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Abstract 

This work studies the dynamics of chemical processes from a well-known 

problem introduced by Kondili, Pantelides, & Sargent (1993). It aims to minimize the 

computational burden of optimization algorithms, by developing a discrete-event simulation 

model that portraits some system characteristics that the analytic methods have difficulties 

capturing.  

The problem is modeled considering several structural aspects of the plants, as 

well as detailed process characteristics such as material transfer rates and material transfer 

logistics. The results of the optimization model that do not consider these system 

characteristics are then contrasted with the estimates obtained by the simulation model. 

 Furthermore, the model was formulated in a recipe-oriented way that allows for 

the simulation of a wide variety of different batch chemical processes with minor model 

adjustment. 

The simulation model proved to be computationally efficient and, when 

compared with the optimization model, delivered better total production duration and 

intermediate storage profiles estimates. 
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Resumo 

Este trabalho estuda a dinâmica de processos químicos de um problema 

conhecido introduzido por Kondili et al. (1993). Com vista a minimizar o esforço 

computacional do modelo de otimização, um modelo de simulação de eventos discretos foi 

desenvolvido, retratando algumas características do sistema que o modelo de programação 

matemática tem dificuldade de capturar. 

O problema é modelado considerando vários aspetos estruturais das instalações 

industriais, bem como características detalhadas do processo, como taxas de transferência 

de material e a logística de transferência de material. Os resultados do modelo de otimização 

que não consideram essas características do sistema são contrastados com as estimativas 

obtidas pelo modelo de simulação. 

 Além disso, o modelo foi formulado com base no plano de produção de forma 

a permitir a simulação de uma variedade ampla de instalações químicas com produção em 

lote, sem que haja a necessidade de ajustes significativos. 

O modelo de simulação mostrou-se eficiente em termos computacionais e, 

quando comparado com o modelo de otimização, proporcionou melhores estimativas da 

duração total de produção e dos perfis de utilização de armazenamento intermediário. 

 

 

 

Palavras-chave: Simulação de eventos discretos, Programação Linear 
Inteira Mista, Projeto de processos, Planeamento de 
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1. INTRODUCTION 

The short-term scheduling of chemical batch plants is critical to ensure superior 

levels of operational performance and overall competitiveness and profitability of the 

industry. 

Thankfully, the same highly competitive global economy that forces companies to 

strive for the slightest operation improvement has also pushed computational technologies 

to evolve at a tremendous rate. This evolution allowed not only for the solvency of more 

significant and more convoluted problems using pre-existing technologies, but also for the 

emersion of tools such as discrete-event simulation as much more viable alternatives in the 

optimization strategy spectrum. 

This dissertation will focus on the use of discrete-event simulation as a parallel tool 

to optimization, used to minimize the shortcomings of these methods. This chapter will 

cover: i) the motivation for this study; ii) the concepts inherent to the problem; iii) the 

objectives of this dissertation; iv) the proposed methodology; and v) the structure of this 

dissertation. 

1.1. Motivation 

Production planning and scheduling problems are inherent to any flexible 

manufacturing process, and finding optimized solutions is critical for the viability and 

competitiveness of the organizations. In the global economy, companies operate in a highly 

competitive space, where even small increases in productivity are persistently pursued. 

Thanks to the constant advance of technology, new and better tools have emerged to tackle 

these problems and achieve a level of optimization previously unobtainable. 

For the past few decades, optimization methods have been handy tools for 

effective production planning and efficient scheduling (Griva, Nash, & Sofer, 2009). These 

methods can obtain the best solutions according to the provided data and a set of constraints. 

On the other hand, though, it has also become quite clear that solving time for highly 

complex problems, especially using the more general algorithms, is unfeasible. 



 

 

Representation of chemical processes through discrete-event simulation 
  

 

 

2  2020 

 

Very complex problems have been optimized in acceptable times (Samuel 

Moniz, Ana Paula Barbosa-Póvoa, 2013), but algorithm efficiency is usually inversely 

related with the algorithm’s applicability, meaning the more efficient one gets, the narrower 

is the range of problems it can usefully solve. A possible approach to deal with this tradeoff 

is to “simplify” the problem. By modeling certain aspects or characteristics of the problem 

in an aggregated way, it is possible to reduce the complexity considerably, and therefore the 

resolution time. 

The disadvantage of this approach, however, is that oversimplification of 

scheduling problems will lead to solutions that are not suitable for immediate utilization, and 

that must be calibrated. This calibration can be done by experienced workers, sometimes 

with help from actually production line tests. Though, due to exponential growth in 

computation power and problem complexity, discrete-event simulation has become a very 

viable and perhaps the best option for this kind of task. 

In the last couple of decades, simulation has been used to great length, in a wide 

range of applications and proven very useful. The Athens Olympic Games Organizing 

Committee used it to optimize the logistics of the event, saving an estimated $69.7 million 

(Beis, Loucopoulos, Pyrgiotis, & Zografos, 2006). One year later, PMC used discrete-event 

simulation to create a “Demand-Driven Workforce Scheduler” to improve the logistics of a 

car renting company saving an estimated $80 million in labor reduction annually (Zottolo, 

Williams, & Ulgen, 2007). 

This dissertation will focus on the utilization of discrete-event simulation as a 

tool for evaluating optimization solutions of multipurpose batch chemical plants, where 

various resources can be utilized to produce several products.    

1.2. Concepts 

1.2.1. Chemical Plants 

In the chemical field, there are two types of manufacturing operations: batch and 

continuous tasks. Running a process in a continuous manner means that all steps of the 

chemical process are co-occurring, and typically the feedstock and output are also 

continuous. Continuous processes are very efficient on a large scale and are generally used 
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to produce commodity chemicals (high demand chemicals) like acetone, ethanol or nitric 

acid (Sinnott & Towler, 2019).  

On the other hand, specialty chemicals (low demand chemicals) such as 

fragrances, cleaning materials or paints, which do not sell in high volumes, have variable 

demand or whose formulation changes frequently, do not warrant the construction of a 

dedicated plant (Sinnott & Towler, 2019). For that reason, manufacturers prefer to produce 

this kind of chemicals using batch operation. The batch operation produces chemicals in a 

sequential way, i.e., in discrete amounts. The chemicals produced in each batch change often, 

and the main advantage is the flexibility of production. 

There are two main types of batch chemical plants and each one with an 

increasingly higher level of flexibility, multiproduct and multipurpose plants. In 

multiproduct batch plants, each product has a preassigned equipment sequence, and only one 

product is produced at a time, except when there is a product change-over. 

The plant considered later in this dissertation is the most flexible of the two, a 

multipurpose batch plant. This type of plant can produce multiple different products 

simultaneously, and the same product can be produced using different equipment units 

(Rippin, 1993). 

 

 

1.2.2. Mathematical optimization 

Optimization, as a matter of definition, is the act of making the best of 

something. Mathematical optimization achieves this goal through mathematical formulation 

and it has been used for decades in a wide variety of applications and continues to be the 

primary choice as a decision-making tool for complex problems (Griva et al., 2009). 

To use this methodology, the problem variables must be identified, constrained 

according to the system characteristics, and an objective function must be constructed using 

the same variables (Nocedal & Wright, 2006). This function should be created in par with 

the intention of the optimization. For example, One might want to run a business by 

maximizing profit, and someone else might prefer to minimize loss, maximize efficiency, or 

minimize risk (Griva et al., 2009). 
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Once the problem has been modeled, it can be optimized by an optimization 

algorithm. There is an extensive amount of different optimization algorithms, each with its 

own advantages and disadvantages. This choice is of the utmost importance since it will 

decide whether or not the problem will be solved in a timely matter. 

1.2.3. Discrete-event simulation 

Simulation is a general concept, but in the context of operational research, 

simulation is best described as “the imitation of the operation of a real-world process or 

system over time” (Banks, Carson, Nelson, & Nicol, 2013). 

Simulation is usually separated into two categories, continuous or discrete. 

Although systems are rarely entirely characterized by either one, they are frequently 

dominated by one or the other. Generally, the dominant type of system determines which 

type of simulation package should be used to reproduce it (Law, 2013). 

Discrete-event simulation is the modeling of a system as it evolves at discrete 

time intervals, more specifically, it “concerns the modeling of a system as it evolves over 

time by a representation in which the state variables change instantaneously at separate 

points in time.” (Law, 2013). 

In opposition, continuous simulation is the modeling of systems whose state 

variables change continuously in time. This dissertation will focus on discrete-event 

simulation only. 

