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A B S T R A C T

This text presents the integration of touch attention mechanisms to improve the efficiency of the action-
perception loop, typically involved in active haptic exploration tasks of surfaces by robotic hands. The
progressive inference of regions of the workspace that should be probed by the robotic system uses information
related with haptic saliency extracted from the perceived haptic stimulus map (exploitation) and a “curiosity”-
inducing prioritisation based on the reconstruction's inherent uncertainty and inhibition-of-return mechanisms
(exploration), modulated by top-down influences stemming from current task objectives, updated at each
exploration iteration. This work also extends the scope of the top-down modulation of information presented in
a previous work, by integrating in the decision process the influence of shape cues of the current exploration
path. The Bayesian framework proposed in this work was tested in a simulation environment. A scenario made
of three different materials was explored autonomously by a robotic system. The experimental results show that
the system was able to perform three different haptic discontinuity following tasks with a good structural
accuracy, demonstrating the selectivity and generalization capability of the attention mechanisms. These
experiments confirmed the fundamental contribution of the haptic saliency cues to the success and accuracy of
the execution of the tasks.

1. Introduction

In an attempt to capitalise on the same advantages that having
hands benefit human beings, researchers have recently put a lot of
effort into the development of dexterous robotic hands, due to the
mechanical (high number of degrees-of-freedom) and sensory (tactile,
force, torque, heat) capabilities that they provide. These devices allow
robotic platforms to perform precise manipulation of objects (reaching,
grasping, transportation, in-hand reorientation) [1], as well as haptic
exploration of surfaces using different patterns of movements (lateral
motion, press-and-release, static contact), thereby promoting the
extraction and integration of different haptic properties (contours,
texture, compliance, temperature) of the materials these surfaces are
composed of [2].

The contributions presented in this work are related with the
robotic haptic exploration of surfaces, following three essential as-
sumptions: (1) no other type of sensors are used besides haptics (i.e.
exploration is “blind”); (2) exploration paths are not predefined; (3) the

surface geometry is unknown to the robot. The objectives of the
exploration tasks concern haptic discontinuity/contour following.
Haptic discontinuities are defined by the transition/border regions
between surfaces with different haptic properties. During haptic
exploration, the interaction of the robotic platform with the probed
surface provides multiple simultaneous streams of data over its
geometry and the properties of its composing materials relayed by an
ensemble of haptic sensors. This data is potentially uncertain due to
sensor noise and the unknown nature of the surface.

To tackle these challenges, we propose a Bayesian framework to
implement autonomous haptic exploration of surfaces that implements
an action-perception loop architecture. The Bayesian formalism pro-
vides a principled way of implementing the integration of the multi-
modal sensory data supplied by the haptics ensemble while properly
dealing with their inherent uncertainty. The proposed action-percep-
tion loop architecture integrates touch attention mechanisms (i.e.
stimulus-driven processes modulated by task-relevant top-down influ-
ences) to optimise the exploration strategy. This in turn promotes
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adaptive behaviour due to the exploration and exploitation traits of
such mechanisms.

The haptic exploration of surfaces plays a fundamental role in
reduced visibility scenarios (i.e.: underwater robotic manipulation,
smoky and foggy disaster environments, partial or complete occlusion
of elements in the scenario). Although this work only addresses the
implementation of haptic exploration strategies, the proposed Bayesian
framework allows the integration of additional sensory sources such as
vision (depth, color) and laser to infer the robotic exploration path. The
approach proposed in this work can be used to complement methods
already available to explore surfaces using exclusively non-haptic
sensory inputs [4–6].

The structure of the manuscript and an overview of the Bayesian
models proposed in this work are presented in Section 1.1.

1.1. Problem formulation and approach overview

In the application scenarios used in this work, the exploration task
is performed on top of a table – a workspace defined by a planar
surface – and using a generic robotic system with manipulation
capability. The internal structure and configuration of the workspace
is unknown a priori to the robotic system. The solution to the haptic
exploration task is described in two-dimensional Cartesian space,
progressively unfolding a sequence of regions of the workspace to be
probed by the robotic platform during task execution.

As in previous reported work, the 2D-Cartesian space is partitioned
using a planar isometric 2D grid (square cells), as represented in Fig. 1
b). Each cell vk has a side of length ε and is described by a 2D Cartesian
location (x,y) expressed in the inertial world referential { }. These
tesselations of space have been used extensively in robotics as inference
grids in many applications [9].

The methods presented follow the principles and architecture of the
human somatosensory processing pipeline and human cognition. A
conceptual overview of our solution is presented in Fig. 2; the
corresponding detailed diagram is given in Fig. 3, including a repre-
sentation of data flow. Haptic sensory inputs are acquired during the
local interaction of the robotic exploratory elements with the environ-
ment at region vk . Haptic features such as texture, compliance,
temperature are extracted from the haptic sensory inputs. These
features are integrated and used to discriminate the different classes
of materials in the workspace. These processes are modelled by the
Bayesian model πper presented in Section 3.

Next in the sensory processing pipeline, the robotic system uses the
updated perceptual representation of the workspace to infer the next
region that should be explored. The mechanisms involved in this
process are implemented by the Bayesian model πtar and described in
Section 5. Touch attention is modelled by integrating the following:

• Stimulus-driven processes – concurrent mechanisms that pro-

mote both exploitation behaviour concerning perceptual represen-
tations of stimuli in the form of haptic saliency and shape cues
(determined by the Bayesian model πobj, Section 4), and explora-
tion behaviours fuelled by spatial distribution of perceptual uncer-
tainty and also inhibition-of-return mechanisms.

