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a b s t r a c t

Humans excel in manipulation tasks, a basic skill for our survival and a key feature in our manmade
world of artefacts and devices. In this work, we study how humans manipulate simple daily objects, and
construct a probabilistic representation model for the tasks and objects useful for autonomous grasping
and manipulation by robotic hands. Human demonstrations of predefined object manipulation tasks are
recorded from both the human hand and object points of view. The multimodal data acquisition system
records human gaze, hand and fingers 6D pose, finger flexure, tactile forces distributed on the inside of
the hand, colour images and stereo depth map, and also object 6D pose and object tactile forces using
instrumented objects. From the acquired data, relevant features are detected concerningmotion patterns,
tactile forces and hand-object states. This will enable modelling a class of tasks from sets of repeated
demonstrations of the same task, so that a generalised probabilistic representation is derived to be used
for task planning in artificial systems. An object centred probabilistic volumetricmodel is proposed to fuse
the multimodal data and map contact regions, gaze, and tactile forces during stable grasps. This model
is refined by segmenting the volume into components approximated by superquadrics, and overlaying
the contact points used taking into account the task context. Results show that the features extracted
are sufficient to distinguish key patterns that characterise each stage of the manipulation tasks, ranging
from simple object displacement, where the same grasp is employed duringmanipulation (homogeneous
manipulation) tomore complex interactions such as object reorientation, fine positioning, and sequential
in-hand rotation (dexterous manipulation). The framework presented retains the relevant data from
human demonstrations, concerning both themanipulation and object characteristics, to be used by future
grasp planning in artificial systems performing autonomous grasping.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the key elements of the performance of robotic platforms
is the ability to perform autonomous grasping, manipulation,
exploration and characterisation of not completely known objects.
Autonomous grasping and learning by imitation are topics that
have been the focus of interest of many research groups in robotics
for decades. The research aims to learn and model the human
dexterity to endow a robot with such skills. The main objectives
inside grasping strategy are to ensure stability and the ability of
grasping unknown objects.

In robotics, the analysis of humanmovements has been applied
in research areas related with task learning by imitation of
human demonstrations. This approach is based on the principles
described by several studies from human developmental sciences
that, humans can acquire skills by watching and analysing others
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performing tasks. The challenge of using human demonstrations
to model the manipulation strategies that will be performed by
robotic platforms consists of building the bridge between the
observation of human demonstrations and the reproduction of
movements in the robotic platform that produce the same effect.

In this work, we propose a framework to extract relevant
information from human demonstration using multimodal data
overlaid with object information, having both the perspective of
the object state during the manipulation task and the perspective
of the human performing the manipulation. Identifying different
stages of a manipulation task and characterising each phase of the
task is important so as to retain the context in which different
grasps and forces were used. One of the main elements in a
manipulation task is the object being manipulated, and the effect
of the human hand actions on the transformation of the object
status from the starting conditions to the task goal. In thiswork the
object is modelled as an object-centred probabilistic volumetric
model, which is used to represent the contact regions and forces
that enabled successful grasps during the human demonstrations.
The object centred frameworkwill facilitate futurematching for an
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artificial system observing objects and searching for cues on how
to grasp it taking into account the task context.

The next subsection describes some relevant previous work on
this research topic. Section 2 presents the feature extraction imple-
mented for the multimodal data from human demonstrations. The
following section builds upon these features to segment and iden-
tify manipulation stages and derive a generalised task representa-
tion. Results are presented for two test cases: homogeneous (fixed
grasp) and dexterous manipulation. Section 4 presents the object
probabilistic volumetric map, a proposed representation of con-
tact and tactile data for successful stable grasp. Section 5 presents
how the manipulation knowledge acquired from human demon-
strations can be unified with object information into a framework
to be used in grasping planning strategies and autonomous grasp-
ing, with results, conclusion and future work presented at the end.

1.1. Related work

In this work, we address a subtopic of humanmovement analy-
sis concerning object manipulation. Typically, in the literature, the
techniques for movement analysis have twomain approaches. The
first group represents the movements at the trajectory level and
generalise the representation of the movements through the ex-
traction of statistical regularities from several human demonstra-
tions of the movements, and the second group of approaches that
propose a symbolic learning and encoding of movements based on
the supervised labelling and segmentation of the primitives during
the learning stage.

An example for the first class of approaches is provided by
Calinon et al. [1], that proposes to extract continuous constraints
from a set of demonstrations using different initial configurations
of the manipulated object. The Cartesian trajectories are projected
using the Principal Components Analysis (PCA). The spatio-
temporal constraints are then represented through Gaussian
Mixture Models (GMM). The approach has been successful in a
robotic platform that reproduces a generalised version (obtained
using Gaussian mixture regression) of a demonstrated task.
Another example from the same class was suggested by Ogawara
et al. [2], that presents a method to detect repeated motion
patterns in a long motion sequence. The approach assumes that
repeated motion patterns are structured information that can be
obtained without the knowledge of the context of motions. The
method was evaluated and compared to other previous works,
by detecting repeated interactions between humans and objects
in everyday manipulation tasks. The method has shown a greater
performance in terms of detectability and computational time.
Pastor et al. [3] proposed an approach to learn motor skills
from human demonstrations modelled using a set of differential
equations – Dynamic Movement Primitive (DMP) framework –
and developed a library of movements by labelling each recorded
movement according to task and context.

In this article, we present an approach that combines the pre-
vious group of methods (trajectory level) with the second group
of methods, which associate symbolic learning with encoding of
manipulation movements. The typical approach of these other
methods is to initiate primitive sequence detection in the human
demonstrations stream of data, followed by pattern recognition
methods which provide the most probable temporal sequence of
primitives. An example of this technique is used by Kondo et al. [4],
that proposes a method to describe in-hand manipulation demon-
stration movements by recognising a sequence of contact state
transitions between the human hand and the manipulated object.
The recognition algorithm is based on a dynamic programming ap-
proach by comparing the similarity of the contact state transition
between an input sequence and templatemanipulation primitives.
The work by Kruger et al. [5] presents the automatic extraction of

action primitives and the corresponding grammar fromcontinuous
movements of several human demonstrations of grasping tasks.
The approach considers that all the actions can be described by a
set of elementary building blocks and there is a set of rules (gram-
mar) that define how the action primitives can be combined. The
action primitives are represented by parametric hidden Markov
models. One of the key elements of those platforms is their abil-
ity to handle and explore objects as shown by Klatzky and Leder-
man [6], Biederman et al. [7] or Sahbani et al. [8].