1.3. Objective 

The general purpose of this dissertation is to evaluate the use of discrete-event 

simulation as a parallel tool to mathematical optimization in a way that alleviates the 

processing burden from this method, allowing the analysis of more complex problems in 

acceptable time frames. More specifically, the objective is to create a methodology that can 

be used to implement this symbiosis in the optimization of chemical processes and evaluate 

its effectiveness. 

To do so, a discrete-event simulation model of a complex chemical plant will be 

created where equipment, material transfer rates, and material transfer logistics. This model 
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will run a production plan obtained from an optimization algorithm that did not consider 

these system dynamics. 

Finally, the results of the optimization model will be compared with the 

simulation estimates to evaluate the proposed methodology. 

1.4. Methodology 

Optimization, in a more general way, is the action of achieving optimal values 

or solutions; however, as previously mentioned, there are some limitations that must be 

considered. In short, optimization can find the best possible results but tends to struggle with 

big problems, which usually leads to modeling simplification and, consequently, less 

meaningful optimal solutions.  

Simulation, on the other hand, is well-equipped to achieve or prove feasibility, 

its utility stems mainly from scenario evaluation and variability implementation (Banks et 

al., 2013). Curiously, when comparing both, there is a perceptible symmetry of strengths and 

weaknesses. This is perhaps what makes the combination of both techniques a promising 

prospect. 

Different approaches to the combination of these two methods have been taken 

throughout the last few decades, as reviewed by (Figueira & Almada-Lobo, 2014). The 

proposed methodology is categorized as SCS (Solution Completion by Simulation) and was 

based on the one described in the previously mentioned article. This type of approach aims 

to complete or correct the results obtained from the analytical method through the use of 

simulation. 

More specifically, the results from a deterministic analytic model taken from 

(Kondili et al., 1993) will be enhanced by a detailed discrete-event simulation model created 

by the team of industrial management. 

The case study and the implementation of the methodology will be present in 

Chapter 3. 
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1.5. Structure of the dissertation 

This introductory chapter will be followed by a literature review of optimization, 

simulation, and the combined use of both. After the literature review, Chapter 3 will cover 

the case study, details about the optimization model, the simulation model, and the 

implementation of the proposed methodology. Next, in chapter 4, a thorough assessment of 

the results is provided, followed by the final chapter, in which conclusions will be drawn, 

and future work opportunities are enunciated. 
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2. LITERATURE REVIEW 

As noted previously in 1.2.1, flexibility is the main advantage of a multipurpose 

batch chemical plant. However, it also means that production planning and scheduling will 

be much more complicated in comparison to a single product plant running in continuous 

operation.  

A large assortment of problems of this kind has been solved throughout the 

years, through a wide variety of different methods. In the next subchapters, the most notable 

approaches will be separated by three categories: optimization, simulation and optimization-

simulation, and will be briefly explained. 

2.1. Optimization 

Mathematical optimization is the main tool used to solve the previously 

mentioned problems. It was used as early as 1979 when a linear programming methodology 

was proposed to solve long term scheduling problems in multiproduct batch plants (Mauderli 

& Rippin, 1979). This methodology was useful when significant changes are introduced in 

manufacturing plants, like new equipment or new processes. However, short- and medium-

term scheduling and process planning were left to an experienced engineer in charge of 

adapting the whole process according to the short-term chemical demand. At this time, the 

computing power was quite limited, meaning that optimization methods were only useful as 

long as it was possible to overcome the factorial growth of the solution space present in such 

processes.  

One decade later, the complexity of the problems solved naturally increased, and 

so did the diversity of the solutions. Research contributions came in the form of a general 

algorithm for short-term scheduling of batch operations, based on a MILP formulation, by 

the name of State-Task Network (STN) (Kondili et al., 1993). This model could be utilized 

in a wide array of different short-term scheduling problems and had the main feature of 

differentiating between equipment and materials. This framework was later improved on 
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resulting in a new variant of STN, called the Maximal State-Task Network (mSTN). This 

methodology combines STN and the necessary information about the process with 

information about the equipment and connectivity (Crooks C., 1992). 

Later in 1994, intending to develop an accurate general-purpose scheduling 

algorithm and software, Pantelides (1994) advocated for the need to establish general 

frameworks for the representation of these problems. He proposed the use of two different, 

unified frameworks. A novelty called the Resource-Task Network (RTN) and the State-Task 

Network (STN). The main difference between them is that RTN considers a uniform 

representation of all resources and materials, and STN, on the other hand, differentiates the 

two. 

In the same year, Barbosa-Póvoa & Macchietto (1994) argue that the design and 

scheduling aspects should be considered simultaneously. The benefit of this approach is the 

traditional sequential approach could be executed concurrently. Expanding on the ideas of 

Crooks C. (1992), the authors improve the mSTN formulation to be capable of optimizing 

structural aspects of the production schedule, while accounting for both the cost of 

equipment, pipework and operating costs and revenues. 

In 2008, Pinto, Barbósa-Póvoa, & Novais (2008) made a comparative analysis 

between the STN, mSTN and RTN formulations and representations. In 2013, Samuel 

Moniz, Ana Paula Barbosa-Póvoa (2013) propose a new MILP discrete-time formulation 

based on STN, which explicitly models the inventory carried at the end of each task, among 

other features. This model is compared to an RTN model with a few integrated scheduling 

features present in literature. To carry out this comparison, the two formulations are tested 

in 4 different benchmark problems, 3 of them from literature and one original problem. It is 

concluded that the novel model was more computationally effective but that with the 

increase in problem size/complexity, both models struggle in proving optimality. 

Companies operating in different regions, countries, and especially worldwide 

have built their facilities in key geographical locations to facilitate demand fulfillment in the 

different markets in which they operate (Papageorgiou, 2009). In the last decade, operating 

them as independent has become impossible if a company pretends to maintain 

competitiveness, sustainability, and growth. Papageorgiou (2009) presented a review of the 

of methodologies aimed to enhance infrastructure planning decision-making in the process 

industry. Three years later, Shah & Ierapetritou (2012) approached the scheduling for 
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multisite, multipurpose batch plants using the augmented Lagrangian method. The analytic 

method optimized shipping costs optimizing production, inventory from a given fixed 

demand prediction. 

Energy-saving has become a serious concern in the last years and has been 

incorporated in a wide variety of industrial plants, batch chemical plants included. To 

overcome the suboptimal results related to treating heat management, as an afterthought, 

(Seid & Majozi, 2014) created a framework that incorporates heat integration simultaneously 

with plant scheduling. The proposed framework has proven to have superior performance 

when compared to existing approaches, both in optimal values and processing time. 

In 2017, Lee & Maravelias (2017) presented two discrete-time mixed-integer 

linear programming formulations for multipurpose batch plants. These representations are 

based on the STN and RTN that take into account limited intermediate storage. Other 

features such as limited shared resources, modeling of time-varying data, and linear 

modeling of inventory and resource utilization profiles were also discussed. Performance 

tests revealed that this methodology was suitable for medium-scale problems. 

In 2018, Ackermann, Fumero, & M. Montagna (2018) presented a framework 

for simultaneous production planning and scheduling of multisite, multiproduct batch plants 

with nonidentical parallel units. The consideration of both problems simultaneously allows 

for the consideration of the critical tradeoffs between them. On the other hand, the problem 

becomes much more complicated, still examples were solved in reasonable times. 
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2.2. Simulation 

Simulation has proven itself as an extremely useful tool in the operational 

research field to help solving production and logistic problems in a wide array of different 

fields, from communication networks to traffic systems. Short-term batch chemical plants 

are just another case where simulation can be beneficial (Jung, Blau, Pekny, Reklaitis, & 

Eversdyk, 2004). 

As early as 1960, researchers have pointed to simulation as a guidance tool for 

the design of batch chemical plants. In this same year, Youle (1960) conducted the 

simulation of a hypothetical multi-stage batch chemical plant, the problem only considered 

one product, and the plant consisted of seventeen batch reactors distributed among four 

sequential reaction stages. The simulation algorithm was made for this single purpose and 

was based on discrete-event simulation. The author concluded the methodology to be useful 

in improving the factory’s efficiency, output and bottleneck detection.  

At this time, the method seemed promising, but the available computing power 

made it impractical. It would not be until quite a few years later that it could be used 

effectively. The biggest challenge of using simulation in multipurpose batch chemical plants 

appeared to be its hybrid nature. Hybrid systems have elements of both discrete-event and 

continuous-time subsystems. This means that in these systems, some variables change in 

discrete time intervals while others, such as liquid flow, change continuously through time. 

