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Resumo

A Tomografia de Coerência Ótica(TCO) é uma técnica de imagiologia que
permite obter imagens volumétricas da estrutura da retina. A segmentação
automática dos volumes produzidos por esta técnica é um processo complexo
e, embora existam alguns algoritmos capazes de produzir bons resultados
para volumes com alguns tipos de lesão, ainda não existe um algoritmo
capaz de dar uma resposta adequada em todas as situações.

Este projeto de investigação propõe uma nova abordagem para a seg-
mentação de volumes de TCO. Em vez de aplicar apenas um algoritmo
de segmentação, a estratégia consiste em selecionar o melhor algoritmo de
segmentação para cada situação, a partir de um conjunto pré-definido de
algoritmos.

Neste projeto foi considerada uma base de dados com 123 volumes TCO,
previamente segmentados por um especialista, de pacientes diabéticos. Em
relação aos algoritmos de segmentação, foram considerados quatro algorit-
mos baseados na teoria de grafos para a segmentação de volumes TCO.

O critério de seleção toma como entrada as métricas cruzadas, que são
métricas calculadas entre a segmentação produzida por cada um dos algo-
ritmos, e devolve o melhor algoritmo para a segmentação em questão. Este
critério foi desenvolvido com base em algoritmos de Machine Learning para
classificação. Foram consideradas várias configurações para a seleção dos
algoritmos e para a utilização das métricas na implementação dos diferentes
algoritmos de classificação.

Os resultados obtidos neste trabalho evidenciam que a seleção do melhor
algoritmo para a segmentação permite alcançar melhores resultados do que
a implementação individual de qualquer um dos algoritmos. Os melhores
resultados para o critério de seleção foram obtidos para a aplicação de uma
Rede Neuronal Artificial na seleção do melhor algoritmo em cada B-scan,
com a utilização de todas as métricas como entrada. Este modelo produziu
uma sensibilidade de 95%, 17% e 71%, especificidade de 91%, 65% e 77% e
Fscore de 93%, 27% e 74% para a classificação individual de cada algoritmo
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de segmentação, quando aplicado num grupo de dados de teste.
O critério desenvolvido foi usado para produzir a segmentação dos vol-

umes de teste, implementando a seleção do melhor algoritmo. Os resultados
mostram uma redução média de 7, 99% do desvio absoluto médio, quando
se comparam as segmentações obtidas com a seleção e as segmentações pro-
duzidas pelo algoritmo que obtém melhores resultados individualmente.

Palavras chave: Tomografia de Coerência Ótica, Segmentação, Métricas
Cruzadas, Machine Learning.
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Abstract

Optical Coherence Tomography(OCT) is an imaging technique that allows
the examination of the retinal structure. The automated segmentation of
the volumes produced by this technique is a complex process and, although
there are some algorithms that are capable of producing good results on
volumes with some types of lesions, there is still no algorithm capable of
performing well on all situations.

This research project proposes a new approach for the segmentation
of OCT volumes. Instead of applying only one segmentation algorithm, the
strategy is to select the best segmentation algorithm for each situation, from
a pre-defined set of algorithms.

For this project a data base with 123 OCT volumes, previously seg-
mented by an expert, from diabetic patients was considered. Regarding
the segmentation algorithms, four algorithms based on the graph theory
approach for OCT segmentation were considered.

The selection criteria takes as input the crossed metrics, which are met-
rics calculated between the segmentation produced by each algorithm, and
outputs the segmentation produced with the best algorithm. This criterion
is developed based on Machine Learning algorithms for classification. For
the implementation of the different classification algorithms, several config-
urations were considered for the metrics and for the selection of the best
algorithm.

The results obtained in this work show that the selection of the best
algorithm for the segmentation leads to better results then the individual
implementation of any of the algorithms. The best results for the selection
criteria were obtained for the application of an Artificial Neural Network
for the selection of the best segmentation algorithm for each B-scan, using
all the metrics available as input. This model produced a precision of 95%,
17% e 71%, a recall of 91%, 65% e 77% and a F-score of 93%, 27% e 74% for
the classification of each individual segmentation algorithm, when applied
to a test data set.
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The developed criteria was applied for the segmentation of the volumes
on the test data set, implementing the selection of the best algorithm. The
results show a mean reduction of 7, 99% of the mean unsigned error, when
comparing the segmentation obtained with the selection and the segmenta-
tions obtained with the algorithm that presents the best results.

Key words: Optical Coherence Tomography, Segmentation, Crossed Met-
rics, Machine Learning.
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Nomenclature

E95 Ninety-Fifth Percentile

AD Alzheimer’s Disease

AMD Age-related Macular Degeneration

ANN Artificial Neural Networks

DR Diabetic Retinopathy

DT Decision Tree

ELM External Limiting Membrane

FA Fluorescein Angiography

FD-OCT Fourier Domain Optical Coherence Tomography

FN False Negatives

FP False Positives

GCL Ganglion Cell Layer

ILM Internal Limiting Membrane

INL Inner Nuclear Layer

INL Inner Plexiform Layer

LTD Layer Thickens Difference

ML Machine Learning

MS Multiple Sclerosis
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NOMENCLATURE

MSE Mean Signed Error

MUE Mean Unsigned Error

NFL Nerve Fiber Layer

OCT-A Optical Coherence Tomography Angiography

OLM Outer Limiting Membrane

ONL Outer Nuclear Layer

OPL Outer Plexiform Layer

RF Random Forest

RPE Retinal Pigment Epithelium

RTD Retinal Thickness Difference

SD-OCT Spectral Domain Optical Coherence Tomography

SE Signed Error

SS-OCT Swept-Source Optical Coherence Tomography

SSE Standard deviation of the Signed Error

SUE Standard deviation of the Unsigned Error

TD-OCT Time Domain Optical Coherence Tomography

TN True Negatives

TP True Positives

UE Unsigned Error
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Chapter 1

Introduction

1.1 Context

OCT is an imaging technique used for obtaining cross-sectional volumetric
images of the retina. It is a growing technique used to assist the diagnosis
of pathologies such as Age-related Macular Degeneration(AMD) [40], Dia-
betic Retinopathy(DR) [22], Glaucoma [6], Multiple Sclerosis(MS) [15] and
Alzheimer’s Disease(AD) [26].

The segmentation of OCT volumes consists of the identification and
delineation of the retinal structures. Based on the segmentation, several
metrics can be computed, allowing the extraction of quantitative values to
assist the diagnosis, find new biomarkers, evaluate the progression of the
disease and adjust the treatment plan accordingly.

The manual segmentation is not viable for daily exam analysis since it
is a very time-consuming process. This way, the only way to introduce the
segmentation of OCT scans on daily clinical practice is by implementing
automatic segmentation algorithms. However, although the retinal segmen-
tation (segmentation of the first and last layers of the retina) is already
available in clinical practice, the retinal layer segmentation represents a
complex problem and there is still no algorithm that can perform well on
all types of images.

Nowadays, several OCT segmentation algorithms produce good results
for OCT volumes from healthy subjects and some are well suited for the seg-
mentation of OCT volumes from patients with certain pathologies. However,
there is not yet an algorithm that is versatile and can deliver the required
accuracy to guarantee the necessary clinical confidence.
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CHAPTER 1. INTRODUCTION

1.2 Aim of this project

The approach to the segmentation problem presented in this project consists
of developing a method for the selection of the best segmentation algorithm
in each situation. This approach considers a set of predefined algorithms
and takes advantage of the quality of each one for solving specific problems,
providing a more versatile solution.

To evaluate the performance of a segmentation algorithm, usually, a set
of metrics are implemented between the segmentation produced by that al-
gorithm and a reference segmentation, manually traced by an expert. These
metrics are denominated reference metrics. In this project, the goal is to use
this set of metrics but apply them between the segmentation produced by
different segmentation algorithms. These metrics, calculated between the
segmentation of each algorithm, are denominated crossed metrics and will
be used to select the best algorithm.

This project aims to:

1. Prove the benefit of selecting the best algorithm on each situation,
instead of considering only the same algorithm for all situations.

2. Develop a method to implement the selection of the best algorithm

1.3 Outline

This thesis starts by giving a theoretical approach to the topics that involve
the research project. In chapter 2, the eye anatomy and the OCT imaging
technique are introduced, as well as their interconnection, this is, the use
of the OCT imaging in clinical practice. In chapter 3, the algorithms used
for the automated OCT segmentation are presented, as well as the metrics
used to evaluate them. Still in this chapter, the machine learning algorithms
that are used on this project are presented, as well as the metrics used to
evaluate their performance.

After introducing the topics needed for the project, the methods and
materials used are explained in chapter 4. Then, in chapter 5, the results
produced are presented and discussed.

Finally, in chapter 6, the conclusions that resulted from this research
project are presented, and future work is proposed.
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Chapter 2

Background

2.1 Visual system

2.1.1 Overview

The visual system enables the analysis of the surrounding environment by
processing the information of the light that reaches the eyes on the visible
part of the electromagnetic spectrum. The eye is responsible for converting
the light signal into a neural signal that is then transmitted to the brain to
be interpreted.

Figure 2.1: Eye anatomy. Reproduced from [27]

A scheme of the eye anatomy is presented in Figure 2.1. In very general
terms, two main activities take place on the eye. First, the light that reaches
the eye goes through an optic process that produces an image with a focus
on the retina. After this, the light signal that reaches the retina is converted
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into a neural signal to be transmitted to the brain.
Three main structures act on the light that enters the eye: the iris, the

cornea and the crystalline (lens). The iris is responsible for controlling the
amount of light that enters the eye through the pupil, varying the aperture
diameter given the light conditions of the surrounding ambient. The cornea
and the crystalline lens are responsible for placing the focus of the images
that reach the eye on the retina.

The retina covers most of the interior of the eye and is responsible for
converting the image that is formed on its surface into a neural signal. The
neural signals are then transmitted to different parts of the brain, through
the Optic Nerve, to be processed.