In this article, we also explore a multi-sensing approach to
estimate the regions of the object that are going to be grasped
by analysing the visual gazing performed by the subject during
the preliminary moments of the grasp execution, as proposed
by Flanagan et al. [9]. Other related works, such as Bohg
et al. [10], show the analysis of human-graspingmovements as the
combination of a descriptor based on visual shape context with
a non-linear classification algorithm that leads to the detection
of stable grasping points for a variety of objects. According to
recognition by components theory (RBC) [7], humans are able
to recognise objects by separating them into geometric icons.
Assuming that an object with a similar graspable part can be
grasped in the same manner, for example, handbags, mugs etc.
that are composed of curved parts like cylinders, it is possible to
segment the objects in primitives for grasp planning, considering
some shapes of single parts. The constituting parts of an object
shape influence the choice of an object graspable part, independent
of their orientations. The relative size of the object component
is very important to select the graspable part [8]. In our work,
a probabilistic description is used for the representation of 3D
objects, which is then segmented in parts by approximating each
object part using superquadrics primitives as proposed by El-
Khoury and Sahbani [11]. In our representation, we associate
data on object graspable parts such as contact points and tactile
force obtained from demonstrations of in-handmanipulation with
successful grasps.

2. Feature detection on multimodal data from human demon-
strations

In this work, the human demonstrations play an important role
in the ability of learning and identification of manipulation tasks,
as well as to learn stable grasps. The data acquired will be used
to model and extract the relevant aspects of the human demon-
stration, as well as for providing input for the methods presented
in this work to represent the manipulation tasks and estimate the
contact regions and candidate grasps for stable grasping on ho-
mogeneous [12] and dexterous manipulation tasks. The experi-
mental activities with humans executing manipulation tasks are
performed in our experimental area presented in Fig. 1. The ex-
perimental area is equippedwithmultiple data acquisition devices
in order to capture the different types of data used by humans to
perform successful manipulation tasks. The system records human
gaze, 6D pose of hand and fingers, finger flexure, tactile forces dis-
tributed on the inside of the hand, colour images and stereo depth
map. Using objects instrumented with inertial and force sensors,
6D pose and tactile forces on the object are also captured. An on-
line database, the Handle Project — Data Collection Database [13],
is publicly available with the datasets collected.

An essential step to achieve the learning and classification is
the feature detection process, so that only the relevant informa-
tion is used to represent a set of data. In this section, an overview
of feature detection for trajectory identification and grasp transi-
tions during tasks of in-handmanipulation is presented. A discrete
representation of hand trajectory by curvatures and hand orienta-
tion along the trajectory is used. Grasps and grasp transitions are
detected based on the spatial distribution and intensity of tactile
forces on the hand.
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Fig. 1. Global overview of the experimental area, data acquisition devices and objects available.

a b

Fig. 2. (a) Example of a 3D trajectory of pick-up and place and possible curvatures along the trajectory. (b) Example of hand orientation along the trajectory.

2.1. Curvatures and hand orientation as trajectory features

In order to learn and characterise the hand trajectories, we are
discretising them into significant changes in direction along the
trajectories, hereafter named curvatures, and also detecting some
pre-defined hand orientations with respect to a vertical reference.
In this work, we are working with hand trajectories in 3D space.
With our experimental setup, we have 6D pose data at 30 Hz given
by the tracker device that is attached to the fingertips and on the
back of the hand. A smoothing mean filter with a centred window
of 9 samples is used, followed by a 0 to 1 scale normalisation
using the initial and final points as reference. The trajectory is then
segmented into action phases. The hand trajectory curvatures and
hand orientation along each phasewill be used to characterise each
segment, so as to identify all the phases of the humanmanipulation
demonstrations.

Along the hand trajectory, we are considering the discretisation
of curvature along 8 key directions, i.e., C ∈ {up, down, left, right,
up-left, up-right, down-left, down-right}. These are derived from
the trajectory with a threshold on the level of significant
change that triggers a new feature [14]. The hand orientation is
represented as O ∈ {top, side, hand-out}, and derived from the
plane formed by three fingers (index, middle and ring finger) [14].

Fig. 2 shows examples of features extraction along a hand
trajectory: (a) illustrates the curvatures along a 3D trajectory (pick-
up and place); (b) shows the hand orientation along the same
trajectory.

2.2. Primitive detection for grasping transitions

Depending on the action phase (e.g. reach, load, lift, hold,
replace, unload, release) of a typical manipulation movement,
different types of signals (position/orientation of the fingers,
distal phalanges and wrist, joints flexure level, tactile sensing)
dynamically change their role and importance on the control of the
objectmanipulation strategies. During themanipulation of objects,
the contact signatures between the object and the different regions
of the hand surface, as well as the configuration of the human
hand joint flexure level, are important factors on the definition and
characterisation of those strategies.

As demonstrated by the seminal work [15], it is possible
to categorise the typical prehensile patterns of the hand that
the humans use to hold daily life objects. Kamakura et al. [15]
propose 14 patterns under 4 categories. The categorisation of the
prehensile postures of the hand is made, taking in consideration
the different regions of the hand that contact with the object
during the interaction with it. Each contact tactile signature is
the consequence of the mechanical configuration of the hand and
implicitly the characteristics of the object being held. Kamakura
et al. [15] just consider isolated prehensile patterns which are
defined as the state of the hand in which the object is held without
losing contact. The work also does not analyse the intensity of the
contact.

In this work, although a manipulation task is segmented and
modelled as a sequence of static prehensile primitives, those pre-
hensile primitives are not analysed just for isolated statistical pur-
poses. Besides the spatial configuration of the active contact areas,
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Fig. 3. (a) Representation of the 15 tactile regions defined in the human hand. (b) Six of the pre-defined grasp configurations used to estimate the static contact templates.

Fig. 4. Conditional probability density distribution of the primitives. (a) primitive 1; (b) primitive 2; (c) primitive 3; (d) primitive 4; (e) primitive 5; (f) primitive 6 and (g)
primitive 7.

the prehensile primitives are also described by the intensity of the
contacts. As analysed by Johansson and Flanagan [16], the tactile
intensity is one of the fundamental variables to distinguish the dif-
ferent stages of a manipulation task. The same prehensile pattern
class can proportionate different contact intensity configurations,
depending on the stage of the manipulation task.

Using tactile sensor information, we can achieve a symbolic
level generalisation of manipulation tasks by human demonstra-
tions. In this section, tactile signatures of somemanipulation prim-
itives are addressed for future classification and identification of
manipulation tasks. The tactile sensing device consists of 360 sens-
ing elements (Tekscan Grip System sensor) which are distributed
along the hand palm and fingers surface. The sensing elements are
grouped in 15 regions as presented in Fig. 3, corresponding to dif-
ferent areas of the hand.