Fahrland (1970) was one of the first to write about the use of hybrid systems in 

simulation. In 1974, Fruit, Reklaitis, & Woods (1974) developed a hybrid simulation 

package for the simulation of mixed multiproduct batch and continuous processes called 

DISCON. The program's utility is demonstrated in a simplified polymerization facility where 

four cases are tested. Case 1 is the original plant, and the other three cases are the same 

original plant with some equipment upgrades. The simulation package proved very useful in 

the evaluation of equipment changes and bottlenecks. 

In the following decade, still with particular purposes in mind, new hybrid 

simulation packages continued to appear. BOSS (Joglekar & Reklaitis, 1984) and 



 

 

  Literature review 

 

 

José Francisco Vaz Suspiro  11 

 

UNIBATCH (Czulek, 1988) are two of the most noteworthy, created to simulate batch/semi-

continuous plants. 

In 1994, Barton & Pantelides (1994) present the first general-purpose hybrid 

process modeling environment. This was a significant step in the evolution of simulation, 

since it allowed the user to focus on the modeling of the problem instead of wasting his time 

on the coding of the program itself. This program overcame the narrow usefulness of most 

simulation packages that operated in such manner up to the date. General-purpose simulation 

packages already existed up to this point, but the authors argued that few processes operate 

entirely in a continuous matter, meaning that a dynamic package would more accurately 

describe the processes. 

In 1995, a hybrid simulation software was created to simulate multipurpose 

batch plants. The system could track the complete state of the plant and was based on the 

concept of recipe-controlled operation. This meant the system was separated into two parts: 

the plant and its functionality; and the recipe Engell, Fritz, Schulz, & Wöllhaf (1995). 

Research into the topic seemed to suggest that for the type of problem considered 

in this dissertation, simulation alone would not be a particularly effective strategy. 

Simulation’s strengths appear to be in scenario evaluation, and this methodology is not suited 

to find optimal values. For these reasons, further reviews of this topic will be done in tandem 

with optimization in the next chapter. 
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2.3. Optimization-Simulation approaches 

At this present moment, it is clear that optimization models have the disadvantage of 

being computationally inefficient. Large problems tend to be difficult to solve by 

optimization on time while being adequately represented. Compromises must be made and 

the problem must be simplified, which will then produce solutions that are not perfectly 

calibrated for the problem at hand. On the contrary, simulation is a great tool to use in 

conjunction with optimization as a hybrid approach (Marques, Moniz, de Sousa, & Barbosa-

Póvoa, 2017). 

In 1994, Fu (1994) studied the use of different techniques for the optimization of 

stochastic discrete-event systems through the use of simulation. Both continuous and 

discrete parameter cases were considered. Perturbation analysis, likelihood method, and 

frequency domain expectation were the techniques focused on, for the former, and ranking-

and-selection and multi-comparison procedures the ones focused on, for the latter. 

In 1998, a hybrid methodology was proposed to solve the short-term batch 

scheduling of chemical or semiconductor plants. This methodology consists of two steps, 

the development of a discrete-event simulation model that can represent the production 

system behavior and as many of its inherent features, and the development of a general 

algorithm responsible for the batch process scheduling. After both the simulation model and 

the optimization algorithms are created, they will be used in an iterative process where the 

batch schedule is obtained by the analytic method and then introduced into the simulation 

model where an evaluation is made. After this, the objective function is adjusted accordingly 

and the cycle restarts. The cycle will be repeated until the scheduling solution is close to 

optimal. This approach yielded interesting solutions and reduced the search space 

considerably, especially with the increase in problem size. It was also noted that the bulk of 

CPU processing time was spent on the discrete-event simulation model (Azzaro-Pantel, 

Bernal-Haro, Baudet, Domenech, & Pibouleau, 1998). 

In 1999, Byrne & Bakir (1999) solved a simple manufacturing system by combining 

analytic methods with simulation modeling in an iterative loop. The analytic model had 

difficulties in accommodating the system characteristics such as queuing and transportation 

delays, making the analytic solution dissatisfying. On the other hand, the simulation model 

could consider these characteristics, and when used in an iterative loop alongside the 
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optimization algorithm, this hybrid procedure nullified the shortcomings of the analytic 

method allowing for a quasi-optimal solution to be found. 

By the beginning of the new millennium, the conjunction of optimization and 

simulation had become widespread; at this point, almost all simulation packages had had 

some form of optimization. In 2000, the term “simulation optimization” was introduced in 

the Encyclopedia of Operations Research & Management Science.  

In 2002, Fu (2002) made a comprehensive analysis of the optimization methods 

offered in discrete-event simulation packages and realized that there had been important gaps 

in the optimization-simulation research. Even though the offered optimization packages 

were a good start, they left a lot to be desired. The author argues the need for more general 

algorithms that can be used in a broader range of problems, more intuitive user interfaces 

that allow a wider user base, and improvements in efficiency to minimize computing time 

for large problems.  

In multiproduct chemical batch plants there are many uncertainties to consider such 

as material prices, process failures, and others, but perhaps the most impactful is demand 

uncertainty, which can result in under or over-production. Intending to optimize inventory 

Jung, Blau, Pekny, Reklaitis, & Eversdyk (2004) used a hybrid simulation-optimization 

approach to solve this problem. To do so, stochastic discrete-event simulation of the supply 

chain is performed multiple times utilizing scheduling plans obtained from deterministic 

optimization methods for the complete problem horizon. The results of these simulations are 

utilized to estimate customer satisfaction and to adjust optimization parameters. This 

methodology is repeated in an iterative manner until the satisfaction levels reach the desired 

value.  

With the aim of minimizing the expenses inherent of bringing a new drug to the 

market, Chen, Mockus, Orcun, & Reklaitis, (2012) developed a simulation-optimization 

methodology to improve management of the clinical supply chain in the pharmaceutical 

industry. The developed framework encompassed stochastic demand forecasting, a 

decentralized planning model and discrete-event simulation. This approach was 

demonstrated trough 3 different demand variations, from low to high demand. It proved very 

flexible when evaluating the tradeoff between customer service level and supply chain costs 

and an effective tool for risk management. 
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In 2016, Amaran, Sahinidis, Sharda, & Bury, (2016) made an extensive review of 

the algorithms and applications used to optimize stochastic simulation. Besides observing 

the topic was very rich in literature and of high interest in the area, the author found multiple 

topics that required investigation. Large-scale problems with combined discrete/continuous 

variables was one of them. 

In the same year, Marques, Moniz, de Sousa, & Barbosa-Póvoa (2016) presented an 

innovative approach for product launch planning in the pharmaceutical industry, while 

considering the uncertainty of both the clinical trials and the product demand. A MILP 

analytical model with simulation incorporation was developed for the optimization of 

process design and capacity planning (such as process-unit allocation, scale-up decisions, 

and acquisition of new units) while taking into consideration future and actual 

commercialized products. This work was continued in (Marques et al., 2017) where it was 

further investigated and enhanced with the incorporation of features such as lot traceability, 

scale-up and clinical trials waste management. The proposed decision-making framework 

was tested on a case study inspired by a real situation. In a highly uncertain setting, the 

decision-making tool was able to effectively and clearly identify process configurations and 

scale-ups that maximize profit. Moreover, the results undeniably show the impact of 

uncertainty in the net present value reinforcing the inadequacy of deterministic models for 

real-life decision-making. 

With the objective of managing the industrial planning and scheduling problem 

in an automated assembly line, Vieira, Barbosa-Póvoa, Moniz, & Pinto-Varela, (2018) 

successfully developed an iterative optimization simulation methodology solution capable 

of providing optimal production scheduling and number of robotics required. This author 

used a ROSA methodology, the same later used in this work.
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3. AN OPTIMIZATION-SIMULATION APPROACH 

Optimization has been extremely useful in solving a wide variety of complex 

problems. Mathematical optimization has the advantage of working in the full solution 

domain, meaning that it is possible to reach optimal results. Its main drawback, though, is 

the computational efficiency.  

The higher the level of detail introduced in the algorithm, especially ones that 

originate complex constraints, the longer the model will take to find optimal results. Model 

efficiency can be improved, and complex problems can be modeled fully and still be capable 

of returning optimal solutions on acceptable time frames, the downside however, is that there 

is a clear correlation between model efficiency and its domain of usefulness. The more 

efficient an algorithm becomes, the narrower is the area in which it is suitable. Very efficient 

models tend only to be used in very particular situations and can be quite time consuming 

and expensive since it usually requires highly skilled personnel to create them. 

