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Abstract 16 

Extracellular vesicles (EVs) are a heterogeneous group of natural particles with relevance for the 17 

treatment of cardiovascular diseases. The endogenous properties of these vesicles allow them to 18 

survive in the extracellular space, bypass biological barriers and deliver their biologically active 19 

molecular cargo to recipient cells. Moreover, EVs can be engineered to enhance their stability, 20 

bioactivity, presentation and capacity for on target binding at both cell type and tissue levels. The 21 

therapeutic potential of native (i.e., EVs that were not modified via donor cell or direct modulation) 22 

and engineered (i.e. EVs that were modified either pre- or post-isolation or whose 23 

pharmacokinetics/presentation was altered using engineering methodologies EVs is still limitedly 24 

explored in the context of cardiovascular diseases. Efforts to tap into the therapeutic potential of EVs 25 

will require innovative approaches and a comprehensive integration of knowledge gathered from 26 

decades of molecular compound delivery. In this review, we outline the endogenous properties of 27 

EVs that make them natural delivery agents as well as those features that can be improved using 28 

bioengineering approaches. We also discuss the therapeutic applications of native and engineered 29 

EVs for cardiovascular applications and examine the opportunities and challenges that need to be 30 

addressed to advance this research area with an emphasis on clinical translation.  	  31 
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Key points 32 

• EVs secreted from stem/progenitor cells as well as differentiated somatic cells have 33 

regenerative properties in the context of myocardial infarction, ischemic limb, chronic 34 

wounds and stroke. 35 

• Despite the advantage of native EVs as delivery agents, their applicability in the 36 

cardiovascular context is hindered by intrinsic limitations, such as their undefined and 37 

heterogenous nature and limited tropism.   38 

• Targeting, bioactivity, kinetics and biodistribution of EVs may be improved by engineering 39 

approaches using both pre- and post-isolation methodologies to functionalize and/or otherwise 40 

enrich EVs. 41 

• Enhancing EVs is key to unlock their clinical potential for cardiovascular applications.	  42 
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1-Introduction 43 

Cardiovascular diseases have been the most prevalent cause of death and morbidity in the 44 

world for decades despite numerous breakthroughs and the discovery of novel therapies1. In the last 45 

20 years, several therapeutic interventions have been initiated, including cell-based therapies; 46 

however, poor survival and/or engraftment of transplanted cells in the ischemic milieu of the cardiac 47 

tissue limited their clinical efficacy2. Mechanistically, the functional improvements observed with 48 

cell therapies are poorly understood; however, several pieces of experimental data indicate that they 49 

may act by paracrine action, mediated by the release of extracellular vesicles (EVs) and/or other 50 

factors3,4. Therefore, more recently, interest has been placed in cell-free therapies, in particular, those 51 

based in EVs, obviating the need of transplanting large number of cells whilst having a better-defined 52 

and less expensive product.  53 

EVs are lipid bilayer-enclosed extracellular structures5 secreted by virtually all cell types 54 

known, and include two major classes, namely exosomes and microvesicles6. Exosomes (30-150 nm), 55 

intraluminal vesicles formed via invagination of the membrane of multivesicular endosomes (MVEs), 56 

are released into the extracellular space upon fusion of MVEs with the cell membrane. Microvesicles 57 

(MVs) (50-1000 nm), a very heterogeneous class of EVs, are characterized by their origin and 58 

secretion via outward budding of the plasma membrane. Given the complexity involved in identifying 59 

their biogenesis, the size of the vesicles is the most widely used parameter to distinguish both types 60 

and, on that basis, we either have small EVs (sEVs) or medium/large EVs (m/lEVs)7,8. In this review, 61 

EVs represent sEV-enriched samples (many studies are not conclusive relatively to the biogenic 62 

origin of EVs), being the exception MV examples which are clearly defined in the text.  63 

EVs carry proteins, RNAs and/or microRNAs (miRNAs), among other molecules, and they 64 

act as vehicles in cell-to-cell communication9. A large body of evidence suggests that EVs are 65 

involved in many physiological and pathological cardiovascular processes, including the regulation 66 

of angiogenesis10,11, blood pressure12,13, cardiomyocyte hypertrophy14 and apoptosis/survival15-17 and 67 
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cardiac fibrosis18. Given their ubiquitous presence in body fluids, EVs have been used as potential 68 

biomarkers of cardiovascular diseases19. Moreover, because EVs are an important component of the 69 

paracrine effect of stem cell-based therapies20, they are candidates as a standalone therapy in the 70 

context of cardiovascular diseases. Pioneering work from the group of Lim suggested the therapeutic 71 

potential of EVs in protecting the heart from ischemic injury20. Shortly after, the group of Sahoo 72 

unravelled the pro-angiogenic potential of EVs in the setting of limb ischemia10. Ever since, a number 73 

of pre-clinical studies have reported the advantages of EVs for cardiovascular regeneration and 74 

protection21-24. Yet, several challenges need to be addressed before clinical translation of these 75 

therapies including (i) the development of platforms to monitor EVs (both the membrane and the 76 

cargo) in vivo to determine and optimize the EV dosage regimen, the route of administration, the 77 

biodistribution, potential toxicity, immunogenicity as well tumorigenesis, (ii) the characterization of 78 

EV cargo in order to use well-defined EV formulations and (iii) the development of strategies to 79 

modify the membrane of EVs in order to improve their accumulation in specific organs and tissues.  80 

To overcome these limitations, researchers developed pre- and/or post-isolation techniques capable 81 

of modulating the intrinsic properties of native EVs and modified their surface to enhance their 82 

targeting efficiency and track them in vivo. The hypothesis of this review is that the modulation of 83 

EVs by engineering approaches may unlock their clinical potential for cardiovascular applications.  84 

In this review, we cover initially the EV biophysical properties (e.g., size, charge, membrane 85 

composition and cargo content). This will be followed by the presentation of the therapeutic potential 86 

of native EVs for cardiovascular applications. Then, we describe engineering strategies to modulate 87 

the content of EVs in order to favourably alter their bioactivity, biodistribution, delivery, targeting 88 

and intracellular trafficking. Finally, we present the studies performed using engineered EVs as 89 

cardiac therapies and discuss how this area can move forward.    90 

 91 

 92 
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2-EV properties  93 

The biophysical properties of EVs are briefly described below. These properties may be 94 

modified using engineering tools, a topic that is covered in section 4. EV biogenesis is not covered 95 

in this review and readers are referred to recent reviews related to this topic25,26.  96 