A variable Ti is assigned to each of these regions: T = {T1,
T2, . . . , T15}. The domain for each variable can be defined as Ti ∈

{NotActive, LowActive,HighActive}. The NotActive, LowActive and
HighActive define the level of activation of that region during the
in-hand manipulation task. Considering the raw sensor output 8-
bit integer value, the NotActive state of a variable Ti corresponds to
an average output of the sensing elements that is between0 and10,
the LowActive is between 26 and 190, and the HighActive between
190 and 255. The general model of the framework used to describe
the different templates of primitives can be defined by the set of
variables T.

The three levels of discretisation of the tactile contact intensity
of the hand (NotActive, LowActive, HighActive) was considered
appropriate to characterise and distinguish the basic functional
levels of activation of the hand for potential similar prehensile
hand configurations, but in different stages of interaction with

the object (e.g.NotActive: pre-grasp, transition between successive
re-grasps; LowActive: initial contact with the object, hand region
partially involved in this stage of the task; HighActive: hand
region highly involved in this stage of the task). The seven tactile
primitives were selected as a subset of tactile primitives that
can be used to demonstrate the proposed concept in the type of
manipulation tasks presented in this work.

During the experiments, the tactile sensing devicewas attached
permanently to the glove, so all the subjects wear the tactile
sensors attached to the glove in the same positions. A full
calibration of the sensing elements is not required for the
functional analysis of the hand regions involved in each grasp type.
The activation level is discretised in three levels, and initially a
uniform pressure is applied to normalise the scale factor across the
sensing elements.

The set of pre-defined templates comprises a total of seven
templates. The contact state templates primitives are estimated
from seven different grasp configurations. Six of those seven
grasp configurations are demonstrated in Fig. 3(b). The remaining
one corresponds to when there is no contact between the hand
and the object (Primitive7). The variable E indicates a primitive
where E ∈ {Primitive1, Primitive2, . . . , Primitive7}. In order to
estimate the parameters of the template parameters T of each of
the seven pre-defined primitives, several human demonstrations
of the different static contact configurations of the human hand
and the object were performed. The templates are extracted on
each demonstration and the probability distribution P(T|E) is built.

In order to estimate the parameters of T for each of the seven
pre-defined contact state template primitives, five demonstrations
of each grasp configuration presented previously were performed
by a subject. The conditional probability density distribution
functions of T for each contact state template is shown in Fig. 4.
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Fig. 5. Example of action phases in a simple homogeneous manipulation task,
where the same grasp is employed during the manipulation.

3. Segmenting and identifying manipulation stages

Segmenting a task in action phases can help us to characterise
each movement of a task as well as to understand the behaviour
of the hand in each phase. By knowing the action phases of a
task, we can discriminate easily a fixed grasp task (homogeneous
manipulation) from a dexterous task due to the action transitions.
Simple tasks (e.g. object displacement) can be composed of the
following action phases: reach, load, lift, hold/transport, unload
and release. A dexterous task is characterised by having the in-
hand manipulation phase, where fine movements are performed
with the intention of re-configuring the object state while it is
being held by the hand. Dexterous tasks are composed of the
following action phases: reach, load, lift, in-hand manipulation,
unload and release. Fig. 5 illustrates an example of action phases
in a simple homogeneous manipulation task, where the in-hand
manipulation is replaced by a fixed grasp transport phase.

By observing the multimodal data, some assumptions can be
made to find those phases during a task. For example, in the
reaching phase, there is no object movement, the load phase
is active when there is tactile information, and the transport
phase when the object is moving. Since we have a synchronised
data acquisition, by using the timestamps, we can analyse the
multimodal data to know the state of each sensor in a specific
time. Another option is segmenting by a probabilistic classification.
Since we can extract features from the sensor signals, we can learn
from multiple observations and then characterising each phase in
a probabilistic way. Dealing with the uncertainty of sensor noise
due to real world is a reason for adopting a probabilistic approach
to automatically classify the action phases.

The next subsections present the probabilistic classification
of manipulative tasks at the trajectory level and the symbolic
representation dealing with tactile information to identify grasp
transitions in dexterous tasks.

3.1. Hand trajectory classification

Following the segmentation of the hand trajectory of a given
manipulation task, we characterise each action phase by looking
at the hand pose along the trajectory. A classification step can be
appliedwhen a subject is performing amanipulation task, allowing
the online identification of the trajectory class. A trajectory can
be learned and later identified by using the Bayesian classification
to reach degrees of belief. By continuous classification based on
multiplicative updates of beliefs, hand trajectory phases may be
classified by learning the curvatures and hand orientation along
the trajectory to recognise a specific class of trajectories.

Bayesian models have already proven their usability for robotic
perception and action [17]. Here we are addressing an example
applied to trajectory classification. The probability of each type of
grasp is updated for each hand displacement, i.e., we know what

kind of manipulation task is more probable to happen by analysing
the highest probability variable that indicates the trajectory types.
Assuming that the trajectory was segmented by action phases, the
probability distribution of the features that possibly identify the
trajectory is computed at each hand displacement. To understand
the general classificationmodel, some definitions are required: g is
a known manipulation task goal from all possible G (manipulation
task classes, e.g. in case of simple tasks: object displacement or
lift the object, reposing it in the same initial position.); c is a
certain value of feature C (curvature types); i is a given index
from all possible hand displacements composed of a distance D
(corresponding to a segmented action phase). The learning phase
provides the probability distribution of each class of features for all
trajectories of a dataset. A learned table is computed (histogram),
which is composed of the types of features and their probability
distribution in each action phase of the trajectory. More details
of the learning phase can be found in our previous work [14,18].
In this work, G refers to simple tasks, but it is possible to learn
dexterous tasks (e.g. pick-up and write, toy sorting, pick-up the
object, rotate and place it in other pose) for identification, and
also use more relevant information during learning, such as grasp
transitions as shown in 3.2.