2.1.2 Retina anatomy and physiology

The retina is composed by ten layers, as presented in Figure 2.2.

Figure 2.2: Retinal structure. Reproduced from [40].

Starting by the outer layer, the ten layers of the retina are [40]:

1. Retinal Pigment Epithelium (RPE)

2. Photoreceptor layer

3. External Limiting Membrane(ELM) or Outer Limiting Membrane(OLM)
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4. Outer Nuclear Layer(ONL)

5. Outer Plexiform Layer(OPL)

6. Inner Nuclear Layer(INL)

7. Inner Plexiform Layer(IPL)

8. Ganglion Cell Layer(GCL)

9. Nerve Fiber Layer(NFL)

10. Internal Limiting Membrane(ILM)

The RPE is the outermost layer of the retina and consists of a single
layer of hexagonal pigmented cells. It is connected to the choroid’s Brunch
membrane and controls the movement of nutrients from the choroid to the
retina and the discharge of waste products from the retina.

The RPE is connected to photodetector cells, as shown in Figure 2.2.
The photoreceptor cells are the Rods and Cones, which are photosensitive
and convert photons into neural signals. The rods are more sensitive under
low illumination conditions while the cones are more active in environments
with better illumination conditions. The distribution of both cells is also
not equal on all the Retina surface.

Figure 2.3: Anatomy of Rods and Cones. Reproduced from [40].

The structure of the photoreceptor cells is divided into four major parts,
as shown in Figure 2.3. The outer segment is connected to the RPE in
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some of the cells, as shown in Figure 2.2, and it is where the absorption
of photons initiates a biochemical reaction that then leads to the neural
signal. The inner segment is connected to the outer segment and is where
the accumulation of energy and protein production takes place. The outer
fibre connects the inner segment to the cell body, where the nucleus of the cell
is. The inner fibre connects the cell body to structures that are specialized
for the synapse, the Spherule and the Pedicle.

The Rodes and Cones are divided into different layers of the retina struc-
ture. The Photoreceptor layer contains the outer and inner segments of the
Rods and Cones. The ELM is not a structure, but the connection between
the inner segment and the outer fibre. The ONL extends from the ELM
to the cell body of the cones, containing the outer fibre and the cell body
of both cells. Finally, the OPL contains the inner fibre and the synapse
structures that are responsible for the junction between the photoreceptor
cells and the cells from the INL, bipolar cells and horizontal cells.

The INL contains the cell bodies of the Bipolar cells, Horizontal cells,
Amacrine cells and Interplexiform neurons. The properties of the cells and
the synapses that occur in this layer enables the process of motion detection,
brightness changes, recognition of contrast and tone.

The GCL is a single-cell thick layer composed of ganglion cells that are
connected to the cells of the INL.

The NFL consists of the ganglion cells axons from the GCL. The fibres
are parallel to the retina surface once they are all connected to the Optic
Disc. The thickness of this layer is higher near the Optic Disc due to the
accumulation of the fibres from all the Retina.

The process of generating a neural signal from the light that reaches the
retina surface starts at the more outer layer of the retina, the photodetector
layer. This means that the light passes through all the layers of the retina
before being detected. After this, the neural signal travels in the inverse
direction, passing through all the layers to be processed and sent to the
Optic Disc on ganglion cell axons.
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2.2 Optical Coherence Tomography

Optical Coherence Tomography is an imaging technique that produces a
volumetric image of the retinal structure.

2.2.1 Time Domain OCT

The first OCT technique was based on the Michelson Interferometer. It has
a low-coherence light source, a 50/50 beamsplitter, a reference mirror and a
photodetector.

Figure 2.4: Michelson Interferometer scheme. Reproduced from [5]

As shown in Figure 2.4, the light arrives at the beamsplitter and two
beams are produced with half the intensity of the incident beam. One of
the beams hits the reference mirror, where it is reflected back to the beam-
splitter. The other goes to the eye that is being examined, interacts with
the tissue and is reflected back to the beamsplitter. On the beamsplitter,
the two beams interact, producing interferometric fringes. Then, the beam
resulting from that interaction goes to the photodetector [10].

The optical properties of the tissue are obtained taking into consider-
ation the interferometric fringes that arrive at the photodetector and the
information on the reference optical path. Being the reference optical path
related to the distance between the reference mirror and the beamsplitter.
This way, varying the distance between the reference mirror and the beam-
splitter allows the extraction of the optical properties of the tissue as a
function of the depth of the sample. This signal of the optical properties as
a function of depth is called an A-scan.
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Obtaining the A-scans on a certain axis allows the construction of a 2D
cross-sectional image of the retina structure. This image is called a B-scan.
Repeating the acquisition of B-scans along an axis that is perpendicular to
that of the B-scan allows the construction of a 3D image of the retina.

The presented technique, based on the Michelson interferometer, is the
Time Domain Optical Coherence Tomography(TD-OCT) and it was the first
technique for the extraction of OCT scans. However, it is a slow process for
obtaining 3D-OCT scans once it involves moving parts.

2.2.2 Fourier Domain OCT

The alternative, to avoid the need for moving parts, is the Fourier Domain
Optical Coherence Tomography(FD-OCT) .

For the FD-OCT the position of the reference mirror is fixed. This way,
the difference on the optic path between the reference path and the path on
the sample is obtained with the information on the interferometric fringes
as a function of the spectrum of the light source.

To obtain the interferometric fringes as a function of the spectrum of the
source, there are two possible configurations: the Spectral Domain Optical
Coherence Tomography(SD-OCT) and the Swept-Source Optical Coherence
Tomography(SS-OCT) .

Figure 2.5: SD-OCT and SS-OCT working scheme. Reproduced from [24]

The SD-OCT uses a grating to disperse the spectrum across an array of
light detectors while the SS-OCT uses a narrow band laser that allows the
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source to change the wavelength, considering a time interval for the wave-
length change that is compatible with the sample time of the photodetector.
This way, the SD-OCT analyses the fringes as a function of position on the
array, once each detector of the array will detect a certain wavelength, and
the SS-OCT analyses the fringes as a function of time, since the wavelength
of the sample is a function of time. A scheme of the operation of each
technique is presented in Figure 2.5.

For comparing the speed of the TD-OCT and the SD-OCT lets consider
the Stratus OCT and the Cirrus HD-OCT, both commercialised by Carl
Zeiss Meditec. The first is a TD-OCT machine and can produce 400 A-
scans/sec while the second is an SD-OCT machine and produces 27000 A-
scans/sec [24]. Because of the abnormalities caused by the movement of the
eye, the acquisition of the image is limited in time. This way, the speed of the
acquisition process is very important for image quality. The TD-OCT here
presented produces typically images of 6x128x1024 voxels in 1.92 seconds
while the SD-OCT presented produces images of 200x200x1024 voxels in
1.48 seconds [24]. This data shows the difference in the image quality that
can be obtained with the SD-OCT.

2.2.3 OCT Angiography

The gold standard for the analysis of the vascular structure of the eye is to
preform a Fluorescein Angiography(FA). This process consists of adminis-
trating a fluorescent dye to the patient, through an intravenous injection,
and obtaining a colour fundus photography of the eye. To obtain the FA,
the wavelength that is used to illuminate the retina is the excitement wave-
length of the fluorescein dye that is used. The image is then obtained with a
filter to allow the analysis of the wavelength emitted by the dye, after being
excited. This allows the construction of an image of the vascular structure
by extracting the path of the dye on the eye. However, there are several
complications associated with this procedure that include nausea, vomiting
and pruritus.

Optical Coherence Tomography Angiography(OCT-A) is a new OCT
technique that allows the construction of a blood flow map without the
administration of any intravenous contrast, avoiding, this way, the compli-
cations associated with FA.

The operation principle of the OCT-A image is to use the moving red
blood cells as an intrinsic contrast agent. The OCT signal generated by
static tissue stays approximately the same over time, while the signal coming
from blood vessel changes as the cells inside them are constantly moving.
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This way, calculating the differences on the OCT signals acquired at the
same location at different time points, it is possible to identify what parts of
the image represent a steady tissue and what parts represent a blood vessel
and, this way, construct the vessel structure of the eye [7].

2.2.4 Limitations

Besides the noise generated by the signal acquisition system, that is associ-
ated with the electronic components involved in the process, OCT images
have an intrinsic speckle noise. As was said above, the signal used to generate
the retinal cross-sectional images is based on the absorption and scattering
properties of the tissues that are being analysed. The light signal that is
used to measure these properties is scattered and absorbed by the medium.
Since these interactions have always a random contribution, there is always
a noise associated to them on the image. This noise is denominate speckle
noise and is a characteristic of this imaging technique, due to the physical
process used to obtain the images.

Besides the speckle noise, the light that arrives at the bottom layers of
the retina is affected by the interference that happens on the top layers.
This way, the intensity of the signal that interacts with the bottom layers
is lower than the intensity of the signal that interacted with the top layers
of the retina. This causes a reduction in the intensity of the signal as a
function of depth that doesn’t reflect the variation of the tissue properties.
This property is known as amplitude-decorrelation. This is a limitation of
the OCT imaging technique that affects the implementation of automated
segmentation algorithms once tissues with the same optical properties don’t
appear on the image with the same intensity, as would be desired.

2.3 Clinical overview

The OCT imaging technique has proven to be useful on the diagnosis of
several ophthalmic diseases such as DR, AMD and glaucoma, but also on
neurological pathologies such as MS and AD.