 97 

2.1-EV size 98 

EV size is one of the parameters adopted to categorize EVs7,8. Typically, exosomes are smaller 99 

(30-150 nm in diameter) than microvesicles and their size distribution more uniform. EV size is 100 

critical for their study and application due to most of the protocols used for isolation and 101 

characterization relying on EV density and/or diameter27. Moreover, EV size, precluded by their 102 

biogenic pathway, correlates with EV composition, as does the cell line of origin28. Finally, the 103 

efficiency in tissue biodistribution, cell internalization and intracellular trafficking of EVs are size-104 

dependent29-32. Indeed, it has been shown that upon systemic administration, large and/or aggregated 105 

vesicles (>200 nm) may be trapped in the lung, liver and spleen, taken up by macrophages or unable 106 

to extravasate and interact with non-vascular cells and tissues29,30. Additionally, aggregation renders 107 

EVs less spherical, which may decrease their margination and extravasation from circulation31. For 108 

example, it has been shown that the vasculature has enhanced permeability after ischemic injury; 109 

however, only small-size particles (<200 nm) cross the endothelial barrier33.  110 

At a cellular level, particles with different sizes may elicit different uptake mechanisms. For 111 

example, particles with a diameter smaller than 100 nm may be taken up via clathrin- or caveolae-112 

mediated endocytosis, while larger complexes may require macropinocytosis34,35. Therefore, larger 113 

aggregates are more likely to be directed towards lysosomal degradation or membrane recycling32, 114 

while smaller vesicles may exhibit higher rates of effective intracellular delivery. In the cardiac 115 

setting, particularly for EVs administered systemically, this is of utmost importance as EVs are 116 

required to extravasate successfully to the cardiac tissue and then be efficiently taken up by the 117 

relevant cell types. 118 
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2.2-EV charge 119 

Another important property of EVs is their surface charge. As part of EV membrane 120 

composition comes from the plasma membrane (being the remaining from other organelles including 121 

Golgi complex)25,36, which is rich in phosphate groups, a global negative charge is the norm for EVs, 122 

just as in cells. However, the charge is also highly dependent on the sugar composition of the plasma 123 

membrane which is highly dependent in the expression level of sialyltransferase in the endoplasmic 124 

reticulum and Golgi apparatus37. Changes in surface charge can be used to infer stability of EVs in 125 

suspension, as low absolute values are thought to be typical of EVs more prone to aggregation due to 126 

lessened repulsion. This, however, must be balanced with the fact that closer to neutral nanoparticles 127 

are more stable in circulation, compared with highly charged ones38. Both EV size and surface charge 128 

are crucial in specifying the mechanism of interaction between the EV and a host of potential ligands, 129 

as well as their uptake by target cells39. Finally, the presence of contaminants (e.g. protein or lipid 130 

aggregates) in an EV sample may affect multiple functions and parameters. Given the heterogeneity 131 

in surface charge of these contaminants, aggregates may be formed between them and EVs. 132 

Therefore, proper purification protocols must be ensured. This, however, is aside from the scope of 133 

this review, and we direct the reader to other excellent papers on the matter40,41. 134 

 135 

2.3-EV membrane composition 136 

Exosome membranes have higher content of cholesterol than donor cell membranes42, making 137 

them less susceptible to the permeation of small solutes. In addition, exosome membranes contain 138 

higher levels of phosphatidylserine, glycosphingolipids and sphingomyelin and lower levels of 139 

phosphatidylcholine than the corresponding donor cells42. Moreover, exosomes have low protein to 140 

lipid ratios compared with, for example, microvesicles43. Indeed, high cholesterol and sphingolipid 141 

content makes exosomes more resistant to detergents and high temperatures than microvesicles43-45. 142 

Aside from their lipidic composition, exosomes are decorated with proteins and sugars which, on one 143 
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hand, contribute to exosome charge and maintenance of membrane structure and, on the other hand, 144 

mediate the interactions of exosomes with the target cells25. For example, tetraspanins are a class of 145 

membrane proteins abundantly present, in clusters, in exosomes and some of them, namely CD63, 146 

CD9 and CD81, are considered general exosome markers. Functionally, tetraspanins are involved in 147 

membrane fusion and cellular adhesion, and, as such, play a key role in exosome internalization. 148 

Other classes of proteins, such as chemokine receptors (e.g. CXC chemokine receptor type 4)46, 149 

adhesion molecules47-49 and proteoglycans (e.g. heparan sulfate)50, have been shown to play a role in 150 

mediating EV interactions with the cell surface. When these protein and sugar-based components 151 

were deleted or masked, EV internalization51 as well as EV biodistribution was affected52,53. EVs 152 

have their transmembrane proteins in an identical topology to that of the secreting cell, conferring 153 

them a degree of cellular identity and possible tropism10,54.  154 

 155 

2.4-EV lumen 156 

From late 1990s, it has been proposed that EVs act as important players in intercellular 157 

communication, particularly in the context of immune responses and cancer55,56. This concept was 158 

further confirmed in 2007, after the discovery that exosomes contain microRNAs (miRNAs), as well 159 

as other types of RNAs, and can transfer their content to target cells ultimately affecting their 160 

activity9. Recent studies using high-resolution density gradient fractionation and direct 161 

immunoaffinity analyses further dissected EV composition57. EVs contain different proteins and 162 

RNAs in the lumen, including long and small non-coding RNAs, transfer RNA and ribosomal 163 

RNA28,57-59. Exosomes do not contain DNA, although it may be present in larger EVs or present in 164 

exosome-enriched samples due to the co-precipitation with histones57. Proteins, on the other hand, 165 

may be sorted into EVs via post-translational modifications, such as ubiquitination60 and 166 

glycosylation61 and these pathways can be hijacked in order to specifically target proteins onto EVs. 167 

Upon studying the interaction networks that can be functionally established between EV proteins, the 168 
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intravesicular protein content has been proposed as an organized “nanocosmos” and not cellular 169 

scraps62.  170 

 171 

3-Native EVs for cardiovascular applications 172 

The first study describing the use of EVs as a potential therapeutic intervention for 173 

cardiovascular diseases was published in 201020. In early 2000s, several groups have shown that upon 174 

MI, transplantation of different cell types, including mesenchymal stem cells (MSCs)63 and 175 

hematopoietic progenitor/stem cells (CD34+ cells)64, improved heart repair. A few years later, it was 176 

shown that the positive effects of those stem/progenitor cells were mediated not by direct contribution 177 

of the engrafted cells but by paracrine factors65,66, in particular EVs10,20 secreted by the surviving cells 178 