The probability P(c|gi) that a feature C has a certain value c
can be defined by learning the probability distribution P(C |Gi). The
probability P(o|gi) that a feature O has a certain value o can be
defined by learning the probability distribution P(O|Gi). Knowing
P(c|Gi), P(o|Gi) and their priors P(G), we are able to apply the Bayes
rule and compute the probability distribution for G given a hand
displacement i concerning the hand displacement of the learned
table and the features c and o. Initially, the manipulation task
variables (priors) p(G) have a uniform distribution, and during the
classification, their values are updated by applying the Bayes rule.
The features O and C are independent. Each class of features are
found in the same trajectory for classification. Having two feature
classes for any given trajectory allows us to better characterise the
type of trajectory. The trajectory classification step is shown in (1)
and (2), for example, to identify pick and place (pp) and pick and
lift (pl):

P(gpp|ck+1, ok+1, i) =
P(ck+1, i|gpp)P(ok+1, i|gpp)P(gpp)
j
P(ck+1, i|gj)P(ok+1, i|gj)P(gj)

(1)

P(gpl|ck+1, ok+1, i) =
P(ck+1, i|gpl)P(ok+1, i|gpl)P(gpl)
j
P(ck+1, i|gj)P(ok+1, i|gj)P(gj)

. (2)

In (1) and (2), the variable j is an index that represents all
possible manipulation tasks. We formulate the equation in a
recursive way. Assuming that for each hand displacement we can
find new curvatures and new hand orientation, we can express
the on-the-fly behaviour by using the index k that represents a
certain displacement performed by the person during the hand
movement. The classification is based on the highest probability,
defined by a threshold (e.g. 0.7). We expect that a manipulation
taskmovement that is being performed by a subject will produce a
trajectory hypothesis with a significant probability. Other features
could also eventually be used to identify a manipulation task, such
as finger flexure, and tactile information (force intensity), but in
our approachwe need this task context andmap the other features
to an object centred model that contains geometric and grasp
configuration and sequence data.

3.2. Grasp transition classification in in-hand manipulation tasks

After extracting the primitives regarding tactile signatures in
in-hand manipulation tasks, a classification method is used to
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Fig. 6. Contact primitives detection on raw input data. (a) Task I – Mug reorientation; (b) Task II – Mug elevation.

Fig. 7. Task demonstration. (a) Task I – Mug reorientation (one cycle grasp-release cycle is shown); (b) Task II – Mug elevation.

identify the grasp transition in each action phase of amanipulation
task.

In order to proceed to the detection of the pre-defined primi-
tives, the tactile inputs produced during the in-handmanipulation
demonstration are integrated during equal time intervals. The in-
tegrated data during one time slot ∆t is classified according to the
following expression:

P∆t(E|T) =
P∆t(T|E)P(E)

P∆t(T)
, (3)

where P∆t(T|E) is achieved from the primitive demonstration
training session. P(E) is the probability of a template, and P∆t(T)
is the probability of a model measurement. The template E with
maximum likelihood is the template assigned to that time slot. The
previous expression can be rewritten as follows:

P∆t(E = Primitivei|T = (T1, . . . , T15))

=
P∆t(T = (T1, . . . , T15)|E = Primitivei)P(E = Primitivei)
7

j=1
P∆t(T = (T1, . . . , T15)|E = Primitivej)P(E = Primitivej)

. (4)

The output of the primitives detection stage is a raw temporal
sequence of the templates corresponding to the pre-defined
primitives. In order to test the primitives detection approach of
the pre-defined contact state templates, two tasks were defined.
For both tasks, the manipulated object is a mug and the starting
configuration (position and relative orientation to the subject) is
the same. Task I consists of the reorientation of the mug in order
to position the grasp of the mug in a configuration suitable to be
grasped by the handle by the subject right hand. Task II consists

of grasping the mug without reorientation and elevating it. The
detection of the primitives is made by using the average value
over each of the T tactile inputs. The results for the primitives
detection on raw data inputs for Task I and Task II are shown in
Fig. 6, segmented in 0.5 s blocks. Fig. 7 shows some frames of the
TaskI and Task II demonstration.

The estimated primitive corresponding to the input data of each
segment is made by calculating, for each primitive in the redefined
set, P∆t(E = Primitivei|T = (T1, . . . , T15)), given the input tactile
data T and selecting the primitive that maximises the previous
expression.

The input data (i.e. human demonstration) are sequentially
fragmented by the primitives detection algorithm. Typically, the
first segments correspond to the template of Primitive7, when
there is no contact between the hand and the object. This period
corresponds to the movement of the hand towards the object that
is going to be manipulated.

Task I manipulationmovements were segmented in a repetitive
sequence of grasping and release of the object in order to
reorientate the mug placed on the top of the table to be grasped
correctly. This sequence of grasp-release allows the subject
performing the experiment to reposition the hand on the object,
adapting the grasp configuration to the new pose of the object,
to maximise the effectiveness of the subsequent hand actuation
on the object. The fingers involved on the reorientation of the
mug are predominantly the thumb, index and middle fingers. The
ring and little fingers have a less intensive participation on those
movements, although the assigned primitive is the same.

The second manipulation task (Task II) was decomposed on
a series of primitives that involved the participation of high
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Fig. 8. Motion patterns: similarities detection in the action phases of the trajectories in a dataset of a manipulation task.

extensions of the finger’s surface. The task does not require the
execution of grasp-release sequences of movements.

3.3. Detecting motion patterns and segmenting action phases

An important step to model the human actions and behaviours
is themotion pattern detection during an activity. In different daily
tasks, the motion assumes an important key point to describe a
specific action. The variety of human activity in everyday environ-
ment is very diverse; the same way that repeated performances
of the same activity by the same subject can vary, similar activi-
ties performed by different individuals are also slightly different.
If a particular motion pattern appears many times in long-term
observations, this pattern must be meaningful to a user or to a
task. In this work, we are focusing on manipulation tasks at the
trajectory level to find similarities (significant patterns) given by
multiple observations. The intention is to learn and to generalise a
specific task by the hand movement, including finger motion as
well as object trajectory during the task. This is useful for task
recognition in robot imitation learning, and it can be applied in the
future in such a way that the generalised movements can be used
in other contexts by a robot.

Tomodel amanipulation task, it is necessary to extract relevant
information (patterns) from multiple observations. By looking for
similarities among the features of a dataset of trajectories, it
is possible to represent the dataset by its relevant features as
illustrated in Fig. 8. The relevant information are repeated motion
patterns that are used to generate a generalised trajectory.

In this work, we use some grasp classes to estimate the grasp
type along the task to estimate the grasp transitionswhen a human
is manipulating the object. In each task, it is necessary to identify
the types of the grasping/gesture defined and then compute the
probability distribution P(Grasp|Observation) of each one along
the action phases of the task for each trajectory by analysing the
grasping occurrences.

The dataset of trajectories are aligned temporally, applying as
a pre-processing step Dynamic Time Warping (DTW), a pattern-
based method that allows the sequential information description
of the data by the temporal distortion between different exam-
ples [19]. The next step is to detect the features and compute the
probability distribution of the feature occurrences. Then similari-
ties in all trajectories of a dataset are found, i.e. features with high
probability (high occurrence in all the trajectories). A threshold is
set on this probability to obtain a set of relevant features. The rep-
resentation of a dataset of a specific task at trajectory level is given
by the general form of the data. It is obtained after selecting the
relevant features and then applying a regression on the spatial in-
formation of the relevant features.