It is generally more practical to use a general-purpose algorithm to optimize a 

particular problem. However, these algorithms tend to lead to oversimplified problem 

models, and the higher the level of simplification, the farther the results will be from reliable 

optimal results. 

Discrete-event simulation has proven very useful to bridge the gap between the 

results obtained from a simplified algorithm and the accurate optimal results of a given 

problem. Capable of including problem features not considered in the analytical model and 

easily accounting for variability. Usually, this is done by the analysis of multiple simulation 

runs based on the optimization results that are then adjusted accordingly in an iterative 

process. 

This chapter will go through all the steps of the presented investigative approach. 

It will start with a brief problem explanation, and then the case study is presented, followed 

by the description of the optimization methodology and the presentation of its results. 

Finally, this chapter ends with the description of the simulation model, its development and 

features. 
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3.1. Problem description 

If a plant has access to long-term and accurate demand predictions, then it can 

run on “campaign mode”. In these situations, the plant resources are allocated over a long 

period of time. Planning and scheduling decisions are more straightforward since the need 

for changes in production is lower. 

Alternatively, if product demand is not available, then production is highly 

dependent on available orders, forcing short-term scheduling. This is when a batch plant’s 

flexibility truly comes into play. With a small production horizon, fast scheduling and 

flexible resource allocation are the backbone of a profitable production. 

In the next subchapters, a short-term scheduling problem of a multipurpose 

chemical batch plant is introduced. 

3.2. Case Study 

The problem approached in this dissertation was first introduced by Kondili et 

al. (1993) as an example and solved by their novelty general-purpose algorithm for short-

term scheduling. The optimization results achieved by the author will also be used later. 

While selecting the case study, it was vital that it was representative of the target 

industry; otherwise, results will not be relevant or representative either. The problem should 

have enough complexity to pose most of the expected difficulties and therefore give realistic 

feedback about the effectiveness of the approach used. More specifically, it was important 

that features and complexities, such as the following were present: 

• resource allocation flexibility; 

• multi-equipment tasks; 

• competition between different tasks for equipment; 

• and complex production sequences. 

This particular case study has all of them and also introduces some others like 

variable batch sizes and merging and splitting of batches. 

Finally, the use of a known problem also has some advantages. Bringing a new 

approach to a known and relevant problem, not only facilitates evaluation and comparison 
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between most commonly used techniques but it also typically means that the results will be 

more useful. 

3.2.1. Chemical process 

The case study consists of a multipurpose batch chemical plant with three 

different feed stocks (FeedA, FeedB and FeedC), four intermediate products (IntAB, IntBC, 

HotA, and ImpureE) and two final products (Product1 and Product2). 

All the tasks, task ratios, and product relationships can be seen in Figure 3.1, and 

task identification can be seen in Table 3.1. 

Figure 3.1. Process diagram (Kondili et al., 1993).  

 

Task Hearting Reaction 1 Reaction 2 Reaction 3 Separation 

Task number 1 2 3 4 5 

 
Table 3.1. Task numeration. 

 

3.2.2. Plant equipment and storage 

The plant considered in this problem has three different types of equipment: 

heaters, reactors, and stills; their capacity and utility are shown in Table 3.2. Regarding 
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storage, there are nine different storage tanks in this plant. Their corresponding material of 

storage and capacity are as follows: 

• FeedA, FeedB, and FeedC with unlimited capacity; 

• HotA with 100 Kgs of capacity; 

• IntAB with 200 Kgs of capacity; 

• IntBC with 150 kgs of capacity; 

• ImpureE with 100 kgs of capacity; 

• ProductA and ProductB with unlimited capacity. 

 

 

Equipment Capacity [Kgs] Tasks performed 

Heater 100 1 

Reactor 1 80 2, 3, 4 

Reactor 2 50 2, 3, 4 

Still 200 5 

 
Table 3.2. Plant equipment (Kondili et al., 1993). 

 

3.3. Optimization model 

The optimization model selected for this work will be a pivotal part of the 

success of this approach. As mentioned at the beginning of this chapter, detailed models are 

expensive, time-consuming, and highly specific; choosing such an algorithm would mitigate 

a lot of the advantages of discrete-event simulation. In fact, the use of a very efficient 

optimization algorithm could be seen as an alternative method to the one proposed in this 

dissertation, despite the disadvantages already pointed out. 

For this reason, the optimization model used will be a deterministic general-

purpose algorithm, the previously mentioned STN, the same one used by (Kondili et al., 

1993). General-purpose algorithms have the advantage of being useful in a wide variety of 
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applications, their problem modeling is quick and straightforward, but then again, it usually 

leads to oversimplified problems and therefore, aggregate solutions.  

This model will benefit from simulation since some it is analytical 

simplifications can be addressed by the use of a carefully constructed simulation model, 

where these optimization oversights can be corrected, and it is results calibrated, allowing 

for the solution to move a lot closer to truly optimal results. 

3.3.1. Mathematical formulation 

Since both the formulation and the case study are the same ones introduced by 

(Kondili et al., 1993), this chapter will briefly present the mathematical formulation. 

This scheduling model is based on a discrete-time system representation that has 

the advantage of facilitating formulation by offering a reference grid where operations are 

positioned against. 

The variables utilized are a three-dimensional binary variable, a three-dimension 

real variable, and a two-dimensional real variable, explained respectively as follows: 

• 𝑊𝑖𝑗𝑡 = 1, if unit 𝑗 starts processing task 𝑖 at the beginning of time period 

𝑡; 0 otherwise. 

• 𝐵𝑖𝑗𝑡 = amount of material which starts undergoing task 𝑖 in unit 𝑗 at the 

beginning of time period 𝑡. 

• 𝑆𝑠𝑡 = amount of material store in state 𝑠, at the beginning of time period 

𝑡. 

As for the constraints, it is fundamental that equipment allocation conflicts are 

resolved and that limitations in the capacity of storage and material balances are respected. 

To solve such problems, the following constraints were considered: 

• Allocation constraints; 

o At any given time t, an idle equipment can only start a single task, 

leading to the following constraint (Kondili et al., 1993): 

 

∑ 𝑊𝑖𝑗𝑡

𝑖𝜖𝐼𝑗

≤ 1 
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o An equipment performing a task cannot start a new one until the 

current one is finished; this constraint can be formulated in the 

following way (Kondili et al., 1993):  

 

∑ ∑ 𝑊𝑖′𝑗𝑡′ − 1 ≤

𝑡+𝑝𝑖−1

𝑡′=𝑡𝑖′ ∈𝐼𝑗

𝑀(1 − 𝑊𝑖𝑗𝑡) ∀𝑗, 𝑡, 𝑖 ∈ 𝐼𝑗 . 

 

• Capacity limitations; 

o The quantity of material that starts undergoing task i in unit j at 

time t is bound by maximum and minimum capacities of that unit 

(Kondili et al., 1993). This is represented by the following 

inequation: 

 

𝑊𝑖𝑗𝑡𝑉𝑖𝑗
𝑚𝑖𝑛 ≤ 𝐵𝑖𝑗𝑡 ≤ 𝑊𝑖𝑗𝑡𝑉𝑖𝑗

𝑚𝑎𝑥  ∀𝑖, 𝑡, 𝑗 ∈ 𝐾𝑖 . 

 

o The quantity of material stored in a state s must not exceed, at 

any point, the maximum capacity of this state (Kondili et al., 

1993). This constraint was modeled in the following way: 

 

0 ≤ 𝑆𝑠𝑡 ≤ 𝐶𝑠 ∀𝑠, 𝑡. 

 

• Material balances; 

o The net increase (𝑆𝑠𝑡 − 𝑆𝑠𝑡,𝑡−1) in the quantity of material stored 

in a state s at time t is given by the difference of the quantity 

produced in this state and the quantity used and was formulated 

in the following way (Kondili et al., 1993). 

 

𝑆𝑠𝑡 = 𝑆𝑠,𝑡−1 + ∑ �̅�𝑖𝑠 ∑ 𝐵𝑖,𝑗,𝑡 − 𝜌𝑖𝑠 − ∑ 𝜌𝑖𝑠 ∑ 𝐵𝑖𝑗𝑡 

𝑗𝜖𝐾𝑖𝑖∈𝑇𝑠𝑗𝜖𝐾𝑖𝑖∈𝑇𝑠

∀𝑠, 𝑡. 
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Finally, the objective function is presented as follows, with a few simplifications 

concerning the case study such as the disregard for the cost of utilities, product deliveries 

and raw material receipts.  