(Box 1). Since these pioneer studies, several groups have demonstrated the regenerative properties of 179 

EVs secreted from stem/progenitor cells67-70 as well as differentiated somatic cells71,72 in the context 180 

of MI69,70,72,73, ischemic limb67, chronic wounds71, among others. While there are several studies on 181 

cardiovascular diseases such as atherosclerosis74 and stroke75,76, most research with EVs has pertained 182 

to ischemic heart disease and MI.  183 

EVs with cardiovascular efficacy have been isolated from different cell sources such as 184 

MSCs77-83, putative cardiac progenitor cells15,21,68-70,84-88, cells differentiated from pluripotent stem 185 

cells20,72,89-93 and differentiated somatic cells71,94-96. The impact of allogenic EVs has been evaluated 186 

in mice69,79,81,87, rats70,78,85,86,88 and pigs21,84, through intravenous78,82,97 and intramyocardial21,68-187 

70,77,80,81,83,84,86,88 administration. The EV dosage regimen was highly variable as between 30 to 1300 188 

µg78,85 and 4 to 4000 µg89,92 of EVs per kg of animal have been tested for rats (300 g was assumed as 189 

the weight of a rat) and mice (25 g was assumed for the weight of a mouse), respectively. Given the 190 

fact that EVs are less immunogenic than their cellular counterparts (with the possible exception of 191 

exosomes released from dendritic cells98), it is not surprising to see several studies where EVs isolated 192 
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from human cells have been tested into non-immunosuppressed animals such as mice89,99, rats80,85 193 

and pigs21.   194 

EV tracking studies indicate that the intramyocardial delivery of EVs yields higher EV 195 

retention in the heart than intracoronary or intravenous administration routes21. The pre-clinical data 196 

collected so far indicate that EVs, regardless of their origin, may improve the ejection fraction (EF) 197 

(up to 1.3-fold increase15,77,86,88 relatively to non-treated group) and reduce infarct size (up to 3-198 

fold79,81,84,85 decrease relatively to non-treated group). The therapeutic effect of EVs and donor cells 199 

has been evaluated/discussed and the results collected until now indicate that EVs are as effective as 200 

the donor cells in the context of MI21,80.    201 

The therapeutic role of EVs in recipient cells has been mostly ascribed to the delivery of 202 

proteins and/or non-coding RNAs, in particular miRNAs. For example, the cardiovascular protective 203 

role of exosomes has been attributed to miRNA-19a-3p100, miRNA-2179,90, miRNA-2416, miRNA-204 

2281, miRNA-29a18, miRNA-14396, miRNA-14669, miRNA-181b84, miRNA-21090, miRNA-22296, 205 

miRNA-294-3p93, mir-12667, among others. Some of the miRNAs have been identified in previous 206 

studies of cell-based therapies (e.g. miRNA-19, miRNA-21, miRNA-24, miRNA-210)101 to be 207 

relevant for cardiovascular repair while others are novel. Another important component of EVs, also 208 

associated with their bioactivity, are proteins such as platelet-derived growth factor D78 and 209 

pregnancy-associated plasma protein-A15. Some of these proteins are at the EV surface and therefore, 210 

do not need to be delivered to the cytoplasm of the acceptor cell. For example, pregnancy-associated 211 

plasma protein A (also known as pappalysin-1) is a protein highly expressed in exosomes of cardiac-212 

resident progenitor cells15. It has been shown that this protein mediates the cardioprotection and 213 

angiogenesis of cardiac-resident progenitor cell-derived EVs by cleaving the insulin-like growth 214 

factor binding protein-4 in insulin-like growth factor-1 which, in turn, activates the insulin growth 215 

factor receptor, ultimately leading to the phosphorylation of Akt and ERK1/2 and subsequently to 216 

decreased caspase activation and reduced cardiomyocyte apoptosis. In other cases, the proteins are in 217 
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the lumen of EVs and need to reach the acceptor´s cell cytoplasm to elicit a biological affect. For 218 

example, EVs secreted by stem/progenitor cells in mice under systemic inflammation conditions 219 

contain integrin-linked kinase that activate the NF-kB pathway102. The knockdown of integrin-linked 220 

kinase in inflamed exosomes attenuated their inflammatory response and enhanced the endothelial 221 

progenitor cell-derived exosome therapeutic activity in ischemic heart. 222 

The mechanisms triggered by EVs depend on the source of EVs (as well as their content) and 223 

include: (i) an improvement in cardiomyocyte and endothelial cell survival21,89,90,95,103 by the 224 

regulation of autophagy104, activation of pro-survival signalling pathways (e.g. Akt, ERK, toll-like 225 

receptors)95,105 and a decrease in oxidative stress90, (ii) modulation of the inflammatory response85,106 226 

by influencing immune cell polarization (i.e. inducing a more reparative state rather than an 227 

inflammatory state)84 and cytokine secretion85 as well as increasing the activation of CD4-postive T 228 

cells94 (iii) a decrease in scar content21 and (iv) enhancement of angiogenesis107,108. For example, 229 

cardiosphere-derived EVs improved heart function in a mouse model of MI via miR-146, decreasing 230 

apoptosis and inflammatory response and increasing cardiomyocyte proliferation and angiogenesis69. 231 

It has also been shown that extracellular matrix-derived EVs carry miR-199a-3p, which, by regulating 232 

GATA-binding 4 acetylation, were able to rescue electric function in engineered and in vivo atria109.  233 

The above-mentioned studies underscore the potential of native EVs for cardiovascular 234 

therapy. However, their clinical potential has not been met yet and important limitations must be 235 

overcome before their establishment as an effective therapeutic tool (Fig. 1). These limitations may 236 

be surpassed by enhancing native EV using bioengineering approaches, as detailed in the following 237 

sections. 238 

 239 

4-Engineering the EVs 240 

Despite the therapeutic efficacy of native EVs to treat cardiovascular diseases, in recent years, 241 

technologies have been developed to modulate EV and thus to enhance their bioactivity, stability, 242 

targeting and presentation (by the development of EV-delivery systems) to the cardiovascular system 243 
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(Fig. 2). In the subsequent sections, we explore how EVs may be enhanced or modified and used for 244 

the treatment of cardiovascular diseases.   245 

 246 

4.1-Tracking the EVs 247 

Methods to track EVs in vivo and follow their biodistribution are very important to fully 248 

evaluate their cardiovascular therapeutic potential. Fluorescence47,54,71,110,111, luminescence112, 249 

positron-emission tomography (PET)/magnetic resonance imaging (MRI)113 and single-photon 250 

emission computed tomography (SPECT)114,115 imaging techniques have been used to monitor in vivo 251 

