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ABSTRACT 

 

This dissertation presents a consistent derivation, from three-dimensional linear 

elasticity, of a two-dimensional mathematical model describing the bending and in-plane 

stretching behaviours, under a general system of quasi-static distributed loads and prescribed 

support displacements, of thin two-layer plates with partial shear interaction. The following 

key assumptions are made: 

(i) Each layer, when considered separately, behaves as a Kirchhoff plate. 

(ii) The interlayer (with non-zero thickness), when considered separately, behaves as a 

transverse shear-only Mindlin plate. 

(iii) Each layer is bonded to the interlayer in such a way that both sliding and detachment are 

prevented. 

The dimensional reduction stage of the derivation, from three spatial dimensions to just two, 

is accomplished by means of Podio-Guidugli’s method of internal constraints. This is 

followed by a process of assembly or aggregation, in which the continuity of displacements 

and certain stress components across each layer/interlayer interface is enforced. 

A problem with closed-form analytical solution illustrates the application of the two-

dimensional model and its capabilities. In particular, the solution is proven to be continuous 

across the whole range of zero, partial and full interaction between the layers. The problem is 

then generalized and a Navier-type solution is obtained. The results are compared with those 

reported in the literature. 

Possible applications of the model include the analysis of laminated glass plates under 

quasi-static short-term loads in service conditions and within a limited temperature range. 

 

Keywords: Thin two-layer plates, partial shear interaction, linear two-dimensional 

mathematical model, internal constraints, laminated glass 
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RESUMO 

 

Nesta dissertação apresenta-se uma dedução consistente, a partir da teoria da 

elasticidade linear tridimensional, de um modelo matemático bidimensional que descreve o 

comportamento à flexão e no plano, sob um sistema geral de cargas distribuídas quase-

estáticas e deslocamentos impostos nos apoios (“assentamentos”), de placas finas de duas 

camadas com interação de corte parcial. Admitem-se as seguintes hipóteses fundamentais: 

(i) Cada camada, quando considerada isoladamente, comporta-se como uma placa de Kirchhoff. 

(ii) A intercamada (com espessura não nula), quando considerada isoladamente, comporta-se 

como uma placa de Mindlin e apresenta apenas resistência ao corte transversal. 

(iii) A ligação entre cada camada e a intercamada é perfeita, considerando-se assim impedidos 

tanto o deslizamento como o afastamento nessas superfícies de descontinuidade material. 

A etapa de redução do número de dimensões espaciais de três para duas é realizada por 

intermédio do método de restrições internas proposto por Podio-Guidugli. Segue-se um 

processo de agregação, no qual se impõe, em cada interface camada/intercamada, a 

continuidade dos deslocamentos e de certas componentes de tensão. 

Um problema com a solução analítica ilustra as potencialidades do modelo desenvolvido. 

Em particular, mostra-se que a solução é contínua em toda a gama de interação entre camadas, 

desde a interacção nula até à interacção total. Este problema é depois generalizado e obtém-se 

uma solução do tipo Navier. Os resultados são comparados com os disponíveis na literatura. 

De entre as possíveis aplicações do modelo, destaca-se a análise de placas de vidro 

laminado sob a acção de cargas quase-estáticas de curta duração, em condições de serviço e 

dentro de uma gama de temperaturas limitada. 

 

Palavras-chave: Placas finas de duas camadas, interacção de corte parcial, modelo 

matemático bidimensional linear, restrições internas, vidro laminado 
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1 INTRODUCTION 

 

1.1 Laminated glass and its mechanical behaviour 

Laminated glass consists of two or more glass plies (layers), not necessarily of equal 

thickness, bonded together by an adhesive interlayer to form a composite member. Such laminates 

have long been used in the manufacture of aircraft and automobile windshields. Their use as a 

structural material in the building industry has become increasingly popular over the past three 

decades (Schittich et al., 2007) – Figures 1.1 and 1.2. Basic annealed, heat-strengthened and 

toughened glass can all be laminated, as can bent glass (O’Regan, 2015, p. 10). The materials 

used for the interlayers are polyvinyl butyral (PVB) – the one most widely used –, cast-in-place 

(CIP) resin, ethylene-vinyl acetate (EVA), thermoplastic polyurethane (TPU) and ionoplast 

(Wurm, 2007, p. 64). The number of individual glass plies that make up the laminate differ widely 

according to application, but in building structures the most common arrangement consists of only 

two plies (O’Regan, 2015, p. 10). 

 

Figure 1.1: Apple Store – 5
th

 Avenue, New York, 2011 

(architecture: Bohlin Cywinski Jackson; structural design: Eckersley O’Callaghan) 
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Figure 1.2: Glass bridge with a 21 m span – Champalimaud Centre for the Unknown, Lisbon, 2010 

(architecture: Charles Correa Associates; structural design: Schlaich Bergermann Partner) 

[photograph by Joel Santos, 2013] 

The mechanical behavior of laminated glass members is greatly influenced by the 

presence of the interlayer (whose thickness typically ranges from 0.38 mm to 6.0 mm) and by 

its properties. Because of the deformability of the interlayer, there is not full interaction 

between consecutive glass plies, i.e., the member does not behave as a monolithic, though 

inhomogeneous, unit. On the other hand, the assumption of zero interaction (no shear transfer 

between the glass plies) may be overly conservative in general. Indeed, the interlayer does 

restrain to some degree the relative movement of the glass plies, leading to what is commonly 

referred to as partial or incomplete interaction (e.g., Newmark et al., 1951). To complicate 

matters, the interlayer material is invariably a viscoelastic thermoplastic; the degree of 

interaction between glass plies is therefore time-dependent and highly influenced by the load 

history and the temperature (O’Regan, 2015, p. 10, Wurm, 2007, p. 66-67). 
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Laterally loaded laminated glass members can experience, prior to failure, deflections of 

the same order of magnitude as their own thickness, or even larger. In such cases, it is 

mandatory that geometrical non-linearities be accounted for. 

From a structural point of view, another fundamental aspect of laminated glass is its post-

breakage behaviour. When glass fractures,
1
 the individual glass fragments remain adhered to the 

interlayer, so that a certain remaining structural capacity is obtained as the fragments lock in 

place, enabling compressive forces to be transmitted through the broken glass; the tensile 

forces are resisted by the interlayer (Haldimann et al., 2008, pp. 14 and 30). 

 

1.2 Objective and scope of the dissertation 

In terms of their spatial character, many structural applications of laminated glass occur 

in the form of plates – flat members that exhibit one characteristic dimension, the thickness, 

which is much smaller than the other two. They are natural candidates to two-dimensional 

modelling.
2
 In view of the preceding section, a general-purpose two-dimensional mathematical 

                                                 
1
 Glass is a brittle and isotropic material with an almost perfect linearly elastic behaviour up to failure. Its Young 

modulus E is about 70 GPa (roughly a third of that of steel) and its Poisson ratio ν can be taken between 0.22 and 

0.24 (Haldimann et al., 2008, p. 7). As with all brittle materials, the tensile strength of glass depends very much 

on surface flaws, not necessarily visible to the naked eye. 

2
 As Andrade (2013, pp. 2-3) puts it, 

“the equations describing the mechanics of a three-dimensional continuum are formidable to solve. 

Even in this day and age of powerful numerical techniques and high-speed, large-capacity computers, 

it is not feasible to treat every solid body [and every structure] as a three-dimensional continuum, at 

least in routine applications. This dictates the need for tractable and accurate lower-dimensional 

models – two-dimensional models for plates and shells, one-dimensional models for bars, either with 

solid cross-section or thin-walled, according to their distinctive spatial character. Massive bodies, on 

the other hand, are the province of the three-dimensional theories.” 

Up to now, the analysis and design of laminated glass plates has relied on the use of approximate methods 

such as the concept of deflection- and stress-effective thicknesses – the actual laminated glass plate is replaced 

by “equivalent” single-layered monolithic glass ones which exhibit approximately the same maximum 

deflection and the same peak stresses, respectively, under equal load and support conditions (e.g., Galuppi and 

Royer-Carfagni, 2012, Galuppi et al., 2013) – or on the use of three-dimensional finite element models of 

varying degree of complexity (e.g., Teotia and Soni, 2018).  
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model for the analysis of laminated glass plates – yet to be developed, to the best of the 

author’s knowledge – should be able to account for: 

(i) the partial interaction between glass plies; 

(ii) the viscoelastic and temperature-dependent properties of the interlayer; 

(iii) geometrical non-linearities; 

(iv) quasi-static and dynamic loads, as well as indirect actions (such as temperature changes 

and support settlements); 

(v) realistic failure criteria. 

Moreover, the model should be able to represent accurately the supports and fixings used in 

actual construction practice, as the brittle nature of glass makes it extremely susceptible to 

stress concentrations (e.g., Dias da Silva, 2006, §VI.9). 

Such a list of requirements constitutes, in fact, the outline of a research program, but 

one that is obviously not feasible to carry out within the time constraints of a single MSc 

dissertation. As a first step along that road, the aim of the present work is to model two-

dimensionally the partial interaction behaviour of two-layer plates acted by quasi-static loads 

and prescribed support displacements, in a geometrically and materially linear context and at 

constant temperature. The point of departure is the key assumption that each layer (resp. the 

interlayer), when considered separately, behaves as a Kirchhoff plate (resp. as a transverse 

shear-only Mindlin plate). 

It may seem at first glance that such a first step overlaps entirely with the work of 

Foraboschi (2012), but that is not so, as there are important conceptual differences: 

(i) Some of Foraboschi’s assumptions are mutually contradictory and cannot be reconciled 

with the three-dimensional theory of linear elasticity: 

 The assumptions of isotropic linearly elastic material behaviour and 

inextensibility of transverse fibres are inconsistent with the assumption of zero 

transverse normal stresses (in each layer and in the interlayer). 