 

 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 − 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘𝑠 − 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑚𝑎𝑥 
  

 

The value and cost equations, in which 𝐶𝑠,𝐻+1 is the cost of having material left 

in the system after the process has finished, 𝐶𝑠𝑡 is the input price associated with the material 

in state s at time t and 𝐶𝑠𝑡
𝑠  is the running cost of storing a unit amount of material in state s 

over the interval starting at time t, are the following (Kondili et al., 1993): 

 

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = ∑(

𝑠

𝐶𝑠,𝐻+1𝑆𝑠,𝐻+1) 

 

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘𝑠 = ∑(

𝑠

𝐶𝑠0𝑆𝑠0) 

 

𝑐𝑜𝑠𝑡 𝑜𝑓 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = ∑ ∑ 𝐶𝑠𝑡
𝑠 𝑆𝑠𝑡

𝐻

𝑡=1𝑠

 

 

3.3.2. Optimization results 

The results from the STN optimization model are represented in the Gantt chart 

of Figure 3.2 as a production plan, where the task type is the top digit and the batch size in 

kgs is the bottom one, and in the intermediate storage utilization profiles for IntBC, IntAB 

and ImpureE are represented of Figure 3.3. 

It is also important to note that even though these results were taken from the 

literature (Kondili et al., 1993), the Gantt chart was redone with decimal values instead of 

rounded ones. 
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Figure 3.2. Production plan Gantt chart based on (Kondili et al., 1993). 

 

Figure 3.3. Storage utilization profiles for IntBC, IntAB and ImpureE (Kondili et al., 1993). 
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3.3.3. Analysis of optimization results 

For a proper understanding of the flaws and opportunities of the optimization 

model used, it is critical to analyze its results. 

Observing the Gantt chart from Figure 3.2, it is quite clear that tasks start 

immediately after one another. In the real world, there are filling and emptying times that 

can have a significant impact on the total process time. 

By not considering this detail, it can also be assumed that fluid transfer logistic 

problems are not considered either. For example, when filling equipment with two or more 

different materials, it is possible to have logistic problems that force one of them to wait 

until the other is completely transferred. All of these details will contribute to longer process 

times. 

Another essential aspect of a real process that is not considered in this analytic 

model is the process variability. In real life, no task ever takes the exact amount of time, 

every time. When a task is performed, there is always a slight variation in its processing time 

and it will also have an impact on the final process time. 

Finally, we can consolidate the identified flaws as the following opportunities 

for improvement: i) consideration of the full pipe network, ii) modeling the process 

variability.  

3.4. Simulation model 

A well-constructed simulation model is essential for the success of this approach, 

more specifically, one that complements the optimization model. With that in mind, the lab 

team of industrial management, created a discrete-event simulation model that considers 

several structural aspects of the plants, as well as detailed process characteristics such as 

material transfer rates and material transfer logistics.  

Furthermore, the design of this model was not only done considering the present 

case, but it was also done considering a variety of situations that the case study belongs to. 

The objective was to create a model that would simulate an extensive amount of different 

plant configurations and production plans with a minimal amount of model changes. 
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To achieve this goal, the simulation model was created around a modular 

production plan. By splitting a production plan into single sequential tasks containing all the 

information about the step and by creating a program that reads this information and controls 

the plant accordingly, it is possible to have a working model regardless of the production 

plan. This approach is valid only if the equipment and layout remain unchanged between 

production plan alterations. Still, even if one desires to use a different layout, it can be altered 

in the GUI with minor changes, and the model’s functionality would remain. 

The next chapter will go through the process of simulation package selection, 

and subsequent ones will describe the three main aspects of this model: the construction of 

the factory layout, the creation of the production plan, and the workings of the control 

program. The final chapter will explain how the model validation was conducted. 

3.4.1. Selection of simulation software 

The first step is choosing the simulation software. One can have continuous 

simulation for modeling continuous functions. Discrete-event simulation, on the other hand, 

describes systems by dividing the time frame into small intervals and only applying changes 

when this amount of time passes. The difference between both is comparable with the 

difference between an analogical signal and a digital one, respectively. The downside of 

describing continuous systems using discrete-event simulation, is that the results become 

only approximations of the actual system solution. 

If this genre of problems is analyzed in regard to the type of variables that operate 

in it, it can be swiftly concluded that the only significant continuous variables present are 

the ones with respect to the material transfer. In this type of problem, the main concern when 

it comes to this task element is that the filling/emptying time and amount are correctly 

represented. By changing the representation of these values from continuous to discrete, the 

quantities of material inside the tanks, equipment, and pipes will no longer change 

continuously but in small time intervals. This means that, while a transfer is occurring, the 

material storage values of the equipment involved will be only approximations and so will 

be the transfer time. If the discrete-time intervals are very small, which they are, these 

approximations will not affect in any way the final results.  
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The specific simulation package used was SIMIO (Pegden, 2007). Its intuitive 

GUI, comprehensive tutorials, feature-heavy environment, and the flow library made the 

simulation process very clear and straightforward. 

3.4.2. Construction of the plant layout 

The plant layout is created through the graphical interface of SIMIO by selecting 

pre-existing objects. Objects are the different construction blocks offered by the software. 

They are meant to represent the physical equipment of a problem. The equipment 

arrangement is inherent to the problem at hand, so if this model is to be used in a different 

problem, then the layout must be rearranged or completely redone. 

To create a faithful layout, objects that represent the plant’s equipment must be 

selected, positioned, and connected in a way that represents the exact flexibility of the plant. 

The first step in the creation of this layout is to select the objects that will 

represent each physical equipment of the plant. The next subchapter will go through the 

relevant objects and explain which ones will be used. Then the construction of the case study 

layout will be described. 

3.4.2.1. Selection of SIMIO flow handling objects 

SIMIO, like a few of the available discrete-event packages, is equipped with a 

series of features that immensely facilitate the simulation of plants involving the flow of 

materials. To create a simulation model, there are a number of objects available in the 

software that simulates real-life equipment, most of them can be programmed in a variety of 

ways. The chosen software has a library of objects specifically dedicated to flow handling 

called flow library, the objects used in this simulation will all come from this library. In the 

following paragraphs, each object’s functionality will be explained; used objects will be 

identified as well as their utility. 

To create and delete flows, Flowsources and Flowsinks are used respectively. In 

this simulation model, Flowsources are used to represent raw material storage tanks, more 

specifically, the ones storing FeedA, FeedB and FeedC. Flowsinks are not used since the 

analysis of the process will be simplified if all material remains in the system; instead, Tanks 

with infinite capacity will be used to store the final products. 
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In Figure 3.4 the visual representation of both these objects, connected by a pipe, 

can be seen. 

 

Figure 3.4. A FlowSource creating material flow which is then deleted by a FlowSink. 

 

As for storage, SIMIO has 2 different options, Tanks, and Container Entities. 

The difference between them can be seen as the difference between a static storage tank and 

a barrel; both of them store material but one is locked in position and generally can hold a 

lot more and the other is a means for moving material. For our specific problem, there is no 

reason to use Container Entities, all material transfers are done through pipes so this type of 

object will not be used. Tanks, on the other hand, will represent both storage and equipment. 

In our specific case study, Tanks will store the products, intermediate material and will serve 

as reactors, heaters and stills. The equipment functionality is given by the use of processes, 

the SIMIO programming feature. These are later explained in 3.4.3 and 3.4.4. 

The representation of Tanks and Container entities can be seen in in Figure 3.5. 

 

 

Figure 3.5. The graphical representation of a Tank and a Container Entity. 

When it comes to material transfer, it can be done physically by the use of Pipes, 

Connectors, and FlowNodes. 
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Pipes and Connectors are the objects that transfer material between other 

objects; they can both be seen as pipes, in fact, they are identical in the simulation program, 

the main difference between them is that the connector considers both the distance between 

equipment and pipe volume to be null, meaning material is transferred instantly. For the 

simulation of the case study, the material will be transferred using pipes which are much 

more representative of the real-world transfer. 

FlowNodes, regulate the flow in and out of objects or the flow at network links. 

These objects can be used to regulate the merge of two flow streams or the division of a 

single one. This object can also be used to completely obstruct flow, meaning that it can 

work as a valve. This will be used extensively in the creation of this simulation model.  

Pipes, Connectors and FlowNodes are represented in Figure 3.6. 

 

Figure 3.6. The graphical representation of Pipes, Connectors and FlowNodes. 