• Goal-directed modulation – mechanisms that influence the
weights of stimulus-driven processes through top-down influences
informed by current task objectives.

The experimental setup used in this work is described in Section 6.
The impact of the integration of the touch attention mechanisms in the
action-perception loop and generalization capability of the exploration
strategies inferred from the proposed Bayesian models are tested in
simulation environment, Section 6. The main conclusions of this work
and formulation of the main guidelines for future developments of this
approach are presented in Section 7.

1.2. Path planning of the global haptic exploration strategy

The framework conceptually represented in Fig. 2 and detailed in
Fig. 3 implements a haptic exploration path planning method, which
infers a series of global via-points in the workspace that should be

Fig. 1. a) Results from a previous work [3], demonstrating a haptic discontinuity following task: straight line geometry. In this work, the haptic exploration tasks are more challenging:
three materials and discontinuities with other geometries than straight lines. b) Illustration of a 2D isometric grid partitioning a real world workspace area. Each cell v has a dimension ε
and is described by position (x,y) expressed in { }.

Fig. 2. Conceptual representation of the action-perception loop [7] involved in the
haptic exploration of surfaces [8]. In this work, the objectives of the task and
corresponding solution is represented in two levels: symbolic and mid-level.
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probed by the robotic system.
This work does not address the low-level control loop involved in

physical interaction of the fingers with the surface and the ability to
move the fingers along the surface by keeping contact. In other words,
the low-level modelling and control of local contact interaction (eg:
force, impedance, position control) and processing of haptic sensory
data are not discussed by this work. These processes are implemented
in Fig. 3 by the module Low-Level Control and Signal Processing and
inner loop labelled Actuation and Sensing Feedback.

Our solution assumes that algorithms (dependent of specific robotic
device and sensing apparatus) implemented by other works (eg: [10])
extract different haptic features and control the local movements
during the haptic exploration of a region vk . The integration between
these lower level control models (dashed boxes) and the global
exploration path planning method (bold boxes) proposed by this work
is detailed in Fig. 3.

2. Related works

The robotic exploration of surfaces using haptic inputs has been a
research topic pursued for a long time, with seminal works by [23–25]
and [26].

A group of approaches described in the literature implements
haptic exploration by attempting to achieve a single categorisation of
surfaces or objects (Table 2). The exploration is performed locally in a
specific region, considering that it is representative of the whole surface
by assuming that the latter is either homogeneous or uniform in terms
of the haptic features under analysis. The discrimination between the
different classes of surfaces is performed by extracting distinct but
complementary types of haptic features such as surface curvature [11],
texture [12,10,13,14], compliance [10,15], stickiness [16] and thermal

conductivity [10,17] from the haptic sensory signals. The formalisation
of the descriptors of the haptic features depends on the type of robotic
platform and type of sensing apparatus involved in the exploration
task, specifically the modelling of the contact interaction and the
characteristics of the sensory signals produced during that interaction.
However, each type of haptic feature is extracted using the same
exploration movement patterns across the different works.

The work presented in this manuscript contributes to this group of
approaches by introducing a Bayesian model that allows the discrimi-
nation different categories of materials through the integration of
compliance and texture features. The formulation of haptic features
abstracts the contact interaction models between the exploratory
element and the surface.

A second group of approaches (Table 2), while integrating sensing,
perception and local exploration mechanisms similarly to the previous
group, expands the exploration strategy to large and heterogenous
surfaces in the haptic feature domain under analysis. The global
perceptual map of the surface can be constructed following different
strategies. In many proposed solutions, the global exploration path is
fixed and defined a-priori. For example, in Ref. [18], haptic exploration
is performed using pre-defined exploration paths to build a stiffness
map of biological tissues. As long as the perception of the haptic
stimulus of the surface occurs, it does not influence the exploration
movement. In Ref. [19], Braille symbols are explored and recognised by
a robotic system. The exploration speed is adjusted depending on the
recognition uncertainty, nevertheless the exploration path is also pre-
defined.

Although exploration strategies defined a-priori can be successful
when substantial information about the structure of the environment is
available, in most of the scenarios identified considering the motivation
behind this work, the structure of the environment is initially unknown

Fig. 3. Detailed diagram of the architecture of the proposed system. The main contributions of this work are identified in the diagram asmain block (local perception of haptic stimulus,
recognition of the shapes of discontinuities, progressive determination of the exploration path). The variables of the system are summarised in Table 1.
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(partially or completely). Thus, the exploration strategy should intro-
duce an active behaviour to progressively integrate and analyse the
local perceptual representation of the environment (perception for
action) and estimate what should be the next global region to explore
and perceive (action for perception), as proposed in Ref. [27]. Active
exploration of a scene represented by a occupancy grid was proposed
by [21]. An initial estimation of the scene structure is made using
stereovision data and projected in a 2D occupancy grid. The explora-
tion strategy is dependent of that initial representation and haptic
inputs (lateral contact/non-contact) are used to confirm and update the
occupancy grid of the map.