 Equilibrium inconsistencies arise from the assumptions of isotropic linearly 

elastic material behaviour and zero shear strains (in each layer). 
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In the present dissertation, inconsistencies of this sort – which, it must be said, are not 

uncommon in the literature on structural mechanics – are avoided by the adoption of the 

method of internal constraints (essentially due to Podio-Guidugli, 1989) to achieve the 

reduction in the number of spatial dimensions from three to just two. A complete 

characterization of the stress state, split into active and reactive parts, is also obtained. In 

fact, this dissertation can be seen as an extension of the work of Lembo and Podio-

Guidugli (1991), who used the method of internal constraints to derive consistently, from 

three-dimensional linear elasticity, the two-dimensional equations of multi-layered 

Kirchhoff plates with full interaction. 

(ii) Foraboschi’s definition of the transverse shear strains in the interlayer as the quotient of 

the relative displacements, parallel to the middle plane, between the end faces of the 

interlayer (which he identifies with the slip) by the thickness of the interlayer is shown to 

be incorrect and modified appropriately. 

Additional distinctive and novel features of the model presented in this dissertation, which 

increase its range of applicability, include the consideration of layers with unequal thicknesses 

and/or made of different materials (as in the case of glass and polycarbonate layers joined by 

a TPU interlayer) and making allowance for applied forces parallel to the middle plane of the 

plate. Finally, a judicious choice of generalized displacements, motivated by Gjelsvik’s 

(1991) work on composite beams, brings to centre stage a number of illuminating similarities 

with the plate theories of Kirchhoff and Mindlin (in fact, it might be suggestively said that the 

model presented in this dissertation is an amalgamation of these two classical theories). 

 

1.3 Outline of the dissertation 

This document is organized into four chapters. 

The first chapter – the present introduction – sets out the objective and the scope of the 

dissertation, which are motivated and placed in context by a brief literature review. 

Chapter 2 constitutes the bulk of the dissertation. It presents a consistent derivation, 

from three-dimensional linear elasticity, of a two-dimensional mathematical model describing 

the bending and in-plane stretching behaviours, under a general system of quasi-static 
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distributed loads, of thin two-layer plates with partial shear interaction. Two appendices 

supplement this chapter. Appendix 1 summarizes, in the form of a Tonti diagram, the two-

dimensional field equations of the model. Appendix 2 gives an explicit characterization of the 

reactive stresses (i.e., of those stresses that are not determined by the strains, but ensure that 

equilibrium is satisfied everywhere). 

In chapter 3, a problem with closed-form analytical solution illustrates the application of 

the two-dimensional model and its capabilities. Moreover, such an analytical solution will 

surely prove useful in the future as a benchmark for verifying computational models.
3
 The 

problem is then generalized and a Navier-type solution (i.e., a solution in the form of 

truncated double trigonometric series) is obtained. The results are compared with those 

reported by Foraboschi (2012) and it is found that significant differences may occur. 

Finally, chapter 4 provides a summary of the conclusions drawn from this work, 

emphasizing the main findings. Some suggestions for future research, which revisit the 

program set out at the beginning of section 1.2, are also made. 

 

                                                 
3
 Verification is here understood as “the process of determining if a computational model obtained by 

discretizing a mathematical model of a physical event and the code implementing the computational model can 

be used to represent the mathematical model of the event with sufficient accuracy” (Babuska and Oden, 2004). 
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2 TWO-DIMENSIONAL MATHEMATICAL MODEL 

 

2.1 Preliminary considerations 

A fixed right-handed Cartesian coordinate system, with axes x, y and z, is chosen in 

three-dimensional Euclidean space, which will therefore be identified with   . 

We consider a plate formed by two superposed parallel layers, labelled 1 and 2, each of 

which is, in itself, a plate-like body with uniform thickness. These two layers are connected 

by a thin interlayer, also with uniform thickness (Figure 2.1). In the absence of applied loads, 

each layer i (     ) occupies the reference configuration         

 
       

 
   , where 

(i)      is a bounded and simply connected open set with boundary  , which we take to 

be a piecewise regular Jordan curve, and        is the closure of   in   ;
4
 

(ii)    is the (small) thickness of the layer; 

(iii) the coordinate      identifies the position of the layer’s middle plane. 

For definiteness, we take      . We may think of the z-axis as being “vertical” and pointing 

“downwards”, in which case we refer to layer 1 as the “top” layer and to layer 2 as the “bottom” 

layer. The reference configuration of the interlayer is the set         

 
       

 
   , where 

          

 
          and     

 
         

 
       . 

The construction of the mathematical model is organized in terms of a three-tier 

hierarchy: 

(i) At the bottom, each of the layers and the interlayer are regarded as separate three-

dimensional continuum bodies, governed by the linear theory of elasticity. 

                                                 
4
 Since   is a piecewise regular Jordan curve, we can define the unit outer normal vector            and the 

unit tangent vector             , oriented in the usual way, almost everywhere along   (Figure 2.1). 
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Figure 2.1: Two-layer plate – Cartesian coordinate system and reference configuration 

(ii) At an intermediate level, the two layers and the interlayer are still considered separately, 

but now they are described by two-dimensional equations. 

(iii) At the top seats the layered plate, regarded as a single two-dimensional composite member. 

Accordingly, there are two steps involved in the process. The first step is one of 

dimensional reduction and the tool we use to take it, in a consistent manner, is the method 

of internal constraints, essentially due to Podio-Guidugli (1989). The second step is one of 

assembly or aggregation, somewhat reminiscent of the finite element method, in which the 

continuity of displacements and certain stress components across each layer/interlayer 

interface is enforced. 
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2.2 Assumptions 

The fundamental assumptions employed in the construction of the mathematical model 

are the following: 

(A1) Displacements are small (their derivatives are negligible in comparison with unity). 

(A2) Each layer is bonded to the interlayer in such a way that both sliding and detachment are 

prevented, thus the displacement field is continuous on         

 
       

 
   . 

(A3) Each layer, individually considered, behaves as a linearly elastic Kirchhoff plate: fibres 

initially normal to its middle plane         remain, after deformation, (A3.1) straight 

and normal to the deformed middle plane and (A3.2) unstretched (to within the first 

order). In other words, the said fibres undergo infinitesimal rigid displacements (Gurtin, 

1981, pp. 55-56), remaining normal to the deformed middle plane. 

(A4) The interlayer, individually considered, behaves as a linearly elastic Mindlin plate: fibres 

initially normal to its middle plane         remain, after deformation, (A4.1) straight 

and (A4.2) unstretched (to within the first order). In other words, the said fibres undergo 

infinitesimal rigid displacements, but do not necessarily remain normal to the deformed 

middle plane. 

Adopting the point of view of Lembo and Podio-Guidugli (1991) and Nardinocchi & Podio-

Guidugli (1994), we give the Kirchhoff assumptions A3.1-A3.2 and the Mindlin assumption 

A4.2 the status of internal constraints, that is, “constitutive prescriptions restricting the class 

of possible deformations” [italics added] (see also Podio-Guidugli, 1989, and Lembo, 1989). 

Transverse isotropy is the maximal material symmetry compatible with the constraint of 

inextensibility of transverse fibres, either taken in isolation (as in the interlayer) or in 

conjunction with the constraint of preservation of orthogonality between those same fibres 

and the middle plane (as in each of the two layers). This often overlooked fact leads to the 

adoption of the following additional assumption: 

(A5) The constituent materials are homogeneous
5
 and transversely isotropic, with the z-

direction being the direction of monotropy. 

                                                 
5
 The homogeneity assumption is not essential and could easily be relaxed. 
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Two further assumptions complete this enumeration: 

(A6) The interlayer material is modelled as a transverse shear-only material (e.g., Hooper, 

1973) – its stress response to deformation is such that no significant in-plane stresses 

    ,      and       are generated and so the Young and shear moduli in the x, y-plane of 

isotropy are taken to be zero. 

(A7) The reference configuration corresponds to a natural state (i.e., there are no residual 

stresses). 

 

2.3 Kinematics 

In a geometrically linear framework (assumption A1), the Cartesian components of the 

displacement field in layer i (     ) must satisfy the conditions 

 
 

  
            (1) 

 
 

  
          

 

  
            (2) 

 
 

  
          

 

  
           , (3) 

which express in mathematical terms the Kirchhoff constraints A3.2 and A3.1. The general 

solution of this system of partial differential equations is of the form 

                          
   

  
      (4) 

                          
   

  
      (5) 

                  ,         ,       
 

 
      

 

 
   ,      , (6) 

where          and   , which are functions of x and y alone, represent the Cartesian 

components of the displacement field of the middle plane of layer i (Figure 2.2). 

As for the Cartesian components of the displacement field in the interlayer, they must 

satisfy the conditions 
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            (7) 

 
 

  
 

 

  
          

 

  
             (8) 

 
 

  
 

 

  
          

 

  
            , (9) 

which put in force the Mindlin assumptions A4.2 and A4.1. The general solution of the 

system (7)-(9) is 

                                   (10) 

                                   (11) 

                  ,         ,       
 

 
      

 

 
   , (12) 

where   ,   ,    once again represent the Cartesian components of the displacement field of 

the middle plane of the interlayer and     ,      represent the (infinitesimal) rotations of the 

transverse fibres about the y- and x-axes (left and right-handed rotations, respectively). 

In conclusion, at the intermediate tier of the hierarchy set forth above, we have a total of 

eleven generalized displacements (i.e., scalar fields with domain       that parametrise the 

three-dimensional displacement fields (4)-(6) and (10)-(12)). 