Finally, the last two objects present in the Flow Library of SIMIO, are also the 

objects of least importance for this particular problem, the ItemToFlowConverter, and the 

FlowToItemConverter. They work as their name suggests, to transform flow into discrete 

physical items and the other does the exact opposite. They will not be used in this particular 

problem since it does not concern the use of physical items. One that might have the creation 

of a product that consumes both materials and items will benefit from these objects. 

These SIMIO objects can be seen in Figure 3.7. 
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Figure 3.7. The graphical representation of ItemToFlowConverter and FlowToItemConverter. 

 

3.4.2.2. Layout Creation 

When creating the plant layout, the main objective is to have the exact amount 

of freedom to the factory that it would have in real life. Too much flexibility and the results 

will not be admissible in the real-world plant, and lack of flexibility, when compared to its 

real-life counterpart, would mean the results are not optimal. 

For this particular case study, the layout can be seen in Figure 3.8. 

 

 

 

Figure 3.8. Case study plant representation in the graphical interface of SIMIO. 

The first step in creating the virtual plant was to introduce the main equipment, 

the FlowSources for the different types of feeds, and the Tanks for both storage and 

equipment. After all the equipment had been placed, then Pipe lines and FlowNodes were 

carefully constructed to represent all the connections in the plant correctly. All the Tanks 
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and FlowSources outputs were disabled and the correct capacity assigned. Merging and 

splitting FlowNodes were also configurated. 

To finalize the construction of the plant in the GUI, all pipes were assigned a 

variable weight, which is controlled by the process responsible by the plant behavior. Pipe 

weight is a way to decide the ratio of material in a flow split, if one node is splitting the flow 

between two pipes and one has the weight of 0.3 and the other has the weight of 0.7, those 

will be the percentages by which the material will be divided.  

By having variable pipe weights, it is possible to disable flow to certain pipes by 

setting it to zero. This feature will be very useful later in the programming part of the 

simulation model. 

 

3.4.3. Development of Production plan  

 

The main objective of the production plan is to have all the needed information 

available in a way that facilitates both the functioning of the model and the creation of 

different production plans for other problems. 

This production plan will follow a sequence of different tasks that are to be 

performed one after the other, according to the scheduling obtained by the optimization 

model. Even if the optimization production plan decided that tasks should be executed 

simultaneously, one must go before the other in this production plan. As long as it is possible 

to perform the tasks simultaneously, the fact that in the simulation production plan, one is 

before the other does not affect the time of production. The program responsible for 

executing all the tasks runs in a residual amount of time and they will still be executed 

simultaneously. 

As for the simulation production plan itself, it is implemented in a table. It could 

be written in Excel and later imported into the simulation software, which is advisable since 

Excel has a lot of features that facilitate its creation. 

Table 3.3 contains all the different columns of the production plan and the 

information regarding each one. 
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Column 
Type of 

variable 
Variable 

Explanation 

Sequence Integer / Number by which different tasks are ordered 

Task String Task The task that is to be performed 

Material In String 
Material 

type 

The type of material that will be consumed 

Type Flow In String 
Type of 

object 

The type of object the material is leaving 

In Sto Unit String Object 
The actual object the material is leaving 

Pipe Proc In Integer / 
Identification of the input pipe in relation to 

their Tank/equipment 

In Sto Id Integer / Identification of the origin tank/equipment 

Proc Unit String Object 
The object that will process the task 

Proc Unit ID Integer / Processing equipment identification 

Pipe Proc Out Integer / 
Identification of the output pipe in relation to 

their Tank/equipment 

Out Sto Unit String 
Material 

type 

The output storage unit. 

Processing 

Time 
Real Hours 

The number of hours a process will take 

Batch Real Kilograms Batch size of the task 

Consumption Real Ratio 

Percentage of the total amount to be 

transferred to an equipment, that the task 

must transfer 

Production Real Ratio 

Percentage of the total amount to be 

transferred out of an equipment, that the task 

must transfer 
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Start 

Processing 

time 

Boolean / 

True, if the task is the final filling task for the 

production of the respective material, 

meaning the equipment can start processing. 

False otherwise 

Flowrate Real 
Kilograms/

Hour 

Flowrate by which the material is transferred 

during the task 

 

Precedence Integer / 

The number of the last task that must be 

performed before the considered task can be 

performed 

Expression String Expression 
The expression responsible to ensure 

precedence is respected 

 

 
Table 3.3. The different production plan columns and their respective information. 

 

 

3.4.4. Programming the plant behaviour 

SIMIO programming, or “processes” as nominated in the software, is a type of 

diagrammatic programming where steps, which are different programing functions, are 

chained in block form. In Figure 3.9, an example SIMIO process is shown. 

The flexibility and utility of this model entirely depends on its programming. It 

must work in a way that is general enough to be able to function regardless of the production 

plan and equipment layout. 

This chapter will describe the different steps used and the relevant processes that 

control the functioning of the model. 
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Figure 3.9. Example of a SIMIO process. 

 

3.4.4.1. The different steps used 

Within SIMIO, there are dozens of different steps to choose from, but most of 

them are aimed at other types of problems. For this particular plant, the used steps were those 

with a more general application. In the following paragraphs, all the used steps will be 

described and their utility explained.  

 

Decide – This step acts similarly to an if condition in common programming 

languages. Given a certain condition, the function will return a true or false statement. More 

specifically, this step is used to check the type of task that is being performed. 

Assign – This step is used to assign a new value to a specific variable. In the 

context of this model, it is used to open or close valves, select pipes, etc.… 

Scan – The Scan step pauses the process until an assigned condition is met. In 

this model, one of its uses is to make sure pipes are empty before transferring material again.  

Delay – This step is used to hold the process for a specific amount of time. It is 

used to either simulate the processing time of an equipment or to count the amount of time 

a valve will be open. 

Search – This step verifies if an object, table, or condition has changed from its 

original value. It is used to check if the process has just started or if it has been running 

already. 
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Execute – It is used to execute a specific process and is used to start the main 

process after the right conditions are met. 

Notify – It is used to notify the user if a condition was met. This step is very 

useful for debugging and testing. It is not necessary to the process’s functionality. 

 

3.4.4.2. Process functioning 

As previously mentioned, the whole plant functioning is created through a 

process which takes its information from a production plan. This production plan is divided 

into a set of sequential production plan tasks; for the sake of simplicity, they will be referred 

to as PPTs. The distinction between PPTs will be important later on in the explanation of the 

main process. Figure 3.10 shows the way PPTs are classified. 

 

 

Figure 3.10. PPTs sub-types. 

 

 

 

 

 PPTs are divided into these categories because, due to the way that the process 

responsible for the functioning of the plant was created, PTTs can only input one type of 

material. The same goes for output, but it does not have to be the same material as input, for 

obvious reasons. 

 This means that for the execution of a task that will have two different material 

proceeds like Reaction2 or Separation, the first PPT can only remove one of the materials 

from the equipment. Consumption PPTs are used to remove the second material from the 

equipment. 
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Processing and non-processing PPTs exist for the exact same reason but related 

to input. When tasks require two different types of material to be performed, two PTTs must 

be used to fill the equipment and only the second one should be of the processing type. The 

reason behind it is quite simple, the model needs to know when to kickstart the process, since 

the tank will be full only after the second PPT is performed, that is when it should start 

processing. As an example, when performing Reaction2 three different PPTs are required, 

first a non-processing PPT to fill the reactor with the first material, then a processing PPT to 

finish filling the reactor, perform the reaction and remove the first product from the 

equipment and finally a consumption PPT to remove the second product. 

There are only three different processes that operate this simulation model, 

ProcessExecuteTask which is the main process in charge of the model’s operation and also 

the main focus of this chapter, ProcessSchedule which is in charge of starting the main 

process and to keep track of the PPT number and ProcessStock which is used to record tank 

and equipment stocks for later analysis. 

The rest of this chapter will be dedicated to the functioning of 

ProcessExecuteTask and its explanation will follow Figure 3.11. 

 The process is initiated by ProcessSchedule. This simple process starts 

running as soon as the model does, and it is responsible for initiating production and 

finalizing it when the production plan reaches its end. It is also the process that keeps track 

of the tasks performed. 

After ProcessExecuteTask is initiated, it verifies if the 

current PPT can be performed by making sure the one immediately 

before was performed successfully. After this condition becomes 

positive, the process moves on. 

 A decision type step is performed next, the program 

verifies if the PPT is of the production type. If true the process moves 

on; otherwise the process skips ahead (1). Then, an assign step assigns 

the correct pipe to transfer the material from the output to the input 

object. 
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Next, the process reaches another decide step, which is 

used to verify the type of object from which the material will leave. 