In other works, the active exploration task is started without any
knowledge about scene structure. For example, [22] proposes a method
to perform active contour following of objects by performing tap
movements using a robotic fingertip equipped with a tactile array.
The reaction of the system is formulated based on the contact profile
between the haptic stimulus and the tactile sensing array and specific
deterministic rules defined beforehand by the human operator. [20]
presents a generic formulation of a control framework for different
types of tasks that require tactile servoing (eg: tracking a touched
object, tactile object active exploration). Different behaviours are
obtained by adjusting a few matrix parameters and selecting the
corresponding haptic primitives extracted from a tactile array.

This work adds to the contributions of this class of approaches by
proposing a formulation of Bayesian models implementing touch
attention mechanisms involved in the active haptic exploration of
unknown surfaces by generic robotic hands and sensory apparatus.
Once this work assumes that the workspace is unknown a-priori to the
system (blind exploration), the exploration path is adapted actively by
the touch attention mechanisms, as long as the exploration progresses.
The definition of the architecture of the Bayesian models follows the
principles on how humans manage uncertainty to make motor deci-
sions from percepts [7], and extends the architecture proposed in a
previous work [3]. The work presented in this manuscript expands the
top-down modulation of information, by integrating an additional
Bayesian model in the decision process, representing the influence of
the shape of the current exploration path (detailed in Section 4). In Ref.
[3] the experimental results were focused on testing extensively the
capability of the system to discriminate different type of materials. In
the current work, a completely new set of experiments is designed to

test the selectivity (different types of discontinuities) and robustness
(different path shapes) of the touch attention mechanisms during three
haptic discontinuity following tasks. The new experimental design was
also used to evaluate the contributions of the different types of cues
modelled by the Bayesian models to the performance of the robotic
system.

3. Local perception of haptic stimulus map

3.1. Random variables of the model

The type of material describing workspace region v is represented
by the discrete random variable M v k( , ), defined as follows:

M Material Material∈ { ,…, }.v k( , ) 1 10 (1)

During local exploration of region v of the workspace at time
iteration step k, the robotic system acquires haptic sensory data
represented by variable h v k( , ). The categories of materials are discrimi-
nated according to different properties of texture and compliance,
hence haptic sensory inputs h v k( , ) are used to determine the category of
material describing the cell v of the workspace. Haptic sensing
measurements h v k( , ) are transformed using function g into a compliance
characterization of the explored surface, and using function f into a
texture characterization of the surface. This work considers the same
operator functions f and g of the work [10]. The texture and
compliance characteristics of the region v of the workspace are
described by the continuous random variables, E ≡v k( , ) “Texture
characterization of v”, and C ≡v k( , ) “Compliance characterization of v”,
respectively, according to the following expressions:

 E f E C g Ch h= ( ), ∈ , = ( ), ∈ .v k v k v k v k v k v k( , ) ( , ) ( , ) ( , ) ( , ) ( , ) (2)

3.2. Inference of the haptic stimulus category

The Bayesian model πper allowing the estimation of surface
material given haptic sensory inputs (Fig. 4) was extensively tested in
previous work [3], in which it was used to discriminate between
different classes of materials (the same set of 10 different classes used
in the work presented in Ref. [10], more specifically acrylic, brick,

Table 2
Comparison between the contributions of this work and the related works.

Study Apparatusa Local Haptic Perception Global Exploration of the workspace

Approachb Featuresc Approachd Taske Strategyf Workspaceg

This Work HS P T, CO P M: E, F: E AE GD:2D
[11] HS D C – – – –

[12] HS D T – – – –

[10] HS P CO, T, TC – – – –

[13] HS P T – – – –

[14] HS D T – – – –

[15] HS P C – – – –

[16] HS P S – – – –

[17] HS D C, TC – – – –

[18] HS D CO D M: C PD CS:2D
[19] HS D RO P F: T PD –

[20] HS P C D F:C AE –

[21] HS, VS P TO P M: E AE GD:2D
[22] HS P RO D M: E, F: E AE GD:2D
[20] HS D CI, CR D F AE CS:3D

a HS- haptic sensing; VS- visual sensing.
b P- probabilistic; D- deterministic.
c T- texture; CO- compliance; C- curvature; TC- thermal conductivity; S- stickiness; RO- raw sensory output; CI- contact intensity; CR- contact orientation.
d P- probabilistic; D- deterministic.
e M: E- mapping edge; M: C - mapping compliance; F- following; F: E- following edge; F: T- following texture; F:C: following curvature.
f AC- active exploration; PD- pre-defined exploration path.
g GD:2D - bi-dimensional grid; CS:2D- bi-dimensional Cartesian space points; CS:3D- tri-dimensional Cartesian space points.
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copper, damp sponge, feather, rough foam, plush toy, silicone, soft
foam, wood) with an average recognition rate higher than 90%, even
when sensory samples were corrupted with Gaussian white noise.
These categories of materials are characterised by different properties
of texture, compliance and thermal conductivity that were extracted
using BioTac biomimetic tactile sensor raw data (contact intensity,
vibration, heat flow). In our work, we only consider texture and
compliance properties of the materials.

The conditional independence relations between random variables
E C M, ,v k v k v k( , ) ( , ) ( , ) are expressed in Fig. 4a). Based on these assumptions,
the joint probability distribution function P E C M π( , , )v k v k v k per( , ) ( , ) ( , ) is
decomposed as described in Fig. 4b), with respective parametric forms.

