à formação da espécie **ATZ-I3**, ilustrada na Figura 30, e que contém um novo ciclo. Esta espécie tem uma energia de 117 kJ mol⁻¹ relativamente a **ATZ-S0**. Pela análise da ordem de valência livre (Tabela 12) e da localização das orbitais semipreenchidas, verifica-se que este intermediário tem um caráter birradicalar em torno dos átomos de N₍₄₎ e C₍₈₎.

Figura 30 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da ATZ-13

Tabela 12 – Valores de ordem de valência livre na ATZ-I3

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C ₍₈₎	0,811	C ₍₅₎	0,001
N ₍₄₎	0,724	C ₍₇₎	0,001
H ₍₁₆₎	0,002	O(6)	0,001

A última etapa do mecanismo da fotorreação da ATZ consiste na transferência de um átomo de hidrogénio de $C_{(7)}$ para $N_{(4)}$. O átomo $C_{(7)}$ está ligado a dois protões, cujas distâncias internucleares em relação ao átomo $N_{(4)}$ são muito semelhantes: 2,086 e 2,085 Å. Os valores de energia em função da distância internuclear entre o átomo de azoto e o protão, obtidos através das otimizações parciais da geometria da molécula, estão descritos na Figura 31. O estado de transição **ATZ-ET4** foi identificado a partir da estrutura eletrónica calculada para a distância internuclear de 1,230 Å, tendo esta o valor de 1,236 Å no estado de transição.

Figura 31 – Variação da energia relativa da ATZ-I3 em função do valor da distância $N_{(4)}H_{(16)}$

A Figura 32 ilustra a geometria calculada para o estado de transição, onde os valores de ordem de ligação entre os átomos $N_{(4)}$ e $H_{(16)}$, e $C_{(7)}$ e $H_{(16)}$ são de 0,520 e 0,455, respetivamente, o que evidencia uma densidade eletrónica superior entre o protão e o átomo azoto, em comparação com a existente entre o protão e o carbono. A diferença energética entre este estado de transição e a espécie **ATZ-I3** é de 171 kJ mol⁻¹.

Figura 32 – Estrutura do estado de transição ATZ-ET4

Após este estado de transição, a reação evolui para o produto final **ATZ-P**, cuja geometria está representada na Figura 33. A energia eletrónica calculada para este produto é de -248 kJ mol⁻¹ relativamente à **ATZ-S0**.

Figura 33 – Geometria otimizada da pirimidinona ATZ-P

Nesta geometria, os átomos podem ser divididos em dois planos principais, um por cada ciclo. A análise dos valores de ordem de ligação (Tabela 13) revela a deslocalização eletrónica no grupo fenilo, à semelhança do que acontece na ATZ, e uma maior ordem de ligação entre os átomos $C_{(7)}$ e $C_{(8)}$ (1,918), que resulta do facto de estabelecerem ligações com apenas 3 átomos.

Tabela 13 – Valores de ordem de ligação entre os átomos constituintes do anel fenilo na ATZ-P

Ligação	Ordem de Ligação
$C_{(10)}C_{(11)}$	1,436
$C_{(10)}C_{(15)}$	1,452
$C_{(11)}C_{(12)}$	1,511
$C_{(12)}C_{(13)}$	1,455
$C_{(13)}C_{(14)}$	1,494
$C_{(14)}C_{(15)}$	1,478

2.2. Perfil Energético

A partir da comparação dos valores de energia de cada espécie relativamente a **ATZ-S0**, foi traçado o perfil energético ao longo da reação (Figura 34).⁹³ Este esquema tem em conta os valores de energia do ponto zero harmónico calculados. Na representação dos estados excitados singleto, utilizaram-se os valores de energia eletrónica calculados para os primeiros cinco estados, com recurso à aproximação de Tamm-Dancoff, e o valor de energia do ponto zero calculado para **ATZ-S0**, por se considerar a excitação vertical. Após a excitação, representa-se o processo de ISC, conduzindo à formação do estado tripleto **ATZ-T**.

coordenada reacional Figura 34 – Perfil energético da fotorreação da ATZ

Ao analisar o perfil energético, tendo em conta os valores de energia do ponto zero harmónico, verifica-se que a barreira correspondente ao estado de transição **ATZ-ET1a**, o estado formado quando a fotoextrusão do N₂ se dá através da quebra da ligação $N_{(3)}N_{(4)}$ em primeiro lugar, para além de ser bastante maior do que a correspondente ao estado de transição **ATZ-ET1f**, é também energeticamente superior ao primeiro estado excitado singleto (S₁), o que vai de encontro à conclusão de que a quebra que deve ocorrer em primeiro lugar é a da ligação $N_{(1)}N_{(2)}$. Verifica-se, então, que o processo mais provável de ocorrer apresenta quatro barreiras energéticas, que se atribuem à quebra do anel da tetrazolona através da ligação $N_{(1)}N_{(2)}(57 \text{ kJ mol}^{-1})$, à quebra da ligação $N_{(3)}N_{(4)}$, que leva à fotoextrusão de azoto molecular (11 kJ mol⁻¹), ao rearranjo que leva à formação do novo ciclo (51 kJ mol⁻¹), e à transferência de protão intramolecular que conduz à pirimidinona final (160 kJ mol⁻¹).

A nível energético, a reação evolui favoravelmente no sentido do produto, uma vez que comparando a energia da pirimidinona formada com a da tetrazolona inicial, se verifica que o produto final é energeticamente mais estável que o reagente (-257 kJ mol⁻¹).

2.3. Acompanhamento espectroscópico da reação

A Figura 35 ilustra os espectros de infravermelho calculados e normalizados das espécies envolvidas no mecanismo de fotorreação da ATZ. Estes espectros podem ser utilizados para uma comparação futura com dados experimentais obtidos por técnicas de espectroscopia de infravermelho resolvido no tempo, de forma a identificar os intermediários envolvidos na reação.

Analisando a evolução da reação, entre as espécies **ATZ-S0** e **ATZ-T**, é visível uma alteração na banda com máximo a 1398 cm⁻¹ no espectro da segunda espécie. Esta banda é atribuída a modos vibracionais que envolvem o anel tetrazólico. A banda atribuída à elongação da ligação $C_{(5)}O_{(6)}$ é a mais intensa, e o número de onda do máximo é semelhante nas duas espécies.

Já entre as espécies **ATZ-T** e **ATZ-IIf** existem alterações mais acentuadas no perfil do espectro, verificando-se uma alteração no máximo da banda relativa à elongação $C_{(5)}O_{(6)}$ e o aparecimento de outras bandas de intensidade semelhante. Estas bandas são atribuídas a modos vibracionais que envolvem o átomo N₍₄₎, que faz a ligação entre o grupo alilo, os restantes átomos de azoto e o grupo carbonilo (banda com máximo a 1173 cm⁻¹), o anel tetrazólico e o grupo alilo (máximo a 1407 cm⁻¹) e o anel tetrazólico e o grupo fenilo (máximo a 1639 cm⁻¹). Surge também uma banda com intensidade relativamente baixa, com máximo a 1930 cm⁻¹, que é atribuída ao modo vibracional da elongação da ligação N₍₂₎N₍₃₎.

No espectro da espécie **ATZ-I2**, já não surge a banda relativa à elongação da $N_{(2)}N_{(3)}$, uma vez que estes dois átomos saíram na forma de azoto molecular. Neste espectro, a banda com maior intensidade surge a 1276 cm⁻¹, sendo atribuída a modos vibracionais envolvendo os átomos de azoto e o átomo C₍₅₎. A banda atribuída à elongação da ligação C₍₅₎O₍₆₎ tem o seu máximo a 1757 cm⁻¹.

O espectro da espécie **ATZ-I3** é substancialmente diferente do da espécie **ATZ-I2**, sendo a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ a que apresenta maior intensidade, estando também deslocada para maiores números de onda. Neste espectro, destacam-se também duas bandas, com máximos a 1467 e 1554 cm⁻¹, que são atribuídas a modos vibracionais que envolvem o átomo de azoto que liga dos dois anéis (N₍₁₎).

O perfil do espectro da espécie **ATZ-P** é bastante semelhante ao do espectro da **ATZ-I3**, surgindo, no entanto, uma nova banda, em frequências mais energéticas (3634 cm⁻¹), não visível no intervalo de números de onda da Figura 35, e que é atribuída à ligação $N_{(4)}H_{(16)}$.

Figura 35 – Espectros de infravermelho calculados e normalizados das espécies envolvidas na fotorreação da ATZ

A partir das diferenças aqui apresentadas, que focam apenas alterações substanciais nos espectros, é possível acompanhar a evolução da reação e identificar experimentalmente os intermediários estudados, através de técnicas de espetroscopia de infravermelho resolvido no tempo, desde que exista resolução temporal adequada ao tempo de vida dos intermediários.

Capítulo 5: Ciclohex-tetrazolona e 3-ciclohex-tetrazolona

99 Prata, A. D., Serpa, C. & Caridade, P. J. S. B. Theoretical study of 1-phenyl-4-cyclohexenyl-tetrazolones photodegradation pathways (Título provisório). A submeter (2020)

1. Ciclohex-tetrazolona

1.1. Espécies envolvidas no mecanismo de fotorreação

Considerando o mecanismo postulado para a fotorreação da CTZ (Figura 7)²⁵, que se inicia com a excitação do estado fundamental singleto, foram caracterizadas as espécies nele envolvidas, do ponto de vista energético e estrutural, assim como os estados de transição correspondentes aos diferentes processos.⁹⁹

1.1.1. Estado Fundamental

A CTZ tem um carbono quiral $C_{(7)}$, pelo que apresenta dois enantiómeros, *s* e *r*. Otimizaram-se as estruturas dos dois enantiómeros, que se ilustram na Figura 36, tendo-se verificado que apresentam a mesma energia. Uma vez que os estudos teóricos publicados sobre esta molécula se focam no enantiómero *s*, o estudo da fotorreação da CTZ foi realizado a partir deste enantiómero.²⁵

Figura 36 – Estruturas dos enantiómeros s (em cima) e r (em baixo) da 3CTZ

Para além da existência de enantiómeros, a CTZ pode apresentar vários confórmeros, consoante a orientação dos grupos em torno das ligações $N_{(4)}C_{(7)}$ e $C_{(11)}C_{(12)}$. A Figura 37 ilustra as estruturas destes confórmeros. O estudo mecanístico foi realizado a partir do isómero de mais baixa energia relativa – **CTZ-S0** (-797,8868662618 Eh).

Figura 37 – Estruturas dos confórmeros da CTZ, com energias relativas: A(0,0 kJ mol⁺), B(1,0 kJ mol⁺), C(3,6 kJ mol⁺) e D(6,5 kJ mol⁺)

Analisando a estrutura da espécie **CTZ-S0**, verifica-se que o anel do grupo fenilo e o anel tetrazólico estão em planos diferentes, e através da comparação dos valores de ordem de ligação (Tabela 14), verifica-se que existe deslocalização eletrónica entre os átomos de carbono no grupo fenilo. Tal como nas outras tetrazolonas estudadas, a carga está parcialmente deslocalizada no anel tetrazólico, como é possível verificar pelos valores da ordem de ligação.

Ligação	Ordem de Ligação	Ligação	Ordem de Ligação
$C_{(13)}C_{(14)}$	1,451	$N_{(1)}N_{(2)}$	1,155
$C_{(13)}C_{(18)}$	1,440	$N_{(2)}N_{(3)}$	1,701
$C_{(14)}C_{(15)}$	1,482	$N_{(3)}N_{(4)}$	1,164
$C_{(15)}C_{(16)}$	1,483		
$C_{(16)}C_{(17)}$	1,470		
$C_{(17)}C_{(18)}$	1,501		

Tabela 14 – Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tetrazólico na CTZ-SO

1.1.2. Estados Excitados Singleto

Através de um cálculo TD-DFT, utilizando a Aproximação de Tamm-Dancoff,⁷³ calcularam-se as energias de excitação vertical, e as suas propriedades, para os primeiros cinco estados excitados da CTZ, estando os dados obtidos descritos na Tabela 15.

Tabela 15 – Propriedades das excitações verticais do estado fundamental da CTZ (**CTZ-S0**) com o nível (TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD)

Estado	Energia Relativa/kJ mol ⁻¹	Momento dipolar de transição			Força do oscilador
S_1	530,3	-0,3330	-0,1221	0,0553	0,0175
S_2	544,1	-0,0300	0,0125	-0,2851	0,0115
S ₃	557,4	-1,9415	-0,1349	0,2167	0,5479
S ₄	605,7	0,1759	0,0544	-0,0831	0,0063
S ₅	647,6	-1,0123	-0,1574	0,0342	0,1744

Pela análise dos dados relativos à força do oscilador, verifica-se que a transição mais provável é de S_0 para S_3 , tal como verificado para a ATZ. A Figura 38 ilustra o espectro de UV/Vis calculado e o espectro experimental. Comparando com o espectro obtido experimentalmente, verifica-se que apresentam um perfil semelhante. No entanto, tal como na ATZ, existe um deslocamento no

comprimento de onda do máximo, que na simulação é 204 nm e no espectro experimental é de 249 nm.

Figura 38 – Comparação entre os espectros UV/Vis experimental e calculado (normalizados) da CTZ com o nível (TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD)

1.1.3. Primeiro Estado Excitado Tripleto

Calculou-se a estrutura eletrónica do primeiro estado excitado tripleto da CTZ, **CTZ-T**, cuja diferença de energia é de 327,1 kJ mol⁻¹ relativamente ao estado fundamental. Nesta espécie, o átomo $N_{(2)}$ encontra-se fora do plano do resto do anel da tetrazolona. Ao contrário do que se verifica no estado T₁ da ATZ, na CTZ não existe perda da deslocalização eletrónica no anel do grupo fenilo, como se pode perceber pela análise dos valores da ordem de ligação (Tabela 16). No entanto, no anel tetrazólico verificam-se alterações nestes valores, com o aumento da ordem de ligação entre os átomos $N_{(1)}N_{(2)}$ e $N_{(3)}N_{(4)}$ e a diminuição entre os átomos $N_{(2)}N_{(3)}$. Esta alteração é justificada pela localização das orbitais semipreenchidas, que, tal como se ilustra na Figura 39, se localizam no anel tetrazólico.

Ligação	Ordem de Ligação	Ligação	Ordem de Ligação
$C_{(13)}C_{(14)}$	1,435	$N_{(1)}N_{(2)}$	1,272
$C_{(13)}C_{(18)}$	1,432	$N_{(2)}N_{(3)}$	0,960
$C_{(14)}C_{(15)}$	1,495	$N_{(3)}N_{(4)}$	1,273
$C_{(15)}C_{(16)}$	1,478		
$C_{(16)}C_{(17)}$	1,473		
$C_{(17)}C_{(18)}$	1,500]	

Tabela 16 – Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tetrazólico na CTZ-T

Figura 39 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-T

1.1.4. Fotoextrusão de N₂

Tendo por base as conclusões tiradas a partir do estudo da fotoextrusão de N₂ na ATZ, avaliaram-se apenas as hipóteses que correspondem a quebras consecutivas, excluindo-se a hipótese da quebra simultânea das ligações. Assim, para o caso em que a primeira quebra ocorre entre os átomos N₍₁₎ e N₍₂₎, recorrendo ao método das otimizações parciais da geometria da molécula utilizado na ATZ, identificou-se o estado de transição deste processo, **CTZ-ET1f**, que se ilustra na Figura 40. Este estado de transição, que apresenta uma diferença energética de 132 kJ mol⁻¹ em relação ao estado tripleto, foi calculado a partir da otimização parcial para a distância internuclear de 1,830 Å, sendo 1,829 Å o valor obtido nesta estrutura. As energias relativas das otimizações parciais estão descritas no Apêndice 5. Na geometria deste estado de transição verifica-se uma maior diferença entre os planos do grupo fenilo e da tetrazolona, comparativamente a **CTZ-T1**.

Figura 40 – Estrutura do estado de transição CTZ-ET1f

A evolução da reação a partir deste estado de transição conduz à espécie **CTZ-I1f**, ilustrada na Figura 41, que apresenta uma diferença energética de 320 kJ mol⁻¹ relativamente ao reagente inicial. Nesta espécie, as orbitais semipreenchidas localizam-se essencialmente em torno dos átomos cuja ligação se quebrou, $N_{(1)}$ e $N_{(2)}$, não existindo sobreposição espacial significativa entre as orbitais. Estes átomos são, por isso, os que apresentam valores de ordem de valência livre mais elevados (Tabela 17), indicando, assim, que a espécie tem um caráter birradicalar neles localizado.

Figura 41 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-III

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₂₎	0,450	C ₍₁₄₎	0,020
N ₍₁₎	0,144	C ₍₁₃₎	0,005
N ₍₃₎	0,054	N ₍₄₎	0,005
C(16)	0,027	C(5)	0,001
C(18)	0,021	O ₍₆₎	0,001

Tabela 17 – Valores de ordem de valência livre na CTZ-III

Recorrendo ao método das otimizações parciais, fixando a distância entre os átomos $N_{(3)}$ e $N_{(4)}$, identificou-se o estado de transição **CTZ-ET2f**, correspondente à quebra da segunda ligação no processo de fotoextrusão de N_2 , cuja estrutura se ilustra na Figura 42. Este estado foi identificado a partir da otimização parcial para a distância internuclear de 1,620 Å, sendo 1,607 Å o valor determinado nesta estrutura. A diferença de energia entre este estado de transição e a espécie **CTZ-I1f** é de 21 kJ mol⁻¹.

Figura 42 – Estrutura do estado de transição CTZ-ET2f

No caso em que a quebra ocorre primeiro entre os átomos $N_{(3)}$ e $N_{(4)}$, o estado de transição **CTZ-ET1a** foi identificado a partir da otimização parcial para o valor de distância internuclear de 1,890 Å. Nesta estrutura, ilustrada na Figura 43, o valor obtido para ligação $N_{(3)}N_{(4)}$ foi de 1,861 Å. A diferença energética entre este estado de transição e o estado tripleto **CTZ-T** é de 152 kJ mol⁻¹.

Figura 43 – Estrutura do estado de transição CTZ-ET1a

Após este estado de transição, a reação evolui para a espécie **CTZ-I1a** ilustrada na Figura 44, cuja energia relativamente ao estado fundamental da CTZ é de 363 kJ mol⁻¹. Tal como na espécie **CTZ-I1f**, as orbitais semipreenchidas estão localizadas em torno dos átomos que estavam envolvidos na ligação que se quebrou. Estes átomos apresentam também maiores valores de ordem de valência livre (Tabela 18), indicando o caráter birradicalar desta espécie.

Figura 44 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-IIa

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₄₎	0,669	O ₍₆₎	0,002
N ₍₃₎	0,429	C(5)	0,001
N ₍₂₎	0,059	C ₍₁₂₎	0,001
N(1)	0,006		

Tabela 18 – Valores de ordem de valência livre na CTZ-IIa

Para a quebra da ligação $N_{(1)}N_{(2)}$, que finaliza o processo da fotoextrusão de N_2 , identificou-se o estado de transição **CTZ-ET2a**, ilustrado na Figura 45, através do método das otimizações parciais. A estrutura inicial utilizada para o cálculo do estado de transição foi a obtida para distância $N_{(1)}N_{(2)}$ igual a 1,570 Å. O valor calculado para esta esta estrutura, a que corresponde uma diferença de energia em relação a **CTZ-I1a** de 15 kJ mol⁻¹, foi de 1,581 Å.

Figura 45 – Estrutura do estado de transição CTZ-ET2a

Verificou-se que, tal como na ATZ, a estrutura obtida após a fotoextrusão de azoto molecular é independente da forma como a saída deste composto se dá. Após a saída de N₂, obtém-se a espécie **CTZ-I2**, ilustrada na Figura 46, cuja diferença energética em relação ao reagente inicial é de 202 kJ mol⁻¹. Através da análise da localização espacial das orbitais semipreenchidas e da ordem de valência livre dos diferentes átomos, é possível perceber que se trata de uma espécie birradicalar em torno dos átomos N₍₁₎ e N₍₄₎, tal como acontece na ATZ após a saída de azoto molecular.

Figura 46 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-12

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₄₎	0,718	C(14)	0,018
N ₍₁₎	0,152	O ₍₆₎	0,005
C ₍₁₆₎	0,023	C ₍₅₎	0,002
C(18)	0,019	C(12)	0,001

Tabela 19 – Valores de ordem de valência livre na CTZ-I2

1.1.5. Ciclização

A partir desta espécie, o que se segue segundo o mecanismo postulado, é uma transferência de protão, podendo a reação evoluir em duas vias distintas, dependendo se a transferência ocorrer entre o grupo alílico e o átomo de azoto mais próximo ($N_{(4)}$) ou entre o grupo fenilo e o outro átomo de azoto $N_{(1)}$.

Via de ciclização com o grupo alílico

Quando a transferência de protão ocorre entre o grupo alílico e o átomo $N_{(4)}$, está postulado que o átomo de hidrogénio envolvido é o que está ligado ao carbono $C_{(8)}$. Na estrutura da espécie **CTZ-I2**, a distância internuclear entre $N_{(4)}$ e $H_{(20)}$ é de 2,651 Å (Figura 47).

Figura 47 — Ilustração da distância entre os átomos de azoto e hidrogénio envolvidos na transferência de protão intramolecular na via de ciclização com o grupo alílico

Através do método de otimizações parciais fixando o valor da distância internuclear $N_{(4)}H_{(20)}$, calculou-se o estado de transição deste processo, tendo como ponto de partida a estrutura otimizada para o valor de 1,350 Å. No estado de transição identificado, **CTZ-ET3a**, a distância internuclear $N_{(4)}H_{(20)}$ de 1,302 Å. Este estado tem uma diferença de energia em relação a **CTZ-I2** de 204 kJ mol⁻¹. Comparando as estruturas da espécie **CTZ-I2** e **CTZ-ET3a** (Figura 48), verifica-se que existe uma alteração significativa na conformação do grupo alílico. Esta alteração conformacional, surge fruto da aproximação que existe entre os átomos $N_{(4)}$ e $C_{(8)}$ de forma a ocorrer a transferência de protão.

Figura 48 – Estruturas da CTZ-I2 (à esquerda) e do estado de transição CTZ-ET1f (à direita)

Após a transferência de protão, a reação evolui para a espécie **CTZ-I3a** (Figura 49), que apresenta uma diferença energética de 203 kJ mol⁻¹ relativamente a **CTZ-S0**. Nesta espécie, as orbitais semipreenchidas localizam-se essencialmente em torno dos átomos $N_{(1)}$ e $C_{(8)}$, não existindo sobreposição espacial entre elas. Este facto, juntamente com a análise da ordem de valência livre (Tabela 20), indica a existência de um caráter birradicalar em torno dos átomos $N_{(1)}$ e $C_{(8)}$.

Figura 49 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-I3a

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C ₍₈₎	0,731	O (6)	0,001
N ₍₁₎	0,180	C ₍₅₎	0,001
C ₍₁₆₎	0,020	C ₍₇₎	0,001
C(18)	0,019	C ₍₉₎	0,001
C ₍₁₄₎	0,018	C(10)	0,001
C ₍₁₃₎	0,003	C(12)	0,001
N ₍₄₎	0,001		

Tabela 20 – Valores de ordem de valência livre na CTZ-I3a

Após este intermediário, o passo postulado para a continuação da reação é a rotação do grupo alílico através do ângulo diedro $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$, passando da conformação *cis* para a *trans*, o que faz com que os átomos $N_{(1)}$ e $C_{(8)}$ fiquem mais próximos. Através do método das otimizações parciais, fixando o valor deste ângulo diedro, identificaram-se dois estados de transição, **CTZ-ET4a1** e **CTZ-ET4a2**, (Figura 50) um para cada sentido de rotação. Estes estados foram calculados partindo das estruturas obtidas para os valores de $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$ de 120,0° e -120,0°, respetivamente, sendo 121,4° e -125,2° os valores verificados nas geometrias de **CTZ-ET4a1** e **CTZ-ET4a2**. O estado de transição **CTZ-ET4a2** é o que corresponde a uma menor diferença energética em relação a **CTZ-I3a**, 62 kJ mol⁻¹, sendo a do estado **CTZ-ET4a1** de 71 kJ mol⁻¹.

Figura 50 – Estruturas dos estados de transição CTZ-ET4a1 e CTZ-ET4a2

Os dois estados de transição identificados evoluem para a mesma espécie, **CTZ-I4a**, cuja estrutura se ilustra na Figura 51, e que apresenta uma diferença energética relativamente a **CTZ-S0** de 205 kJ mol⁻¹. Entre esta espécie e **CTZ-I3a** não existem alterações substanciais na localização das orbitais semipreenchidas, nem no caráter birradicalar da espécie, sendo apenas de assinar um aumento no valor da ordem de valência livre do átomo $N_{(1)}$, e consequente redução dos valores dos carbonos do grupo fenilo.

Figura 51 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-14a

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C ₍₈₎	0,731	O(6)	0,001
N ₍₁₎	0,308	C ₍₅₎	0,001
C(16)	0,011	C ₍₇₎	0,001
C(14)	0,013	C(9)	0,001
C(18)	0,013	C(10)	0,001
C ₍₁₃₎	0,002		

Tabela 21 – Valores de ordem de valência livre na CTZ-I4a

Para formar o produto final, a partir da espécie **CTZ-I4a**, é necessário ocorrer uma aproximação entre os átomos $N_{(1)}$ e $C_{(8)}$, que neste intermediário distam 2,847 Å. Através do método das otimizações parciais fixando a distância internuclear $N_{(1)}C_{(8)}$, identificou-se o estado de transição **CTZ-ET5a**, ilustrado na Figura 52, utilizando como ponto de partida a estrutura calculada para a distância $N_{(1)}C_{(8)}$ de 2,200 Å. Nesta espécie, o valor calculado foi de 2,145 Å, sendo a diferença de energia entre este estado e **CTZ-I4a** é de 31 kJ mol⁻¹.

Figura 52 – Estrutura do estado de transição CTZ-ET5a

Após o estado de transição **CTZ-ET5a**, a reação evolui para a pirimidinona final **CTZ-P**, ilustrada na Figura 53, que tem uma diferença de energia de -240 kJ mol⁻¹ relativamente **a CTZ-S0**. Nesta espécie, o valor de ordem de ligação entre os átomos $C_{(8)}$ e $C_{(9)}$ é de 1,923, fruto destes dois átomos de carbono estabelecerem ligações com apenas 3 átomos.

Figura 53 – Geometria otimizada da pirimidinona CTZ-P

Via de ciclização com o grupo fenilo

Em alternativa à via da ciclização com o grupo alílico, já descrita, existe uma via reacional de ciclização com o grupo fenilo. Esta via inicia-se após a espécie **CTZ-I2**, com uma transferência de protão entre o grupo fenilo e o átomo de azoto a que este está ligado, $N_{(1)}$. No mecanismo postulado para a CTZ, o protão que migra é o $H_{(28)}$, que na espécie **CTZ-I2** dista 2,758 Å do átomo $N_{(1)}$ (Figura 54).

Figura 54 — Ilustração das distâncias entre os átomos de azoto e hidrogénio envolvidos na transferência de protão intramolecular da via de ciclização com o grupo fenilo

Através do método das otimizações parciais fixando a distância internuclear N₍₁₎H₍₂₈₎, identificou-se o estado de transição **CTZ-ET3f**, partindo da geometria calculada para o valor de 1,250 Å. No estado **CTZ-ET3f**, o valor da distância internuclear é de 1,269 Å. Comparando a estrutura deste estado (Figura 55), com a da espécie **CTZ-I2**, verifica-se que existiu uma rotação no grupo alílico. Esta rotação é notada comparando as estruturas resultantes do método das otimizações parciais, ilustradas na Figura 56. O estado **CTZ-ET3f** tem uma diferença de energia em relação a **CTZ-I2** de 251 kJ mol⁻¹. Identificou-se também o estado de transição para a transferência do átomo H₍₃₂₎, tendo-se registado uma diferença energética em relação a **CTZ-I2** igual à do estado **CTZ-ET3f**, 251 kJ mol⁻¹.

Figura 55 – Estrutura do estado de transição CTZ-ET3f

Figura 56 – Estruturas otimizadas da CTZ-12 para os vários valores de N(1)H(32), calculadas através do método das otimizações parciais

Após este estado de transição, a reação evolui para a espécie **CTZ-I3f** (Figura 57), que tem uma diferença energética de 203 kJ mol⁻¹ em relação a **CTZ-S0**. Nesta espécie, as orbitais semipreenchidas estão localizadas em torno dos átomos $N_{(4)}$ e $C_{(13)}$, não existindo sobreposição espacial entre elas. Tendo isto em conta, juntamente com os valores de ordem de valência livre (Tabela 22), verifica-se que se mantém o caráter birradicalar. Nesta espécie, em comparação com a **CTZ-I3a**, a orbital semipreenchida que se localiza em torno do azoto tem uma distribuição mais centrada neste átomo, uma vez que na **CTZ-I3a** existe deslocalização pelo grupo fenilo, e na **CTZ-I3f** isso não é possível.

Figura 57 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-13f

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C(14)	0,769	N ₍₁₎	0,001
N ₍₄₎	0,610	C ₍₅₎	0,001
O(6)	0,002	C ₍₁₃₎	0,001
C ₍₁₂₎	0,002	C ₍₁₅₎	0,001

Tabela 22 – Valores de ordem de valência livre na CTZ-I3f

Tal como acontece na via reacional apresentada anteriormente para a ciclização com o grupo alílico, após a transferência de protão, o grupo de onde este foi transferido sofre uma rotação. Neste caso, a rotação ocorre em torno da ligação $N_{(1)}C_{(13)}$, definida pelo ângulo diedro $O_{(6)}C_{(5)}N_{(1)}C_{(13)}$, que na estrutura da espécie **CTZ-I3f** tem o valor de 0,0°. Avaliaram-se os dois sentidos de rotação possíveis, através do método das otimizações parciais fixando o valor de $O_{(6)}C_{(5)}N_{(1)}C_{(13)}$, tendo-se identificado dois estados de transição, **CTZ-ET4f1** e **CTZ-ET4f2** (Figura 58), partindo das estruturas calculadas para 125° e -130° respetivamente. Nestes estados de transição, os valores deste ângulo são 116,4° e -128,0°. As diferenças energéticas em relação a **CTZ-I3f** são de 71 kJ mol⁻¹ e 69 kJ mol⁻¹, para **CTZ-ET4f1** e **CTZ-ET4f2** respetivamente.

Figura 58 – Estruturas dos estados de transição CTZ-ET4f1 e CTZ-ET4f2

Tal como descrito para a via de ciclização com o grupo alílico, os dois estados de transição, correspondentes aos dois possíveis sentidos, conduzem ao mesmo intermediário **CTZ-I4f**, que se ilustra na Figura 59. Esta espécie tem uma diferença de energia de 205 kJ mol⁻¹ relativamente a **CTZ-S0**. As orbitais semipreenchidas localizam-se em torno dos mesmos átomos que no intermediário **CTZ-I3f**.

Figura 59 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da CTZ-14f

Analisando a estrutura deste intermediário, verifica-se que o átomo $C_{(14)}$, onde se concentra a uma das orbitais semipreenchidas, se encontra distante do átomo $N_{(4)}$, onde se localiza a outra orbital (distância $N_{(4)}C_{(14)}$ de 4,112 Å). Esta distância é bastante superior à verificada na espécie análoga na via de ciclização com o grupo alílico (espécie CTZ-I4a – distância 2,847 Å). Recorrendo ao método das aproximações parciais fixando a distância internuclear entre estes dois átomos, identificou-se uma ténue barreira energética (cerca de 5 kJ mol⁻¹) referente à rotação do grupo fenilo em torno da ligação $N_{(1)}C_{(13)}$. Após esta rotação, foi identificado um estado de transição correspondente ao processo de aproximação dos átomos $N_{(4)}$ e $C_{(14)}$, **CTZ-ET5f** (Figura 60), partindo da estrutura calculada para o valor de distância $N_{(4)}C_{(14)}$ de 1,850 Å, sendo o valor na estrutura do estado **CTZ-ET5f** de 1,829 Å. A diferença de energia entre **CTZ-ET5f** e **CTZ-I4f** é de 69 kJ mol⁻¹.

Figura 60 – Estrutura do estado de transição CTZ-ET5f

Após este estado de transição, a reação evolui para a benzimidazolona final **CTZ-B**, cuja estrutura se ilustra na Figura 61, e que apresenta uma diferença energética face ao reagente inicial de -240 kJ mol⁻¹.

Figura 61 – Geometria otimizada da benzimidazolona CTZ-B

1.2. Perfil Energético

Comparando os valores de energia eletrónica calculados para cada espécie relativamente a **CTZ-S0**, foi traçado o perfil energético das diferentes vias ao longo da reação (Figura 62), tendo em conta os valores de energia do ponto zero harmónico de cada espécie. Consideraram-se também os valores calculados para os primeiros cinco estados excitados singleto, com recurso à aproximação de Tamm-Dancoff,⁷³ assumindo o processo de excitação vertical. Após esta excitação, ocorre o processo de ISC, conduzindo à formação do estado tripleto **CTZ-T**.

coordenada reacional Figura 62 – Perfil energético da fotorreação da CTZ

Em relação ao processo de fotoextrusão de N₂ através das quebras consecutivas das ligações N₍₁₎N₍₂₎ e N₍₃₎N₍₄₎, observa-se que a barreira energética correspondente à quebra da ligação N₍₁₎N₍₂₎ em primeiro lugar é ligeiramente inferior à da quebra da ligação N₍₃₎N₍₄₎, sendo 121 e 140 kJ mol⁻¹ os respetivos valores (correspondendo aos estados de transição **CTZ-ET1f** e **CTZ-ET1a**). Quando comparadas com estas, as barreiras energéticas relativas à quebra da segunda ligação são bastante reduzidas, tendo os valores de 13 e 10 kJ mol⁻¹ (**CTZ-ET2f** e **CTZ-ET2a**). Tal como descrito na secção 1.1.5 deste capítulo, o processo referente à transferência de protão intramolecular pode ocorrer entre o grupo alílico e a tetrazolona ou entre o grupo fenilo e a tetrazolona. No primeiro caso, o estado de transição identificado (**CTZ-ET3f**) a barreira energética é superior, sendo de 239 kJ mol⁻¹. Quando a reação evolui para a ciclização com o grupo alílico, a barreira energética

identificada para a rotação deste grupo é de 58 ou 68 kJ mol⁻¹, consoante o sentido da mesma (correspondendo respetivamente aos estados de transição **CTZ-ET4a2** e **CTZ-ET4a1**). A barreira energética para o processo de formação do anel da pirimidinona é de 31 kJ mol⁻¹ (estado de transição **CTZ-ET5a**). No caso em que a ciclização ocorre com o grupo fenilo, a barreira energética da rotação deste grupo é de 64 ou 67 kJ mol⁻¹ (estados de transição **CTZ-ET4f2** e **CTZ-ET4f1**). No processo de formação da benzimidazolona final, a barreira energética é de 63 kJ mol⁻¹ (**CTZ-ET5f**), sendo que foi observada uma pequena barreira aquando da rotação deste grupo em torno da ligação N₍₁₎C₍₁₃₎, inferior a 5 kJ mol⁻¹.

Pela análise deste perfil energético, é possível concluir que não existem barreiras impeditivas da ocorrência de nenhuma das vias estudadas, que para a fotoextrusão de N₂, quer na evolução para os possíveis produtos finais, uma vez que todas as barreiras observadas se encontram abaixo da energia do primeiro estado excitado singleto da CTZ. A nível energético, ambas as vias reacionais evoluem favoravelmente no sentido do produto, verificando-se que a benzimidazolona **CTZ-B** apresenta uma energia em relação ao reagente inicial menor do que a apresentada pela pirimidinona **CTZ-P** (-564 e -463 kJ mol⁻¹, respetivamente).

2. 3-ciclohex-tetrazolona

2.1. Espécies envolvidas no mecanismo de fotorreação

Tendo em conta o mecanismo postulado para a fotorreação da 3CTZ (Figura 8)²⁵, que se inicia com a excitação do estado fundamental singleto, foram caracterizadas as espécies nele envolvidas, do ponto de vista energético e estrutural, bem como os estados de transição correspondentes aos diferentes processos.⁹⁹

2.1.1. Estado Fundamental

A 3CTZ tem uma estrutura muito semelhante à da CTZ, diferendo apenas num dos grupos ligados ao carbono quiral $C_{(7)}$: a CTZ tem um átomo de hidrogénio, e a 3CTZ tem um grupo metilo (Figura 63). Devido à existência deste carbono quiral, existem dois enantiómeros possíveis, que, tal como na CTZ, têm a mesma energia, tendo-se optado pela utilização do enantiómero *s*.

Figura 63 – Estruturas dos enantiómeros s e r da 3CTZ; (em cima enantiómero s; em baixoenantiómero r)

Tal como na CTZ, a orientação dos átomos no grupo alílico em torno das ligações $N_{(4)}C_{(7)}$ e $C_{(11)}C_{(12)}$ leva à existência de 4 confórmeros diferentes, ilustrados na Figura 64. Como ponto de partida para o cálculo das outras estruturas do mecanismo, utilizou-se o isómero de mais baixa energia, **3CTZ-S0** (-837,1910893575 Eh).

Figura 64 – Estruturas dos confórmeros da 3CTZ, com energias relativas: A(0,0 kJ mol¹), B(5,7 kJ mol¹), C(2,6 kJ mol¹) e D(5,2 kJ mol¹)

Analisando a geometria da espécie **3CTZ-S0**, verifica-se que o anel da tetrazolona e o grupo fenilo se encontram em planos distintos. A Tabela 23 contém os valores da ordem de ligação entre os átomos do grupo fenilo e entre os átomos de azoto, a partir dos quais se verifica que, tal como nas outras tetrazolonas estudadas, existe deslocalização eletrónica no anel benzílico, e a ligação entre os átomos N₍₂₎ e N₍₃₎ é mais forte que as ligações N₍₁₎N₍₂₎ e N₍₃₎N₍₄₎.

Ligação	Ordem de Ligação	Ligação	Ordem de Ligação
$C_{(13)}C_{(14)}$	1,452	1-2	1,159
C ₍₁₃₎ C ₍₁₈₎	1,438	2-3	1,689
$C_{(14)}C_{(15)}$	1,480	3-4	1,188
$C_{(15)}C_{(16)}$	1,484		
C(16)C(17)	1,469		
C(17)C(18)	1,503		

Tabela 23 – Valores de ordem de ligação entre os átomos constituintes dos anéis fenilo e tetrazólico da 3CTZ-SO

2.1.2. Estados Excitados Singleto

Recorrendo ao nível de teoria TD-DFT, utilizando a aproximação de Tamm-Dancoff,⁷³ calcularam-se as propriedades da excitação vertical para os primeiros cinco estados excitados da 3CTZ, estando estas descritas na Tabela 24.

Tabela 24 – Propriedades das excitações verticais do estado fundamental da 3CTZ (**3CTZ-S0**) ao nível TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD

Estado	Energia Relativa/kJ mol ⁻¹	Momento	dipolar de	transição	Força do oscilador
S ₁	545,4	-0,2802	0,1231	-0,0064	0,0131
S_2	571,6	-0,0264	-0,0515	0,2996	0,0136
S ₃	577,9	-2,2451	0,2901	-0,1377	0,7622
S ₄	618,5	-0,0247	0,0217	-0,0746	0,0011
S ₅	675,7	-1,1050	0,2072	0,0311	0,2191

Analisando os dados relativos à força do oscilador, e tal como verificado para as outras tetrazolonas estudadas, a transição mais provável é a que ocorre de S_0 para S_3 . Através deste cálculo, é possível simular o espectro de absorção UV-Vis da 3CTZ, que se ilustra na Figura 65 juntamente com o obtido experimentalmente. À semelhança do observado para as outras tetrazolonas estudadas, o perfil espectral obtido é semelhante, existindo, contudo, uma diferença no posicionamento do máximo: no espectro calculado o máximo localiza-se a 205 nm, enquanto que no obtido experimentalmente se encontra a 249 nm.

Figura 65 – Comparação entre os espectros UV/Vis experimental e calculado (normalizados) da 3CTZ ao nível de teoria TD-DFT/M06-HF/cc-pVDZ/PCM-metanol/ATD

2.1.3. Primeiro Estado Excitado Tripleto

A estrutura eletrónica do primeiro estado excitado tripleto da 3CTZ (**3CTZ-T**) foi calculada, resultando na geometria ilustrada na Figura 66. Esta espécie apresenta uma diferença de energia de 398 kJ mol⁻¹ em relação a **3CTZ-S0**. Analisando a geometria obtida, verifica-se que o estado tripleto da 3CTZ é diferente do da CTZ, e semelhante ao da ATZ, na medida em que as orbitais semipreenchidas se localizam no anel do grupo fenilo. Os valores de ordem de ligação entre os átomos de carbono do anel benzílico são diferentes, ao contrário do que se verifica na **3CTZ-S0**, o que permite concluir que existe perda de deslocalização eletrónica neste grupo.

Ligação	Ordem de Ligação
$C_{(13)}C_{(14)}$	1,074
C(13)C(18)	1,054
$C_{(14)}C_{(15)}$	1,874
$C_{(15)}C_{(16)}$	1,099
C(16)C(17)	1,115
C(17)C(18)	1,879

Tabela 25 – Valores de ordem de ligação na **3CTZ-T**

Figura 66 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da **3CTZ-T**

2.1.4. Fotoextrusão de N₂

Tal como para as tetrazolonas já descritas, avaliaram-se as duas possíveis formas de fotoextrusão de azoto molecular na 3CTZ, partindo da estrutura **3CTZ-T**, e recorrendo aos mesmos métodos de otimizações parciais utilizados, fixando as distâncias internucleares das ligações cuja quebra se pretende estudar. No caso em que a primeira quebra se dá entre os átomos $N_{(1)}$ e $N_{(2)}$, cuja distância em **3CTZ-T** é de 1,353 Å, identificou-se o estado de transição **3CTZ-ET1f**, ilustrado na Figura 67, que apresenta uma diferença de energia em relação a **3CTZ-T** de 70 kJ mol⁻¹. Neste estado, a distância $N_{(1)}N_{(2)}$ é de 1,720 Å. No processo de identificação deste estado de transição, tal como observado na ATZ, verificou-se a recuperação da deslocalização eletrónica no grupo fenilo, estando as orbitais semipreenchidas localizadas junto aos átomos do anel tetrazólico.

Figura 67 – Estrutura do estado de transição 3CTZ-ET1f

Após este estado de transição, a reação evolui para a espécie **3CTZ-I1f**, ilustrada na Figura 68, cuja diferença energética em relação a **3CTZ-S0** é de 225 kJ mol⁻¹. Neste intermediário, as orbitais semipreenchidas distribuem-se maioritariamente em torno dos átomos cuja ligação se quebrou, $N_{(1)}$ e $N_{(2)}$, não existindo sobreposição espacial significativa entre elas. Os valores de ordem de valência livre destes átomos são, por isso, os mais elevados, indicando que a espécie tem um caráter birradicalar em torno de $N_{(1)}$ e $N_{(2)}$.

Figura 68 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-11f

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
N ₍₂₎	0,435	C ₍₁₄₎	0,019
N ₍₁₎	0,123	C ₍₁₃₎	0,006
N ₍₃₎	0,055	N ₍₄₎	0,005
C(16)	0,027	O (6)	0,002
C(18)	0,021	C (5)	0,001

Tabela 26 – Valores de ordem de valência livre na **3CTZ-I1f**

Calculou-se a estrutura eletrónica do estado de transição **3CTZ-ET2f** (Figura 69), correspondente ao processo de quebra segunda ligação, a ligação $N_{(3)}N_{(4)}$. Neste estado, cuja diferença de energia em relação a **3CTZ-I1f** é de 14 kJ mol⁻¹, a distância internuclear entre $N_{(3)}$ e $N_{(4)}$ é de 1,601 Å.

Figura 69 – Estrutura do estado de transição **3CTZ-ET2f**

Quanto à outra alternativa, em que a quebra ocorre pela ordem inversa, identificou-se o estado de transição **3CTZ-ET1a** para o processo de quebra da ligação $N_{(3)}$ $N_{(4)}$. Este estado, ilustrado na Figura 70, tem uma diferença de energia de 282 kJ mol⁻¹ em relação a **3CTZ-T**. Neste estado de transição, a distância entre os átomos $N_{(3)}$ e $N_{(4)}$ é de 2,318 Å, sendo 1,335 Å o valor em **3CTZ-T**.

Analisando a geometria calculada, juntamente com os valores de ordem de ligação no grupo fenilo (Tabela 27), verifica-se que neste estado, ao contrário do análogo na via alternativa já descrita, a deslocalização eletrónica no anel benzílico não é reestabelecida, não existindo alterações na localização das orbitais semipreenchidas. O valor de ordem de ligação entre os átomos $N_{(4)}$ e $C_{(5)}$ neste estado é de 1,801, substancialmente maior do que o verificado no estado tripleto **3CTZ-T** (1,147).

ibe	2/-V alores	ae oraem ae agação na 5012-E.
	Ligação	Ordem de Ligação
	$C_{(13)}C_{(14)}$	1,032
	$C_{(13)}C_{(18)}$	1,061
	$C_{(14)}C_{(15)}$	1,786
	$C_{(15)}C_{(16)}$	1,246
	$C_{(16)}C_{(17)}$	1,245
	$C_{(17)}C_{(18)}$	1,787

Tabela 27 – Valores de ordem de ligação na 3CTZ-ET1a

Figura 70 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-ETIa

Após o estado de transição **3CTZ-ET1a**, a reação evolui para a espécie intermediária **3CTZ-I1a** (Figura 71), que apresenta uma diferença de energia de 434 kJ mol⁻¹ comparativamente ao reagente inicial. A principal diferença entre a estrutura desta espécie e a do estado de transição que a precede é a recuperação parcial da deslocalização eletrónica no grupo fenilo, que é percetível pelas alterações nos valores da ordem de ligação. Nesta espécie, as orbitais semipreenchidas já não se localizam exclusivamente no grupo fenilo, estando distribuídas entre os átomos deste grupo e os átomos de azoto $N_{(1)}$, $N_{(2)}$ e $N_{(3)}$.

Figura 71 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-IIa

Ligação	Ordem de Ligação
$C_{(13)}C_{(14)}$	1,248
$C_{(13)}C_{(18)}$	1,243
$C_{(14)}C_{(15)}$	1,590
$C_{(15)}C_{(16)}$	1,402
$C_{(16)}C_{(17)}$	1,393
$C_{(17)}C_{(18)}$	1,599

Tabela 28 – Valores de ordem de ligação na 3CTZ-I1a

O estado de transição **3CTZ-ET2a** (Figura 72), identificado para o processo da quebra da segunda ligação, entre os átomos $N_{(1)}$ e $N_{(2)}$, apresenta a uma diferença energética de 9 kJ mol⁻¹ em relação a **3CTZ-I1a**. Na espécie **3CTZ-I1a**, o valor da distância $N_{(1)}N_{(2)}$ é de 1,398 Å, sendo 1,558 Å o valor identificado em **3CTZ-ET2a**.

Figura 72 – Estrutura do estado de transição 3CTZ-ET2a

Após a fotoextrusão de N_2 , e independentemente da via seguida nesse processo, a reação evolui para a espécie **3CTZ-I2**, ilustrada na Figura 73. Esta espécie apresenta uma diferença de energia de 201 kJ mol⁻¹ relativamente a **3CTZ-S0**. Tal como nas espécies descritas nos mecanismos da ATZ e da CTZ após a fotoextrusão de N_2 , as orbitais semipreenchidas estão localizadas maioritariamente em torno dos átomos de azoto. No entanto, para esta espécie, não é possível afirmar que possua um caráter birradicalar bem definido, uma vez que existe sobreposição espacial entre as orbitais semipreenchidas.

Figura 73 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-I2

2.1.5. Ciclização

Tal como na CTZ, a fotorreação da 3CTZ pode evoluir por duas vias diferentes, consoante a transferência de protão após a fotoextrusão de N_2 ocorra a partir do grupo alílico ou a partir do grupo fenilo.

Via de ciclização com o grupo alílico

No caso em que a transferência de protão ocorre a partir do grupo alílico, o protão envolvido é o que se encontra inicialmente ligado ao $C_{(8)}$ (protão $H_{(20)}$), sendo transferido para o átomo $N_{(4)}$. Através do método das otimizações parciais, fixando a distância $N_{(4)}H_{(20)}$, que na espécie **3CTZ-I2** é de 2,791 Å, identificou-se o estado de transição **3CTZ-ET3a** (Figura 74), onde a distância $N_{(4)}H_{(20)}$ é de 1,305 Å. Este estado de transição tem uma diferença de energia em relação a **3CTZ-I2** de 210 kJ mol⁻¹.