To join together layers and interlayer into a single composite member and thereby reach 

the upper tier, we use assumption A2 and impose the continuity conditions 

                   
 

 
                    

 

 
    (13) 

                   
 

 
                    

 

 
    (14) 

                   
 

 
                    

 

 
   ,         ,      . (15) 

From (15) we conclude at once that 

          (16) 

and this common transverse displacement will be denoted simply by  . Drawing inspiration 

from Gjelsvik (1991) (see also Ferreira et al., 2018, and Andrade et al., 2019), we further define 
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            (17) 

    
 

     
            

 

     
        , (18) 

so that 

                    ,      . (19) 

It then follows from (13)-(14) that 

      
     

 
 
  

  
 

     

 
        

     

 
 
  

  
 

     

 
   (20) 

       
     

   
 
  

  
 

     

  
         

     

   
 
  

  
 

     

  
  . (21) 

Therefore, we have a total of five upper-tier generalized displacements – namely  ,  ,  ,    

and    –, whose geometrical meaning is illustrated in Figure 2.2 and in terms of which (4)-(6) 

and (10)-(12) can be rewritten as 

            
  

  
      (22) 

            
  

  
      (23) 

     ,       (24) 

       
     

 
       

     

   
  

  

  
  

     

 
       

     

  
    (25) 

       
     

 
       

     

   
  

  

  
  

     

 
       

     

  
    (26) 

     . (27) 

In (24) and (27) we are committing a harmless and rather convenient notational abuse, by 

identifying functions with different domains. 
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Figure 2.2: Displacement field 
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The non-vanishing Cartesian components of the (infinitesimal) strain tensor field 

corresponding to the displacement field (4)-(6) in each layer are 

      
   

  
 

   

  
       

    

   
 (28) 

      
   

  
 

   

  
       

    

    (29) 

              
   

  
 

   

  
 

   

  
 

   

  
        

    

    
,      . (30) 

Consequently, the membrane strains 

       
   

  
       

   

  
   

    
 

   

  
 

   

  
, (31) 

the bending curvatures 

       
    

          
    

    (32) 

and the twist 

         
    

    
 (33) 

provide a complete two-dimensional description of the state of strain in each layer i. They are 

adopted as intermediate-tier generalized strains. 

Let us now examine the state of strain in the interlayer. From (10)-(12) we find the non-

zero strain fields 

      
   

  
 

   

  
       

     

  
 (34) 

      
   

  
 

   

  
       

     

  
 (35) 

              
   

  
 

   

  
 

   

  
 

   

  
        

     

  
 

     

  
  (36) 

              
   

  
 

   

  
 

   

  
      (37) 

              
   

  
 

   

  
 

   

  
     . (38) 
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Of these, and by virtue of assumption A6, only the transverse shear strains       and       will 

play a role in the derivation of the two-dimensional model. Moreover,       and       are 

constant across the thickness of the interlayer, as implied by A4.1. We conclude that the 

description of strain in the interlayer at the intermediate tier requires only two generalized 

strains, the transverse shearing angles (37)-(38). To accentuate the distinction between bottom 

and intermediate tiers, we use the notation 

       
   

  
            

   

  
      (39) 

when positioning ourselves at the latter. 

We now plug (16), (19) and (21) into (28)-(30) and (37)-(38) to obtain 

      
  

  
       

   

      
   

  
 (40) 

      
  

  
       

   

      
   

  
 (41) 

       
  

  
 

  

  
        

   

    
    

   

  
 

   

  
 ,       (42) 

       
     

  
 

  

  
     (43) 

       
     

  
 

  

  
    . (44) 

This prompts the adoption of 

     
  

  
     

  

  
      

  

  
 

  

  
 (45) 

   
   

   

      
   

   

          
    

   

    
 (46) 

   
   

   

  
   

   
   

  
    

    
   

  
 

   

  
  (47) 

    
  

  

  
       

  
  

  
    (48) 

as the eleven generalized strains at the top tier of the hierarchy. The superscripts “K” and “M” 

are intended to emphasize the similarities with the Kirchhoff (1850, 1876) and Mindlin (1951) 

plate bending theories. For completeness, we note the following relations: 
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  (49) 

        
         

           
 ,       (50) 

       
     

  
    

        
     

  
    

 . (51) 

The interaction between the layers that form a composite member is often characterized in 

the literature in terms of their relative slip (e.g., Newmark et al., 1951): zero slip corresponds to 

full interaction (i.e., monolithic behaviour, meaning that fibres initially normal to the x, y-plane 

remain straight across the entire thickness of the layered plate), free slip corresponds to no 

interaction and, between these two limits, the situation is one of partial interaction (slip is 

restrained to a varying degree but not entirely prevented). In our model, the components    and 

   of the relative slip between the two layers (Figure 2.2), are defined by 

                       
  

  
     (52) 

                       
  

  
    . (53) 

Observe that 

                   
 

 
              

 

 
      

  

  
      (54) 

                   
 

 
              

 

 
      

  

  
     . (55) 

Unless the interlayer thickness is negligible, the slip components cannot be defined merely on 

the basis of the relative displacements, in the x- and y-directions, between the “bottom” face 

of layer 1 and the “top” face of layer 2. The additional term    
  

  
 (resp.    

  

  
) is 

necessary to ensure that      (resp.     ) if and only if    
  

  
 (resp.    

  

  
). Unlike 

Galuppi and Royer-Carfagni (2012), Foraboschi (2012) overlooks this point and the oversight 

carries over into the definition of the transverse shear stresses in the interlayer. 
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2.4 Constitutive equations 

According to the principle of determinism for internally constrained materials, the 

symmetric stress tensor fields on each layer and on the interlayer are split additively into reactive 

and active parts, also symmetric. The former, whose role is to maintain the constraints and ensure 

that equilibrium is satisfied, do no work in any admissible deformation. We have seen that the 

Kirchhoff constraints in force on each layer i restrict their possible deformations to those 

characterized by                   . The corresponding stress components – the normal 

stress      and the shear stresses       and       – are reactive. Similarly, the transverse 

inextensibility constraint in force on the interlayer restricts its possible deformations to those with 

      . The corresponding stress component – the normal stress      – is reactive. The 

remaining stress components are active and hence determined by an appropriate stress-strain law. 

Each layer is made of a homogeneous, linearly elastic and transversely isotropic material, 

with z as the direction of monotropy (assumption A5), internally constrained according to A3.1 

and A3.2 and without residual stresses (assumption A7). Let the material of layer i have Young 

modulus    and Poisson ratio    in the isotropy plane. Then the active stresses are related to the 

strains via (Lembo and Podio-Guidugli, 1991) 

      
  

    
                (56) 

      
  

    
                (57) 

       
  

       
 
    

,      .
6
 (58) 

                                                 
6
 In compliance form, Hooke’s law for an unconstrained transversely isotropic material (with z as the direction 

of monotropy) reads (e.g., Dias da Silva, 2006, § IV.4.c) 

      
 

  
     

  

  
     

     

    
     

       
  

  
     

 

  
     

     

    
     

       
     

  
     

     

  
     

 

    
     

       
       

  
      

       
 

    
      

       
 

    
       , 
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The interlayer material is also assumed to be homogeneous, linearly elastic and 

transversely isotropic, with z as the direction of monotropy. Moreover, the Young and shear 

moduli in the x, y-plane of isotropy are taken to be zero – assumption A6. This leaves the 

transverse shear stresses,       and      , as the only non-zero active stress components. They 

are given by the constitutive law 

                
                

, (59) 

where      is the relevant shear modulus (with          )
7
. They are independent of z, 

i.e., they do not vary across the interlayer thickness. 

At the intermediate level of the three-tier hierarchy, the active generalized stresses are 

the through-the-thickness resultants of the active stresses in each layer and in the interlayer. 

Written as functions of either the 14 intermediate-tier generalized strains (31)-(33) and (39) or 

the 11 top-tier generalized strains (45)-(48), we have the membrane forces 

             
   

 

 
  

    
 

 
  

 
    

    
                 

    

    
          

             
    (60) 

             
   

 

 
  

    
 

 
  

 
    

    
                 

    

    
          

             
    (61) 

               
   

 

 
  

    
 

 
  

 
    

       
  
    

 
    

       
   

  
      

  , (62) 

                                                                                                                                                         
with 

                         
     

  
 

     

    
. 

There are therefore five independent material parameters. 

To ensure that        regardless of     ,      and     , as required by the internal constraint A3.2, the 

compliance 
 

    
 must vanish. Similarly, we must set 

 

    
   so as to have               regardless of       

and      , as required by the internal constraint A3.1. Then, writing the first, second and fourth equations in 

stiffness form, we obtain (56)-(58) for the internally constrained material, with just two independent material 

parameters. 

7
 The case        corresponds to zero interaction between the layers; the limit as         corresponds to 

full interaction (monolithic behaviour). 



 

Thin Two-Layer Plates with Partial Shear Interaction 2 TWO-DIMENSIONAL MATHEMATICAL MODEL 

 

 

 

 

Viviane Setti Barroso 19 

 

the bending moments 

                   
   

 
 
  

    
 

 
  

 
    

 

       
  

  
   

       
  

    
 

       
  

  
 
      

   (63) 

                   
   

 

 
  

    
 

 
  

 
    

 

       
  

  
   

       
  

    
 

       
  

  
 
      

   (64) 

and the twisting moment 

                     
   

 

 
  

    
 

 
  

 
    

 

        
  

    
 

    
 

        
  

  
  (65) 

in each of the two layers (     ), and the transverse shear forces 

              
    

 

 
  

    
 

 
  

                         
  (66) 

              
    

 

 
  

    
 

 
  

                         
  (67) 

in the interlayer. 