3.4. Trajectory generalisation for task representation

There are some possibilities to achieve the general form (a
smoothed trajectory) of a dataset of trajectories. The first one is
an interpolation applied after the features selection (similarities
between trajectories) as a function of arc length along a space curve
using parametric splines. The second way is by using the spatio-
temporal information of all features extracted from all trajectories
of a dataset, where a polynomial regression is applied to fit the
data to have a smoothed trajectory. The polynomial regression can
be a good choice due to the curvilinear response during the fit
and it can be adjusted because it is a special case of the multiple
linear regressions model. In case of applying regression, to have a
correct fit, the regression need to be done locally, at subregions of
the trajectory due to the shape of trajectories. In general, for our
data, a cubic order polynomial regression is enough for the fitting.
In this type of curvilinear regression, the choice of degree and the
evaluation of the quality of the fitting depend on an empirical
analysis. Although polynomial regression fits a non-linearmodel to
the data, as a statistical estimation problem, it is linear, in the sense
that the regression function is linear in the unknown parameters
that are estimated from the data. It is based on least square fitting.

The handmotion generalisation is useful to represent a task. For
each dataset, we intend to have a generalised data to be used in
the future to endow a robot to perform the generalisedmovement.
Each task will be represented by the generalised hand trajectory
combined with the learned force intensities, grasp transition and
contact points for a stable grasp in each action phase of the task.

4. Object probabilistic volumetric map

Some grasping strategies for robotic systems are based on
analysing object geometric properties and fitting suitable grasps,
others on learning from human demonstrations for specific
objects. In our approach, we try to encompass both concepts,
using a volumetric map of the object, overlaid with data from
humandemonstrations in a probabilistic framework. Although this
mapping is for specific objects, the representation can be used to
match with partially observed new unknown objects that have
similar geometric distributions.

In our work, a probabilistic representation of the object is used
to have prior information of the object used in amanipulation task.
In our previous work [20], we presented our in-hand exploration
method of obtaining this object volumetric data, where contour
following was used. This ‘‘exploratory procedure’’ is what humans
also use for determining the geometry of an object [6]. For
better representation of the object, in [20], the visual information
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complements the 3D model with texture information. The model
is based on probabilistic occupancy grid methods [21–23], used
in robotics for 2D mapping and extended to 3D. In this work,
we extend the previous proposed approach to learn the contact
regions location on the object for a stable grasp as presented in
Section 4.5. Since we already have the 3D representation of the
object in a volumetric map, we can overlay the relevant data about
human visual gaze, and contact points on the object surface.

When performing in-hand exploration of objects, the key idea
is to use the hand to extract object geometrical information.
During the in-hand exploration, the object might be moved or
even released and re-grasped, for example, when one uses the
other hand to assist the hand performing the in-hand exploration.
This task becomes more complex than exploring objects fixed in a
specific position. To deal with moving objects during the in-hand
exploration, the object rotation and translation need to be taken
into consideration. Knowing the object initial position and object
displacements, we can compute the transformations to have all
points in the same frame of reference. In our case, we have a 6DoF
sensor attached to the object so that we can map the hand contact
points to an object centred frame of reference and properly register
the point clouds to build the object model.

4.1. Probabilistic volumetric map

The occupancy of each individual voxel in the map is assumed
to be independent from the other voxels’ occupancy and thus
OC is a set of independent random variables, where C is the
cell index and OC the value indicating the level of occupancy
of the cell. The in-hand exploration measure Zgrasp updates the
occupancy knowledge. Initially, we have a uniform distribution for
P(OC ). Since no preliminary knowledge is available. P(Zgrasp|OC )
indicates the probability of having a measurement Zgrasp, given the
occupancy.

We model the measurement error due to sensor noise with
a Gaussian distribution along with the sensor measurements.
Due to the size of each cell relative to the standard deviation
of the magnetic tracking sensor’s measurements (up to 4 mm),
inside each cell we consider a 3D isotropic Gaussian probability
distribution, P(Zgrasp|OC ), centred at the cell central point with
standard deviation 0.4 cm and mean value equal to the cell central
point coordinates of the cell. The probability distribution given the
sensor’s measurements is given by:

P(Zgrasp|[OC = 1]) =
1

(2π)3/2|Σ |1/2
e

−

1
2 (x−µ)TΣ−1(x−µ)


, (5)

where P(Zgrasp|OC ) represents the probability distribution of the
sensormeasurement given OC and |Σ | represents the determinant
of Σ , the sensor noise variance.

The probability distribution on the occupancy P(OC |Zgrasp) for
each voxel is given by:

P(OC |Zgrasp)

=
P(Zgrasp|[OC = 1])P([OC = 1])

P(Zgrasp|[OC = 0])P([OC = 0]) + P(Zgrasp|[OC = 1])P([OC = 1])
, (6)

where P([OC = 0]) = 1− P([OC = 1]); P(Zgrasp|[OC = 1]) is given
by (5) and P(Zgrasp|[OC = 0]) is a uniform distribution.

When using vision, the sensor model P(Zvision|OC ) needs to
be defined. Stereoscopic systems are usually implemented as
deterministic algorithms returning visual properties like range
values. Adopting the solution proposed by Rocha et al. [24], we
can have the voxel occupancy belief as the Gaussian distribution,
where the range distance between the sensor and the detected
obstacle, and the distance between the sensor and the voxel
centre are used to compute the occupancy. This solution relies

Fig. 9. Eye tracker: (a) subject performing a manipulation using the eye tracker;
(b) typical output of the eye tracker. Red cross indicates the estimated gaze
direction.

on sensor calibration to estimate global values for sensor
model parameters. The probability distribution on the occupation
probability P(OC |Zvision) for each voxel is similar to the one used for
in-hand exploration [20].

4.2. Multi-modality and fusion

In this work, the analysis of the stable grasps executed by hu-
mans during manipulation tasks is performed using a multimodal
approach, in order to capture the multiple signals and strategies.
An object centred probabilistic volumetric model is used to repre-
sent the multimodal data and map contact regions, gaze and tac-
tile forces during stable grasps. One aspect that characterises the
manipulation task is the trajectory described by the hand (fingers,
palm, wrist) to reach and contact the object, in order to perform
the initial stable grasp. The location of the contact points of the
fingertips in the object surface are acquired using Polhemus Liberty
motion tracking system.