Figura 74 – Estrutura do estado de transição 3CTZ-ET3a

Após o estado **3CTZ-ET3a**, a reação evolui para a espécie **3CTZ-I3a**, ilustrada na Figura 75, cuja energia relativamente a **3CTZ-S0** é de 195 kJ mol⁻¹. Nesta espécie, as orbitais semipreenchidas localizam-se maioritariamente em torno dos átomos $N_{(1)}$ e $C_{(8)}$. Este facto, juntamente com a análise dos valores de ordem de valência livre, permite afirmar que a espécie tem um caráter birradicalar centrado em $N_{(1)}$ e $C_{(8)}$.

Figura 75 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-I3a

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C ₍₈₎	0,725	$\mathbf{N}_{(4)}$	0,001
N ₍₁₎	0,195	O (6)	0,001
C(16)	0,019	C (7)	0,001
C(18)	0,019	C (9)	0,001
C(14)	0,018	C (10)	0,001
C ₍₁₃₎	0,003	C ₍₁₂₎	0,001
C ₍₅₎	0,001		

Tabela 29 – Valores de ordem de valência livre na 3CTZ-I3a

Após o intermediário **3CTZ-I3a**, tal como na reação da CTZ, o passo seguinte é a rotação do grupo alílico através do ângulo diedro $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$, passando da conformação *cis* para a *trans*. Recorrendo ao método das otimizações parciais com a fixação do valor deste ângulo diedro, identificaram-se dois estados de transição, **3CTZ-ET4a1** e **3CTZ-ET4a2** (Figura 76), correspondentes aos diferentes sentidos que a rotação pode assumir. Estes estados foram calculados partindo das estruturas obtidas para os valores de $O_{(6)}C_{(5)}N_{(4)}C_{(7)}$ de 125,0° e -130,0°, respetivamente, sendo 122,0° e -125,5° os valores verificados nas geometrias de **3CTZ-ET4a1** e **3CTZ-ET4a2**. Ambos os estados correspondem a diferenças energéticas de 75 kJ mol⁻¹ em relação a **3CTZ-I3a**.

Figura 76 - Estruturas dos estados de transição 3CTZ-ET4a1 e 3CTZ-ET4a2

O sentido da rotação não influencia o intermediário formado, uma vez que a reação evolui para a mesma espécie **3CTZ-I4a** (Figura 77) após os estados de transição apresentados. A diferença de energia entre **3CTZ-I4a** e **3CTZ-S0** é de 205 kJ mol⁻¹. Nesta espécie, tal como verificado na sua análoga da CTZ (**CTZ-I4a**), as orbitais semipreenchidas localizam-se maioritariamente em torno dos átomos N₍₁₎ e C₍₈₎, não havendo alterações de relevo nos valores de ordem livre.

Figura 77 - Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na estrutura otimizada da 3CTZ-14a

No entanto, a evolução desta via de ciclização da 3CTZ difere da respetiva da CTZ, uma vez que no intermediário **3CTZ-I4a** a distância é de 4,311 Å, e na espécie **CTZ-I4a** é de 2,847 Å. O facto de

esta distância ser maior em **3CTZ-I4a**, faz com que seja necessária mais uma rotação no grupo alílico, para que a ciclização através da ligação entre os átomos $N_{(1)}$ e $C_{(8)}$ seja possível. Esta rotação dá-se em torno da ligação $N_{(4)}C_{(7)}$, podendo ser definida através do ângulo diedro $C_{(5)}N_{(4)}C_{(7)}C_{(8)}$, cujo valor em **3CTZ-I4a** é de 178,1°. Assim, recorrendo ao método das otimizações parciais fixando o valor deste ângulo diedro, identificou-se o estado de transição **3CTZ-ET5a**, ilustrado na Figura 78, que apresenta uma diferença de energia em relação a **3CTZ-I4a** de 17 kJ mol⁻¹. Neste estado de transição, o valor do ângulo diedro $C_{(5)}N_{(4)}C_{(7)}C_{(8)}$ é de 69,6°.

Figura 78 – Estrutura do estado de transição 3CTZ-ET5a

Após este estado de transição, a reação evolui para a espécie intermediária **3CTZ-I5a**, ilustrada na Figura 79, e que apresenta uma diferença energética de 206 kJ mol⁻¹ relativamente a **3CTZ-S0**. Na transição entre **3CTZ-I4a** e esta espécie, a localização das orbitais semipreenchidas e os valores da ordem de valência livre não sofrem alterações de relevo.

Figura 79 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-15a

Para ocorrer a ciclização a partir da espécie **3CTZ-I5a**, é necessário existir uma aproximação entre os átomos $N_{(1)}$ e $C_{(8)}$, que distam 2,937 Å. Tal como realizado para os outros passos reacionais estudados, recorreu-se ao método das otimizações parciais fixando a distância internuclear entre $N_{(1)}$ e $C_{(8)}$ para calcular o estado de transição correspondente a este processo. No entanto, se identificou nenhum estado de transição, o que pode ser justificado através da análise do gráfico da Figura 80, que descreve as energias obtidas para as otimizações parciais em função da distância internuclear, relativamente a **3CTZ-I5a**.

Pelo gráfico, verifica-se que a energia relativa à distância 2,2 Å é menor do que as obtidas para as distâncias de 2,3 e 2,1 Å. A diminuição da energia entre 2,3 e 2,2 Å é devida a um rearranjo no grupo fenilo, cujo plano roda em relação ao do grupo carbonilo, tal como se ilustra na Figura 81. O aumento entre 2,2 e 2,1 Å é devido à restrição imposta, estando o grupo fenilo orientado de igual forma nas duas estruturas. Efetuaram-se tentativas de identificação do estado de transição a partir das geometrias calculadas para 2,1, 2,2 e 2,3 Å, tendo a primeira evoluído para o produto final, a segunda e a terceira convergindo para estruturas semelhantes a **3CTZ-I5a** em que o grupo fenilo está

orientado de forma diferente. Através da análise da variação da energia ao longo do cálculo das otimizações parciais em que ocorre a rotação do grupo fenilo, identificou-se uma possível barreira energética para este processo, com valor entre 40 e 43 kJ mol⁻¹.

Figura 80 – Variação da energia relativa da **3CTZ-I5a** em função do valor da distância $N_{(1)}C_{(8)}$

Figura 81 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) das geometrias calculadas para $N_{(1)}C_{(8)}=2,3$ Å (à esquerda) e $N_{(1)}C_{(8)}=2,2$ Å (à direita)

A pirimidinona **3CTZ-P**, ilustrada na Figura 82, é o produto obtido através desta ciclização. A diferença energética relativamente a **3CTZ-S0** é de -234 kJ mol⁻¹. Nesta espécie, a ordem de ligação entre os átomos $C_{(8)}$ e $C_{(9)}$ é de 1,910, um valor superior aos verificados para os restantes átomos, devido ao facto de cada um destes só estar ligado a três átomos, e de não existir deslocalização eletrónica, ao contrário do que existe no grupo fenilo.

Figura 82 – Geometria otimizada da pirimidinona 3CTZ-P

Via de ciclização com o grupo fenilo

Quanto à via de ciclização com o grupo fenilo, verificou-se que na 3CTZ a diferença energética entre o estado de transição do correspondente ao processo de transferência de um protão do grupo fenilo para o átomo $N_{(1)}$ é semelhante à identificada na CTZ, 251,0 kJ mol⁻¹. O estado de transição identificado, **3CTZ-ET3f** ilustra-se na Figura 83. Isto indica que a variação no grupo alílico existente entre as duas espécies não influencia o processo de transferência de protão.

Figura 83 – Estrutura do estado de transição 3CTZ-ET3f

Após este estado de transição, a reação evolui para a espécie **3CTZ-I3f**, ilustrada na Figura 84, cuja diferença energética em relação a **3CTZ-S0** é de 234 kJ mol⁻¹. Considerando os valores de ordem de valência livre calculados para esta espécie, descritos na Tabela 30, e atendendo à localização das orbitais semipreenchidas maioritariamente em torno dos átomos $N_{(4)}$ e $C_{(14)}$, pode afirmar-se que existe um caráter birradicalar nesta espécie.

Figura 84 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-13f

Tabela 30 –	V a	ilores	de	ordem	de	valência	livre	na	3CTZ-I3f
-------------	-----	--------	----	-------	----	----------	-------	----	----------

Átomo	Ordem de Valência Livre	Átomo	Ordem de Valência Livre
C(14)	0,769	O (6)	0,001
N ₍₄₎	0,709	C ₍₁₃₎	0,001
C(5)	0,001	C (19)	0,001
C(7)	0,001		

Tal como na via de ciclização com o grupo fenilo descrita para a CTZ, após a transferência de protão, a molécula sofre um rearranjo devido à rotação do grupo fenilo. Esta rotação pode ser descrita pelo ângulo diedro $O_{(6)}C_{(5)}N_{(1)}C_{(13)}$, que na estrutura **3CTZ-I3f** tem o valor de -5,6°. Através do método das otimizações parciais, identificaram-se os estados de transição **3CTZ-ET4f1** e **3CTZ-ET4f2**, ilustrados na Figura 85, que dizem respeito aos dois sentidos que a rotação pode assumir. A estes estados correspondem diferenças energéticas em relação a **3CTZ-I3f** de 67 e 62 kJ mol⁻¹ respetivamente. Os valores do ângulo diedro calculados para estes dois estados de transição foram de 116,3° e -132,7°, sendo as estimativas iniciais 110,0° e -125,0°.

Figura 85 – Estruturas dos estados de transição 3CTZ-ET4f1 e 3CTZ-ET4f2

Independentemente do sentido da rotação, a reação evolui para a espécie **3CTZ-I4f** (Figura 86), cuja diferença de energia em relação a **3CTZ-S0** é de 241 kJ mol⁻¹. Analisando a localização espacial das orbitais semipreenchidas, verifica-se que nesta espécie existe alguma sobreposição entre elas, ao contrário do observado em **3CTZ-I3f**. Esta sobreposição surge fruto da proximidade entre os átomos N₍₄₎ e C₍₁₄₎, cuja distância internuclear é de 2,811 Å, um valor bastante menor ao observado na espécie análoga na reação da CTZ (**CTZ-I4f**), 4,112 Å. Os valores de ordem de valência livre não sofrem alterações entre as espécies **3CTZ-I3f** e **3CTZ-I4f**.

Figura 86 – Estrutura e localização das orbitais semipreenchidas (HOMO-1 e HOMO) na geometria otimizada da 3CTZ-14f

Para formar o produto final, é necessária uma aproximação entre os átomos $N_{(4)}$ e $C_{(14)}$. Através do método das otimizações parciais fixando o valor desta distância internuclear, identificou-se o estado de transição **3CTZ-ET5f** (Figura 87), cuja diferença de energia em relação a **3CTZ-I4f** é de 67 kJ mol⁻¹. Neste estado, o valor da distância internuclear entre $N_{(4)}$ e $C_{(14)}$ é de 2,039 Å.

Figura 87 – Estrutura do estado de transição 3CTZ-ET5f

Após este estado de transição, a reação evolui para o produto final, a benzimidazolona **3CTZ-B** (Figura 88), cuja energia relativamente a **3CTZ-S0** é de -255 kJ mol⁻¹. Neste estado de transição o anel que inclui os átomos de azoto e o anel originalmente do grupo fenilo encontram-se no mesmo plano.

Figura 88 – Geometria otimizada da benzimidazolona 3CTZ-B

2.2. Perfil Energético

Tal como com as moléculas ATZ e CTZ, traçou-se o perfil energético da reação, através da comparação dos valores de energia eletrónica calculados para cada espécie relativamente a **3CTZ-S0**, para as diferentes vias reacionais possíveis (Figura 89), tendo em conta os valores de energia do ponto zero harmónico de cada espécie. Na esquematização deste perfil, consideraram-se os valores calculados para os primeiros cinco estados excitados singleto, com recurso à Aproximação de Tamm-Dancoff, assumindo o processo de excitação vertical. Após a excitação, representa-se o processo de ISC, conduzindo à formação do estado tripleto **3CTZ-T**. Na via reacional em que não se identificou o estado de transição, representou-se a gama de energias em que se acha provável ocorrência da barreira.

coordenada reacional

Figura 89 – Perfil energético da fotorreação da 3CTZ

Em relação ao processo de fotoextrusão de N₂, o perfil energético a molécula 3CTZ é bastante semelhante ao da ATZ, na medida em que a barreira energética correspondente à quebra da ligação mais próxima do grupo alílico $N_{(3)}N_{(4)}$ é bastante superior à da quebra da ligação $N_{(1)}N_{(2)}$,
apresentando uma diferença de mais 200 kJ mol⁻¹. Os valores das barreiras correspondentes aos estados de transição **3CTZ-ET1a**, **3CTZ-ET2a**, **3CTZ-ET1f** e **3CTZ-ET2f** são, respetivamente, 271, 2, 66 e 5 kJ mol⁻¹. Comparando as estruturas do primeiro estado excitado tripleto das três moléculas estudadas e a localização das orbitais semipreenchidas em cada uma delas, pode concluir-se que a barreira energética para a fotoextrusão depende maioritariamente da localização das orbitais semipreenchidas e da sua influência na deslocalização eletrónica do grupo fenilo. Nos casos em que no estado T₁, as orbitais semipreenchidas se localizam no grupo fenilo, a fotoextrusão através da cisão da ligação N₍₃₎N₍₄₎ em primeiro lugar tem uma barreira bastante superior à da alternativa inversa. Contudo, mesmo no caso em que as orbitais semipreenchidas do estado T₁ se localizam no anel tetrazólico, a ocorrência da quebra N₍₁₎N₍₂₎ em primeiro lugar é energeticamente mais favorável. Este facto pode ser devido à maior facilidade de adaptação conformacional do grupo alílico quando comparado com o grupo fenilo, que apresenta maior rigidez, devido a ter maior ordem de ligação entre os átomos que formam o anel.

Relativamente à transferência de protão intramolecular, que ocorre a partir da espécie intermediária **3CTZ-I2**, verifica-se que a barreira correspondente à transferência a partir do grupo alílico é menor, tal como observado na CTZ, apresentando o valor de 198 kJ mol⁻¹ (**3CTZ-ET3a**), comparativamente ao do estado de transição **3CTZ-ET3f**, correspondente à transferência a partir do grupo fenilo, que apresenta uma barreira de 239 kJ mol⁻¹. Esta última barreira é igual à observada para o mesmo processo na CTZ, o que permite concluir que esta variação no grupo alílico não afeta energeticamente a transferência de protão intramolecular a partir do grupo fenilo.

As barreiras energéticas identificadas para a rotação do grupo alílico foram de 70 e 71 kJ mol⁻¹, para os estados de transição **3CTZ-ET4a1** e **3CTZ-ET4a2**, respetivamente. Estes valores são ligeiramente superiores ao mais baixo calculado para a CTZ (58 kJ mol⁻¹), contudo, não são energeticamente impeditivos para a ocorrência deste processo. Já as barreiras identificadas para a rotação do grupo fenilo são de 63 e 59 kJ mol⁻¹ (**3CTZ-ET4f1** e **3CTZ-ET4f2**), relativamente inferiores aos observados na CTZ (67 e 64 kJ mol⁻¹).

Para a formação da benzimidazolona **3CTZ-B**, a barreira energética identificada foi de 68 kJ mol⁻¹ (**3CTZ-ET5f**). Quanto à formação da pirimidinona **3CTZ-P**, foi identificada uma barreira de 16 kJ mol⁻¹ (**3CTZ-ET5a**) que conduz a mais uma espécie intermediária (**3CTZ-I5f**). Entre esta espécie e o produto **3CTZ-P** não foi possível identificar um estado de transição, no entanto, prevê-se que a barreira existente seja de 40 a 43 kJ mol⁻¹. O produto 3CTZ-B apresenta uma energia relativa mais baixa que o produto 3CTZ-P (-550 e -444 kJ mol⁻¹, respetivamente).

Pela análise do perfil energético verifica-se que, à exceção da barreira energética correspondente ao estado de transição **3CTZ-ET1a**, todas as barreiras energéticas calculadas, para as restantes vias reacionais, apresentam valores que indicam que os processos que descrevem são energeticamente possíveis.

3. Comparação com resultados experimentais

Uma vez que estão publicados resultados experimentais das fotorreações da CTZ e da 3CTZ em metanol, para as quais se identificam os produtos resultantes recorrendo a diversas técnicas,²⁵ é possível comparar os resultados obtidos teoricamente com o observado experimentalmente.

Para a fotorreação da CTZ, foi descrita a pirimidinona (**CTZ-P**) como produto principal, não se identificando qualquer quantidade de benzimidazolona (**CTZ-B**). Uma vez que a análise do perfil de energia desta fotorreação (secção 1.2 deste capítulo) mostra que a nível energético ambas as vias são possíveis, importa perceber de que forma se justifica esta seletividade. Comparando as estruturas das espécies intermediárias ao longo das duas vias possíveis para a reação, há uma diferença que pode

estar na base desta seletividade, percetível nas estruturas obtidas após a rotação dos grupos alílico ou fenilo. Após a rotação do grupo alílico, na espécie **CTZ-I4a**, os átomos que irão formar a ligação necessária à obtenção da pirimidinona final distam 2,847 Å, enquanto que na espécie **CTZ-I4f**, os átomos cuja ligação é necessária para a formação da benzimidazolona distam 4,112 Å.

Figura 90 – Comparação das distâncias entre os átomos de azoto e carbono nas espécies análogas nas vias reacionais da CTZ: CTZ-I4a à esquerda e CTZ-I4f à direita

No estudo efetuado, procurou-se simular os efeitos do solvente através de um método de solvatação implícita – PCM. No entanto, este tipo de método, ao contrário dos métodos de solvatação explícita, não permite simular o efeito de resistência ao movimento que as moléculas de solvente podem exercer sobre a molécula em estudo.

O grupo fenilo tem um volume de 81 Å³ e uma área superficial de 106 Å², enquanto que este grupo alílico tem um volume de 92 Å³ e uma área superficial de 121 Å². Apesar do grupo fenilo ter um volume e uma área superficial mais baixos do que os deste grupo alílico, o que à partida tornaria o seu movimento menos dificultado pelas moléculas de solvente, a distância entre os átomos que irão formar a ligação necessária à obtenção do produto final é substancialmente maior. Isto, juntamente com o facto de na espécie **CTZ-I4a** os átomos de carbono e azoto já se encontrarem "orientados" para a formação da nova ligação, enquanto que na **CTZ-I4f** isso não acontece, parece uma justificação plausível para a seletividade verificada. Para a fotorreação da 3CTZ, ao contrário do observado para a CTZ, o principal produto é a benzimidazolona **3CTZ-B**, não se identificando a pirimidinona **3CTZ-P** como um produto da reação. A análise do perfil de energia calculado é semelhante à da CTZ, indicando que ambas as vias reacionais podem ocorrer do ponto de vista energético, pelo que a seletividade observada não se justifica a este nível.

Tal como descrito para a CTZ, compararam-se as estruturas das espécies obtidas após a rotação dos grupos em ambas as vias (**3CTZ-I4a** e **3CTZ-I4f**), ilustradas na Figura 91, tendo-se identificado uma diferença relevante entre as espécies, também ela relacionada com as distâncias entre os átomos que irão formar a ligação que origina o produto final: na espécie **3CTZ-I4a**, os átomos distam 4,311 Å, enquanto que na **3CTZ-I4f** distam 2,811 Å. Esta diferença é também evidenciada pela barreira energética a que corresponde o estado de transição **3CTZ-ET5a**, que descreve o processo de rotação do grupo alílico de forma a que os átomos que irão formar a ligação que origina o produto final se encontrem mais próximos.

Este processo não é necessário na via da ciclização com o grupo fenilo.

Figura 91 - Comparação das distâncias entre os átomos de azoto e carbono nas espécies análogas nas vias reacionais da 3CTZ: 3CTZ-I4a à esquerda e 3CTZ-I4f à direita

Tal como proposto para a CTZ, pensando no impedimento que as moléculas de solvente podem exercer no movimento dos diferentes grupos, e considerando que este grupo alílico tem um volume de **112** Å³ e uma área superficial de **139** Å², é plausível afirmar que a seletividade observada experimentalmente seja resultante da resistência ao movimento imposta pelas moléculas de solvente. Esta resistência pode estar também na origem da diferença verificada entre os rendimentos de formação dos fotoprodutos: na CTZ, o rendimento de formação de **CTZ-P** é de 56%, enquanto que na 3CTZ, o rendimento de formação do grupo alílico (que tem volume e área superficial maiores que o grupo fenilo), e o segundo envolver a rotação do grupo fenilo, havendo por isso menor resistência à rotação na 3CTZ, e por conseguinte maior rendimento.

4. Acompanhamento espectroscópico da reação

Considerando as vias reacionais concordantes com os resultados experimentais, simularam-se os espectros de infravermelho das espécies envolvidas na fotorreação da CTZ e da 3CTZ. Tal como referido para a ATZ, a comparação destes espectros calculados pode ser utilizada futuramente como auxílio na interpretação de dados experimentais obtidos por técnicas de espectroscopia de infravermelho resolvido no tempo, desde que exista resolução temporal adequada ao tempo de vida dos intermediários.

4.1. Ciclohex-tetrazolona

A Figura 92 ilustra os espectros de infravermelho calculados para as espécies envolvidas no mecanismo de fotorreação da CTZ. No espectro da espécie **CTZ-S0**, a banda de maior intensidade é a correspondente à elongação da ligação $C_{(5)}O_{(6)}$, apresentando o máximo a 1803 cm⁻¹. Destacam-se ainda duas bandas, com máximos a 1564 e 1491 cm⁻¹, que se atribuem, respetivamente, a vibrações que envolvem o grupo fenilo e o átomo de azoto a que este se liga $N_{(1)}$, e a vibrações envolvendo o grupo alílico e o átomo de azoto a que este se liga $N_{(4)}$.

Comparando o espectro do estado tripleto **CTZ-T**, com o do estado fundamental **CTZ-S0**, é notória uma alteração na posição do máximo da banda da elongação $C_{(5)}O_{(6)}$, que se encontra a 1898 cm⁻¹. A banda atribuída a vibrações envolvendo o grupo fenilo e o átomo $N_{(1)}$ não sofre nenhum deslocamento, estando o seu máximo a localizado a 1560 cm⁻¹. No entanto, a banda resultante das vibrações que envolvem o grupo alílico e o átomo $N_{(4)}$ surge para valores menos energéticos, com o seu máximo a 1398 cm⁻¹, apresentando nesta espécie uma intensidade relativa maior.

Uma vez que se verificou que a fotoextrusão de N₂ pode ocorrer através da quebra de qualquer das ligações $N_{(1)}N_{(2)}$ e $N_{(3)}N_{(4)}$ em primeiro lugar, consideraram-se ambas as opções. Assim, a verde ilustra-se o caso em que a primeira quebra a ocorrer é a da ligação $N_{(3)}N_{(4)}$ – intermediário **CTZ-I1a**. Neste espectro, a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ tem o máximo a 1792 cm⁻¹, e não é a mais intensa. A banda de maior intensidade apresenta o máximo a 1397 cm⁻¹ e surge devido a modos

vibracionais que envolvem o átomo $N_{(1)}$. Entre estas duas bandas, identifica-se ainda a banda atribuída a vibrações envolvendo o grupo fenilo e o átomo $N_{(1)}$, com menor intensidade, apresentando o máximo a 1554 cm⁻¹. No caso em que a primeira quebra ocorre pela ligação $N_{(1)}N_{(2)}$ – intermediário **CTZ-I1f** – cujo espectro se representa a roxo, a banda relativa ao modo vibracional da elongação da ligação $C_{(5)}O_{(6)}$ tem o seu máximo a 1742 cm⁻¹, um valor mais baixo do que o identificado para a hipótese anterior. Neste espectro, as duas bandas de maior intensidade são atribuídas a modos vibracionais que envolvem os átomos que constituíam o anel tetrazólico e o átomo $N_{(1)}$ e apresentam os seus máximos a 1323 e 1425 cm⁻¹. Os espectros das espécies **CTZ-I1a** e **CTZ-I1f** apresentam perfis significativamente diferentes, o que poderá permitir a sua distinção experimentalmente. Ambos os espectros apresentam uma banda de baixa intensidade, com máximo a 1963 e 1955 cm⁻¹ respetivamente, que surge devido ao modo vibracional da elongação da ligação $N_{(2)}N_{(5)}$.

Figura 92 – Espectros de infravermelho calculados e normalizados das espécies envolvidas na fotorreação da CTZ (via de ciclização com o grupo alílico)

Na espécie **CTZ-I2**, a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ tem o seu máximo a 1757 cm⁻¹. A banda mais intensa apresenta o máximo a 1260 cm⁻¹ e surge devido a modos vibracionais que envolvem os átomos que formavam o anel tetrazólico. Entre esta banda e a banda atribuída à elongação da ligação $C_{(5)}O_{(6)}$, surgem duas bandas, com máximos a 1418 e 1641 cm⁻¹, que surgem devido a modos vibracionais envolvendo os átomos que formavam o anel da tetrazolona e o N₍₁₎, e o grupo fenilo e o átomo N₍₁₎ respetivamente.

No espectro da espécie **CTZ-I3a**, não existe deslocação significativa da banda relativa ao modo vibracional de elongação da ligação $C_{(5)}O_{(6)}$ em relação ao observado em **CTZ-I2**, estando o máximo localizado a 1752 cm⁻¹. A banda de maior intensidade apresenta o máximo a 1567 cm⁻¹, e resulta de modos vibracionais que envolvem o átomo N₍₄₎. Esta espécie apresenta ainda uma banda não visível na Figura 92, por se encontrar para valores de número de onda superiores ao intervalo observado, relativa à elongação da ligação N₍₄₎H₍₂₀₎, que tem o máximo a 3617 cm⁻¹. Na espécie **CTZ-I4a**, a banda relativa à elongação da ligação C₍₅₎O₍₆₎ volta a ser a mais intensa, não apresentando um deslocamento significativo em relação a **CTZ-I3a**. Neste espectro, o máximo da banda relativa à elongação N₍₄₎H₍₂₀₎ localiza-se a 3627 cm⁻¹.

No espectro da pirimidinona final **CTZ-P**, surgem duas bandas relacionadas com o modo vibracional de elongação da ligação $C_{(5)}O_{(6)}$, com máximos a 1805 e 1847 cm⁻¹, dependendo se esta elongação ocorre de forma alternada ou de forma simultânea à elongação da ligação $C_{(8)}C_{(9)}$.

4.2. 3-ciclohex-tetrazolona

Os espectros de infravermelho calculados para as espécies envolvidas no mecanismo de fotorreação da 3CTZ estão ilustrados na Figura 93. A espécie **3CTZ-S0** apresenta um espectro no qual a banda mais intensa é a correspondente à elongação da ligação $C_{(5)}O_{(6)}$, tal como verificado no espectro do estado fundamental das outras moléculas estudadas. O máximo desta banda surge para o número de onda de 1786 cm⁻¹. À semelhança do identificado na CTZ, existem outras duas bandas que se destacam neste espectro, estando os máximos a 1568 e 1483 cm⁻¹, que se atribuem, respetivamente, a modos vibracionais que envolvem o grupo fenilo e o átomo N₍₁₎, e a modos vibracionais que envolvem os átomos do anel da tetrazolona. O perfil do espectro do estado tripleto **3CTZ-T**, é bastante semelhante ao do espectro do estado fundamental **3CTZ-S0**, sendo apenas de realçar o desaparecimento da banda que surgia a 1568 cm⁻¹.

Tendo em conta a conclusão de que a fotoextrusão de N₂ ocorre apenas através da quebra ligação $N_{(1)}N_{(2)}$ em primeiro lugar, considerou-se apenas a espécie intermediária **3CTZ-I1f**. No seu espectro, a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ apresenta o máximo a 1737 cm⁻¹, não sendo a mais intensa, ao contrário do verificado no estado tripleto. A banda mais intensa surge a 1331 cm⁻¹, e é atribuída a modos vibracionais que envolvem o átomo $N_{(4)}$. Destacam-se também outras duas bandas, localizadas entre as já referidas, com máximos a 1643 e 1440 cm⁻¹, que surgem devido a modos vibracionais envolvendo o grupo fenilo e o átomo $N_{(1)}$. Para números de onda superiores aos da banda atribuída à elongação da ligação $C_{(5)}O_{(6)}$, surge uma pequena banda, devido à elongação da ligação da ligação entro os átomos $N_{(2)}$ e $N_{(3)}$.

A espécie **3CTZ-I2** apresenta um espectro em que a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ tem o máximo a 1747 cm⁻¹. A banda mais intensa apresenta o máximo a 1261 cm⁻¹, e é atribuída a a modos vibracionais que envolvem o átomo $N_{(4)}$ e o grupo alílico. Os números de onda relativos às bandas atribuídas aos modos vibracionais que envolvem o grupo fenilo e o átomo de azoto a que está ligado não sofrem alterações relevantes. A banda atribuída à elongação da ligação $N_{(2)}N_{(3)}$ na espécie **3CTZ-I1f** desaparece neste espectro, uma vez que a molécula de azoto se separa do resto do sistema.

Figura 93 – Espectros de infravermelho calculados e normalizados das espécies envolvidas na fotorreação da 3CTZ (via de ciclização com o grupo fenilo)

No perfil do espectro da espécie **3CTZ-I3f** são visíveis alterações significativas comparativamente ao do espectro da **3CTZ-I2**. A banda mais intensa tem o seu máximo localizado a 1585 cm⁻¹, e é atribuída a modos vibracionais que envolvem o átomo $N_{(1)}$. A banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ tem o máximo a 1770 cm⁻¹. No espectro desta espécie surge ainda uma banda não visível na Figura 93, com máximo a 3619 cm⁻¹, atribuída à elongação da ligação $N_{(1)}H_{(28)}$.

Na espécie **3CTZ-I4f**, a banda relativa à elongação da ligação $C_{(5)}O_{(6)}$ volta a ser a mais intensa, não alterando significativamente o número de do seu máximo em relação a **3CTZ-I3f**. Nesta espécie, o máximo da banda relativa à elongação da ligação $N_{(1)}H_{(28)}$ localiza-se a 3607 cm⁻¹.

No espectro da benzimidazolona **CTZ-B**, a banda atribuída ao modo vibracional de elongação da ligação $C_{(5)}O_{(6)}$ tem o seu máximo a 1776 cm⁻¹. Destacam-se ainda duas bandas, atribuídas a modos vibracionais que envolvem o duplo anel da benzimidazolona, com máximos a 1535 e 1441 cm⁻¹. A banda relativa à elongação da ligação $N_{(1)}H_{(28)}$ tem o seu máximo a 3640 cm⁻¹.

Na 3CTZ, comparativamente à CTZ, verifica-se que as variações nos perfis dos espectros das espécies envolvidas nesta reação não são tão drásticas, o que torna mais difícil a sua futura utilização como guia interpretativo de suporte ao estudo experimental através de técnicas resolvidas no tempo. No entanto, é plausível afirmar que as variações na posição e na intensidade das bandas discutidas possam ser visíveis experimentalmente, através de equipamentos com resolução adequada.

Capítulo 6: PBE0 - uma melhor alternativa?

Como referido na secção 1 do capítulo 4, o funcional M06HF apresenta performances substancialmente melhores que o B3LYP, nomeadamente no cálculo de barreiras eletrónicas e no estudo de sistemas que contém eletrões π , para uma grande diversidade de sistemas.^{84,87,96} No entanto, nas comparações feitas entre os espectros de UV/Vis calculados com o nível de teoria TD-DFT(M06-HF/cc-pVDZ) e os espectros obtidos experimentalmente, verifica-se que existe um desvio de cerca de 50 nm.

Apesar de a correspondência entre espectros UV/Vis calculados e espectros experimentais não ser o objetivo principal deste estudo, e de a diferença verificada nos valores de energia de excitação teóricos e os observados experimentalmente não influenciar a validade do cálculo das barreiras energéticas, estudou-se a ATZ recorrendo a outros dois funcionais, com o nível de teoria TD-DFT e a base de funções cc-pVDZ.

Os funcionais estudados foram o B3LYP e o PBE0. O B3LYP foi escolhido por ser o utilizado em alguns estudos publicados sobre este sistema ou sistemas semelhantes^{25,31,32}. O PBE0 foi utilizado por estar descrito que apresenta melhores resultados que o B3LYP na obtenção de geometrias moleculares. Este funcional (PBE0) não tem parametrização com recurso a dados experimentais, ao contrário do B3LYP, que é ajustado em relação às energias de atomização da base de dados G2 de Pople e colaboradores.^{100,101}

A Tabela 31 descreve as propriedades calculadas para as excitações verticais da ATZ recorrendo aos três funcionais estudados, estando a diferença energética entre os primeiros cinco estados excitados singleto ilustrada na Figura 94.

Funcional	Estado	Energia Relativa/kJ mol ⁻¹	Mom	ento dipol transição	Força do oscilador	
	S ₁	542,6	0,2548	0,099	-0,0488	0,0107
	S ₂	573,8	-0,0488	0,0136	-0,3475	0,0181
M06-HF	S ₃	581,6	2,0851	0,1603	-0,2364	0,6603
	S ₄	625,5	-0,2037	-0,0297	0,109	0,0087
	S ₅	676,9	-1,0043	-0,128	0,0216	0,1779
	S ₁	476,1	-1,8309	-0,0528	-0,1492	0,4122
	S ₂	492,8	0,7978	0,0407	0,0550	0,0810
B3LYP	S ₃	521,6	-0,0556	-0,0208	0,2078	0,0062
	S ₄	551,5	-0,0658	0,1825	0,0149	0,0054
	S ₅	Energia Relativa/kJ mol-1Informetino diporta de transição $542,6$ $0,2548$ $0,099$ $-0,048$ $573,8$ $-0,0488$ $0,0136$ $-0,34$ $581,6$ $2,0851$ $0,1603$ $-0,236$ $625,5$ $-0,2037$ $-0,0297$ $0,100$ $676,9$ $-1,0043$ $-0,128$ $0,021$ $476,1$ $-1,8309$ $-0,0528$ $-0,144$ $492,8$ $0,7978$ $0,0407$ $0,055$ $521,6$ $-0,0556$ $-0,0208$ $0,207$ $551,5$ $-0,0658$ $0,1825$ $0,014$ $565,6$ $0,6900$ $-0,3445$ $-0,120$ $481,5$ $1,7509$ $-0,0835$ $-0,200$ $497,1$ $-0,8522$ $0,0499$ $0,080$ $525,7$ $-0,1074$ $-0,0096$ $-0,211$ $550,7$ $0,1396$ $0,0493$ $0,065$ $569,6$ $0,5746$ $0,2063$ $0,095$	-0,1267	0,0886		
	S ₁	481,5	1,7509	-0,0835	-0,2006	0,3843
	S ₂	497,1	-0,8522	0,0499	0,0803	0,0937
PBE0	S ₃	525,7	-0,1074	-0,0096	-0,2142	0,0078
	S ₄	550,7	0,1396	0,0493	0,0636	0,0037
	S ₅	569,6	0,5746	0,2063	0,0958	0,0558

Tabela 31 – Propriedades das excitações verticais do estado fundamental da ATZ (**ATZ-S0**) calculadas com os funcionais M06-HF, B3LYP e PBE0 ao nível TD-DFT/cc-pVDZ/PCM-metanol/ATD

Figura 94 – Distribuição dos valores de energia excitação vertical do estado fundamental da ATZ (**ATZ-S0**) calculados com os funcionais M06-HF, B3LYP e PBE0 ao nível TD-DFT/cc-pVDZ/PCM-metanol/ATD

Através destes dados, é possível perceber que os funcionais B3LYP e PBE0 conduzem a valores semelhantes de energias de excitação, sendo menores do que os apresentados pelo funcional M06-HF. Uma análise dos valores da força do oscilador reportados na Tabela 31, mostra que nos cálculos realizados recorrendo aos funcionais B3LYP e PBE0 a transição indicada como mais provável é a de S₀ para S₁, e não a de S₀ para S₃, como indica o M06-HF. Apresentando o B3LYP e o PBE0 resultados semelhantes, e considerando os factos descritos na literatura, e já referidos, que indicam que o funcional PBE0 conduz a melhores resultados ao nível das geometrias moleculares,^{100,101} e que o B3LYP tem piores performances no cálculo de barreiras energéticas,⁸⁷ realizaram-se alguns estudos comparativos entre o PBE0 e o M06-HF, no sentido de perceber se o funcional PBE0 conduz às mesmas conclusões que o M06-HF nos restantes fatores A estudados. A Figura 95, que ilustra os espectros UV/Vis calculados com o M06-HF e com o PBE0, utilizando o modelo de solvatação PCM, e o espectro obtido experimentalmente, permite perceber de forma clara que a simulação com o último funcional é muito mais próxima do observado experimentalmente.

Figura 95 – Comparação entre os espectros UV/Vis obtido experimentalmente e os calculados com os funcionais M06-HF e PBE0 da ATZ ao nível TD-DFT /cc-pVDZ/PCM-metanol/ATD

No sentido de avaliar a performance do funcional PBE0 no cálculo de barreiras energéticas, otimizaram-se as estruturas das espécies envolvidas no mecanismo de fotorreação da ATZ, bem como dos estados de transição identificados (em relação ao processo de fotoextrusão de N₂, calcularam-se as estruturas apenas para as espécies e estados de transição envolvidos na via que se concluiu ser a energeticamente possível). A Figura 96 ilustra as energias relativas para os cálculos com os funcionais M06-HF e PBE0, estando as barreiras energéticas descritas na Tabela 32.

coordenada reacional

Figura 96 – Perfil energético da fotorreação da ATZ com os funcionais M06-HF e PBE0 ao nível DFT/cc-pVDZ/PCM-metanol

Diferença de Energia Diferença de Energia Processo com M06HF/kJ mol-1 com PBE0 /kJ mol-1 ATZ-S0 → ATZ-S1 543 482 $ATZ-T \rightarrow ATZ-ET1f$ 62 60 $ATZ-I1f \rightarrow ATZ-ET2f$ 22 13 $ATZ-I2f \rightarrow ATZ-ET3f$ 53 56 $ATZ-I3f \rightarrow ATZ-P$ 171 176

Tabela 32 – Comparação das barreiras energéticas na fotorreação da ATZ calculadas com os funcionais M06-HF e PBE0 ao nível DFT/cc-pVDZ/PCM-metanol

Estes dados demonstram que não existem alterações significativas nos valores das barreiras energéticas, à exceção da já referida diferença no valor da energia de excitação vertical. É também percetível, que com a utilização do funcional PBE0 as energias de todas as espécies se encontram mais próximas da energia do estado fundamental (inclusive o produto **ATZ-P**). Isto indica que o PBE0 pode ser utilizado para o estudo das barreiras energéticas neste tipo de sistemas, uma vez que vai de encontro aos dados obtidos com o M06-HF.

Por fim, ao nível da espectroscopia de infravermelho, compararam-se os espectros calculados para a ATZ, no estado fundamental (**ATZ-S0**), os quais se ilustram na Figura 97.

Figura 97 – Espectros de infravermelho normalizados da **ATZ-S0** calculados com os funcionais M06-HF e PBE0 ao nível DFT / cc-pVDZ/PCM-metanol

Comparando os dois espectros apresentados, são percetíveis ligeiras diferenças no perfil dos mesmos, diferenças que, contudo, aparentam não influenciar as conclusões das análises comparativas realizadas para as diferentes fotorreações estudadas.

Da comparação entre os funcionais M06-HF e PBE0, aplicados na molécula ATZ, pode concluir-se, então, que apresentam resultados que conduzem a conclusões semelhantes relativamente ao estudo energético do mecanismo e ao guia interpretativo elaborado para um futuro estudo através de espectroscopia de infravermelho resolvida no tempo.

Capítulo 7: Conclusões e perspetivas futuras

Através deste estudo foi possível caracterizar do ponto de vista energético, ao nível de teoria DFT (M06-HF/cc-pVDZ), os mecanismos das fotorreações das moléculas ATZ, CTZ e 3CTZ, partindo dos mecanismos postulados na literatura.

Os mecanismos descritos neste trabalho vão além dos mecanismos postulados, uma vez que se caracteriza a fotoextrusão de N₂, que se identificam mais espécies intermediárias, e que, no caso da ATZ, o rearranjo do intermediário não é descrito em função de um ângulo diedro, mas sim tendo em conta a distância internuclear.

Calcularam-se as estruturas eletrónicas de todas as espécies envolvidas, bem como as suas respetivas propriedades, para todas as vias reacionais postuladas para as três moléculas. Foram também identificados e caracterizados todos os estados de transição envolvidos nestes mecanismos, à exceção do estado transição do último passo de uma das vias reacionais da 3CTZ. Isto permitiu identificar, nos três mecanismos, espécies intermediárias tripleto com caráter birradicalar.

Com a identificação e caracterização dos estados de transição, foi possível determinar a barreira energética associada a cada uma das etapas. No caso em que não se identificou o estado de transição, foi proposto um valor provável para a barreira energética desta etapa, identificado a partir da variação da energia ao longo do cálculo de várias otimizações parciais.

Em relação ao processo de fotoextrusão de N₂, foi possível verificar que a localização das orbitais semipreenchidas do estado tripleto influencia a forma como a fotoextrusão pode ocorrer: nas moléculas em que as orbitais se localizam no grupo fenilo (ATZ e 3CTZ), a fotoextrusão ocorre exclusivamente através da quebra inicial da ligação entre os átomos de azoto mais próximos deste grupo, enquanto que na molécula em que as orbitais semipreenchidas se localizam no anel da tetrazolona (CTZ), é energeticamente possível iniciar a fotoextrusão através da quebra inicial de qualquer uma das ligações N-N.

Os valores calculados para as barreiras energéticas revelaram que, à exceção do já referido para a fotoextrusão de N₂, todos os restantes processos e todas as vias reacionais propostas são energeticamente possíveis.

Tendo como base os resultados descritos na literatura que indicam a existência de seletividade nas fotorreações das moléculas CTZ e 3CTZ, foi possível, tendo em conta a evolução das estruturas calculadas para as espécies intermediárias, e as diferenças observadas na distância entre os átomos envolvidos no processo de ciclização nestas espécies, propor uma justificação lógica para a ocorrência dessa seletividade. Esta interpretação tem em conta o volume e a área superficial dos diferentes grupos substituintes das tetrazolonas, e permite explicar a não formação da benzimidazolona **CTZ-B** e da pirimidinona **3CTZ-P**.

Em relação à espectroscopia de absorção UV/Vis, a comparação dos espectros calculados e experimentais das moléculas ATZ, CTZ e 3-CTZ permite concluir que os perfis dos espectros calculados são semelhantes aos dos experimentais, existindo apenas um desvio constante no comprimento de onda, ligeiramente inferior a 50 nm.

A análise e comparação dos espectros de infravermelho calculados de todas as espécies envolvidas nos mecanismos estudados (reagentes, intermediários e produtos), permitiu elaborar um guia interpretativo de suporte a um futuro estudo experimental através de técnicas de espectroscopia de infravermelho resolvida no tempo. Este guia interpretativo é sustentado pelas variações significativas que existem nos espectros das espécies ao longo da reação, e a sua utilização depende da relação entre a resolução temporal da técnica e o tempo de vida dos intermediários.

O breve estudo comparativo realizado entre os funcionais M06-HF e PBE0, utilizando a ATZ, permitiu verificar que os resultados obtidos para o estudo das barreiras energéticas são concordantes. Relativamente aos cálculos de espectros de infravermelho realizados, os resultados parecem indicar que a utilização do funcional PBE0 não afeta as conclusões que estão na base da previsão do acompanhamento espectroscópico das espécies ao longo da fotorreação. Quanto aos espectros de UV/Vis calculados, os resultados com o funcional PBE0 conduzem a previsões bastante mais aproximadas do observado experimentalmente, indicando que neste campo, o funcional PBE0 tem uma melhor performance que o M06-HF.

Após a realização deste estudo abrem-se portas para aprofundar o conhecimento da fotoquímica deste tipo de compostos, quer a nível teórico, quer a nível experimental.

A nível teórico, a realização de cálculos do tipo IRC (*Intrinsic Reaction Coordinate*) será vantajosa para obter todo o caminho de energia mínimo das reações, partindo dos estados de transição, em direção às espécies que os antecedem e sucedem. É igualmente de interesse estudar estes compostos ao nível da Dinâmica Molecular Reacional, recorrendo a métodos multirreferenciais,¹⁰² *spin-orbit coupling*¹⁰³ e à localização da interseção cónica,¹⁰⁴ para obter informação relativa a fenómenos de absorção, ISC, e decaimento por processos radiativos e não radiativos. Pode ainda aplicar-se a Dinâmica Molecular Reacional através de teorias clássicas, integrando equações diferenciais,¹⁰⁵ ou através de modelos quânticos, como o MCTDH (*Multi Configuration Time Dependent Hartree*).¹⁰⁶ A validação da interpretação feita para a seletividade verificada na fotorreação das moléculas CTZ e 3CTZ, pode conseguir-se através de estudos com métodos de solvatação explícita. Estes métodos, do tipo QM/MM, tratam a molécula alvo do ponto de vista da Mecânica Quântica, e as moléculas de solvente do ponto de vista da Mecânica Aolecular, permitindo ter em conta a resistência ao movimento por parte das moléculas de solvente.¹⁰⁷

A nível experimental, é possível recorrer a técnicas de espectroscopia de infravermelho resolvida no tempo (a uma ou duas dimensões), no sentido de identificar as espécies intermediárias e validar experimentalmente o mecanismo postulado e estudado teoricamente. De forma análoga, e aprofundando o estudo ao nível de teoria TD-DFT de modo a possibilitar a simulação dos espectros de absorção das espécies intermediárias, é possível recorrer a técnicas de espectroscopia de absorção resolvida no tempo para a identificação experimental dos intermediários. É ainda possível avaliar, recorrendo a variações no solvente ou mistura de solventes, a influência da viscosidade do meio nos rendimentos de formação dos diferentes fotoprodutos das moléculas CTZ e 3CTZ.