Glaucoma causes loss of retinal ganglion cell, reducing the retinal NFL
thickness [6]. This allows the detection of glaucoma with the OCT imaging
technique. This pathology is mostly associated with high Internal Ocular
Pressure values. This factor can affect the retinal NFL either by the increase
of the pressure on that area or by the limitation of the blood perfusion.
There are cases, however, where the NFL is damaged but the Internal Optic
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Pressure is normal. On these cases, the cause is associated with a low
perfusion pressure that leads to cell death [40]

AMD is associated with the transition of nutrients and waste products
from the Choroid to the retina through the Bruch’s Membrane. With age,
there is an accumulation of lipids that inhibits the passage of water. This
accumulation of lipids is a Drusen and causes accumulation of water between
the RPE and the Brunch’s Membrane, leading to displacement and, some-
times, detachment between the two structures. This process leads to a lack
of nutrient supply for the retina that can cause atrophy of the RPE, followed
by the death of photoreceptors, or generation of a neovascular membrane to
compensate for the loss of nutrients. Both of these situations cause vision
loss that is a symptom of AMD [40]. The Drusen volume is indicative of
the AMD diagnosis and severity [1] and, since the OCT imaging technique
allows the cross-sectional visualisation of the full drusen and subsequent
calculation of it’s volume, it is an indicated method for the diagnosis of
AMD.

The high glucose levels on the blood of diabetic patients cause vascular
disruption that is associated with retinopathy. The features of this pathology
include venous dilatation, microaneurysms, retinal haemorrhages, retinal
edema and hard exudates [9]. DR patients have been reported to have an
increase in the retina thickness that can be detected by OCT imaging [18].
Besides this, the new OCT-A imaging allows a better visualisation of the
changes in the vascular structure of the retina, caused by the progression of
the disease [22].

The AD is a progressive neurodegenerative disorder that causes cognitive
impairment and a decline in learning and executive functions. Recent studies
have pointed out the relation between Alzheimer’s disease diagnosis and the
reduction of the thickness of the retinal NFL [26]. This hew biomarker shows
the potential of the OCT imaging technique on the early diagnosis of the
AD.

MS is a condition that affects the brain and spinal cord causing symp-
toms such as vision problems, arm or leg movement restrictions or balance
problems. Recent studies have shown the relation between the retinal NFL
atrophy and the multiple sclerosis diagnosis [15], proving the potential of
the OCT imaging technique on the follow up of patients with MS.

These applications of the OCT imaging techniques show the importance
of the integration of OCT segmentation on a clinical environment since all
the thickness measurements are done based on the segmentation. The in-
tegration of automated segmentation algorithms would allow the clinicians
to easily extract features such as retinal NFL thickness enabling the early
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diagnosis of several conditions. This would also provide quantitative mea-
surements to the physician to evaluate the progression of the diseases and
adjust the treatment plan accordingly.
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Chapter 3

State-of-art

3.1 Introduction

This chapter aims to present a review of the main topics of this thesis namely,
OCT segmentation and Machine Learning(ML).

The OCT segmentation section is composed of two subsections: OCT
segmentation algorithms and metrics used for evaluating the OCT segmen-
tation. On the subsection of the OCT segmentation algorithms, a broad
view of the different approaches that have been proposed to solve the au-
tomated OCT segmentation problem is presented. Besides the broad view,
the graph theory algorithms are more profoundly addressed once the algo-
rithms used in this research project are based on this approach. On the
subsection of the metrics used for evaluating the OCT segmentation, a re-
view of the metrics used to evaluate the segmentation is given. The metrics
presented on this subsection will be used to evaluate the segmentation al-
gorithms, by comparing the segmentation produced by the algorithms to a
reference segmentation, and to provide the input of the model to select the
best algorithm, by computing the crossed metrics.

On the ML section, a broad view of what is ML is presented with a
focus on the ML classification models, which are the models that are used
on this research project. After this review of the models, the metrics used
to evaluate the performance of classification models is presented.
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3.2 OCT segmentation

3.2.1 OCT segmentation algorithms

The development of an automated OCT segmentation algorithm faces sev-
eral challenges associated with the limitations of the OCT imaging tech-
niques, presented at 2.2.4, the shadows caused by the blood vessels, motion
artefacts and the anatomical changes that some pathologies cause on the
structure of the retina.

Facing this limitations, there are several approaches used for automatic
OCT segmentation. These approaches can be split into five major cate-
gories namely, methods based on intensity variation, active contour, pattern
recognition, graph theory and ML.

The first approaches on the problem of OCT segmentation consider the
intensity variation or gradient information and apply peak search techniques
on individual A-scans to find the boundaries between each retina layer [2,4,
12, 19–21, 23, 28, 43, 45]. The disadvantages associated to these approaches
include the need for advanced denoising methods, that are time-consuming,
and the lack of ability to incorporate the 3D information.

Another approach on OCT segmentation consists on implementing ac-
tive contour algorithms [17, 34–36, 49]. These algorithms act by deforming
an initial curve towards the boundary to be segmented. This can be done by
minimising an energy function that describes the contour. The algorithms
based on this approach surpass the performance of the intensity-based algo-
rithms in terms of accuracy and noise resistance.

Along with the active contour algorithms, the pattern recognition algo-
rithms also surpass the intensity-based ones. These algorithms apply ML
techniques such as clustering [33] and support vector machine algorithms [13]
to find the best retinal layer segmentation.

The graph theory approach for segmentation of OCT data was first in-
troduced by Garvin [16] and became the most commonly used once it can
produce better accuracy results than the previous ones [24]. After the emer-
gence of this approach, several approaches used the graph theory combined
with other techniques. One of those upgrades consists of using ML algo-
rithms to generate probability maps that are then segmented with a graph
theory approach [11,29].

Recently, with the emergence of deep learning, some studies propose seg-
mentation algorithms that are based on the implementation of Deep Learn-
ing algorithms such as Convolutional Neural Networks [38, 41, 42]. These
methods imply a big data set and computational power for the training pro-
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cess but, once they are trained, the developed models are fast and can adapt
to very distinct volumes, reporting accuracy results that are favourable,
when compared with the previous approaches.

The algorithms used in this project are based on a 2D/3D graph theory
approach. This is done because the algorithms that were considered needed
to be ready to use and these algorithms were available and because, exclud-
ing most recent approaches that apply ML, these are the ones that present
the best results. This way, in this section, there is an introduction to the
graph theory followed by its implementation for OCT segmentation.

3.2.1.1 Graph Theory for segmentation

Graph theory is a mathematical field that studies graphs which are dia-
grams composed by nodes and edges. The nodes, or vertex, are points and
the edges, or arches, are lines that connect the nodes according to a neigh-
bourhood system. Graphs can be presented as G = (V,E) with V being
the set of nodes on the graph and E being the set of edges [32]. A graph
representation is shown on Figure 3.1.

Figure 3.1: Graph structure. Reproduced from [31].

A graph can be weighted or unweighted. A weighted graph has a number,
called weight or a cost, associated with each edge that represents one char-
acteristic of the relation between the two nodes that are being connected.
On unweighted graphs, the edges don’t have costs associated representing
only a relationship between two nodes [31].

A graph can also be directed or undirected. In directed graphs, the
edges < vi.vj > and < vj .vi >, that connect the nodes vi and vj , have a
preferential direction a and can have different costs. On undirected graphs
< vi.vj > and < vj .vi > are equal and there is no preferential direction
on the connection of the nodes. When presenting a graph with a diagram,
the edges on the directed graphs are represented as arrows, while the edges
on the undirected graphs are presented as lines [32]. Figure 3.2 Shows a
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weighted and directed graph.

Figure 3.2: Graph diagram of a weighted and directed graph. Reproduced
from [31].

The choice of using different types of graphs depends on the application
for which it is being applied.

On 2006 Li [32] proposed the application of graph theory for the segmen-
tation of 3D surfaces on medical imaging. This approach considers pixels as
the nodes of the graph and the arches define the paths that the surface can
take between pixels, as shown on Figure 3.3.

Figure 3.3: Graph presentation of the 3D image. Reproduced from [16].

The cost of a node is associated with the inverse of the probability of
that node belonging to the surface that is being segmented. This means
that the cost gets higher as the probability of the vertex belonging to the
surface gets lower.

Since the purpose of this algorithm is to segment medical images, the
surfaces are not expected to vary abruptly on a short distance because that
is not the way that the tissues are distributed. This way, the authors imple-
ment smoothness constraints that limit the variation of the z component of
the surface along the x and y axes.

To establish the smoothness constraint it is convenient to present the
graph as a set of columns on (x, y) positions. The authors consider a four
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neighbourhood system which means that each column will have four neigh-
bours that are the columns closer to the one that is being considered. Each
column will then have two neighbours on the x axis and two on the y axis.
Considering the variation along the x axis, the smoothness constrain ∆x im-
plies that, moving from the column (x, y) to (x+ 1, y), the variation of the
z position of the surface is limited by the condition presented on equation
(3.1).

|z − z′| ≤ ∆x (3.1)

Here, z′ is the position of the surface on the column (x, y) and z is the
position of the surface on the column (x+1, y). This constraint is presented
in Figure 3.4. The same applies for the y axis, being ∆y the smoothness
constraint on that case.

Figure 3.4: Graph presentation of the smoothness constraint. (a) Repre-
sentation of the surface segmentation. (b) Representation of two adjacent
columns along the x axis and the correspondent smoothness constraint. Re-
produced from [32].

Having the costs and the smoothness constraints, it is possible to apply
an s-t cut algorithm and obtain the best surface for segmenting the image
in two subsets.

The s-t cut algorithm consists of adding two columns on the opposite
sides of the graph, the source s and the sink t. Using this structure, an
algorithm for the search of feasible surfaces, given the constraints that are
established, is used. Having the feasible surfaces, the resulting surface is the
one that has the minimum cost.

The approach presented is used for the segmentation of one surface.
However, for the segmentation of k surfaces, we need to have information
on the relation between them. This way, the interaction constraints are
implemented. These constraints limit the minimum and maximum distance
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between each surface.
For the segmentation of k surfaces, there are k graphs representing the

volume, with the costs associated with each surface. To implement the
interaction constraint there are arches between each (x, y) columns, on each
sub-graph of the k surfaces. These arches limit the distance between the
surfaces that are being segmented on each sub-graph, and are represented
in Figure 3.5.