Finally, at the top tier of the hierarchy, we define eleven active generalized stresses for 

the whole of the layered plate by requiring that they be energy-conjugate to the eleven top-tier 

generalized strains (45)-(48). Specifically, we write the elastic strain energy stored in the 

member, 

 U  
 

 
                                 

   
   

 

 
  

    
 

 
  

 
     

 
 

               
           

   
   

 

 
  

    
 

 
  

     , (68) 

in the form 

 U  
 

 
                     

   
  

 
    

  
 
     

  
  
   

 
 

     
  

 
    

  
 
     

  
  
    

  
  
    

  
  
      , (69) 

thus obtaining the following top-tier (two-dimensional) constitutive equations:  
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(i) Membrane forces: 

     
    

    
 

 
         

      

    
 

 
     

 
   

      

    
 

 
         

        

    
 

 
     

 
  (70) 

     
    

    
 

 
         

      

    
 

 
     

 
   

      

    
 

 
         

        

    
 

 
     

 
  (71) 

      
    

       
 
      

  
  

      

       
 
     

  
 ; (72) 

(ii) “Kirchhoff” bending and twisting moments: 

   
   

    
 

       
  

 
     

 
   

      
 

       
  

 
     

 
  (73) 

   
   

    
 

       
  

 
     

 
   

      
 

       
  

 
     

 
  (74) 

    
   

    
 

        
 
     

  
 ; (75) 

(iii)  “Mindlin” bending and twisting moments: 

   
   

      

    
 

 
         

  
     

    
 

 
     

 
   

        

    
 

 
         

  
       

    
 

 
     

 
  (76) 

   
   

      

    
 

 
         

  
     

    
 

 
     

 
   

        

    
 

 
         

  
       

    
 

 
     

 
  (77) 

    
   

      

       
 
      

  
  

  
     

       
 
     

  
 ; (78) 

(iv) “Mindlin” shear forces: 

   
      

        

  
 
  
    

      
        

  
 
  
 . (79) 

It should be noticed that 

         
 
            

 
              

 
    (80) 

   
       

 
      

       
 
       

        
 
    (81) 

   
         

 
      

         
 
       

          
 
    (82) 

   
  

     

  
       

  
     

  
    . (83) 



 

Thin Two-Layer Plates with Partial Shear Interaction 2 TWO-DIMENSIONAL MATHEMATICAL MODEL 

 

 

 

 

Viviane Setti Barroso 21 

 

2.5 Equilibrium 

In keeping with our three-tier approach, we start by examining the equilibrium of the 

layers and of the interlayer considered in isolation. 

Let the scalar fields     ,      and     , defined on         

 
       

 
   , denote the 

Cartesian components of the body forces per unit volume that act upon layer i (     ). They are 

assumed to be continuous, with      (resp.     ) also having a continuous partial derivative 

with respect to x (resp. y). Moreover, let the scalar fields     
 ,     

  and     
  (resp.     

 ,     
  and 

    
 ), defined on   , denote the Cartesian components of the surface tractions per unit area on 

the “top” face         

 
    (resp. “bottom” face         

 
   ) of layer i. Both     

  and     
  

(resp.     
  and     

 ) are assumed to be continuous and to have a continuous partial derivative 

with respect to x (resp. y), while for     
  and     

  we only require continuity. These body forces 

and surface tractions are illustrated in Figure 2.3.
8
 For each individual layer i to be in 

equilibrium, it is necessary that the Cartesian components of the respective symmetric tensor 

field satisfy the Cauchy equations 

 
     

  
 

      

  
 

      

  
        (84) 

 
      

  
 

     

  
 

      

  
        (85) 

 
      

  
 

      

  
 

     

  
        (86) 

on        

 
       

 
    and the traction boundary conditions 

               

 
          

                     

 
         

       (87) 

               

 
          

                     

 
         

       (88) 

              

 
          

                    

 
         

       (89) 

on the end faces         

 
   . 

                                                 
8
 With regard to the composite plate as a whole,      

      
      

   and      
      

      
   are external loads, while 

     
      

      
   and      

      
      

   are the internal contact forces exerted upon the layers across the 

layer/interlayer interface. 
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Figure 2.3: Surface tractions on the end faces and body forces for each of the two layers and for the interlayer 
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The interlayer is not subject to body forces (but body forces parallel to the z-axis could 

easily be included in the analysis) and we denote the surface tractions acting on its “top” and 

“bottom” faces by      
      

      
   and      

      
      

  , respectively, with the same smoothness 

requirements as those specified above for the surface tractions on the end faces of the layers 

(Figure 2.3). By virtue of assumption A6 and the absence of body forces, the Cauchy 

equations for the interlayer reduce to 

 
      

  
   (90) 

 
      

  
   (91) 

 
      

  
 

      

  
 

     

  
  . (92) 

They are subject to the traction boundary conditions 

               

 
          

                     

 
         

       (93) 

               

 
          

                     

 
         

       (94) 

              

 
          

                    

 
         

       (95) 

on the “top” and “bottom” faces. The first two Cauchy equations assert that       and       are 

independent of z (i.e., they are constant across the thickness of the interlayer), in agreement 

with our previous results (37)-(38) and (59). In particular, we must have 

     
      

        
      

   , (96) 

i.e., the surface tractions parallel to the x, y-plane on the “top” and “bottom” faces of the 

interlayer are symmetrical. 

Let us now move up the ladder to the intermediate tier of the hierarchy and establish the 

equilibrium equations for each plate-like layer in terms of the respective through-the-thickness 

stress resultants (Figure 2.4) – the membrane forces             
   

 

 
  

    
 

 
  

,      

       
   

 

 
  

    
 

 
  

 and               
   

 

 
  

    
 

 
  

, the bending moments                   
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and                   
   

 

 
  

    
 

 
  

, the twisting moment                     
   

 

 
  

    
 

 
  

 and 

the transverse shear forces              
   

 

 
  

    
 

 
  

 and              
   

 

 
  

    
 

 
  

 (the reactive stress 

fields       and       on each layer i are defined explicitly in Appendix 2). 
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Figure 2.4: Through-the-thickness stress resultants on each layer and on the interlayer 

If one takes (87)-(89) into consideration and appeals to Leibniz rule (e.g., Bartle, 1976, 

th. 31.7), then the integration of equations (84)-(86) over the thickness of each layer yields 

three equilibrium equations on   per layer: 
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        (97) 

 
      

  
 

     

  
        (98) 

 
     

  
 

     

  
       , (99) 

where 

               
      

         
   

 

 
  

    
 

 
  

 (100) 

               
      

         
   

 

 
  

    
 

 
  

 (101) 

               
      

         
   

 

 
  

    
 

 
  

 (102) 

represent the Cartesian components of the resultant force distribution applied to layer i, 

defined per unit area of  . These differential equations constitute a local two-dimensional 

statement of translational equilibrium for each layer. 

Similarly, if one multiplies equations (84)-(85) by        and then integrates over the 

thickness of each layer, one obtains two further equilibrium equations on   per layer: 

 
     

  
 

      

  
             (103) 

 
      

  
 

     

  
            , (104) 

where 

           
  

 
     

      
                

   
 

 
  

    
 

 
  

 (105) 

           
  

 
     

      
                

   
 

 
  

    
 

 
  

. (106) 

Equations (103) and (104) are a local two-dimensional statement of rotational equilibrium for 

each layer. 
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An immediate consequence of (99) and (103)-(104) is that 

 
      

     
       

    
 

      

         
     

  
 

     

  
   (107) 

must hold on  . 

We can apply a similar line of reasoning to the interlayer and thereby obtain, in addition 

to (96), the following two-dimensional equilibrium conditions in terms of the transverse shear 

forces              
    

 

 
  

    
 

 
  

 and              
    

 

 
  

    
 

 
  

: 

 
     

  
 

     

  
        (108) 

             (109) 

            , (110) 

where 

               
      

  (111) 

           
  

 
     

      
   (112) 

           
  

 
     

      
  . (113) 

Plugging (109)-(110) into (108), we get 

 
     

  
 

     

  
       . (114) 

To reach the upper tier of the hierarchy, the next step is to impose, across each 

layer/interlayer interface, the stress continuity conditions 

                      

 
                       

 
    (115) 

                      

 
                       

 
    (116) 

                     

 
                      

 
   ,         ,      , (117) 

which are equivalent to 
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  (118) 

     
       

      
       

  (119) 

     
       

      
       

 . (120) 

From (118)-(119) and (96) we find that 

     
       

      
       

 . (121) 

Then, in view of (80), it follows from equations (97) and (98), by direct summation over 

     , that 

 
   

  
 

    

  
      (122) 

 
    

  
 

   

  
     , (123) 

where 

                  
 
        

      
          

   
 

 
  

    
 

 
  

 
    (124) 

                  
 
        

      
          

   
 

 
  

    
 

 
  

 
    (125) 

represent the resultant external force distribution, in the x- and y-directions, applied to the 

composite plate (excluding its lateral surface        

 
       

 
   ) and defined per unit 

area of  . Similarly, the direct summation of equations (107) (over      ) and (114) yields 

 
    

 

     
     

 

    
 

    
 

    
   

 

  
 

   
 

  
    

   
 

  
 

   
 

  
  , (126) 

where 

              
 
             

      
          

   
 

 
  

    
 

 
  

 
    (127) 

   
        

  

 
    

  
  

 
    

                
   

 

 
  

    
 

 
  

 
    (128) 

   
        

  

 
    

  
  

 
    

                
   

 

 
  

    
 

 
  

 
   . (129) 
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To obtain (126), we have also used the identities 

      
 
           

  
     

  
       

    
  (130) 

      
 
           

  
     

  
       

    
 . (131) 

In addition, these identities, together with equations (103)-(104) and (109)-(110), enable us to 

recognise that the total transverse shear forces in the layered plate, 

                        
   

 

  
 

    
 

  
   

 

           

  
   

   
  

  
   

 (132) 

                        
    

 

  
 

   
 

  
   

 

           

  
   

   
 

 

  
   

, (133) 

are partly active (  
   

 and   
   

), to the extent that they are associated with the transverse 

shearing deformation of the interlayer, and partly reactive (  
   

 and   
   

), by virtue of the 

Kirchhoff internal constraint A3.1. 