Referências bibliográficas

- 1. Bladin, J. A. Ueber von dicyanphenylhydrazin abgeleitete verbindungen. Berichte der Dtsch. Chem. Gesellschaft 18, 1544–1551 (1885).
- Zhao, T., Kurpiewska, K., Kalinowska-Tłuścik, J., Herdtweck, E. & Dömling, A. α-Amino Acid-Isosteric α-Amino Tetrazoles. *Chem. - A Eur. J.* 22, 3009–3018 (2016).
- Holland, G. F. & Pereira, J. N. Heterocyclic tetrazoles, a new class of lipolysis inhibitors. J. Med. Chem. 10, 149– 154 (1967).
- Kubo, K. *et al.* Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of potential prodrugs of benzimidazole-7-carboxylic acids. J. Med. Chem. 36, 2343–2349 (1993).
- Obermeier, M. T. et al. Prodrugs of BMS-183920: metabolism and permeability considerations. J. Pharm. Sci. 85, 828–833 (1996).
- Herr, R. J. 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem. 10, 3379–3393 (2002).
- Trindade, N. R. *et al.* The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1H-Pyrazol-4-yl)-2H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway . *Frontiers in Physiology* vol. 9 1073 (2018).
- Ikeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoh, T. Anti-allergic and anti-inflammatory actions of 2'-(tetrazole-5-yl)-4-hydroxy-2-methyl-2H-1, 2-benzothiazine-3-carboxanilide 1, 1-dioxide. *Bioorg. Med. Chem. Lett.* 2, 709 (1992).
- Toney, J. H. *et al.* Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β-lactamase. *Chem. Biol.* 5, 185 (1998).
- Rostom, S. A. F., Ashour, H. M. A., El Razik, H. A. A., Abd El Fattah, H. & El-Din, N. N. Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. *Bioorg. Med. Chem.* 17, 2410 (2009).
- 11. Khanage, S. G., Raju, A., Mohite, P. B. & Pandhare, R. B. Analgesic activity of some 1, 2, 4-triazole heterocycles clubbed with pyrazole, tetrazole, isoxazole and pyrimidine. *Adv. Pharm. Bull.* **3**, 13 (2013).
- 12. Abell, A. D. & Foulds, G. J. Synthesis of a cis-conformationally restricted peptide bond isostere and its application to the inhibition of the HIV-1 protease. *J. Chem. Soc. Perkin Trans.* 1 2475 (1997).
- Song, W. H. *et al.* Tetrazole and triazole as bioisosteres of carboxylic acid: Discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents. *Bioorganic Med. Chem. Lett.* 23, 4528 (2013).
- 14. Mohite, P. B. & Bhaskar, V. H. In vitro evaluation of tetrazoles as a novel class of Antimycobacterium tuberculosis agents. *Adv. Pharm. Bull.* **2**, 31 (2012).
- 15. Kang, S. Y. *et al.* Tetrazole-biarylpyrazole derivatives as cannabinoid CB1 receptor antagonists. *Bioorg. Med. Chem. Lett.* **18**, 2385 (2008).
- 16. Momose, Y., Maekawa, T., Odaka, H., Ikeda, H. & Sohda, T. Novel 5-substituted-1H-tetrazole derivatives as potent glucose and lipid lowering agents. *Chem. Pharm. Bull.* **50**, 100 (2002).
- 17. Bhaskar, V. H. & Mohite, P. B. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. *J. Optoelectron. Biomed. Mater* **2**, 249 (2010).
- Ghule, V. D., Radhakrishnan, S. & Jadhav, P. M. Computational studies on tetrazole derivatives as potential high energy materials. *Struct. Chem.* 22, 775–782 (2011).
- Shi, Y. Computational design of tetrazolone-based high-energy density energetic materials: Property prediction and decomposition mechanism. J. Phys. Org. Chem. 31, 1–8 (2018).
- Klapötke, T. M., Karaghiosoff, K., Mayer, P., Penger, A. & Welch, J. M. Synthesis and Characterization of 1, 4-Dimethyl-5-Aminotetrazolium 5-Nitrotetrazolate. *Propellants, Explos. Pyrotech. An Int. J. Deal. with Sci. Technol. Asp. Energ. Mater.* **31**, 188–195 (2006).
- 21. Onishi, A. & Tanaka, H. Method of tetrazole amine salts having improved physical properties for generating gas in airbags. (1995).
- Hiskey, M. A., Chavez, D. E. & Naud, D. Propellant containing 3; 6-BIS (1H-1, 2, 3, 4-Tetrazol-5-ylamino)-1, 2, 4, 5-tetrazine or salts thereof. (2002).

- Fischer, D., Klapötke, T. M. & Stierstorfer, J. 1, 5-Di (nitramino) Tetrazole: High Sensitivity and Superior Explosive Performance. *Angev. Chemie Int. Ed.* 54, 10299–10302 (2015).
- 24. He, P. *et al.* Alkali and alkaline earth metal salts of tetrazolone: Structurally interesting and excellently thermostable. *Dalt. Trans.* **46**, 8422–8430 (2017).
- 25. Ismael, A., Serpa, C. & Cristiano, M. L. S. Photochemistry of 1-allyl-4-aryltetrazolones in solution; Structural effects on photoproduct selectivity. *Photochem. Photobiol. Sci.* **12**, 272 (2013).
- Hyatt, J. A. & Swenton, J. S. A facile synthesis of 9H-pyrimido [4, 5-b] indole via photolysis of 4-azido-5phenylpyrimidine. J. Heterocycl. Chem. 9, 409–410 (1972).
- Frija, L. M. T., Ismael, A. & Cristiano, M. L. S. Photochemical transformations of tetrazole derivatives: Applications in organic synthesis. *Molecules* 15, 3757–3774 (2010).
- Quast, H., Fuss, A. & Nüdling, W. Photoextrusion of Molecular Nitrogen from Annulated 5-Alkylidene-4, 5dihydro-1H-tetrazoles: Annulated Iminoaziridines and the First Triplet Diazatrimethylenemethane. *European J.* Org. Chem. 1998, 317–327 (1998).
- Quast, H. & Nahr, U. Photochemische Stickstoff-Eliminierung aus 1, 4-Dihydro-1-phenyl-5H-tetrazol-5-onen und-thionen. Benzimidazolone und Carbodiimide. *Chem. Ber.* 118, 526–540 (1985).
- Frija, L. M. T. *et al.* Photochemistry of 5-allyloxy-tetrazoles: steady-state and laser flash photolysis study. Org. *Biomol. Chem.* 6, 1046–1055 (2008).
- Frija, L. M. T., Khmelinskii, I. V. & Cristiano, M. L. S. Mechanistic investigations into the photochemistry of 4allyl-tetrazolones in solution: A new approach to the synthesis of 3,4-dihydro-pyrimidinones. J. Org. Chem. 71, 3583 (2006).
- Frija, L. M. T., Reva, I. D., Gómez-Zavaglia, A., Cristiano, M. L. S. & Fausto, R. UV-induced photochemistry of matrix-isolated 1-phenyl-4-allyl-tetrazolone. *Photochem. Photobiol. Sci.* 6, 1170 (2007).
- Dunkin, I. R., Shields, C. J. & Quast, H. The photochemistry of 1,4-dihtdro-5h-tetrazole derivatives isolated in low-temperature matrices. *Tetrahedron* 45, 259 (1989).
- Frija, L. M. T., Khmelinskii, I. V. & Cristiano, M. L. S. Novel efficient synthesis of 3,4-dihydro-6-substituted-3phenylpyrimidin- 2(1H)-ones. *Tetrahedron Lett.* 46, 6757 (2005).
- 35. Richards, I. C. & Thomas, P. S. The synthesis and fungicidal activity of a series of 1-aryltetrazole-5-sulphones. *Pestic. Sci.* **30**, 275–284 (1990).
- Schocken, M. J., Creekmore, R. W., Theodoridis, G., Nystrom, G. J. & Robinson, R. A. Microbial transformation of the tetrazolinone herbicide F5231. *Appl. Emiron. Microbiol.* 55, 1220–1222 (1989).
- 37. Theodoridis, G. *et al.* Synthesis and structure-activity relationships of 1-aryl-4-substituted-1,4-dihydro-5H-tetrazol-5-ones, a novel class of pre- and post-emergence herbicides. *Pestic. Sci.* **30**, 259–274 (1990).
- Sandmann, G., Schneider, C. & Boger, P. A new non-radioactive assay of phytoene desaturase to evaluate bleaching herbicides. *Zeitschrift fur Naturforsch. Sect. C - J. Biosci.* 51, 534–538 (1996).
- Aime, S. *et al.* Synthesis of the Gd(III) complex with a tetrazole-armed macrocyclic ligand as a potential MRI contrast agent. *Tetrabedron Lett.* 43, 783–786 (2002).
- Ponnuvel, K., Padmini, V. & Sribalan, R. A new tetrazole based turn-on fluorescence chemosensor for Zn2+ ions and its application in bioimaging. *Sensors Actuators, B Chem.* 222, 605–611 (2016).
- 41. Li, Z. *et al.* Tetrazole photoclick chemistry: Reinvestigating its suitability as a bioorthogonal reaction and potential applications. *Angen. Chemie Int. Ed.* **55**, 2002–2006 (2016).
- 42. Owens, W. H. et al. Tetrazoles as carboxylic acid surrogates: High-potency sweeteners. in (ACS Publications, 1991).
- 43. Kalinowska-Tluścik, J. *et al.* Bitter sweeteners: tetrazole derivatives of arylsulfonylalcanoids–synthesis, structure and comparative study. *Acta Crystallogr. Sect. B Struct. Sci.* **64**, 760–770 (2008).
- Frija, L. M. T., Khmelinskii, I. V. & Cristiano, M. L. S. Mechanistic investigations into the photochemistry of 4allyl-tetrazolones in solution: A new approach to the synthesis of 3,4-dihydro-pyrimidinones. J. Org. Chem. 71, 3583–3591 (2006).
- Frija, L. M. T., Reva, I. D., Gómez-Zavaglia, A., Cristiano, M. L. S. & Fausto, R. UV-induced photochemistry of matrix-isolated 1-phenyl-4-allyl-tetrazolone. *Photochem. Photobiol. Sci.* 6, 1170–1176 (2007).
- Gómez-Zavaglia, A., Reva, I. D., Frija, L., Cristiano, M. L. & Fausto, R. Molecular structure, vibrational spectra and photochemistry of 2-methyl-2H-tetrazol-5-amine in solid argon. J. Phys. Chem. A 109, 7967 (2005).

- Ismael, A., Cristiano, M. L. S., Fausto, R. & Gómez-Zavaglia, A. Tautomer selective photochemistry in 1-(tetrazol-5-yl)ethanol. J. Phys. Chem. A 114, 13076 (2010).
- Gómez-Zavaglia, A., Reva, I. D., Frija, L., Cristiano, M. L. & Fausto, R. Photochemistry of 1-phenyl-tetrazolone isolated in solid argon. J. Photochem. Photobiol. A Chem. 179, 243 (2006).
- Alawode, O. E., Robinson, C. & Rayat, S. Clean photodecomposition of 1-methyl-4-phenyl-1 H-tetrazole-5 (4 H)thiones to carbodiimides proceeds via a biradical. J. Org. Chem. 76, 216 (2011).
- 50. Quast, H. & Bieber, L. Synthese und Photolyse von 1, 4-Dialkyl-1, 4-dihydro-5H-tetrazol-5-onen und-thionen: Neue Wege zu Diaziridinonen und Carbodiimiden1. *Chem. Ber.* **114**, 3253 (1981).
- Quast, H. & Nahr, U. Photochemische Stickstoff-Eliminierung aus 1, 4-Dihydro-1-phenyl-5H-tetrazol-5-onen und-thionen. Benzimidazolone und Carbodiimide. *Chem. Ber.* 118, 526 (1985).
- 52. Hyatt, J. A. & Swenton, J. S. Facile synthesis of 9H-pyrimido[4,5-b]indoles from photolysis of 8-phenyltetrazolo[1,5-c]pyrimidines in acidic media. J. Org. Chem. 37, 3216 (1972).
- Quast, H., Fuss, A. & Nüdling, W. Photoextrusion of Molecular Nitrogen from Annulated 5-Alkylidene-4, 5dihydro-1H-tetrazoles: Annulated Iminoaziridines and the First Triplet Diazatrimethylenemethane. *European J.* Org. Chem. 1998, 317 (1998).
- 54. Solntsev, K. M., Huppert, D., Agmon, N. & Tolbert, L. M. Photochemistry of "super" photoacids. 2. Excitedstate proton transfer in methanol/water mixtures. *J. Phys. Chem. A* **104**, 4658 (2000).
- Cramer, C. J. Foundations of Molecular Orbital Theory. in *Essentials of Computational Chemistry: Theories and Models* 105 (Wiley, 2005).
- Jensen, F. Electronic Structure Methods: Independent-Particle Models. in Introduction to Computational Chemistry 80 (Wiley, 2007).
- 57. Cramer, C. J. Ab Initio Implementations of Hartree–Fock Molecular Orbital Theory. in *Essentials of Computational Chemistry: Theories and Models* 165 (Wiley, 2005).
- 58. Jensen, F. Basis Sets. in Introduction to Computational Chemistry 192 (Wiley, 2007).
- 59. Quinn, C. M. Computational Quantum Chemistry: An Interactive Guide to Basis Set Theory. (Academic Press, 2002).
- Ramachandran, K. I., Gopakumar, D. & Namboori, K. Basis Sets. in *Computational Chemistry and Molecular Modeling: Principles and Applications* 115 (Springer Berlin Heidelberg, 2008). doi:10.1007/978-3-540-77304-7_6.
- 61. Dunning, T. H. & Hay, P. J. Gaussian Basis Sets for Molecular Calculations. in *Methods of Electronic Structure Theory* (ed. Schaefer, H. F.) 1 (Springer US, 1977). doi:10.1007/978-1-4757-0887-5_1.
- 62. Sholl, D. . & Steckel, J. . What is Density Functional Theory? *Density Functional Theory* 1 (2009) doi:doi:10.1002/9780470447710.ch1.
- 63. Cramer, C. J. Density Functional Theory. in *Essentials of Computational Chemistry: Theories and Models* 249 (Wiley, 2005).
- 64. Jensen, F. Density Functional Methods. in Introduction to Computational Chemistry 232 (Wiley, 2007).
- Band, Y. B. & Avishai, Y. 15 Density Functional Theory. in *Quantum Mechanics with Applications to Nanotechnology* and Information Science (eds. Band, Y. B. & Avishai, Y.) 871 (Academic Press, 2013). doi:https://doi.org/10.1016/B978-0-444-53786-7.00015-0.
- Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. *Commun. Pure Appl. Math.* 10, 151 (1957).
- 67. Chattaraj, P. K. Chemical Reactivity Theory: A Density Functional View. (CRC Press, 2009).
- 68. Bretonnet, J. L. Basics of the density functional theory. AIMS Mater. Sci. 4, 1372 (2017).
- Koch, W. & Holthausen, M. C. The Kohn-Sham Approach. in A Chemist's Guide to Density Functional Theory 41 (John Wiley & Sons, Ltd, 2001). doi:10.1002/3527600043.ch5.
- Koch, W. & Holthausen, M. C. The Quest for Approximate Exchange-Correlation Functionals. in A Chemist's Guide to Density Functional Theory 65 (John Wiley & Sons, Ltd, 2001). doi:10.1002/3527600043.ch6.
- Gupta, V. P. Chapter 5 Density Functional Theory (DFT) and Time Dependent DFT (TDDFT). in *Principles and Applications of Quantum Chemistry* (ed. Gupta, V. P.) 155 (Academic Press, 2016). doi:https://doi.org/10.1016/B978-0-12-803478-1.00005-4.
- 72. Ullrich, C. A. & Yang, Z. hui. A Brief Compendium of Time-Dependent Density Functional Theory. Brazilian J.

Phys. 44, 154 (2014).

- 73. Hirata, S. & Head-Gordon, M. Time-dependent density functional theory within the Tamm-Dancoff approximation. *Chem. Phys. Lett.* **314**, 291 (1999).
- 74. Castro, A., Gross, E. K. U., Ruggenthaler, M., Leeuwen, R. Van & Dobson, J. F. Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics vol. 837 (2012).
- Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. *Science* (80-.). 321, 792 (2008).
- 76. Feibelman, P. J. DFT versus the 'real world' (or, waiting for godft). Top. Catal. 53, 417 (2010).
- Cramer, C. J. & Truhlar, D. G. Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. *Chem. Rev.* 99, 2161 (1999).
- 78. Mennucci, B. Polarizable continuum model. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 386 (2012).
- 79. Jensen, F. Optimization Techniques. in Introduction to Computational Chemistry 380 (Wiley, 2007).
- 80. Zamarbide, G. et al. An ab initio conformational study on captopril. J. Mol. Struct. THEOCHEM 666, 599 (2003).
- 81. Cramer, C. J. Molecular Mechanics. in Essentials of Computational Chemistry: Theories and Models 17 (Wiley, 2005).
- Magnasco, V. Chapter 20 Molecular vibrations. in *Elementary Molecular Quantum Mechanics (Second Edition)* (ed. Magnasco, V.) 863 (Elsevier, 2013). doi:https://doi.org/10.1016/B978-0-444-62647-9.00020-8.
- Diem, M. Computation of Vibrational Frequencies and Intensities. in Modern Vibrational Spectroscopy and Micro-Spectroscopy 193 (John Wiley & Sons, Ltd, 2015). doi:10.1002/9781118824924.ch9.
- Semrouni, D., Clavaguéra, C., Dognon, J. P. & Ohanessian, G. Assessment of density functionals for predicting the infrared spectrum of sodiated octa-glycine. *Int. J. Mass Spectrom.* 297, 152 (2010).
- Ozaki, Y. *et al.* Quantum Mechanical Simulation of Near-Infrared Spectra: Applications in Physical and Analytical Chemistry. *Mol. Spectrosc.* 353 (2019) doi:10.1002/9783527814596.ch13.
- 86. Change History of GAMESS. Gordon Group/GAMESS Homepage https://www.msg.chem.iastate.edu/gamess/versions.html.
- Zhao, Y. & Truhlar, D. G. Density functional for spectroscopy: No long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A 110, 13126 (2006).
- 88. Becke, A. D. Becke's three parameter hybrid method using the LYP correlation functional. *J. Chem. Phys* **98**, 5648 (1993).
- Lee, C., Yang, W. & Parr, R. G. Density-functional exchange-energy approximation with correct asymptotic behaviour. *Phys. Rev. B* 37, 785 (1988).
- Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. *Can. J. Phys.* 58, 1200 (1980).
- 91. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. *J. Phys. Chem.* **98**, 11623 (1994).
- Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158 (1999).
- Prata, A. D., Serpa, C. & Caridade, P. J. S. B. Photochemistry of 1-phenyl-4-allyl-tetrazol-5-one: A theoretical study. *Molecules* Submetido, (2020).
- 94. Wiberg, K. B. Basis set effects on calculated geometries: 6-311++G** vs. aug-cc-pVDZ. J. Comput. Chem. 25, 1342 (2004).
- 95. Jensen, F. Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. J. Chem. Theory Comput. 4, 719 (2008).
- Walker, M., Harvey, A. J. A., Sen, A. & Dessent, C. E. H. Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J. Phys. Chem. A 117, 12590 (2013).
- 97. Levine, I. Spectroscopy and Photochemistry. in *Physical Chemistry* 798 (McGraw-Hill Higher Education, 2011).
- 98. Huntington, L. M. J. & Nooijen, M. Application of multireference equation of motion coupled-cluster theory to

transition metal complexes and an orbital selection scheme for the efficient calculation of excitation energies. J. Chem. Phys. 142, 1 (2015).

- 99. Prata, A. D., Serpa, C. & Caridade, P. J. S. B. Theoretical study of 1-phenyl-4-cyclohexenyl-tetrazolones photodegradation pathways (Título provisório). *A Subm.* (2020).
- 100. Curtiss, L. A., Raghavachari, K., Redfern, P. C. & Pople, J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. *J. Chem. Phys.* **106**, 1063 (1997).
- Coskun, D., Jerome, S. V. & Friesner, R. A. Evaluation of the Performance of the B3LYP, PBE0, and M06 DFT Functionals, and DBLOC-Corrected Versions, in the Calculation of Redox Potentials and Spin Splittings for Transition Metal Containing Systems. J. Chem. Theory Comput. 12, 1121 (2016).
- Hill, N. S. & Coote, M. L. A comparison of methods for theoretical photochemistry: Applications, successes and challenges. in *Annual Reports in Computational Chemistry* vol. 15 203 (2019).
- Zimmerman, H. E. & Kutateladze, A. G. New Approaches to Singlet-Triplet Spin-Orbit Coupling in Photochemistry and Diradical Chemistry. Mechanistic and Exploratory Organic Photochemistry1,2. J. Am. Chem. Soc. 118, 249 (1996).
- Olivucci, M., Ragazos, I. N., Bernardi, F. & Robb, M. A. A conical intersection mechanism for the photochemistry of butadiene. A MC-SCF study. J. Am. Chem. Soc. 115, 3710 (1993).
- 105. Hase, W. L. et al. VENUS96: A general chemical dynamics computer program. 43 (1996).
- 106. Meyer, H.-D., Gatti, F. & Worth, G. A. Basic MCTDH Theory. *Multidimensional Quantum Dynamics* 17 (2009) doi:doi:10.1002/9783527627400.ch3.
- 107. Allen, C., Ghebreab, R., Doherty, B., Li, B. & Acevedo, O. Examining Ionic Liquid Effects on Mononuclear Rearrangement of Heterocycles Using QM/MM Simulations. J. Phys. Chem. B 120, 10786 (2016).

Material Suplementar

Matriz Z										
С										
С	1	1.39377								
С	1	1.39622	2	119.6800						
С	3	1.39209	1	120.5334	2	0.0000				
С	4	1.39678	3	118.9082	1	0.0000				
С	2	1.39490	1	120.7686	5	-0.0000				
Н	3	1.08874	4	119.1903	1	180.0000				
Н	1	1.08858	2	120.2230	3	-180.0000				
Н	2	1.08877	6	119.0210	1	180.0000				
Н	6	1.08650	5	119.9718	2	-180.0000				
Η	4	1.08759	5	119.8815	3	-180.0000				
Ν	5	1.42309	4	118.7613	3	180.0000				
Ν	12	1.34733	5	121.1566	4	-12.9834				
С	12	1.37913	5	128.6728	4	165.9403				
Ν	13	1.25035	12	108.8828	5	178.9757				
Ν	15	1.33798	13	108.9076	12	0.0000				
Ο	14	1.21718	12	130.4097	5	1.1419				
С	16	1.45061	15	122.6512	13	-176.1842				
С	18	1.51467	16	112.3298	15	83.1813				
Н	18	1.09660	16	107.4911	19	-122.3359				
Н	18	1.09717	20	109.0112	16	115.0187				
С	19	1.32923	18	124.6674	16	-0.0000				
Н	22	1.08979	19	120.6385	18	180.0000				
Η	22	1.09225	23	117.5284	19	-180.0000				
Н	19	1.09200	22	120.6671	18	180.0000				

Apêndice 1 – Espécies envolvidas no mecanismo da ATZ ATZ-S0

Átomo	Valência Livre
С	0.000
С	-0.000
С	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	0.000
Ν	-0.000
Ν	0.000
С	0.000
Ν	0.000
Ν	-0.000
О	-0.000
С	-0.000
С	-0.000
Н	-0.000
Н	0.000
С	-0.000
Н	0.000
Н	0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.394	1.483	1	3	1.396	1.470	1	5	2.777	0.080
1	8	1.089	0.944	2	4	2.794	0.082	2	6	1.395	1.481
2	9	1.089	0.938	3	4	1.392	1.501	3	6	2.799	0.081
3	7	1.089	0.937	4	5	1.397	1.439	4	11	1.088	0.918
5	6	1.396	1.452	5	12	1.423	0.934	6	10	1.087	0.914
10	17	2.264	0.054	12	13	1.347	1.155	12	14	1.379	1.102
12	15	2.114	0.079	12	17	2.358	0.056	13	15	1.250	1.700
13	16	2.107	0.085	14	16	1.368	1.133	14	17	1.217	2.080
15	16	1.338	1.151	16	17	2.330	0.055	16	18	1.451	0.952
18	19	1.515	1.067	18	20	1.097	0.934	18	21	1.097	0.925
19	22	1.329	2.082	19	25	1.092	0.945	22	23	1.090	0.942
22	24	1.092	0.942								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-681.1612060994	522.345595

Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade						
15.747	0.000332	727.398	0.909961	1308.491	0.088237						
8.974	0.001322	733.783	0.056057	1353.399	0.429564						
5.175	0.000164	785.753	0.271130	1397.005	0.313251						
2.289	0.000035	796.855	0.309630	1409.040	0.475143						
2.070	0.000069	808.885	2.630429	1440.769	1.105928						
0.340	0.000182	852.692	0.407203	1467.141	0.401625						
38.610	0.021036	897.046	0.002411	1482.412	0.843247						
47.398	0.008127	939.277	0.402898	1511.275	2.443259						
67.482	0.036082	981.486	0.001623	1518.281	3.428520						
121.294	0.042221	988.789	0.223062	1565.034	8.819812						
145.672	0.040120	1002.166	0.283314	1656.357	0.788176						
172.564	0.015407	1013.701	1.947287	1696.160	0.233405						
222.140	0.070065	1040.017	0.440643	1701.748	1.686166						
284.590	0.237017	1055.049	0.048553	1770.766	0.929408						
316.634	0.181764	1055.414	0.758562	1810.141	19.753581						
329.964	0.091241	1062.510	0.016642	3138.383	0.085702						
354.988	0.117194	1074.845	0.007854	3187.005	0.018531						
371.782	0.066270	1080.406	0.234637	3208.619	0.025698						
444.303	0.007331	1109.337	0.500938	3239.970	0.010250						
517.749	0.192225	1161.175	0.005759	3257.456	0.002939						
537.964	0.488138	1177.993	0.095239	3265.316	0.080849						
562.411	0.517234	1195.931	0.028225	3274.466	0.016552						
614.056	0.010419	1200.240	1.147728	3286.257	0.121478						
641.560	0.525213	1259.586	1.304128	3299.880	0.043248						
687.896	0.059888	1299.528	0.729349	3304.988	0.411429						

ATZ-Sx

TD-DFT sem Aproximação de Tamm-Dancoff											
Estado	Energia/Eh	Mome	nto dipolar de t	ransição	Força do Oscilador						
S ₁	-680,9572	-0.3330	-0.1221	0.0553	0.0175						
S ₂	-680,9520	-0.0300	0.0125	-0.2851	0.0115						
S ₃	-680,9468	-1.9415	-0.1349	0.2167	0.5479						
S ₄	-680,9283	0.1759	0.0544	-0.0831	0.0063						
S ₅	-680,9121	-1.0123	-0.1574	0.0342	0.1744						
	TD-DFT com Aproximação de Tamm-Dancoff										
Estado	Energia/Eh	Mome	nto dipolar de t	ransição	Força do Oscilador						
S ₁	-680,9525	0.2548	0.0990	-0.0488	0.0107						
S ₂	-680,9405	-0.0488	0.0136	-0.3475	0.0181						
S ₃	-680,9375	2.0851	0.1603	-0.2364	0.6603						
S4	-680,9206	-0.2037	-0.0297	0.1090	0.0087						
S ₅	-680,9009	-1.0043	-0.1280	0.0216	0.1779						

ATZ-T

	Matriz Z										
С											
С	1	1.47248									
С	1	1.46727	2	119.2761							
С	3	1.34149	1	121.0073	2	-0.0000					
С	4	1.48057	3	118.9815	1	-0.0000					

Átomo	Valência Livre
С	0.599
С	0.007
С	0.004
С	0.011
С	0.401

С	2	1.34179	1	121.1502	5	0.0000
Н	3	1.08898	4	120.1813	1	180.0000
Н	1	1.08327	3	120.3562	2	-180.0000
Н	2	1.08864	6	120.1005	1	180.0000
Н	6	1.08630	2	122.5002	5	180.0000
Н	4	1.08687	3	122.4126	5	-180.0000
Ν	5	1.38014	4	118.4324	3	180.0000
Ν	12	1.35450	5	121.6034	4	-6.7982
С	12	1.39363	5	128.9328	4	172.5067
Ν	13	1.25407	12	108.9564	5	180.0000
Ν	15	1.33568	13	109.0918	12	0.0000
Ο	14	1.21650	12	129.9572	5	0.0000
С	16	1.45141	15	122.5900	13	-175.4638
С	18	1.51481	16	112.2180	15	82.0806
Н	18	1.09667	16	107.4636	19	-122.3245
Н	18	1.09701	20	109.0189	16	114.9640
С	19	1.32919	18	124.6792	16	-1.6552
Н	22	1.08981	19	120.5919	18	180.0000
Н	22	1.09222	23	117.4987	19	180.0000
Н	19	1.09196	22	120.6161	18	180.0000

С	0.008
Н	0.000
Ν	0.002
Ν	0.001
С	0.002
Ν	0.003
Ν	0.000
О	0.001
С	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.472	1.100	1	3	1.467	1.118	1	4	2.445	0.078
1	6	2.452	0.067	1	8	1.083	0.958	2	5	2.426	0.086
2	6	1.342	1.875	2	9	1.089	0.937	3	4	1.341	1.878
3	5	2.432	0.075	3	7	1.089	0.936	4	5	1.481	1.052
4	11	1.087	0.927	5	6	1.476	1.072	5	12	1.380	1.088
6	10	1.086	0.921	10	17	2.251	0.054	12	13	1.355	1.142
12	14	1.394	1.051	12	15	2.124	0.067	13	15	1.254	1.665
13	16	2.110	0.086	14	16	1.365	1.140	14	17	1.216	2.076
15	16	1.336	1.153	16	17	2.330	0.056	16	18	1.451	0.950
18	19	1.515	1.067	18	20	1.097	0.934	18	21	1.097	0.925
19	22	1.329	2.082	19	25	1.092	0.945	22	23	1.090	0.942
22	24	1.092	0.942								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-681.0077792362	508.833783

	Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade							
52.270	0.067519	608.187	0.273743	1319.342	0.032706							
13.581	0.000181	660.512	0.279211	1358.228	0.297044							
6.495	0.003920	718.261	0.054403	1394.886	1.062640							
2.189	0.000063	733.018	0.053047	1404.013	0.730813							
1.012	0.000031	757.885	2.434772	1409.624	0.319007							
0.313	0.000009	761.210	0.096825	1419.517	0.426221							
2.798	0.000470	776.782	0.554226	1457.854	1.410724							
36.654	0.024283	844.624	0.283243	1472.582	0.264253							
55.663	0.021912	870.084	0.676089	1485.920	0.939884							
70.721	0.063814	938.057	0.420039	1506.173	3.629189							

116.853	0.074368	957.396	0.116849	1633.197	3.315061
147.126	0.037248	981.291	0.141755	1694.039	0.075449
175.167	0.008169	1011.091	2.031242	1771.327	1.022862
194.934	0.004636	1014.903	0.056439	1777.922	0.311458
288.696	0.254710	1023.675	1.224144	1806.420	20.924261
306.925	0.119808	1033.712	0.010861	3147.407	0.090798
334.057	0.083621	1039.313	0.003248	3195.701	0.032210
349.068	0.145578	1053.482	0.291626	3205.901	0.030009
363.033	0.095911	1076.321	0.250705	3234.539	0.012435
410.908	1.400639	1125.224	0.164763	3261.417	0.090374
448.138	0.038219	1164.234	0.230780	3264.797	0.078384
516.652	0.209705	1198.507	1.868632	3295.241	0.224111
563.881	0.475483	1208.815	0.199119	3297.977	0.060831
568.990	0.005637	1222.874	0.269073	3303.721	0.526453
599.019	0.190160	1310.313	1.903748	3316.283	0.034250

ATZ-ET1a

	Matriz Z								
С									
С	1	1.43856							
С	1	1.43982	2	120.2318					
С	3	1.35214	1	120.5379	2	9.7145			
С	4	1.48931	3	117.5813	1	8.5817			
С	2	1.35199	1	120.8342	5	4.4925			
Н	3	1.09017	4	120.4995	1	175.7884			
Н	1	1.08543	3	119.5592	2	172.3464			
Н	2	1.09011	6	120.3051	1	-176.4087			
Н	6	1.08643	2	123.4874	5	-176.2236			
Н	4	1.09055	3	122.4673	5	178.3144			
Ν	5	1.41551	4	114.1509	3	111.6262			
Ν	12	1.29188	5	121.3974	4	5.4835			
С	12	1.55419	5	126.5952	4	168.0765			
Ν	13	1.11672	12	140.1384	5	168.3715			
Ν	14	1.27806	12	108.8647	5	-169.9188			
Ο	14	1.22781	12	112.6557	5	10.1498			
С	16	1.44782	14	117.2257	12	176.5648			
С	18	1.51775	16	112.9142	14	-102.7619			
Н	18	1.09935	16	109.1221	19	-120.5141			
Н	18	1.10277	20	108.0474	16	119.3535			
С	19	1.33017	18	124.5736	16	3.0034			
Н	22	1.09040	19	121.1144	18	180.0000			
Н	22	1.09084	23	118.3871	19	-180.0000			
Н	19	1.09339	22	120.2300	18	-180.0000			

Átomo	Valência Livre
С	0.313
С	0.001
С	0.001
С	0.033
С	0.604
С	0.036
Н	0.000
Ν	0.003
Ν	0.001
С	0.000
Ν	0.003
Ν	0.000
0	0.000
С	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.439	1.248	1	3	1.440	1.248	1	4	2.425	0.104
1	6	2.427	0.109	1	8	1.085	0.952	2	6	1.352	1.782
2	9	1.090	0.945	3	4	1.352	1.784	3	7	1.090	0.944
4	5	1.489	1.062	4	11	1.091	0.936	5	6	1.495	1.034
5	12	1.416	1.019	6	10	1.086	0.937	12	13	1.292	1.203
12	14	1.554	0.697	12	15	2.265	0.163	13	15	1.117	2.414

14	16	1.278	1.750	14	17	1.228	1.992	15	16	2.295	0.171
16	17	2.343	0.117	16	18	1.448	1.077	18	19	1.518	1.061
18	20	1.099	0.940	18	21	1.103	0.926	19	22	1.330	2.088
19	25	1.093	0.945	22	23	1.090	0.944	22	24	1.091	0.933

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-680.9010562926	498.950874

ATZ-ET1f

Matriz Z									
С									
С	1	1.41082							
С	1	1.40828	2	121.2472					
С	3	1.37186	1	119.7984	2	0.0000			
С	4	1.44295	3	119.7809	1	-0.0000			
С	2	1.37206	1	120.6105	5	0.0000			
Н	3	1.08802	4	120.3337	1	-180.0000			
Н	1	1.08831	3	119.3738	2	180.0000			
Н	2	1.08812	6	119.8324	1	-180.0000			
Н	6	1.08604	2	122.5731	5	-180.0000			
Н	4	1.08802	3	122.8017	5	-180.0000			
Ν	5	1.31627	4	116.6265	3	180.0000			
Ν	12	1.72139	5	128.5102	4	-0.0000			
С	12	1.41254	5	129.0470	4	178.0919			
Ν	13	1.25958	12	99.8570	5	156.3004			
Ν	14	1.35236	12	105.9457	5	-173.3030			
0	14	1.21601	12	126.9507	5	6.5183			
С	16	1.44698	14	121.8474	12	164.8931			
С	18	1.51757	16	113.7860	14	-76.6207			
Н	18	1.09727	16	107.4343	19	-122.4705			
Н	18	1.09739	20	108.5213	16	115.3742			
С	19	1.32943	18	124.7096	16	-2.4143			
Н	22	1.09012	19	120.8503	18	180.0000			
Н	22	1.09214	23	117.8494	19	-179.0140			
Н	19	1.09268	22	120.4639	18	-180.0000			

Átomo	Valência Livre
С	0.052
С	0.000
С	0.000
С	0.025
С	0.015
С	0.021
Н	0.000
Ν	0.072
Ν	0.236
С	0.001
Ν	0.128
Ν	0.002
0	0.001
С	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.411	1.377	1	3	1.408	1.388	1	4	2.405	0.064
1	6	2.418	0.058	1	8	1.088	0.944	1	12	4.103	0.060
2	6	1.372	1.605	2	9	1.088	0.937	3	4	1.372	1.599
3	7	1.088	0.939	4	5	1.443	1.220	4	11	1.088	0.926
4	12	2.349	0.050	5	6	1.444	1.216	5	12	1.316	1.471
6	10	1.086	0.917	10	17	2.215	0.060	12	13	1.721	0.602
12	14	1.413	0.992	12	15	2.300	0.073	13	15	1.260	1.690
14	16	1.352	1.228	14	17	1.216	2.083	15	16	1.415	0.955
16	17	2.300	0.075	16	18	1.447	0.995	18	19	1.518	1.055
18	20	1.097	0.937	18	21	1.097	0.931	19	22	1.329	2.088
19	25	1.093	0.945	22	23	1.090	0.943	22	24	1.092	0.935

Energia Eletrónica/Eh Energia do Ponto Zero/kJ mol-1

I

ATZ-I1a	
---------	--

	Matriz Z									
С										
С	1	1.39631								
С	1	1.39492	2	120.0701						
С	3	1.39411	1	120.1009	2	-0.0000				
С	4	1.39326	3	119.2039	1	0.8885				
С	2	1.39350	1	120.2975	5	-0.0000				
Н	3	1.08857	4	119.5738	1	180.0000				
Н	1	1.08880	3	119.9521	2	-180.0000				
Н	2	1.08872	6	119.5107	1	180.0000				
Н	6	1.08819	5	119.8562	2	-180.0000				
Н	4	1.08945	5	119.7799	3	-180.0000				
Ν	5	1.43560	4	118.8241	3	178.7955				
Ν	12	1.38719	5	113.5958	4	-51.3347				
С	12	1.39225	5	120.7917	4	122.2931				
Ν	13	1.16448	12	128.6018	5	172.8213				
Ν	14	1.40430	12	114.9486	5	180.0000				
Ο	14	1.20608	12	121.2170	5	4.4894				
С	16	1.44784	14	112.6425	12	146.9118				
С	18	1.52083	16	112.3575	14	-72.4259				
Н	18	1.09600	16	108.4161	19	-121.9348				
Н	18	1.10161	20	109.5958	16	117.6768				
С	19	1.33091	18	125.2446	16	-10.2470				
Н	22	1.08997	19	120.4772	18	180.0000				
Н	22	1.09174	23	117.3227	19	-178.7568				
Н	19	1.09181	22	120.1758	18	180.0000				

Átomo	Valência Livre
С	0.000
Н	0.000
Ν	0.005
Ν	0.057
С	0.001
Ν	0.436
Ν	0.684
0	0.002
С	0.000
С	0.000
Н	0.000
Н	0.001
С	0.000
Н	-0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.396	1.473	1	3	1.395	1.481	1	5	2.774	0.082
1	8	1.089	0.945	2	4	2.794	0.081	2	6	1.394	1.484
2	9	1.089	0.937	3	4	1.394	1.480	3	6	2.798	0.081
3	7	1.089	0.937	4	5	1.393	1.469	4	11	1.089	0.927
5	6	1.394	1.468	5	12	1.436	0.901	6	10	1.088	0.929
12	13	1.387	0.988	12	14	1.392	1.075	12	15	2.301	0.098
12	17	2.266	0.056	13	15	1.164	2.284	14	16	1.404	1.142
14	17	1.206	2.154	16	18	1.448	1.072	18	19	1.521	1.050
18	20	1.096	0.942	18	21	1.102	0.911	19	22	1.331	2.076
19	25	1.092	0.945	22	23	1.090	0.943	22	24	1.092	0.935

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-681.0204322107	503.773358

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
19.906	0.010460	606.678	0.950498	1287.880	2.497605				
16.465	0.014388	617.779	0.026117	1291.029	1.375409				

0.000635	670.570	1.261664	1331.319	0.279169
0.000100	709.885	0.528598	1343.791	0.296042
0.000020	718.682	1.559349	1350.425	0.174578
0.001476	799.584	1.584931	1396.151	13.142107
0.005716	809.407	0.956684	1474.701	0.013136
0.033268	886.634	0.022961	1482.283	1.019482
0.044841	894.779	0.060388	1509.198	0.143452
0.060171	939.393	0.390776	1553.575	2.775801
0.005707	979.811	0.052034	1695.487	0.119658
0.008899	999.485	0.134394	1700.291	0.348070
0.030742	1011.887	0.130736	1761.114	0.625035
0.055446	1022.528	1.443160	1797.074	11.254312
0.086962	1038.710	0.026418	1949.624	0.841780
0.192077	1051.717	0.068139	3093.705	0.034140
0.214373	1062.871	0.123430	3176.170	0.152015
0.190122	1070.103	0.002981	3210.487	0.019388
0.325425	1074.330	0.289800	3239.884	0.051148
0.004769	1104.494	1.077627	3255.915	0.010045
0.021471	1115.377	0.779927	3260.305	0.036061
0.107418	1162.761	1.327923	3268.915	0.043554
0.150612	1175.409	0.898584	3277.697	0.034579
0.711533	1191.018	0.042529	3281.721	0.016338
0.793602	1232.404	1.410410	3298.676	0.034842
	0.000635 0.000100 0.00020 0.001476 0.005716 0.033268 0.044841 0.060171 0.005707 0.008899 0.030742 0.055446 0.086962 0.192077 0.214373 0.190122 0.325425 0.004769 0.021471 0.150612 0.711533 0.793602	0.000635 670.570 0.000100 709.885 0.000020 718.682 0.001476 799.584 0.005716 809.407 0.033268 886.634 0.044841 894.779 0.060171 939.393 0.005707 979.811 0.008899 999.485 0.030742 1011.887 0.055446 1022.528 0.086962 1038.710 0.192077 1051.717 0.214373 1062.871 0.190122 1070.103 0.325425 1074.330 0.004769 1104.494 0.021471 1115.377 0.107418 1162.761 0.150612 1175.409 0.711533 1191.018 0.793602 1232.404	0.000635670.5701.2616640.000100709.8850.5285980.000020718.6821.5593490.001476799.5841.5849310.005716809.4070.9566840.033268886.6340.0229610.044841894.7790.0603880.060171939.3930.3907760.005707979.8110.0520340.008899999.4850.1343940.0307421011.8870.1307360.0554461022.5281.4431600.0869621038.7100.0264180.1920771051.7170.0681390.2143731062.8710.1234300.3254251074.3300.2898000.0047691104.4941.0776270.0214711115.3770.7799270.1074181162.7611.3279230.1506121175.4090.8985840.7115331191.0180.0425290.7936021232.4041.410410	0.000635670.5701.2616641331.3190.000100709.8850.5285981343.7910.000020718.6821.5593491350.4250.001476799.5841.5849311396.1510.005716809.4070.9566841474.7010.033268886.6340.0229611482.2830.044841894.7790.0603881509.1980.060171939.3930.3907761553.5750.005707979.8110.0520341695.4870.008899999.4850.1343941700.2910.0307421011.8870.1307361761.1140.0554461022.5281.4431601797.0740.0869621038.7100.0264181949.6240.1920771051.7170.0681393093.7050.2143731062.8710.1234303176.1700.1901221070.1030.029813210.4870.3254251074.3300.2898003239.8840.0047691104.4941.0776273255.9150.1074181162.7611.3279233268.9150.1074181162.7611.3279233268.9150.1506121175.4090.8985843277.6970.7115331191.0180.0425293281.7210.7936021232.4041.4104103298.676

ATZ-I1f

	Matriz Z									
С										
С	1	1.40554								
С	1	1.40362	2	120.8175						
С	3	1.37697	1	119.3028	2	-0.0000				
С	4	1.43816	3	121.3300	1	-0.0000				
С	2	1.37907	1	120.9133	5	-0.0000				
Н	3	1.08829	4	120.5002	1	-180.0000				
Н	1	1.08882	2	119.4780	3	180.0000				
Н	2	1.08854	6	119.6271	1	180.0000				
Н	6	1.08432	2	121.2610	5	180.0000				
Н	4	1.08877	5	116.4840	3	180.0000				
Ν	5	1.33313	4	114.0645	3	-180.0000				
Ν	12	2.64440	5	149.3674	4	-11.6686				
С	12	1.38334	5	121.9325	4	177.7650				
Ν	13	1.16796	12	82.9960	5	-175.8107				
Ν	15	1.37836	13	128.8838	12	6.1719				
Ο	14	1.21705	12	128.5673	5	-5.4345				
С	16	1.45637	15	113.2666	13	-176.6258				
С	18	1.51634	16	112.4943	15	85.1881				
Н	18	1.09665	16	107.1961	19	-121.2869				
Н	18	1.09446	20	109.1403	16	116.1910				
С	19	1.32999	18	124.4317	16	-1.9886				
Н	22	1.09000	19	120.8145	18	-180.0000				
Н	22	1.09260	23	117.5936	19	-180.0000				
Н	19	1.09242	22	120.5045	18	180.0000				

Átomo	Valência Livre
С	0.028
С	0.000
С	0.000
С	0.021
С	0.007
С	0.019
Н	0.000
Ν	0.113
Ν	0.465
С	0.001
Ν	0.049
Ν	0.005
0	0.002
С	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	-0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.406	1.410	1	3	1.404	1.412	1	4	2.400	0.056
1	8	1.089	0.944	1	12	4.137	0.059	2	4	2.798	0.054
2	6	1.379	1.569	2	9	1.089	0.938	3	4	1.377	1.568
3	6	2.833	0.056	3	7	1.088	0.941	4	5	1.438	1.268
4	11	1.089	0.934	5	6	1.440	1.214	5	12	1.333	1.586
6	10	1.084	0.924	10	17	2.139	0.060	12	14	1.383	1.220
13	15	1.168	2.275	13	16	2.299	0.095	14	16	1.394	1.084
14	17	1.217	2.051	15	16	1.378	0.987	16	17	2.245	0.056
16	18	1.456	0.972	18	19	1.516	1.062	18	20	1.097	0.936
18	21	1.094	0.930	19	22	1.330	2.083	19	25	1.092	0.946
22	23	1.090	0.944	22	24	1.093	0.940				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-681.0387611026	509.324366

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
20.499	0.023499	590.829	0.060854	1315.007	0.014867				
5.009	0.008362	651.661	1.221271	1324.070	8.609430				
3.299	0.003230	677.396	1.323907	1341.417	0.807330				
0.832	0.000132	715.124	1.241832	1390.956	13.740014				
0.481	0.000024	768.084	0.876725	1419.410	3.853111				
0.434	0.000051	840.008	2.200086	1448.912	6.531748				
39.451	0.129662	852.050	0.643111	1468.287	0.203643				
53.108	0.003692	878.708	0.512605	1482.554	0.873629				
73.630	0.041001	881.832	0.052797	1489.466	1.241823				
99.529	0.026024	930.786	0.170972	1502.064	2.112205				
102.725	0.024833	973.437	0.258867	1609.525	0.347667				
141.964	0.059431	979.542	0.549034	1641.284	10.155633				
210.969	0.007568	1022.663	0.133990	1753.991	12.576205				
235.204	0.026489	1031.749	2.151173	1772.762	1.108618				
247.688	0.003425	1049.884	0.086917	1930.347	1.883442				
261.211	0.021298	1059.499	0.181926	3156.909	0.195249				
324.679	0.014846	1066.592	0.048934	3202.666	0.041724				
336.684	0.014918	1070.669	1.245677	3205.828	0.003788				
372.180	0.105547	1088.104	0.029065	3232.208	0.094785				
399.385	0.325766	1127.612	0.522346	3268.110	0.036495				
403.968	0.233820	1136.015	4.441072	3278.916	0.016413				
506.122	0.038617	1165.411	0.884673	3283.101	0.011941				
519.982	0.349165	1172.980	7.733628	3293.117	0.064791				
566.356	0.138948	1212.893	3.542931	3293.195	0.097030				
582.092	1.109697	1297.943	0.711226	3329.800	0.580849				

ATZ-ET2a

	Matriz Z									
С										
С	1	1.39444								
С	1	1.39813	2	120.2979						

Átomo	Valência Livre
С	0.000
С	0.000
С	0.000

С	3	1.39165	1	120.0799	2	0.0000
С	4	1.39691	3	119.1588	1	-0.0000
С	5	1.39204	4	121.2019	3	0.0000
Н	3	1.08866	4	119.7350	1	-180.0000
Н	1	1.08897	2	119.8806	3	-180.0000
Н	2	1.08856	6	119.8422	1	-180.0000
Н	6	1.08876	5	119.1136	2	-180.0000
Н	4	1.08969	5	119.8155	3	180.0000
Ν	5	1.43117	4	120.8227	3	178.5261
Ν	12	1.57780	5	110.0643	4	-83.5784
С	12	1.39287	5	118.9775	4	54.1692
Ν	13	1.13178	12	122.7204	5	-156.5641
Ν	14	1.40956	12	114.8433	5	-160.3593
Ο	14	1.20729	12	121.2601	5	25.8800
С	16	1.44735	14	112.2531	12	150.9090
С	18	1.52113	16	112.6251	14	-75.0099
Н	18	1.09614	16	108.4783	19	-121.6626
Н	18	1.10149	20	109.7171	16	117.8337
С	19	1.33116	18	125.5789	16	-11.4609
Н	22	1.09005	19	120.3927	18	-180.0000
Н	22	1.09110	23	117.3155	19	-179.1293
Н	19	1.09189	22	120.1404	18	178.9645

С	0.000
С	0.000
С	0.000
Н	0.000
Ν	0.060
Ν	0.050
С	0.001
Ν	0.217
Ν	0.683
0	0.003
С	0.000
С	0.001
Н	0.000
Н	0.000
С	0.000
Н	-0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.394	1.486	1	3	1.398	1.464	1	5	2.773	0.081
1	8	1.089	0.945	2	4	2.799	0.082	2	6	1.395	1.459
2	9	1.089	0.938	3	4	1.392	1.489	3	6	2.796	0.078
3	7	1.089	0.937	4	5	1.397	1.438	4	11	1.090	0.926
5	6	1.392	1.504	5	12	1.431	0.950	6	10	1.089	0.934
12	13	1.578	0.717	12	14	1.393	1.116	12	15	2.388	0.127
12	17	2.268	0.054	13	15	1.132	2.489	14	16	1.410	1.138
14	17	1.207	2.161	16	18	1.447	1.076	18	19	1.521	1.050
18	20	1.096	0.941	18	21	1.101	0.911	19	22	1.331	2.071
19	25	1.092	0.945	22	23	1.090	0.943	22	24	1.091	0.937