At each time step, the probability distribution function
P M e c π( , , )v k v k v k per( , ) ( , ) ( , ) describing the probability of the surface at v
corresponding to each material category is inferred using the observed
data e c,v k v k( , ) ( , ) extracted from the samples acquired by the sensory
apparatus of the robotic system:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

P M e c π

P e M π
P c M π P M π

P e M π
P c M π P M π

( , , ) =

( , ).
( , ). ( , )

∑
( , ).

( , ). ( , )

v k v k v k per

v k v k per

v k v k per v k per

M
v k v k per

v k v k per v k per

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )v k( , )

(3)

3.3. Determination of P E M π( , )v k v k per( , ) ( , ) and P C M π( , )v k v k per( , ) ( , )

The parameters μ M( )E , σ M( )E , μ M( )C , σ M( )C of the Gaussian
functions modelling the Normal probability distributions
P E M π( , )v k v k per( , ) ( , ) and P C M π( , )v k v k per( , ) ( , ) are estimated during experi-
mental learning sessions using a maximum-likelihood procedure. As
described in Ref. [10], during the learning period, standard local
exploration procedures are performed for each of the n=10 reference
materials.

After the pre-determined number of standard local explorations,
the free parameters μ M( )E , σ M( )E , μ M( )C , σ M( )C of the Normal ( )
distributions are determined by calculating the averages μ and
standard deviations σ of E and C for each reference material. The
resulting P E M π( , )v k v k per( , ) ( , ) and P C M π( , )v k v k per( , ) ( , ) are represented in
Fig. 5 a) and b), extracting the data available from the manuscript of
the work [10].

4. Recognition of the shape of the global exploration path

4.1. Random variables of the model

As the haptic exploration of the workspace progresses, the explora-
tion path is described by the set of regions of the two-dimensional
workspace grid probed by the robotic system. The shape of the
exploration path provides cues that can be recognised by the haptic
exploration framework.

The category of the shape of the exploration path is represented by
discrete random variable Rk, defined as follows:

R Shape Shape∈ { ,…, }.k Θ1 (4)

Each class of shape described by discrete random variable Rk is
associated with a template, represented by a set of points templatei,

Shape template∀ 〈“ ”, 〉.i Θ i i∈{1, …, } (5)

This work assumes that the robotic system is able to recognize

Fig. 4. Bayesian model πper: “Local perception of haptic stimulus”. a) Graphical
representation. b) Description of the Bayesian program.

Fig. 5. Representation of P E M π( , )vi k vi k per( , ) ( , ) (a)) and P C M π( , )vi k vi k per( , ) ( , ) (b)) learned

for 10 reference materials. Data extracted from [10].
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Θ = 2 categories of shapes: a rectangle and a triangle, respectively.
The sequence of regions of the workspace explored by the robotic

system until time step k( − 1) is described by the set of workspace
locations   o o o( , ,…, )k0 1 −1 (Section 5). The categorisation process con-
sists of establishing a match between the points   o o o( , ,…, )k0 1 −1
explored by the robotic system until time step k( − 1) and each of the
templates templatei, representative of each category of structure of
discontinuity. The normalised matching error between each template
and the current exploration path is described by the continuous
random variable Li, defined as follows:

  L Υ f o o o template L[ , ] = (( , ,…, ), ), ∈ [0, 1]i
i ICP k i

i
0 1 −1 (6)

The matching between the two sets of points   o o o( , ,…, )k0 1 −1 and
templatei is determined using the Iterative Closest Point (ICP) method
[28], as described in Eq. (6).

Besides matching error Li, the ICP function fICP returns the
estimation of the geometrical transformation Υi between the two sets
of points. This transformation can be used to determine a new set of
points template′i which results from the registration of the templatei
points in the structure described by the set of points   o o o( , ,…, )k0 1 −1 .

This relation can be described by the geometrical transformation
represented in the following equation,

template Υ template′ = . ,i i i (7)

as used in Section 5.

4.2. Inference of category of shape

The graphical representation of Bayesian model πobj presented in
Fig. 6 a) expresses the conditional independence relations between
random variables L L R,…, ,k k

Θ
k

1 . According to these relations, the joint
probability distribution function P L L R π( ,…, , )k k

Θ
k obj

1 can be factored as
presented in Fig. 6 b). The probability distribution function followed by
each of those factors is also presented in Fig. 6 b).

At each time step, the probability distribution function
P R l l π( ,…, , )k k k

Θ
obj

1 is inferred using the Bayesian program of Fig. 6

through the following equation:

P R l l π
P l R π P l R π P R π

P l R π P l R π P R π
( ,…, , ) =

( , ). …. ( , ). ( )
∑ ( , )… ( , ) ( )k k k

Θ
obj

k k obj k
Θ

k obj k obj

R k k obj k
Θ

k obj k obj

1
1

1
k (8)

4.3. Determination of P l R π( , )k
i

k obj

The probability distribution functions P l R π( , )k
i

k obj are described by
beta probability distribution functions L with the constant parameters
α = 1.0L and β = 4.5L . All Θ probability distribution functions are
assumed identical.