The remaining two top-tier equilibrium equations follow from (97)-(98) through 

multiplication by    and summation over      . In view of (82)-(83), (96), (100)-(101), 

(109)-(110), (112)-(113) and (118)-(119), one gets 

 
   

 

  
 

    
 

  
   

    
    (134) 

 
    

 

  
 

   
 

  
   

    
   , (135) 

where 

   
             

        
            

   
 

 
  

    
 

 
  

 
    (136) 

   
             

        
            

   
 

 
  

    
 

 
  

 
   . (137) 

It should be noticed that 
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    (138) 

   
    

      
  

 
     

      
  

 
     

            
   

 

 
  

    
 

 
  

 
    (139) 

represent the moment distribution, with respect to the plane    , of the external forces 

applied to the composite plate (excluding its lateral surface        

 
       

 
   ), defined 

per unit area of  . 

In the manner of Gjelsvik (1981, pp. 25-27), we refer to   ,   ,   ,   
 ,   

 ,   
  and 

  
  as plate loads. 

 

2.6 The boundary value problem for the top-tier generalized displacements 

Upon combining the strain-displacement relations (45) to (48), the constitutive 

equations (70) to (79) and the equilibrium conditions (122), (123), (126), (134) and (135), we 

obtain the governing field equations for the layered plate in terms of the 5 generalized 

displacement fields  ,  ,  ,    and    (in equation (142),    and    denote the Laplace and 

biharmonic operators in the x, y-plane): 

  
    

    
 

 
    

   

     
    

       
 
    

   

     
    

       
 
    

   

    
  

      

    
 

 
    

    

     

   
      

       
 
    

    

      
      

       
 
    

    

    
      (140) 

  
    

       
 
    

   

    
  

    

       
 
    

   

     
    

    
 

 
    

   

     
      

       
 
    

    

    
  

   
      

       
 
    

    

     
      

    
 

 
    

    

         (141) 

   
    

 

       
  

 
           

        

  
     

   

  
 

   

  
     

   
 

  
 

   
 

  
   (142) 
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    (143) 

  
      

       
 
    

   

    
  

      

       
 
    

   

   
  

      

    
 

 
    

   

   
     

        

  
 
  

  
  

   
  

     

       
 
    

    

    
  

  
     

       
 
    

    

   
  

  
     

    
 

 
    

    

   
  

      
        

  
     

   . (144) 

There are six boundary conditions to be prescribed on   (or on each element of a 

partition of  ) – one more than in the theory of Mindlin and two more than in the theory of 

Kirchhoff. One possibility is to prescribe (the reader should regard the generalized stresses as 

written in terms of generalized displacements) 

(i) either   or           ; 

(ii) either   or           ; 

(iii) either   or    
    

 

  
, where 

              (145) 

    
     

    
    

      
    

       (146) 

and 

 
 

  
    

 

  
   

 

  
 (147) 

is the tangential derivative operator along  ; 

(iv) either 
  

  
 or   

 , where 

   
    

   
    

   
      

      (148) 
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and 

 
 

  
   

 

  
   

 

  
 (149) 

is the outer normal derivative operator along  ; 

(v) either    or   
       

   ; 

(vi) either    or    
      

   . 

The boundary value problem is greatly simplified if       and the plane     is 

chosen so that        
 
     . Indeed, under these circumstances, the generalized 

displacements   and   become uncoupled from  ,    and    – in other words, the boundary 

value problem splits into a “membrane problem” and a “bending problem”, independent of 

each other. 
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3 AN ILLUSTRATIVE PROBLEM WITH CLOSED-FORM EXACT 

SOLUTION AND ITS GENERALIZATION 

 

Consider a thin two-layer rectangular plate with dimensions a and b. The chosen 

Cartesian reference system is shown in Figure 3.1 and is such that        
 
     . Regarding 

the material properties, it is assumed that        . Our task is to solve the “bending 

problem” for this plate when a transverse surface load 

     
             

  

 
     

  

 
  (150) 

is applied to its “top” face. The boundary conditions are also indicated in Figure 3.1. 

Since     along all four edges, it follows that 
   

      along the edges parallel to the 

x-axis and 
   

      along the edges parallel to the y-axis. Similarly, the condition      

(resp.     ) along the edges parallel to the x-axis (resp. the y-axis) causes the vanishing of 
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Figure 3.1: Illustrative problem – Geometry, loading and boundary conditions 
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 (resp. 

   

  
) along those edges as well. Accordingly, the moment boundary conditions in 

Figure 3.1 are equivalent to 

 
   

         
   

                    
   

         
   

           (151) 

 
   

  
      

   

  
        

   

  
      

   

  
         (152) 

A trial solution of the form 

              
  

 
     

  

 
  (153) 

               
  

 
     

  

 
  (154) 

               
  

 
     

  

 
  (155) 

satisfies all boundary conditions. We must now examine whether it is possible to find real 

constants   ,    and    so as to satisfy the field equations 

   
     

  
   

        
        

        

  
      

   

  
 

   

  
       (156) 

     
        

  
 

  

  
     

   
     

 
   

     
    

    
   

 
 
    

    
   

 
 
    

    
    (157) 

     
        

  
 

  

  
     

   
     

 
   

    
 

   

 
 
    

    
 

   

 
 
    

   
 

    

   
   , (158) 

with        
 , everywhere on            . To do so, we start by rewriting these field 

equations in non-dimensional form on a fixed reference domain, independent of the plate 

dimensions a and b. Consider the change of independent variables 

     
 

 
     

 

 
 (159) 

and define new dependent variables 

         
 

 
         

  

 
               (160) 

                                     (161) 

                                    , (162) 
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whose domain is the unit square              . Given non-negative integers m and n, the 

chain rule yields 

 
     

      
      

 

      
 

      

      
      

    

    
           

 

 
         

 

 
  (163) 

 
      

      
      

 

    
 
       

      
      

    

    
           

 

 
         

 

 
  (164) 

 
      

            
 

     
       

            
    

               
 

 
         

 

 
  (165) 

(the zeroth-order derivative means the function itself). Inserting these results into the 

differential equations (156) to (158) and introducing the non-dimensional ratios: 

   
 

 
 (166) 

   
              

         

        
  

   

 (167) 

   
     

     
 
   

     
  

   

 (168) 

   
            

     
  

   

, (169) 

we obtain 

                       
  

 
                               (170) 

    
  

 
          

   

 
           

   

 
                    (171) 

     
  

 
     

   

 
          

   

 
                        . (172) 

Since these equalities must hold for every                  , it follows that 

                      
  

 
                (173) 

   
  

 
          

   

 
            

   

 
     (174) 

    
  

 
     

   

 
          

   

 
          (175) 

and from this linear algebraic system we find 
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   (176) 

    
 

                              
   (177) 

    
  

                              
      . (178) 

Now that the upper-tier generalized displacements are known, all other quantities of 

interest can be found by differentiation, irrespective of their position in the three-tier 

hierarchy that we have established at the outset of this work. For instance, the top-tier active 

generalized stress distributions are given by: 

(i) “Kirchhoff” bending and twisting moments 

   
   

     
  

   

        
 

   

     
   

     
       

  
   

        
 

 

   
 

         
  

 
     

  

 
  (179) 

   
   

     
  

   

        
  

   

    
   

     
       

  
   

        
 

 

   
 

         
  

 
     

  

 
   (180) 

    
   

     
  

   

       
 
   

    
  

       
  

   

       
 
  

  
    

  

 
     

  

 
 ; (181) 

(ii) “Mindlin” bending and twisting moments 

   
   

   
      

 
   

     
   

  
  

   

  
   

    
      

 
   

     
 

   
 

          
  

 
     

  

 
  (182) 

   
   

   
      

 
   

    
  

   

  
 

   

  
  

    
      

 
   

    
 

 

  
 

 

  
        

  

 
     

  

 
  (183) 

    
   

   
      

 
   

      
 

   

  
 

   

  
    

    
      

 
   

   
 
   

 
     

  

 
     

  

 
 ; (184) 

(iii) “Mindlin” shear forces 

   
      

        

  
 

  

  
         

        

  
 

 

 
           

  

 
     

  

 
  (185) 

   
      

        

  
 

  

  
         

        

  
 

 

 
           

  

 
     

  

 
 . (186) 

The shape of these distributions is shown qualitatively in Figures 3.2-3.5 under the 

assumption      (hence     , 
 

 
        and  

 

 
    

 

 
         ) and, in the 
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case of Figure 3.2, also under the assumption         
 

 
 

 

   
 

 
 

 

  (hence 
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Figure 3.2: Illustrative problem – Qualitative shape of the distributions of “Kirchhoff” and 

“Mindlin” bending moments, assuming      and         
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Figure 3.3: Illustrative problem – Qualitative shape of the distributions of “Kirchhoff” and 