This must be done because, for the same purpose, expressions vary 

depending on the object. So, even though the next steps are exactly 

the same either way, the distinction must be made because each 

requires different syntax. This type of step is used more than once 

throughout the process but it will be omitted from now on. 

Then, the scan step waits for both the output valve of the 

output object to be closed and for any material left in the queue to 

enter the input object. Finally, when the conditions are met, the 

process moves to an assign step that opens the valve from the output 

object and fills the target equipment. 

The time the output valve is opened is calculated using the 

transfer rate and the batch size and the consumption ratio, so it outputs 

the exact amount of material. This is done through a delay step. 

The next step closes the output valve immediately after 

the calculated amount of time has passed, followed by a scan step that 

waits until all the material has been transferred. The subsequent step 

is of the decision type once again, checking whether the task is of the 

processing or the non-processing type. If the task is of the non-

processing kind, the process ends and the model starts with the next 

PPT on the sequence. If the PPT is of the processing type, the process 

moves on to a delay step which will last for the full processing time 

of the task. When the time is over, the equipment is finished 

processing and the products are ready to be removed. A scan step 

waits until the pipes leading to the input tank are free, then the process 

moves to an assign step that opens the output valves of the equipment 

followed by a delay step that calculates the time for the material 

transfer. The process ends with an assign step closing the output 

valves of the equipment and by restarting once again on the next PPT. 

Figure 3.11. Representation of ProcessExecuteTask. 
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3.4.5. Validation of the model 

Before the simulation model is concluded, it is important to make sure it actually 

functions correctly and faithfully represents the problem at hand. To verify the validity of 

the model one main objective test was conducted. The test consists of reproducing the 

problem representation of the analytical model in the simulation model and comparing the 

analytic results with the simulation results. To do so, material transfer-rates were accelerated, 

turning emptying and filling times to approximately 0 seconds. 

After the model was run, the storage levels throughout time, the final product 

and intermediary levels and the total run time were compared to those reported in the 

literature. 

The following graphs show intermediate storage values, in Kgs throughout 11 

hours of process time, from the literature and from the simulation model with the validation 

parameters. 

 

Figure 3.12. IntBC storage utilization profile from literature (Kondili et al., 1993). 

 

 

Figure 3.13. IntBC storage utilization profile according to the simulation model. 
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Figure 3.14. IntAB storage utilization profile from literature (Kondili et al., 1993). 

 

 

Figure 3.15. IntAB storage utilization profile according to the simulation model. 

 

Figure 3.16. ImpureE storage utilization profile from literature (Kondili et al., 1993). 

 

Figure 3.17. ImpureE storage utilization profile according to the simulation model. 

 

The storage levels throughout the full production time between the two sources 

are exactly the same. As for the final product quantities and full production duration, the 

results were exactly the same as the values mentioned in the literature. The product storage 

levels and the production duration can be seen in Figure 3.18. 
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Figure 3.18. Product1 and Product2 storage utilization profile according to the simulation model. 
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4. APPROACH ASSESSMENT 

Throughout this chapter, the solutions obtained from the previously described 

deterministic analytic model will be evaluated. This evaluation will now take into 

consideration material transfer rates and material transfer logistics, thanks to the use of 

discrete-event simulation. The main areas of effect of the previously mentioned features will 

be separated in the three subchapters: i) computational performance, where the processing 

speed of the model will be accessed; ii) tank sizing, where the intermediate tank sizing done 

by the optimization methodology will be reviewed; and iii) production duration estimates, 

where the estimates of the full production duration will be analyzed against the ones achieved 

through the simulation model. 

The following aspects of the problem and plant characteristics were kept 

constant throughout all the calculations in this chapter: 

• Pipe length of 5 meters 

• Elliptical pipe cross-section, 0,25m by 0,25m (default) 

• 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 1000 
𝑘𝑔 

𝑚3⁄  

4.1. Computational performance 

Computational performance is critical when it comes to any kind of optimization 

methodology. Results must be obtained in a useful time interval; otherwise, they might 

render useless. This work is dedicated to short-term scheduling, in which the objective is 

typically to make quick production decisions with the available information. If the 

optimization methodology used cannot find a result in the available time frame, then it is not 

fit to make those decisions. 

Within the scope of this dissertation, only the simulation model can be evaluated 

for computational performance since the analytic results were taken straight from the 

literature (Kondili et al., 1993). Nevertheless, it is known that the analytic model considered 

in this scientific article is quite efficient. 
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To determine the computational processing duration, different production 

intervals were considered by repeating the production plan. The following table presents 

values obtained from 10 replications of each amount of production plan repetitions and 

considering a 500 kgs/h transfer rate as well as 95% confidence level. Regarding the CPU, 

all the values were calculated with an Intel i7-8750H (mobile version) and each core ran at 

an average 2.6GHz.  

 

Production Plan 

repetitions 

Average processing 

time [s] 
Half-Width [s] 

Margin of error 

[%] 

1 0,21 0,03 14,93 

2 0,79 0,07 9,24 

5 3,91 0,22 5,71 

10 14,22 0,3 2,13 

20 57,26 1,13 1,97 

30 109,42 1,07 0,98 

40 233,12 6,09 2,61 

50 346,61 22,32 6,44 

60 468,08 46,06 9,84 

 

Table 4.1. The processing duration, half-width, and margin of error throughout different production 
intervals after 10 replications. 

With the objective of achieving a margin of error lower than 5%, the number of 

necessary replications is calculated with the values that achieved the highest margin of error. 

These values were found when performing the scenario in which the production plan was 

not repeated. The number of necessary replications was calculated in the following manner: 

𝑛 = 𝑛0

ℎ0
2

ℎ2
 ≤>   𝑛 = 𝑛0

ℎ0
2

(�̅� ∗ 0,05)2
  ≤> 

≤> 𝑛 = 10
0,032

(0,21 ∗ 0,05)2
= 81,63 => 82 

Where: 
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• 𝑛 = Necessary number of replications to achieve the desired margin of 

error. 

• 𝑛0 = number of initial replications. 

• ℎ0 = Half-width calculated from the initial set of replications. 

• ℎ = Target half-width. 

Having calculated the necessary number of replications to archive the desired 

confidence interval, the different scenarios were run again with the calculated number of 

replications. The results can be seen in Table 4.2. 

 

Production Plan 

repetitions 

Average 

processing time 

[s] 

Half Width [s] 
Margin of error 

[%] 
PR [h/sec] 

1 0,26 0,01 3,85 38,46 

2 0,78 0,02 2,56 25,64 

5 3,83 0,08 2,09 13,05 

10 14,47 0,25 1,73 6,91 

20 60,10 0,87 1,45 3,33 

30 135,68 1,58 1,16 2,21 

40 240,68 3,03 1,26 1,66 

50 368,47 4,5 1,22 1,36 

60 523,13 8,36 1,6 1,15 

 

Table 4.2. The processing duration, half-width, margin of error and PR throughout different production 
intervals after 82 replications. 

While, for one production plan repetition, the margin of error was close to 5%, 

all the other values were below 3,85 %, showing that the previous replication calculation 

was conservative. As for computational performance, the model proved very efficient 

regarding the case study, simulating it’s 10-hour production plan in under 1 second. 

Furthermore, SIMIO(Pegden, 2007) computes one replication per CPU core. This means 

that while one replication might take 130 seconds, in a 6 core CPU, 6 replications will take 

the same amount of time because they are computed in a parallel way.  
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However, with the increase in simulation time, the PR (processing ratio 

[
𝒉𝒐𝒖𝒓𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏

𝒔𝒆𝒄𝒐𝒏𝒅𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒊𝒏𝒈
]) drops significantly. Meaning that the relationship between processing time 

and simulation time is not linear. This can make longer simulations of more complex 

processes and plants problematic. In Figure 4.1 evolution of the computational processing 

time needed for an increasing simulation time. 

 

Figure 4.1. Computational processing times of different production lengths. 

 

4.2. Tank sizing 

When it comes to sizing the different components of a chemical plant, equipment 

capacity planning appears to be a fundamental mater. However, altering the equipment size 

could alter optimization results. For this reason, choosing the correct capacity is a complex 

matter.  

Intermediate material storage, on the other hand, is directly tied to the production 

plan, which makes it easy to find a preliminary maximum values through the optimization 

methodology. The preliminary results, though, are only as accurate as the model that 

obtained them. If the analytic model cannot closely describe the system it is optimizing, any 

unconsidered system characteristics might alter the obtained results. In this chapter, we 

analyze the use of discrete-event simulation as mean to obtain more accurate storage 
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intermediate profiles by introducing system characteristics the optimization model does not 

consider. 