EVs. In most of the cases, the EVs were isolated and modified with chemical ligands113,114. In few 252 

cases, the EV-secreting cells were genetically modified to express a reporter. For example, human 253 

embryonic kidney 293T cells were engineered to express in their membrane a Gaussian luciferase 254 

fused to a biotin receptor domain112. The EVs could be monitored either in vitro or in vivo by 255 

luminescence or fluorescence (by the interaction with fluorescent streptavidin). Although 256 

fluorescence and luminescence imaging techniques are easy to operate and available in most 257 

laboratories, they do not offer high sensitivity and absolute quantification. In contrast, the methods 258 

that rely in PET/MRI or SPCET/computed tomography offer higher sensitivity and absolute 259 

quantification while allowing the acquisition of images with anatomical details. In general, the 260 

intravenous administration of labelled EVs (without any further modification besides the labelling) 261 

isolated from different cell sources indicate that less than 10% of the injected EVs accumulate into 262 

the non-injured heart54,112-115. Yet, the accumulation of EVs in the heart is influenced by the delivery 263 

route, concentration of EVs and the identity of the EV-secreting cell54,112-114.  264 

 265 

4.2-Modulation of EVs bioactivity  266 

4.2.1-EV-secreting cell modulation 267 

EV-secreting cells may be modulated by two different procedures: (i) by culturing them in 268 

stress-induced conditions (e.g. hypoxia80,88,96, serum starvation71,96, inflammation116) and (ii) by 269 
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transfecting  them with exogenous compounds, such as nucleic acids, especially miRNAs23,117,118, 270 

miRNA antagonists119, Y-RNA85, plasmid DNA77,78,120,121 and small molecules121 to enhance their 271 

bioactivity (Table 1). For example, EVs collected from cardiac progenitor cells cultured under 272 

hypoxia conditions increased the capacity of cardiac endothelial cells to form tube-like structures in 273 

vitro, reduced the expression of pro-fibrotic genes in cardiac fibroblasts cultured in vitro and 274 

improved function of the infarcted heart (in the acute phase, increased the fractional shortening from 275 

30.6% to 36.4% and in the chronic phase increased from 27.6% to 34.2%) as compared to EVs 276 

collected from cells cultured under normoxia conditions88. The effect was mediated by several 277 

miRNAs including miRNA-292, miRNA-210, miRNA-103, miRNA-17, miRNA-199a, miRNA-20a 278 

and miRNA-15b. The modulation of EV-secreting cells might also be achieved by changing their 279 

culture medium. For example, EVs collected from adipose-derived stem cells (ADSC) cultured in 280 

endothelial differentiation medium showed an increase in miRNA-31 and the resulting EVs enhanced 281 

endothelial cell migration, tube formation and aortic ring outgrowth compared to EVs collected from 282 

ADSC grown in normal medium and thus not-enriched for miRNA-31122. Finally, as an example of 283 

EVs collected from cells that were modulated by external agents, EVs collected from mesenchymal 284 

stem cells transfected with miRNA-181a increased the pro-reparative state of peripheral blood 285 

mononuclear cells and, upon administration in infarcted mice hearts, the miR-181a enriched EVs 286 

increased EF (12% relatively to the baseline)23.  287 

Several cellular platforms have been developed for customizable enrichment of EVs with 288 

specific proteins123 and RNAs124,125 of interest; however, these platforms were not yet evaluated for 289 

cardiovascular applications. In addition, very few studies took advantage of the cellular machinery to 290 

engineer EVs with specific epitopes able to target the heart126.  291 

 292 

4.2.2-Post-isolation methods 293 
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Hijacking the cellular machinery to produce modulated EVs has the advantage of preserving 294 

the biophysical properties of EVs relatively intact, but also has drawbacks, namely overexpressing a 295 

given molecule in a cell may have unforeseen consequences for its biology, ultimately interfering 296 

with EV biogenesis. Modulation strategies based on post-isolation modification of EVs may be an 297 

alternative for effective control of EV loading, targeting, and delivery, regardless of their cell of 298 

origin. However, post-isolation methods may mask or impair endogenous EV properties and 299 

ultimately compromise EV bioactivity.  300 

  Membrane-permeabilizing strategies, such as electroporation (for both nucleic acids127-129 and 301 

drugs130), heat-shock or freeze-thaw procedures131,132, detergent treatment130 and sonication133, 302 

developed over the past decades to load cells with exogenous material, have been readily applied to 303 

the EV field with a varied degree of success. Additional strategies exploited the hydrophobicity of 304 

EV membranes in order to passively load compounds of interest into them134,135 and the modification 305 

of the molecule of interest with cholesterol136,137. Recent work focused on the use of well-defined 306 

chemical formulations, some of which commercially available, designed with the specific purpose of 307 

transfecting EVs directly138-140. Thus far, these studies reported loading efficiencies up to 70% but 308 

the impact on the biophysical properties of EVs and the exact mechanism of action remains to be 309 

elucidated.  310 

Several EV formulations have been enriched using transfection agents or membrane-311 

permeabilizing strategies and evaluated in the context of cardiovascular applications to decrease 312 

cardiac fibrosis, modulate the inflammatory response and to increase angiogenesis (Table 1). For 313 

example, miRNA-21-5p has a critical role in the development of fibrosis after MI, regulating several 314 

gene targets including SMAD family member 7 (Smad7), sprout RTK signalling antagonist 1 and 315 

phosphatase and tensin homolog (PTEN)141. Human peripheral blood-derived EVs enriched for miR-316 

21 inhibitors reduced fibrosis in a mouse model of MI as compared to non-modified EVs. In a separate 317 

example, EVs collected from cardiosphere-derived cells and enriched for miRNA-322 using 318 
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electroporation, reduced the infarcted area and fibrosis, and increased angiogenesis in a mouse model 319 

of MI as compared to non-modified EVs142. Together, these studies demonstrate the possibility to 320 

enrich EVs after their isolation and thus increase their bioactivity as compared to the non-modified 321 