“Mindlin” twisting moments, assuming      
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Figure 3.4: Illustrative problem – Qualitative shape of the distribution of “Mindlin” shear 

forces   
 , assuming      

x
y

z

a
b

( , )M
yz Q x y

 

Figure 3.5: Illustrative problem – Qualitative shape of the distribution of “Mindlin” shear 

forces   
 , assuming      

 

We shall now examine in some detail the “vertical” (i.e., parallel to the z-axis) support 

reactions, whose determination is not without its subtleties. We have to take into account the 

total shear force and the “Kirchhoff” twisting moment distributions along the edges, but not 

the “Mindlin” twisting moments (generated by the membrane forces       and      ), which 

are balanced directly by corresponding reaction couples. Without loss of generality, we 
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assume once again that     . As in ordinary Kirchhoff plate theory, the “Kirchhoff” 

twisting moment distribution along an edge is replaced by a statically equivalent system of 

vertical forces (distributed along that edge and concentrated at the corners) – Figure 3.6 

illustrates this replacement for the edge    . The distributed vertical reactions on the edges 

    and     are thus found to be directed “upwards” (i.e., opposite to the applied load) 

and to follow the sinusoidal laws 

                  
    

 

  
         

   
 

  
       

    
 

  
        

         

  
     

  
   

        
 
   

              
   

                
        

  
 

  

  
                

   
     

  
   

        
    

  

  
      

  

  
       

        

  
 

 

 
           

  

 
  (187) 

                  
    

 

  
         

   
 

  
       

    
 

  
        

         

  
     

  
   

        
 
   

              
   

     
           

        

  
 

  

  
                

   
     

  
   

        
    

  

  
      

  

         
        

  
 

 

 
           

  

 
 . (188) 

Clearly, 

                 ,       (189) 

                 ,      . (190) 

From symmetry considerations, it may be concluded that equations (187) and (188) also 

represent the distribution of vertical support reactions along the edges     and    , 

respectively. In addition, concentrated reactions in the “downward” direction (i.e., in the 

direction of the applied load) occur at the four corners of the plate (Figure 3.7). These corner 

reactions are all equal, because of symmetry, and their magnitude is 

         
        

     
  

   

       
 

   

    
      

     
  

   

      
 
  

  
  , (191) 

in which the factor 2 comes from the two perpendicular edges meeting at each corner. It is 

easily verified that 
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   (192) 

(cf. equation (173)), as required for equilibrium. 

In the case of zero interaction between the two layers, which corresponds to      

(and hence to    ), one gets the deflection field 

   
             

      
  

   
 

      
  

   

    
  

 
     

  

 
 , (193) 

while the rotations    and    are identically zero. The plate behaves globally as a simply 

supported Kirchhoff plate with flexural rigidity 
     

  
   

        
 (Timoshenko and Woinowsky-Krieger, 

1959, § 27). The free interlayer slip is given by 

            
  

  
         

             

      
  

   
 

      
  

   

     
  

 
     

  

 
  (194) 

             
  

  
         

             

       
  

   
 

      
  

   

     
  

 
     

  

 
 . (195) 

At the other end of the spectrum, when         (that is, when     ) we find 

 
  

 
 

 

                
 (196) 

    
 

                
  (197) 

    
  

                
 . (198) 

Therefore, for each                  , 

        
           

      
  

   
 

     
  

 

  
   

    
 
   

     
  

 
     

  

 
  (199) 

           (200) 

          . (201) 
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Figure 3.6: Illustrative example – Determination of the vertical support reactions 
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Figure 3.7: Illustrative problem – Vertical support reactions 
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In a pointwise sense, the behaviour of the plate tends to that of a simply supported Kirchhoff 

plate with flexural rigidity 
 

         
  

 

  
   

    
 
          

     
  

   

        
 and no interlayer 

slip (full interaction).
9
 

The results are therefore continuous across the whole range of zero, partial and full 

interaction. 

Having solved a problem, one should not fail to look back at the completed solution, to 

re-examine the result and the path that led to it and to ask the question: “Can you use the 

result, or the method, for some other problem?” (Polya, 1973). Let us do just that. Suppose 

that the applied transverse load is given by 

     
               

   

 
     

   

 
 , (202) 

where m and n are positive integers. All other data remain the same. Then, proceeding as 

before, we find 

                
   

 
     

   

 
  (203) 

                 
   

 
     

   

 
  (204) 

                 
   

 
     

   

 
 , (205) 

with 

 
    

 
 

              

                                 
      (206) 

      
  

                                 
      (207) 

                                                 
9
 In Foraboschi’s (2012) model, the slip components (   and    in his notation) “approach zero without 

reaching zero” as         , a rather ambiguous statement that seems to mean that the pointwise limit for 

full interaction is actually not zero but some small quantity. This interpretation is in line with this author’s 

undue omission of the terms    
  

  
 and    

  

  
 in the definition of the slip components – see the remark after 

equations (54)-(55). It is also incorrect to assert that with zero slip “no shearing stress would be exchanged 

through the interfaces” – in the full interaction limit, the transverse shear stresses in the interlayer become 

reactive and no inconsistency arises. 
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      (208) 

and 

      
              

     
  

   

. (209) 

It follows by linearity that if the load is given by a finite sum of the form 

     
                 

   

 
     

   

 
  

   
 
   , (210) 

where M and N are positive integers, then 

                  
   

 
     

   

 
  

   
 
    (211) 

                   
   

 
     

   

 
  

   
 
    (212) 

                   
   

 
     

   

 
  

   
 
   . (213) 

As a concrete example, let us take 

      
   

  
       

   

 
     

   

 
     

 

 

 

 
  

    

                        

                           

   (214) 

These are the Fourier coefficients of a uniform load    on the interior of the rectangle 

               (e.g., Rektorys, 1994, pp. 688-689) – Figure 3.8. The maximum deflection 

occurs at the centre of the plate (  
 

 
 ,   

 

 
 ) and is given by 

                         
 
   

 
   . (215) 

We considered the twelve case studies in Foraboschi (2012), all with                   

and           . The remaining data and the calculated maximum deflections, accurate to 

five significant digits – to meet this target, it was necessary to consider between        

and        in equation (215) – are presented in Table 3.1. The relative differences,  , 

between Foraboschi’s results and ours vary from 0.35% to 18.20%. Though definite 

conclusions cannot be drawn on the basis of such a small and unsystematic data set, it appears 

that   increases with the shear modulus      of the interlayer and with its thickness   . This 

would be consistent with Foraboschi’s undue omission of the terms    
  

  
 and    

  

  
 in the 
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Figure 3.8: Truncated Fourier sine series expansion of a uniform load    on the interior of the 

rectangle             – Gibbs phenomenon (e.g., Hewitt and Hewitt, 1979) is clearly visible 
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definition of the slip components    and    (and the consequential omission of the terms  
  

  
 

and 
  

  
 in the definition of the interlayer transverse shear strains        and       ) – see the 

remark after equations (54)-(55). We also provide in Table 3.1 the maximum deflections 

corresponding to zero interaction (   ) and to full interaction (    ), denoted 

respectively by     
  and     

 . The non-dimensional ratio in the last column places the 

actual partial interaction situation in relation to these limits. 

For the same twelve case studies, the maximum interlayer transverse shear strains 

             
     

  
                 

    

 
       

   
 
    (216) 

             
     

  
                  

    

 
       

   
 
   , (217) 

occurring at          
 

 
   and        

 

 
    , respectively, are shown in Table 3.2. 

Convergence is now significantly slower and, to obtain results that are accurate to four 

significant digits, it was necessary to consider up to       . The relative differences   

between Foraboschi’s results and ours now range from –11.50% to 50.50%. 

 



 

 

Table 3.1: Case studies – Maximum deflections 

                          (mm)  Δ     
      

      
      

            

    
      

 
 

(mm) (mm) (mm) (mm) (N/mm
2
) (kN/m

2
) Present work Foraboschi (2012)  (%) (mm) (mm) 

1500 1000 4.0 1.52 0.85 2.0 8.7680 10.363  18.20 19.688 2.9327 0.652 

2000 1500 5.0 1.14 0.44 1.20 12.549 13.909  10.80 26.277 4.7570 0.638 

2000 1500 8.0 0.38 0.18 1.80 5.8544 5.9613  1.83 9.6231 2.2422 0.511 

2000 2000 10.0 0.76 0.02 0.75 3.7846 3.7977  0.35 3.9762 0.88886 0.0621 

2000 2000 10.0 0.76 1.50 0.75 1.3918 1.4593  4.85 3.9762 0.88886 0.837 

3000 2000 10.0 0.76 0.04 0.75 6.6463 6.7039  0.87 7.5602 1.6901 0.156 

3000 2000 10.0 0.76 3.00 0.75 2.0683 2.1807  5.43 7.5602 1.6901 0.936 

6000 2000 10.0 0.76 0.07 0.75 9.1818 9.3404  1.73 11.973 2.6766 0.300 

6000 2000 10.0 0.76 7.00 0.75 2.8809 3.0461  5.73 11.973 2.6766 0.978 

4000 3000 12.0 1.52 0.60 1.50 16.202 17.330  6.96 38.017 7.9068 0.725 

4000 3500 14.0 1.14 4.50 1.50 8.7250 9.2482  6.00 34.846 7.7291 0.963 

4000 4000 18.0 0.38 1.20 1.50 6.1958 6.2896  1.51 21.817 5.2852 0.945 

  



 

 

 

Table 3.2: Case studies – Maximum transverse shear strains in the interlayer 

                                  Δ              Δ 

(mm) (mm) (mm) (mm) (N/mm
2
) (kN/m

2
) Present work Foraboschi (2012)