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-681.0147474125	497.901918

ATZ-ET2f

Matriz Z									
С									
С	1	1.40504							
С	1	1.40272	2	120.7723					
С	3	1.37916	1	119.5476	2	0.0000			
С	4	1.43278	3	120.9235	1	-0.0000			
С	2	1.37947	1	120.6242	5	0.0000			
Н	3	1.08841	4	120.3522	1	-180.0000			
Н	1	1.08888	3	119.6856	2	-180.0000			
Н	2	1.08861	6	119.8087	1	180.0000			
Н	6	1.08696	2	120.9366	5	180.0000			

Átomo	Valência Livre
С	0.024
С	0.000
С	0.000
С	0.021
С	0.005
С	0.019
Н	0.000

Н	4	1.08872	5	117.0008	3	-180.0000
Ν	5	1.33332	4	115.8348	3	177.7563
Ν	12	2.75363	5	131.5164	4	-66.3764
С	12	1.39234	5	120.3395	4	174.2835
Ν	13	1.12336	12	79.1400	5	-155.2345
Ν	14	1.38993	12	114.5409	5	140.0471
Ο	14	1.21510	12	125.4279	5	-41.3316
С	16	1.45469	14	118.8992	12	152.3348
С	18	1.51569	16	114.4703	14	-68.7584
Н	18	1.09733	16	107.4371	19	-122.7411
Н	18	1.09763	20	108.3019	16	114.5382
С	19	1.33009	18	125.1209	16	0.9659
Н	22	1.09011	19	120.7036	18	180.0000
Н	22	1.09278	23	117.3931	19	-180.0000
Н	19	1.09281	22	120.1488	18	-180.0000

Н	0.000
Ν	0.161
Ν	0.161
С	0.001
Ν	0.048
Ν	0.097
0	0.002
С	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.405	1.417	1	3	1.403	1.424	1	4	2.404	0.050
1	8	1.089	0.944	1	12	4.136	0.064	2	4	2.802	0.056
2	6	1.379	1.572	2	9	1.089	0.937	3	4	1.379	1.558
3	6	2.825	0.058	3	7	1.088	0.941	4	5	1.433	1.282
4	11	1.089	0.933	4	12	2.344	0.051	5	6	1.435	1.217
5	12	1.333	1.571	6	10	1.087	0.925	12	14	1.392	1.159
13	15	1.123	2.562	13	16	2.429	0.142	14	16	1.390	1.121
14	17	1.215	2.103	15	16	1.616	0.665	16	17	2.258	0.052
16	18	1.455	0.996	18	19	1.516	1.056	18	20	1.097	0.940
18	21	1.098	0.929	19	22	1.330	2.085	19	25	1.093	0.944
22	23	1.090	0.943	22	24	1.093	0.933				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-681.0301883239	498.279037				

ATZ-I2

Matriz Z								
С								
С	1	1.40469						
С	1	1.40281	2	120.7443				
С	3	1.37895	1	119.4873	2	-0.0000		
С	4	1.43280	3	121.0360	1	0.0000		
С	2	1.38007	1	120.6961	5	-0.0000		
Н	3	1.08821	4	120.2491	1	180.0000		
Н	1	1.08893	3	119.6043	2	180.0000		
Н	2	1.08856	6	119.7331	1	-180.0000		
Н	6	1.08610	2	120.8813	5	-180.0000		
Н	4	1.08873	5	117.0041	3	-180.0000		
Ν	5	1.33684	4	115.4071	3	-178.8783		
С	12	1.39003	5	121.3905	4	-172.4151		
Ν	13	1.41006	12	111.2808	5	-152.9738		
Ο	13	1.21295	12	127.1237	5	26.7580		
С	14	1.45036	13	114.0210	12	-133.5104		

Átomo	Valência Livre
С	0.023
С	0.000
С	0.000
С	0.019
С	0.005
С	0.018
Н	0.000
Ν	0.150
С	0.002
N	0.722
0	0.007
С	0.000

С	16	1.52042	14	112.0414	13	80.5974
Н	16	1.10242	14	108.4730	17	-120.1712
Н	16	1.09662	18	109.4488	14	118.3968
С	17	1.33116	16	125.0711	14	-0.0000
Н	20	1.09041	17	120.2317	16	180.0000
Н	20	1.09141	21	117.9567	17	-180.0000
Н	17	1.09233	20	120.5487	16	-180.0000

С	0.001
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.405	1.417	1	3	1.403	1.422	1	4	2.403	0.050
1	8	1.089	0.944	1	12	4.140	0.061	2	4	2.800	0.057
2	6	1.380	1.569	2	9	1.089	0.938	3	4	1.379	1.559
3	6	2.826	0.058	3	7	1.088	0.941	4	5	1.433	1.282
4	11	1.089	0.933	5	6	1.435	1.220	5	12	1.337	1.541
6	10	1.086	0.925	12	13	1.390	1.178	13	14	1.410	1.119
13	15	1.213	2.098	14	16	1.450	1.069	16	17	1.520	1.048
16	18	1.102	0.918	16	19	1.097	0.943	17	20	1.331	2.081
17	23	1.092	0.947	20	21	1.090	0.944	20	22	1.091	0.929

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1			
-571.5700786161	480.445609			

	Espectroscopia de Infravermelho						
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade		
13.437	0.012931	654.402	0.541281	1296.480	1.118626		
6.125	0.006980	680.525	1.276529	1322.370	0.689008		
4.600	0.007477	804.266	0.139906	1346.934	0.279453		
2.187	0.000968	832.539	2.089651	1353.111	0.337694		
0.947	0.000061	853.132	0.427430	1422.359	7.955727		
0.528	0.000030	875.058	0.055822	1477.409	0.086901		
34.535	0.122803	897.074	0.137185	1483.295	0.081107		
54.424	0.065333	943.012	0.355887	1486.733	0.997542		
77.641	0.001335	976.424	1.477486	1498.149	1.099118		
102.227	0.104374	1011.855	0.949709	1618.368	0.800809		
170.281	0.021324	1015.068	0.358280	1641.549	8.119648		
190.928	0.009213	1037.763	1.692181	1756.659	6.627554		
228.945	0.133107	1044.496	1.095856	1764.862	4.116181		
276.398	0.215522	1053.561	0.223539	3086.128	0.054780		
315.720	0.343549	1057.561	0.266544	3164.078	0.430434		
351.843	0.305952	1058.920	0.283998	3211.392	0.031779		
393.243	0.120619	1083.167	0.019791	3234.427	0.125685		
406.349	0.022796	1119.536	6.546741	3270.685	0.002623		
503.399	0.115738	1130.506	0.975406	3276.175	0.012566		
562.264	0.626968	1165.564	0.444945	3286.104	0.000733		
574.634	0.385783	1178.886	3.784930	3291.151	0.057084		
588.295	0.202404	1227.768	2.020904	3302.527	0.022570		
603.118	0.036944	1276.316	18.284591	3321.562	0.252717		

ATZ-ET3

Matriz Z

Átomo Valência Livre

С						
С	1	1.39789				
С	1	1.39658	2	119.9944		
С	3	1.39126	1	119.9559	2	-0.0000
С	4	1.40434	3	120.2749	1	-0.0000
С	2	1.39111	1	120.4418	5	-0.0000
Н	3	1.08894	4	119.8970	1	-180.0000
Н	1	1.08901	3	120.0169	2	-180.0000
Н	2	1.08897	6	119.5327	1	180.0000
Н	6	1.08856	2	120.6248	5	180.0000
Н	4	1.08940	5	118.3457	3	180.0000
Ν	5	1.39952	4	116.7212	3	178.1451
С	12	1.37857	5	120.1073	4	155.2295
Ν	13	1.42296	12	113.8826	5	153.6162
Ο	13	1.21154	12	126.2148	5	-30.6541
С	14	1.46539	13	109.6421	12	-78.2222
С	16	1.51626	14	108.0420	13	49.9256
Н	16	1.10262	14	108.2682	17	-119.2819
Н	16	1.09759	18	108.7674	14	118.2259
С	17	1.36054	16	118.4401	14	34.6826
Н	20	1.09074	17	120.7080	12	-104.5963
Н	20	1.08962	21	117.2585	17	167.8584
Н	17	1.08960	20	121.3267	16	170.8587

С	0.001
С	0.000
С	0.000
С	0.002
С	0.000
С	0.002
Н	0.000
Ν	0.202
С	0.001
Ν	0.769
О	0.002
С	0.000
С	0.064
Н	0.001
Н	0.000
С	0.005
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.398	1.463	1	3	1.397	1.469	1	5	2.797	0.072
1	8	1.089	0.945	2	4	2.790	0.075	2	6	1.391	1.507
2	9	1.089	0.937	3	4	1.391	1.494	3	6	2.801	0.075
3	7	1.089	0.939	4	5	1.404	1.430	4	11	1.089	0.931
5	6	1.407	1.377	5	12	1.400	1.161	6	10	1.089	0.927
12	13	1.379	1.209	12	17	2.575	0.165	12	20	2.137	0.277
13	14	1.423	1.115	13	15	1.212	2.184	14	16	1.465	1.054
16	17	1.516	1.054	16	18	1.103	0.925	16	19	1.098	0.943
17	20	1.361	1.743	17	23	1.090	0.956	20	21	1.091	0.947
20	22	1.090	0.941								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-571.5497542036	478.414235

ATZ-I3

	Matriz Z							
С								
С	1	1.39560						
С	1	1.39417	2	119.4489				
С	3	1.39448	1	120.4008	2	-0.8386		
С	4	1.39929	3	119.9447	1	0.9754		
С	2	1.39339	1	120.7067	4	-0.0000		
Н	3	1.08894	4	119.3165	1	179.1204		
Н	1	1.08876	3	120.2443	2	-180.0000		
Н	2	1.08909	6	119.1676	1	180.0000		

Átomo	Valência Livre					
С	0.000					
Н	0.000					
Н	0.000					
Н	0.000					
Н	6	1.08605	5	119.5505	2	-180.0000
---	----	---------	----	----------	----	-----------
Н	4	1.08925	3	119.8104	5	-180.0000
Ν	5	1.42280	4	119.1245	3	178.6025
С	12	1.36212	5	121.5486	4	138.8457
Ν	13	1.41802	12	114.8867	5	-169.9378
Ο	13	1.21550	12	125.5923	5	7.7437
С	14	1.45554	13	113.1299	12	-54.7026
С	16	1.50631	14	109.3273	13	51.3803
Н	16	1.10762	14	108.2054	17	-120.4635
Н	16	1.09742	18	108.0078	14	117.5000
С	12	1.47223	5	119.7489	4	-35.0415
Н	20	1.09533	12	107.7427	17	119.7615
Н	20	1.10449	21	108.6287	12	-119.2173
Н	17	1.08612	20	119.7786	16	-157.7899

Н	-0.000
Н	0.000
Ν	0.000
С	0.001
Ν	0.724
0	0.001
С	0.001
С	0.811
Н	0.002
Н	0.000
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.396	1.470	1	3	1.394	1.481	1	5	2.799	0.081
1	8	1.089	0.944	2	4	2.786	0.079	2	6	1.393	1.493
2	9	1.089	0.937	3	4	1.394	1.490	3	6	2.793	0.081
3	7	1.089	0.935	4	5	1.399	1.446	4	11	1.089	0.924
5	6	1.400	1.448	5	12	1.423	1.005	6	10	1.086	0.924
12	13	1.362	1.210	12	15	2.293	0.064	12	20	1.472	0.977
13	14	1.418	1.136	13	15	1.216	2.147	14	16	1.456	1.067
16	17	1.506	1.066	16	18	1.108	0.915	16	19	1.097	0.946
17	20	1.499	1.094	17	23	1.086	0.960	20	21	1.095	0.939
20	22	1.104	0.929								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-571.6024479546	485.160798				

Espectroscopia de Infravermelho								
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade			
14.870	0.206977	733.117	1.374483	1308.455	1.947871			
7.930	0.034140	766.830	0.148357	1334.017	0.225998			
3.191	0.004693	799.450	0.679936	1350.853	1.367679			
1.522	0.001043	821.601	1.558418	1359.164	0.138184			
0.877	0.000049	882.915	0.007312	1383.582	1.963603			
0.701	0.000213	893.153	0.062106	1467.087	6.136141			
53.148	0.067845	943.059	0.101544	1489.209	2.765341			
73.733	0.024522	960.360	0.198340	1508.950	0.409869			
106.416	0.010293	975.655	0.248431	1534.933	2.818968			
151.382	0.101732	993.914	0.321011	1553.956	5.373196			
186.541	0.339394	1006.517	0.030123	1685.374	0.103346			
222.846	0.024971	1037.777	0.049244	1699.023	1.564412			
294.174	0.017839	1042.871	0.013714	1780.026	19.117960			
312.023	0.196178	1066.764	0.119070	3027.691	0.080995			
384.255	0.147314	1069.376	0.071093	3048.877	0.666131			
405.632	0.793765	1113.887	0.298636	3147.020	0.372095			
445.339	0.053729	1117.394	0.223531	3182.718	0.034873			
504.612	0.523384	1159.296	0.416569	3251.486	0.062861			

535.281	0.153208	1165.680	0.106206	3257.683	0.050949
538.875	0.044442	1197.731	0.015376	3265.017	0.048098
594.133	0.532065	1236.078	2.592957	3275.298	0.048465
617.727	0.057520	1249.332	0.255137	3286.728	0.017064
671.622	0.620614	1283.840	1.356168	3300.989	0.053662

ATZ-ET4

Matriz Z							
С							
С	1	1.39689					
С	1	1.39292	2	119.4022			
С	3	1.39564	1	120.3686	2	-0.8682	
С	4	1.39816	3	120.1027	1	0.0000	
С	2	1.39205	1	120.6808	4	0.0000	
Н	3	1.08904	4	119.3166	1	180.0000	
Н	1	1.08877	3	120.3038	2	-180.0000	
Н	2	1.08912	6	119.2353	1	180.0000	
Н	6	1.08647	5	119.5108	2	-180.0000	
Н	4	1.08883	3	119.6678	5	-180.0000	
Ν	5	1.42681	4	119.1290	3	177.8012	
С	12	1.37540	5	119.7872	4	135.2019	
Ν	13	1.41932	12	119.9445	5	-175.6387	
Ο	13	1.21741	12	122.4755	5	3.4974	
С	14	1.42821	13	118.1076	12	-3.2902	
С	16	1.47407	14	116.5496	13	-20.9667	
Н	16	1.08893	14	114.1828	17	-153.7369	
Н	14	1.23586	16	60.1492	18	90.6975	
С	12	1.48136	5	116.7239	4	-38.4289	
Н	20	1.09477	12	107.1452	17	120.6581	
Н	20	1.10092	21	109.6657	12	-119.7388	
Н	17	1.09152	16	118.4114	20	-144.5677	

Átomo	Valência Livre
С	0.000
Н	0.000
Ν	0.000
С	0.001
Ν	0.113
О	0.002
С	0.252
С	0.800
Н	0.000
Н	0.001
С	0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.397	1.462	1	3	1.393	1.487	1	5	2.801	0.082
1	8	1.089	0.945	2	4	2.784	0.078	2	6	1.392	1.500
2	9	1.089	0.937	3	4	1.396	1.480	3	6	2.791	0.081
3	7	1.089	0.935	4	5	1.398	1.459	4	11	1.089	0.926
5	6	1.401	1.445	5	12	1.427	1.003	6	10	1.086	0.926
12	13	1.375	1.173	12	15	2.274	0.058	12	20	1.481	0.974
13	14	1.419	1.181	13	15	1.217	2.119	14	16	1.428	1.121
14	19	1.236	0.520	16	17	1.474	1.062	16	18	1.089	0.960
16	19	1.345	0.455	17	20	1.494	1.106	17	23	1.092	0.946
20	21	1.095	0.941	20	22	1.101	0.927				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-571.5367107284	474.357444				

ATZ-P

Matriz Z

Átomo Valência Livre

С						
С	1	1.39752				
С	1	1.39162	2	119.2614		
С	3	1.39695	1	120.5250	2	0.0000
С	4	1.39871	3	120.1537	1	-0.0000
С	2	1.39115	1	120.7100	4	0.0000
Н	3	1.08909	4	119.1835	1	-180.0000
Н	1	1.08874	3	120.3748	2	180.0000
Н	2	1.08916	6	119.1854	1	-180.0000
Н	6	1.08646	5	119.4062	2	180.0000
Н	4	1.08841	3	119.3670	5	180.0000
Ν	5	1.42208	4	119.7071	3	-177.4247
С	12	1.37508	5	119.6933	4	-138.3170
Ν	13	1.37483	12	115.2774	5	-178.1011
Ο	13	1.22145	12	124.0801	5	0.0000
С	14	1.39710	13	122.7975	12	14.3381
С	16	1.32932	14	119.9863	13	-21.7766
С	12	1.47158	5	117.7695	4	26.9412
Н	14	1.01339	13	113.9166	16	159.1473
Н	16	1.08782	14	115.6262	17	180.0000
Н	18	1.10322	12	110.4053	17	122.1785
Н	18	1.09601	21	108.3651	12	-116.9499
Н	17	1.08680	16	121.7323	18	-178.1326

-0.000
-0.000
-0.000
-0.000
-0.000
0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
-0.000
0.000
0.000
-0.000
-0.000
-0.000
0.000
0.000
0.000
-0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.398	1.455	1	3	1.392	1.494	1	5	2.806	0.080
1	8	1.089	0.944	2	4	2.784	0.077	2	6	1.391	1.511
2	9	1.089	0.937	3	4	1.397	1.478	3	6	2.788	0.083
3	7	1.089	0.935	4	5	1.399	1.452	4	11	1.088	0.925
5	6	1.403	1.436	5	12	1.422	1.023	6	10	1.086	0.924
12	13	1.375	1.167	12	18	1.472	0.992	13	14	1.375	1.196
13	15	1.221	2.111	14	16	1.397	1.122	14	17	2.361	0.053
14	19	1.013	0.921	16	17	1.329	1.918	16	20	1.088	0.950
17	18	1.509	1.061	17	23	1.087	0.950	18	21	1.103	0.930
18	22	1.096	0.937								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-571.7426664955	497.384915

Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade						
12.516	0.037001	734.723	0.155068	1329.995	5.771795						
6.123	0.028488	746.401	2.591525	1344.547	2.653360						
4.244	0.010223	795.314	0.407353	1357.486	0.373936						
3.076	0.001738	805.719	2.239665	1442.893	0.884943						
2.160	0.000446	881.143	0.028003	1486.753	4.928225						
1.330	0.000408	892.658	0.494836	1495.579	6.093724						
51.259	0.065142	955.714	0.067430	1507.916	1.151179						
86.089	0.061393	972.158	0.199721	1538.718	6.774572						
139.386	0.168917	1001.604	0.001566	1554.801	2.942038						

151.993	0.059920	1023.129	0.084812	1684.600	0.266363
177.733	0.033761	1040.620	0.007517	1700.087	1.247080
287.830	0.173113	1045.114	0.049301	1772.676	25.694005
303.485	0.173478	1060.034	0.261930	1802.669	0.896636
394.380	0.125683	1062.192	0.129235	3063.997	1.078997
438.403	0.049929	1076.813	0.137864	3169.473	0.110698
463.992	1.814998	1099.952	1.096758	3251.893	0.023520
513.353	0.622399	1116.483	0.212933	3259.198	0.100160
534.868	0.580408	1165.364	0.107790	3267.896	0.121386
558.366	1.965310	1200.131	0.050003	3275.095	0.027127
570.447	0.258082	1212.740	1.179213	3283.904	0.150348
614.753	0.118627	1244.386	2.184048	3295.699	0.014374
618.610	0.058139	1272.592	0.285258	3305.942	0.020283
722.618	1.067763	1298.313	0.773963	3633.503	4.829957

			ľ	Matriz Z		
С						
С	1	1.39381				
С	1	1.39605	2	119.6391		
С	3	1.39222	1	120.5532	2	0.0000
С	4	1.39685	3	118.9491	1	-0.0000
С	2	1.39499	1	120.7780	5	0.0000
Н	3	1.08876	4	119.2255	1	-180.0000
Н	1	1.08859	2	120.2242	3	180.0000
Н	2	1.08878	6	119.0165	1	-180.0000
Н	6	1.08622	5	119.9467	2	180.0000
Н	4	1.08737	5	119.8699	3	-180.0000
Ν	5	1.42264	4	118.7933	3	180.0000
Ν	12	1.34764	5	121.2032	4	12.9002
С	12	1.37872	5	128.6393	4	-164.1519
Ν	13	1.25055	12	108.8340	5	-177.7032
Ν	15	1.33703	13	109.0049	12	-0.0000
Ο	14	1.21874	12	130.3236	5	-2.3044
С	16	1.46240	15	122.9522	13	177.5912
С	18	1.51577	16	109.7962	15	55.3137
С	19	1.33289	18	122.4514	16	-140.0309
Н	20	1.09205	19	118.8050	18	180.0000
С	20	1.51458	19	123.7584	18	-0.8135
Н	19	1.09187	20	121.0764	18	180.0000
С	22	1.53522	20	111.5686	19	-14.2182
Н	22	1.10190	20	108.5959	24	121.5335
Н	22	1.09866	25	107.0109	20	-117.5525
С	18	1.53357	16	110.5853	15	-68.9271
Н	24	1.10091	27	109.0846	22	120.0227
Н	24	1.09703	28	108.0304	27	-119.5655
Н	18	1.09877	16	103.4545	19	117.5510
Н	27	1.09795	18	109.2834	24	122.2212
Н	27	1.10054	31	108.8568	18	-117.9283

Apêndice 2 – Espécies envolvidas no mecanismo da CTZ CTZ-S0

Átomo	Valência Livre
С	-0.000
С	0.000
Н	-0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	0.000
Ν	-0.000
Ν	0.000
С	0.000
Ν	-0.000
Ν	0.000
О	-0.000
С	-0.000
С	-0.000
С	-0.000
Н	-0.000
С	0.000
Н	-0.000
С	-0.000
Н	0.000
Н	-0.000
С	-0.000
Н	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.394	1.483	1	3	1.396	1.470	1	5	2.778	0.080
1	8	1.089	0.944	2	4	2.793	0.082	2	6	1.395	1.482
2	9	1.089	0.938	3	4	1.392	1.501	3	6	2.798	0.081
3	7	1.089	0.937	4	5	1.397	1.440	4	11	1.087	0.918
5	6	1.396	1.451	5	12	1.423	0.935	6	10	1.086	0.915
10	17	2.273	0.054	12	13	1.348	1.155	12	14	1.379	1.102
12	15	2.114	0.080	12	17	2.358	0.056	13	15	1.251	1.701
13	16	2.107	0.087	14	16	1.368	1.138	14	17	1.219	2.053
15	16	1.337	1.164	16	17	2.331	0.058	16	18	1.462	0.919
18	19	1.516	1.028	18	27	1.534	1.063	18	30	1.099	0.902
19	20	1.333	2.013	19	23	1.092	0.937	20	21	1.092	0.937
20	22	1.515	1.064	22	24	1.535	1.084	22	25	1.102	0.928
22	26	1.099	0.934	24	27	1.534	1.081	24	28	1.101	0.944
24	29	1.097	0.938	27	31	1.098	0.933	27	32	1.101	0.937

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-797.8868662618	695.219319

Espectroscopia de Infravermelho										
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade					
15.155	0.006094	778.105	0.083947	1355.535	0.374209					
7.631	0.000214	784.677	1.106457	1372.639	0.028503					
3.966	0.000043	809.439	2.486051	1381.268	0.147487					
3.344	0.000881	832.101	0.110792	1386.306	0.128280					
2.682	0.000171	871.595	0.509315	1417.013	0.099173					
2.369	0.000171	892.375	0.003243	1425.903	0.130017					
24.540	0.000135	905.518	0.765519	1453.956	1.050434					
37.300	0.002407	924.967	0.060346	1481.053	0.286496					
57.409	0.066821	958.299	0.209470	1490.601	5.962703					
67.705	0.018694	985.966	0.212796	1498.696	1.312733					
118.760	0.026616	991.487	1.359827	1509.912	0.877429					
130.893	0.012927	1002.425	0.022049	1513.755	0.452743					
212.279	0.072423	1041.116	0.023520	1564.038	9.038289					
225.181	0.074060	1049.506	0.028977	1657.201	0.571395					
237.845	0.074318	1053.221	0.742155	1696.798	0.242807					
276.923	0.012080	1067.908	0.009617	1700.748	1.894524					
331.287	0.313576	1074.173	0.012317	1776.067	0.486020					
337.351	0.217270	1078.100	0.050920	1802.620	21.124637					
370.598	0.013371	1094.093	0.021813	3083.880	0.398583					
403.186	0.016938	1109.454	0.475588	3093.452	0.342944					
412.145	0.055767	1117.238	0.042522	3101.152	0.624198					
434.042	0.002086	1157.350	0.017704	3129.675	0.616082					
475.476	0.037298	1163.951	0.022629	3136.231	0.200602					
530.551	0.330560	1178.674	0.279977	3147.313	0.804445					
536.390	0.505845	1194.848	0.042143	3152.062	0.322071					
614.570	0.006521	1215.522	0.427399	3220.569	0.032447					
637.525	0.314435	1229.685	2.334118	3240.390	0.201835					
653.856	0.327011	1248.989	0.433651	3258.708	0.006856					
725.502	0.659205	1271.882	0.113540	3265.337	0.088282					
726.909	0.403824	1275.520	0.164165	3277.106	0.025347					
732.572	0.013027	1301.541	0.556500	3285.811	0.151213					
751.579	0.685755	1332.565	0.060423	3301.025	0.476340					

CTZ-Sx

	TD-DFT sem Aproximação de Tamm-Dancoff											
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador							
S ₁	-797.6817129048	0.4588	-0.1563	0.0386	0.0323							
S ₂	-797.6789618414	0.0375	-0.0687	-0.2718	0.0111							
S ₃	-797.6735228165	2.1032	-0.1704	0.1334	0.6351							
S ₄	-797.6519711193	0.0530	0.0324	0.0387	0.0008							
S ₅	-797.6393682586	1.0879	-0.1263	0.0135	0.1978							
TD-DFT com Aproximação de Tamm-Dancoff												
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador							
S ₁	-797.6768178847	-0.2654	0.1030	-0.0368	0.0115							

S ₂	-797.6666890987	0.0466	0.0326	0.3533	0.0188
S ₃	-797.6639412178	-2.2552	0.2158	-0.0546	0.7631
S ₄	-797.6435762065	-0.2230	0.0308	-0.0916	0.0096
S ₅	-797.6289546305	-1.0423	0.1626	0.0224	0.1914

CTZ-T

	Matriz Z										
С											
С	1	1.39449									
С	1	1.39533	2	119.5516							
С	3	1.39216	1	120.4803	2	0.0000					
С	4	1.39837	3	119.2582	1	-0.0000					
С	2	1.39420	1	120.9597	5	0.0000					
Н	3	1.08879	4	119.2618	1	-180.0000					
Н	1	1.08857	2	120.2263	3	180.0000					
Н	2	1.08880	6	118.8688	1	-180.0000					
Н	6	1.08582	2	120.7200	5	180.0000					
Н	4	1.08732	5	119.4917	3	-180.0000					
Ν	5	1.41963	4	117.5347	3	-180.0000					
Ν	12	1.34036	5	120.6379	4	19.1372					
С	12	1.40327	5	127.6446	4	-175.9844					
Ν	13	1.46395	12	104.2295	5	-171.6833					
Ν	15	1.33529	13	103.7438	12	-27.4763					
0	14	1.19460	12	129.1766	5	7.4351					
С	16	1.46680	15	120.7187	13	175.6581					
С	18	1.51506	16	108.7600	15	57.5598					
С	19	1.33279	18	122.5622	16	-138.6364					
Н	20	1.09205	19	118.7818	18	179.0719					
С	20	1.51464	19	123.7545	18	-1.4405					
Н	19	1.09156	20	121.1097	18	-180.0000					
С	22	1.53499	20	111.5013	19	-14.2565					
Н	22	1.10193	20	108.6660	24	121.5435					
Н	22	1.09868	25	107.0135	20	-117.5786					
С	24	1.53383	22	110.1028	20	46.3745					
Н	24	1.10091	27	109.1330	22	120.0224					
Н	24	1.09715	28	108.0153	27	-119.5652					
Н	18	1.09844	16	104.4175	19	117.4446					
Н	27	1.09839	18	109.2539	24	121.9967					
Н	27	1.10004	31	109.0028	18	-117.8331					

Átomo	Valôncia Lima
Atomo	valencia Livre
<u>C</u>	0.000
С	0.000
Н	0.000
Ν	0.029
Ν	0.487
С	0.003
Ν	0.487
Ν	0.036
Ο	0.006
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.394	1.478	1	3	1.395	1.473	1	5	2.783	0.078
1	8	1.089	0.944	2	4	2.789	0.080	2	6	1.394	1.495
2	9	1.089	0.937	3	4	1.392	1.500	3	6	2.800	0.081
3	7	1.089	0.938	4	5	1.398	1.432	4	11	1.087	0.919
5	6	1.398	1.435	5	12	1.420	0.948	6	10	1.086	0.916
12	13	1.340	1.272	12	14	1.403	1.014	13	15	1.464	0.960
14	16	1.395	1.038	14	17	1.195	2.161	15	16	1.335	1.273
16	18	1.467	0.941	18	19	1.515	1.030	18	27	1.536	1.052
18	30	1.098	0.908	19	20	1.333	2.014	19	23	1.092	0.937

20	21	1.092	0.937	20	22	1.515	1.062	22	24	1.535	1.085
22	25	1.102	0.928	22	26	1.099	0.934	24	27	1.534	1.084
24	28	1.101	0.944	24	29	1.097	0.938	27	31	1.098	0.932
27	32	1.100	0.934								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-797.7610433332	687.232344

Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade						
5.819	0.003553	753.825	0.976064	1332.436	0.266698						
4.223	0.009764	762.008	0.718283	1365.881	2.143596						
3.003	0.000658	806.264	2.687000	1369.381	0.703917						
1.024	0.000062	823.780	0.153897	1374.882	0.990705						
0.742	0.000049	831.326	0.135014	1384.645	0.057364						
0.470	0.000009	880.894	0.035769	1398.437	8.659919						
27.703	0.005769	898.354	0.008963	1421.926	5.104436						
42.565	0.031234	917.446	0.390659	1434.544	0.988764						
62.514	0.011204	940.222	0.316576	1463.518	1.510277						
68.332	0.016106	960.317	0.105149	1481.430	0.067436						
107.503	0.044270	985.441	0.356854	1498.548	0.165790						
133.137	0.015515	987.799	0.197998	1510.944	0.128043						
201.947	0.178219	1005.690	0.024701	1517.968	0.164647						
214.109	0.007578	1040.379	0.209993	1560.009	5.628445						
237.903	0.052433	1047.798	0.126963	1692.059	0.213701						
269.154	0.081506	1054.759	0.016278	1700.920	1.197503						
275.790	0.036610	1067.184	0.306233	1777.800	0.132080						
303.761	0.124139	1074.672	0.006580	1898.343	15.977071						
331.137	0.326500	1077.857	0.092216	3083.962	0.422872						
371.570	0.012955	1093.672	0.021386	3095.282	0.552750						
393.301	0.170838	1114.659	0.023879	3103.731	0.302285						
412.040	0.117008	1119.035	0.351880	3128.284	0.744079						
431.986	0.012135	1139.668	0.484816	3132.237	0.111681						
473.215	0.201338	1157.046	0.207724	3146.429	0.761723						
522.382	0.324996	1170.116	0.012222	3151.239	0.431035						
533.072	0.365928	1206.497	0.092773	3222.732	0.035403						
613.991	0.003653	1216.242	0.372844	3241.983	0.216081						
632.361	0.298789	1245.825	0.002177	3260.011	0.009835						
653.118	0.523852	1266.836	0.451771	3269.808	0.117602						
714.491	0.067615	1273.760	0.313760	3278.088	0.039857						
720.729	0.770342	1279.219	0.755708	3291.077	0.102330						
740.142	0.893708	1310.439	1.275363	3310.651	0.245060						

CTZ-ET1a

	Matriz Z												
С													
С	1	1.39524											
С	1	1.39508	2	119.6614									
С	3	1.39171	1	120.3602	2	0.0000							
С	4	1.39945	3	119.3288	1	-1.0581							

Átomo	Valência Livre
С	0.000

С	2	1.39283	1	121.0132	5	0.0000
Н	3	1.08857	4	119.3054	1	-180.0000
Н	1	1.08859	3	120.1562	2	-180.0000
Н	2	1.08869	6	118.8542	1	-180.0000
Н	6	1.08515	2	121.0352	5	180.0000
Н	4	1.08831	5	119.7230	3	-180.0000
Ν	5	1.41384	4	117.5701	3	-177.5337
Ν	12	1.36362	5	120.0957	4	20.0692
С	12	1.42265	5	128.4051	4	-173.8249
Ν	13	1.23734	12	105.6460	5	-154.3623
Ν	14	1.38191	12	108.7556	5	-163.8583
0	14	1.20488	12	123.6260	5	13.0805
С	16	1.45685	14	116.7765	12	-145.7021
С	18	1.51372	16	108.4882	14	-176.6170
С	19	1.33325	18	122.8652	16	-143.7678
Н	20	1.09221	19	119.0104	18	178.7931
С	20	1.51499	19	123.5777	18	-1.0752
Н	19	1.09167	20	121.1021	18	-180.0000
С	22	1.53557	20	111.5780	19	-13.4693
Н	22	1.10208	20	108.6420	24	121.5232
Н	22	1.09897	25	106.9404	20	-117.6507
С	24	1.53475	22	110.3129	20	45.6233
Н	24	1.10102	27	108.9991	22	120.0006
Н	24	1.09730	28	107.9614	27	-119.6131
Н	18	1.10592	16	104.2520	19	116.1740
Н	27	1.09818	18	109.3912	24	121.7273
Н	27	1.09989	31	108.9960	18	-118.4554

С	0.000
Н	0.000
Ν	0.029
Ν	0.075
С	0.001
N	0.661
Ν	0.178
0	0.000
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	-0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.395	1.472	1	3	1.395	1.474	1	5	2.782	0.076
1	8	1.089	0.944	2	4	2.789	0.079	2	6	1.393	1.498
2	9	1.089	0.937	3	4	1.392	1.504	3	6	2.803	0.080
3	7	1.089	0.937	4	5	1.399	1.421	4	11	1.088	0.919
5	6	1.401	1.424	5	12	1.414	0.951	6	10	1.085	0.916
12	13	1.364	1.114	12	14	1.423	1.001	12	15	2.074	0.103
12	16	2.280	0.068	13	15	1.237	1.647	13	16	2.341	0.119
14	16	1.382	1.185	14	17	1.205	2.116	15	16	1.861	0.441
16	17	2.322	0.053	16	18	1.457	1.009	18	19	1.514	1.033
18	27	1.537	1.050	18	30	1.106	0.893	19	20	1.333	2.016
19	23	1.092	0.936	20	21	1.092	0.937	20	22	1.515	1.061
22	24	1.536	1.085	22	25	1.102	0.929	22	26	1.099	0.935
24	27	1.535	1.085	24	28	1.101	0.944	24	29	1.097	0.938
27	31	1.098	0.929	27	32	1.100	0.935				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-797.7027453146	675.698788

CTZ-ET1f

	Matriz Z											
С												

Átomo	Valência Livre
С	0.001

С	1	1.39759				
С	1	1.39738	2	120.1899		
С	3	1.39108	1	119.9694	2	0.0000
С	4	1.40173	3	119.8691	1	0.0000
С	2	1.39148	1	120.2330	5	0.0000
Н	3	1.08862	4	119.8397	1	-180.0000
Н	1	1.08899	2	119.8750	3	-180.0000
Н	2	1.08877	6	119.6598	1	180.0000
Н	6	1.08948	2	120.6084	5	-180.0000
Н	4	1.08882	5	118.4866	3	-180.0000
Ν	5	1.40058	4	117.4363	3	-178.3455
Ν	12	1.82858	5	113.1738	4	104.2550
С	12	1.39000	5	119.7045	4	-149.4515
Ν	13	1.25448	12	96.8191	5	169.5029
Ν	15	1.34569	13	105.2256	12	-48.8293
0	14	1.20225	12	128.2800	5	42.4502
С	16	1.46494	15	121.1809	13	-167.3570
С	18	1.51437	16	109.2013	15	58.2935
С	19	1.33270	18	122.4934	16	-137.8996
Н	20	1.09196	19	118.7465	18	179.0323
С	20	1.51445	19	123.7689	18	-1.5215
Н	19	1.09172	20	121.1355	18	-180.0000
С	22	1.53480	20	111.4934	19	-14.4111
Н	22	1.10188	20	108.6584	24	121.5553
Н	22	1.09859	25	107.0369	20	-117.5552
С	24	1.53390	22	110.1009	20	46.6202
Н	24	1.10079	27	109.1545	22	120.0683
Н	24	1.09712	28	108.0714	27	-119.4824
Н	18	1.09775	16	103.9966	19	117.8324
Н	27	1.09813	18	109.1231	24	122.0718
Н	27	1.10026	31	108.9556	18	-118.0385

С	0.000
С	0.000
С	0.001
С	0.000
С	0.001
Н	0.000
Ν	0.097
Ν	0.686
С	0.001
Ν	0.099
Ν	0.038
О	0.001
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.398	1.467	1	3	1.397	1.467	1	5	2.787	0.073
1	8	1.089	0.945	2	4	2.795	0.076	2	6	1.391	1.497
2	9	1.089	0.937	3	4	1.391	1.495	3	6	2.801	0.076
3	7	1.089	0.939	4	5	1.402	1.447	4	11	1.089	0.932
5	6	1.404	1.383	5	12	1.401	1.130	6	10	1.089	0.929
12	13	1.829	0.484	12	14	1.390	1.155	12	15	2.337	0.103
12	16	2.282	0.063	13	15	1.254	1.568	13	16	2.067	0.095
14	16	1.416	1.008	14	17	1.202	2.179	15	16	1.346	1.156
16	18	1.465	0.931	18	19	1.514	1.030	18	27	1.537	1.049
18	30	1.098	0.906	19	20	1.333	2.012	19	23	1.092	0.937
20	21	1.092	0.937	20	22	1.514	1.064	22	24	1.535	1.085
22	25	1.102	0.928	22	26	1.099	0.934	24	27	1.534	1.084
24	28	1.101	0.944	24	29	1.097	0.938	27	31	1.098	0.932
27	32	1.100	0.935								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-797.7103996455	676.205974				

CTZ-I1a

	Matriz Z									
С										
С	1	1.39611								
С	1	1.39438	2	119.9180						
С	3	1.39426	1	120.1849	2	0.0000				
С	4	1.39385	3	119.2869	1	-0.9128				
С	2	1.39274	1	120.4496	5	0.0000				
Н	3	1.08852	4	119.4767	1	-180.0000				
Н	1	1.08875	3	120.0282	2	180.0000				
Н	2	1.08875	6	119.3424	1	-180.0000				
Н	6	1.08788	5	120.0056	2	180.0000				
Н	4	1.08916	5	119.8890	3	180.0000				
Ν	5	1.43268	4	118.9490	3	-178.3052				
Ν	12	1.39067	5	113.9490	4	42.2019				
С	12	1.39107	5	122.0285	4	-132.8996				
Ν	13	1.16320	12	127.9624	5	-162.7968				
Ν	14	1.40194	12	114.9978	5	-170.4216				
Ο	14	1.20735	12	121.5631	5	3.8567				
С	16	1.44871	14	113.2686	12	-138.4020				
С	18	1.51321	16	109.7475	14	-157.4146				
С	19	1.33342	18	122.9590	16	-138.4559				
Н	20	1.09223	19	118.9599	18	180.0000				
С	20	1.51404	19	123.7389	18	-0.0000				
Н	19	1.09170	20	120.8185	18	180.0000				
С	22	1.53482	20	111.6784	19	-13.2308				
Н	22	1.10198	20	108.5390	24	121.5318				
Н	22	1.09887	25	106.9526	20	-117.6984				
С	24	1.53452	22	110.4523	20	45.1578				
Н	24	1.10041	27	108.9320	22	120.2150				
Н	24	1.09731	28	108.1166	27	-119.2115				
Н	18	1.10261	16	107.9168	19	120.8209				
Н	27	1.09926	18	109.3403	24	121.5497				
Н	27	1.09953	31	108.9479	18	-118.2274				

Átomo	Valência Livre
С	0.000
Н	-0.000
Н	0.000
Ν	0.006
Ν	0.059
С	0.001
Ν	0.429
Ν	0.669
0	0.002
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
Н	0.000
Н	-0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.396	1.470	1	3	1.394	1.484	1	5	2.777	0.081
1	8	1.089	0.945	2	4	2.792	0.080	2	6	1.393	1.494
2	9	1.089	0.937	3	4	1.394	1.484	3	6	2.797	0.081
3	7	1.089	0.937	4	5	1.394	1.463	4	11	1.089	0.925
5	6	1.395	1.454	5	12	1.433	0.911	6	10	1.088	0.926
12	13	1.391	0.986	12	14	1.391	1.077	12	15	2.297	0.094
12	17	2.270	0.052	13	15	1.163	2.288	14	16	1.402	1.151
14	17	1.207	2.142	16	18	1.449	1.043	18	19	1.513	1.026
18	27	1.549	1.025	18	30	1.103	0.902	19	20	1.333	2.015
19	23	1.092	0.939	20	21	1.092	0.938	20	22	1.514	1.063
22	24	1.535	1.085	22	25	1.102	0.929	22	26	1.099	0.934
24	27	1.535	1.084	24	28	1.100	0.943	24	29	1.097	0.938
27	31	1.099	0.932	27	32	1.100	0.935				

Energia Eletrónica/Eh Energia do Ponto Zero/kJ mol-1

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
16.873	0.015261	717.587	1.470415	1291.945	0.627789				
9.707	0.009889	732.792	0.591347	1338.404	0.546342				
2.148	0.000183	744.892	1.236968	1346.523	0.444186				
1.126	0.000019	798.541	1.176824	1349.077	1.505381				
0.727	0.000032	813.562	0.920393	1378.880	1.234048				
1.210	0.000134	836.842	0.070479	1385.978	0.113209				
10.551	0.013691	878.606	0.050585	1397.088	15.656117				
32.541	0.031147	882.180	0.036806	1429.074	0.197337				
45.412	0.049310	902.985	0.556545	1480.827	0.186251				
53.459	0.008711	945.297	0.893427	1495.528	0.262922				
85.088	0.046820	962.684	0.280555	1506.706	0.226946				
86.804	0.035975	973.912	0.037268	1506.878	0.028567				
105.723	0.013897	986.197	0.087033	1553.651	3.057058				
150.339	0.076895	1014.613	0.013880	1695.231	0.098113				
174.928	0.141859	1028.837	0.050757	1699.394	0.624702				
232.110	0.017131	1039.011	0.013699	1772.326	0.200448				
250.881	0.266974	1061.992	0.031324	1791.920	12.576606				
273.771	0.115511	1067.616	0.208489	1962.792	0.808551				
293.643	0.023741	1070.005	0.006012	3079.809	0.016835				
315.307	0.125817	1082.316	0.101045	3083.229	0.490769				
367.856	0.407005	1086.883	0.048522	3099.154	0.469705				
399.126	0.008636	1103.396	0.853480	3102.973	0.354414				
410.462	0.029436	1115.210	0.712346	3125.245	0.693407				
417.431	0.043803	1146.582	0.721373	3143.504	0.633418				
458.201	0.165552	1160.353	0.769079	3149.607	0.668810				
477.619	0.160467	1171.728	1.364642	3218.271	0.053945				
532.146	0.213404	1193.294	0.080585	3239.002	0.303415				
535.659	0.502554	1201.046	0.137068	3254.343	0.041097				
613.316	0.729542	1241.044	0.067804	3260.136	0.032547				
616.663	0.041206	1261.757	0.028925	3267.616	0.025158				
656.364	1.062987	1278.949	4.305063	3275.968	0.026630				
683.083	1.482672	1291.523	0.364371	3283.476	0.022873				

CTZ-I1p

	Matriz Z									
С										
С	1	1.40521								
С	1	1.40311	2	120.8059						
С	3	1.37870	1	119.5844	2	0.0000				
С	4	1.43426	3	120.8981	1	0.0000				
С	2	1.37859	1	120.5889	5	-0.0000				
Н	3	1.08827	4	120.3472	1	180.0000				
Н	1	1.08877	3	119.6687	2	180.0000				
Н	2	1.08866	6	119.7442	1	-180.0000				
Н	6	1.08645	2	120.9124	5	-180.0000				
Н	4	1.08877	5	117.0099	3	-180.0000				
Ν	5	1.33219	4	115.8134	3	-178.5943				

Átomo	Valência Livre
С	0.027
С	0.000
С	0.000
С	0.021
С	0.005
С	0.020
Н	0.000
Ν	0.144

Ν	12	2.65593	5	134.6230	4	68.7428
С	12	1.38671	5	120.1256	4	-172.1172
Ν	13	1.16619	12	82.6963	5	141.5452
Ν	15	1.37832	13	128.9205	12	-12.6783
Ο	14	1.21730	12	125.6050	5	37.4437
С	16	1.46967	15	113.5956	13	-175.2164
С	18	1.51540	16	110.0262	15	53.5075
С	19	1.33308	18	122.6859	16	-141.5488
Н	20	1.09224	19	118.9353	18	180.0000
С	20	1.51498	19	123.6644	18	0.0000
Н	19	1.09247	20	120.8555	18	178.9784
С	22	1.53568	20	111.6206	19	-14.4232
Н	22	1.10208	20	108.5810	24	121.5294
Н	22	1.09884	25	106.9470	20	-117.6204
С	18	1.53294	16	111.0767	15	-70.9287
Н	24	1.10098	27	108.9885	22	119.9180
Н	24	1.09734	28	107.9747	27	-119.6698
Н	18	1.09505	16	104.1495	19	117.3098
Н	27	1.09843	18	109.1029	24	122.0533
Н	27	1.10115	31	108.8652	18	-118.0957

Ν	0.450
С	0.001
Ν	0.054
Ν	0.005
0	0.001
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.405	1.413	1	3	1.403	1.421	1	4	2.404	0.052
1	8	1.089	0.944	1	12	4.136	0.063	2	4	2.803	0.055
2	6	1.379	1.577	2	9	1.089	0.937	3	4	1.379	1.561
3	6	2.825	0.056	3	7	1.088	0.940	4	5	1.434	1.278
4	11	1.089	0.933	5	6	1.437	1.212	5	12	1.332	1.570
6	10	1.086	0.925	12	14	1.387	1.209	13	15	1.166	2.295
13	16	2.298	0.095	14	16	1.389	1.096	14	17	1.217	2.048
15	16	1.378	0.993	16	17	2.256	0.054	16	18	1.470	0.933
18	19	1.515	1.029	18	27	1.533	1.060	18	30	1.095	0.907
19	20	1.333	2.012	19	23	1.092	0.937	20	21	1.092	0.937
20	22	1.515	1.063	22	24	1.536	1.084	22	25	1.102	0.929
22	26	1.099	0.935	24	27	1.534	1.081	24	28	1.101	0.944
24	29	1.097	0.939	27	31	1.098	0.933	27	32	1.101	0.936

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1			
-797.7639004772	677.774695			

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
15.484	0.014679	741.965	0.563849	1331.394	0.046241				
5.860	0.008984	752.416	1.729303	1335.880	1.915076				
1.095	0.000884	768.648	1.318144	1370.994	1.427609				
0.794	0.000050	816.144	2.036618	1372.585	0.926367				
0.741	0.000078	820.542	0.201366	1383.487	0.075143				
3.443	0.002826	855.593	0.049712	1407.616	0.710034				
11.123	0.064761	864.218	0.998541	1424.898	11.620533				
19.917	0.044700	876.785	0.208094	1436.981	8.413884				
42.749	0.065869	894.396	0.265049	1470.040	0.063517				