Figure 3.5: Graph presentation of the interaction constraints. Reproduced
from [32].

The interaction constraints, represented in Figure 3.5, limit the sepa-
ration between the surfaces N1 and N2. The arches connect column1 and
column2, that are the columns on the same (x, y) position on the sub-graphs
for the segmentation of the two surfaces. The constraints represent the min-
imum, δl, and maximum, δu, distance between the surfaces N1 and N2.

This way, a 4D graph that is composed by the k sub-graphs is obtained,
with proper costs and edges for the segmentation of each surface and the
arches between these sub-graphs represent the interaction constraints be-
tween each surface.

After establishing the graph structure, the process of segmenting the
volume consists on generating the k feasible surfaces, given the constraints
that are established, with an s-t cut approach, and finding the set of surfaces
that produce the minimum surface cost.

This approach presents the basis of the application of the graph theory
for segmentation. On the following sections, the algorithms for OCT seg-
mentation that will be used during this research work are explained. The
first section presents an evolution of the 3D graph theory approach for OCT
segmentation. The second section presents an approach that is based on this
one but applies a 2D analysis, this is, performs the segmentation on each
B-scan individually.
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3.2.1.2 3D graph theory for OCT segmentation

On 2009 Garvin [16] proposed a graph-based algorithm for the segmentation
of SD-OCT scans based on the approach presented by Li [32]. The author
proposed an improved version of the original segmentation approach that
incorporates varying feasibility constraints and true regional information on
the construction of the graph.

On the first approach, the vertex cost considers only an on-surface cost
that represents the inverse of the probability of the vertex belonging to a
certain surface. On this approach, it is implemented an in-region cost that
represents the inverse of the probability of the vertex belong to a certain
region. Here the regions represent the volumes below each surface. This
way, the total cost of the set of surfaces that are being segmented is given
by equation(3.2).

Cf1(x,y),f2(x,y),...,fn(x,y) =
n∑

i=1

Cfi(x,y) +
n∑

i=1

CRi (3.2)

This approach also implements varying smoothness and interactions con-
straints, opposingly to the Li approach that considers them as constants for
all the image. This means that the constraints are defined for each (x, y)
position, based on training from previously segmented volumes.

The segmentation happens in tow steps. First, the author implements
the segmentation of the surfaces ILM-NFL, ONL-Photodetector and Photo-
detector-RPE using an optimal 3D graph search approach. Using the loca-
tion of the surfaces ILM-NFL and Photodetector-RPE, the author performs
the flattening of the image. This is done aligning these two surfaces and
adjusting the volume to this alignment. After this, the segmentation of
the layers ILM-NFL, ONL-Photodetector and Photodetector-RPE are per-
formed simultaneously. In the end, the algorithm does the segmentation of
the surfaces NFL-GCL, GCL-INL, INL-OPL and OPL-Photodetector using
a minimum s-t cut algorithm.

3.2.1.3 2D graph theory for OCT segmentation

On 2010 Chiu [8] developed a graph theory approach for the segmentation
of SD-OCT. The approach is based on the approach presented by Li [32]
but applied for the segmentation of 2D images, instead of 3D.

To find the minimum cost path on the image with an automated endpoint
selection, the author adds two columns on both sides of the image with
arbitrary node cost and minimum weight associated with the vertex. This
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allows for the cut to move freely on the vertical direction of these columns,
as shown in Figure 3.6. Using Dijkstra’s algorithm, the end columns will
be connected by the path that contains the minimum cost vertex and, this
way, the minimum cost path is found without the need for manual selection
of the endpoint.

Figure 3.6: Representation of the automatic endpoint selection for finding
the minimum s-t cut path.Reproduced from [8].

On this algorithm, the first step is to do the flattening of the images. This
is done by estimating the RPE layer based on pixel intensity and shifting
the pixels to make this layer flat.

After flattening, the weights are assigned and the NFL and ELM are seg-
mented. Using the segmentation of these two layers, the algorithm searches
for limiting the search space for the next layers to be segmented. Then, the
segmentation of NFL-GCL surface is performed and then the segmentation
of the surfaces between IPL and ONL. In the end, the segmentation of the
ELM to the choroid is established and the image is unflattened with the
respective segmentation.

Comparing Chiu and Garvin’s approach, this is, the 2D and 3D graph
theory approaches for OCT segmentation, the second is expected to produce
better results for the once it considers the constraints across the volume,
instead of just the B-scan information. The Chiu’s approach is expected to
show some discontinuities between each B-scan once there is no constraint
to limit the variation between consecutive B-scans.

3.2.2 Metrics used for evaluating the OCT segmentation

This section presents a review of the metrics used for comparing the seg-
mentation of OCT volumes. These metrics are used to validate the accuracy
of automatic segmentation algorithms in comparison with a reference seg-
mentation that is usually produced by an expert. On this project, besides
evaluating the segmentation by implementing the metrics with a reference
segmentation, the metrics will be implemented between the segmentation
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produced by two different algorithms, the crossed metrics, that will be used
as input of the selection algorithm.

Each segmented layer produced by an algorithm is represented by a
vector with the position of all the pixels that are on the surface. On this
analysis the representation presented by Tian [47] is considered, this is, the
vector resulting from the automatic segmentation is presented as Bm,n and
the one from the reference segmentation is presented as B̄m,n, being m,n
the dimensions of the matrix.

The most common metric to evaluate the difference between the au-
tomated segmentation and the reference segmentation is the Unsigned Er-
ror(UE) [3,14,16,29,30,37,39,44,47,48], or Unsigned Border Position. It is
defined by equation 3.3.

UE = MUE ± SUE (3.3)

Here, the Mean Unsigned Error(MUE) is defined by 3.4 and the Standard
deviation of the Unsigned Error(SUE) is defined by equation 3.5.

MUE = µ(|Bi
m,n − B̄i

m,n|) (3.4)

SUE = σ(|Bi
m,n − B̄i

m,n|) (3.5)

In equation 3.4, µ represents the mean and i represents each position on the
Bm,n and B̄m,n matrix. The MUE is the mean of the absolute distance be-
tween the two segmentation on each point. In equation 3.5, σ represent the
standard deviation and i represents each position on the Bm,n and B̄m,n ma-
trix. This way, the SUE is the standard deviation of the distances between
the two segmentation on each position.

The UE is a common metric because it represents the average of the
distances between the two segmentation in the analysis.

Other metric that is also common is the Signed Error(SE) [14,16,29,30,
47,48], or the Signed Border Position. It is defined as presented in equation
3.6.

SE = MSE ± SSE (3.6)

Here the Mean signed Error(MSE) is defined by equation 3.7 and the Stan-
dard deviation of the Signed Error(SSE) is defined by equation 3.8.

MSE = µ(Bi
m,n − B̄i

m,n) (3.7)

SSE = σ(Bi
m,n − B̄i

m,n) (3.8)
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In equation 3.7, µ represents the mean and i represents each position on the
Bm,n and B̄m,n matrix. The MSE is the mean of the distance between the
two segmentation on each point. In equation 3.8, σ represent the standard
deviation and i represents each position on the Bm,n and B̄m,n matrix. This
way, the SSE is the standard deviation of the distances between the two
segmentation on each position.

This metric is similar to the UE, but the SE allows for negative values
of distance when the position of the reference segmentation is above the
automated segmentation. This leads to lower values than when comparing
the MSE to the MUE.

Other metric that is used by Srinivasan [44] is the median of the Unsigned
Border Position. On his analysis, Srinivasan calculates the absolute distance
between the automated segmentation and the reference on each position and,
besides obtaining the UE, analyses the median value of the distribution of
the distances between the two segmentations.

The thickness of the retina is also a measure that can be used as a
metric for comparing the segmentation. Mayer [34] used the thickness of
retina calculated between the ONL and ILM. Equation 3.9 describes the
calculus of the thickness.

RT i = (ONLi − ILM i) (3.9)

Here ONLi and ILM i are the border positions of the layers that limit the
region on each position i. After having the distance on each position i,
the difference between the thickness of the automated segmentation and the
reference segmentation is calculated as presented on equation 3.10.

RTDi = R̄T
i −RT i (3.10)

In equation 3.10, R̄T
i

is the thickness of the retina on the position i for
the reference segmentation and RT i is the thickness of the retina on the
position i for the automated segmentation. In the end, the mean of the
absolute value, |RTDi|, is calculated. This metric is titled Retinal Thickness
Difference(RTD) .

Using an approach similar to Mayer, Chiu [8] used the average difference
on the thickness of each layer. The author started by calculating the thick-
ness of each layer for the automated and reference segmentation using the
equation presented in equation 3.11.

Li
1 = (Si

a − Si
b) (3.11)
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In equation 3.11, Li
1 is the thickness of the layer being considered on each

position i, Si
a is the position of the surface above the layer on the position i

and Si
b is the position of the surface below the layer on the position i. Having

the distance between surfaces on each position i, the difference between the
thickness of the automated segmentation and the reference segmentation is
calculated by equation 3.12.

LTDi
1 = L̄1

i − Li
1 (3.12)

In equation 3.12, LTDi
1 is the difference between the thickness of the layer

on the reference segmentation, L̄1
i
, and on the automated segmentation, Li

1.
Using this difference on each position i, the author calculates the mean and
standard deviation. This metric is titled Layer Thickness Difference(LTD)
. Fang [11] and Gao [14] used this procedure to evaluate the segmentation.

A metric also used by Tian [47] is the Ninety-Fifth Percentile Unsigned
Errors(E95) which consists of extracting the highest value of the absolute
distance between the reference and automated segmentation, after removing
the highest 5% of the values.