To do so, the maximum intermediate tank weights, throughout the full process, 

of the three main intermediate materials (IntBC, IntAB and ImpureE) are compared, see 

Table 4.3. 

 

Tank 50 [kgs/h] 500 [kgs/h] 5000 [kgs/h] 50000 [kgs/h] 
Instant 

Transfer 

IntBC 96 96 96 96 48 

IntAB 89.4 89.4 89.4 89.4 89.4 

ImpureE 114 114 114 114 97.5 

Full process 

duration 
28:10:02 11:49:23 10:10:54 10:01:05 10:00:00 

 
Table 4.3. Maximum tank weight [kgs] according to different transfer rates. 

 

On this table, the maximum tank weight range throughout the full production 

duration can be seen through 5 different transfer rate levels of magnitude. The “Instant 

Transfer” values were obtained from the optimization methodology, while the rest was 

obtained by the simulation model. 

Comparing the simulation values with the ones calculated by the analytic model, 

there is a clear difference. Both the tanks responsible for IntBC and ImpureE storage would 

be incorrectly sized through the data obtained from the analytic model. To further investigate 

the reason behind this change, the profile levels from the tank responsible for IntBC storage 

are compared at 500 kgs/h and instant transfer rate, in Figure 4.2. 
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Figure 4.2. IntBC Storage utilization profiles with different material transfer rates. 

This tank is the one where the most significant change in maximum weight usage 

difference occurs, it doubles from 48 kgs to 96 kgs. While the change is very significant, the 

reasons behind it are the same as the ones behind all the other changes in maximum weight. 

When the instant transfer is considered, if the proceedings from a reaction are 

directly used in the next one, they are transferred back to the same reactor when the task is 

over, without the model considering them to be stored in the intermediate tanks beforehand. 

This leads to serious inaccuracies in the intermediate tank weight profiles. Moreover, the 

storage profiles of the same tank at drastically different transfer rates are exactly the same, 

even at extremely fast transfer rates. This seems to be a result of the phenomenon explained 

above since considering even the slightest filling time would cause all the material to be 

stored in the intermediate tanks before it is transferred back to the equipment. 

This analytic simplification altered the storage profiles of all the intermediate 

materials, except for HotA because of its very simple logistics. Even the tank responsible for 

intermediate storage of IntAB, which has a constant maximum weight throughout the 

different transfer rates, has an immensely different storage profile from the one obtained 

through the optimization methodology. Figure 4.3 compares the weight profiles of 

considering instant transfer and 500 kgs/h. 

48,0

96,0
78,0

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13

M
at

er
ia

l 
st

o
re

d
 [

k
g
s]

Process duration [hours]

IntBC Storage

≅ Infinity

500 Kgs/h



 

 

  Approach assessment 

 

 

José Francisco Vaz Suspiro  45 

 

 

Figure 4.3. IntAB Storage utilization profiles with different material transfer rates. 

 

 

4.3. Production duration estimates 

The capability of correctly predicting the time a process will take to complete is 

important to any company that wishes to be competitive. Being able to minimize storage 

costs relies on correctly scheduling raw material orders and product deliveries. For example, 

the inaptitude to correctly order a batch of raw materials might lead to an early delivery at a 

time the plant has no capacity to store all of it, forcing a reschedule that might come too late 

and force the plant to stop production until it arrives. This type of mistake can be detrimental 

to a company. Moreover, if a company wishes to uphold its reputability and keep its 

costumers satisfied, it’s imperative that it can honor its commitments by providing their 

products on time. 

What makes this problematic, as previously stated, is that analytic methods 

simplifications might change the validity of their duration estimates. In this chapter, the 

process duration estimates obtained through the optimization method will be contrasted with 

the ones from the simulation model throughout different transfer rates and production 

horizons, see Table 4.4. 
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Production 

Plan 

repetitions 

500 [kgs/h] 1500 [kgs/h] 2500 [kgs/h] 3500 [kgs/h] 
Instant 

Transfer 

1 11:49:23 10:36:27 10:21:52 10:15:37 10:00:00 

5 59:11:48 53:02:16 51:49:21 51:28:06 50:00:00 

15 177:20:23 159:06:47 155:28:04 153:54:20 150:00:00 

% of total 

processing 

time  

118,2% 106,0% 103,6% 102,6% 100% 

 

Table 4.4. Process duration at different transfer rates and throughout different production intervals. 

An important observation is the fact the percentage of total processing time only 

remains constant for the same transfer rate because the production times were calculated 

using repetitions of the same production plan. It would generally have slight variations if it 

was calculated throughout a single one. Nevertheless, this simplification facilitates 

observation. 

The results from Table 4.4 show that logistical delay has a significant impact on 

the total production duration. For a transfer rate of 500 kgs/h, logistical delays amount to an 

almost increase 20%.  Furthermore, considering the simplifications made and the results 

obtained, the logistical delay appears to be inversely proportional to the transfer rate. This 

can is better observed in Figure 4.4. 
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Figure 4.4. Changes in logistical delay along different transfer rates. 

 

Knowing that the logistical delays include delays due to pipe length and pipe 

equipment occupation that do not scale the same way with transfer rate, it would be wrong 

to assume this relation to be an absolute truth. Nonetheless, logistical delays are so close to 

being inversely proportional because the emptying and filling times are, and since the other 

delays are minimal, they barely have an impact on the final values. Meaning that, for 

engineering purposes, this relation could be assumed for a fast interpolation and achieve 

quite accurate values.  

It’s important to note, that without the consideration of variability, there is no 

assurance that even the estimates obtained through simulation are close to the real production 

duration time. 
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5. CONCLUSIONS 

Process optimization is an integral part of innovation, and of keeping a 

competitive advantage. Optimization can be a great tool in the pursuit of competitiveness. 

Nonetheless, it struggles with computational performance making it very difficult to 

optimize complex problems in useful temporal horizons. 

Optimization models can be improved to achieve the needed level of 

performance but, most of the time, only through a long and arduous process that might not 

be beneficial for a lot of situations. This dissertation focusses on the use of discrete-event 

simulation, along with a simple optimization algorithm, as a solution for the latter. Known 

for being very efficient, relative to computational performance and variability evaluation, 

simulation has the potential to minimize the burden of analytic models drastically. 

To investigate this approach, a simple MILP model and a detailed discrete-event 

simulation model of the manufacturing system were used to optimize a complex chemical 

plant following a simplified SCS methodology. Furthermore, the model was formulated in a 

recipe-oriented way that allows for the simulation of a wide variety of different batch 

chemical processes with minor model adjustment. 

Since simulation’s use is not to optimize but to evaluate optimization results, the 

analytic methodology was vital in the scheduling of optimized production plans and 

determining production lots. 

As for the simulation methodology, the performance of the model proved to be 

as computationally effective as expected. A high number of long replications runs of a 

complex process were swiftly performed. However, PR declines with the increase in 

simulation time, making longer simulation of more complex processes and plants potentially 

problematic.  

Concerning total production duration, simulation proved to be a valuable 

evaluation tool. The simulation model estimated total production times that were more than 

10% longer than the ones estimated by the optimization model, considering realistic material 

transfer rates and without variability. 
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Furthermore, the simulation methodology was able to greatly improve the 

intermediate storage profiles by obtaining much more accurate maximum tank weights and 

tank weight profiles. These estimates would much more adequate to be used in the sizing of 

intermediate storage tanks. 

Overall, the proposed methodology proved useful and competent in a number of 

aspects and delivered most of the expected benefits. Still, since this problem was taken from 

the literature, it’s hard to know whether or not the estimates are as accurate as they appear. 

There is always the possibility that some unconsidered system characteristics would impact 

these estimates in unexpected ways. Also, the consideration of process variability would 

have potentially impacted a number of these results. 

5.1. Further research 

Even though this methodology proved very competent, there are a number of 

opportunities that can improve it a lot.  

The most significant of all would be a more robust implementation of variability 

since, as it currently stands, the formulated model struggles to implement it. Furthermore, 

the implementation of an iterative component, that could adjust the objective function 

according to the simulation results, would have the potential to achieve better scheduling 

and production plan. The use of a different optimization methodology such as ROSA or even 

the creation of a dedicated one, also has the potential to improve these results. 

To further investigate the usefulness of the simulation, there opportunities to 

explore. The consideration of different problems could find other advantages or downsides 

to the methodology. Similarly, the implementation of other system dynamics has the same 

potential. 
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