0.060107	924.088	0.103426	1480.650	0.104602
0.012952	957.288	0.634632	1481.450	1.091372
0.023147	969.179	1.439051	1495.649	0.294349
0.023567	989.018	1.290454	1508.451	0.263731
0.060725	991.476	0.074348	1610.806	0.244448
0.057969	1038.303	0.071055	1639.028	8.369609
0.009007	1039.220	0.077361	1742.203	14.100503
0.174414	1047.538	0.016074	1778.417	0.307881
0.015866	1064.517	0.040005	1955.459	1.219953
0.087139	1069.136	0.553929	3081.548	0.485017
0.372175	1081.867	0.560621	3090.903	0.324882
0.096384	1113.090	5.450424	3095.897	0.714661
0.168329	1116.456	0.212204	3124.962	0.861284
0.016783	1117.281	0.463612	3141.031	0.796684
0.196255	1151.908	1.377352	3143.223	0.908110
0.080115	1155.214	0.808614	3179.242	0.132283
0.219904	1176.471	1.561192	3214.168	0.037137
0.909647	1211.173	2.196078	3233.354	0.308599
0.190970	1218.464	0.665267	3260.332	0.014152
0.015461	1249.211	0.434756	3267.946	0.025063
0.085816	1269.822	0.039381	3274.507	0.011375
1.920458	1288.793	1.050606	3282.858	0.045372
1.322860	1322.897	17.476753	3301.904	0.188670
	0.060107 0.012952 0.023147 0.023567 0.060725 0.057969 0.009007 0.174414 0.015866 0.087139 0.372175 0.096384 0.168329 0.016783 0.196255 0.080115 0.219904 0.909647 0.015461 0.085816 1.920458 1.322860	0.060107 924.088 0.012952 957.288 0.023147 969.179 0.023567 989.018 0.060725 991.476 0.057969 1038.303 0.009007 1039.220 0.174414 1047.538 0.015866 1064.517 0.087139 1069.136 0.372175 1081.867 0.096384 1113.090 0.168329 1116.456 0.016783 1117.281 0.196255 1151.908 0.080115 1155.214 0.219904 1176.471 0.909647 1211.173 0.190970 1218.464 0.015461 1249.211 0.085816 1269.822 1.920458 1288.793 1.322860 1322.897	0.060107924.0880.1034260.012952957.2880.6346320.023147969.1791.4390510.023567989.0181.2904540.060725991.4760.0743480.0579691038.3030.0710550.0090071039.2200.0773610.1744141047.5380.0160740.0158661064.5170.0400050.0871391069.1360.5539290.3721751081.8670.5606210.0963841113.0905.4504240.1683291116.4560.2122040.167831117.2810.4636120.1962551151.9081.3773520.0801151155.2140.8086140.2199041176.4711.5611920.9096471211.1732.1960780.1909701218.4640.6652670.0154611249.2110.4347560.0858161269.8220.0393811.9204581288.7931.0506061.3228601322.89717.476753	0.060107924.0880.1034261480.6500.012952957.2880.6346321481.4500.023147969.1791.4390511495.6490.023567989.0181.2904541508.4510.060725991.4760.0743481610.8060.0579691038.3030.0710551639.0280.0090071039.2200.0773611742.2030.1744141047.5380.0160741778.4170.0158661064.5170.0400051955.4590.0871391069.1360.5539293081.5480.3721751081.8670.5606213090.9030.0963841113.0905.4504243095.8970.1683291116.4560.2122043124.9620.0167831117.2810.4636123141.0310.1962551151.9081.3773523143.2230.0801151155.2140.8086143179.2420.2199041176.4711.5611923214.1680.9096471211.1732.1960783233.3540.1909701218.4640.6652673260.3320.0154611249.2110.4347563267.9460.0858161269.8220.0393813274.5071.9204581288.7931.0506063282.8581.3228601322.89717.4767533301.904

CTZ-ET2a

Matriz Z									
С									
С	1	1.39683							
С	1	1.39504	2	120.0584					
С	3	1.39361	1	119.9562	2	0.0000			
С	4	1.39522	3	119.5795	1	-1.0816			
С	2	1.39303	1	120.4302	5	0.0000			
Н	3	1.08861	4	119.6843	1	-180.0000			
Н	1	1.08901	3	120.0119	2	180.0000			
Н	2	1.08875	6	119.4527	1	-180.0000			
Н	6	1.08769	5	120.0971	2	178.8320			
Н	4	1.08932	5	119.1718	3	180.0000			
Ν	5	1.42697	4	117.0892	3	-177.9885			
Ν	12	1.58067	5	110.6328	4	67.7951			
С	12	1.38338	5	122.8821	4	-147.1596			
Ν	13	1.12947	12	123.1388	5	-150.4559			
Ν	14	1.40715	12	115.1377	5	-161.2233			
Ο	14	1.20888	12	122.5447	5	18.4928			
С	16	1.45404	14	112.2848	12	-123.8296			
С	18	1.51272	16	109.5820	14	-164.8871			
С	19	1.33325	18	123.0124	16	-138.3989			
Н	20	1.09225	19	119.0138	18	178.8256			
С	20	1.51435	19	123.6651	18	-0.9770			
Н	19	1.09177	20	120.8737	18	-180.0000			
С	22	1.53478	20	111.5918	19	-13.4411			
Н	22	1.10199	20	108.6127	24	121.5099			

Átomo	Valência Livre
С	0.000
Н	0.000
Ν	0.063
Ν	0.054
С	0.001
Ν	0.201
Ν	0.715
О	0.002
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000

Н	22	1.09887	25	106.9652	20	-117.7284
С	24	1.53436	22	110.4088	20	45.5976
Н	24	1.10059	27	108.8976	22	120.1176
Н	24	1.09730	28	108.1064	27	-119.3054
Н	18	1.10378	16	106.8770	19	120.0000
Н	27	1.09871	18	109.4626	24	121.7195
Н	27	1.10046	31	108.8319	18	-118.2356

Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.397	1.471	1	3	1.395	1.480	1	5	2.779	0.080
1	8	1.089	0.945	2	4	2.791	0.080	2	6	1.393	1.489
2	9	1.089	0.937	3	4	1.394	1.481	3	6	2.801	0.080
3	7	1.089	0.938	4	5	1.395	1.470	4	11	1.089	0.929
5	6	1.397	1.442	5	12	1.427	0.965	6	10	1.088	0.928
12	13	1.581	0.715	12	14	1.383	1.115	12	15	2.393	0.126
12	17	2.275	0.053	13	15	1.129	2.499	14	16	1.407	1.130
14	17	1.209	2.150	16	18	1.454	1.040	18	19	1.513	1.030
18	27	1.546	1.031	18	30	1.104	0.900	19	20	1.333	2.016
19	23	1.092	0.937	20	21	1.092	0.938	20	22	1.514	1.062
22	24	1.535	1.085	22	25	1.102	0.929	22	26	1.099	0.935
24	27	1.534	1.085	24	28	1.101	0.943	24	29	1.097	0.938
27	31	1.099	0.930	27	32	1.100	0.935				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-797.7414992564	670.855183

CTZ-ET2f

Matriz Z									
С									
С	1	1.40439							
С	1	1.40237	2	120.7544					
С	3	1.37971	1	119.5929	2	0.0000			
С	4	1.43186	3	120.9043	1	0.0000			
С	2	1.37994	1	120.5598	5	-0.0000			
Н	3	1.08826	4	120.3050	1	180.0000			
Н	1	1.08881	3	119.7065	2	180.0000			
Н	2	1.08872	6	119.7399	1	-180.0000			
Н	6	1.08675	2	120.8448	5	-180.0000			
Н	4	1.08887	5	117.0915	3	-180.0000			
Ν	5	1.33521	4	115.9502	3	-178.7955			
Ν	12	2.80720	5	138.3148	4	62.0838			
С	12	1.39220	5	119.8537	4	-172.9309			
Ν	13	1.12505	12	76.6099	5	156.1644			
Ν	14	1.39306	12	114.4523	5	-139.6487			
Ο	14	1.21627	12	125.1602	5	40.6147			
С	16	1.46703	14	117.8348	12	-161.0134			
С	18	1.51430	16	109.0803	14	-164.7157			
С	19	1.33356	18	122.7470	16	-144.8589			
Н	20	1.09223	19	119.0014	18	-180.0000			
С	20	1.51520	19	123.5917	18	0.0000			

Átomo	Valência Livre
С	0.023
С	0.000
С	0.000
С	0.020
С	0.004
С	0.019
Н	0.000
Ν	0.170
Ν	0.172
С	0.001
Ν	0.049
Ν	0.086
О	0.003
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000

Н	19	1.09234	20	120.9191	18	178.8395
С	22	1.53583	20	111.6782	19	-14.1325
Н	22	1.10220	20	108.5181	24	121.5203
Н	22	1.09893	25	106.9112	20	-117.6020
С	18	1.53368	16	113.5294	14	69.8679
Н	24	1.10104	27	108.9244	22	119.9573
Н	24	1.09743	28	107.9134	22	119.6431
Н	18	1.09910	16	103.6740	19	116.1547
Н	27	1.09739	18	109.1107	24	121.7117
Н	27	1.10096	31	109.1043	18	-118.4082

Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.419	1	3	1.402	1.427	1	8	1.089	0.944
1	12	4.139	0.064	2	4	2.802	0.057	2	6	1.380	1.569
2	9	1.089	0.937	3	4	1.380	1.556	3	6	2.823	0.058
3	7	1.088	0.940	4	5	1.432	1.288	4	11	1.089	0.932
5	6	1.435	1.221	5	12	1.335	1.561	6	10	1.087	0.925
12	14	1.392	1.194	13	15	1.125	2.551	13	16	2.420	0.137
14	16	1.393	1.120	14	17	1.216	2.057	15	16	1.607	0.679
16	17	2.266	0.050	16	18	1.467	0.969	18	19	1.514	1.031
18	27	1.534	1.052	18	30	1.099	0.908	19	20	1.334	2.011
19	23	1.092	0.936	20	21	1.092	0.937	20	22	1.515	1.062
22	24	1.536	1.085	22	25	1.102	0.929	22	26	1.099	0.935
24	27	1.535	1.085	24	28	1.101	0.945	24	29	1.097	0.939
27	31	1.097	0.929	27	32	1.101	0.935				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1			
-797.7556601099	669.610982			

CTZ-I2

Matriz Z								
С								
С	1	1.40429						
С	1	1.40271	2	120.8326				
С	3	1.37919	1	119.4659	2	0.0000		
С	4	1.43232	3	120.9907	1	0.0000		
С	2	1.37996	1	120.5934	5	-0.0000		
Н	3	1.08818	4	120.3926	1	180.0000		
Н	1	1.08892	3	119.6473	2	180.0000		
Н	2	1.08851	6	119.6879	1	-180.0000		
Н	6	1.08614	2	120.8497	5	180.0000		
Н	4	1.08897	5	117.0041	3	-180.0000		
Ν	5	1.33745	4	115.5794	3	-178.8651		
С	12	1.38968	5	120.9789	4	-171.7107		
Ν	13	1.40896	12	111.5854	5	-151.7574		
0	13	1.21365	12	126.9332	5	29.2423		
С	14	1.45400	13	113.1985	12	-123.8306		
С	16	1.51345	14	109.9191	13	-159.4635		
С	17	1.33352	16	123.1638	14	-138.1263		
Н	18	1.09234	17	119.0435	16	179.1341		

Átomo	Valência Livre
С	0.023
С	0.000
С	0.000
С	0.019
С	0.005
С	0.018
Н	0.000
Ν	0.152
С	0.002
Ν	0.718
О	0.005
С	0.000
С	0.000
С	0.000
Н	0.000

С	18	1.51442	17	123.6385	16	-0.0000
Н	17	1.09194	18	120.7233	16	-180.0000
С	20	1.53506	18	111.6122	17	-13.5455
Н	20	1.10208	18	108.5640	22	121.4707
Н	20	1.09891	23	106.9508	18	-117.7570
С	22	1.53433	20	110.4850	18	45.2820
Н	22	1.10062	25	108.8819	20	120.1049
Н	22	1.09748	26	108.0739	25	-119.3483
Н	16	1.10346	14	107.4325	17	120.3022
Н	25	1.09840	16	109.4246	22	121.9325
Н	25	1.10047	29	108.7310	16	-117.9565

С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
Н	0.000
Н	-0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.419	1	3	1.403	1.423	1	4	2.403	0.050
1	8	1.089	0.944	1	12	4.140	0.061	2	4	2.801	0.057
2	6	1.380	1.568	2	9	1.089	0.937	3	4	1.379	1.558
3	6	2.826	0.058	3	7	1.088	0.941	4	5	1.432	1.287
4	11	1.089	0.932	5	6	1.435	1.220	5	12	1.337	1.549
6	10	1.086	0.926	12	13	1.390	1.194	13	14	1.409	1.124
13	15	1.214	2.098	14	16	1.454	1.042	16	17	1.513	1.027
16	25	1.546	1.031	16	28	1.103	0.905	17	18	1.334	2.017
17	21	1.092	0.938	18	19	1.092	0.938	18	20	1.514	1.062
20	22	1.535	1.084	20	23	1.102	0.929	20	24	1.099	0.935
22	25	1.534	1.084	22	26	1.101	0.943	22	27	1.097	0.939
25	29	1.098	0.932	25	30	1.100	0.938				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1			
-688.2955730202	650.490617			

		Espectroscopia	de Infravermelho		
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade
12.561	0.007199	798.095	0.090137	1336.896	0.611304
4.111	0.004571	818.381	1.627967	1339.613	0.464919
3.002	0.000484	834.240	0.559060	1352.183	0.633119
1.267	0.000215	857.473	0.136344	1379.067	0.570845
1.361	0.002198	862.061	0.147752	1386.409	0.004636
2.555	0.004951	880.443	0.052073	1418.204	9.359690
17.113	0.098757	907.949	0.442770	1428.704	0.234857
26.485	0.063811	950.994	0.679533	1477.710	0.017159
37.899	0.061228	960.486	1.071652	1481.301	0.147389
74.130	0.016858	971.141	1.925579	1486.393	0.937359
96.384	0.037261	996.856	0.264494	1493.516	0.217126
141.890	0.041646	1003.398	0.266415	1505.827	0.059586
197.452	0.059659	1032.420	0.028762	1618.435	0.531456
238.250	0.150135	1042.173	0.004344	1640.581	8.547945
251.834	0.069514	1048.978	0.002527	1757.146	11.120342
271.946	0.021018	1068.744	0.019403	1773.621	0.126201
311.259	0.035361	1070.806	0.220498	3070.634	0.042565
360.004	0.528347	1077.051	1.777490	3081.164	0.585591
395.237	0.008912	1086.621	0.083888	3096.066	0.414295
409.765	0.013976	1112.335	3.534825	3102.086	0.431455

450.207	0.134066	1121.775	0.404714	3123.734	0.829496
464.837	0.101628	1146.993	0.323339	3142.081	0.883832
501.695	0.088704	1161.136	0.887387	3146.895	0.762321
535.083	0.331871	1170.920	5.497640	3215.068	0.048920
576.907	0.870362	1201.536	0.094793	3235.669	0.362764
596.708	0.091628	1239.538	0.091438	3264.853	0.012879
646.365	0.266931	1259.777	14.981840	3271.321	0.022797
670.368	1.462075	1263.244	10.035456	3277.451	0.003994
707.671	0.827780	1286.676	0.609288	3284.803	0.047878
746.958	0.998585	1294.120	1.179538	3313.194	0.233442
12.561	0.007199	798.095	0.090137	1336.896	0.611304
4.111	0.004571	818.381	1.627967	1339.613	0.464919

CTZ-ET3a

	Matriz Z											
С												
С	1	1.40381										
С	1	1.40207	2	120.7369								
С	3	1.38047	1	119.5480	2	0.0000						
С	4	1.43072	3	120.9482	1	0.0000						
С	2	1.38106	1	120.5775	5	-0.0000						
Н	3	1.08843	4	120.3824	1	180.0000						
Н	1	1.08912	3	119.6912	2	180.0000						
Н	2	1.08852	6	119.6430	1	-180.0000						
Н	6	1.08643	2	120.8686	5	-180.0000						
Н	4	1.08901	5	117.0720	3	-180.0000						
Ν	5	1.33834	4	115.6451	3	-178.9129						
С	12	1.39938	5	120.6142	4	-172.8885						
Ν	13	1.39133	12	111.7485	5	-144.9399						
Ο	13	1.21555	12	125.4777	5	34.8458						
С	14	1.49635	13	120.6688	12	-137.4949						
С	16	1.49189	14	86.6159	13	102.7162						
С	17	1.32507	16	128.9187	14	-138.0450						
Н	18	1.09058	17	122.8919	16	160.2197						
С	18	1.52569	17	117.3830	16	-16.9894						
Н	14	1.30223	17	41.2424	16	163.5208						
С	20	1.54459	18	112.3980	17	3.3435						
Н	20	1.10153	18	106.6612	22	120.4131						
Н	20	1.09881	23	107.2317	18	-118.0643						
С	16	1.53064	14	123.8191	13	-7.7338						
Η	22	1.10089	25	108.7009	20	121.0107						
Н	22	1.09721	26	107.5985	20	118.2512						
Н	16	1.09580	14	108.7235	25	-133.7702						
Н	25	1.09622	16	111.6360	22	120.6219						
Н	25	1.09711	29	109.0266	16	-121.5220						

Átomo	Valência Livre
С	0.020
С	0.000
С	0.000
С	0.019
С	0.004
С	0.018
Н	0.000
N	0.180
С	0.002
Ν	0.160
О	0.006
С	0.000
С	0.164
С	0.002
Н	0.000
С	0.000
Н	0.001
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.423	1	3	1.402	1.429	1	8	1.089	0.944
1	12	4.142	0.062	2	4	2.800	0.059	2	6	1.381	1.562
2	9	1.089	0.937	3	4	1.380	1.553	3	6	2.823	0.060
3	7	1.088	0.941	4	5	1.431	1.294	4	11	1.089	0.932

4	12	2.344	0.050	5	6	1.433	1.227	5	12	1.338	1.538
6	10	1.086	0.925	12	13	1.399	1.164	13	14	1.391	1.137
13	15	1.216	2.076	14	16	1.496	1.011	14	17	2.050	0.158
14	21	1.302	0.511	16	17	1.492	1.023	16	25	1.531	1.056
16	28	1.096	0.926	17	18	1.325	1.954	17	21	1.372	0.477
18	19	1.091	0.944	18	20	1.526	1.045	20	22	1.545	1.088
20	23	1.102	0.928	20	24	1.099	0.937	22	25	1.546	1.068
22	26	1.101	0.942	22	27	1.097	0.941	25	29	1.096	0.940
25	30	1.097	0.930								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1					
-688.2170361085	638.346257					

CTZ-ET3f

Matriz Z										
С										
С	1	1.42933								
С	1	1.39517	2	122.7697						
С	3	1.39698	1	119.1671	2	0.0000				
С	4	1.45221	3	116.1624	1	-0.0000				
С	2	1.37227	1	121.3342	5	0.0000				
Н	3	1.08989	1	119.2501	4	180.0000				
Н	1	1.09004	3	119.5836	2	-180.0000				
Н	2	1.08866	6	120.0603	1	180.0000				
Н	6	1.08635	2	123.4580	5	180.0000				
Н	4	1.50568	5	72.3949	3	180.0000				
Ν	11	1.27003	4	102.2098	5	-0.0000				
С	12	1.38749	5	126.9062	4	180.0000				
Ν	13	1.40499	12	112.6483	5	-176.9586				
0	13	1.20931	12	124.1232	5	0.0000				
С	14	1.45527	13	112.7130	12	-121.7148				
С	16	1.51267	14	109.3888	13	-166.2600				
С	17	1.33327	16	123.1773	14	-136.3638				
Н	18	1.09228	17	119.0496	16	178.1927				
С	18	1.51430	17	123.5875	16	-2.1243				
Н	17	1.09185	18	120.8567	16	-178.6062				
С	20	1.53455	18	111.4825	17	-13.5900				
Н	20	1.10202	18	108.7529	22	121.5536				
Н	20	1.09887	23	106.9695	18	-117.7526				
С	22	1.53419	20	110.3410	18	46.1746				
Н	22	1.10057	25	108.9339	20	120.0988				
Н	22	1.09736	26	108.1270	25	-119.3259				
Н	16	1.10469	14	106.8381	17	119.9193				
Н	25	1.09870	16	109.5115	22	121.8715				
Н	25	1.10094	29	108.8026	16	-118.1607				

Átomo	Valência Livre
С	0.029
С	0.003
С	0.000
С	0.039
С	0.027
С	0.006
Н	0.000
Ν	0.058
С	0.002
Ν	0.727
Ο	0.005
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.429	1.334	1	3	1.395	1.528	1	4	2.408	0.077
1	8	1.090	0.941	2	5	2.359	0.062	2	6	1.372	1.620
2	9	1.089	0.938	3	4	1.397	1.486	3	6	2.898	0.062

3	7	1.090	0.942	4	5	1.452	1.242	4	11	1.506	0.425
5	6	1.424	1.225	5	11	1.747	0.062	5	12	1.343	1.464
6	10	1.086	0.932	11	12	1.270	0.517	12	13	1.387	1.081
13	14	1.405	1.144	13	15	1.209	2.143	14	16	1.455	1.041
16	17	1.513	1.030	16	25	1.546	1.030	16	28	1.105	0.901
17	18	1.333	2.016	17	21	1.092	0.938	18	19	1.092	0.938
18	20	1.514	1.062	20	22	1.535	1.085	20	23	1.102	0.929
20	24	1.099	0.935	22	25	1.534	1.085	22	26	1.101	0.943
22	27	1.097	0.938	25	29	1.099	0.930	25	30	1.101	0.937

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1					
-688.1989249307	638.455842					

CTZ-I3a

	Matriz Z										
С											
С	1	1.40319									
С	1	1.40187	2	120.5818							
С	3	1.38039	1	119.4707	2	0.0000					
С	4	1.43232	3	121.2744	1	0.0000					
С	2	1.38204	1	120.8498	5	-0.0000					
Н	3	1.08842	4	120.2547	1	180.0000					
Н	1	1.08901	2	119.6008	3	-180.0000					
Н	2	1.08859	6	119.5780	1	180.0000					
Н	6	1.08514	2	121.1533	5	-180.0000					
Н	4	1.08884	5	116.8216	3	-180.0000					
Ν	5	1.33796	4	114.9480	3	-179.1884					
С	12	1.41146	5	120.9046	4	-174.2581					
Ν	13	1.34850	12	110.4065	5	-160.2742					
0	13	1.22451	12	126.2186	5	21.7087					
С	14	1.45285	13	123.7128	12	-176.7658					
С	16	1.50411	14	113.0876	13	58.0874					
С	17	1.31659	16	129.5693	14	-144.4352					
Н	18	1.09296	17	121.2786	16	-178.8773					
С	18	1.52779	17	119.9435	16	2.2887					
Н	14	1.01193	13	116.4965	16	174.4896					
С	20	1.53788	18	111.0583	17	-15.3168					
Н	20	1.10130	18	108.5321	22	121.3256					
Н	20	1.09856	23	107.4117	18	-118.0030					
С	22	1.53640	20	111.3905	18	46.0304					
Н	22	1.10117	25	109.0663	20	120.3616					
Н	22	1.09782	26	107.8327	25	-119.1509					
Н	16	1.09723	14	105.7243	17	118.2486					
Н	25	1.09843	16	108.5146	22	121.7580					
Н	25	1.09793	29	109.4557	16	-117.1779					

Átomo	Valência Livre
С	0.020
С	0.000
С	0.000
С	0.019
С	0.003
С	0.018
Н	0.000
Ν	0.180
С	0.001
Ν	0.001
0	0.001
С	0.001
С	0.731
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.425	1	3	1.402	1.427	1	8	1.089	0.944
1	12	4.146	0.062	2	4	2.795	0.059	2	6	1.382	1.551
2	9	1.089	0.938	3	4	1.380	1.554	3	6	2.825	0.060

3	7	1.088	0.941	4	5	1.432	1.292	4	11	1.089	0.932
4	12	2.336	0.052	5	6	1.434	1.235	5	12	1.338	1.547
6	10	1.085	0.923	10	15	2.166	0.058	12	13	1.411	1.149
13	14	1.349	1.287	13	15	1.225	2.008	14	15	2.266	0.075
14	16	1.453	1.035	14	21	1.012	0.929	16	17	1.504	1.029
16	25	1.547	1.033	16	28	1.097	0.920	17	18	1.317	2.059
18	19	1.093	0.926	18	20	1.528	1.041	20	22	1.538	1.087
20	23	1.101	0.934	20	24	1.099	0.938	22	25	1.536	1.083
22	26	1.101	0.944	22	27	1.098	0.939	25	29	1.098	0.933
25	30	1.098	0.935								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-688.2951462334	653.900243

	Espectroscopia de Infravermelho								
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
28.558	0.004407	773.207	0.654683	1338.449	0.729898				
6.569	0.004992	799.685	0.135346	1341.828	0.343695				
3.601	0.007175	822.430	1.933330	1354.926	0.382650				
0.965	0.000018	824.751	0.337731	1364.372	0.106334				
0.724	0.000319	862.737	0.832052	1382.699	0.199332				
0.446	0.000054	876.047	0.118110	1397.808	3.797147				
16.178	0.027349	881.926	0.093804	1473.134	0.383803				
41.043	0.189741	916.004	1.685397	1483.475	0.116636				
57.598	0.051692	943.973	0.584467	1486.569	0.882448				
96.461	0.038526	958.117	0.744080	1494.100	0.197760				
116.100	0.093877	967.661	2.011441	1508.521	0.135446				
152.709	0.088566	1003.269	0.362897	1566.774	26.554766				
218.712	0.078551	1009.587	1.395757	1619.801	0.045943				
227.846	0.017369	1051.531	0.072606	1644.517	5.662956				
273.005	0.009689	1053.363	0.022927	1752.324	10.416797				
287.170	0.064061	1056.616	0.352232	1788.039	0.003348				
316.448	0.183728	1074.393	0.014751	3088.386	0.466646				
362.994	0.343870	1086.246	0.141959	3091.696	0.847002				
376.600	0.077013	1099.683	0.848194	3116.453	0.559976				
406.525	0.062900	1115.011	3.653326	3131.351	0.804267				
452.729	0.714444	1127.703	2.831768	3135.607	0.272844				
469.646	0.890684	1157.134	0.620633	3139.900	0.788769				
485.354	1.757871	1163.187	0.657743	3174.744	0.312519				
508.904	0.358141	1191.246	0.444697	3215.168	0.063865				
548.205	0.808018	1221.761	0.040961	3263.225	0.010699				
598.158	0.017559	1258.513	4.931155	3268.292	0.032709				
631.698	0.044297	1259.109	0.334007	3276.840	0.016293				
677.632	1.166322	1262.855	2.953087	3283.632	0.126984				
682.482	0.794543	1287.262	1.383543	3323.589	0.351656				
758.906	0.236949	1317.868	0.578415	3647.459	3.853221				
28.558	0.004407	773.207	0.654683	1338.449	0.729898				
6.569	0.004992	799.685	0.135346	1341.828	0.343695				

CTZ-I3f

Matriz Z

Átomo Valência Livre

0						
С	1	1.21774				
Ν	2	1.35621	1	125.3588		
С	3	1.40199	2	127.4942	1	-0.0000
С	4	2.82142	3	175.1605	2	-174.6301
С	5	1.39368	4	58.9812	3	177.3766
С	5	1.40336	4	60.5715	3	-2.7876
С	7	1.37286	5	116.9298	4	0.0000
С	6	1.39805	5	121.8242	4	0.0000
Н	7	1.08935	8	121.4773	5	-180.0000
Н	5	1.08869	6	120.4614	7	-180.0000
Н	6	1.08889	9	118.5528	5	180.0000
Н	9	1.08507	4	119.5107	6	180.0000
Н	3	1.01499	2	115.2898	4	-178.8811
Ν	2	1.41987	1	124.7814	14	-180.0000
С	15	1.44091	2	113.2851	1	1.0683
С	16	1.51599	15	109.0393	2	-155.7046
С	17	1.33323	16	123.3261	15	-136.0803
Н	18	1.09235	17	119.0333	16	178.8950
С	18	1.51420	17	123.6614	16	-0.9897
Н	17	1.09187	18	120.5289	16	-180.0000
С	20	1.53443	18	111.5063	17	-13.0916
Н	20	1.10209	18	108.6654	22	121.5059
Н	20	1.09901	23	106.9316	18	-117.7452
С	22	1.53433	20	110.4648	18	45.5212
Н	22	1.10054	25	108.9302	20	120.2256
Н	22	1.09766	26	108.0904	25	-119.2233
Н	16	1.10090	15	109.8436	25	-117.2293
Н	25	1.09646	16	108.5281	22	121.6891
Н	25	1.10032	29	109.3092	16	-118.0127

0	0.002
С	0.001
Ν	0.001
С	0.001
С	0.000
С	0.000
С	0.001
С	0.769
С	0.000
Н	0.000
Ν	0.610
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.002
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.218	2.014	1	3	2.288	0.080	1	13	2.211	0.057
2	3	1.356	1.257	2	15	1.420	1.142	3	4	1.402	1.113
3	14	1.015	0.908	4	5	2.821	0.082	4	8	1.389	1.417
4	9	1.404	1.431	5	6	1.394	1.502	5	7	1.403	1.447
5	11	1.089	0.943	6	8	2.713	0.074	6	9	1.398	1.484
6	12	1.089	0.937	7	8	1.373	1.564	7	9	2.823	0.084
7	10	1.089	0.931	9	13	1.085	0.913	15	16	1.441	1.051
16	17	1.516	1.019	16	25	1.552	1.019	16	28	1.101	0.909
17	18	1.333	2.019	17	21	1.092	0.938	18	19	1.092	0.939
18	20	1.514	1.062	20	22	1.534	1.085	20	23	1.102	0.929
20	24	1.099	0.935	22	25	1.534	1.083	22	26	1.101	0.943
22	27	1.098	0.939	25	29	1.096	0.932	25	30	1.100	0.939

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-688.2851210323	655.255350

Espectroscopia de Infravermelho							
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade		

5.322 0.004009 767.031 0.201893 1339.198 0.047703 2.740 0.000154 791.594 3.157262 1349.774 0.465993 1.835 0.000292 828.817 0.070510 1379.600 0.334793 0.534 0.000017 862.277 0.193995 1386.026 0.013094 0.507 0.000027 882.410 0.077420 1427.871 0.231809 25.506 0.042755 905.302 0.836029 1468.333 4.045777 46.877 0.006230 913.363 0.075123 1478.395 0.168921 63.395 0.010082 958.986 0.545907 1494.756 0.134233 100.518 0.183805 965.350 0.983213 1498.910 0.408722 103.665 0.007393 983.844 0.132148 1506.715 0.085700 126.847 0.014270 1006.826 0.150043 1585257 25.614708 218.156 0.074669 1022.133 0.323518 1642.196 0.027668 226.062 0.160028 1035.433 0.188111 1704.470 2.529779 267.506 0.043819 1057.271 0.300275 1775.089 0.410787 277.448 0.125472 1057.959 0.028689 1780.088 14.229436 334.692 0.134893 1076.853 0.072659 3080.036 0.633204 335.239 0.238519 1080.460 0.11197 3095.752 0.119	9.775	0.002014	740.136	0.232989	1334.532	1.936699
2.740 0.000154 791.594 3.157262 1349.774 0.465993 1.835 0.000292 828.817 0.070510 1379.600 0.334793 0.534 0.000017 862.277 0.193955 1386.026 0.013094 0.507 0.000027 882.410 0.074720 1427.871 0.231809 25.506 0.042755 905.302 0.836029 1468.333 4.045777 46.877 0.006230 913.363 0.075123 1478.395 0.168921 63.395 0.01082 958.986 0.545907 1494.756 0.134233 100.518 0.183805 965.350 0.983213 1498.910 0.408722 103.665 0.007393 983.844 0.132148 1506.715 0.085700 126.847 0.014270 1006.826 0.15043 1585.257 25.614708 218.156 0.074669 1022.133 0.323518 1642.196 0.027668 226.062 0.160028 1035.433 0.188111 1704.470 2	5.322	0.004009	767.031	0.201893	1339.198	0.047703
1.835 0.000292 828.817 0.070510 1379.600 0.334793 0.534 0.000017 862.277 0.193995 1386.026 0.013094 0.507 0.000027 882.410 0.074720 1427.871 0.231809 25.506 0.042755 905.302 0.836029 1448.333 4.045777 46.877 0.006230 913.363 0.075123 1478.395 0.168921 63.395 0.010082 958.986 0.545907 1494.756 0.134233 100.518 0.183805 965.350 0.983213 1498.910 0.408722 103.665 0.007393 983.844 0.132148 1506.715 0.085700 126.847 0.014270 1006.826 0.150043 1585.257 25.614708 218.156 0.074669 1022.133 0.323518 1642.196 0.027668 226.062 0.160028 1035.433 0.188111 1704.470 2.529779 267.506 0.043819 1057.271 0.390275 1775.089	2.740	0.000154	791.594	3.157262	1349.774	0.465993
0.534 0.000017 862.277 0.193995 1386.026 0.013094 0.507 0.000027 882.410 0.074720 1427.871 0.231809 25.506 0.042755 905.302 0.836029 1468.333 4.045777 46.877 0.000230 913.363 0.075123 1478.395 0.168921 63.395 0.010082 958.986 0.545907 1494.756 0.134233 100.518 0.183805 965.350 0.983213 1498.910 0.408722 103.665 0.007393 983.844 0.132148 1506.715 0.085700 126.647 0.014270 1006.826 0.150043 1585.257 25.614708 218.156 0.074669 1022.133 0.323518 1642.196 0.027668 226.062 0.160028 1035.433 0.188111 1704.470 2.529779 267.506 0.043819 1057.271 0.390275 1775.089 0.410787 277.448 0.125472 1057.959 0.028689 1780.088	1.835	0.000292	828.817	0.070510	1379.600	0.334793
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.534	0.000017	862.277	0.193995	1386.026	0.013094
25.5060.042755905.3020.8360291468.3334.04577746.8770.006230913.3630.0751231478.3950.16892163.3950.010082958.9860.5459071494.7560.134233100.5180.183805965.3500.9832131498.9100.408722103.6650.007393983.8440.1321481506.7150.085700126.8470.0142701006.8260.1500431585.25725.614708218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2285191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011177.250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.05934615.5130.1114641243.2420.033205	0.507	0.000027	882.410	0.074720	1427.871	0.231809
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25.506	0.042755	905.302	0.836029	1468.333	4.045777
63.3950.010082958.9860.5459071494.7560.134233100.5180.183805965.3500.9832131498.9100.408722103.6650.007393983.8440.1321481506.7150.085700126.8470.0142701006.8260.1500431585.25725.614708218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1066673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.285203214.9250.053934591.2780.3785821227.5570.2556453225.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1	46.877	0.006230	913.363	0.075123	1478.395	0.168921
100.5180.183805965.3500.9832131498.9100.408722103.6650.007393983.8440.1321481506.7150.085700126.8470.0142701006.8260.1500431585.25725.614708218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.221722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.138733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.229791263.8040.1319113262.8850.010896690.8000.7752541281.8992.	63.395	0.010082	958.986	0.545907	1494.756	0.134233
103.6650.007393983.8440.1321481506.7150.085700126.8470.0142701006.8260.1500431585.25725.614708218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.256453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.603	100.518	0.183805	965.350	0.983213	1498.910	0.408722
126.8470.0142701006.8260.1500431585.25725.614708218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.278 <t< td=""><td>103.665</td><td>0.007393</td><td>983.844</td><td>0.132148</td><td>1506.715</td><td>0.085700</td></t<>	103.665	0.007393	983.844	0.132148	1506.715	0.085700
218.1560.0746691022.1330.3235181642.1960.027668226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.	126.847	0.014270	1006.826	0.150043	1585.257	25.614708
226.0620.1600281035.4330.1881111704.4702.529779267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.201	218.156	0.074669	1022.133	0.323518	1642.196	0.027668
267.5060.0438191057.2710.3902751775.0890.410787277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	226.062	0.160028	1035.433	0.188111	1704.470	2.529779
277.4480.1254721057.9590.0286891780.08814.229436334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	267.506	0.043819	1057.271	0.390275	1775.089	0.410787
334.6920.1348931076.8530.0726593080.0360.633204355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	277.448	0.125472	1057.959	0.028689	1780.088	14.229436
355.2390.2585191080.4600.1111973095.7520.119642357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	334.692	0.134893	1076.853	0.072659	3080.036	0.633204
357.7530.3226411090.4800.1483983096.7680.291722436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	355.239	0.258519	1080.460	0.111197	3095.752	0.119642
436.3430.1697561133.1040.1637453105.7320.518956454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	357.753	0.322641	1090.480	0.148398	3096.768	0.291722
454.4890.0740251143.5150.1060673122.6670.870518467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	436.343	0.169756	1133.104	0.163745	3105.732	0.518956
467.1030.3941371160.7110.2263573142.2160.986879537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	454.489	0.074025	1143.515	0.106067	3122.667	0.870518
537.6290.1777011171.7250.1338733166.3960.385512540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	467.103	0.394137	1160.711	0.226357	3142.216	0.986879
540.3080.2741791197.4820.2852303214.9250.053934591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	537.629	0.177701	1171.725	0.133873	3166.396	0.385512
591.2780.3785821227.5570.2556453235.6350.419115615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	540.308	0.274179	1197.482	0.285230	3214.925	0.053934
615.5130.1114641243.2420.0332053255.7930.019404672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	591.278	0.378582	1227.557	0.255645	3235.635	0.419115
672.9872.2299791263.8040.1319113262.8850.010896690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	615.513	0.111464	1243.242	0.033205	3255.793	0.019404
690.8000.7752541281.8992.8219953273.4660.037569721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	672.987	2.229979	1263.804	0.131911	3262.885	0.010896
721.6110.1587991295.6031.0134543319.7310.381168728.8010.7962281309.2780.2226153611.8523.8175549.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	690.800	0.775254	1281.899	2.821995	3273.466	0.037569
728.801 0.796228 1309.278 0.222615 3611.852 3.817554 9.775 0.002014 740.136 0.232989 1334.532 1.936699 5.322 0.004009 767.031 0.201893 1339.198 0.047703	721.611	0.158799	1295.603	1.013454	3319.731	0.381168
9.7750.002014740.1360.2329891334.5321.9366995.3220.004009767.0310.2018931339.1980.047703	728.801	0.796228	1309.278	0.222615	3611.852	3.817554
5.322 0.004009 767.031 0.201893 1339.198 0.047703	9.775	0.002014	740.136	0.232989	1334.532	1.936699
	5.322	0.004009	767.031	0.201893	1339.198	0.047703

CTZ-ET4a1

	Matriz Z									
С										
С	1	1.40302								
С	1	1.40120	2	120.7219						
С	3	1.38246	1	119.5569	2	-0.0000				
С	4	1.42590	3	120.7673	1	0.0000				
С	2	1.38241	1	120.5046	5	0.0000				
Н	3	1.08839	4	120.3265	1	180.0000				
Н	1	1.08912	2	119.5014	3	-180.0000				
Н	2	1.08862	6	119.7448	1	-180.0000				
Н	6	1.08766	2	120.7279	5	-180.0000				
Н	4	1.08894	5	117.1261	3	-180.0000				
Ν	5	1.34390	4	116.0934	3	-179.1314				
С	12	1.39159	5	121.0607	4	-173.7626				
Ν	13	1.43179	12	115.3005	5	-136.6090				
0	13	1.20606	12	123.6618	5	46.5425				
С	14	1.47629	13	115.8096	12	-55.5762				
С	16	1.50222	14	116.0798	13	75.3059				

Átomo	Valência Livre
С	0.016
С	0.000
С	0.000
С	0.016
С	0.003
С	0.015
Н	0.000
Ν	0.218
С	0.001
Ν	0.000
0	0.002
С	0.001
С	0.725

С	17	1.31674	16	129.7981	14	-146.0356
Н	18	1.09284	17	121.6188	16	-178.8872
С	18	1.52875	17	119.6265	16	2.4381
Н	14	1.02562	13	107.5798	16	121.7140
С	20	1.53873	18	111.2084	17	-14.2989
Н	20	1.10133	18	108.5592	22	121.3954
Н	20	1.09864	23	107.3296	18	-118.0768
С	22	1.53751	20	111.5067	18	45.0596
Н	22	1.10082	25	108.8164	20	120.4194
Н	22	1.09761	26	107.8623	20	119.0871
Н	16	1.09878	14	105.1096	17	118.9880
Н	25	1.09832	16	108.9529	22	122.1017
Н	25	1.10130	29	108.9766	16	-118.4478

С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.431	1	3	1.401	1.437	1	8	1.089	0.944
1	12	4.144	0.060	2	4	2.800	0.062	2	6	1.382	1.557
2	9	1.089	0.937	3	4	1.382	1.539	3	6	2.821	0.063
3	7	1.088	0.941	4	5	1.426	1.309	4	11	1.089	0.933
5	6	1.429	1.240	5	12	1.344	1.513	6	10	1.088	0.926
12	13	1.392	1.147	13	14	1.432	1.109	13	15	1.206	2.206
14	16	1.476	1.076	14	21	1.026	0.926	16	17	1.502	1.016
16	25	1.541	1.044	16	28	1.099	0.924	17	18	1.317	2.052
18	19	1.093	0.926	18	20	1.529	1.042	20	22	1.539	1.087
20	23	1.101	0.933	20	24	1.099	0.938	22	25	1.538	1.086
22	26	1.101	0.943	22	27	1.098	0.938	25	29	1.098	0.930
25	30	1.101	0.929								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2677531991	651.099663				

CTZ-ET4a2

Matriz Z								
С								
С	1	1.40353						
С	1	1.40122	2	120.7079				
С	3	1.38227	1	119.6223	2	0.0000		
С	4	1.42639	3	120.7354	1	0.0000		
С	2	1.38179	1	120.4560	5	0.0000		
Н	3	1.08855	4	120.2632	1	180.0000		
Н	1	1.08908	3	119.6690	2	180.0000		
Н	2	1.08865	6	119.7512	1	-180.0000		
Н	6	1.08778	2	120.9162	5	180.0000		
Н	4	1.08918	5	117.3962	3	-180.0000		
Ν	5	1.34294	4	116.2910	3	-178.8109		
С	12	1.39581	5	120.6600	4	-174.2800		
Ν	13	1.43214	12	115.7232	5	-136.1277		
0	13	1.20552	12	123.2074	5	48.5278		
С	14	1.47994	13	114.0989	12	59.3298		
С	16	1.49916	14	110.3155	13	37.2884		

Átomo	Valência Livre
С	0.017
С	0.000
С	0.000
С	0.017
С	0.003
С	0.016
Н	0.000
N	0.207
С	0.001
Ν	0.000
0	0.002
С	0.001
С	0.715

С	17	1.31666	16	130.0878	14	-141.2912
Н	18	1.09305	17	121.3422	10	50.6891
С	18	1.52696	17	119.7467	16	-0.0000
Н	14	1.02493	13	108.3152	16	-121.6693
С	20	1.53734	18	110.8240	17	-15.5100
Н	20	1.10186	18	108.2552	22	121.1601
Н	20	1.09834	23	107.5768	18	-117.9148
С	22	1.53629	20	110.9914	18	47.3644
Н	22	1.10120	20	109.0205	25	-120.3181
Н	22	1.09771	26	107.8983	20	119.1784
Н	16	1.09855	14	106.0934	17	117.3726
Н	25	1.09994	16	108.5225	22	121.5233
Н	25	1.09885	29	108.7908	16	-117.7795

С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.428	1	3	1.401	1.436	1	8	1.089	0.944
1	12	4.144	0.060	2	4	2.801	0.061	2	6	1.382	1.562
2	9	1.089	0.937	3	4	1.382	1.542	3	6	2.820	0.061
3	7	1.089	0.940	4	5	1.426	1.308	4	11	1.089	0.933
4	12	2.353	0.052	5	6	1.430	1.241	5	12	1.343	1.483
6	10	1.088	0.922	12	13	1.396	1.150	13	14	1.432	1.118
13	15	1.206	2.211	14	16	1.480	1.051	14	21	1.025	0.924
16	17	1.499	1.044	16	25	1.549	1.030	16	28	1.099	0.920
17	18	1.317	2.058	18	19	1.093	0.924	18	20	1.527	1.041
20	22	1.537	1.088	20	23	1.102	0.931	20	24	1.098	0.938
22	25	1.536	1.078	22	26	1.101	0.944	22	27	1.098	0.938
25	29	1.100	0.931	25	30	1.099	0.933				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2714398395	650.238406				

CTZ-ET4f1

Matriz Z								
Ο								
С	1	1.20043						
Ν	2	1.43154	1	122.4056				
С	3	1.41896	2	113.1392	1	116.3839		
С	4	2.82324	3	177.4781	2	-157.3811		
С	5	1.39518	4	59.2206	3	120.8884		
С	5	1.40218	4	60.3444	3	-59.1490		
С	7	1.37606	5	117.2874	4	-0.0000		
С	6	1.39667	5	121.1929	4	-0.0000		
Н	7	1.08948	8	121.3022	5	180.0000		
Н	5	1.08859	6	120.4008	7	-180.0000		
Н	6	1.08881	9	118.9518	5	179.1851		
Н	9	1.09152	6	120.0894	4	-178.7824		
Н	3	1.02273	4	110.8010	2	-124.2765		
Ν	2	1.39825	1	123.2483	3	-178.0623		
С	15	1.45178	2	115.1281	1	-36.6080		
С	16	1.51931	15	108.4712	2	-140.4400		

Átomo	Valência Livre
О	0.004
С	0.002
Ν	0.000
С	0.001
С	0.000
С	0.000
С	0.001
С	0.770
С	0.000
Н	0.000
Ν	0.630
С	0.000
С	0.000

С	17	1.33290	16	122.8842	15	-136.6421
Н	18	1.09230	17	118.8547	16	180.0000
С	18	1.51401	17	123.8428	16	0.0000
Н	17	1.09179	18	120.7833	16	180.0000
С	20	1.53434	18	111.6170	17	-13.2493
Н	20	1.10198	18	108.5047	22	121.5021
Н	20	1.09885	23	106.9633	18	-117.5929
С	22	1.53426	20	110.3574	18	45.1182
Н	22	1.10052	25	109.0573	20	120.3109
Н	22	1.09746	26	108.0290	25	-119.2292
Н	16	1.10098	15	110.7054	17	121.5259
Н	25	1.09661	16	108.5929	22	121.8254
Н	25	1.10000	29	109.2386	16	-117.7019

С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.200	2.209	1	15	2.288	0.058	2	3	1.432	1.113
2	15	1.398	1.167	3	4	1.419	1.128	3	14	1.023	0.906
4	5	2.823	0.083	4	8	1.385	1.441	4	9	1.403	1.415
5	6	1.395	1.498	5	7	1.402	1.457	5	11	1.089	0.943
6	8	2.721	0.073	6	9	1.397	1.502	6	12	1.089	0.935
7	8	1.376	1.542	7	9	2.811	0.085	7	10	1.089	0.931
9	13	1.092	0.912	15	16	1.452	1.022	16	17	1.519	1.007
16	25	1.547	1.020	16	28	1.101	0.923	17	18	1.333	2.020
17	21	1.092	0.936	18	19	1.092	0.938	18	20	1.514	1.064
20	22	1.534	1.084	20	23	1.102	0.929	20	24	1.099	0.934
22	25	1.534	1.078	22	26	1.101	0.944	22	27	1.097	0.939
25	29	1.097	0.934	25	30	1.100	0.939				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2578849851	651.534076				

CTZ-ET4f2

Matriz Z								
Ο								
С	1	1.20000						
Ν	2	1.43640	1	122.4111				
С	3	1.43325	2	111.2704	1	-128.0190		
С	4	2.81198	3	179.2351	2	34.1925		
С	5	1.39633	4	59.4663	3	40.9629		
С	5	1.40186	4	60.6288	3	-139.4720		
С	7	1.37789	5	116.9341	4	0.0000		
С	6	1.39571	5	120.7768	4	0.0000		
Н	7	1.08919	8	121.7087	5	-180.0000		
Н	5	1.08901	7	119.7082	6	180.0000		
Н	6	1.08887	9	119.3512	5	-180.0000		
Н	9	1.09067	4	118.7269	6	-180.0000		
Н	3	1.02425	2	108.0089	4	-120.7015		
Ν	2	1.40095	1	122.9763	3	175.1819		
С	15	1.45159	2	116.0900	1	46.2429		
С	16	1.51484	15	108.9186	2	-153.9040		

Átomo	Valência Livre
О	0.003
С	0.001
N	0.000
С	0.001
С	0.000
С	0.000
С	0.001
С	0.771
С	0.000
Н	0.000
Ν	0.670
С	0.000
С	0.000