3.3 Machine Learning

Machine Learning is a subset of Artificial Intelligence dedicated to the de-
velopment of data-driven algorithms. This means that the ML algorithms
can learn how to perform a certain task by looking at given data sets. These
algorithms keep getting better as more data is given for them to learn. ML
is widely used today on services such as recommender systems and speech
recognition once it can perform much better than traditional algorithms
when solving complex problems.

The learning process of an ML algorithm can be done in two distinct
ways that are categorised as supervised and unsupervised learning. The al-
gorithms that are based on supervised learning techniques rely on labelled
data while the algorithms based on unsupervised learning techniques don’t
need the label to learn. The label is the expected output of the model,
this way, the supervised learning procedure can be seen as an optimisation
problem where the model fits its parameters to produce an output equal to
the label. The unsupervised learning procedure doesn’t rely on the label to
learn, this way, it learns by grouping the data points with similar properties
and find the possible outputs that way. These techniques are called clus-
tering techniques and they allow the classification of the data points when
labelling is not available. On this research project, the implemented models
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are based on supervised learning techniques. This way, this analysis will
focus on algorithms based on this learning procedure.

The training of an ML model consists of the process of optimising the
model parameters so that the models produce an output equal to the label for
each data point. The point of training, however, is for the model to produce
good results when dealing with new data. This way, the model must learn
how to correctly classify the data but not be too adapted to the training
data set. This is important once, if the data gets too adapted to a specific
data set, it loses the ability to adapt to new data. This problem is known as
overfitting. On the other hand, when the model is too simple to capture the
complexity of the training data set, it won’t be able to correctly identify the
new data eider. This situation is known as underfitting. These two concepts
are very important aspects during the training procedure because if one of
the two occurs it implies that the model won’t be able to fit its purpose.

Overfitting happens because the model is too complex and is capturing
the noise of the training data set. This way, possible ways to deal with
overfitting include: restricting the model’s complexity by adjusting the hy-
perparameters, getting more data for the model to train or reduce the noise
on the training data by fixing data errors or removing the outliers. On the
other hand, underfitting can happen when the model is too simple to capture
the structure of the data. This way, possible ways to deal with underfitting
include: reducing the restraints of the model by adjusting the hyperpa-
rameters, selecting a more powerful model or applying feature engineering
techniques on the data to allow the model to find relevant information more
easily.

To ensure that underfitting and overfitting don’t occur, guaranteeing
the capacity of the model to generalise for other data sets, it is a common
practice to split the data into a training, validation and test sets. The
training data set is used to train the model while the validation data set is
used to evaluate the performance of the model, allowing the adjustment of
the model’s hyperparameters accordingly. After tuning the hyperparameters
to ensure the best results on the validation data set, the test set is used as
an independent data set to evaluate the final performance of the model on
a new data set.

There are models that can be used for classification tasks, regression
or both. Classification models deal with discreet or categorical outputs
while regression models deal with continuous outputs. On this analysis, the
classification ability of the models will be explored once the goal of this
project is to solve a classification problem.
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3.3.1 Decision Tree

The Decision Tree(DT) is a very intuitive decision-making process that
works as presented in Figure 3.7. The process starts at the top of the
tree, on the root node, and goes from node to node answering the questions
according to the input value that is being classified. When there are no
more nodes to answer the decision-making process faces a leaf node. The
leaf nodes represent the end of the decision process once they contain the
classification for the input data that is being evaluated.

Figure 3.7: Representation of a decision tree.

The DT learning algorithm produces these trees by exploring the best
decision to implement on each node so that the leaf nodes correctly identify
the classification of the input data.

The process starts at the root node with all the data. The algorithm
analyses each feature of the input data and looks for the threshold that
better splits the data, according to the labels. When the best feature and
threshold value are found, the data is split according to that rule and the
process continues for the two nodes that have been created.

When all the data points on that node have the same label, a leaf node
is obtained and is called a pure leaf. On the other hand, when a node
contains data points with different labels it is said to be impure. This way,
the goal of each splitting is to obtain two nodes that are as close to being
pure as possible and the feature and threshold are selected for the nodes to
according to this goal.

However, to make the selection of the best feature and threshold, it is
necessary to establish a quantitative measure of the level of impunity of each
node so that the algorithm makes the selection that minimises this values.
One way to quantify the impurity of a node is with the Gini impurity, given
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by equation 3.13.

Gi = 1−
n∑

k=1

P 2
i,k (3.13)

In equation 3.13, P represents the probability of classification of each class.
This way, the Gini impurity is calculated for each node by subtracting to
one the probability of the classification of each class squared. It is important
to notice that when there is only one class on the node, the probability of
that class is equal to one and the probability of the other classes is equal to
zero, giving a Gini impurity equal to zero. This means that, for a pure leaf,
the Gini impurity is zero.

After assessing the Gini impunity of each node, a weighted average is
performed and that is the value used to compare the feature and thresholds.
The pair of feature and threshold that produces the minimum weighted
average of the Gini impurity is selected and the node is defined with the
rule defined by that pair.

This procedure is repeated for all the nodes until all the nodes are pure
or until some limitation for the growth of the tree is reached.

Another way to calculate the level of impurity of a node is by considering
the entropy. This method is inspired by the thermodynamics measure of the
entropy and actuates on the same way as Gini impurity. The entropy is given
by the equation 3.14.

Hi = −
n∑

k=1
Pi,k 6=0

Pi,k log(Pi,k) (3.14)

As for the Gini impurity, when a node is pure, the entropy of that node is
equal to zero.

3.3.2 Random Forest

A Random Forest(RF) is an ensemble method, composed of individual DT.
An ensemble method consists of considering a group of predictors that are
trained and produce individual outputs. Having the outputs of each predic-
tor, a voting system selects the output that is chosen the most as the output
of the ensemble method.

The goal of an ensemble method is to have different estimators. One way
to have different estimators is to consider different classification algorithms.
The other way is to consider the same algorithm to generate the models but
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to train them with different data. This is called bootstrap aggregating and
is done by randomly selecting data from the original data set for the training
set of each model. It is important to mention that bootstrap aggregating
allows the repetition of data points on a certain training set.

Besides applying a bootstrap aggregating technique for selecting the
training set for each model, the RF algorithm also randomly selects the
features that each DT considers for the splitting. On the DT algorithm, the
splitting on each node considers all the features of the data set and selects
the best feature and the best threshold to generate nodes with less impurity.
To ensure, once more, that the estimators are different from each other, the
features that are considered for each splitting of a DT are selected randomly
from the total set of features.

3.3.3 Artificial Neural Network

The Artificial Neural Networks(ANN) are composed by an input layer, an
output layer and a group of hidden layers, as shown in Figure 3.8, and the
number of hidden layers determines the depth of the ANN.

Figure 3.8: Representation of an ANN.

The hidden layers are composed by neurons, which actuate on the input
data according to the diagram presented on Figure 3.9.

To obtain the value of each neuron, first, a linear combination of the
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Figure 3.9: Representation of the workflow of a neuron.

input data is performed with certain weights and biases that are specific of
each neuron. Then, an activation function is applied to the output of this
linear combination.

After obtaining the output of each neuron of one hidden layer, other
hidden layers can be added to the network by considering the neuron output
values of the previous layers as input values.

3.3.3.1 Activation Functions

The activation functions are non-linear, continuous and differentiable func-
tions that are needed to allow the stack of new layers. without the activation
function, the ANN could only produce linear models.

The most common activation functions are the sigmoid function(3.15),
the hyperbolic tangent function(3.16), or tanh, the Rectified Linear Unit
function(3.17), or ReLu, and the softmax function(3.18).

Sigmoid(x) =
1

1 + e−x
(3.15)

tanh(x) =
2

1 + e−2x
− 1 (3.16)

ReLu(x) = max(0, x) (3.17)

Softmax =
ezi∑k
j=1 e

zj
(3.18)

The sigmoid and tanh functions are directly applied by the presented equa-
tions. The ReLu function’s output consists of the x value, if x is positive,
and zero, otherwise.

The softmax function is calculated by the exponential of the linear re-
gression of the neuron in question divided by the sum of these values for the
other neurons of the layer. This activation function differs from the other

28



CHAPTER 3. STATE-OF-ART

ones because it produces values that are normalised, this is, for a certain
layer, the sum of the values of the neurons equals one. This is done because
it considers the values of each neuron of the layer, instead of considering only
the inputs of the neuron in question. The normalisation of this function is
very important because it allows the representation of probabilities and this
is why this function is used on the output layer for classification problems.

3.3.3.2 Backpropagation

The learning process of an ANN consists of adjusting the weights and biases
of the layers to minimise a loss function and this is done with backpropa-
gation. The first step of the training consists of propagating forward and
calculating the outputs with a random set of weights and biases. With the
output values, a loss function is used to compare the output values to the
labelled data. These loss function values are then backpropagated to update
the weights and biases.

Figure 3.10: Representation of the backpropagation process used to update
the weights and biases of the ANN.

Figure 3.10 shows a hypothetical network with one hidden layer with
two neurons. ui and wi are the weights for the output and hidden layer,
respectively, and δi are the loss function values for each output. To obtain
the updated weights ui+1 the equation 3.19.

ui+1 = ui − η∇uδi (3.19)

In equation 3.19, ∇ is the derivative of the activation function of the layer
hose weights are being updated and η is the learning rate. This technique
for the update of the weights is called Stochastic Gradient Descent and the
main goal is to find the weights that minimise the loss function.

The learning rate defines how much the weights will change on each
iteration. It is a hyperparameter of the ANN and is defined between zero
and one. If the value is too small, the network can take too long to converge,
however, if the value is too large, the network can miss the point where the
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minimum loss values are achieved. This way, it is important to have a larger
learning rate when the weight is far from the the point with minimum loss
value, and a smaller learning rate for weights near that point, so that the
network converges faster and doesn’t miss the weight value that presents
the lowest value for the loss function. One way to do this is by using Adam
algorithm [25], which is an adaptive learning rate algorithm. This algorithm
presents an evolution of the Stochastic Gradient Descent by adapting the
learning rate according to the rhythm at which the network is converging
towards the point with minimum loss value.