*
  (%) Present work Foraboschi (2012)

**
  (%) 

1500 1000 4.0 1.52 0.85 2.0 0.06507 0.05758 –11.50 0.08379 0.07987 –4.68 

2000 1500 5.0 1.14 0.44 1.20 0.09613 0.09082 –5.52 0.1158 0.1148 –0.87 

2000 1500 8.0 0.38 0.18 1.80 0.1896 0.1930 1.79 0.2314 0.2452 5.95 

2000 2000 10.0 0.76 0.02 0.75 0.08786 0.08518 –3.05 0.08786 0.08518 –3.05 

2000 2000 10.0 0.76 1.50 0.75 0.01704 0.01847 8.41 0.01704 0.01847 8.41 

3000 2000 10.0 0.76 0.04 0.75 0.1082 0.1044 –3.49 0.1471 0.1484 0.88 

3000 2000 10.0 0.76 3.00 0.75 0.01053 0.01153 9.46 0.01269 0.01532 20.70 

6000 2000 10.0 0.76 0.07 0.75 0.1054 0.1009 –4.30 0.1914 0.2324 21.40 

6000 2000 10.0 0.76 7.00 0.75 0.005009 0.005105 1.92 0.006888 0.01037 50.50 

4000 3000 12.0 1.52 0.60 1.50 0.08962 0.09034 0.81 0.1068 0.1134 6.16 

4000 3500 14.0 1.14 4.50 1.50 0.01804 0.02058 14.10 0.01919 0.02260 17.80 

4000 4000 18.0 0.38 1.20 1.50 0.05799 0.06742 16.30 0.05799 0.06742 16.30 

*
 The results presented in this column follow from Table 1 (values of 1ξm ) and equation (11a) in Foraboschi (2012) 

**
 The results presented in this column follow from Table 1 (values of 1ηm ) and equation (11b) in Foraboschi (2012) 
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4 SUMMARY AND CONCLUSIONS. RECOMMENDATIONS FOR 

FUTURE WORK 

 

This dissertation presented a consistent derivation, from three-dimensional linear 

elasticity, of a two-dimensional mathematical model describing the bending and in-plane 

stretching behaviours, under a general system of quasi-static distributed loads and prescribed 

support displacements, of thin two-layer plates with partial shear interaction. 

The dimensional reduction stage of the derivation is accomplished by means of Podio-

Guidugli’s method of internal constraints – the imposition of appropriate internal constraints, 

accompanied by reactive stresses, to plate-like bodies made of transversely isotropic 

materials, together with integration over the thickness. This is followed by a process of 

assembly or aggregation, in which the continuity of displacements and certain stress 

components across each layer/interlayer interface is enforced. 

With this approach, a complete characterization of displacement, strain and stress fields 

that exactly satisfy the equations of three-dimensional linear elasticity was achieved. 

Moreover, one’s choice of generalized variables brings to centre stage a number of 

illuminating similarities with the classical plate theories of Kirchhoff and Mindlin, thus 

providing valuable physical insight particularly when it comes to the specification of 

boundary conditions – a total of six boundary conditions are required, one more than in the 

theory of Mindlin and two more than in the theory of Kirchhoff – and the determination of 

support reactions. 

Foraboschi’s (2012) overlooks the fact that if the interlayer thickness is not negligible, 

then the slip cannot be defined merely as the relative displacement, parallel to the x, y-plane, 

between the end faces of the interlayer. This oversight carries over into the definition of the 

transverse shear strains and stresses in the interlayer, and so Foraboschi’s model is flawed. 
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The closed-form solution to an illustrative example was proven to be continuous across 

the whole range of zero, partial and full interaction between the layers. A generalization of 

this illustrative example shows that the results (maximum deflections and maximum 

transverse shear strains in the interlayer) obtained with the proposed model can differ 

significantly from Foraboschi’s predictions. 

Possible applications include the analysis of laminated glass plates under quasi-static 

short-term loads in service conditions and within a limited temperature range. Additionally, 

this mathematical model can be improved and some recommendations for future research are 

as follows: 

 To extend the range of applicability of the mathematical model derived in this dissertation by: 

(i) addressing the dynamical response of layered plates, giving special consideration to 

impact loads); 

(ii) incorporating geometrically non-linear effects, possibly using von Kármán plate 

theory; 

(iii) adopting a viscoelastic and temperature-dependent material model for the 

interlayer. 

 To develop finite element procedures for the numerical analysis of the mathematical model 

derived in this dissertation and its suggested extensions. 

 To investigate the parameters that influence the most the mechanical behaviour of layered 

plates in general and laminated glass plates in particular. 
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APPENDIX 1: A SUMMARY, IN THE FORM OF A TONTI DIAGRAM, 

OF THE TOP-TIER FIELD EQUATIONS OF THE TWO-

DIMENSIONAL MODEL 

 

The objective of this appendix is twofold: 

(i) To offer an overall, sweeping view of the two-dimensional model developed in the body 

of the dissertation (of its top tier, to be precise); 

(ii) To underscore the basic ingredients – the building blocks, so to speak – and the dual 

structure of this model. 

In the top-tier field equations, we can single out four sets of dependent variables (all of 

which are all real-valued functions defined on      ): 

(i) The generalized displacements and strains, collected in the column vectors 

   

 
 
 

 
 

 
 
 
  

   
 
 

 
 

    

  
  

  

  

  

 
 
 
 
 
 
 

 
 
 
 
 
 

   

   

    

  
 

  
 

   
 

  
 

  
 

   
 

   
 

   
  

 
 
 
 
 
 

 
 
 
 
 
 

, (1.1) 

which Tonti (2013, § 5.4.2) classifies as “configuration variables”; 

(ii) The plate loads (corresponding to the generalized displacements) and the active 

generalized stresses (conjugate to the generalized strains), arranged in the column vectors 
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, (1.2) 

which Tonti (2013, § 5.4.1) classifies as “source variables”. It should be noted that the 

plate loads   
  and   

  are associated with derivatives of the generalized displacement   

and not with independent generalized displacements in their own right. This is a direct 

consequence of the internal constraints A3.1. 

The generalized displacements   and the generalised strains   are connected by the 

kinematic equation 

     , (1.3) 

where 

    

    
    
     

     

  (1.4) 

is a formal linear differential operator10 with non-zero blocks 

    

 
 
 
 
 

 

  
 

 
 

  

 

  

 

   
 
 
 
 

      

 
 
 
 
 

  

   

  

   

 
  

     
 
 
 
 

      

 

  
 

  

      
  
  

 . (1.5) 

Tonti (2013, § 6.6) calls (1.3), which agglutinates equations (45) to (48), a “definition 

equation”. 

                                                 
10

 In this context, the word “formal” just means that the domain of the operator is not specified. 
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The active generalized stresses      are related to the generalized strains   through the 

constitutive relation 

        , (1.6) 

where   is the symmetric stiffness matrix 

   

 
 
 
 

        
      

   
          

       
 
 
 

 (1.7) 

with non-zero blocks 
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  (1.12) 

(cf. equations (70)-(79)). Observe that 

          
 
             

 
            

     
 
               

 
   , (1.13) 
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where 

      
    

    
   

    
    

  
    

 

  (1.14) 

     
    

 

       
  

  

    
    

  
    

 

  (1.15) 

are the membrane and bending stiffness matrices of each individual layer i (     ) – e.g., 

Blaauwendraad (2010, pp. 13 and 63). 

The plate loads   are related to the active generalized stresses      via the equilibrium 

condition 

         , (1.16) 

where (the superscript “T” means transposition) 

     

   
    

   
     

 

    
   

  (1.17) 

is the formal adjoint of   (e.g., Lanczos, 1996, §§ 4.10-4.12).11 The duality between 

kinematics and statics (e.g., Carpinteri, 1997, § 8.3) is explicit. 

The three equations (1.3), (1.6) and (1.16) can be combined to yield, in Tonti’s 

terminology (TONTI 2013, § 6.1), the “fundamental equation” 

        . (1.18) 

This is just a compact matrix format for the set of equations (140) to (144). The process is 

summarised in Figure A1.1 by means of a Tonti diagram (Tonti, 1972). 

                                                 
11 This means that 

             
 

               
 

                

for any given column vectors   and     , unrelated to each other (i.e., it is not required that         ) and 

whose elements are sufficiently differentiable but are not subject to specific boundary conditions. 
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Figure A1.1: Tonti diagram of structural relations 

 

To the four sets of dependent variables already described, we can now add the reactive 

generalized stresses, collected in the column vector 

       
  

   

  
    . (1.19) 

These reactive generalized stresses satisfy the equilibrium condition 

        
     

  
 

  
  , (1.20) 

which can be further developed into 

        
         

  
 

  
  . (1.21) 
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APPENDIX 2: THE REACTIVE STRESS FIELDS      ,       AND      

ON EACH LAYER; THE REACTIVE STRESS FIELD 

     ON THE INTERLAYER 

 

This appendix provides an explicit characterization of the reactive stress fields in terms 

of upper-tier generalized displacements and in terms of intermediate-tier generalized stresses. 