EVs.  322 

 323 

4.3-Modulation of EV biodistribution and targeting 324 

Upon systemic administration of EVs in animal models, they are quickly cleared or trapped 325 

in the liver, spleen and lungs134, with the EV half-life (minutes range), inherently dependent on the 326 

identity of the EV-secreting cell143-145. EV biodistribution is influenced by multiple factors, including 327 

the delivery route and dosage54. It is possible that EVs retained in several organs induce a systemic 328 

anti-inflammatory effect improving the regenerative capacity of the cardiovascular system, as already 329 

observed with cell-based therapies4. However, studies clearly indicate that increased EV efficacy is 330 

related with EV retention at the lesion area21. Therefore, in the last years, several strategies have been 331 

developed to control EV biodistribution and targeting to specific organs and tissues. One strategy to 332 

maximize the uptake is to increase EV stability in circulation and therefore, improve the likelihood 333 

of an interaction between the EVs and the cells/tissues to be targeted. Modifying EVs with 334 

polyethylene glycol (PEG), a strategy previously used for liposomes146, enhanced their circulation 335 

time45 and reduced their uptake by nonspecific cells. Another strategy relies on the modification of 336 

EV membrane with specific proteins126 or peptides22,110,111,127,147-151 that are able to interact with 337 

specific cellular receptors or extracellular matrix components expressed in the cardiovascular system 338 

(Table 2). Although it is known that tetraspanins present in EV membranes have preferential binding 339 

to specific cell lineages (e.g. Tspn8 binds to α4 and β4 integrin chains that are expressed by 340 

endothelial cells152) these might not be enough for selective and effective organ or tissue targeting.  341 

In the case of heart diseases, the intramyocardial administration of EVs has been reported in 342 

pre-clinical studies; however, this route of administration is not always clinically desirable because 343 
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it involves a catheterization procedure, unless delivery is planned during cardiac surgeries153. The 344 

intravenous administration of EVs is a much simpler procedure and allows repeated applications; 345 

however, it is more prone to off-targeted binding, increasing the potential for unwanted effects. 346 

Moreover, the poor accumulation of EVs into the cardiac tissue (due to poor extravasation and lack 347 

of efficient and specific epitopes for recognition) remains an important barrier. Engineered EVs can 348 

eventually overcome these obstacles and deliver their therapeutic cargo into the injured heart. Two 349 

approaches have been used to modify the surface of EVs for targeting the heart. In one, the EV-350 

secreting cell is genetically modified to express a peptide which is then incorporated in the membrane 351 

of the secreted EVs148-150. For example, EV-secreting cells were genetically modified with a lentivirus 352 

construct expressing a membrane protein (Lamp2b) fused with ischemic myocardium-targeting 353 

peptide CSTSMLKAC148. Although no absolute quantification was provided for the accumulation of 354 

EVs in the heart, the fluorescence imaging results indicate a higher accumulation of the peptide-355 

modified EVs relatively to EVs without surface modification. As an alternative, many laboratories 356 

adopted the surface modification of EVs by chemical approaches22,110, mainly by following two 357 

strategies:  (i) physical incorporation of lipids modified with proteins (e.g. streptavidin)126 or 358 

peptides147 into the membrane of the EVs and (ii) chemical incorporation of linkers to functional 359 

groups (carboxylic111 or amine22,110 groups) present at the surface of EVs to which peptides are 360 

subsequently reacted by a copper-free click chemistry. These reactions can be performed in aqueous 361 

solutions, are rapid, selective and very efficient as compared to conventional bioconjugation schemes. 362 

In both strategies, the epitopes selected for targeting ischemic regions or a given cell type of interest 363 

were: (i) a cyclic RGD peptide with high affinity to integrin αvβ3 highly expressed in brain 364 

endothelial cells after an ischemic event110, (ii) an ischemia-targeting peptide22,126,147,148 and (iii) a 365 

cardiomyocyte-specific peptide149. According to one study, introduction of approximately 263 copies 366 

of the targeting peptide per exosome has been achieved110. Although in many reports, no absolute 367 

quantification of EV accumulation was performed, the results showed that the peptide-modifications 368 
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can increase the EVs tropism to ischemic regions, including the brain110 or the heart22,147-150, and 369 

induce a higher therapeutic effect22,147. For example, the EF of mice hearts after MI, treated with EVs 370 

modified with a myocardium-targeting peptide was approximately 46% while in mice treated with 371 

scramble peptide-modified EVs was approximately 38%22. Similar improvements were reported by 372 

others147,148. Both genetic modification of the EV-secreting cell and surface modification of EVs by 373 

chemical approaches have pros and cons. The genetic approach may allow for a more standardized 374 

product which is desirable to address regulatory expectations. However, this strategy has several 375 

limitations including (i) changes in the biological activity of the EV as a consequence of the genetic 376 

manipulation and (ii) difficulty to control the density of the targeting epitope in the surface of EVs as 377 

well as to control their glycosylation state. The chemical approach may offer an effective control of 378 

EV surface modification both in content (e.g. to include non-natural aminoacids to prevent peptide 379 

degradation) and density (number of epitopes per surface area of EV) of the targeting epitope, 380 

regardless of their cell of origin. The chemical approach may be performed during the purification 381 

steps of EVs and thus amenable for clinical translation.      382 

 383 

4.4-Modulation of EV uptake and intracellular trafficking  384 

The internalization and intracellular trafficking of EVs can be studied using fluorescence 385 

imaging techniques and labelled EVs154,155. The cellular internalization of EVs seems to be influenced 386 

by both the interaction between EVs and the cell membrane26,155 and the endocytic capacity of the 387 

acceptor cell71,156. Internalization of EVs may be mediated either by non-specific interactions, 388 

particularly endocytic processes such as macropinocytosis and micropinocytosis51, or by specific 389 

interactions, such as receptor-dependent pathways (in the case of peptide-modified EVs, see section 390 

above). Little is known about the differences in the endocytic capacity of the cells, the impact of those 391 

EV surface modifications in the intracellular trafficking and which EV surface modifications may 392 

improve endolysosomal escape. Yet, these issues are critical because a large proportion of 393 
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internalized EVs are processed in the endolysosomal pathway and ultimately degraded in the 394 

lysosome51,157. Indeed, approximately 60% of internalized EVs colocalize with lysosomes after 48 h 395 

of contact155.  396 

Strategies have been proposed to enhance the endolysosomal escape of EVs. In one case, EVs 397 

have been coated with a combination of cationic lipids and pH-sensitive fusogenic peptides which 398 

enhanced the disruption of the endolysosomal membrane leading to the efficient cytosolic release of 399 

the EV cargo158. In another case, EVs have been coated with arginine-rich cell-penetrating peptides 400 

to induce active micropinocytosis and a more efficient release of EVs to the cell cytoplasm159,160.  401 