After updating all the weights and biases, the forward propagation is
repeated, and the process continues until the minimum cost function is
achieved or another pre-established limiting criterion is reached.

3.3.4 Metrics to evaluate the models

After training the model, it is necessary to evaluate the performance of a
classification model, this is, to assess if the prediction the model is producing
agrees with the true labels of each data point. To do this, there are several
metrics to answer different questions about the performance of the model.

To evaluate a classification model, for each label, the predicted values
can be: True Positives(TP), True Negatives(TN), False Positives(FP) or
False Negatives(FN) . To explain each definition two classes, A and B, are
considered. Using the evaluation from the standpoint of the class A, a TP is
a data point where the predicted value is A and the true label is also equal
to A. A TN is a data point where the predicted value equals to B and the
true label is also equal to B. A FP is a case where the predicted value equals
to A but the true label equals to B. Finally, a FN is a situation where the
predicted value equals to B but the true label is A.

One common way to represent the TP, FP, TN and FN values is with a
confusion matrix. This is a representation widely used to evaluate classifi-
cation models once it gives information about the performance of the model
on the classification o each class. A representation of a confusion matrix,
for the example given above, is presented in Figure 3.11.

30



CHAPTER 3. STATE-OF-ART

Figure 3.11: Representation of a confusion matrix. The TP, TN, FP and
FN classification are given on respect to the label A.

3.3.4.1 Accuracy

The accuracy metric consists of counting the total number of predicted labels
that agree with the real labels and divide this value by the total number of
data points.

This metric answers the question ”What percentage of the total data-set
is being predicted correctly?” and is calculated with equation 3.20.

Accuracy =
TP + TN

TP + FP + FN + TN
(3.20)

It is an important metric for general purpose, but can be misleading. For
example, on an imbalanced data set, where most of the data points have the
same label, the accuracy score can by high, even if the model only selects
the label of the most selected label. This means that this model isn’t able to
distinguish between the different labels but, since it has a lot of data points
from the only label that is selected, the accuracy is high.

3.3.4.2 Precision

The precision gives information about the percentage of the data points
predicted for one class that are TP. This metric can be calculated for each
label by the equation 3.21.

Precision =
TP

TP + FP
(3.21)

The precision is an important metric when the goal is to reduce the number
of FP.
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3.3.4.3 Recall

The recall informs about the fraction of labels that were correctly predicted,
this is, the number of TP among all the points whose true label belongs to
a certain class. This metric can be calculated for each label by the equation
3.22.

Recall =
TP

TP + FN
(3.22)

This metric is especially important when the goal is to reduce the number
of FN.

3.3.4.4 F1-score

Finally, the F1 Score is the harmonic mean of precision and recall. This
metric is calculated with equation 3.23.

F1 = 2× Precision×Recall
Precision+Recall

(3.23)

It is used when the goal is to find a balance between the number of FP and
FN.
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Methods and materials

4.1 Introduction

This project aims to develop a strategy for the selection of the best algo-
rithm for the segmentation of an OCT volume. The strategy will take as
input the crossed metrics, which are the metrics calculated between the seg-
mentation of each algorithm. Using these metrics, the strategy selects the
best algorithm for the segmentation.

A representation of the proposed procedure for the segmentation, us-
ing the selection of the best algorithm, is presented in Figure 4.1, with a
representative example of using three algorithms.

Figure 4.1: Representation of the proposed approach on OCT segmentation.

Since this is a new idea on the field of OCT segmentation, it is important
first to evaluate the benefit that this approach can bring to the field and
then show how it can be implemented. This way, this research project is
divided into three parts, presented in the project outline in Figure 4.2.

The first part of the project aims to show the benefit of selecting the
best algorithm for the segmentation, instead of using only one algorithm
for all situations. This part is composed of two separate sections. Firstly,
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Figure 4.2: Representation of the project outline.

the algorithms to be considered on this project are evaluated for a better
understanding of their response. After this, the selection configurations are
evaluated and compared to the use of individual algorithms to assess the
benefit of using the algorithm selection. The selection configuration consists
of the way the selection will be implemented, which can be done by selecting
the best algorithm for the total volume or for specific regions and can also
include the selection of the best algorithm for the segmentation of individual
layers.

The second part of the project consists of the development of the selec-
tion strategy. The first section of this part consists of evaluating the use of
the cross metrics. This way, in this section, crossed metrics are compared
to the reference metrics to assess the information that can be extracted.
After this, the ML models for the development of the selection criteria are
applied, with different configurations of metrics as input, to evaluate the
best method to implement the selection.

The third part of the project aims to evaluate the results produced by the
selection strategy that was developed. This way, on this part of the project
the developed method is applied to the segmentation of a test data set to
evaluate the benefits it can bring when compared with the implementation
of the individual algorithms.

On this chapter, the OCT segmentation algorithms considered in this
study are presented, as well as the data set that is considered for all the
steps of the project. After this, the methodology used to evaluate the points
presented above is explained.

All the processing of the segmentation, metrics extraction and OCT
data visualization presented in this chapter was performed using MATLAB

34



CHAPTER 4. METHODS AND MATERIALS

(version R2019b), while the data processing of the metrics and the model
implementation was done using the Python programming language (version
3.8.5) on a Jupyter Notebook environment (version 6.0.3).

4.2 OCT segmentation algorithms

On this research project, four segmentation algorithms are considered. These
algorithms are based on the graph theory approach for segmentation, intro-
duced in section 3.3, and were selected because they produce good overall
results and because they were already implemented and available to be used
in this research project.

Three of the algorithms consider the 3D graph theory approach, pre-
sented by Garvin, that is explained in section 3.3. One of these algorithms
was implemented by AIBILI (Association for Innovation and Biomedical re-
search on Light and Image) and will be referenced from now on as AIBILI
algorithms. The second algorithm was implemented by Carl Zeiss Meditech
and will be referenced from now on as the Zeiss algorithm. The third algo-
rithm is the IOWA Reference Algorithm OCT-Explorer(version 3.8, Retinal
Image Analysis Lab, Iowa Institute for Biomedical Imaging, Iowa City) that
will be referenced from now on as Explorer algorithm.

The fourth algorithm consists of the 2D graph theory approach proposed
by Chiu [8] that is also presented in section 3.3. This algorithm was imple-
mented by the CASEREL project [46] and will be referenced from now on
as the 2D algorithm.

The four algorithms can segment different layers. Once the goal is to
compare the algorithms, only the seven surfaces that were common to all the
four algorithms were considered. These surfaces are: ILM, NFL-GCL, IPL-
INL, INL-OPL, OPL-ONL, IS-OS and RPE-CH. Most of these interfaces
have a direct connection between the layers presented on 2.1.2. One of the
exceptions is the IS-OS that represents the junction of the inner and outer
segments of the photoreceptor, located on the photoreceptor layer. The
other layer that doesn’t have a direct interpretation is the the RPE-CH that
represents the surface that separates the RPE layer from the choroid.

35



CHAPTER 4. METHODS AND MATERIALS

4.3 Dataset

The data set considered for this project was extracted from the Progress
(NCT03010397) study, developed by AIBILI. This study contains OCT-A
scans collected over a period of five years that record the progression of
patients with type 2 diabetes mellitus.

For this project, a total of 123 OCT-A scans, from the fifth visit, were
considered, once they were previously manually segmented by an expert.
From the 123 patients, 38 were female and 85 were male and the character-
isation of the patients is presented in Tables 4.1 and 4.2. In Table 4.1, the
age and the HbA1c are presented, being the HbA1c a measure of the long
term control of diabetes. In Table 4.2 the number of patients in each level
of the EDTRS grading system is presented. This grading system is used to
assess the severity of the DR pathology.

Table 4.1: Characterisation of the patients considered for the study.

Mean ± Standard Deviation

Age (years) 64.0 ± 6.7

HbA1c at v1 8.30 ± 1.3

Table 4.2: Characterisation of EDTRS level of the patients at the first visit
of the study.

EDTRS level Number of patients

10 3

20 37

35 83

The OCT-A volumes were acquired with the Zeiss Angioplex (Carl Zeiss
Meditec, Dublin, CA) system. The 6x6mm scan protocol was used for the
acquisition which considers 350 A-scans per B-scan and a total of 350 B-
scans.

Semi-automatic segmentation

All the volumes contain the correspondent reference segmentation. To
obtain this reference segmentation, the AIBILI segmentation algorithm is
applied and the resulting segmentation is then corrected by an expert on
the points where the segmentation doesn’t fit the image.
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4.4 Proof of concept

4.4.1 Characterisation of the OCT segmentation algorithms

The main goal of this section is to characterise the output of each algorithm
and evaluate the relation between the four algorithms. This section also
aims to verify the assumption that when different algorithms fail, on certain
circumstances, at least one of the others can provide a proper segmentation.

4.4.1.1 OCT segmentation and metrics extraction

The first step consists of applying the segmentation algorithms to the OCT
volumes on the data set and implementing the reference metrics.

The Zeiss and AIBILI algorithm were directly applied. However, the
segmentations produced by the 2D and Explorer algorithms required some
processing.

Due to the nature of the 2D algorithm, a median filter was applied to
smooth the discontinuities between B-scans. The median filter is applied to
the 350 × 350 matrix that represents each surface. Each row of the matrix
represents the position of the interface on a one A-scan and each column
represents one B-scan. This way, each column will contain the position of
the surface on each A-scan of one B-scan. The dimensions of the median
filter were defined to minimise the MUE value and the best results were
obtained with a filter with dimensions 1×9. This is, the surface position for
each A-scan is defined by the median over that individual A-scan positions
along the nine subsequent B-scans, as presented in Figure 4.3. The units
considered for the matrix and vector representation are voxels.