The typical profile of the probability distribution function
P l R π( , )k

i
k obj is represented in Fig. 8b). The profile proposed for

P l R π( , )k
i

k obj attributes higher probabilities to lower levels of normal-
ised matching errors lik and lower probabilities to higher values of lik.
This promotes the selection of categories of the structure Rk that have a
template similar to the current exploration path   o o o( , ,…, )k0 1 −1 .

5. Integration of touch attention mechanisms in the
inference of the global exploration path

5.1. Random variables of the model

After the local exploration of the region v of the workspace is
concluded, the perceptual representation of the workspace is updated
with the sensory measurements acquired at v (update mechanisms
presented in Section 3), and the robotic system has to decide which
region v of the workspace grid should be explored next (path planning
of global exploration strategy).

The next exploration target is represented by the discrete random
variable Ok, defined as

O v v v v∈ { , , ,…, },k
θ1 2 3 (9)

in which θ is the total number of cells in the grid representation of the
workspace, and vi is a compact representation of the cell identifier.

Robotic platforms have been endowed with attentional mechanisms
implemented in different sensory domains in order to deal with sensory
overload, prioritisation and dynamic environments [29].

The sequence of workspace regions   o o o( , ,…, )k0 1 −1 previously
explored by robotic system, can provide cues about the shape of the
discontinuity that is being followed and indirectly influence the
estimation of ok . The cues are provided by matching the current
structure of the exploration path, with representations of typical shapes
stored in the memory of the robotic system. As presented in Section
5.3, unexplored regions of the workspace that are coincident with the
structure of the shape templates will be more likely to be explored.

The selection of Ok is also conditioned by inhibition-of-return
mechanisms. The inhibition level imposed this mechanism to the
overall attention process is implemented by the continuous random
variable I =v k( , ) “Inhibition level for cell v” as follows:

I Θd d I= 1 − (1 − ) , ∈ [0, 1]v k
α β

v k( , )
−1 1−

( , ) (10)

Due to the characteristics of the haptic exploration procedures
presented in Section 1, at time step k + 1 the inhibition-of-return
process promotes the exploration of regions of the workspace different
from the current position of the end-effector of the robotic system
(ok−1), therefore avoiding deadlocks. However, simultaneously, the
inhibition-of-return process inhibits the exploration of regions too
distant from ok−1, to avoid breaks during the discontinuity following
task. The inhibition levels I v k( , ) for each cell v are defined in Eq. (10),
considering α = 1.01 and β = 9 (corresponding plot presented in Fig. 8
(a)). Parameter d is given by d d d= /k max, where dk expresses the
Euclidean distance between ok and ok−1, and dmax is a constant
representing the maximum possible distance between ok and ok−1 for

Fig. 6. Bayesian model πobj: “Recognition of the shapes of discontinuities.”. a)
Graphical representation. b) Description of the Bayesian program.
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the workspace dimensions. Θ is a normalisation constant. The values of
I d( )v k( , ) range from 0 to 1, with I = 0v k( , ) indicating that the inhibition-
of-return mechanism applies no inhibition to cell v, and I = 1v k( , )
signalling full inhibition of cell v.

The selection of the region Ok of the workspace is also dependent
on mechanisms that prevent returning to regions already explored and
perceived with low uncertainty. In a nutshell, these mechanisms are
formulated to promote the “curiosity”, and are represented by the
continuous random variable U =v k( , ) “Uncertainty level for cell v”,
described as


U
M

max M
U=

( )
( ( ))

, ∈ [0, 1],v k
v k

v k
v k( , )

( , )

( , )
( , )

(11)

in which the operator  determines the information entropy [30] of
the discrete random variable M v k( , ).

Another factor conditioning the determination of Ok is the saliency
of the haptic stimulus for region v as comparing to its surroundings.
Besides depending on the perceived haptic stimulus M v k( , ) map, the
formulation of the saliency of haptic stimuli is also modulated by the
current objectives of the exploration task. The objectives of the task
being executed by the robotic platform are represented by the discrete
random variable T = “Task objective.”, given that T T T∈ { ,…, }Φ1 . During
an experimental run the value of T=t is considered constant through-
out. Φ expresses the total number of different tasks that can be
executed by the robotic platform.

Based on these considerations, the saliency of the haptic stimulus at
v is denoted by continuous random variable S v k( , ), and is dependent on
the class of tasks T=“Search and follow of discontinuities between
regions of surfaces with Materiala and Materialb.”. S v k( , ) is related by a
soft evidence relation with the perceived haptic stimulus M v k( , ) char-
acterization of the workspace (detailed description in Ref. [3]) given by

S
s s s
s

S=
max( , , )

, ∈ [0, 1]v k
x y z

norm
v k( , ) ( , )

(12)

The parameters s d= ( )x sobelx , s d= ( )y sobely and s d= ( )z sobelz are
determined using a 3 × 3 edge detector Gsobel (3 × 3 kernel around v)
following an approach described in Refs. [3,31]. High values of S v k( , )
correspond to regions around v expressing a haptic discontinuity
between Materiala and Materialb.