 402 

4.5-Modulation of EV delivery 403 

Local administration of EVs at the injured site has been shown to increase the chance of cell 404 

targeting and uptake by the cells of interest. In some cases, EVs are washed out or taken up by non-405 

relevant neighbouring cells. Interestingly, differential uptake of EVs by different cell types in an 406 

ischemic hind limb has been reported67. Local accumulation of EVs after few hours following 407 

intramyocardial, intramuscular or topical administration in an infarcted pig heart21, an ischemic limb 408 

tissue67 or in a mouse would healing model71, respectively, has also been demonstrated. Several 409 

biomaterial-based strategies have been developed to engineer EV presentation by sustained the 410 

release of EVs in the injured site including hydrogels based in hyaluronic acid71,161,162, alginate163,164, 411 

chitosan165,166, collagen72 and amphiphilic peptides167 (Table 3). Selection of hydrogel composition 412 

took in consideration its biomedical history, degradation, in situ jellification profile, mechanical and 413 

release properties. The EVs were incorporated in the hydrogels by several means. In the first case, 414 

EVs were mixed with a polymer solution without involving the reaction of both 415 

entities72,161,162,164,166,167. The solution was then injected in the tissue of interest and physically or 416 

chemically crosslinked in a few minutes retaining the EVs within the polymeric structure. In the 417 

second case, the EVs were mixed with a polymer solution for formation of a polymer-EV conjugate 418 
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and initiate the chemical crosslinking process71. Then, the solution was administered in the tissue of 419 

interest for further crosslinking and formation of a hydrogel. In the third case, the EVs were physically 420 

incorporated in the hydrogel after its polymerization168. In this case the hydrogel was already formed 421 

and the pores were large enough to allow the diffusion of EVs within the polymeric structure. It has 422 

been demonstrated that a 7 mm hydrogel patch could retain up to 3×1010 EVs and released the EVs 423 

for more than 7 days after implantation in the heart72. The hydrogel-releasing EVs significantly 424 

improved the activity of injured tissues relatively to EVs administered without a sustained release 425 

system. For example, in two similar studies, the EF of infarcted rat hearts treated with a hydrogel 426 

patch containing EVs was 40%72 and 25% higher than control161.  Importantly, the kinetics of EV 427 

release from the hydrogel seems to play an important role in their therapeutic effect71. For example, 428 

the slow release of EVs from hydrogels implanted in skin mouse wounds was not as effective as the 429 

coordinated release of EVs during skin regenerative process using remotely triggerable hydrogels71.  430 

 431 

5-Conclusions and perspectives 432 

In the last decade, significant progress was made in understanding the biology of EVs as well 433 

as their application in the cardiovascular arena. We now have a better understanding of the 434 

composition of EVs28,57,  the role of EVs in the communication between cells of the same or different 435 

tissues in the body14,17,47,96 and how the content of EVs secreted by stem/progenitor cells or other 436 

cardiac populations is affected by disease17,102. Regarding EV applicability, substantial advances have 437 

been made in the: (i) therapeutic effect of EVs in pre-clinical models of several cardiovascular 438 

diseases such as  MI21,84, skin wound healing71,165, hindlimb ischemia67 and stroke110, (ii) how the 439 

therapeutic effect of EVs compares to the one obtained from the transplantation of stem/progenitor 440 

cells80,161 and (iii) how to enhance the therapeutic effect of EVs by increasing the stability and 441 

targeting to a specific location, by enriching their therapeutic content, by improving their 442 

internalization and intracellular trafficking and controlling their spatial and temporal release from 443 
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within biomaterials (Fig. 3). As consequence of these progresses, there are 2 observational and 2 444 

interventional clinical trials actively running. In the observational clinical studies, changes in 445 

epicardial fat-contained EVs in patients with atrial fibrillation (NCT03478410) and the miRNA 446 

expression profile in peripheral blood exosomes of patients with MI (NCT04127591) will be 447 

investigated. In the interventional clinical studies, the therapeutic effect of exosomes on cutaneous 448 

wound healing (NCT02565264) and in patients with acute ischemic stroke (NCT03384433) will be 449 

evaluated.            450 

Further translation of EVs as potential therapies will require further advances in the 451 

implementation of good practices related to EV separation and characterization, which implies the 452 

use of guidelines to track and organize data on EV separation and characterization, reference materials 453 

for normalization or calibration and inter-laboratory validation and reproducibility studies169. Some 454 

of these guidelines have been introduced in the last years by the scientific community7,170. In addition, 455 

further technological progresses will be needed to overcome the challenges related to the purification 456 

and characterization of EVs28,57. For further clinical translation of EVs in the cardiovascular area, 457 

standard EV sources are needed to obtain EVs for therapeutic efficacy. EVs may be harvested from 458 

autologous (i.e. donor biologic fluids or harvested cells) or exogenous sources (i.e. allogeneic 459 

biological fluids or cell lines). Autologous EVs have the advantage of immuno-compatibility; 460 

however, these EVs cannot be harvested on demand, may have reduced/unpredictable bioactivity 461 

based on, for example, existing comorbidities and/or age of the donor and are much harder to 462 

standardize as a clinical product. EVs produced from an exogenous source have the advantage of 463 

being easier to standardize and store in larger quantities. Additionally, they may be standardized for 464 

any given application and modified either by pre- or post-isolation modifications. However, for 465 

clinical translation, further progresses are needed to optimize the administration route and the dosage 466 

regimen. A clinical study in a human has shown that 1010-1011 EVs was an effective therapeutic 467 

dosage to treat one patient with graft-versus-host disease, with multiple administrations of increasing 468 
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amounts171.  This dose was estimated based on therapeutic dosages of transplanted MSCs for similar 469 

purposes (~107-108 MSCs); however, other studies indicate that clinical application of EVs may 470 

require > 1014 particles per dose172. High concentrations of EVs will require the use of bioreactors for 471 

cell culture. For example, the culture of 108 MSCs for 2 weeks can generate approximately 1012 EV 472 

particles173.  473 

Overall, targeting technologies that increase EV accumulation in the cardiovascular system 474 