The implementation of the Explorer algorithm is affected by an intrinsic
bias between the reference segmentation and the segmentation produced
by the algorithm. This bias occurs because the convenient location of the
layers, for the Explorer algorithm, slightly deviates from the ones of the
reference segmentation. This leads to a consistent dislocation of each layer
in one certain direction. To correct this bias, a pixel shift is applied to
each segmented layer of the Explorer algorithm [11]. This shift implies that
a constant value is summed to each layer vector, to compensate for the
constant bias. To determine the best values to apply to the shift on each
layer, the mean of the MSE for the data set was calculated and the values
obtained were adopted for the shift. The resultant shifts to be applied are
presented in Table 4.3.
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Figure 4.3: Scheme of the median filter application on each surface matrix.

Table 4.3: Pixel shift applied to the segmentation of the Explorer algorithm.

Layer Shift

ILM +2
NFL-GCL +3
IPL-INL +3
INL-OPL +3
OPL-ONL +3

IS-OS -2
RPE-CH +3

After completing this processing step, the metrics presented on section
3.2.2 were applied for each layer, according to the distribution presented on
Table 4.4. This way, each segmentation is characterised by a total of 35
metrics.

Table 4.4: Overview of the extracted metrics and the layers involved on the
calculus of each metric.

Metrics Layers Involved Metrics Layers Involved Metrics Layers Involved

MUE ILM MSE ILM Median ILM
NFL-GCL NFL-GCL NFL-GCL
IPL-INL IPL-INL IPL-INL
INL-OPL INL-OPL INL-OPL
OPL-ONL OPL-ONL OPL-ONL

IS-OS IS-OS IS-OS
RPE-CH RPE-CH RPE-CH

E95 ILM LTD ILM,NFL-GCL RTD ILM, OPL-ONL
NFL-GCL NFL-GCL,IPL-INL
IPL-INL IPL-INL, INL-OPL
INL-OPL INL-OPL, OPL-ONL
OPL-ONL OPL-ONL, IS-OS

IS-OS IS-OS, RPW-CH
RPE-CH
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4.4.1.2 Characterisation of the OCT algorithms

To characterise the algorithm’s response, the volumes with the five best
and worst segmentation were selected for each algorithm to be individually
analysed. To perform this selection, the average of the MUE over all the
layers was computed and the five volumes that presented segmentations with
the lowest MUE were selected as the best ones for each algorithm. For the
selection of the five worst segmentation, the same process was done but this
time the five volumes with the highest average MUE were selected. It is
important to notice that the MUE was the only metric considered once it is
representative of the performance of the algorithm on the segmentation of
the volume.

After the selection, the analysis of the segmentation consists of evalu-
ating the plot of the segmentation of each algorithm against the reference
segmentation and comparing the metrics of the four algorithms that are
being considered.

4.4.2 Evaluation of the algorithm selection configuration

This section has two main goals. The first is to verify that the use of the
best segmentation algorithm for each situation leads to better segmentation
results than implementing one individual algorithm for all situations. The
second goal is to evaluate which selection configuration can produce the best
results.

The first configuration considered consists of selecting the best algorithm
for the OCT volume and is represented in Figure 4.4 a). This is the simplest
implementation and can avoid the big deviation that happens on certain vol-
umes for each algorithm. However, even the best segmentation algorithm for
one volume can have deviations from the reference segmentation on certain
regions that could be better identified by one of the other algorithms.

The second configuration consists of dividing the volume into three re-
gions, as shown in Figure 4.4 b), and selecting the best algorithm for each
region. The middle region contains the fovea and the other two represent
the remaining volume. In the fovea region, the layers of the retina present a
different dynamic from the rest of the volume. Then, it is possible that an
algorithm, that performs well on the rest of the volume, fails in that region
and this is why it is interesting to study if this selection will have an impact.

Finally, the third configuration consists of choosing the best algorithm
for each individual B-scan, as represented in Figure 4.4 c). Although it
is more complex once involves the extraction of a higher amount of data,
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this configuration aims at avoiding small local deviation. The selection of
the best algorithm for each individual B-scan is not expected to show a
big difference when compared to the implementation of the selection for the
volume but can avoid some small deviation on the specific local deviation.
For example, when there is a lesion that is not detected by the best algorithm
for the volume, but is detected by one of the others, this selection allows the
correction of that specific region.

Figure 4.4: Representation of the three selection configurations. a) Selection
of the segmentation algorithm for each volume. b) Selection of the segmen-
tation algorithm for each region. c) Selection of the segmentation algorithm
for each B-scan.

Besides the presented configurations, the benefit of choosing the best
algorithm for the segmentation of each layer will also be evaluated. For the
first configuration, this is done by selecting the best algorithm for each layer
of the volume. For the second configuration, this is done by selecting the
best algorithm for each layer of each region. The same is applied for the
third configuration, for each B-scan.

For the first configuration, the selection of the algorithms is done by
considering the mean over all the reference metrics and selecting the algo-
rithm which presents the segmentation with the lowest mean value. The
same is done for the second configuration but, in this situation, the metrics
are calculated over the segmentation corresponding to each region. For the
third configuration, the selection is also done by considering the mean over
all metrics but, in this case, the metrics are calculated for the segmentation
of each B-scan.

For the selection of each layer, the same principle is applied as for the
previous selection configurations. The only difference is that the mean is
performed over the metrics related to each layer, instead of all the metrics.
The assignment of the MUE, MSE, median, and E95 metrics for each layer
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is direct, once they are directly extracted from each layer. Besides this, the
RTD metric is used for all the layers, once it reflects all the retina. Finally,
since the LTD metric involves the use of two subsequent surfaces, once it is
related to the thickness of each layer, the metrics considered for each layer
are the ones that involve that layer on the calculus, this is, the one above and
below the layer in question. Once the two surfaces on the external borders
only have one value, the value was considered twice, so that the dimension
of the vectors of each surface are equal. The distribution of the LTD metrics
is presented on Table 4.5.

Table 4.5: LTD Metrics considered for the selection of each layer. The layers
involved on the calculus of the LTD are identified between brackets.

Layer LTD Metrics

ILM LTD(ILM,NFL-GCL)
NFL-GCL LTD(ILM,NFL-GCL) LTD(NFL-GCL,IPL-INL)
IPL-INL LTD(NFL-GCL,IPL-INL) LTD(IPL-INL,INL-OPL)
INL-OPL LTD(IPL-INL,INL-OPL) LTD(INL-OPL,OPL-ONL)
OPL-ONL LTD(INL-OPL,OPL-ONL) LTD(OPL-ONL,IS-OS)

IS-OS LTD(IOPL-ONL,IS-OS) LTD(IS-OS,RPE-CH)
RPE-CH LTD(IS-OS,RPE-CH)

To evaluate the results of each configuration, after the selection of the
best algorithms for each configuration, the segmentation of the volumes
are generated, considering the algorithms selected for each configuration.
Having the segmentation for each configuration, the metrics are calculated
and the mean of each metric over all volumes is measured. To compare
the results of the selection configurations and the individual algorithms, the
mean results are plotted.

The plots of the mean metrics are then analysed to see if there is a
decrease of the metrics mean values with the algorithms selection and if
there is a decrease as the regions for the selection get more specific. This is,
if the metrics mean gets smaller as the selection goes from the selection of
the best algorithm for the volume to the selection of the best algorithm for
each B-scan.
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4.5 Development of the selection method

4.5.1 Comparison of crossed and reference metrics

The aim of this section is to explore the relationship between the crossed
metrics and the reference metrics. This step is important to better under-
stand the behaviour of the crossed metrics and how they can be used for the
selection of the best algorithm.

As it was said above, the reference metrics are the ones calculated be-
tween the segmentation produced by an algorithm and the reference seg-
mentation while the crossed metrics are the metrics calculated between the
segmentation produced by two different algorithms, as shown in Figure 4.5.
For this reason, the reference metrics are the metrics used to evaluate each
segmentation and generate the label data, while the crossed metrics are the
metrics that will be used for the algorithm selection. This way, it is im-
portant to see how the two variables are related to better understand the
models that will be implemented.

Figure 4.5: Schematic representation of the reference and crossed metrics.

To see how the information on the reference metrics is reproduced by
the crossed metrics, it is convenient to compare the same variables. This is
done by considering one of the algorithms as the reference and comparing the
crossed metrics between the segmentation of one of the reference algorithm
and the other two. To reproduce this quantity with the reference metrics,
the reference metrics of the segmentation of the reference algorithm are
subtracted to the reference metrics of the segmentation of the other two
algorithms, as shown on Figure 4.6.

Having the crossed metrics and the reference metrics for each algorithm,
with the procedure indicated above, the variables indicated above were plot-
ted and evaluated for each volume of the five best and worst, selected at
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Figure 4.6: Schematic representation of the reference and crossed metrics
comparison.

Section 4.4.1.
It is important to notice that the crossed metrics won’t be able to re-

produce the value of the reference metrics. The crossed metrics only reflect
the agreement between the segmentation of each algorithm. This way, they
won’t be able to identify which algorithm has the lowest reference metric.
The goal is to use the pattern of the crossed metrics to identify the one that
presents the best metrics and not to reproduce the reference metrics with
the crossed metrics.

4.5.2 Algorithm selection based on the crossed metrics

The goal of this project is to develop a method to select the best algorithm
to segment a certain OCT volume and the possible configurations for this
selection were presented above.

On this section, the methods for the selection of the best algorithm
are evaluated. Firstly, the three data configurations that are considered are
presented with its advantages and disadvantages. Then, the implementation
of the ML models is explained.

4.5.2.1 Data configuration

Each segmentation is characterised by 35 reference metrics that were iden-
tified in section 4.4.1.1. When comparing three algorithms, a total of 105
crossed metrics will be available for each volume. This is due to the fact
that the three algorithms form three pairs between each other and there are
35 crossed metrics extracted from each pair.

This information can be arranged in different configurations and on this
project three data configurations are considered. These three data configu-
rations are presented on Figure 4.7.