5.2. Inference of the next exploration target

Based on the conditional independence relations between random
variables Ok, I v k( , ), U v k( , ), R Sk v k( , ), T, presented in Fig. 7 a), the joint
probability distribution function P O T S U I R π( , , , , , )k v k v k v k k tar( , ) ( , ) ( , ) for
this model πtar, is decomposed as summarised in Fig. 7b), including
parametric forms corresponding to each factor. The final estimate for
the next exploration target ok is given using a Maximum a Posteriori
(MAP) decision rule, given a specific task T=t, as follows




⎛

⎝
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⎞

⎠
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( , ) ( , ) ( , )

( , )

( , ) ( , )

k

k k (13)

The determination of the probability distribution functions
P S O T π( , , )v k k tar( , ) , P I O π( , )v k k tar( , ) , P U O π( , )v k k tar( , ) , P R O π( , )k k tar in-
volved in Eq. (13) is described in detail next.

5.3. Determination of P S O T π( , , )v k k tar( , ) , P I O π( , )v k k tar( , ) ,
P U O π( , )v k k tar( , ) , P R O π( , )k k tar

As presented in Fig. 7 b), P I O π( , )v k k tar( , ) is described by a beta
probability distribution function I characterised by the constants
α = 1I and β = 2.5I . The profile of the probability distribution function

P I O π( , )v k k tar( , ) is represented in Fig. 8b). The selected profile for
P I O π( , )v k k tar( , ) attributes higher probabilities to lower levels of I v k( , )
and lower probabilities to higher values of I v k( , ) in order to promote the
selection of regions of the workspace with low values of inhibition level.

Following an analogous approach, P U O π( , )v k k tar( , ) is described by a
beta probability distribution function U (Fig. 8b)) with the constant
parameters α = 4U and β = 1U . P U O π( , )v k k tar( , ) attributes higher prob-
ability values to regions of the workspace perceived with higher
uncertainty U v k( , ), promoting the curiosity of the system.
P S O T π( , , )v k k tar( , ) is described by a beta probability distribution func-
tion R defined by α = 3R and β = 1R (Fig. 8 b)), assigning higher
probability values to workspace regions v with higher values of saliency
S v k( , ), promoting the exploration of regions of the workspace with
relevant haptic stimulus for the task under execution.

The probability distribution function P R O π( , )k k tar is defined as a
Gaussian Mixture Model (GMM), as follows

∑P R Object O π w g O μ Σ( = “ ”| , ) = . ( , )k j k tar
i template

i i k i
∈ ′j (14)

The Gaussians gi of the GMM are centred at the locations μi of the
workspace, with a covariance matrix Σ. Assuming a 2-D structure of the
workspace, each Gaussian function gi is defined as follows:

Fig. 7. Bayesianl model πtar:“Selection of the next exploration target”. a) Graphical
representation. b) Description of the Bayesian program.
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g O μ Σ
π Σ

( , ) = 1
2 | |

exp .i k i
O μ Σ O μ

(3/2)
− 1

2 ( − ) ( − )k i k i
−1

(15)

The centers μi of the Gaussians correspond to the points belonging
to the set Template′j , which are determined as presented in detail in
Section 4.

6. Experimental results

6.1. Computational simulation

The path planning method proposed by this work, supporting the
global haptic exploration strategy, was simulated computationally
using MATLAB. The simulation scenario consists on a planar 2D
probabilistic grid representing the workspace placed in front of a
hypothetical robotic platform, as represented in Fig. 9. Three different
materials were used: wood (Material10, brown cells), silicone
(Material8, blue cells) and flush (Material7, green cells). The spatial
distribution of the three materials intends to simulate an hypothetical
real world scenario shown in Fig. 9. The workspace grid has the
following lower and upper dimensions respectively X = 0 ml

W ,

X = 0.30 mu
W , Y = 0 ml

W , Y = 0.60 mu
W . Each cell (square) has a side

dimension of ε = 0.01 m. This work considers that all the regions of the
workspace are reachable by a robotic exploratory element.

As detailed previously in Section 1.2, this work does not address the
low-level (motor and sensing) control loop involved in physical
interaction between robotic fingers and surface. In the computational
simulation, the sensory features modelling the haptic properties,
texture (E v k( , )) and compliance (C v k( , )), of materials Material7,
Material8, Material10, were extracted from a previous work [10], as
detailed in Section 3.

6.2. Autonomous exploration of the workspace

This work assumes that at each time iteration step k of the system
illustrated in Fig. 3, an exploratory element of a robotic hand probes a
workspace region v. The sensory samples modelling texture e v k( , ) and
compliance c v k( , ) are artificially synthesised from the respective prob-
ability distribution functions P E m π( , )v k v k per( , ) ( , ) and P C m π( , )v k v k per( , ) ( , ) ,
given the known ground truth material m v k( , ) for that region of the
workspace, as defined in Fig. 9. Following the architecture of the
sensory processing pipeline represented in Fig. 3, the sensory features
samples e v k( , ), c v k( , ) are integrated by the Bayesian models to infer the
next region (via point) of the workspace that should be probed by a
robotic system.

In this scenario, the exploratory element of the robotic system
initialized (k=0) at random locations of the bi-dimensional grid
representing the workspace region. The full-list of initialization loca-
tions for the 100 runs, is available online at http://www.rmartins.net/
j2016a. Unlike in previous work [3], these cells of the grid are not only
located on a haptic discontinuity between the different materials of the
scenario; they can be located on homogeneous regions. This provides a
completely blind and unbiased initialization of the exploration task for
each exploration run.