The transverse shear stress field       on the “top” layer (   ) must satisfy the Cauchy 

equation (84) and the traction boundary condition (871). These relations, when combined with 

the bottom-tier constitutive equations (56) and (58) and with the kinematic equations (40)-

(42), yield 

                            

 
      

     

  
        

      

  
                      

 

     
 
  

  

       
  

  

    
          

  

 
    

   

    
    

 
 
   

    
    

 
 

   

    
    

      
    

    
    

 
 
    

    
    

 
 
    

    
    

   
 

 
       

   
  

 
 

 
 

 

  
                   

 

     
 
  

, (2.1) 

with     

 
         

 
  . The intermediate-tier constitutive equations (60), (62), (63) 

and (65) enable us to write this result in the following alternative form: 

                   
  

 

  
       

  

 
   

     

  
 

      

  
   

  
 

  
        

   
  

 
 

 

  
     

  
 

      

  
                

 

     
 
  

. (2.2) 

The unused traction boundary condition (872) is automatically satisfied. Indeed, in view of (97) 

and (100), we find 
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 . (2.3) 

Moreover, observe that (cf. equation (103)) 

          
   

 

 
  

    
 

 
  

        
  

  

 
 

     

  
 

      

  
  

     

  
 

      

  
  

                  
 

    
 

 
  

   
   

 

 
  

    
 

 
  

  

     
 

 
         

   
     

  
 

      

  
 

  

 
       

    
 

 
  

    
 

 
  

  

               
    

 

 
  

    
 

 
  

  

  
     

  
 

      

  
          . (2.4) 

We can apply a similar line of reasoning to obtain the transverse shear stress field       

on the “bottom” layer (   ). The only difference worthy of mention is that we now use the 

traction boundary condition (872), instead of (871).
12

 The end result is 

                            

 
      

     

  
        

      

  
                      

     
 
  

 
  

      
  

  

    
       

  

 
    

   

    
    

 
 
   

    
    

 
 

   

    
    

      
    

    
    

 
 
    

    
    

 
 
    

    
    

   
 

 
  

  

 
 

 

       
  

 

  
                   

     
 
  

 
  

                                                 
12

 With regard to the composite plate as a whole,     
  and     

  are given loads (part of the data), while     
  and 

    
  are internal forces and, as such, derived quantities: 

    
       

      
     

  
 

  

  
    . 
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, (2.5) 

with     

 
         

 
  , and once again we have 
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Figure A2.1 shows a schematic representation of the through-the-thickness distribution of 

shear stresses       for the special case in which the body forces      are independent of z. 

Analogous results concerning the fields       and       are obtained by the simple 

expedient of systematically interchanging x with y and    with   . 

Now that the stress fields       and       are known in both layers, we can integrate 

equation (86) with respect to z, subject to (891) if     or (892) if    , to obtain 
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Figure A2.1: Through-the-thickness distribution of shear stresses       (     ), assuming 

that the body forces      are independent of z 
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  . The reader may easily verify that 
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Having calculated     
 , we can set              

 
         

      
  and then the 

reactive stress field      on the interlayer is given by 

                          

 
      

      

  
        

      

  
          

 

    
 

 
  

  

      
      

     

  
       

  

 
       

   

  
 

   

  
   

      
  

 

  
       

  

 
   

     

  
 

     

  
 , (2.11) 

with     

 
         

 
  . Clearly, 

              

 
        

       
 . (2.12) 

 



 

Thin Two-Layer Plates with Partial Shear Interaction REFERENCES 

 

 

 

 

Viviane Setti Barroso 60 

 

 

 

REFERENCES 

 

Andrade, A. (2013). “One-Dimensional Models for the Spatial Behaviour of Tapered Thin-

Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses”. PhD 

Thesis, University of Coimbra. 

Andrade, A., Providência, P., Cabrera, F. (2019). “Vibration of Composite Beams with 

Deformable Shear Connection: Mathematical Modelling and Numerical Solution Using 

General-Purpose Software for Two-Point Boundary Value Problems”. Journal of Sound 

and Vibration, Vol. 463, Article 114913. 

Babuska, I., Oden, J.T. (2004). “Verification and Validation in Computational Engineering 

and Science: Basic Concepts”. Computer Methods in Applied Mechanics and Engineering, 

Vol. 193, Issues 36-38, pp. 4057-4066. 

Bartle, R.G. (1976). “The Elements of Real Analysis” (2
nd

 edition). Wiley, New York. 

Blaauwendraad, J. (2010). “Plates and FEM – Surprises and Pitfalls”. Springer, Dordrecht. 

Carpinteri, A. (1997). “Structural Mechanics – A Unified Approach”. Taylor & Francis, London. 

Dias da Silva, V. (2006). “Mechanics and Strength of Materials”. Springer, Berlin. 

Ferreira, M., Andrade, A., Providência, P., Cabrera, F. (2018). “An Efficient Three-Field 

Mixed Finite Element Model for the Linear Analysis of Composite Beams with Deformable 

Shear Connection”. Composite Structures, Vol. 191, pp. 190-201. 

Foraboschi, P. (2012). “Analytical Model for Laminated-Glass Plate”. Composites Part B: 

Engineering, Vol. 43, Issue 5, pp. 2094-2106. 

Galuppi, L., Royer-Carfagni, G. (2012). “The Effective Thickness of Laminated Glass 

Plates”. Journal of Mechanics of Materials and Structures, Vol. 7, Issue 4, pp. 375-400. 



 

Thin Two-Layer Plates with Partial Shear Interaction REFERENCES 

 

 

 

 

Viviane Setti Barroso 61 

 

Galuppi, L., Manara, G., Royer-Carfagni, G. (2013). “Practical Expressions for the Design of 

Laminated Glass”. Composites Part B: Engineering, Vol. 45, Issue 1, pp. 1677-1688. 

Gjelsvik, A. (1981). “The Theory of Thin Walled Bars”. Wiley, New York. 

Gjelsvik, A. (1991). “Analog-Beam Method for Determining Shear-Lag Effects”. Journal of 

Engineering Mechanics – ASCE, Vol. 117, Issue 7, pp. 1575-1594. 

Gurtin, M.E. (1981). “An Introduction to Continuum Mechanics”. Academic Press, New York. 

Haldimann, M., Luible, A., Overend, M. (2008). “Structural Use of Glass”. Structural 

Engineering Document 10, International Association for Bridge and Structural Engineering 

(IABSE), Zürich. 

Hooper, J.A. (1973). “On the Bending of Architectural Laminated Glass”. International 

Journal of Mechanical Sciences, Vol. 15, Issue 4, pp. 309-323. 

Hewitt, E., Hewitt, R.E. (1979). “The Gibbs-Wilbraham Phenomenon: An Episode in Fourier 

Analysis”. Archive for History of Exact Sciences, Vol. 21, Issue 2, pp. 129-160. 

Kirchhoff, G. (1850). “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”. 

Journal für die reine und angewandte Mathematik (Crelle), Vol. 40, pp. 51-88. 

Kirchhoff, G. (1876). “Vorlesungen über mathematische Physik – Mechanik”. Teubner, Leipzig. 

Lanczos, C. (1996). “Linear Differential Operators”. Society for Industrial and Applied 

Mathematics (SIAM), Philadelphia. 

Lembo, M. (1989). “The Membranal and Flexural Equations of Thin Elastic Plates Deduced 

Exactly from the Three-Dimensional Theory”. Meccanica, Vol. 24, Issue 2, pp. 93-97. 

Lembo, M., Podio-Guidugli, P. (1991). “Plate Theory as an Exact Consequence of Three-

Dimensional Elasticity”. European Journal of Mechanics – A/Solids, Vol. 10, Issue 5, pp. 

485-516. 

Mindlin, R.D. (1951). “Influence of Rotary Inertia and Shear on Flexural Motions of Isotropic, 

Elastic Plates”. Journal of Applied Mechanics, Vol. 18, pp. 31-38. 

Nardinocchi, P., Podio-Guidugli, P. (1994). “The Equations of Reissner-Mindlin Plates 

Obtained by the Method of Internal Constraints”. Meccanica, Vol. 29, Issue 2, pp. 143-157. 



 

Thin Two-Layer Plates with Partial Shear Interaction REFERENCES 

 

 

 

 

Viviane Setti Barroso 62 

 

Newmark, N.M., Siess, C.P., Viest, I.M. (1951). “Tests and Analysis of Composite Beams with 

Incomplete Interaction”. Proceedings of the Society of Experimental Stress Analysis, Vol. 9, 

Issue 1, pp. 75-92. 

O’Regan, C. (2015). “Structural Use of Glass in Buildings” (2
nd

 edition). The Institution of 

Structural Engineers, London. 

Podio-Guidugli, P. (1989). “An Exact Derivation of the Thin Plate Equation”. Journal of 

Elasticity, Vol. 22, Issues 2-3, pp. 121-133. 

Polya, G. (1973). “How to Solve It – A New Aspect of Mathematical Method” (2
nd

 edition). 

Princeton University Press, Princeton. 

Rektorys, K. (1994). “Survey of Applicable Mathematics”, Volume 1 (2
nd

 edition). Kluwer, 

Dordrecht. 

Schittich, C., Staib, G., Balkow, D., Schuler, M., Sobek, W. (2007). “Glass Construction 

Manual” (2
nd

 ed.). Birkhäuser, Basel. 

Teotia, M., Soni, R.K. (2018). “Applications of Finite Element Modelling in Failure Analysis 

of Laminated Glass Composites: A Review”. Engineering Failure Analysis, Vol. 94, pp. 

412-437. 

Timoshenko, S., Woinowsky-Krieger, S. (1959). “Theory of Plates and Shells” (2
nd

 edition). 

McGraw-Hill, Singapore. 

Tonti, E. (1972). “On the Mathematical Structure of a Large Class of Physical Theories”. 

Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali – Accademia 

Nazionale dei Lincei, Serie 8, Vol. 52, pp. 48-56. 

Tonti, E. (2013). “The Mathematical Structure of Classical and Relativistic Physics – A 

General Classification Diagram”. Springer, New York. 

Wurm, J. (2007). “Glass Structures – Design and Construction of Self-Supporting Skins”. 

Birkhäuser, Basel. 