and thus decreasing the required dosage, and strategies to enrich EV content for specific biomolecules 475 

may be the key to unlocking their use in the clinical setting. This may be ensured by coupling tracking 476 

technologies, in order to mechanistically understand the biodistribution of EVs. Moreover, loading 477 

of EVs with exogenous molecules and controlling their in vivo delivery kinetics opens a number of 478 

opportunities to enhance EV bioactivity. Ultimately, engineered EVs represent a promising 479 

translational cell-free, robust and customizable platform to improve the outcomes in cardiovascular 480 

diseases. 481 

 482 
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 879 

Glossary: Post isolation EV loading methods 880 

 881 
Electroporation is a transfection method in which biological membranes are permeabilized upon 882 
exposure to an electrical pulse.  883 
 884 
Heat-shock is a transformation technique reliant on heat to induce membrane permeabilization.  885 
 886 
Sonication is the use of ultrasound technology to physically disrupt biological membranes and 887 
facilitate exogenous compound entry. 888 
 889 
Passive loading is a strategy which relies on passive diffusion or complexation of a molecule with a 890 
cell or organelle. It may rely on a number of factors such as pH, osmotic pressure, electric charge or 891 
hydrophobicity.  892 
 893 
Liposome fusion is the conjugation of a lipidic material with a liposome formulation.   894 
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Display Items 895 

Box 1. Advantages and limitations of EVs in cardiovascular therapeutics  896 

 897 

The use of EVs in cardiac regeneration was preceded by extensive research in cell therapies. As non-898 
living entities, EVs overcame a major limitation of cell therapies, namely the poor survival after 899 
implantation. Of note, methods that were used for cell engineering can now be efficiently used to 900 
modulate EVs. Additionally, given the hostile environment of the injured myocardium, poor 901 
engraftment hindered clinical success. While EVs must contend with the low infiltration and 902 
endocytic rates of the heart, they are capable of overcoming the poor engraftment by being 903 
internalized directly by the recipient cells. Furthermore, adverse immune responses are associated 904 
with cell therapies, in particular when using allogeneic cells. This effect may be ameliorated, absent 905 
or even beneficially modulated by EVs, depending on their source and/or modulation strategy. The 906 
faster EV clearance, compared with their cellular counterparts, can be seen as a safeguard mechanism 907 
whilst an effective targeting of EVs to the tissue of interest pave the way to their therapeutic success.  908 
The limitations of EVs in cardiovascular therapeutics are related to the lack of tools for efficiently 909 
target the injured myocardium which limits their clinical use. Production and standardization of 910 
analytical parameters (i.e. storage, isolation and purification procedures) are some of the challenges 911 
that the field needs to overcome in order to translate EV therapies from the bench to the bedside. 912 
Since the physic-chemical properties of EVs are related with their cell/tissue/fluid of origin, the 913 
heterogeneity present in the source will be reflected in EV composition. Thus, methods capable of 914 
reducing the heterogeneity pre- as well as post-isolation are needed.   915 
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Figure 1. Limitations and challenges in the use of native EVs as cardiovascular therapies. While 916 
EVs have been shown to elicit functional responses on target cells, their potential is limited in several 917 
regards, including bioactivity, tracking, internalization and targeting. Therefore, several challenges 918 
should be addressed to harness the full potential of EVs. (a) Bioactivity. EVs must elicit a bioactive 919 
response in their target tissue/organ, which requires that EV cocktail of factors is potent enough to 920 
have therapeutic value. Yet, native EVs are limited by the nature of their content being intrinsically 921 
dependent on their donor cell features. (b) Tracking. The tracking of EVs is necessary to monitor 922 
their in vivo biodistribution and targeting. Yet, without modifications, EVs are only detectable after 923 
a biopsy is removed, limiting their monitorization. (c) Targeting. EVs should interact with specific 924 
cells and deliver their content. Although native EVs have some tropism, depending on the epitopes 925 
expressed by their donor cell, the process is limited. (d) Internalization. EVs should be taken up by 926 
target cells and deliver their cargo in the cell cytoplasm. Yet, native EVs have reduced endolysosomal 927 
escape and thus the ability to release their content in the cell cytoplasm.   928 
 929 
Figure 2. Modulation of EVs for cardiovascular therapies. Several strategies have been used to 930 
overcome limitations inherent to native EVs. These modifications can be categorized, from a 931 
technical standpoint, depending on whether they were performed on the donor cell prior to EV 932 
secretion, or after the purification of EVs from the medium or fluid of origin. From a biological 933 
standpoint, these modifications may pertain to the membrane or lumen of the EVs. In the 934 
cardiovascular context, several approaches have been used to modulate EV bioactivity, cell 935 
internalization and targeting as well as to allow EV tracking. (a) Bioactivity. To enhance the 936 
therapeutic potential of EVs, functionalization of the membrane and the lumen have been used. (b) 937 
Tracking. To track in vivo EVs, these formulations have been labelled with fluorophores, 938 
luminescence reporters or radiotracers. (c) Targeting. To enhance the targeting efficacy of EVs, they 939 
have been modified with exogenous peptides, proteins or lipids. (d) Internalization. To enhance EV 940 
internalization and endolysosomal escape, the vesicles have been modified with cationic lipids, pH-941 
sensitive peptides and cell-penetrating peptides.  942 
 943 
Figure 3. Examples of EV modulation strategies for cardiac therapies. Both native or modulated 944 
EVs have been used as cardiac therapies. The modulated EVs were enriched in therapeutically 945 
relevant compounds such as miRNAs, proteins and small molecules, but also were decorated with 946 
surface epitopes that improved their cardiac targeting and pharmacokinetics. EVs have been 947 
administered in animal models either locally or systemically. In the local administration, biomaterial-948 
based delivery systems have been used to control the release of EVs, as well as to act as a supporting 949 
scaffold for tissue regeneration. Therapies based in native or modulated EVs have translated into 950 
improved cardiac function mediated by a decrease in inflammation, cardiomyocyte death, fibrosis 951 
and infarct size, and increased angiogenesis.  952 
  953 
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Table 1. Modulation of EV bioactivity for cardiovascular applications.  954 

Engineering Source EV type Methodology Animal model In vivo outcome Ref. 
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hAFSs sEVs Hypoxic 
preconditioning 