The biological signals related to tactile inputs are also relevant
to do the fine control of the manipulation tasks. The information
about the level of activity of each region of the hand, during the
contact with the object while the initial stable grasp, is acquired
using the tactile sensing array TekscanGrip System and themethods
presented in Sections 2 and 3.

The gaze has been used as an analysis tool of physiological
responses to stimuli as an indication of cognition. The gaze in
response to visual, auditory or cognitive stimulus is measured,
during the manipulation task, using an SMI iView eye tracker
device. The gaze provides important cues about the strategies used
to find and anticipate the appropriated region of the object to be
grasped. The eye tracking system uses infra-red illumination and
computer-based image processing. The pupil is detected and after
calibration, the pupil centre location is translated into gaze data.
The gaze direction is mapped by the system in the scene images by
a red cross as presented in Fig. 9.

4.3. Object modelling using entropy as confidence level

To combine more than one sensing modality to obtain the
object model, we need to compute the posterior of the occupation
probability given the observations, P(Oc|ZvisZgrasp), for each voxel.

We are adopting entropy as a confidence level of the sensor
models, by computing weights to perform late fusion as mixture
models. The weights are computed using each entropy value com-
puted from (7) for each local map, for example, vision and in-hand
exploration. In a Bayesian framework, each model contributes to
the result of the inference in proportion to its probability. Mixture
models are usually presented directly as weighted sums of distri-
butions. Through the mixture model, we can achieve the combi-
nation of different models into one. Examples of weighing mixture
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Fig. 10. Probabilistic representation of objects derived from in-hand exploration. (a) Awooden cat; computed probabilistic map; visual information (textured points cloud);
probabilistic map with texture information (only voxels with probability higher than 0.8). (b) Image of a mug following the view of the occupied voxel’s central points, and
the last image shows the computed map derived from in-hand exploration (object-centred representation).

models using the Bayesian framework can be found in [25]. Here,
the intention is to update a global map by looking at the different
sensor data to know the confidence of each sensor.

Through Bayesian techniques, we can implement the sensor
fusion and use entropy H as a confidence level. A confidence
variable w will be used as the weight for each sensor. The weight
w can be expressed as a prior P(w) in the Bayesian rule. For each
sensor, we can compute the entropy of the posterior probabilities
as follows:

H(P(Oc|Z)) = −


c

P(Oc |Z) log(P(Oc|Z)), (7)

where P(OC |Z) represents the posterior probability of the occu-
pancy of each cell in the map achieved by a specific sensor. The
variable Z represents the sensor measurements and c is the index
of each grid cell. Through the entropy H , we can achieve the prob-
ability distribution of the weights of each sensor. The weights are
computed as follows:

w = 1 −

 h
n

i=0
Hi

 , (8)

where w is the weight result; h is the current value of entropy that
is being transformed in a weight; i is the index for each entropy
value computed by (7).

Given the confidence of the occupied cells achieved by each
sensor, we can fuse the sensor’s belief by multiplying each local
map to the correspondent sensor’s weight reached by the entropy.
For each cell of the volumetric map we can compute the mixture
model belief for local maps fusion:

P(Oc |Z1, . . . , ZS) =

S
i=1

P(wi)P(Oc|Zi), (9)

where S represents the number of sensors.
Using (9), we update a global map with the probability distri-

bution of each cell achieved by different sensors for data fusion.
By employing entropy as the confidence level, we will be sure of
the confidence of each sensor, that is, which is more reliable and
then we build the global map from local maps (vision and in-hand
exploration) with more certainty of the measures of the sensors.
The only concern that needs to be taken into consideration on us-
ing themethodology proposed is the computational cost due to the
necessity of calculating (7) and (9) for each cell.

A calibration between the sensors is needed to work with the
localmaps and the global one in the same frame of reference. In the
previouswork [18],wehavepresented an approach for the sensor’s
calibration (magnetic tracker and vision system), following the
approach presented in [26].

4.4. Frame of reference for object-centred representation

We are adopting an object-centred representation by estimat-
ing the frame of reference of each object by its geometrical prop-
erties. For that, we compute the 3D moment invariants to find the
centroid of the point cloud which depends on the distribution of
the points of the object surface. The centroid will be located at
the densest part of the point cloud. The 3D moment invariants are
a measure of the spatial distribution of the mass of a shape. Let
p(x, y, z) be a local continuous density function which is repre-
sented by the probability of a voxel to be occupied (e.g. occupied,
p(x, y, z) ≥ 0.7; empty, otherwise). To estimate the location of the
centroid of the point cloud, we first compute the zeroth moment
(sum of the voxels’ probabilities) followed by the firstmoments for
each axis x, y and z (sum of the product of all x by the probability
of the respective voxel being occupied; the same for y and z). Then
the centroid (cx, cy, cz) is computed by the normalisation of each c
by the zeroth moment. The centroid is useful not only to define the
frame of reference of the object, but it is used later with the contact
points location to estimate how the object was grasped.

Fig. 10 shows examples of in-hand exploration of some objects
and corresponding probabilistic volumetric maps.

In the next subsection, the contact points acquired from human
demonstrations are overlaid on the object surface to store data on
how the object is grasped.

4.5. Candidate contact points on object surface

The contact points for stable grasp is acquired by human
demonstrations during a manipulation task. The fingers’ locations
given by the tracker device when in contact with the object sur-
face (i.e. when the tactile sensors are activated) are overlaid to the
object model to represent the contact points in the object point of
view.

The objectmodels used in themanipulation tasks are previously
achieved using the approach presented of object probabilistic
volumetricmap. Sincewe know the object initial position (given by
the tracker sensor attached to the object), the fingers’ positions are
easily overlaid to the object model to have the candidate contact
points of stable grasp along themanipulation task. Using the tactile
information we know exactly the instant that the fingertips touch
the object and the force intensity applied on the object. This
information is possible to acquire due to the timestamps used in
our synchronised data acquisition.

Fig. 11 shows the contact points acquired during a human
demonstration of stable grasps. The contact points were acquired
during the load phase of a fixed grasp task (pick-up and place)
overlaid in the object model. We can see different demonstrations
of contact points for top-grasp (precision grip) and side-grasp.

The contact points between the human hand and the object
surface are represented in the object-centred volumetric map
during the load phase. The estimation of the location of those
contact regions is made by combining two approaches. In one of
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Fig. 11. Contact points on the surface of the object. Example of top-grasp (precision grip) — the images on the top are different views of the same contact points; Only
three fingers are shown representing the thumb (T); index (I); and ring finger (R). By using the regions defined of the tactile sensing, we can see the regions of the hand that
touched the object during the stable grasp. Bottom images: Example of side-grasp — different views of the same contact points; In these examples, only three fingers are
shown representing the thumb (T); index (I); and ring finger (R).