During each exploration task, the workspace presented in the Fig. 9
was explored during 100 runs (100 different initial locations of the
exploratory element). For each run, the exploration procedures lasts
100 iterations (emulating time steps in realistic conditions) k = 0…99.

6.2.1. Exploration tasks
To evaluate the specificity and robustness of the Bayesian models

implementing the touch attention mechanisms proposed in this work,
the autonomous exploration of the workspace was performed using
three different tasks (T1, T2,T3). The objectives are the following
T1=“search and follow of discontinuities between Material7 and
remaining materials”; T2=“search and follow of discontinuities between
Material8 and remaining materials”; T3=“search and follow of dis-
continuities between Material10 and remaining materials”;.

6.2.2. Performance metric
Although the internal structure and configuration of the haptic

stimulus disposed in the workspace is unknown a-priori to the robotic
system, the ground truth describing the target locations (grid cells) of
the workspace that should be probed by the robotic platform during
task execution can be defined by a human operator for benchmarking
purposes, and is denoted as  b b b b= { , , ,…, }l1 2 3 , x yb = ( , ) ∈i

2. The
set of workspace regions actually probed by the robotic platform during
task execution, on the other hand, is denoted as  v v v v= { , , ,…, }k1 2 3 ,

x yv = ( , ) ∈i
2.

The performance of the autonomous execution of the task by the
robotic platform during an experimental run can be evaluated by the
following error metric:

∑Γ b v

b v b v

= ∥ − ∥, given that ∀ ∃ :

∥ − ∥ ≤ ∥ − ∥,
i

l

i nearest

i nearest i i

v v
=1

∈i nearest

(16)

Fig. 8. Graphical representation of: a) I v k( , ). b) P I O π( , )v k k tar( , ) , P U O π( , )v k k tar( , ) ,

P S O T π( , , )v k k tar( , ) , P l R π( , )k
i

k obj .
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Fig. 9. Scenario: a) Real world representation of the scenario. b) Schematic representation of configuration of the haptic stimulus placed in the workspace. The materials wood
(Material10), silicone (Material8) and flush (Material7) are represented in brown, blue, green respectively. c) Representation of the workspace in the virtual environment. Tasks: a)
Ground truth exploration path for the respective task. b)-f) Heat map of the exploration paths after 100 exploration runs with a duration of 100 time iterations each. Different
exploration behaviours by integrating different configurations of the Bayesian model πtar: b) full-model c) removing shape cues Rk d) removing haptic saliency S v k( , ) e) removing

inhibition-of-return mechanisms I v k( , ) f) removing uncertainty cuesU v k( , ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

R. Martins et al. Neurocomputing 222 (2017) 204–216

212



where ∥…∥ represents the Euclidean distance operator. This metric
determines the total Euclidean distance between each ground truth
point and the nearest point belonging the exploration path executed by
the robotic platform. According to this approach, better autonomous
exploration strategies provide lower values of Γ.

6.3. Discussion of the experimental results

The impact of the different components (discontinuity shape cues,
uncertainty, haptic saliency, inhibition-of-return) of the Bayesian
models implementing the touch attention mechanisms was evaluated
by comparing the exploration performance after discarding specific
components of the Bayesian model πtar: shape cues Rk, haptic saliency
S v k( , ), inhibition-of-return mechanisms I v k( , ), uncertainty cues U v k( , ). The
influence of those components was discarded by assuming that each of
those random variables is described by a uniform probability distribu-
tion throughout the respective experimental runs.

Animated representations (time lapse) of the probability distribu-
tion functions during 100 time iterations involved in the progressive
inference by the Bayesian model πtar of the workspace region that
should be explored next, are available online at http://www.rmartins.
net/j2016a, and an example is illustrated in Fig. 11.

The ground truth exploration paths for the objectives of the
exploration tasks T1, T2 and T3 are illustrated in Fig. 9 representing
the borders of the Material7, Material8 and Material10 with the
remaining materials in the workspace, respectively.

By performing a qualitative comparison between the ground truth
exploration paths and the heat maps resulting from the exploration
behaviour inferred by the full Bayesian model πtar in the Fig. 9, one
finds that there is a high correspondence between the spatial structure
of the most explored regions and the spatial structure of the ground
truth exploration paths. The performance metric presented in Fig. 10
also shows that the full model always provides a good result. The touch
attention mechanisms implemented by the Bayesian model πtar have
promoted the exploration of regions corresponding to the disconti-
nuities described in the objectives of the tasks T1, T2, T3, ignoring other
types of haptic discontinuities (Fig. 11).

The structural correspondence is higher for T1 and T2. This better
performance is justified by the better perceptual discrimination cap-
ability of this system concerning Material7 and Material8 relatively to
Material10 (extensive study in Ref. [3]).

The analysis of the results of discarding the influence of specific
components of the Bayesian model πtar (Fig. 9), shows that the
degradation of performance of the exploration behaviour is significant
(Fig. 10) when the effect of the haptic saliency S v k( , ) is not considered.
This causes the system to explore randomly the workspace, not taking
into consideration any information about task relevance concerning the
sensed haptic stimulus.

By neutralising the integration of the information about the
uncertainty of the perceptual representation of the workspace
(Fig. 9), the robotic system fails to have an exploration strategy that
produces results similar to the ground truth. Although the Bayesian
model πtar implements inhibition-of-return mechanisms, their effect is
transient, and therefore, after some time elapses, the system tends to
return to the same regions of the workspace that have been explored
previously and were perceived with low uncertainty, thus providing a
high saliency score for the task being executed. The plot of the
performance metric Γ for those conditions, shows that the degradation
of performance of the exploration behaviour is considerable (Fig. 10).