С	17	1.33334	16	123.4259	15	-133.6621
Н	18	1.09222	17	118.9988	16	178.0521
С	18	1.51377	17	123.5150	16	-2.5458
Н	17	1.09194	18	120.6433	16	-178.4538
С	20	1.53385	18	111.1951	17	-14.5809
Н	20	1.10203	18	108.8790	22	121.4726
Н	20	1.09881	23	107.0288	18	-117.8568
С	22	1.53386	20	110.3926	18	47.3206
Н	22	1.10069	25	109.0384	20	120.0928
Н	22	1.09748	26	108.1495	25	-119.2271
Н	16	1.10303	15	107.7017	17	120.2253
Н	25	1.09765	16	109.1944	22	121.8756
Н	25	1.10119	29	108.3920	16	-117.9210

С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.200	2.233	1	15	2.288	0.056	2	3	1.436	1.090
2	15	1.401	1.149	3	4	1.433	1.128	3	14	1.024	0.913
4	5	2.812	0.086	4	8	1.383	1.434	4	9	1.400	1.460
5	6	1.396	1.489	5	7	1.402	1.465	5	11	1.089	0.943
6	8	2.726	0.072	6	9	1.396	1.489	6	12	1.089	0.937
7	8	1.378	1.516	7	9	2.813	0.086	7	10	1.089	0.930
9	13	1.091	0.922	15	16	1.452	1.033	16	17	1.515	1.028
16	25	1.548	1.032	16	28	1.103	0.904	17	18	1.333	2.015
17	21	1.092	0.939	18	19	1.092	0.938	18	20	1.514	1.061
20	22	1.534	1.086	20	23	1.102	0.929	20	24	1.099	0.935
22	25	1.534	1.087	22	26	1.101	0.944	22	27	1.097	0.938
25	29	1.098	0.927	25	30	1.101	0.934				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2586814767	650.993529				

CTZ-I4a

	Matriz Z								
С									
С	1	1.40156							
С	1	1.39996	2	120.5730					
С	3	1.38483	1	119.7472	2	0.0000			
С	4	1.41985	3	120.5397	1	-0.0000			
С	2	1.38472	1	120.3236	5	0.0000			
Н	3	1.08855	4	120.2017	1	180.0000			
Н	1	1.08897	3	119.7215	2	180.0000			
Н	2	1.08872	6	119.7893	1	-180.0000			
Н	6	1.08871	2	120.8608	5	-178.9981			
Н	4	1.08902	5	117.6165	3	180.0000			
Ν	5	1.35195	4	116.5725	3	-178.1095			
С	12	1.41179	5	117.7273	4	-177.2365			
Ν	13	1.34684	12	114.8068	5	-119.2012			
0	13	1.22228	12	121.9400	5	64.0039			
С	14	1.45863	13	126.4995	12	4.9165			
С	16	1.50233	14	112.8372	13	49.9221			

Átomo	Valência Livre
С	0.011
С	0.000
С	0.000
С	0.013
С	0.002
С	0.013
Н	0.000
N	0.308
С	0.001
N	0.000
0	0.001
С	0.001
С	0.731

С	17	1.31658	16	129.6327	14	-141.4826
Н	18	1.09278	17	121.2380	16	180.0000
С	18	1.52697	17	119.8335	16	0.8961
Н	14	1.01396	13	114.8144	16	180.0000
С	20	1.53739	18	110.9704	17	-16.4567
Н	20	1.10180	18	108.2995	22	121.0711
Н	20	1.09843	23	107.5353	18	-118.0708
С	22	1.53609	20	111.1539	18	47.4791
Н	22	1.10125	20	109.0452	25	-120.4278
Н	22	1.09784	26	107.8658	25	-119.2178
Н	16	1.09747	14	105.3323	17	117.8290
Н	25	1.09848	16	108.5186	22	121.9955
Н	25	1.09859	29	109.2979	16	-117.0211

С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	-0.000

P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.402	1.441	1	3	1.400	1.447	1	5	2.801	0.054
1	8	1.089	0.944	1	12	4.150	0.058	2	4	2.800	0.066
2	6	1.385	1.541	2	9	1.089	0.936	3	4	1.385	1.529
3	6	2.813	0.065	3	7	1.089	0.940	4	5	1.420	1.338
4	11	1.089	0.930	4	12	2.358	0.051	5	6	1.423	1.268
5	12	1.352	1.456	6	10	1.089	0.925	12	13	1.412	1.095
13	14	1.347	1.306	13	15	1.222	2.129	14	15	2.260	0.063
14	16	1.459	1.023	14	21	1.014	0.920	16	17	1.502	1.033
16	25	1.547	1.033	16	28	1.097	0.917	17	18	1.317	2.054
18	19	1.093	0.924	18	20	1.527	1.043	20	22	1.537	1.087
20	23	1.102	0.931	20	24	1.098	0.938	22	25	1.536	1.079
22	26	1.101	0.945	22	27	1.098	0.939	25	29	1.098	0.933
25	30	1.099	0.933								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2942987276	652.163663				

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
6.560	0.057641	770.210	0.748261	1335.578	0.082836				
5.938	0.005720	781.245	0.109900	1338.112	0.785077				
2.963	0.004186	814.330	2.201570	1356.277	0.313251				
1.642	0.002059	815.771	0.679485	1381.977	0.022061				
1.011	0.000495	876.228	0.150219	1388.173	4.946093				
0.519	0.000050	876.740	0.075870	1430.143	2.422382				
30.332	0.066709	885.531	0.465898	1473.105	0.443580				
35.701	0.047725	909.310	4.232219	1482.007	0.127950				
52.742	0.039359	920.551	8.320979	1492.241	0.268651				
81.083	0.063495	944.623	0.176835	1495.472	0.467975				
94.402	0.039815	958.435	0.281258	1506.621	0.184333				
154.351	0.009369	986.955	0.127222	1521.185	10.296610				
163.244	0.028740	991.802	0.050316	1639.864	0.909863				
234.332	0.075399	1042.858	2.181120	1648.046	3.123267				
276.226	0.061654	1046.778	1.382506	1759.068	26.154658				
285.206	0.072315	1051.875	0.227842	1789.177	0.085007				

333.369	0.050252	1070.342	3.831009	3085.023	0.424768
366.984	0.075893	1074.319	0.012546	3091.304	0.797173
396.738	0.107946	1085.600	1.265427	3109.507	0.559606
407.699	0.030518	1095.241	0.577325	3131.878	0.840658
469.505	0.841892	1111.181	0.478395	3137.549	0.399224
472.756	1.092358	1148.546	0.787140	3139.462	0.670435
494.560	0.169733	1162.432	0.272761	3160.927	0.601153
527.468	0.272099	1181.273	0.849971	3217.673	0.056293
572.154	3.577057	1218.282	0.665462	3259.115	0.010200
600.488	0.177677	1226.076	1.496034	3264.882	0.075223
625.282	0.367763	1258.974	0.055563	3270.311	0.002312
657.987	1.089593	1265.200	0.058322	3275.567	0.006151
687.256	1.209942	1287.721	0.583738	3280.822	0.134867
738.536	0.700157	1327.946	0.316573	3627.300	3.560740
6.560	0.057641	770.210	0.748261	1335.578	0.082836
5.938	0.005720	781.245	0.109900	1338.112	0.785077

CTZ-I4f

Matriz Z									
0									
С	1	1.21698							
Ν	2	1.35954	1	121.9730					
С	3	1.41024	2	128.9271	1	174.8627			
С	4	2.81995	3	175.5933	2	-158.0884			
С	5	1.39500	4	59.1350	3	-165.1314			
С	5	1.40181	4	60.5743	3	14.1926			
С	7	1.37513	5	116.9259	4	0.0000			
С	6	1.39622	5	121.3689	4	0.0000			
Н	7	1.08932	8	121.5422	5	-180.0000			
Н	5	1.08883	6	120.3344	7	-180.0000			
Н	6	1.08865	9	118.8634	5	-180.0000			
Н	9	1.08694	6	120.2422	4	180.0000			
Н	3	1.01627	2	113.7912	4	-169.5989			
Ν	2	1.41428	1	122.8508	3	176.5794			
С	15	1.44803	2	112.8916	1	36.0321			
С	16	1.51332	15	109.6218	2	-161.8194			
С	17	1.33317	16	123.1136	15	-140.3918			
Н	18	1.09225	17	119.0703	16	178.9786			
С	18	1.51457	17	123.5934	16	-0.8379			
Н	17	1.09187	18	120.7576	16	-180.0000			
С	20	1.53531	18	111.6323	17	-12.8595			
Н	20	1.10207	18	108.6440	22	121.5621			
Н	20	1.09897	23	106.9234	18	-117.7392			
С	22	1.53508	20	110.3946	18	45.2114			
Н	22	1.10050	25	108.8529	20	120.1329			
Н	22	1.09732	26	108.1059	25	-119.3519			
Η	16	1.10235	15	107.0824	25	-116.9661			
Η	25	1.09806	16	109.3035	22	121.6530			
Н	25	1.10066	29	109.1935	22	120.8375			

Átomo	Valência Livre
0	0.001
<u> </u>	0.001
N	0.000
<u> </u>	0.001
<u> </u>	0.000
<u> </u>	0.000
<u> </u>	0.000
<u> </u>	0.001
C	0.000
С и	0.000
11	0.000
п	0.000
п	0.000
п	0.000
H N	0.000
N	0.665
<u> </u>	0.000
<u> </u>	0.000
<u> </u>	0.000
H	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.217	2.111	1	3	2.254	0.062	2	3	1.360	1.253
2	15	1.414	1.116	3	4	1.410	1.072	3	14	1.016	0.907
4	5	2.820	0.084	4	8	1.386	1.435	4	9	1.402	1.428
5	6	1.395	1.493	5	7	1.402	1.457	5	11	1.089	0.943
6	8	2.716	0.074	6	9	1.396	1.505	6	12	1.089	0.936
7	8	1.375	1.541	7	9	2.817	0.085	7	10	1.089	0.931
9	13	1.087	0.912	15	16	1.448	1.048	16	17	1.513	1.025
16	25	1.547	1.033	16	28	1.102	0.895	17	18	1.333	2.015
17	21	1.092	0.938	18	19	1.092	0.938	18	20	1.515	1.062
20	22	1.535	1.085	20	23	1.102	0.929	20	24	1.099	0.935
22	25	1.535	1.085	22	26	1.101	0.944	22	27	1.097	0.938
25	29	1.098	0.931	25	30	1.101	0.932				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-688.2790281630	653.204240

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
16.150	0.020284	743.428	0.606339	1334.605	0.838208				
11.692	0.017250	761.539	1.256546	1347.085	0.586398				
3.932	0.004267	797.774	2.814036	1377.881	0.464503				
2.448	0.000732	833.375	0.038042	1385.719	0.022031				
0.945	0.000023	858.724	0.012908	1410.660	14.854876				
0.471	0.000026	882.025	0.103791	1428.021	0.168297				
12.990	0.010274	903.412	0.202158	1448.553	2.910924				
31.976	0.027981	907.998	0.393176	1479.775	0.167578				
64.199	0.009398	949.787	0.520839	1492.516	0.163512				
76.646	0.041674	963.237	0.357955	1497.458	0.441171				
89.083	0.023414	981.310	0.080819	1504.892	0.045137				
118.216	0.058223	1002.529	0.247327	1553.131	7.326691				
188.929	0.192046	1003.375	0.120600	1649.397	0.725811				
247.547	0.136476	1032.826	0.055048	1703.374	1.768076				
266.841	0.051270	1059.077	0.011228	1771.667	27.018264				
286.235	0.088180	1066.836	0.338562	1776.626	1.857554				
320.739	0.083805	1068.106	0.098926	3079.816	0.022280				
346.482	0.526561	1084.845	0.023331	3081.907	0.554955				
388.063	0.014216	1095.620	0.064348	3094.711	0.252958				
418.534	0.150237	1136.016	0.060402	3100.279	0.698552				
451.232	0.162522	1145.806	0.214234	3124.550	0.803345				
456.532	0.357300	1155.965	0.071230	3145.922	0.834710				
522.256	0.655457	1172.956	0.027418	3149.543	0.585354				
535.029	0.214716	1199.069	0.228533	3216.211	0.073374				
559.343	0.748242	1226.535	0.138605	3237.052	0.361462				
607.255	0.699699	1238.853	0.093584	3260.185	0.007626				
636.375	0.854610	1263.742	0.013280	3270.106	0.019723				
645.083	0.787451	1288.351	0.409817	3277.163	0.036767				
689.958	0.745444	1295.008	0.057045	3298.185	0.032048				
721.754	0.718101	1331.830	0.907316	3591.865	3.632466				
16.150	0.020284	743.428	0.606339	1334.605	0.838208				
11.692	0.017250	761.539	1.256546	1347.085	0.586398				

CTZ-ET5a

			I	Matriz Z		
С						
С	1	1.39828				
С	1	1.39781	2	119.9719		
С	3	1.39054	1	119.9962	2	-0.0000
С	4	1.40628	3	120.4309	1	0.0000
С	2	1.39055	1	120.3660	5	0.0000
Н	3	1.08902	4	119.9126	1	180.0000
Н	1	1.08898	2	119.9881	3	180.0000
Н	2	1.08910	6	119.6455	1	-180.0000
Н	6	1.08923	2	120.6170	5	-180.0000
Н	4	1.08935	5	118.0521	3	180.0000
Ν	5	1.38930	4	117.1962	3	-177.0603
С	12	1.40804	5	118.1694	4	-159.1613
Ν	13	1.34918	12	112.7478	5	-134.6252
Ο	13	1.22139	12	122.8472	5	49.0931
С	14	1.44737	13	118.6467	12	3.5940
С	16	1.50176	14	107.7269	13	31.1336
С	17	1.34181	16	127.7000	14	-148.3396
Н	18	1.09183	17	120.9418	12	92.5146
С	18	1.51827	17	119.3812	16	18.9167
Н	14	1.01283	13	118.6546	16	-171.8844
С	20	1.53864	18	110.3347	17	-29.9037
Н	20	1.10346	18	108.3965	22	120.4246
Н	20	1.09750	23	107.6837	18	-118.0574
С	22	1.53441	20	110.6549	18	51.5515
Н	22	1.10076	20	109.0318	25	-120.6674
Н	22	1.09777	26	108.0125	25	-119.5351
Н	16	1.09725	14	108.8721	17	118.1026
Н	25	1.09865	16	108.4274	22	122.5923
Н	25	1.09928	29	109.0482	16	-116.1800

Átomo	Valência Livre
С	0.002
С	0.000
С	0.000
С	0.003
С	0.000
С	0.003
Н	0.000
Ν	0.225
С	0.001
Ν	0.000
0	0.001
С	0.001
С	0.706
С	0.057
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.398	1.462	1	3	1.398	1.464	1	5	2.802	0.069
1	8	1.089	0.945	2	4	2.792	0.074	2	6	1.391	1.506
2	9	1.089	0.937	3	4	1.391	1.499	3	6	2.800	0.074
3	7	1.089	0.939	4	5	1.406	1.422	4	11	1.089	0.929
5	6	1.409	1.358	5	12	1.389	1.243	6	10	1.089	0.927
12	13	1.408	1.095	12	17	2.145	0.283	12	18	2.871	0.098
13	14	1.349	1.278	13	15	1.221	2.147	14	15	2.274	0.055
14	16	1.447	1.031	14	21	1.013	0.926	16	17	1.502	1.029
16	25	1.551	1.023	16	28	1.097	0.920	17	18	1.342	1.794
18	19	1.092	0.928	18	20	1.518	1.055	20	22	1.539	1.081
20	23	1.103	0.924	20	24	1.098	0.933	22	25	1.534	1.080
22	26	1.101	0.946	22	27	1.098	0.938	25	29	1.099	0.932
25	30	1.099	0.935								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2822342387	651.521898				

CTZ-ET5f

			I	Matriz Z		
Ο						
С	1	1.20825				
Ν	2	1.35130	1	128.3404		
С	3	1.42046	2	112.8877	1	-169.7235
С	4	2.76536	3	165.4081	2	28.1783
С	5	1.39347	4	60.0216	3	120.8929
С	5	1.40320	4	61.2312	3	-62.2571
С	7	1.40963	5	119.3771	4	-3.8392
С	4	1.37929	3	124.8841	2	139.6110
Н	7	1.09019	5	119.9525	8	-174.6810
Н	5	1.09030	6	119.5168	7	-177.6770
Н	6	1.08835	5	120.3354	9	-177.4427
Н	9	1.08986	4	120.7234	6	177.1354
Н	3	1.01457	2	119.6577	4	161.0196
Ν	2	1.43760	1	123.0917	3	178.8864
С	15	1.43389	2	119.2228	1	26.7026
С	16	1.51561	15	109.1026	2	-155.7908
С	17	1.33310	16	122.8881	15	-134.8740
Н	18	1.09211	17	118.8035	16	178.9257
С	18	1.51318	17	123.7591	16	-1.2618
Н	17	1.09164	18	120.9899	16	-180.0000
С	20	1.53388	18	111.4928	17	-14.3359
Н	20	1.10200	18	108.6043	22	121.4652
Н	20	1.09866	23	107.0636	18	-117.7060
С	22	1.53372	20	110.2792	18	46.9658
Н	22	1.10032	25	109.1147	20	120.3708
Н	22	1.09742	26	108.1832	25	-119.0436
Н	16	1.10206	15	107.5796	25	-117.1684
Н	25	1.09748	16	108.7484	22	121.7142
Н	25	1.09999	29	109.4459	16	-117.6989

Átomo	Valência Livre
0	0.002
С	0.001
Ν	0.000
С	0.005
С	0.000
С	0.007
С	0.017
С	0.310
С	0.000
Н	0.000
Ν	0.513
С	0.001
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.002
Н	0.000
Н	0.000
Н	0.000
Н	-0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.208	2.165	1	3	2.305	0.074	2	3	1.351	1.283
2	15	1.438	0.983	3	4	1.420	1.031	3	14	1.015	0.923
4	5	2.765	0.071	4	8	1.424	1.282	4	9	1.379	1.544
5	6	1.393	1.516	5	7	1.403	1.477	5	11	1.090	0.941
6	8	2.816	0.073	6	9	1.410	1.402	6	12	1.088	0.939
7	8	1.410	1.425	7	9	2.830	0.064	7	10	1.090	0.933
8	15	1.829	0.514	9	13	1.090	0.926	15	16	1.434	1.031
16	17	1.516	1.020	16	25	1.556	1.010	16	28	1.102	0.893
17	18	1.333	2.006	17	21	1.092	0.938	18	19	1.092	0.937
18	20	1.513	1.065	20	22	1.534	1.086	20	23	1.102	0.927
20	24	1.099	0.933	22	25	1.534	1.083	22	26	1.100	0.943
22	27	1.097	0.937	25	29	1.097	0.932	25	30	1.100	0.937

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-688.2534609658	649.416798				

CTZ-P

			I	Matriz Z		
С						
С	1	1.39565				
С	1	1.39633	2	120.1054		
С	3	1.39443	1	120.1067	2	0.0000
С	4	1.39640	3	119.4337	1	-0.9594
С	5	1.39402	4	120.7489	3	1.0503
Н	3	1.08885	4	119.7125	1	-180.0000
Н	1	1.08894	2	119.9609	3	180.0000
Н	2	1.08883	6	119.7935	1	-180.0000
Н	6	1.08876	5	119.0547	2	-180.0000
Н	4	1.08951	5	119.4723	3	180.0000
Ν	5	1.42496	4	120.0614	3	-178.9711
С	12	1.39097	5	122.1656	4	-99.1877
Ν	13	1.37297	12	107.6930	5	164.7644
Ο	13	1.21232	12	125.2525	5	-14.3633
С	14	1.45855	13	110.5396	12	13.6215
С	12	1.40641	5	125.1547	4	60.4695
С	17	1.33179	12	129.8193	5	-1.6592
Н	18	1.09080	17	120.2363	11	40.3862
С	18	1.51840	17	120.9180	12	-172.6334
С	20	1.54307	18	113.3424	17	-6.9350
Н	20	1.10163	18	107.5316	21	121.2152
Н	20	1.09906	22	106.8030	18	-117.9807
С	16	1.52504	14	117.6029	13	-141.0463
Н	21	1.10072	24	108.2057	20	120.6172
Н	21	1.09714	25	107.5455	20	118.4861
Н	16	1.10167	14	110.0779	17	115.3314
Н	24	1.09783	16	110.5284	21	120.1789
Н	24	1.09945	28	109.2520	16	-119.7463
Н	14	1.01498	13	116.6620	16	143.0361

Átomo	Valência Livre
С	-0.000
С	-0.000
С	0.000
С	-0.000
С	-0.000
С	-0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	0.000
Ν	0.000
С	-0.000
Ν	0.000
О	0.000
С	-0.000
С	-0.000
С	0.000
Н	0.000
С	-0.000
С	0.000
Н	-0.000
Н	0.000
С	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.396	1.479	1	3	1.396	1.476	1	5	2.781	0.084
1	8	1.089	0.946	2	4	2.796	0.081	2	6	1.395	1.464
2	9	1.089	0.938	3	4	1.394	1.471	3	6	2.795	0.080
3	7	1.089	0.937	4	5	1.396	1.467	4	11	1.090	0.932
5	6	1.394	1.494	5	12	1.425	0.956	6	10	1.089	0.934
12	13	1.391	1.093	12	17	1.406	1.088	13	14	1.373	1.219
13	15	1.212	2.199	14	16	1.459	1.036	14	30	1.015	0.927
16	17	1.519	0.983	16	24	1.525	1.069	16	27	1.102	0.911
17	18	1.332	1.923	18	19	1.091	0.911	18	20	1.518	1.056
20	21	1.543	1.089	20	22	1.102	0.932	20	23	1.099	0.933
21	24	1.540	1.073	21	25	1.101	0.942	21	26	1.097	0.940
24	28	1.098	0.933	24	29	1.099	0.937				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1					
-688.4655357682	665.090374					

Espectroscopia de Infravermelho							
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade		
18.416	0.015276	778.519	0.528564	1340.224	3.899941		
4.497	0.016742	805.432	0.718058	1352.485	0.175790		
4.388	0.025154	826.879	0.583485	1370.908	0.082529		
2.024	0.000242	868.541	0.441871	1382.508	0.298473		
1.779	0.000568	888.746	0.197797	1413.706	1.593154		
1.213	0.001095	895.345	0.016532	1450.428	1.611193		
13.319	0.011873	924.797	0.495793	1475.335	7.322919		
45.943	0.094044	948.104	0.120309	1487.000	0.331498		
79.120	0.073833	971.808	0.012625	1496.488	0.061621		
105.608	0.017994	985.737	0.032644	1498.431	0.766607		
134.023	0.047055	1010.349	0.087153	1510.802	0.102184		
233.813	0.052133	1046.052	0.000995	1565.372	5.222659		
239.253	0.059679	1053.188	0.217431	1687.982	0.103150		
264.734	0.170035	1065.217	0.025316	1701.707	0.540344		
279.971	0.029273	1068.287	0.018584	1805.148	21.702276		
353.127	0.010850	1082.791	0.248639	1846.955	11.542259		
365.497	0.124078	1096.529	0.148992	3081.285	0.532100		
419.170	0.168260	1100.072	0.413351	3082.921	0.717389		
428.091	0.004841	1112.119	0.004250	3093.410	0.561507		
458.293	1.059052	1137.901	0.609630	3108.256	0.570302		
509.980	0.069113	1159.123	0.013933	3118.331	0.975677		
529.770	0.537111	1174.302	0.447521	3144.574	1.009329		
536.818	4.012624	1180.992	0.063986	3154.984	0.826777		
579.362	1.499943	1222.149	0.259135	3235.239	0.192625		
617.857	0.044720	1254.071	2.204666	3252.216	0.023546		
640.614	0.386473	1268.037	1.380379	3258.269	0.057731		
695.277	0.251341	1270.954	2.965799	3264.779	0.039854		
723.529	1.446277	1281.533	0.354974	3270.963	0.021502		
734.348	1.364195	1316.638	0.981693	3275.485	0.023494		
768.440	1.036353	1332.534	0.664377	3598.745	2.727794		
18.416	0.015276	778.519	0.528564	1340.224	3.899941		
4.497	0.016742	805.432	0.718058	1352.485	0.175790		

CTZ-B

Matriz Z								
С								
С	1	1.39877						
С	1	1.39919	2	121.4424				
С	3	1.39822	1	121.1982	2	0.0000		
С	4	1.38892	3	117.3401	1	-0.0000		
С	2	1.39226	1	117.4086	5	0.0000		
Н	3	1.08851	4	119.1864	1	-180.0000		
Н	1	1.08853	2	119.0044	3	180.0000		
Н	2	1.08797	6	121.0626	1	180.0000		
Н	4	1.08848	5	121.0675	3	180.0000		
Ν	5	1.38658	4	131.9197	3	-180.0000		
С	11	1.37363	5	110.4769	4	180.0000		
Ν	12	1.37956	11	106.3775	5	0.0000		
Ο	12	1.22095	11	127.1819	5	-180.0000		

Átomo	Valência Livre
С	-0.000
С	0.000
С	0.000
С	0.000
С	-0.000
С	-0.000
Н	-0.000
Ν	-0.000
С	-0.000
Ν	0.000
0	0.000

С	13	1.45798	12	122.1633	11	-176.6416
С	15	1.51792	13	110.3961	12	-129.5509
С	16	1.33357	15	122.9250	13	-139.8725
Н	17	1.09219	16	118.9859	15	180.0000
С	17	1.51518	16	123.4934	15	-0.0000
Н	16	1.09255	17	120.8349	15	180.0000
С	19	1.53544	17	111.4105	16	-15.6727
Н	19	1.10257	17	108.7588	21	121.5160
Н	19	1.09870	22	106.9443	17	-117.6816
С	21	1.53402	19	110.2024	17	47.1780
Н	21	1.10107	24	109.0564	19	119.8053
Н	21	1.09737	25	108.0337	24	-119.7549
Н	15	1.09831	13	104.0359	16	117.0109
Н	24	1.09820	15	108.8948	21	122.0677
Н	24	1.10096	28	108.2972	15	-118.5148
Н	11	1.01260	12	122.2546	5	178.9705

С	0.000
С	-0.000
С	0.000
Н	-0.000
С	0.000
Н	-0.000
С	0.000
Н	-0.000
Н	0.000
С	-0.000
Н	0.000
Н	0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.399	1.477	1	3	1.399	1.481	1	5	2.761	0.066
1	8	1.089	0.939	2	4	2.853	0.081	2	6	1.392	1.434
2	9	1.088	0.912	3	4	1.398	1.465	3	6	2.770	0.068
3	7	1.089	0.938	4	5	1.389	1.458	4	10	1.088	0.920
5	6	1.408	1.304	5	11	1.387	1.161	6	13	1.391	1.154
11	12	1.374	1.204	11	30	1.013	0.929	12	13	1.380	1.157
12	14	1.221	2.122	13	15	1.458	0.965	15	16	1.518	1.030
15	24	1.536	1.060	15	27	1.098	0.899	16	17	1.334	2.003
16	20	1.093	0.938	17	18	1.092	0.937	17	19	1.515	1.063
19	21	1.535	1.084	19	22	1.103	0.929	19	23	1.099	0.935
21	24	1.534	1.080	21	25	1.101	0.943	21	26	1.097	0.939
24	28	1.098	0.933	24	29	1.101	0.936				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1		
-688.4772132196	667.341924		

Espectroscopia de Infravermelho								
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade			
12.714	0.000717	783.633	0.302587	1371.865	0.085119			
7.300	0.006542	786.920	0.347336	1379.557	0.296533			
4.391	0.004587	801.742	1.970749	1383.630	0.002668			
2.306	0.000094	852.726	0.321867	1404.755	0.307631			
1.426	0.000337	883.571	0.131783	1423.607	0.109705			
5.929	0.023707	888.489	0.115094	1464.791	1.931716			
47.877	0.004911	906.989	0.004953	1468.985	7.782005			
69.707	0.008675	920.440	0.120082	1480.889	0.025728			
81.715	0.057140	955.578	0.143631	1496.778	0.348520			
149.975	0.022969	978.887	0.219220	1509.185	0.485452			
165.131	0.050427	994.433	0.165993	1544.126	0.340528			
219.766	0.011013	1035.967	0.097080	1549.792	7.339081			
263.580	0.206723	1041.546	0.048984	1702.364	0.487728			
274.135	0.009612	1045.617	0.067003	1721.064	0.974660			

317.289	0.067166	1057.974	0.720960	1774.179	1.103382
337.334	0.135341	1077.857	0.174633	1790.703	42.762249
388.310	0.045254	1094.981	0.252754	3076.402	0.427050
405.360	0.084641	1112.841	0.046038	3090.898	0.449820
460.564	0.167279	1132.525	0.062046	3098.533	0.604759
485.174	0.052059	1153.381	0.284342	3125.755	0.950879
509.005	0.213294	1165.369	0.136084	3132.808	0.276281
528.474	0.440565	1195.833	1.889314	3142.140	0.970605
564.692	3.660964	1215.014	0.301810	3146.530	0.507440
599.595	0.142459	1231.891	0.259296	3214.660	0.045530
608.495	0.045970	1249.645	0.026252	3234.556	0.270987
643.293	0.095488	1266.496	0.090620	3257.195	0.004722
666.641	0.644992	1283.480	0.631134	3266.884	0.048034
709.417	1.422460	1314.765	1.823449	3274.851	0.006824
745.064	0.796875	1328.761	0.153455	3281.182	0.007072
777.341	1.451503	1335.993	0.065901	3650.808	5.916822
12.714	0.000717	783.633	0.302587	1371.865	0.085119
7.300	0.006542	786.920	0.347336	1379.557	0.296533
Apêndice 3 – Espécies	envolvidas no	o mecanismo	da 3CTZ		
-----------------------	---------------	-------------	---------		
3CTZ-S0					

Matriz Z								
С								
С	1	1.39355						
С	1	1.39620	2	119.5681				
С	3	1.39198	1	120.5970	2	-0.0000		
С	4	1.39758	3	118.9813	1	-0.0000		
С	2	1.39538	1	120.8561	5	-0.0000		
Н	3	1.08892	4	119.1370	1	-180.0000		
Н	1	1.08856	2	120.2870	3	-180.0000		
Н	2	1.08883	6	118.9535	1	-180.0000		
Н	6	1.08618	5	119.9261	2	-180.0000		
Н	4	1.08723	5	119.8505	3	180.0000		
Ν	5	1.42311	4	118.5758	3	-179.0610		
Ν	12	1.34641	5	120.9108	4	3.8078		
С	12	1.37720	5	129.0715	4	-176.8602		
Ν	13	1.25045	12	108.8048	5	180.0000		
Ν	15	1.33741	13	109.3171	12	-0.0000		
Ο	14	1.22193	12	129.6312	5	0.9535		
С	16	1.48355	15	123.4646	13	-180.0000		
С	18	1.51818	16	108.3651	15	3.3748		
С	19	1.33254	18	123.1159	16	-107.7811		
Н	20	1.09217	19	118.6218	18	-175.6392		
С	20	1.51313	19	123.9941	18	4.6056		
Н	19	1.09200	20	120.6127	18	177.4722		
С	22	1.53325	20	111.1546	19	13.7861		
Н	22	1.09876	20	108.8838	24	122.2551		
Н	22	1.10223	25	107.0369	20	-117.4057		
С	24	1.53171	22	109.6175	20	-46.9091		
Н	24	1.10123	27	109.2190	22	-119.7725		
Н	24	1.09712	28	108.0266	27	119.9358		
С	18	1.53911	16	107.9225	15	121.8266		
Н	27	1.10038	18	107.3306	24	119.7158		
Н	27	1.09793	31	108.4319	18	-116.9361		
Н	30	1.09946	18	109.5827	23	41.8038		
Н	30	1.09797	33	109.3677	18	118.6958		
Н	30	1.09716	33	109.7793	34	120.7090		

Átomo	Valência Livre
С	-0.000
С	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	0.000
Н	0.000
Ν	-0.000
Ν	0.000
С	0.000
Ν	0.000
Ν	-0.000
О	-0.000
С	0.000
С	-0.000
С	0.000
Н	0.000
С	0.000
Н	-0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	-0.000
Н	0.000
С	-0.000
Н	0.000
Н	-0.000
Н	-0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.394	1.484	1	3	1.396	1.469	1	5	2.780	0.079
1	8	1.089	0.944	2	4	2.792	0.082	2	6	1.395	1.480
2	9	1.089	0.937	3	4	1.392	1.503	3	6	2.798	0.081
3	7	1.089	0.937	4	5	1.398	1.438	4	11	1.087	0.916
5	6	1.396	1.452	5	12	1.423	0.940	6	10	1.086	0.912
10	17	2.217	0.062	12	13	1.346	1.159	12	14	1.377	1.116
12	15	2.112	0.079	12	17	2.353	0.059	13	15	1.250	1.689
13	16	2.112	0.089	14	16	1.370	1.141	14	17	1.222	1.995
15	16	1.337	1.188	16	17	2.340	0.054	16	18	1.484	0.867
18	19	1.518	1.035	18	27	1.540	1.043	18	30	1.539	1.075
19	20	1.333	2.000	19	23	1.092	0.931	20	21	1.092	0.933

20	22	1.513	1.065	22	24	1.533	1.085	22	25	1.099	0.933
22	26	1.102	0.928	24	27	1.532	1.070	24	28	1.101	0.941
24	29	1.097	0.940	27	31	1.100	0.932	27	32	1.098	0.923
30	33	1.099	0.951	30	34	1.098	0.954	30	35	1.097	0.943

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.1910893575	768.345031

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
29.770	0.000676	760.875	0.639678	1377.254	0.503472				
8.316	0.002499	788.950	0.071292	1384.262	0.020346				
5.576	0.000302	810.031	2.810253	1389.361	0.046572				
1.696	0.000109	813.225	0.265155	1409.918	0.501527				
1.677	0.000050	845.466	0.099552	1412.274	0.889429				
1.133	0.000049	881.426	0.212617	1432.001	0.336048				
7.686	0.000315	896.194	0.000511	1477.674	0.268959				
43.671	0.011357	902.697	0.459512	1483.112	8.034808				
53.197	0.032097	937.697	0.104993	1494.152	0.287976				
89.175	0.034390	975.062	0.709466	1504.842	0.738696				
107.799	0.027123	986.731	0.219956	1507.170	0.160796				
147.320	0.007847	1001.733	0.306273	1515.463	0.337887				
193.522	0.020593	1003.138	0.116177	1520.796	0.047767				
225.184	0.097395	1036.252	0.370134	1567.532	8.411068				
238.260	0.089902	1045.861	1.654693	1655.399	0.640363				
261.178	0.005908	1052.085	0.005989	1696.855	0.114301				
268.528	0.068046	1053.438	0.036654	1701.949	2.209204				
311.147	0.031631	1067.663	0.017064	1776.670	0.448659				
325.337	0.103699	1073.544	0.008198	1786.461	18.722102				
338.730	0.442218	1084.680	0.015737	3081.404	0.380442				
360.424	0.032660	1116.080	0.351521	3091.330	0.563018				
379.966	0.049791	1126.837	0.775987	3100.103	0.256720				
424.354	0.024662	1156.019	0.030182	3103.256	0.615145				
429.237	0.005384	1157.209	0.864264	3127.191	0.599823				
461.638	0.005972	1170.310	0.092685	3146.691	0.878836				
465.021	0.565548	1172.247	0.099705	3153.339	0.241147				
521.891	0.020657	1199.861	0.025791	3169.740	0.387815				
533.367	0.444777	1220.703	1.335097	3188.582	0.115240				
604.354	0.070652	1245.562	1.436158	3217.357	0.023764				
616.015	0.006134	1263.201	0.152636	3237.307	0.231503				
648.410	0.237564	1278.008	0.130478	3259.814	0.001786				
689.850	0.345491	1285.205	0.303230	3266.851	0.076154				
720.242	0.794852	1305.405	0.452559	3277.875	0.027885				
723.326	0.048182	1344.138	0.409880	3289.927	0.106492				
742.927	0.478406	1361.032	0.188660	3310.584	0.536494				

3CTZ-Sx

TD-DFT sem Aproximação de Tamm-Dancoff							
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador		
S ₁	-836.9858055534	-0.4038	0.1620	-0.0071	0.0259		
S ₂	-836.9824283384	0.0155	0.0429	-0.2413	0.0084		

S ₃	-836.9779972302	-2.0846	0.2521	-0.1315	0.6287	
S ₄	-836.9606962726	0.0242	-0.0217	0.0404	0.0004	
S ₅	-836.9422624098	-1.1570	0.0809	0.0004	0.2231	
TD-DFT com Aproximação de Tamm-Dancoff						
Estado	Energia/Eh	Momen	nto dipolar de tr	Força do Oscilador		
S ₁	-836.9812839861	-0.2802	0.1231	-0.0064	0.0131	
S ₂	-836.9712090613	-0.0264	-0.0515	0.2996	0.0136	
S ₃	-836.9687667219	-2.2451	0.2901	-0.1377	0.7622	
S ₄	-836.9531415269	-0.0247	0.0217	-0.0746	0.0011	
S ₅	-836.9311682858	-1.1050	0.2072	0.0311	0.2191	

3CTZ-T

Matriz Z							
С							
С	1	1.47264					
С	1	1.46799	2	119.0513			
С	3	1.34162	1	120.6188	2	-10.7625	
С	4	1.47997	3	118.7737	1	0.0000	
С	2	1.34211	1	120.8363	5	0.0000	
Н	3	1.08923	4	120.3429	1	-180.0000	
Н	1	1.08349	3	120.4323	2	-177.7710	
Н	2	1.08899	6	120.2576	1	180.0000	
Н	6	1.08620	2	122.6717	5	-180.0000	
Н	4	1.08723	3	122.4899	5	178.7462	
Ν	5	1.38052	4	118.2885	3	-173.2514	
Ν	12	1.35331	5	121.3562	4	5.1506	
С	12	1.39120	5	129.2379	4	-173.2384	
Ν	13	1.25379	12	108.8375	5	-178.6114	
Ν	15	1.33516	13	109.5154	12	-0.0000	
Ο	14	1.22107	12	129.1543	5	-0.0000	
С	16	1.48385	15	123.4186	13	179.1135	
С	18	1.51818	16	108.4669	15	3.6201	
С	19	1.33279	18	123.0645	16	-107.9958	
Н	20	1.09222	19	118.6149	18	-175.3054	
С	20	1.51310	19	124.0223	18	5.2198	
Н	19	1.09194	20	120.6263	18	176.9572	
С	22	1.53318	20	111.1490	19	13.2874	
Н	22	1.09877	20	108.8455	24	122.2535	
Н	22	1.10220	25	107.0427	20	-117.4042	
С	24	1.53164	22	109.5472	20	-46.8269	
Н	24	1.10140	27	109.2178	22	-119.7660	
Н	24	1.09711	28	108.0214	27	119.9726	
С	18	1.53898	16	107.8926	15	122.1083	
Н	27	1.10039	18	107.2990	24	119.6786	
Н	27	1.09781	31	108.4086	18	-116.9849	
Н	30	1.09939	18	109.5765	23	41.9826	
Н	30	1.09795	33	109.3777	18	118.7071	
Н	30	1.09722	33	109.7853	34	120.6721	

Átomo	Valência Livre
С	0.602
С	0.007
С	0.004
С	0.011
С	0.398
С	0.008
Н	0.000
Ν	0.002
Ν	0.001
С	0.003
Ν	0.003
Ν	0.000
О	0.001
С	0.000
С	-0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Н

0.000

1	2	1.473	1.099	1	3	1.468	1.115	1	4	2.442	0.075
1	6	2.449	0.065	1	8	1.083	0.959	2	5	2.423	0.085
2	6	1.342	1.874	2	9	1.089	0.937	3	4	1.342	1.879
3	5	2.429	0.074	3	7	1.089	0.937	4	5	1.480	1.054
4	11	1.087	0.927	5	6	1.476	1.074	5	12	1.381	1.090
6	10	1.086	0.922	10	17	2.239	0.056	12	13	1.353	1.145
12	14	1.391	1.065	12	15	2.121	0.067	13	15	1.254	1.660
13	16	2.115	0.090	14	16	1.367	1.147	14	17	1.221	1.998
15	16	1.335	1.191	16	17	2.340	0.055	16	18	1.484	0.865
18	19	1.518	1.035	18	27	1.540	1.043	18	30	1.539	1.074
19	20	1.333	1.999	19	23	1.092	0.931	20	21	1.092	0.933
20	22	1.513	1.065	22	24	1.533	1.085	22	25	1.099	0.933
22	26	1.102	0.928	24	27	1.532	1.069	24	28	1.101	0.941
24	29	1.097	0.940	27	31	1.100	0.932	27	32	1.098	0.923
30	33	1.099	0.951	30	34	1.098	0.954	30	35	1.097	0.943

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.0381353185	754.607200

	Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade							
8.715	0.002027	725.697	0.014198	1371.219	1.091621							
5.653	0.000439	730.034	0.103415	1385.606	0.038765							
1.971	0.000297	755.467	1.021574	1389.160	0.060866							
1.036	0.000087	761.668	2.283033	1394.970	0.896857							
0.792	0.000162	770.460	0.297938	1401.320	0.427826							
0.694	0.000033	799.062	0.318180	1410.271	0.660579							
21.221	0.009148	841.777	0.051818	1431.602	0.059686							
44.967	0.024068	875.541	0.602282	1445.488	2.411097							
57.015	0.030162	882.426	0.220301	1464.152	5.243033							
73.080	0.002695	901.318	0.513885	1477.805	0.174688							
92.361	0.074344	937.133	0.091572	1495.841	0.356078							
105.667	0.043281	957.614	0.359542	1505.354	0.634433							
148.365	0.058949	975.105	0.876713	1507.574	0.251439							
189.385	0.006268	1000.850	0.079514	1520.153	0.098949							
215.796	0.033987	1002.933	0.135548	1633.456	2.514130							
233.188	0.126800	1017.210	1.615508	1688.994	0.053913							
263.139	0.010675	1029.938	0.570656	1771.730	0.416277							
268.427	0.042758	1037.214	0.006788	1775.432	1.960544							
310.070	0.032227	1047.694	0.036874	1780.050	18.852731							
331.587	0.133142	1051.658	0.326475	3080.470	0.384213							
334.403	0.338334	1084.390	0.032959	3090.542	0.601612							
358.953	0.019289	1111.057	0.685789	3100.958	0.174408							
369.293	0.086925	1128.512	0.544355	3105.282	0.688214							
401.263	1.311193	1149.351	0.427213	3127.086	0.580123							
422.973	0.065682	1156.400	0.200163	3147.180	0.859135							
436.104	0.168796	1169.435	0.335365	3154.932	0.231078							
455.984	0.144473	1198.182	0.552094	3170.414	0.387019							
464.171	0.438867	1204.471	1.449714	3188.912	0.129681							
523.014	0.026241	1224.956	0.209347	3218.054	0.027359							
572.216	0.009026	1258.445	0.396131	3237.847	0.233064							
595.782	0.203751	1275.669	0.762616	3257.759	0.065306							

600.395	0.187434	1278.909	0.097996	3264.233	0.090839
612.365	0.204441	1316.094	0.511118	3292.935	0.178581
679.448	0.188668	1347.193	0.408128	3309.036	0.495744
707.657	0.005660	1358.748	0.337484	3313.635	0.131721

3CTZ-ET1a

	Matriz Z											
С												
С	1	1.43875										
С	1	1.44003	2	120.2302								
С	3	1.35185	1	120.5371	2	-9.3307						
С	4	1.48955	3	117.7260	1	-8.5716						
С	2	1.35167	1	120.8916	5	-4.3340						
Н	3	1.09017	4	120.4515	1	-175.7738						
Н	1	1.08554	3	119.5473	2	-172.7925						
Н	2	1.09004	6	120.2893	1	176.4937						
Н	6	1.08646	2	123.4340	5	176.3638						
Н	4	1.09037	3	122.3633	5	-178.2108						
Ν	5	1.41151	4	114.4395	3	-112.7055						
Ν	12	1.28886	5	121.7775	4	-3.9755						
С	12	1.57923	5	126.6930	4	-169.0368						
Ν	13	1.11601	12	141.0897	5	-169.1730						
Ν	14	1.27209	12	107.9420	5	173.2946						
Ο	14	1.22947	12	111.5994	5	-5.8797						
С	16	1.46603	14	120.3738	12	-176.6912						
С	18	1.52065	16	107.1623	14	180.0000						
С	19	1.33355	18	124.1306	16	-107.9641						
Н	20	1.09282	19	119.1083	18	-177.9258						
С	20	1.51500	19	123.4525	18	3.1326						
Н	19	1.09393	20	120.1655	18	180.0000						
С	22	1.53385	20	110.7666	19	15.0031						
Н	22	1.09937	20	109.0047	24	122.0859						
Н	22	1.10272	25	106.9561	20	-117.9848						
С	24	1.53278	22	109.5608	20	-47.9632						
Н	24	1.10065	27	108.4884	22	-119.1250						
Н	24	1.09802	28	108.5286	22	-120.2438						
С	18	1.54134	16	109.3101	14	-62.2953						
Н	27	1.10182	18	108.4322	24	119.9004						
Н	27	1.09810	31	108.5833	18	-117.1500						
Н	30	1.09990	18	109.3083	23	41.0798						
Н	30	1.09924	33	109.3957	18	120.3733						
Н	30	1.09843	33	109.2061	34	120.4249						

Átomo	Valência Livre
С	0.317
С	0.001
С	0.001
С	0.033
С	0.590
С	0.035
Н	0.000
Ν	0.003
Ν	0.001
С	0.000
Ν	0.003
Ν	0.000
Ο	0.000
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	-0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.439	1.246	1	3	1.440	1.245	1	4	2.425	0.105
1	6	2.428	0.109	1	8	1.086	0.953	2	6	1.352	1.786
2	9	1.090	0.945	3	4	1.352	1.787	3	7	1.090	0.944
4	5	1.490	1.061	4	11	1.090	0.936	5	6	1.495	1.032
5	12	1.412	1.031	5	15	3.464	0.053	6	10	1.086	0.936
12	13	1.289	1.212	12	14	1.579	0.670	12	15	2.268	0.167

13	15	1.116	2.424	14	16	1.272	1.801	14	17	1.229	1.938
15	16	2.318	0.159	16	17	2.354	0.116	16	18	1.466	1.009
18	19	1.521	1.030	18	27	1.543	1.039	18	30	1.541	1.068
19	20	1.334	2.014	19	23	1.094	0.932	20	21	1.093	0.935
20	22	1.515	1.058	22	24	1.534	1.088	22	25	1.099	0.936
22	26	1.103	0.930	24	27	1.533	1.073	24	28	1.101	0.937
24	29	1.098	0.942	27	31	1.102	0.933	27	32	1.098	0.923
30	33	1.100	0.954	30	34	1.099	0.957	30	35	1.098	0.946

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-836.9297528612	744.125246

3CTZ-ET1f

	Matriz Z										
С											
С	1	1.41085									
С	1	1.40748	2	121.1403							
С	3	1.37248	1	119.7935	2	-0.0000					
С	4	1.44330	3	119.9028	1	0.0000					
С	2	1.37222	1	120.7357	5	-0.0000					
Н	3	1.08819	4	120.1116	1	-180.0000					
Н	1	1.08844	3	119.5621	2	-180.0000					
Н	2	1.08823	6	119.7508	1	180.0000					
Н	6	1.08616	2	122.4628	5	180.0000					
Н	4	1.08789	3	122.7440	5	179.1302					
Ν	5	1.31574	4	116.4556	3	-180.0000					
Ν	12	1.71993	5	128.5274	4	0.0000					
С	12	1.41434	5	129.1512	4	-176.9978					
Ν	13	1.25625	12	99.7433	5	-155.6139					
Ν	14	1.35055	12	106.4004	5	172.8335					
Ο	14	1.22071	12	125.6718	5	-6.2992					
С	16	1.47799	14	123.2479	12	-168.6290					
С	18	1.51950	16	108.1886	14	179.0566					
С	19	1.33225	18	123.4410	16	-110.3813					
Н	20	1.09239	19	118.8248	18	-175.1476					
С	20	1.51400	19	123.7894	18	5.9585					
Н	19	1.09271	20	120.5361	18	176.8139					
С	22	1.53377	20	111.0314	19	12.9335					
Н	22	1.09923	20	108.8211	24	122.1961					
Н	22	1.10253	25	106.9648	20	-117.6475					
С	24	1.53229	22	109.2734	20	-47.2373					
Н	24	1.10056	27	108.9153	22	-119.2745					
Н	24	1.09760	28	108.5307	22	-120.3129					
С	18	1.54128	16	108.2964	14	-63.9147					
Н	27	1.10109	18	107.7969	24	119.6888					
Н	27	1.09768	31	108.2626	18	-117.2136					
Н	30	1.09936	18	109.3418	23	42.8987					
Н	30	1.09846	33	109.3767	18	118.7572					
Н	30	1.09625	33	109.6285	34	120.6021					