Fig. 12. Human gaze during grasping and the contact points on the object surface. Task: Reaching and Grasping by the Object Handle. The visual gaze during the grasping
shows that the human usually looks to the region of the object where will be performed the grasp.

Fig. 13. Human gaze during grasping and the contact points on the object surface. Task: Reaching and Grasping the mug by side-grasp. This type of grasping was chosen
due to the orientation of the object — it influences the type of grasping.

the approaches, the location of the fingertips is mapped in the
volumetric map. The contact point positions are known when
there is tactile intensities information. The second approach is
by using an eye tracker to estimate the regions of the object
that are observed by the subject while doing the reach motion
planning and during the load phase. Fig. 12 shows some snapshots
of the estimated observed regions during the manipulation of a
mug, placed in a configuration where the handle of the mug is
completely visible by the subject. The volumetric map represents
both the observed regions of the mug and the regions which were
effectively grasped. Fig. 13 represents the results achieved in a
situation where the handle of the mug was not completely visible
to the subject. Although, during initial instants, the attention of the

subject is captured by the partially visible handle of the mug, due
to its inaccessibility, the subject chooses to grasp the mug using a
side grasp applied to the lateral regions of the mug.

Given the location of the contact points, we can infer the
associated human hand grasp type. The average of the sum of
squared distances between the contact points, for example, thumb
to index, index to middle and so on, Df , is computed. Then,
the average of the sum of the squared distance of each isolated
contact point to the centre of mass of the object, Dc , is computed.
These two resulting values characterise a grasp type. For each
grasp type g ∈ {top-grasp, side-grasp, hand-out, grasp-by-handle}
, we have thresholds obtained from statistics of Df and Dc from
labelled datasets of grasp types and contact points that allow us
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Fig. 14. Object segmentation of a sponge with the method proposed, using Kmax = 2 and 3D points acquired by in-hand exploration of the object surface. On the left is an
image of the object; in the middle the 2 clusters (Gaussian density functions) obtained from the segmentation process; and on the right the colour labelled 3D points of the
segmented clusters.

to classify the grasps observed. This approach works well for the
set of grasps defined, since the measures used encompass the
object–hand relationship as well as the finger to finger spread. For
small sets of predefined grasp types, it is enough to discriminate.

4.6. Segmentation of key object components

Since we have a probabilistic representation of the object
model, it is possible to find geometrical primitives from the object.
We are clustering the output of the probabilistic volumetric map
to find the possible object components. By clustering, we can
achieve outlier removal and we can also keep the position and
size information of the object. According to the points cloud
disposition, using the known method of Gaussian mixture models
(GMM),we can find themost suitable clustering thatwill represent
a component of the object. The intention is to simplify the global
object shape in components, approximating it in basic primitives.

Gaussian mixture models have proven to be good models for
points clustering where each cluster corresponds to a Gaussian
function. Therefore, given a set of points, it is possible to find the
GMM using the well-known method, Expectation Maximisation
(EM).

A big issue that is raised in the scientific community when
dealing with GMM is how to select suitable components given
a point cloud, that is, the number of clusters K . This is an issue
that the researchers are still working with. In the literature, we
can find methods that can select the best number of clusters
given the data. An example is the Bayesian Information Criterion
(BIC), first suggested by [27]. Another possibility for the number
of clusters selection is the Minimum Description Length (MDL)
penalty function [28]. For both methods, it is necessary to set a
maximum number of clusters, Kmax, and then themethod finds the
appropriate number of clusters. In this work we use Kmax = 3 and
the MDL penalty function [28] to select the number of clusters K .

The basic idea here is to compute theGaussian density functions
given the volumetric model, clustering the relevant points reach-
ing the segmentation of the global object shape in components that
will be geometrical primitives later.

For test cases, we are using daily objects, most of which having
simple shapes, allowing different candidate grasps. In case of ob-
ject perception, this approach takes in consideration the variabil-
ity of the in-hand manipulation motion among different subjects,
as well as, the noise and uncertainty of the sensor measurements,
by creating an initial probabilistic representation of the explored
object based on a volumetric map. This initial step eliminates hy-
pothetical erroneous data that could induce wrong representation
of the object with consequent implications during the primitives
segmentation phase. After some tests segmenting different daily
objects, we could see that 3 components were enough to represent
simple objects.

Fig. 14 shows a segmentation example of object components.
The segmentation was tested using the points cloud given by
occupied cells in the probabilistic volumetric map.

Fig. 15 shows more examples of object component segmenta-
tion by clustering the regions of the object. The clustering is done
based on the distribution of the points, so that, for the same object,
the number of points used to represent the model of the object
can influence the segmentation process. For the same object, but
acquired in different modality, e.g. in-hand exploration or visual
information or laser scanner, can have similar or different segmen-
tation results depending on the 3D points cloud structure. Usually,
when the points cloud of the same object with the same sensor
modality is acquired several times, the segmentation is very sim-
ilar, and we can have similar results when the shape approxima-
tion by superquadrics is generated. In Fig. 15, we can see daily
objects acquired with different sensors, some with more points
than others. The coloured region in each object represents the
points belonging to the same GMM cluster. This figure shows dif-
ferent segmentations for the same object due to the different num-
ber of points, e.g. by laser scanner, usually we have objects close to
150000 points; by in-hand exploration, 500 to 10000 points (it also
depends on the exploration time).

4.7. Shape approximation using superquadrics

Since we have the object segmented in components, we now
approximate each part by a geometrical primitive. For the extrac-
tion of these primitives, also known as geons, we are adopting su-
perquadrics [29,30]. The advantage of using this methodology is
the higher variety of shape options and also due to the facility of
computing the parameters of the superquadrics that enclose im-
portant cues such as scale and orientation.

The 3D points’ data need to be fitted to a superquadric model
to represent a primitive. In our case, the points of each Gaussian
density functionwill represent a shape. To estimate the parameters
of the superquadric model, the gradient least-squareminimisation
based on Levenberg–Marquardt method [30] is used.

Fig. 16 shows an example of superquadrics generated after
applying the object segmentation process.

After the object perception process, we can identify the object
graspable part by using the information acquired during human
demonstrations (contact points to know the object region where
the grasping was performed). In the next subsection, we give
details of how to find the object graspable part.

5. Object centred framework for manipulation knowledge

In the previous sections, we addressed how features extracted
from hand trajectories and tactile data of in-hand manipulation
could enable the segmentation and classifications of the action
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Fig. 15. Daily objects (wii-mote, mug, sponge and bottle) segmented using the method proposed. The same objects were acquired by different modalities with diverse point
densities that resulted in different segmentations of components.