By disabling the integration of the effects of the inhibition-of-return
mechanisms, exploration task execution performance is less degraded.
The plots of the Γ metric, presented in Fig. 10, support this evidence by
showing a performance of the system at the same level as the full-
model condition. The removal of the transient effect of the inhibition-
of-return mechanisms is compensated by the integration of informa-
tion of mechanisms related with the uncertainty of the perceptual

Fig. 10. Temporal evolution (from k=0 to k=100 ) of mean value (average for the 100
runs; shaded colors represent SEM: standard error of mean ) of performance metric Γ by
integrating different configurations of Bayesian model πtar: full-model, removing shape
cues Rk, removing haptic saliency S v k( , ), removing inhibition-of-return mechanisms I v k( , ),

removing uncertainty cues U v k( , ). a) Task T1. b) Task T2. c) Task T3.
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Fig. 11. Representation of the P I O π( , )v k k tar( , ) , P S O T π( , , )v k k tar( , ) , P U O π( , )v k k tar( , ) , P R O π( , )k k tar , P O t r i u r π( , , , , , )k v k v k v k k tar( , ) ( , ) ( , ) probability distribution functions and the

exploration behaviour during the execution of the task T2 search and follow of discontinuities between Material8 and remaining materials, run 18. Dark colors represent lower
values. Light colors represent higher values. Animated versions of this type of representations for autonomous exploration tasks T1,T2 and T3, are available on-line www.rmartins.net/
j2016a.
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representation of the workspace, which naturally correspond to less
explored regions, if all surfaces in the workspace remain static/rigid.
These regions tend to be avoided by the system, even without the
influence of the inhibition-of-return mechanisms. The inhibition-of-
return mechanisms may play a more relevant role in more ambiguous
scenarios made of materials that the system can only perceive with high
uncertainty, even after considerable exploration.

Discarding the effects provided by the integration of shape cues
(Fig. 9), does not have a strong influence in the performance of the
exploration behaviour of the system (Fig. 10). The weak contribution of
the shape cues of the discontinuity to the improvement of the
performance of the robotic system was caused by the low number of
shape primitives recognised in this work (only two: rectangle and
triangle) and by the high number of points that were used to describe
each of the templates (around 50 points).

7. Conclusions and future work

The integration of touch attention mechanisms in the exploration of
surfaces by robotic hands proved to be effective to search and follow
haptic discontinuities based on noisy sensory data describing unknown
scenes. The updated perceptual representation of the workspace,
provided by the Bayesian model πper, together with shape cues about
the structure of the discontinuity being followed provided by the
Bayesian model πobj (extension of previous work [3]), are integrated
by the Bayesian model πtar to perform perceptual inference and drive
the decision process to determine the region that should be explored in
the subsequent time step.

The Bayesian models were tested in a simulated scenario including
three different materials during three different haptic exploration tasks.
The results presented in Section 6.2, have demonstrated that the
proposed approach provides the robotic system with a useful frame-
work to define and generalise exploration behaviours. As in [22], the
system was able to deal with severe changes in the slope of the
discontinuities. In all the tasks, the robotic system was able to follow
haptic discontinuities with progressive inversions in the slope of the
discontinuity, what clearly demonstrates the generalization capability
of the proposed approach. The emergent behaviour displayed by the
system offers an improvement on the results presented in Ref. [22].
Testing the system with slope variations in discontinuities other than
right angles (90 degrees) was suggested by [22] as a relevant future
course of work. The touch attention mechanisms proposed in this work
also showed high specificity. The robotic system followed the haptic
discontinuities between the materials of interest for each task, ignoring

other haptic discontinuities.
According with the results presented in Section 6.2, the perfor-

mance of the robotic system during the haptic exploration tasks is
heavily dependent on the integration by the Bayesian model πtar of
information about the haptic saliency S v k( , ) and uncertainty U v k( , ) of the
perceptual representation of the workspace. The formulation of the
contributions of the inhibition-of-return mechanisms I v k( , ) and shape
cues of the haptic discontinuities Rk is going to be studied extensively
in future work, in order to improve and optimise the contributions of
these components of the Bayesian model to the performance of the
robotic system. In future developments of this work, elementary shape
primitives should be recognised by the system and alternatives
methods to ICP should be tested. This will allow the system to
recognize earlier the tendencies in the shape of the discontinuity,
matching the current exploration path with the shape templates more
robustly (noise, scale, orientation). The future developments of this
work will also investigate the implementation of the automatic
computational optimization of the parameters defining the profile of
Beta distribution functions. Currently, the selection of parameters is
made empirically, testing different sets of values and analysing the
behaviour of the system (Table 1).

In this work, the space used to formulate the solution of the global
haptic exploration path planning consists in a 2D grid. The next
developments of the proposed approach will study the extension of
this space to a 3D grid. The operators and functions defined in 2D
space during the formulation of the Bayesian models can be easily
adjusted to 3D spaces (eg: exploration path matching with shape
temples; Sobel operators involved in the formulation of haptic saliency;
assignment of inhibition levels).
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