Átomo	Valência Livre
С	0.050
С	0.000
С	0.000
С	0.025
С	0.014
С	0.021
Н	0.000
Ν	0.075
Ν	0.231
С	0.001
N	0.125
Ν	0.002
О	0.001
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	-0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.411	1.378	1	3	1.407	1.390	1	4	2.405	0.064
1	6	2.419	0.057	1	8	1.088	0.944	1	12	4.105	0.060
2	6	1.372	1.605	2	9	1.088	0.937	3	4	1.372	1.597
3	7	1.088	0.939	4	5	1.443	1.220	4	11	1.088	0.926
4	12	2.347	0.052	5	6	1.444	1.216	5	12	1.316	1.475
6	10	1.086	0.917	10	17	2.206	0.060	12	13	1.720	0.596
12	14	1.414	0.995	12	15	2.295	0.074	13	15	1.256	1.694
13	16	2.199	0.054	14	16	1.351	1.247	14	17	1.221	2.005
15	16	1.419	0.977	16	17	2.311	0.076	16	18	1.478	0.912
18	19	1.519	1.035	18	27	1.542	1.042	18	30	1.541	1.069
19	20	1.332	2.002	19	23	1.093	0.934	20	21	1.092	0.933
20	22	1.514	1.061	22	24	1.534	1.087	22	25	1.099	0.935
22	26	1.103	0.929	24	27	1.532	1.071	24	28	1.101	0.935
24	29	1.098	0.941	27	31	1.101	0.932	27	32	1.098	0.923
30	33	1.099	0.953	30	34	1.098	0.954	30	35	1.096	0.947

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.0111259739	750.468823

3CTZ-I1a

Matriz Z									
С									
С	1	1.40514							
С	1	1.40700	2	121.0179					
С	3	1.37370	1	120.1768	2	-0.0000			
С	4	1.43501	3	119.2969	1	-0.0000			
С	2	1.37497	1	120.3791	5	-0.0000			
Н	3	1.08798	4	119.9248	1	180.0000			
Н	1	1.08862	2	119.4131	3	-180.0000			
Н	2	1.08783	6	119.8102	1	180.0000			
Н	6	1.08661	2	122.0553	5	-178.7005			
Н	4	1.08666	3	121.4476	5	-180.0000			
Ν	5	1.34062	4	121.0398	3	-177.5097			
Ν	12	1.39739	5	115.7900	4	-0.0000			
С	12	1.57364	5	124.9215	4	178.3840			
Ν	13	1.16514	12	122.9381	5	-173.7267			
Ν	14	1.27261	12	107.7074	5	-127.5929			
Ο	14	1.23381	12	112.2950	5	51.7308			
С	16	1.47232	14	117.0071	12	-178.9467			
С	18	1.52095	16	106.6847	14	-180.0000			
С	19	1.33358	18	124.4528	16	-107.4391			
Н	20	1.09291	19	119.2100	18	-178.1162			
С	20	1.51529	19	123.3236	18	2.7156			
Н	19	1.09442	20	119.9172	18	180.0000			
С	22	1.53418	20	110.7664	19	14.8652			
Н	22	1.09953	20	109.0785	24	122.1583			
Н	22	1.10290	25	106.9317	20	-117.9641			
С	24	1.53318	22	109.6034	20	-47.7207			
Н	24	1.10026	27	108.3543	22	-119.2227			
Н	24	1.09839	28	108.6486	22	-120.2363			

Átomo	Valência Livre
С	0.034
С	0.000
С	0.000
С	0.016
С	0.016
С	0.018
Н	0.000
Ν	0.102
N	0.043
С	0.000
Ν	0.449
Ν	0.000
0	0.000
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000

С	18	1.54184	16	110.2836	14	-62.4378
Н	27	1.10225	18	108.4466	24	119.8774
Н	27	1.09759	31	108.6652	18	-117.2198
Н	30	1.10033	18	109.2898	23	42.9322
Н	30	1.09954	33	109.2511	18	120.2748
Н	30	1.09763	33	109.2091	34	120.3403

С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.405	1.402	1	3	1.407	1.393	1	4	2.410	0.053
1	6	2.412	0.056	1	8	1.089	0.942	1	12	4.123	0.058
2	4	2.822	0.050	2	6	1.375	1.590	2	9	1.088	0.936
3	4	1.374	1.599	3	6	2.826	0.051	3	7	1.088	0.935
4	5	1.435	1.243	4	11	1.087	0.919	5	6	1.435	1.248
5	12	1.341	1.304	6	10	1.087	0.913	6	12	2.391	0.050
10	17	2.208	0.055	12	13	1.397	0.991	12	14	1.574	0.697
12	15	2.254	0.077	13	15	1.165	2.241	14	16	1.273	1.853
14	17	1.234	1.921	16	17	2.355	0.117	16	18	1.472	1.034
18	19	1.521	1.027	18	27	1.544	1.032	18	30	1.542	1.061
19	20	1.334	2.017	19	23	1.094	0.932	20	21	1.093	0.935
20	22	1.515	1.057	22	24	1.534	1.089	22	25	1.100	0.937
22	26	1.103	0.931	24	27	1.533	1.075	24	28	1.100	0.934
24	29	1.098	0.942	27	31	1.102	0.933	27	32	1.098	0.922
30	33	1.100	0.955	30	34	1.100	0.957	30	35	1.098	0.947

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1					
-837.0243125605	750.122505					

Espectroscopia de Infravermelho								
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade			
10.233	0.014145	682.473	0.110054	1354.440	0.152592			
4.325	0.057238	739.112	0.773383	1356.669	1.444444			
3.049	0.046165	776.896	1.481445	1378.428	0.086369			
1.547	0.000732	784.488	0.011101	1381.605	0.536778			
1.115	0.000140	818.017	2.827806	1401.661	0.099979			
0.589	0.000194	821.695	7.278056	1419.453	7.872324			
22.308	0.072379	863.425	0.064815	1431.615	0.301010			
53.812	0.071882	877.443	0.784939	1479.045	0.073876			
61.926	0.020098	882.719	0.101128	1490.329	0.722159			
85.180	0.008195	924.640	2.799948	1493.979	0.198947			
101.728	0.038977	935.693	0.377111	1502.416	0.372925			
134.003	0.111702	950.351	0.171403	1508.093	0.225408			
160.237	0.024633	975.037	0.849288	1510.576	0.484402			
173.160	0.012633	981.682	1.372540	1518.203	0.060201			
186.450	0.040962	992.473	0.301724	1599.730	0.142763			
208.702	0.093171	998.994	0.090074	1644.820	10.655072			
225.305	0.012627	1006.709	0.155954	1774.841	0.082131			
245.429	0.616201	1047.612	0.226457	1830.694	23.302437			
261.084	0.067609	1048.966	0.099927	1920.472	1.281122			
300.062	0.104705	1058.804	0.072408	3069.029	1.003108			
306.359	0.084024	1074.182	0.221908	3077.202	0.784831			
345.679	0.029022	1076.452	0.111112	3088.719	0.820200			

351.939	0.248304	1083.785	0.036886	3097.185	0.619453
393.350	0.018525	1135.589	0.633056	3113.744	1.289761
401.195	0.004265	1137.426	0.727456	3136.939	1.131905
428.370	0.754238	1156.269	0.171143	3146.723	0.950696
433.865	0.437829	1161.216	0.206799	3153.124	0.396037
461.977	0.484409	1168.722	0.172012	3178.197	0.331420
493.349	0.014273	1203.776	2.518676	3190.333	0.210446
536.683	0.155907	1216.814	0.517065	3216.761	0.814332
545.305	0.674676	1258.645	0.066483	3275.418	0.070261
583.148	0.420030	1270.889	0.190977	3285.606	0.006095
593.847	0.823770	1300.027	0.980275	3294.915	0.049143
648.722	1.734882	1322.005	0.558653	3310.491	0.703088
658.495	1.505952	1330.056	8.845936	3314.369	0.343011

3CTZ-I1f

Matriz Z								
С								
С	1	1.40538						
С	1	1.40321	2	120.7714				
С	3	1.37750	1	119.3251	2	-0.0000		
С	4	1.43701	3	121.3363	1	0.0000		
С	2	1.37926	1	120.9108	5	-0.0000		
Н	3	1.08823	4	120.4226	1	180.0000		
Н	1	1.08895	3	119.6950	2	-180.0000		
Н	2	1.08844	6	119.5696	1	180.0000		
Н	6	1.08461	2	121.1505	5	180.0000		
Н	4	1.08863	5	116.5172	3	-180.0000		
Ν	5	1.33355	4	114.1976	3	178.8918		
Ν	12	2.61006	5	146.7461	4	-28.1738		
С	12	1.38475	5	121.7587	4	177.5126		
Ν	13	1.16597	12	82.9893	5	-159.0961		
Ν	15	1.38008	13	130.2785	12	3.1877		
0	14	1.21976	12	126.8006	5	-17.0746		
С	16	1.49635	15	114.1910	13	177.5985		
С	18	1.52340	16	108.6633	15	-2.2758		
С	19	1.33324	18	123.8141	16	-107.5440		
Н	20	1.09239	19	118.5919	18	-174.6568		
С	20	1.51234	19	124.0198	18	5.9010		
Н	19	1.09215	20	120.1150	18	175.9622		
С	22	1.53263	20	110.8984	19	11.2634		
Н	22	1.09917	20	108.9976	24	122.4418		
Н	22	1.10240	25	107.0205	20	-117.4999		
С	24	1.53223	22	109.5459	20	-45.6655		
Н	24	1.10139	27	109.0177	22	-119.8955		
Н	24	1.09744	28	107.9746	22	-120.1679		
С	18	1.54143	16	109.7084	15	114.7747		
Н	27	1.10111	18	107.0463	24	119.2625		
Н	27	1.09460	31	108.4127	18	-117.6530		
Н	30	1.10012	18	109.1638	23	45.5414		
Н	30	1.09875	33	109.0551	18	118.1618		
Н	30	1.09489	33	109.7727	34	120.5751		

Átomo	Valência Livre
С	0.027
С	0.000
С	0.000
С	0.021
С	0.006
С	0.019
Н	0.000
Ν	0.123
Ν	0.435
С	0.001
Ν	0.055
Ν	0.005
О	0.002
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.405	1.412	1	3	1.403	1.416	1	4	2.400	0.054
1	8	1.089	0.944	1	12	4.138	0.059	2	4	2.797	0.055
2	6	1.379	1.570	2	9	1.088	0.937	3	4	1.378	1.564
3	6	2.832	0.056	3	7	1.088	0.941	4	5	1.437	1.273
4	11	1.089	0.933	5	6	1.439	1.215	5	12	1.334	1.577
6	10	1.085	0.924	10	17	2.155	0.056	12	14	1.385	1.231
13	15	1.166	2.304	13	16	2.312	0.099	14	16	1.393	1.096
14	17	1.220	1.986	15	16	1.380	1.010	16	17	2.261	0.053
16	18	1.496	0.891	18	19	1.523	1.038	18	27	1.542	1.037
18	30	1.541	1.064	19	20	1.333	1.999	19	23	1.092	0.929
20	21	1.092	0.932	20	22	1.512	1.064	22	24	1.533	1.086
22	25	1.099	0.934	22	26	1.102	0.928	24	27	1.532	1.071
24	28	1.101	0.941	24	29	1.097	0.941	27	31	1.101	0.932
27	32	1.095	0.924	30	33	1.100	0.952	30	34	1.099	0.954
30	35	1.095	0.947								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.0622339033	752.101167

Espectroscopia de Infravermelho											
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade						
15.421	0.010581	693.916	0.056874	1344.585	8.015723						
4.680	0.002716	754.852	0.492083	1359.322	1.364457						
3.005	0.003640	766.637	0.970678	1383.960	0.129323						
1.311	0.000727	796.296	0.690559	1386.407	0.174297						
0.592	0.000142	828.295	2.015439	1405.761	0.453062						
0.430	0.000025	844.529	0.066740	1427.559	0.450516						
13.578	0.062354	873.058	0.095226	1440.147	7.363248						
35.387	0.038272	873.766	1.509999	1477.447	0.100604						
56.415	0.011433	885.336	0.269913	1484.725	1.319782						
67.593	0.080993	902.018	0.150052	1488.880	0.283319						
79.144	0.025991	937.277	0.016064	1497.672	0.446032						
127.464	0.027914	971.423	2.078629	1502.452	0.575565						
154.730	0.041847	975.988	0.094358	1509.843	0.290967						
175.744	0.034705	1001.019	0.196996	1522.712	0.414767						
204.127	0.017204	1011.116	0.190896	1609.967	0.221148						
208.384	0.041441	1034.912	0.764890	1642.805	9.390052						
242.661	0.105506	1042.413	1.401044	1736.679	13.026093						
257.583	0.026000	1049.222	0.018326	1770.866	0.129942						
260.826	0.011972	1055.694	0.028525	1949.046	1.852663						
277.346	0.033754	1069.667	3.682093	3077.427	0.570349						
321.217	0.015651	1074.122	0.056829	3088.077	0.369174						
343.156	0.049802	1086.915	0.499180	3096.990	0.254926						
360.148	0.093063	1121.869	0.073948	3100.228	1.085853						
384.490	0.487354	1122.908	1.547689	3121.135	0.773780						
400.048	0.041531	1142.639	0.675662	3140.968	0.991015						
425.669	0.004339	1160.226	0.544585	3159.457	0.559425						
463.275	0.030514	1166.710	0.197278	3193.079	0.195329						
468.900	0.542496	1185.417	1.329741	3207.624	0.128272						

503.071	0.064346	1190.092	3.508515	3211.667	0.043741
521.285	0.084703	1227.625	0.677648	3231.525	0.374166
555.932	0.839391	1261.577	0.006470	3265.337	0.010954
589.904	0.003213	1279.724	0.464462	3275.392	0.025698
605.092	0.055558	1293.650	1.070422	3279.903	0.029726
652.840	1.496183	1303.823	9.684840	3289.975	0.048103
670.810	1.391088	1331.272	17.769891	3332.511	0.386328

3CTZ-ET2a

Matriz Z											
С											
С	1	1.40291									
С	1	1.40529	2	120.8365							
С	3	1.37522	1	120.4089	2	-0.0000					
С	4	1.43436	3	119.3827	1	0.0000					
С	2	1.37721	1	120.3743	5	-0.0000					
Н	3	1.08810	4	119.5574	1	180.0000					
Н	1	1.08841	3	119.2770	2	-180.0000					
Н	2	1.08797	6	119.6888	1	180.0000					
Н	6	1.08657	2	122.1817	5	-178.5804					
Н	4	1.08646	3	120.9833	5	-180.0000					
Ν	5	1.33895	4	121.1021	3	-177.8298					
Ν	12	1.55837	5	114.1319	4	-1.6607					
С	12	1.54862	5	127.5932	4	177.7734					
Ν	13	1.13137	12	121.7308	5	-171.3070					
Ν	14	1.27633	12	108.1854	5	-136.9300					
0	14	1.23764	12	112.7623	5	42.2013					
С	16	1.47212	14	117.4433	12	178.7657					
С	18	1.52237	16	107.0076	14	180.0000					
С	19	1.33365	18	124.3340	16	-107.8642					
Н	20	1.09295	19	119.1335	18	-177.8739					
С	20	1.51512	19	123.4697	18	3.1682					
Н	19	1.09416	20	119.9097	18	180.0000					
С	22	1.53419	20	110.8382	19	14.1124					
Н	22	1.09956	20	109.0409	24	122.2166					
Н	22	1.10286	25	106.9387	20	-117.9160					
С	24	1.53305	22	109.5254	20	-47.2148					
Н	24	1.10039	27	108.4574	22	-119.3730					
Н	24	1.09830	28	108.5579	22	-120.2339					
С	18	1.54215	16	110.1322	14	-63.1741					
Н	27	1.10231	18	108.2952	24	119.6528					
Н	27	1.09681	31	108.6791	18	-117.2600					
Н	30	1.10025	18	109.2644	23	43.4892					
Н	30	1.09962	33	109.2806	18	120.2399					
Н	30	1.09704	33	109.3023	34	120.2902					

Átomo	Valência Livre
С	0.027
С	0.000
С	0.000
С	0.016
С	0.012
С	0.019
Н	0.000
Ν	0.194
Ν	0.047
С	0.000
Ν	0.218
Ν	0.001
О	0.000
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.412	1	3	1.405	1.403	1	6	2.412	0.052
1	8	1.088	0.942	1	12	4.129	0.062	2	4	2.821	0.053
2	6	1.377	1.573	2	9	1.088	0.936	3	4	1.375	1.596

3	6	2.820	0.053	3	7	1.088	0.934	4	5	1.434	1.247
4	11	1.086	0.919	5	6	1.436	1.259	5	12	1.339	1.313
6	10	1.087	0.911	6	12	2.394	0.057	10	17	2.141	0.067
12	13	1.558	0.753	12	14	1.549	0.736	12	15	2.359	0.128
13	15	1.131	2.478	14	16	1.276	1.834	14	17	1.238	1.888
16	17	2.355	0.114	16	18	1.472	1.034	18	19	1.522	1.026
18	27	1.544	1.031	18	30	1.542	1.060	19	20	1.334	2.017
19	23	1.094	0.932	20	21	1.093	0.935	20	22	1.515	1.057
22	24	1.534	1.089	22	25	1.100	0.937	22	26	1.103	0.930
24	27	1.533	1.075	24	28	1.100	0.935	24	29	1.098	0.942
27	31	1.102	0.933	27	32	1.097	0.922	30	33	1.100	0.955
30	34	1.100	0.957	30	35	1.097	0.948				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.0208799702	743.576527

3CTZ-ET2f

	Matriz Z											
С												
С	1	1.40241										
С	1	1.40121	2	120.7642								
С	3	1.38279	1	119.7497	2	-0.0000						
С	4	1.42343	3	120.4036	1	0.0000						
С	2	1.38292	1	120.2203	5	-0.0000						
Н	3	1.08837	4	120.1837	1	-180.0000						
Н	1	1.08917	2	119.5166	3	-180.0000						
Н	2	1.08840	6	119.8541	1	-180.0000						
Н	6	1.09009	2	120.6505	5	179.1188						
Н	4	1.08878	5	117.5066	3	-180.0000						
Ν	5	1.34365	4	116.9966	3	179.1284						
Ν	12	2.70946	5	95.1553	4	-88.9050						
С	12	1.40233	5	117.8145	4	-180.0000						
Ν	13	1.12654	12	78.9734	5	-138.3401						
Ν	14	1.38964	12	115.7788	5	88.1719						
Ο	14	1.21225	12	121.5835	5	-91.8915						
С	16	1.48886	14	121.3024	12	160.6742						
С	18	1.52563	16	108.2507	14	-171.9156						
С	19	1.33393	18	123.8442	16	-102.4254						
Н	20	1.09256	19	118.5357	18	-175.6200						
С	20	1.51183	19	124.1997	18	3.9381						
Н	19	1.09206	20	119.8443	18	176.0595						
С	22	1.53281	20	111.1041	19	11.1612						
Н	22	1.09908	20	109.1069	24	122.6117						
Н	22	1.10239	25	106.9656	20	-117.0682						
С	24	1.53278	22	109.8108	20	-44.4291						
Н	24	1.10012	27	108.7866	22	-119.5943						
Н	24	1.09740	28	108.3801	22	-120.1825						
С	18	1.53820	16	111.0273	14	-52.8227						
Н	27	1.10124	18	106.6716	24	119.2378						
Н	27	1.09447	31	108.6426	18	-117.4708						
Н	30	1.10071	18	109.4131	23	46.2441						

Átomo	Valância Lizza
Atomo	
<u> </u>	0.015
C	0.000
С	0.000
С	0.016
С	0.002
С	0.016
Н	0.000
Ν	0.268
Ν	0.176
С	0.001
Ν	0.050
Ν	0.080
О	0.001
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	-0.000
Н	0.000
Н	0.000
Н	0.000

18 118.9/33	18	108.9497	33	1.09866	30	Н
-120.0528		33	109.7285 33	33 100.7785 33 34 109.7285 33	1.09656 34 109.7285 33	30 1.09656 34 109.7285 33

Р	Par Dist/Å		Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.402	1.434	1	3	1.401	1.439	1	8	1.089	0.944
1	12	4.140	0.064	2	4	2.805	0.063	2	6	1.383	1.552
2	9	1.088	0.935	3	4	1.383	1.543	3	6	2.815	0.062
3	7	1.088	0.940	4	5	1.423	1.318	4	11	1.089	0.930
5	6	1.426	1.247	5	12	1.344	1.497	6	10	1.090	0.920
12	14	1.402	1.162	13	15	1.127	2.538	13	16	2.420	0.138
14	16	1.390	1.122	14	17	1.212	2.122	15	16	1.601	0.698
16	18	1.489	0.909	18	19	1.526	1.013	18	27	1.544	1.043
18	30	1.538	1.073	19	20	1.334	2.012	19	23	1.092	0.932
20	21	1.093	0.933	20	22	1.512	1.065	22	24	1.533	1.087
22	25	1.099	0.933	22	26	1.102	0.927	24	27	1.533	1.072
24	28	1.100	0.934	24	29	1.097	0.941	27	31	1.101	0.931
27	32	1.094	0.925	30	33	1.101	0.948	30	34	1.099	0.952
30	35	1.097	0.945								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-837.0568127596	742.669664

3CTZ-I2

Matriz Z								
С								
С	1	1.40429						
С	1	1.40275	2	120.7506				
С	3	1.37920	1	119.5126	2	-0.0000		
С	4	1.43281	3	121.0426	1	0.0000		
С	2	1.38014	1	120.6478	5	-0.0000		
Н	3	1.08837	4	120.3585	1	180.0000		
Н	1	1.08898	2	119.4970	3	-180.0000		
Н	2	1.08840	6	119.6605	1	-180.0000		
Н	6	1.08596	2	120.8721	5	-180.0000		
Н	4	1.08874	5	117.0811	3	-180.0000		
Ν	5	1.33761	4	115.5567	3	-178.5333		
С	12	1.39200	5	121.1013	4	-173.1638		
Ν	13	1.40326	12	111.0185	5	-151.5187		
0	13	1.21498	12	126.7056	5	28.4649		
С	14	1.46921	13	117.6770	12	-122.7388		
С	16	1.52052	14	105.9087	13	157.2564		
С	17	1.33362	16	123.4260	14	-109.8610		
Н	18	1.09248	17	118.9056	16	-177.9273		
С	18	1.51426	17	123.7009	16	2.6372		
Н	17	1.09287	18	120.6335	16	180.0000		
С	20	1.53402	18	111.2462	17	14.3260		
Н	20	1.09892	18	108.9855	22	122.3221		
Н	20	1.10245	23	106.9942	18	-117.5501		
С	22	1.53439	20	109.4697	18	-46.8895		
Н	22	1.10095	25	108.8458	20	-119.9669		

Átomo	Valência Livre
С	0.023
С	0.000
С	0.000
С	0.019
С	0.005
С	0.018
Н	0.000
Ν	0.152
С	0.002
Ν	0.724
0	0.004
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Н	22	1.09758	26	108.2069	20	-120.2200
С	16	1.54913	14	105.9605	13	-86.6590
Н	25	1.10094	16	107.8312	22	119.5674
Н	25	1.09834	29	107.9375	16	-117.9237
Н	28	1.09880	16	109.5750	21	42.7584
Н	28	1.09877	31	109.5865	16	118.4821
Н	28	1.09669	31	109.6727	32	121.3729

Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.419	1	3	1.403	1.422	1	8	1.089	0.944
1	12	4.142	0.061	2	4	2.800	0.057	2	6	1.380	1.568
2	9	1.088	0.937	3	4	1.379	1.559	3	6	2.825	0.058
3	7	1.088	0.941	4	5	1.433	1.284	4	11	1.089	0.933
5	6	1.435	1.220	5	12	1.338	1.542	6	10	1.086	0.925
12	13	1.392	1.189	13	14	1.403	1.140	13	15	1.215	2.076
14	16	1.469	1.004	16	17	1.521	1.020	16	25	1.539	1.043
16	28	1.549	1.038	17	18	1.334	2.008	17	21	1.093	0.932
18	19	1.092	0.935	18	20	1.514	1.062	20	22	1.534	1.087
20	23	1.099	0.935	20	24	1.102	0.929	22	25	1.534	1.071
22	26	1.101	0.935	22	27	1.098	0.940	25	29	1.101	0.930
25	30	1.098	0.921	28	31	1.099	0.954	28	32	1.099	0.953
28	33	1.097	0.949								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.6001939935	724.207065

	Espectroscopia de Infravermelho								
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
15.681	0.035773	767.066	1.532337	1357.424	0.042197				
5.926	0.006740	815.639	0.134426	1379.012	0.030405				
2.137	0.005556	826.211	1.852478	1384.880	0.029888				
1.067	0.000515	857.653	0.591212	1396.371	0.436638				
0.789	0.000544	865.613	0.488865	1417.269	9.503535				
0.340	0.001543	879.009	0.219436	1423.751	0.150732				
11.706	0.054908	880.638	0.196791	1476.074	0.016970				
29.169	0.002783	917.668	0.233249	1477.169	0.118457				
47.948	0.101233	940.686	0.426246	1485.674	0.980957				
79.210	0.057726	969.391	2.805375	1495.661	0.101369				
108.675	0.021242	976.028	0.199159	1499.430	0.606682				
141.297	0.038706	1001.987	0.056414	1509.274	0.114537				
175.744	0.019103	1004.696	0.199670	1514.239	0.113045				
213.255	0.058197	1018.692	2.616721	1614.990	0.331965				
222.824	0.144385	1036.620	0.214524	1640.276	8.711937				
251.500	0.010900	1047.907	0.103002	1746.775	11.734312				
273.172	0.116784	1051.844	0.389644	1770.144	0.102808				
293.681	0.089494	1059.533	0.109610	3076.498	0.637380				
325.797	0.040724	1075.197	0.040672	3092.922	0.218037				
359.519	0.168191	1081.910	0.054122	3098.129	0.284464				
376.697	0.302425	1110.295	0.037220	3100.444	0.728153				
408.424	0.054044	1118.735	0.920690	3123.846	0.769325				
420.052	0.118070	1137.179	0.288539	3140.605	0.733805				

454.455	0.164885	1153.896	3.375629	3142.383	0.752005
492.452	0.051276	1159.835	0.661412	3168.140	0.407373
498.184	0.143480	1167.596	5.145198	3189.343	0.160854
520.531	0.034408	1221.904	0.093739	3207.678	0.061535
584.246	0.664501	1256.927	4.240376	3228.545	0.553074
594.375	0.067077	1260.742	18.119666	3263.600	0.007201
658.336	0.415570	1278.202	4.246619	3273.410	0.028776
676.499	1.329286	1292.064	0.909506	3283.939	0.000828
683.405	0.242486	1299.980	0.327957	3286.902	0.067926
746.777	0.242901	1336.984	0.378827	3308.502	0.243570

3CTZ-ET3a

	Matriz Z									
С										
С	1	1.40355								
С	1	1.40170	2	120.7202						
С	3	1.38105	1	119.6080	2	0.0000				
С	4	1.42960	3	120.8759	1	0.0000				
С	2	1.38130	1	120.5173	5	-0.0000				
Н	3	1.08838	4	120.3122	1	180.0000				
Н	1	1.08909	3	119.6458	2	180.0000				
Н	2	1.08854	6	119.7068	1	180.0000				
Н	6	1.08693	2	120.8201	5	-180.0000				
Н	4	1.08886	5	117.2525	3	180.0000				
Ν	5	1.33942	4	115.9789	3	-178.3538				
С	12	1.40079	5	120.1916	4	-173.1654				
Ν	13	1.39249	12	111.6575	5	-139.5251				
0	13	1.21565	12	124.6479	5	40.2795				
С	14	1.50804	13	121.0517	12	-137.1618				
С	16	1.48949	14	85.3047	13	94.0267				
С	17	1.32772	16	128.8158	14	-125.7156				
Н	18	1.08998	17	122.7258	16	158.3977				
С	18	1.52662	17	115.8110	16	-15.2760				
Н	14	1.30515	17	41.6384	16	154.8071				
С	20	1.54727	18	106.9412	17	46.8724				
Н	20	1.09652	18	109.6016	22	120.1488				
Н	20	1.10015	23	108.1480	18	-121.5863				
С	22	1.53914	20	111.2905	18	-62.4221				
Н	22	1.09881	20	108.7992	25	121.2088				
Н	22	1.09881	26	108.2765	25	118.4844				
С	16	1.52986	14	107.5005	13	-150.9693				
Н	25	1.09988	16	105.6407	22	118.4928				
Н	25	1.09498	29	108.4645	16	-117.3636				
Н	28	1.09809	16	109.8470	14	-43.6313				
Н	28	1.09863	31	109.5914	16	120.2604				
Н	28	1.10002	31	109.3909	32	120.0313				

Átomo	Valência Livre
С	0.019
С	0.000
С	0.000
С	0.019
С	0.004
С	0.017
Н	0.000
Ν	0.192
С	0.002
Ν	0.155
0	0.005
С	0.000
С	0.155
С	0.004
Н	0.000
С	0.000
Н	0.002
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.404	1.424	1	3	1.402	1.432	1	8	1.089	0.944
1	12	4.143	0.063	2	4	2.801	0.059	2	6	1.381	1.562

2	9	1.089	0.937	3	4	1.381	1.551	3	6	2.821	0.060
3	7	1.088	0.941	4	5	1.430	1.297	4	11	1.089	0.932
4	12	2.348	0.051	5	6	1.432	1.229	5	12	1.339	1.534
6	10	1.087	0.925	12	13	1.401	1.159	13	14	1.392	1.142
13	15	1.216	2.077	14	16	1.508	0.982	14	17	2.031	0.148
14	21	1.305	0.502	16	17	1.489	1.015	16	25	1.547	1.029
16	28	1.530	1.083	17	18	1.328	1.946	17	21	1.366	0.466
18	19	1.090	0.938	18	20	1.527	1.046	20	22	1.547	1.073
20	23	1.097	0.939	20	24	1.100	0.939	22	25	1.539	1.088
22	26	1.099	0.943	22	27	1.099	0.940	25	29	1.100	0.922
25	30	1.095	0.920	28	31	1.098	0.949	28	32	1.099	0.954
28	33	1.100	0.956								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1				
-727.5192402014	711.387314				

3CTZ-ET3f

	Matriz Z								
С									
С	1	1.42918							
С	1	1.39536	2	122.7794					
С	3	1.39690	1	119.1777	2	-0.0000			
С	4	1.45293	3	116.1373	1	0.0000			
С	2	1.37252	1	121.3437	5	0.0000			
Н	3	1.08985	1	119.2745	4	-180.0000			
Н	1	1.09015	3	119.5774	2	-180.0000			
Н	2	1.08864	6	120.0491	1	-180.0000			
Н	6	1.08637	2	123.4685	5	-180.0000			
Н	4	1.50610	5	72.2885	3	-180.0000			
Ν	11	1.26725	4	102.3303	5	0.0000			
С	12	1.38995	5	126.8960	4	-178.4477			
Ν	13	1.40245	12	112.4370	5	177.7177			
Ο	13	1.20966	12	123.6715	5	-4.8307			
С	14	1.47293	13	115.6192	12	-110.4572			
С	16	1.51877	14	106.3462	13	159.1540			
С	17	1.33331	16	123.4908	14	-110.3353			
Н	18	1.09236	17	118.8647	16	-178.3286			
С	18	1.51406	17	123.7866	16	1.3841			
Н	17	1.09282	18	120.6750	16	-180.0000			
С	20	1.53349	18	111.2560	17	15.9268			
Н	20	1.09865	18	109.1025	22	122.2523			
Н	20	1.10238	23	107.0420	18	-117.5453			
С	22	1.53436	20	109.5947	18	-47.1612			
Н	22	1.10049	20	109.2874	25	119.8024			
Н	22	1.09740	26	108.0887	25	119.9984			
С	16	1.54937	14	105.6487	13	-84.4401			
Н	25	1.10060	16	107.6330	22	119.4580			
Н	25	1.10028	29	107.4941	16	-117.9124			
Н	28	1.09856	16	109.6414	21	42.2142			
Н	28	1.09861	31	109.6296	16	118.3172			
Н	28	1.09710	31	109.6250	32	121.1514			

Átomo	Valência Livre
С	0.019
С	0.000
С	0.000
С	0.019
С	0.004
С	0.017
Н	0.000
Ν	0.192
С	0.002
Ν	0.155
О	0.005
С	0.000
С	0.155
С	0.004
Н	0.000
С	0.000
Н	0.002
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	Par Dist/Å Ordem Ligação Par		Dist/Å	Ordem Ligação	Par		Dist/Å	Ordem Ligação			
1	2	1.404	1.424	1	3	1.402	1.432	1	8	1.089	0.944
1	12	4.143	0.063	2	4	2.801	0.059	2	6	1.381	1.562
2	9	1.089	0.937	3	4	1.381	1.551	3	6	2.821	0.060
3	7	1.088	0.941	4	5	1.430	1.297	4	11	1.089	0.932
4	12	2.348	0.051	5	6	1.432	1.229	5	12	1.339	1.534
6	10	1.087	0.925	12	13	1.401	1.159	13	14	1.392	1.142
13	15	1.216	2.077	14	16	1.508	0.982	14	17	2.031	0.148
14	21	1.305	0.502	16	17	1.489	1.015	16	25	1.547	1.029
16	28	1.530	1.083	17	18	1.328	1.946	17	21	1.366	0.466
18	19	1.090	0.938	18	20	1.527	1.046	20	22	1.547	1.073
20	23	1.097	0.939	20	24	1.100	0.939	22	25	1.539	1.088
22	26	1.099	0.943	22	27	1.099	0.940	25	29	1.100	0.922
25	30	1.095	0.920	28	31	1.098	0.949	28	32	1.099	0.954
28	33	1.100	0.956								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5192402014	711.950104

3CTZ-I3a

Matriz Z								
С								
С	1	1.40295						
С	1	1.40175	2	120.5669				
С	3	1.38093	1	119.5462	2	-0.0000		
С	4	1.43080	3	121.1545	1	0.0000		
С	2	1.38226	1	120.7579	5	-0.0000		
Н	3	1.08866	4	120.3181	1	180.0000		
Н	1	1.08896	3	119.7414	2	180.0000		
Н	2	1.08870	6	119.5908	1	-180.0000		
Н	6	1.08555	2	121.0872	5	-180.0000		
Н	4	1.08892	5	117.0110	3	-180.0000		
Ν	5	1.33942	4	115.2163	3	-180.0000		
С	12	1.41201	5	120.5356	4	-174.3036		
Ν	13	1.34788	12	110.4897	5	-153.6976		
Ο	13	1.22667	12	125.4120	5	28.9178		
С	14	1.46501	13	124.6775	12	178.9743		
С	16	1.49993	14	107.2600	13	-178.8310		
С	17	1.31742	16	130.3204	14	-107.2033		
Н	18	1.09285	17	121.1305	16	-175.8012		
С	18	1.52645	17	120.0351	16	4.0625		
Н	14	1.01347	13	116.4090	16	-180.0000		
С	20	1.53585	18	110.7107	17	13.4762		
Н	20	1.09843	18	109.0254	22	122.0488		
Н	20	1.10159	23	107.4701	18	-117.2997		
С	22	1.53394	20	110.8560	18	-46.6394		
Н	22	1.10062	25	108.6739	20	-120.1003		
Н	22	1.09772	26	108.0760	20	-119.4958		
С	16	1.54110	14	110.6022	13	-59.2744		

Átomo	Valência Livre
С	0.019
С	0.000
С	0.000
С	0.019
С	0.003
С	0.018
Н	0.000
Ν	0.195
С	0.001
Ν	0.001
0	0.001
С	0.001
С	0.725
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
С	0.000

Н	25	1.10051	16	107.6962	22	120.2164
Н	25	1.09682	29	108.9234	16	-116.3567
Н	28	1.09886	16	109.0338	14	-56.1969
Н	28	1.09820	31	109.5086	16	119.3284
Н	28	1.09629	31	109.9632	32	121.1398

Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.428	1	3	1.402	1.430	1	8	1.089	0.944
1	12	4.147	0.062	2	4	2.796	0.060	2	6	1.382	1.551
2	9	1.089	0.938	3	4	1.381	1.551	3	6	2.823	0.061
3	7	1.089	0.941	4	5	1.431	1.299	4	11	1.089	0.932
4	12	2.340	0.053	5	6	1.433	1.237	5	12	1.339	1.535
6	10	1.086	0.923	10	15	2.205	0.052	12	13	1.412	1.146
13	14	1.348	1.302	13	15	1.227	1.977	14	15	2.274	0.074
14	16	1.465	0.972	14	21	1.013	0.927	16	17	1.500	1.029
16	25	1.553	1.017	16	28	1.541	1.064	17	18	1.317	2.060
18	19	1.093	0.924	18	20	1.526	1.041	20	22	1.536	1.089
20	23	1.098	0.937	20	24	1.102	0.931	22	25	1.534	1.075
22	26	1.101	0.939	22	27	1.098	0.940	25	29	1.101	0.934
25	30	1.097	0.922	28	31	1.099	0.956	28	32	1.098	0.953

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.6024624597	727.234052

		Espectroscopia	de Infravermelho		
Freq/cm-1	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade
14.930	0.002898	760.678	0.023585	1346.842	0.172911
3.748	0.001460	780.321	0.575690	1351.104	0.157854
3.217	0.000136	811.674	0.320849	1371.152	0.233211
0.908	0.000150	826.420	2.114198	1384.551	0.020382
0.726	0.000038	858.517	0.520406	1405.124	0.367672
0.505	0.000086	877.392	0.151103	1469.432	0.331145
30.099	0.111919	883.953	0.378791	1478.471	0.009325
53.588	0.055101	890.291	0.482394	1487.290	1.488318
65.874	0.033111	917.374	0.225394	1489.236	0.133937
79.522	0.097281	949.189	1.588757	1502.080	1.931053
124.087	0.030913	960.461	4.677475	4.677475 1504.235	
154.750	0.128271	992.014	0.156026	1515.317	0.583628
189.685	0.053255	995.373	0.071035	1552.411	32.244128
212.341	0.019814	1010.389	0.129750	1621.244	0.171710
239.498	0.129644	1032.490	7.088891	1645.774	5.201053
259.229	0.014629	1053.029	0.037930	1735.308	12.192033
288.501	0.169790	1054.567	0.729280	1785.750	0.024697
306.829	0.029191	1058.109	0.711599	3086.847	0.567318
331.204	0.078896	1077.824	0.023554	3096.293	0.318447
345.600	0.031629	1082.841	0.089830	3102.644	0.408531
377.402	0.397992	1120.792	0.582517	3105.904	0.696726
409.983	0.062707	1132.339	0.277904	3132.923	0.701565
418.708	0.042025	1155.004	3142.783	0.897771	
468.443	0.892375	1159.640	0.546730	3166.049	0.109171
499.340	0.203100	1168.521	1.415415	3170.243	0.574465

502.939	1.867386	1182.196	0.363106	3201.339	0.115499
523.198	0.773932	1236.279	0.615885	3218.268	0.052909
539.192	0.590279	1240.266	3.274755	3266.999	0.006895
596.949	0.011558	1262.230	0.473746	3273.621	0.037996
606.756	0.084275	1274.366	3.964923	3281.512	0.007366
674.068	0.157021	1285.264	0.675807	3288.083	0.042116
688.149	1.311658	1304.445	0.748098	3317.265	0.292398
743.786	0.264288	1335.548	0.419441	3628.308	4.110040

3CTZ-I3f

			N	Matriz Z		
Ο						
С	1	1.21718				
Ν	2	1.35820	1	125.2208		
С	3	1.40487	2	127.1895	1	-5.5606
С	4	2.82100	3	175.0257	2	-171.5112
С	5	1.39364	4	58.9775	3	171.5738
С	5	1.40330	4	60.5836	3	-8.5248
С	7	1.37299	5	116.9032	4	-0.0000
С	6	1.39824	5	121.8373	4	0.0000
Н	7	1.08941	8	121.4548	5	-180.0000
Н	5	1.08876	6	120.4557	7	-180.0000
Н	6	1.08885	9	118.5211	5	-180.0000
Н	9	1.08537	4	119.5698	6	-180.0000
Н	3	1.01522	2	116.0208	4	180.0000
Ν	2	1.41396	1	123.7277	3	177.0623
С	15	1.46564	2	116.8059	1	49.1407
С	16	1.52149	15	105.5745	2	158.0441
С	17	1.33345	16	123.4443	15	-109.1908
Н	18	1.09252	17	118.8527	16	-178.3147
С	18	1.51410	17	123.8225	16	1.6828
Н	17	1.09291	18	120.6326	16	-180.0000
С	20	1.53356	18	111.2978	17	14.4617
Н	20	1.09881	18	109.0913	22	122.4560
Н	20	1.10245	23	107.0115	18	-117.5092
С	22	1.53454	20	109.6293	18	-46.4065
Н	22	1.10140	25	109.2385	20	-119.8868
Н	22	1.09738	26	107.9122	20	-119.9429
С	16	1.55023	15	106.0676	2	-86.0334
Н	25	1.10090	16	107.5731	22	119.2368
Н	25	1.09706	29	108.1326	16	-117.9315
Н	28	1.09875	16	109.6130	21	43.3548
Н	28	1.09874	31	109.5500	16	118.3706
Н	28	1.09612	31	109.8364	32	121.5440

Átomo	Valência Livre
0	0.001
С	0.001
Ν	0.000
С	0.001
С	0.000
С	0.000
С	0.001
С	0.769
С	0.000
Н	0.000
N	0.709
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.217	2.046	1	3	2.288	0.066	1	13	2.207	0.056
2	3	1.358	1.245	2	15	1.414	1.126	3	4	1.405	1.104
3	14	1.015	0.911	4	5	2.821	0.082	4	8	1.389	1.418
4	9	1.404	1.434	5	6	1.394	1.502	5	7	1.403	1.447

5	11	1.089	0.942	6	8	2.712	0.075	6	9	1.398	1.484
6	12	1.089	0.936	7	8	1.373	1.565	7	9	2.824	0.084
7	10	1.089	0.931	9	13	1.085	0.914	15	16	1.466	1.014
16	17	1.521	1.019	16	25	1.541	1.041	16	28	1.550	1.035
17	18	1.333	2.008	17	21	1.093	0.933	18	19	1.093	0.935
18	20	1.514	1.063	20	22	1.534	1.087	20	23	1.099	0.935
20	24	1.102	0.928	22	25	1.535	1.071	22	26	1.101	0.939
22	27	1.097	0.940	25	29	1.101	0.929	25	30	1.097	0.921
28	31	1.099	0.953	28	32	1.099	0.953	28	33	1.096	0.950

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5873404372	727.871617

		Espectroscopia	de Infravermelho		
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade
15.903	0.020187	745.150	0.314126	1356.795	0.033474
7.834	0.003556	773.630	0.972130	1377.793	0.043779
3.368	0.001591	791.059	2.489813	1383.485	0.025571
2.329	0.000049	808.962	0.947185	1396.335	0.217125
1.269	0.000073	846.622	0.038056	1423.921	0.075805
0.612	0.000021	880.718	0.139511	1468.085	4.616712
22.893	0.053958	882.388	0.391106	1479.355	0.127311
48.385	0.064181	912.618	0.059859	1498.974	0.196616
64.928	0.053338	933.002	0.313698	1499.100	0.351030
79.887	0.006628	942.958	0.344249	1501.865	0.495861
109.018	0.052995	975.544	0.178015	1512.383	0.370168
153.502	0.078667	983.001	0.130826	1521.426	0.105131
171.990	0.093191	1001.633	0.063270	1584.695	27.359420
217.583	0.173544	1005.513	0.119194	1642.777	0.069385
251.599	0.013929	1041.174	0.104937	1704.194	2.832098
260.256	0.027812	1048.128	0.047748	1769.167	12.675319
275.641	0.489777	1055.415	0.060492	1773.627	0.248921
290.396	0.042687	1057.926	0.490706	3077.040	0.481266
327.520	0.114569	1076.605	0.069394	3089.011	0.452449
347.157	0.117635	1083.139	0.033703	3098.912	0.527817
368.880	0.059646	1108.589	0.184533	3102.342	0.697939
419.999	0.163983	1133.019	0.132282	3125.691	0.769803
424.711	0.140605	1142.544	0.352339	3141.037	1.015494
463.586	0.288575	1159.401	0.136833	3159.369	0.330032
489.876	0.060597	1165.697	0.148751	3168.438	0.350720
526.996	0.150287	1223.510	0.761370	3197.042	0.108300
538.204	0.388437	1228.363	0.324422	3207.629	0.044032
577.634	0.643224	1257.520	0.010198	3228.705	0.431456
614.983	2.502251	1269.552	3.469476	3254.792	0.030931
616.294	0.379132	1284.204	3.278249	3262.920	0.014091
676.348	0.273628	1292.501	1.791437	3272.318	0.044383
685.433	0.272810	1304.161	0.031470	3311.710	0.368363
715.020	0.015564	1336.103	2.342831	3610.509	3.469519

3CTZ-ET4a1

Matriz Z

Átomo Valência Livre

С						
С	1	1.40299				
С	1	1.40089	2	120.7258		
С	3	1.38234	1	119.6392	2	0.0000
С	4	1.42585	3	120.6816	1	0.0000
С	2	1.38226	1	120.4137	5	-0.0000
Н	3	1.08845	4	120.2296	1	180.0000
Н	1	1.08906	2	119.5206	3	-180.0000
Н	2	1.08849	6	119.7604	1	-180.0000
Н	6	1.08783	2	120.6774	5	-180.0000
Н	4	1.08908	5	117.4979	3	-180.0000
Ν	5	1.34442	4	116.3534	3	-180.0000
С	12	1.39355	5	120.9198	4	-172.0653
Ν	13	1.43002	12	115.9610	5	-136.2531
0	13	1.20604	12	123.2105	5	46.7939
С	14	1.48222	13	117.6573	12	-55.0116
С	16	1.50189	14	106.1500	13	-162.0656
С	17	1.31810	16	130.6527	14	-108.4564
Н	18	1.09301	17	121.1913	16	-178.0121
С	18	1.52666	17	120.1418	16	1.3494
Н	14	1.02340	13	108.8141	16	125.8939
С	20	1.53610	18	110.8090	17	14.3609
Н	20	1.09847	18	109.2719	22	122.2101
Н	20	1.10166	23	107.4439	18	-117.5228
С	22	1.53587	20	110.9772	18	-45.7802
Н	22	1.10195	21	44.0510	20	-98.2113
Н	22	1.09778	26	107.1926	25	119.2103
С	16	1.53710	14	108.8043	13	-43.9617
Н	25	1.10117	16	107.6962	22	119.5589
Н	25	1.09682	29	108.8628	16	-116.8576
Н	28	1.09873	16	109.3751	14	-50.9463
Н	28	1.09755	31	109.5339	16	119.5505
Н	28	1.09948	32	109.3011	31	-120.4017

С	0.016
С	0.000
С	0.000
С	0.016
С	0.003
С	0.015
Н	0.000
Ν	0.216
С	0.001
Ν	0.000
О	0.002
С	0.000
С	0.736
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
С	0.000
Н	-0.000
Н	0.000

P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.430	1	3	1.401	1.436	1	8	1.089	0.944
1	12	4.144	0.060	2	4	2.801	0.062	2	6	1.382	1.559
2	9	1.088	0.937	3	4	1.382	1.542	3	6	2.819	0.062
3	7	1.088	0.940	4	5	1.426	1.305	4	11	1.089	0.934
4	12	2.354	0.052	5	6	1.428	1.245	5	12	1.344	1.486
6	10	1.088	0.926	12	13	1.394	1.135	13	14	1.430	1.117
13	15	1.206	2.213	14	16	1.482	1.011	14	21	1.023	0.926
16	17	1.502	1.027	16	25	1.554	1.011	16	28	1.537	1.068
17	18	1.318	2.054	18	19	1.093	0.923	18	20	1.527	1.040
20	22	1.536	1.087	20	23	1.098	0.937	20	24	1.102	0.932
22	25	1.536	1.074	22	26	1.102	0.938	22	27	1.098	0.940
25	29	1.101	0.929	25	30	1.097	0.920	28	31	1.099	0.950
28	32	1.098	0.954	28	33	1.099	0.942				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5737899668	723.164792