Fig. 16. Object (sponge) shape approximation using superquadrics after the segmentation process shown in Fig. 14. Left image shows the superquadrics on the 3D points
cloud of the computed probabilistic map and (b) are the superquadrics (boxes) generated for this object.

phases and corresponding grasp transitions, and also howanobject
probabilistic volumetric map could be constructed. This will now
be unified in a framework that associates to the object probabilistic
model the hand approach vectors, initial grasps, and sequencing
of grasps during in-hand dexterous manipulation. The rational
behind this framework is that artificial systems when confronted
with objects can first performamatch of the partial shape observed
with the volumetric map, and use the data in the framework
to key the possible approach trajectories and grasps span for
manipulating the object.

When searching in the framework for object graspable parts,we
also need to take into account the task context. Humans not only
make some type of segmentation and identification of object parts
in order to choose the best place to grasp, but are also task oriented
in this choice.

From the multimodal data, we are able to extract relevant
information of themanipulation tasks performed, such as different
phases of manipulation during the hand trajectory. From the
hand trajectories and tactile data, we identify the grasp types
and transitions. These are mapped onto the object probabilistic
volumetric model, so as to retain the relevant data from human
demonstrations, concerning both the manipulation and object
characteristics. The object centred framework will facilitate future
matching for an artificial system observing objects and searching
for cues on how to grasp it, and also taking into account the task
context.

Fig. 17. Hand trajectory (sensor attached to the back of the hand) during the in-
hand manipulation task (pick-up the mug, rotate and release it).

Figs. 17–19 present some of the data collected in this
framework. Fig. 17 shows the hand trajectory during the in-hand
manipulation task. The task is pick-up the object, rotate and repose
it in another location. Fig. 18(a) shows the object trajectory where
it is possible to visualise the object rotation during its trajectory for
the same task; and (b) shows some transitions of the hand shape
during the same task. Fig. 19 shows the object point of view, that
is, the sequence of some contact points location during the in-hand
manipulation phase.
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Fig. 18. (a) Object trajectory during the in-hand manipulation task (green); the blue circle shows the in-hand manipulation phase (object rotation along the trajectory.) (b)
the graphs represent some transitions of hand shapes during the in-hand manipulation task. The nodes represent the fingertips and top of the hand locations.

Fig. 19. Sequence of some contact points overlaid in the static representation of the object (volumetric map) during the manipulation task. The contact points are given by
the fingertips locations during the in-hand manipulation phase.

From the human demonstrations, we obtain the task context
for which distinct grasp types and object graspable parts where
used. Given a set of observations to represent a type of task T , with
T ∈ {pick-up and place; pick-up and lift; pick-up and pour/tilt},
we have the probability of each type of grasp G represented as
P(G|T ). For the object graspable part, we can identify the object
component from the locations of the contact points on the object
surfacewhere the graspwas performed. Given a set of observations
to represent a type of task T , we have the probability of each
object component geometrical primitive C ∈ {prim1, prim2, prim3}

being the graspable part P(C |T ). The probability distributions are
obtained from the occurrence statistics in datasets of the given
task. Given a task-context, we can estimate the object graspable
part B as follows:

P(B = primi|T ) =
P(T |C = primi)P(C = primi)
j
P(T |C = primj)P(C = primj)

, (10)

where the posterior information P(B = primi|T C) is computed
for each object primitive C of a specific task T ; the likelihood
P(T C |B = primi) is the learned probability for each primitive of
the object given a specific task, and the normalisation factor is the

sum of the probability of each object primitive being the graspable
part.

In the following examples, all objects are limited to having three
components, since the daily objects used are, in general, composed
of few simple primitives. Fig. 20 shows statistics of the chosen
object graspable part from human demonstrations. Three objects
are used, a mug, a bottle and a wii-mote. The chosen primitive
is the component with a high probability of being grasped. Using
our framework, we can also detect which primitive was chosen for
each type of task context and object. In Fig. 20, the top part of the
bottle and wii-mote are represented as prim1, prim2 is the middle
part and prim3 is the bottom part. For the mug, prim1 is the top
part, prim2 is the bottom part and prim3 is the handle part. For the
bottle and mug, all primitives are cylinders, and for the wii-mote,
they are all boxes.

After learning a set of objects and the task context, when the
object is observed again in the same context, the system is able to
detect the graspable part as shown in Fig. 21.

In case of unknown objects, we have adopted a generalisation
process, i.e., to try to reuse the prior knowledge for other contexts
or using similarities. For example, if the unknown object has at
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Fig. 20. Statistics for object graspable part after humandemonstrations. Three different tasks performedmany times by five different individuals. By analysing the probability
distribution of the chosen primitives to perform the grasp, we can estimate the object graspable part given the task context.

Fig. 21. Identified object graspable parts for the sponge and the wii-mote.

least one primitive in commonwith a knownobject, a similar grasp
can be attempted. This will be addressed in a future work.

6. Conclusions and future work

Using multimodal data to learn from human demonstrations of
manipulation tasks, we can learn and derive suitable models of
manipulation tasks and of the manipulated objects, and later ap-
ply them for autonomous grasping by robotic systems. The out-
puts of this work can be used in different robotic applications as
demonstrated in [31], by integrating the generalised representa-
tion of the manipulation movements to reach and grasp the ob-
ject and the regions of the objects suitable to provide successful
grasps. The constraints introduced by themodels presented can be
integrated by those applications during the estimation and synthe-
sis of movements in new scenarios. We presented our proposed
feature extraction of the multimodal data collected from human
demonstrations of manipulation tasks. Based on these features,
segmentation of the action phases and trajectory classificationwas
accomplished. From themotion patterns, a generalised probabilis-
tic representation for each type of task was derived. Results show
the successful break down of action phases along a trajectory, as
well as the suitability of the selected features as descriptors for the
probabilistic approachused in task identification. Using the contact
regions and tactile force intensities, a classification of grasp tran-
sitions was implemented, based on a set of grasp primitives. The

implemented probabilistic approach for grasp primitive identifi-
cation was able to correctly classify the grasp sequences in differ-
ent tasks. An object probabilistic volumetric map was proposed to
overlay the partially observed volume of the objectwith data about
human visual gaze when initiating a grasp task, hand-object con-
tact points and tactile forces. Results of this representation were
presented that suggest its suitability for grasp planning since a uni-
fied model has the relevant observed information on how to grasp
the object. The segmentation of the object into components will
facilitate future matching for an artificial system observing objects
and searching for data on how to perform successful grasping tak-
ing into account the task context.
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