Mouse MI Improved cardiac repair 174 

hMSCs sEVs + 
MVs 

Hypoxic 
preconditioning 

Rat MI Improved angiogenesis 
and cardiac function and 
reduced infarct size 

80 

rCPCs sEVs Hypoxic 
preconditioning 

Rat MI Improved cardiac 
function and reduced 
infarct size 

88 

rCM sEVs Hypoxic 
preconditioning 

Mouse MI Improved angiogenesis 96 

hMNCs sEVs Hypoxic 
preconditioning 

Mouse diabetic 
wounds 

Improved angiogenesis 
and healing 

71 

hASCs MVs Endothelial 
medium 
conditioning 

Mouse 
subcutaneous 
Matrigel plug 

Improved angiogenesis 122 

rMSCs sEVs GATA-4 
overexpression Rat MI 

Restored cardiac 
contractile function and 
reduced infarct size 

77 

hMSCs sEVs Akt 
overexpression 

Chick allantoic 
membrane 
 

Improved angiogenesis 
78 

MsCs sEVs 
Fluorescent miR-
181a 
overexpression 

Mouse MI 
Reduced infarct size, 
improved function, 
reduced inflammation 

23 

hHEK293T 
cells 
 

EVs miRNA-146a 
overexpression NA NA 

117 

hCDCs sEVs Y RNA 
overexpression 

Rat MI Reduced infarct size and 
CM apoptosis, reduced 
inflammation 
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hBlood sEVs EV loading with 
microRNA:  
ExoFect 

Mouse MI Reduced fibrosis 141 

mCPCs sEVs EV loading with 
microRNA: 
Electroporation 

Mouse MI Improved angiogenesis 142 

hMSCs sEVs EV loading with 
microRNA: 
Electroporation 

Rat MI Reduced fibrosis and 
improved cardiac 
function 

118 

AFCs (human amniotic fluid stem cells), ASCs (Adipose-derived stem cells), CSCs (Cardiac stromal cells), UMSCs 955 
(umbilical mesenchymal stem cells), MSCs (Mesenchymal stem cells), MsCs (mesenchymal stromal cells), CDCs 956 
(Cardiosphere-derived cells), CPCs (Cardiac progenitor cells), hMNCs (human mononuclear cells) and CM 957 
(cardiomyocytes). “h” stands for human, “r” for rat and “m” for mouse.  958 
 959 
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 961 
 962 
 963 
 964 
 965 
 966 
 967 
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Table 2. Modulation of EV biodistribution and targeting.  968 

Engineering Source EV type Methodology Model Outcome Ref. 
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mMSCs sEVs 

Membrane 
modification with 
peptide (chemical 
conjugation) 

Middle 
cerebral artery 
occlusion 
mice model  

Suppression of the 
inflammatory response and 
cellular apoptosis in the 
lesion region 

110 

mMSCs sEVs 

Membrane 
modification with 
peptide (chemical 
conjugation) 

Mouse MI 

Reduction of fibrosis and 
CM apoptosis and 
improvement of cardiac 
function  

22 

hCDCs sEVs 

Membrane 
modification with 
peptide (chemical 
conjugation) 

Rat MI 

Reduction of fibrosis and 
CM apoptosis and 
improvement of cardiac 
function 

147 

hCDCs sEVs 
Membrane 
modification with 
modified lipid 

Rat MI Improved targeting to the 
heart 
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mMSCs sEVs 

Membrane 
modification with 
peptide (genetic 
approach) 

Mouse MI 

Suppression of the 
inflammatory response, 
improved angiogenesis, 
reduction of myocardial 
apoptosis, improvement of 
cardiac function 

148 

hHEK-
293T sEVs 

Membrane 
modification with 
peptide (genetic 
approach) 

Mouse MI Improved targeting to the 
heart 

150 

hCDCs sEVs 

Membrane 
modification with 
peptide (genetic 
approach) 

Mouse MI Improved targeting to the 
heart 

149 

h562 
cells sEVs 

Membrane 
modification with 
modified lipid 

Vascular 
targeting in 
zebrafish 

Improved targeting to the 
vasculature 

151 

MSCs (Mesenchymal stem cells), CDCs (Cardiosphere-derived cells), CPCs (Cardiac progenitor cells), hMNCs (human 969 
mononuclear cells) and CM (cardiomyocytes). “h” stands for human, “r” for rat and “m” for mouse.  970 
 971 
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 978 

 979 

 980 
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Table 3. Modulation of EV delivery.  981 

Source EV type Methodology Model Outcome Ref. 

rEPCs sEVs 
Injectable 
hyaluronic acid-
based hydrogel 

Rat MI  
Improvement in angiogenesis and 
cardiac function, decrease in infarct 
size 

110 

rEPCs sEVs 
Injectable 
hyaluronic acid-
based hydrogel 

Rat MI  
Improvement in hemodynamics, 
cardiac function and decrease in infarct 
size 

162 

hiPSC-
derived 
CMs 

sEVs 

Encapsulation of 
EVs in collagen gel 
followed by its 
transplantation 

Rat MI 
Improvement in cardiac function, 
decrease in CM apoptosis, reduction in 
infarct size and cell hypertrophy  

72 

hMSCs sEVs 
Injectable peptide 
amphiphile 
hydrogel 

Rat MI 

Improvement in cardiac function, 
reducing inflammation, fibrosis and 
apoptosis, enhancement of 
angiogenesis  

167 

rMSCs sEVs Injectable alginate 
gel Rat MI 

Decrease in cardiac cell apoptosis, 
improvement in angiogenesis, 
improved cardiac function 

164 

hPRP sEVs 

Encapsulation of 
EVs in alginate gel 
followed by its 
transplantation  

Skin wound 
healing 
diabetic rat 
model  

Improved angiogenesis and re-
epithelization 

163 

hMSC sEVs 

Encapsulation of 
EVs in chitosan gel 
followed by its 
transplantation 

Skin wound 
healing 
diabetic rat 
model 

Improved angiogenesis and re-
epithelization 

165 

hMNCs sEVs 
Injectable 
hyaluronic acid-
based hydrogel 

Skin wound 
healing 
diabetic mouse 
model 

Improved angiogenesis and re-
epithelization 

71 

hMSCs sEVs Injectable chitosan-
based gel 

Mouse 
hindlimb 
ischemia 
model 

Increased angiogenesis in ischemic 
hindlimbs and high limb salvage  

166 

MSCs (Mesenchymal stem cells), hMNs (human mononuclear cells), EPC (endothelial progenitor cell) and PRP 982 
(human platelet-rich plasma). “h” stands for human, “r” for rat and “m” for mouse.  983 
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