3CTZ-ET4a2

	Matriz Z										
С											
С	1	1.40307									
С	1	1.40084	2	120.7071							
С	3	1.38226	1	119.5738	2	0.0000					
С	4	1.42675	3	120.8357	1	-0.0000					
С	2	1.38218	1	120.5280	5	0.0000					
Н	3	1.08818	4	120.2536	1	180.0000					
Н	1	1.08896	2	119.5405	3	-180.0000					
Н	2	1.08854	6	119.7819	1	-180.0000					
Н	6	1.08736	2	120.6393	5	-179.0986					
Н	4	1.08893	5	117.1823	3	180.0000					
Ν	5	1.34595	4	115.7318	3	-177.5659					
С	12	1.39576	5	120.9914	4	-177.0419					
Ν	13	1.42974	12	115.8190	5	-141.4718					
0	13	1.20721	12	123.4587	5	43.0982					
С	14	1.48485	13	116.3081	12	58.8806					
С	16	1.50298	14	106.5555	13	164.1556					
С	17	1.31734	16	130.7634	14	-106.6221					
Н	18	1.09296	17	121.3938	16	-175.2033					
С	18	1.52743	17	119.7872	16	5.5441					
Н	14	1.02489	13	108.3654	16	-122.6945					
С	20	1.53660	18	110.6737	17	13.0381					
Н	20	1.09855	18	109.0455	22	121.7144					
Н	20	1.10159	23	107.4639	18	-117.6928					
С	22	1.53487	20	110.3660	18	-46.7574					
Н	22	1.09851	25	108.5223	20	-119.9629					
Н	22	1.09782	26	108.6270	20	-119.9208					
С	16	1.54209	14	114.2730	13	-75.7841					
Н	25	1.10019	16	107.4666	22	120.3068					
Н	25	1.10099	29	107.3384	16	-117.3480					
Н	28	1.10037	16	109.4778	21	-30.7371					
Н	28	1.09887	31	108.8973	16	119.0123					
Н	28	1.09726	31	109.1712	32	119.7696					

Átomo	Valência Livre
С	0.016
С	0.000
С	0.000
С	0.016
С	0.003
С	0.015
Н	0.000
N	0.207
С	0.001
N	0.000
0	0.002
С	0.000
С	0.729
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.429	1	3	1.401	1.436	1	8	1.089	0.944
1	12	4.147	0.059	2	4	2.800	0.061	2	6	1.382	1.562
2	9	1.089	0.937	3	4	1.382	1.542	3	6	2.821	0.060
3	7	1.088	0.940	4	5	1.427	1.311	4	11	1.089	0.933
4	12	2.348	0.050	5	6	1.430	1.238	5	12	1.346	1.479
6	10	1.087	0.923	12	13	1.396	1.161	13	14	1.430	1.123
13	15	1.207	2.181	14	16	1.485	1.005	14	21	1.025	0.917
16	17	1.503	1.018	16	25	1.549	1.026	16	28	1.542	1.063
17	18	1.317	2.073	18	19	1.093	0.924	18	20	1.527	1.039
20	22	1.537	1.092	20	23	1.099	0.938	20	24	1.102	0.933
22	25	1.535	1.075	22	26	1.099	0.936	22	27	1.098	0.939
25	29	1.100	0.936	25	30	1.101	0.920	28	31	1.100	0.954
28	32	1.099	0.948	28	33	1.097	0.949				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5737228433	723.317357

3CTZ-ET4f1

	Matriz Z										
Ο											
С	1	1.19767									
Ν	2	1.43632	1	121.9428							
С	3	1.42249	2	115.2955	1	116.2980					
С	4	2.81524	3	177.1168	2	-168.5993					
С	5	1.39676	4	59.2538	3	113.9262					
С	5	1.40130	4	60.5882	3	-66.4426					
С	7	1.37708	5	116.9160	4	-0.0000					
С	6	1.39555	5	121.1648	4	-0.0000					
Н	7	1.08922	8	121.5773	5	180.0000					
Н	5	1.08875	7	119.8844	6	180.0000					
Н	6	1.08883	9	119.1070	5	180.0000					
Н	9	1.09038	4	119.3061	6	179.1517					
Н	3	1.02140	4	110.4847	2	-125.6979					
Ν	2	1.39980	1	123.6234	3	175.8620					
С	15	1.47242	2	116.5848	1	80.2624					
С	16	1.51882	15	106.9440	2	167.3701					
С	17	1.33318	16	123.6374	15	-111.3843					
Н	18	1.09217	17	118.8579	16	-177.6559					
С	18	1.51397	17	123.7909	16	2.8229					
Н	17	1.09280	18	120.6082	16	180.0000					
С	20	1.53370	18	110.9763	17	16.0692					
Н	20	1.09830	18	109.1014	22	121.9602					
Н	20	1.10212	23	107.1481	18	-117.9924					
С	22	1.53608	20	109.1661	18	-48.1825					
Н	22	1.10300	20	108.4578	14	26.3153					
Н	22	1.09736	26	108.3798	20	-119.8566					
С	16	1.54870	15	106.5370	2	-75.6900					
Н	25	1.10040	16	107.6404	22	119.0600					
Н	25	1.10231	29	106.8293	16	-117.7849					
Н	28	1.09848	16	109.6928	21	42.8605					
Н	28	1.09844	31	109.5571	16	118.1468					
Н	28	1.09730	31	109.4865	32	120.7600					

Átomo	Valência Livre
0	0.000
С	0.001
Ν	0.001
С	0.001
С	0.000
С	0.000
С	0.001
С	0.761
С	0.000
Н	0.000
Ν	0.729
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.198	2.269	2	3	1.436	1.082	2	15	1.400	1.123
3	4	1.422	1.133	3	14	1.021	0.916	4	5	2.815	0.083
4	8	1.383	1.438	4	9	1.401	1.435	5	6	1.397	1.487
5	7	1.401	1.463	5	11	1.089	0.943	6	8	2.720	0.071
6	9	1.396	1.500	6	12	1.089	0.936	7	8	1.377	1.537
7	9	2.816	0.086	7	10	1.089	0.931	9	13	1.090	0.919
15	16	1.472	1.019	16	17	1.519	1.021	16	25	1.542	1.029
16	28	1.549	1.046	17	18	1.333	2.007	17	21	1.093	0.932
18	19	1.092	0.934	18	20	1.514	1.062	20	22	1.534	1.092

20	23	1.098	0.933	20	24	1.102	0.928	22	25	1.536	1.069
22	26	1.103	0.930	22	27	1.097	0.940	25	29	1.100	0.928
25	30	1.102	0.924	28	31	1.098	0.953	28	32	1.098	0.952
28	33	1.097	0.945								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5616867553	724.648286

3CTZ-ET4f2

Matriz Z										
Ο										
С	1	1.20193								
Ν	2	1.43624	1	121.4765						
С	3	1.43401	2	112.7965	1	-132.7209				
С	4	2.81165	3	179.0671	2	65.8452				
С	5	1.39651	4	59.5073	3	18.2642				
С	5	1.40212	4	60.6494	3	-162.2036				
С	7	1.37829	5	116.9274	4	0.0000				
С	6	1.39590	5	120.7053	4	0.0000				
Н	7	1.08915	8	121.6574	5	-180.0000				
Н	5	1.08909	6	120.1151	7	-180.0000				
Н	6	1.08858	9	119.4751	5	-180.0000				
Н	9	1.09010	4	118.5942	6	-180.0000				
Н	3	1.02394	2	108.0783	4	-122.3887				
Ν	2	1.39663	1	123.6524	3	173.4665				
С	15	1.46296	2	120.8985	1	48.4883				
С	16	1.52027	15	106.5508	2	169.5994				
С	17	1.33290	16	123.9000	15	-116.4180				
Н	18	1.09232	17	118.8325	16	-176.8876				
С	18	1.51335	17	123.4685	16	3.9691				
Н	17	1.09297	18	120.6654	16	178.5253				
С	20	1.53194	18	110.6035	17	17.1816				
Н	20	1.09902	18	108.9974	22	121.4917				
Н	20	1.10251	23	107.1785	18	-118.0865				
С	22	1.53389	20	109.8337	18	-49.5550				
Н	22	1.09982	20	108.9290	25	119.8067				
Н	22	1.09811	26	108.0111	25	119.8959				
С	16	1.55549	15	106.0899	2	-75.3553				
Н	25	1.10102	16	107.7319	22	119.6426				
Н	25	1.09967	29	107.6796	16	-117.5050				
Н	28	1.09892	16	109.7225	21	44.0235				
Н	28	1.09844	31	109.5439	16	117.6321				
Н	28	1.09522	31	109.7816	32	121.5618				

Átomo	Valência Livre
О	0.002
С	0.001
Ν	0.000
С	0.001
С	0.000
С	0.000
С	0.001
С	0.773
С	0.000
Н	0.000
Ν	0.676
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.202	2.211	1	15	2.293	0.061	2	3	1.436	1.096
2	15	1.397	1.158	3	4	1.434	1.115	3	14	1.024	0.914
4	5	2.812	0.087	4	8	1.383	1.428	4	9	1.400	1.470
5	6	1.397	1.490	5	7	1.402	1.464	5	11	1.089	0.944
6	8	2.728	0.074	6	9	1.396	1.489	6	12	1.089	0.937

7	8	1.378	1.513	7	9	2.814	0.088	7	10	1.089	0.930
9	13	1.090	0.924	15	16	1.463	1.010	16	17	1.520	1.025
16	25	1.541	1.035	16	28	1.555	1.031	17	18	1.333	2.008
17	21	1.093	0.931	18	19	1.092	0.933	18	20	1.513	1.061
20	22	1.532	1.095	20	23	1.099	0.934	20	24	1.103	0.928
22	25	1.534	1.078	22	26	1.100	0.931	22	27	1.098	0.939
25	29	1.101	0.927	25	30	1.100	0.922	28	31	1.099	0.954
28	32	1.098	0.952	28	33	1.095	0.950				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5635925258	725.403581

3CTZ-I4a

	Matriz Z							
С								
С	1	1.40262						
С	1	1.40110	2	120.6061				
С	3	1.38210	1	119.5942	2	0.0000		
С	4	1.42752	3	120.9259	1	0.0000		
С	2	1.38271	1	120.6255	5	-0.0000		
Н	3	1.08850	4	120.2194	1	180.0000		
Н	1	1.08881	3	119.7575	2	180.0000		
Н	2	1.08867	6	119.6444	1	-180.0000		
Н	6	1.08668	2	120.9560	5	-180.0000		
Н	4	1.08920	5	117.2977	3	180.0000		
Ν	5	1.34328	4	115.7178	3	-178.0153		
С	12	1.40851	5	119.3130	4	-175.6436		
Ν	13	1.35054	12	114.6309	5	-139.1906		
Ο	13	1.22497	12	123.3347	5	43.4937		
С	14	1.47007	13	129.2134	12	-2.0513		
С	16	1.50240	14	106.1787	13	178.0817		
С	17	1.31705	16	130.4780	14	-105.2648		
Н	18	1.09285	17	121.1599	16	-176.4582		
С	18	1.52642	17	120.0547	16	3.1145		
Н	14	1.01509	13	113.6658	16	-176.3006		
С	20	1.53626	18	110.8401	17	12.5478		
Н	20	1.09845	18	109.0484	22	122.1368		
Н	20	1.10153	23	107.4709	18	-117.1918		
С	22	1.53392	20	110.6988	18	-45.5348		
Н	22	1.10057	25	108.5875	20	-120.1064		
Н	22	1.09753	26	108.1612	20	-119.5893		
С	16	1.54090	14	111.2167	13	-63.2438		
Н	25	1.10057	16	107.3973	22	119.9659		
Н	25	1.09756	29	108.3875	16	-117.0367		
Н	28	1.09895	16	108.8874	14	-55.2508		
Н	28	1.09843	31	109.3730	16	119.2243		
Н	28	1.09594	31	109.9073	32	121.0818		

Átomo	Valência Livre
С	0.016
С	0.000
С	0.000
С	0.017
С	0.003
С	0.016
Н	0.000
Ν	0.226
С	0.001
Ν	0.000
О	0.001
С	0.000
С	0.725
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
С	0.000
Н	0.000

	Par	r	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1		2	1.403	1.430	1	3	1.401	1.435	1	8	1.089	0.944

1	12	4.147	0.062	2	4	2.798	0.061	2	6	1.383	1.552
2	9	1.089	0.938	3	4	1.382	1.542	3	6	2.820	0.062
3	7	1.089	0.940	4	5	1.428	1.306	4	11	1.089	0.932
4	12	2.347	0.051	5	6	1.430	1.251	5	12	1.343	1.498
6	10	1.087	0.924	12	13	1.409	1.110	13	14	1.351	1.306
13	15	1.225	2.087	14	15	2.253	0.068	14	16	1.470	0.973
14	21	1.015	0.918	16	17	1.502	1.023	16	25	1.552	1.022
16	28	1.541	1.064	17	18	1.317	2.062	18	19	1.093	0.924
18	20	1.526	1.041	20	22	1.536	1.090	20	23	1.098	0.937
20	24	1.102	0.931	22	25	1.534	1.073	22	26	1.101	0.938
22	27	1.098	0.940	25	29	1.101	0.932	25	30	1.098	0.925
28	31	1.099	0.955	28	32	1.098	0.951	28	33	1.096	0.944

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5984446886	726.454714

		Espectroscopia	a de Infravermelho		
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade
10.586	0.052948	754.521	0.486091	1346.964	0.112287
4.868	0.012843	778.971	0.647747	1365.054	0.051294
3.851	0.005872	793.930	0.286986	1383.211	0.116270
2.172	0.002587	822.148	2.297815	1407.112	0.972317
1.035	0.000193	869.065	0.311513	1432.054	7.060856
0.654	0.000037	873.543	0.229989	1470.096	0.595919
24.540	0.030899	880.922	0.793164	1477.259	7.071201
52.876	0.001098	889.266	0.442637	1479.378	3.088904
65.310	0.047512	916.631	0.023657	1490.031	1.155308
71.455	0.072856	931.879	7.718352	1492.610	2.213286
128.093	0.035487	948.213	1.708723	1503.986	0.123695
155.599	0.026230	980.055	0.185502	1512.622	4.454235
189.298	0.012979	993.524	0.236068	1520.847	0.178315
192.796	0.063808	1000.919	0.100118	1628.624	0.468660
258.268	0.087365	1019.729	3.025670	1644.762	5.100716
273.185	0.039832	1048.237	0.191339	1741.555	24.121078
279.326	0.073012	1053.050	0.103959	1786.204	0.038540
324.007	0.080540	1058.793	1.632446	3087.010	0.594746
325.483	0.021019	1075.945	0.018833	3097.587	0.315532
352.295	0.083702	1083.523	0.236399	3102.783	0.225548
387.424	0.342674	1116.119	0.725812	3105.672	0.760655
413.351	0.016304	1129.149	0.391117	3132.946	0.642754
449.760	0.154634	1141.880	3.939069	3144.112	0.814071
464.610	0.884944	1162.878	0.111305	3153.675	0.666769
501.189	0.241281	1165.658	0.398664	3167.626	0.549811
507.616	0.280816	1184.119	0.302681	3204.700	0.185062
523.656	0.162717	1232.147	0.808015	3218.828	0.053552
553.635	2.167906	1253.918	2.090522	3261.218	0.010693
593.392	0.418100	1257.929	2.362707	3266.215	0.028061
608.111	0.480688	1274.299	2.112348	3274.012	0.015992
672.843	0.469227	1290.157	1.510111	3281.553	0.105243
685.960	1.119120	1295.302	0.339625	3301.315	0.280125
694.051	0.545692	1339.026	0.239974	3608.428	3.964294

3CTZ-I4f

	Matriz Z							
Ο								
С	1	1.21748						
Ν	2	1.35989	1	122.1863				
С	3	1.41024	2	128.1343	1	-180.0000		
С	4	2.81955	3	178.6648	2	152.2180		
С	5	1.39559	4	59.3636	3	-3.0054		
С	5	1.40060	4	60.2198	3	176.5264		
С	7	1.37698	5	117.7371	4	-0.8684		
С	6	1.39448	5	120.8941	4	-0.0000		
Н	7	1.08948	8	120.9743	5	180.0000		
Н	5	1.08887	6	120.3814	7	-180.0000		
Н	6	1.08865	9	119.0960	5	180.0000		
Н	9	1.09028	4	119.2064	6	180.0000		
Н	3	1.01612	2	114.1169	4	174.2589		
Ν	2	1.40748	1	122.2451	3	177.0102		
С	15	1.46692	2	116.3333	1	61.6320		
С	16	1.52075	15	105.7318	2	157.4981		
С	17	1.33330	16	123.4950	15	-111.0623		
Н	18	1.09252	17	118.8277	16	-177.9240		
С	18	1.51384	17	123.8186	16	2.3719		
Н	17	1.09286	18	120.6746	16	180.0000		
С	20	1.53364	18	111.2129	17	15.2394		
Н	20	1.09886	18	108.9974	22	122.1827		
Н	20	1.10253	23	107.0593	18	-117.5734		
С	22	1.53455	20	109.5412	18	-47.1132		
Н	22	1.10123	20	109.0721	25	120.0293		
Н	22	1.09764	26	108.0946	20	-119.8492		
С	16	1.54979	15	106.0731	2	-86.4715		
Н	25	1.10088	16	107.6047	22	119.3885		
Н	25	1.09882	29	107.7717	16	-117.6460		
Н	28	1.09871	16	109.5890	21	42.7723		
Н	28	1.09870	31	109.6158	16	118.5256		
Н	28	1.09637	31	109.6276	32	121.5419		

Átomo	Valência Livre
0	0.001
С	0.001
Ν	0.000
С	0.001
С	0.000
С	0.000
С	0.001
С	0.774
С	0.000
Н	0.000
Ν	0.724
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.217	2.135	1	3	2.257	0.051	2	3	1.360	1.251
2	15	1.407	1.118	3	4	1.410	1.068	3	14	1.016	0.909
4	5	2.820	0.084	4	8	1.386	1.444	4	9	1.402	1.434
5	6	1.396	1.486	5	7	1.401	1.465	5	11	1.089	0.943
6	8	2.730	0.072	6	9	1.394	1.507	6	12	1.089	0.937
7	8	1.377	1.527	7	9	2.803	0.086	7	10	1.089	0.928
9	13	1.090	0.927	15	16	1.467	1.015	16	17	1.521	1.018
16	25	1.540	1.042	16	28	1.550	1.036	17	18	1.333	2.006
17	21	1.093	0.932	18	19	1.093	0.934	18	20	1.514	1.062
20	22	1.534	1.089	20	23	1.099	0.934	20	24	1.103	0.929
22	25	1.535	1.074	22	26	1.101	0.938	22	27	1.098	0.940
25	29	1.101	0.928	25	30	1.099	0.919	28	31	1.099	0.954
28	32	1.099	0.953	28	33	1.096	0.949				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5846920422	726.568086

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
11.141	0.022530	720.086	1.186098	1379.720	0.098538				
6.395	0.014794	757.527	1.563154	1383.045	0.110962				
2.784	0.005961	791.084	2.641639	1396.939	0.254017				
1.909	0.000085	817.242	0.185456	1411.821	17.273978				
1.302	0.000325	854.986	0.536612	1423.723	0.083621				
0.552	0.000127	880.222	0.085957	1459.894	1.599081				
22.585	0.009719	882.416	0.256627	1478.191	0.152318				
35.160	0.036603	900.388	0.097334	1495.699	0.115510				
50.045	0.027684	926.942	0.114419	1499.296	0.633957				
85.292	0.027988	942.596	0.150060	1508.530	0.336236				
100.134	0.026683	974.319	0.215487	1517.124	0.666791				
135.341	0.065507	984.690	0.002928	1518.827	0.108200				
159.656	0.010031	999.799	0.069402	1536.412	7.078752				
219.561	0.113694	1002.977	0.082660	1650.183	1.140907				
235.277	0.133510	1036.760	0.177306	1703.679	2.299887				
245.169	0.012736	1041.723	0.170754	1764.415	28.491388				
277.695	0.124169	1056.373	0.005182	1773.455	0.224752				
295.976	0.092959	1059.731	0.045938	3075.835	0.617627				
329.705	0.058275	1068.513	0.561822	3091.811	0.284347				
367.180	0.038994	1081.736	0.015939	3097.188	0.347413				
384.611	0.213211	1107.758	0.091649	3101.301	0.552608				
418.794	0.081093	1135.733	0.126949	3123.473	0.717773				
425.649	0.105435	1142.230	0.224712	3138.694	0.533181				
456.257	0.176321	1160.864	0.212804	3141.497	0.884374				
483.399	0.123919	1164.414	0.079437	3169.605	0.373093				
519.445	0.721255	1224.089	0.710061	3192.554	0.113415				
532.436	0.061472	1243.438	0.374888	3208.345	0.045977				
568.672	2.734546	1258.616	0.182323	3229.084	0.449353				
604.171	0.332241	1275.272	0.345465	3243.216	0.048212				
623.615	0.897716	1282.181	0.238517	3257.544	0.009588				
646.564	0.326979	1296.145	0.875242	3268.039	0.000440				
683.237	0.266192	1302.096	0.476539	3278.561	0.018035				
713.918	0.063208	1355.507	0.593360	3606.880	3.510307				

3CTZ-ET5a

Matriz Z									
С									
С	1	1.40074							
С	1	1.39947	2	120.5783					
С	3	1.38603	1	119.7760	2	0.0000			
С	4	1.41718	3	120.3886	1	-0.0000			
С	2	1.38564	1	120.2548	5	0.0000			
Н	3	1.08849	4	120.0869	1	180.0000			
Н	1	1.08896	2	119.5885	3	-180.0000			
Н	2	1.08873	6	119.8208	1	-180.0000			
Н	6	1.08976	2	120.6024	5	-180.0000			

Átomo	Valência Livre
С	0.008
С	0.000
С	0.000
С	0.011
С	0.001
С	0.011
Н	0.000

Н	4	1.08919	5	117.7301	3	180.0000
Ν	5	1.35835	4	116.8326	3	-178.2438
С	12	1.41161	5	116.4236	4	-176.3013
Ν	13	1.34877	12	118.2045	5	-107.9536
Ο	13	1.22178	12	119.9236	5	74.7080
С	14	1.46875	13	134.1424	12	1.3229
С	16	1.50402	14	108.2446	13	-116.3147
С	17	1.31795	16	130.3356	14	-104.6186
Н	18	1.09296	17	121.1089	16	-177.6172
С	18	1.52695	17	120.3010	16	1.7302
Н	14	1.01676	13	111.2950	16	-174.8057
С	20	1.53604	18	110.9787	17	15.7023
Н	20	1.09813	18	109.1707	22	122.1064
Н	20	1.10143	23	107.4858	18	-117.4099
С	22	1.53554	20	110.7707	18	-46.5127
Н	22	1.10118	21	44.5216	20	-99.7309
Н	22	1.09763	26	107.1331	25	119.0429
С	16	1.53684	14	114.4151	13	6.2376
Н	25	1.10006	22	108.9113	16	-119.3031
Н	25	1.09930	29	108.7802	16	-116.1405
Н	28	1.09565	16	111.0687	12	-53.1704
Н	28	1.09808	31	109.5835	16	117.7371
Н	28	1.09903	32	109.2968	31	-120.3092

Н	0.000
Ν	0.349
С	0.000
Ν	0.000
О	0.001
С	0.001
С	0.728
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.001
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.401	1.446	1	3	1.399	1.451	1	5	2.798	0.057
1	8	1.089	0.944	1	12	4.154	0.055	2	4	2.800	0.068
2	6	1.386	1.535	2	9	1.089	0.936	3	4	1.386	1.524
3	6	2.811	0.067	3	7	1.088	0.940	4	5	1.417	1.351
4	11	1.089	0.930	5	6	1.420	1.281	5	12	1.358	1.419
6	10	1.090	0.924	12	13	1.412	1.107	13	14	1.349	1.307
13	15	1.222	2.125	14	15	2.247	0.062	14	16	1.469	0.986
14	21	1.017	0.903	16	17	1.504	0.996	16	25	1.556	1.026
16	28	1.537	1.088	17	18	1.318	2.046	18	19	1.093	0.925
18	20	1.527	1.042	20	22	1.536	1.085	20	23	1.098	0.937
20	24	1.101	0.932	22	25	1.536	1.078	22	26	1.101	0.939
22	27	1.098	0.938	25	29	1.100	0.933	25	30	1.099	0.931
28	31	1.096	0.945	28	32	1.098	0.943	28	33	1.099	0.948

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5918828941	725.249954

3CTZ-ET5f

	Matriz Z											
Ο												
С	1	1.22932										
Ν	2	1.46598	1	116.4495								
С	3	1.32519	2	117.7533	1	176.1095						
С	4	2.76806	3	169.0269	2	33.2281						
С	5	1.43214	4	59.7204	3	129.1557						

Átomo	Valência Livre
О	0.001
С	0.000
Ν	0.046
С	0.032
С	0.025
С	0.005

С	5	1.38498	4	62.4028	3	-55.9745
С	7	1.40237	5	118.5303	4	1.0717
С	6	1.36792	5	121.1434	4	1.2187
Н	7	1.08874	5	120.6354	8	178.4242
Н	5	1.08976	7	119.7264	6	178.5354
Н	6	1.08837	9	119.9215	5	180.0000
Н	9	1.08830	6	121.7337	4	-178.0937
Н	3	1.01900	4	123.0938	2	-165.4153
Ν	2	1.30871	1	133.7740	3	-177.4470
С	15	1.45890	2	122.2916	1	-14.2099
С	16	1.52327	15	106.7640	2	-171.1362
С	17	1.33369	16	123.9553	15	-103.8192
Н	18	1.09294	17	119.0829	16	-178.4908
С	18	1.51504	17	123.6185	16	1.3690
Н	17	1.09410	18	120.1371	16	-180.0000
С	20	1.53460	18	111.2377	17	13.9021
Н	20	1.09946	18	109.1012	22	122.3593
Н	20	1.10278	23	106.9009	18	-117.4830
С	22	1.53228	20	109.9143	18	-45.9010
Н	22	1.09983	25	108.1516	20	-119.3566
Н	22	1.09817	26	108.4848	20	-120.1348
С	16	1.54081	15	110.6026	2	-52.9893
Н	25	1.10207	16	108.3296	22	120.0363
Н	25	1.09751	29	108.8883	16	-116.9907
Н	28	1.10057	16	109.0640	21	42.4079
Н	28	1.09941	31	109.3469	16	120.2132
Н	28	1.09795	31	109.3130	32	120.4290

С	0.002
С	0.511
С	0.004
Н	0.000
Ν	0.051
С	0.000
С	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	-0.000
Н	0.000
Н	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.229	2.031	1	15	2.335	0.086	2	3	1.466	0.928
2	15	1.309	1.510	3	4	1.325	1.466	3	8	2.317	0.064
3	14	1.019	0.916	4	6	2.391	0.054	4	8	1.445	1.185
4	9	1.429	1.250	5	6	1.432	1.303	5	7	1.385	1.563
5	8	2.396	0.092	5	11	1.090	0.941	6	9	1.368	1.653
6	12	1.088	0.937	7	8	1.402	1.416	7	9	2.873	0.063
7	10	1.089	0.935	8	15	2.039	0.434	9	13	1.088	0.927
15	16	1.459	1.015	16	17	1.523	1.020	16	25	1.544	1.035
16	28	1.541	1.068	17	18	1.334	2.015	17	21	1.094	0.929
18	19	1.093	0.935	18	20	1.515	1.060	20	22	1.535	1.087
20	23	1.099	0.936	20	24	1.103	0.930	22	25	1.532	1.073
22	26	1.100	0.937	22	27	1.098	0.941	25	29	1.102	0.933
25	30	1.098	0.925	28	31	1.101	0.953	28	32	1.099	0.956
28	33	1.098	0.945								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5636825343	727.180633

3CTZ-I5a

Matriz Z						
С						

Átomo	Valência Livre
С	0.015

С	1	1.40260				
С	1	1.40069	2	120.6261		
С	3	1.38278	1	119.5885	2	-0.0000
С	4	1.42569	3	120.8731	1	0.0000
С	2	1.38299	1	120.5521	5	-0.0000
Н	3	1.08851	4	120.2317	1	180.0000
Н	1	1.08901	2	119.5637	3	-180.0000
Н	2	1.08863	6	119.7744	1	-180.0000
Н	6	1.08734	2	120.9113	5	-180.0000
Н	4	1.08869	5	117.2140	3	-180.0000
Ν	5	1.34557	4	116.0482	3	-178.2029
С	12	1.40760	5	118.9076	4	-172.6795
Ν	13	1.34953	12	114.4799	5	-137.7251
Ο	13	1.22505	12	123.0977	5	46.1564
С	14	1.46719	13	127.9704	12	7.5957
С	16	1.50458	14	111.4563	13	-61.0570
С	17	1.31826	16	130.0429	14	-106.0262
Н	18	1.09306	17	120.9679	16	-175.7705
С	18	1.52578	17	120.4263	16	4.6101
Н	14	1.01544	13	113.9315	16	173.4209
С	20	1.53558	18	110.5686	17	14.0625
Н	20	1.09838	18	109.1746	22	121.7402
Н	20	1.10158	23	107.4672	18	-117.8377
С	22	1.53550	20	110.3568	18	-47.0486
Н	22	1.10043	20	109.0377	25	120.1918
Н	22	1.09751	26	108.1047	25	119.5693
С	16	1.53950	14	110.9661	13	62.7256
Н	25	1.09944	16	107.4851	22	120.0758
Н	25	1.10077	29	107.9905	16	-116.6813
Н	28	1.09776	16	109.9528	12	-13.6791
Н	28	1.09859	31	109.1314	16	119.8911
Н	28	1.09962	32	109.6792	31	-120.3442

С	0.000
С	0.000
С	0.016
С	0.003
С	0.015
Н	0.000
Ν	0.244
С	0.001
Ν	0.000
О	0.001
С	0.000
С	0.742
С	0.001
Н	0.000
С	0.001
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000
Н	0.000
С	0.000
Н	0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação
1	2	1.403	1.433	1	3	1.401	1.439	1	5	2.806	0.050
1	8	1.089	0.944	1	12	4.148	0.061	2	4	2.798	0.062
2	6	1.383	1.549	2	9	1.089	0.937	3	4	1.383	1.537
3	6	2.819	0.063	3	7	1.089	0.940	4	5	1.426	1.317
4	11	1.089	0.932	4	12	2.351	0.050	5	6	1.429	1.252
5	12	1.346	1.493	6	10	1.087	0.925	12	13	1.408	1.120
13	14	1.350	1.310	13	15	1.225	2.090	14	15	2.256	0.066
14	16	1.467	0.975	14	21	1.015	0.915	16	17	1.505	0.989
16	25	1.551	1.045	16	28	1.540	1.072	17	18	1.318	2.055
18	19	1.093	0.924	18	20	1.526	1.041	20	22	1.536	1.089
20	23	1.098	0.938	20	24	1.102	0.933	22	25	1.535	1.075
22	26	1.100	0.939	22	27	1.098	0.939	25	29	1.099	0.936
25	30	1.101	0.931	28	31	1.098	0.952	28	32	1.099	0.952
28	33	1.100	0.952								

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.5979107018	725.446071

	Espectroscopia de Infravermelho						
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade		
12.961	0.015708	757.924	0.166207	1350.390	0.094056		
8.662	0.020354	781.333	0.014425				
2.919	0.007269	799.573	0.318993	1388.948	0.223625		
2.010	0.000516	821.500	2.086873	1409.857	0.855472		
1.289	0.000770	870.188	0.046918	1429.447	6.079807		
0.491	0.000082	875.368	0.678973	1466.317	0.463644		
32.938	0.025447	881.246	1.255384	1475.718	10.494264		
36.551	0.100883	890.800	0.277801	1480.999	1.567088		
55.865	0.057085	919.763	0.230508	1490.012	2.079470		
73.688	0.031038	929.468	8.171934	1491.420	0.172342		
138.277	0.052352	953.187	1.424234	1500.810	1.903891		
151.227	0.025417	980.027	0.338522	1510.439	1.211870		
176.662	0.003643	996.422	0.363385	1517.753	0.571455		
185.355	0.028909	998.887	0.047377	1629.200	0.255059		
240.451	0.005718	1021.742	3.235488	1642.880	5.333020		
261.712	0.102515	1046.532	0.344352	1743.677	23.972937		
274.411	0.112186	1050.273	0.176009	1782.640	0.135263		
320.882	0.009787	1051.436	1.580761	3086.592	0.563763		
334.585	0.142472	1073.610	0.014711	3094.492	0.125891		
369.152	0.078939	1082.957	0.428944	3097.420	0.808655		
390.847	0.226654	1110.373	0.513844	3099.737	0.476329		
404.082	0.055349	1128.953	2.993659	3132.030	0.678894		
447.413	0.068662	1144.313	0.761029	3136.246	0.488044		
463.134	0.100262	1153.899	0.519996	3146.688	0.943932		
487.603	0.829016	1160.202	0.439748	3165.004	0.511716		
511.791	0.675235	1187.060	0.521769	3177.942	0.602786		
516.952	2.050640	1233.703	1.216610	3214.619	0.068053		
532.960	0.902118	1247.648	4.279596	3258.462	0.015055		
598.283	0.126264	1256.416	0.282728	3266.031	0.033367		
619.863	0.560201	1266.818	0.134879	3272.821	0.008494		
674.127	0.329060	1285.741	1.348336	3279.908	0.048953		
681.698	0.466626	1321.591	1.968815	3292.078	0.169921		
687.292	1.238378	1333.094	0.087495	3603.017	3.136395		

3CTZ-P

	Matriz Z							
С								
С	1	1.39552						
С	1	1.39576	2	119.8410				
С	3	1.39392	1	120.1755	2	-0.0000		
С	4	1.39679	3	119.6355	1	1.0064		
С	2	1.39407	1	120.4023	5	-0.0000		
Н	3	1.08887	4	119.5869	1	180.0000		
Н	1	1.08889	3	120.0667	2	180.0000		
Н	2	1.08896	6	119.5003	1	180.0000		
Н	6	1.08807	5	119.5210	2	-180.0000		
Н	4	1.08964	5	119.3326	3	-180.0000		
Ν	5	1.41902	4	118.9923	3	177.8924		

,	
Átomo	Valência Livre
С	-0.000
С	0.000
Н	0.000
Н	-0.000
Ν	-0.000

С	12	1.39039	5	123.7284	4	136.9942
Ν	13	1.36868	12	107.5012	5	169.3871
Ο	13	1.21449	12	125.4515	5	-9.7761
С	14	1.46367	13	111.3483	12	12.6445
С	12	1.40540	5	124.7875	4	-58.6196
С	17	1.33208	12	130.3129	5	-3.3651
Н	18	1.08935	17	121.3476	11	-37.7947
С	18	1.51803	17	117.3946	12	-170.8314
Н	14	1.01557	13	117.1349	16	145.4812
С	20	1.54226	18	108.3584	17	39.7323
Н	20	1.09675	18	109.3343	22	119.6336
Н	20	1.10175	23	107.4159	18	-121.3989
С	22	1.54464	20	112.4343	18	-60.1852
Н	22	1.09849	20	107.3084	25	120.2945
Н	22	1.09794	26	108.2548	25	118.4658
С	16	1.54349	14	110.2296	13	92.8504
Н	25	1.09829	16	107.8969	22	121.4617
Н	25	1.09680	29	108.0051	16	-116.5362
Н	28	1.09974	16	109.7071	17	52.6477
Н	28	1.09827	31	109.4384	16	120.4040
Н	28	1.10046	32	109.1347	31	-119.9297

С	-0.000
Ν	0.000
0	0.000
С	-0.000
С	-0.000
С	0.000
Н	0.000
С	0.000
Н	-0.000
С	-0.000
Н	-0.000
Н	0.000
С	0.000
Н	-0.000
Н	-0.000
С	-0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	P	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.396	1.476	1	3	1.396	1.476	1	5	2.786	0.083
1	8	1.089	0.945	2	4	2.791	0.080	2	6	1.394	1.478
2	9	1.089	0.937	3	4	1.394	1.483	3	6	2.796	0.080
3	7	1.089	0.938	4	5	1.397	1.462	4	11	1.090	0.930
5	6	1.397	1.462	5	12	1.419	0.988	6	10	1.088	0.926
12	13	1.390	1.099	12	17	1.405	1.077	13	14	1.369	1.219
13	15	1.214	2.174	14	16	1.464	1.048	14	21	1.016	0.923
16	17	1.520	0.968	16	25	1.554	1.027	16	28	1.543	1.057
17	18	1.332	1.910	17	19	2.114	0.056	18	19	1.089	0.911
18	20	1.518	1.056	20	22	1.542	1.091	20	23	1.097	0.935
20	24	1.102	0.927	22	25	1.545	1.098	22	26	1.098	0.942
22	27	1.098	0.941	25	29	1.098	0.928	25	30	1.097	0.931
28	31	1.100	0.952	28	32	1.098	0.951	28	33	1.100	0.950

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-727.7674558172	737.468550

Espectroscopia de Infravermelho										
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade					
12.068	0.033301	780.707	0.495973	1363.022	0.421337					
6.664	0.008796	803.962	1.762134	1372.098	0.737968					
5.445	0.008194	829.830	0.208921	1374.543	0.114036					
2.632	0.000532	849.974	0.322851	1412.768	0.368376					
2.091	0.003149	866.695	0.604959	1427.399	3.693380					
1.439	0.001133	883.801	0.092436	1474.018	9.780318					
20.056	0.037211	888.826	0.532443	1489.442	0.101494					
39.665	0.045387	943.896	0.031078	1494.433	0.393763					

57.364	0.030178	964.297	0.129440	1502.803	0.249820
92.304	0.073919	974.501	0.103650	1507.002	0.095443
119.390	0.116765	991.148	0.082567	1508.720	0.196036
170.028	0.027315	1007.599	0.103090	1512.866	0.095553
218.608	0.004768	1022.227	0.250390	1564.137	6.915247
242.978	0.069984	1035.195	0.102841	1687.542	0.103763
284.715	0.152036	1041.223	0.024550	1701.482	0.987733
298.118	0.028068	1056.553	0.228657	1792.000	22.940344
307.210	0.034257	1065.762	0.001233	1833.828	11.895783
332.630	0.023082	1078.747	0.077640	3080.011	0.695945
373.026	0.592052	1095.681	0.171186	3088.165	0.439310
402.324	0.193155	1104.937	0.314650	3106.593	0.588092
427.163	0.047915	1129.746	0.402950	3111.235	0.679446
439.486	0.159209	1163.741	0.013833	3143.408	0.710343
462.380	2.126361	1170.715	0.354216	3147.513	0.778392
487.050	3.268687	1186.320	0.083820	3153.664	0.510121
517.546	0.101836	1205.200	0.696380	3158.110	0.846140
525.195	0.651295	1219.540	0.896685	3170.950	0.387996
603.606	0.899531	1229.422	0.657022	3250.893	0.195597
617.219	0.021109	1269.281	0.951473	3251.405	0.014967
649.205	0.378432	1283.668	0.051064	3258.142	0.064107
661.765	0.828179	1301.266	0.867412	3264.668	0.072429
691.881	0.148310	1327.847	0.094120	3271.987	0.049194
720.064	1.184636	1336.870	3.994140	3278.692	0.010371
728.029	0.551007	1345.770	2.208144	3597.502	2.865662

3CTZ-B

Matriz Z									
С									
С	1	1.39751							
С	1	1.39818	2	121.9258					
С	3	1.39490	1	120.4609	2	0.8280			
С	4	1.38965	3	117.4276	1	-0.8546			
С	2	1.39740	1	118.2396	5	0.0000			
Н	3	1.08845	4	119.6120	1	-180.0000			
Н	1	1.08864	2	118.5389	3	-180.0000			
Н	2	1.08337	1	120.1268	6	180.0000			
Н	5	2.15258	4	108.4990	6	-178.4171			
Н	4	1.08859	5	120.7142	3	180.0000			
Ν	10	1.01261	5	30.6470	4	-178.1509			
С	12	1.36895	10	121.9482	5	-175.7575			
Ν	13	1.38458	12	107.0430	6	0.0000			
Ο	13	1.22453	12	125.6530	14	-180.0000			
С	14	1.48732	13	120.2060	12	-177.4371			
С	16	1.52027	14	111.2360	13	-177.7201			
С	17	1.33397	16	123.5576	14	-106.7190			
Н	18	1.09282	17	118.6907	9	74.6492			
С	18	1.51222	17	124.0529	16	5.9739			
Н	17	1.09353	18	120.0842	16	175.3623			
С	20	1.53331	18	111.2256	17	9.9453			
Н	20	1.09935	18	108.8665	22	122.5940			

Átomo	Valência Livre
С	0.000
С	-0.000
С	-0.000
Н	-0.000
Ν	0.000
С	-0.000
Ν	0.000
О	0.000
С	0.000
С	-0.000
С	-0.000
Н	-0.000
С	0.000
Н	-0.000
С	-0.000
Н	0.000

Н	20	1.10229	23	106.9820	18	-117.0857
С	22	1.53212	20	109.5026	18	-44.5080
Н	22	1.10153	25	108.9693	20	-119.9227
Н	22	1.09741	26	108.0027	20	-120.0582
С	16	1.54217	14	108.8315	13	-59.9477
Н	25	1.10107	16	107.5190	22	119.5126
Н	25	1.09576	29	108.6500	16	-117.2036
Н	28	1.09999	16	109.1581	21	45.8853
Н	28	1.09867	31	109.2052	16	118.4677
Н	28	1.09536	31	109.8104	32	120.9374

Н	-0.000
С	-0.000
Н	0.000
Н	0.000
С	-0.000
Н	-0.000
Н	0.000
Н	-0.000
Н	-0.000
Н	-0.000

Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação	Р	ar	Dist/Å	Ordem Ligação
1	2	1.398	1.495	1	3	1.398	1.472	1	5	2.744	0.067
1	8	1.089	0.936	2	4	2.844	0.081	2	6	1.397	1.419
2	9	1.083	0.916	3	4	1.395	1.471	3	6	2.798	0.067
3	7	1.088	0.938	4	5	1.390	1.455	4	11	1.089	0.918
5	6	1.411	1.301	5	12	1.381	1.166	6	14	1.403	1.151
10	12	1.013	0.927	12	13	1.369	1.226	13	14	1.385	1.161
13	15	1.225	2.061	14	16	1.487	0.915	16	17	1.520	1.035
16	25	1.543	1.041	16	28	1.542	1.064	17	18	1.334	1.989
17	21	1.094	0.931	18	19	1.093	0.932	18	20	1.512	1.066
20	22	1.533	1.085	20	23	1.099	0.933	20	24	1.102	0.927
22	25	1.532	1.071	22	26	1.102	0.940	22	27	1.097	0.941
25	29	1.101	0.932	25	30	1.096	0.921	28	31	1.100	0.954
28	32	1.099	0.954	28	33	1.095	0.943				

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1			
-727.7753214504	740.023013			

Espectroscopia de Infravermelho									
Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade	Freq/cm ⁻¹	Intensidade				
9.491	0.004112	773.328	0.203427	1383.905	0.046352				
4.809	0.013375	783.936	1.451464	1386.063	0.069228				
3.261	0.003102	805.791	1.841353	1404.260	0.518987				
2.200	0.001023	826.309	0.069962	1430.377	0.299381				
1.285	0.000944	885.308	0.173958	1441.386	5.667508				
1.098	0.001318	888.400	0.095024	1447.117	4.038851				
49.106	0.030539	896.709	0.301739	1476.241	0.155790				
53.236	0.030116	904.035	0.045011	1498.208	0.325458				
105.622	0.031326	936.841	0.035324	1503.395	0.776436				
161.736	0.006070	969.398	0.489848	1511.887	0.736023				
178.396	0.026520	996.151	0.103510	1526.276	0.578150				
209.644	0.027476	1000.783	0.123883	1535.200	6.051697				
226.681	0.016732	1009.250	0.072558	1546.649	0.954222				
268.736	0.098866	1042.302	0.031985	1692.568	0.608851				
278.342	0.090696	1047.289	0.265708	1718.831	0.667272				
313.109	0.142225	1057.582	0.089614	1770.321	0.605554				
328.920	0.083914	1063.576	0.420654	1776.171	38.243793				
352.897	0.056480	1087.022	0.033769	3078.882	0.507644				
358.611	0.162202	1115.607	1.287350	3086.945	0.423567				
409.357	0.377435	1133.200	0.073349	3095.385	0.250032				

426.658	0.847219	1151.555	0.570165	3099.946	1.058592
440.873	1.111010	1158.724	0.316701	3120.948	0.674988
468.305	1.284059	1172.655	0.692681	3140.780	1.103876
472.648	0.738152	1174.311	0.043015	3159.160	0.684749
515.882	0.194699	1222.692	1.752942	3178.278	0.166735
521.001	0.036400	1241.076	0.031224	3200.156	0.061563
582.424	0.128077	1260.918	0.091175	3202.243	0.065331
594.801	0.035498	1269.873	0.131233	3224.527	0.317514
634.944	0.080743	1284.601	0.078167	3257.657	0.008980
663.389	0.445998	1309.167	2.110535	3266.526	0.049346
704.367	0.320697	1317.804	0.700973	3276.744	0.018439
721.170	0.951649	1352.853	0.065460	3332.004	0.032287
764.560	1.086992	1368.419	0.683693	3640.152	5.601705
Apêndice 4 – Propriedades da estrutura de N_2 utilizada nos cálculos de energia relativa

Matriz Z					
Ν					
Ν	1	1.08660			

Par		Dist/Å	Ordem Ligação		
1	2	1.087	2.942		

Átomo	Valência Livre
Ν	0.000
Ν	0.000

Energia Eletrónica/Eh	Energia do Ponto Zero/kJ mol-1
-109.5137701123	15.888028

Apêndice 5 – Método das otimizações parciais - estados de transição na CTZ CTZ-ET1f

CTZ-ET2a

CTZ-ET4a

CTZ-ET5a

CTZ-ET5f

Apêndice 6 – Método das otimizações parciais - estados de transição na 3CTZ 3CTZ-ET1f

3CTZ-ET2a

3CTZ-ET4a

3CTZ-ET5f

M06-HF					
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador
S ₁	-680,9525	0.2548	0.0990	-0.0488	0.0107
S ₂	-680,9405	-0.0488	0.0136	-0.3475	0.0181
S ₃	-680,9375	2.0851	0.1603	-0.2364	0.6603
S ₄	-680,9206	-0.2037	-0.0297	0.1090	0.0087
S ₅	-680,9009	-1.0043	-0.1280	0.0216	0.1779
	B3LYP				
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador
S ₁	-680,3663	-1.8309	-0.0528	-0.1492	0.4122
S ₂	-680,3598	0.7978	0.0407	0.0550	0.0810
S ₃	-680,3487	-0.0556	-0.0208	0.2078	0.0062
S ₄	-680,3372	-0.0658	0.1825	0.0149	0.0054
S ₅	-680,3318	0.6900	-0.3445	-0.1267	0.0886
PBE0					
Estado	Energia/Eh	Momento dipolar de transição			Força do Oscilador
S ₁	-680,3650	1,7509	-0,0835	-0,2006	0,3843
S ₂	-680,3590	-0,8522	0,0499	0,0803	0,0937
S ₃	-680,3480	-0,1074	-0,0096	-0,2142	0,0078
S4	-680,3383	0,1396	0,0493	0,0636	0,0037
S ₅	-680,3311	0,5746	0,2063	0,0958	0,0558

Apêndice 7 – Comparação entre M06-HF, B3LYP e PBE0 TD-DTF

Energia das espécies envolvidas

Estado	Energia/Eh
ATZ-S0	-680,5501713
ATZ-T	-680,4214576
ATZ-ET1f	-680,3977906
ATZ-I1f	-680,4463697
ATZ-ET2f	-680,4411979
ATZ-I2	-571,0732070
ATZ-ET3	-571,0515756
ATZ-I3	-571,0995408
ATZ-ET4	-571,0318774
ATZ-P	-571,2164366