43



CHAPTER 4. METHODS AND MATERIALS

Figure 4.7: Representation of the data configurations that were consid-
ered.The seven metrics presented are the metrics associated with each layer,
specified on section 4.4.2

The first data configuration consists of assuming that each metric has the
same behaviour and that it is possible to the selection of the best algorithm
for each metric independently. This is, considering as input the 3 crossed
metrics available for each metric that characterises the volume. In this
situation, the label for each metric is the algorithm that presents the lower
reference metric on that specific metric. The selection of the best algorithm
for the segmentation of each volume/region/B-scan can then be done by
considering a voting system where the algorithm that is selected the most,
out of the 35 metrics, is the selected algorithms for the segmentation of
that volume/region/B-scan. This can also be done for the selection of the
best algorithm for each layer, on any configuration, by considering the same
voting system for the layer metrics presented in section 4.4.2.

The second data configuration consists of using the layer metrics pre-
sented at section 4.4.2 as input. The labels, in this situation, are the algo-
rithms that present the lower mean of the reference metrics considered on
each layer, as was considered for the layer selection on section 4.4.2. This
data configuration can also be used to select the best algorithm for the se-
lection of each volume by considering a voting system. This voting system
selects the algorithm that is selected the most, for the seven layers, as the
chosen algorithm to segment the volume.

The third data configuration consists of considering all the available
crossed metrics for one volume/region/B-scan as input. The label, on this
situation, is the algorithm that presents the lower mean over all the reference
metrics, as was presented on section 4.4.2. This data configuration doesn’t
allow the selection of the best algorithm for the segmentation of each layer,
only the selection of the best algorithm for the volume/region/B-scan.
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A summary of the use of the different data configurations is presented
on Figure 4.8.

Figure 4.8: Representation of the model input and output for the different
data configuration. Here is presented the outline for the volume selection
but it is the same for the region and B-scan selection.

4.5.2.2 Selection criteria implementation

In this section, the ML model’s implementation is explained. The models
that are considered on this research project are the machine learning classi-
fiers presented in section 3.3, this is, the DT, RF and ANN. These models
were implemented for each selection configuration (volume, regions and B-
scan) and for each data configuration (individual metrics, layer metrics and
volume metrics) to evaluate which presents the best solution for the selection
problem.

The first step of the analysis consists of defining the test set. The se-
lection of the volumes for the test set consists of applying a stratified split
to separate 20% of the volumes according to the volume classification. The
stratified split ensures that there is an equal percentage of each classifica-
tion on both the training as test sets. To apply the stratified split, the
StratifiedShuffleSplit function of the model selection module from the
Python’s Scikitslearn library was applied. It is important to notice that
the volumes on the test set were the same during all the procedure.
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Pre-processing

Due to the way the reference segmentation is produced, correcting the
segmentation produced by the AIBILI algorithm, there is a bias towards the
selection of the AIBILI algorithm. For this reason, the data set is imbal-
anced, this is, the number of data points where the true label is AIBILI is
much higher than the number of data points assigned to the other labels.

Imbalanced data sets are a problem for training models once the models
learn to always select the most frequent label instead of learning how to
differentiate between the different ones. This leads to a high accuracy value,
due to the high prevalence of the most frequent label, but the model isn’t
able to identify when not to choose that class. One approach to avoid
this situation is to sample the data set. Sampling the data set consists of
transforming the imbalanced data set into a balanced data set. This can be
done by undersampling or oversampling. Undersampling consists of reducing
the number of data points with the most frequent label while oversampling
consists of increasing the number of data points with the labels that are less
represented.

One way to implement the undersampling approach is to consider the
distribution of the data points on the different classes and randomly delete
data points from the dominant classes until the dimensions are equal, keep-
ing the data distribution. For the oversampling it is possible to apply a
similar approach but by adding copies of the instances of under-represented
classes, keeping the initial distribution, until the dimensions are equal.

To avoid losing data, the oversampling approach was implemented. This
was done by using the resamle function from the utils module of the
Scikitslearn library. This function applies the oversampling approach de-
scribed above. This way, the data points with Zeiss and Explorer label was
expanded to match the dimension of the data with the AIBILI label.

The metrics have different ranges, for example, the E95 tends to be
always higher than the other metrics. This factor doesn’t affect the DT
and RF models but affects the ANN, that can give more importance to the
features with higher values. To avoid this, the features are normalised. This
normalisation is applied to each feature and the result is that the values
appear on a scale from zero to one. This way, all the features have the
same scale. To apply this normalisation the normalize function from utils
module of keras library from the TensorF low platform.
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Cross-validation and parameter tuning

The models have several hyperparameters that need to be tuned to en-
sure that the maximum potential of the model is reached. To do this, it is
necessary to evaluate for underfitting or overfitting of the model. This is
why the validation set is needed.

Ideally, there is a train, validation and test data set where the train data
set is used to train the model, the validation is used to evaluate the model
and tune the hyperparameters and the test data set is used in the end, to
check the performance of the model on an independent data set. However,
when few data is available, the cross-validation approach is widely used to
evaluate the model.

One cross-validation technique is the K-fold cross-validation. This tech-
nique consists of splitting the train and validation data into k subsets. Then,
k-1 subsets are used for training the model and the remaining is used for val-
idation. After this, the validation fold changes and the process is repeated
until all the subsets are used as validation.

Since there is not much data available, especially for the volume and
region selection configuration, the k-fold cross-validation was used on this
project for the evaluation of each model and selection of the hyperparame-
ters. The k-fold cross-validation was implemented with 3 fold. This way, the
data is split into 3 subsets using KFold function from modelselection mod-
ule of the Scikitslearn library. The cross-validation then occurs in three
iterations, where the validation data is changing between the three available
subsets and the model is trained on the remaining subsets.

Inside each fold, the training data is pre-processed with the treatment
described above and then the model is trained. After the training is com-
pleted, the model is used to predict the training and validation data set.
With the true label and predicted label of the training and validation,
the precision, recall and F1 Score are calculated, for each class, with the
precision recall fscore support function from the metrics module of the
Scikitslearn library. In the end, the true and predicted labels are regis-
tered as well as the metrics.

After all the folds are completed, the true and predicted labels are used
to generate a confusion matrix and the mean and standard deviation of
the metrics are calculated. The confusion matrix is generated with the
confusion matrix function from the metrics module of the Scikitslearn
library.

To select the best hyperparameters for each model, the cross-validation
was applied for a set of hypothetical hyperparameters and, for each hyper-
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parameter, the metrics related to each classification were extracted. These
metrics were then plotted for each value of the hyperparameter and these
plots were then used to select the hyperparameter that produced the best
overall results for the three classes.

ML Models

The implementation of the DT model was done with the DecisionTree
Classifier from tree module of Scikitslearn library. The hyperparameter
that was evaluated during the training was the maximum depth of the tree
that is defined as max depth on the DecisionTreeClassifier function.

The implementation of the RF was done withRandomForest Classifier
function from endemble module of the Scikitslearn library. The hyperpa-
rameters that were evaluated during the training were the maximum depth
of the trees, defined as maxdepth, and the number of estimators to consider,
defined as n estimators, on the RandomForestClassifier function.

The implementation of the ANN was done with the keras module of
the TensorF low platform. The model was defined with two hidden layers.
The hyperparameters that were evaluated were the activation function of
the hidden layers and the number of neurons on each hidden layer. The
method for the update of the weights was the Adam optimiser.

Training and testing

After finding the best hyperparameters for each model, the models are
trained on the full train and validation data set and the test set is used to
evaluate the model on an independent data set.

4.6 Evaluation of the developed selection method

This section aims to evaluate the selection criteria developed on this project.
After the evaluation of all the models, presented in the previous section, the
model that presents the best results, in terms of the classification metrics,
is selected as the best one.

The developed selection criteria is used to generate the segmentation of
the volumes of the test data set. The reference metrics are then extracted to
allow the comparison of the obtained segmentations with the segmentation
produced by the individual algorithms. This way, while on the previous
section the models were evaluated in terms of the classification metrics, on
this section the selection criteria is evaluated in terms of the segmentation
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results. This is done to see if the developed strategy can bring benefit to
the segmentation or if there is a need for other approaches to implement the
selection.

To implement the selection criteria, first, the selection of the algorithms
is performed on the volumes of the test data set. After this, the selection
is used to generate the segmentation. This includes analysing the selected
algorithm on each situation and generating the segmentation with the seg-
mentation of the correspondent algorithm.

The segmentations obtained, with the selection, are then evaluated with
the reference metrics and the results are compared to the results of the
independent algorithms.
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Results and discussion

5.1 Proof of concept

5.1.1 Characterisation of the OCT segmentation algorithms

The MUE results of the segmentation produced by each algorithm can be
consulted in Appendix A. Given these results, the volumes selected for the
manual analysis are presented in Table 5.1. Representations of the obtaied
segmentations for the volumes presented in Table 5.1 can also be consulted
in Appendix B.

Table 5.1: ID of the volumes with the best and worst segmentation results
for each segmentation algorithm.

Algorithm Class Files ID

2D best 67, 57, 137, 54, 3
worst 82, 90, 80, 159, 95

AIBILI best 89, 127, 137, 67, 3
worst 82, 17, 121, 90, 91

Zeiss best 69, 105, 170, 36, 74
worst 10, 31, 63, 154, 1

Explorer best 3, 99, 85, 36, 34
worst 82, 83, 90, 37, 91
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2D

The volumes selected as the best ones for the 2D algorithm present
smooth surfaces, without big structural changes, as it was expected for all
the algorithms. On these volumes, the surfaces identified by the algorithm
are close to the reference ones on most of the B-scans, however, there are
several B-scans that present results far from the reference, as shown on
Figure 5.1. On the segmentations with the best results, these changes are
mostly seen on the interior layers and not so much on the exterior ones and
the metrics confirm this result.

Figure 5.1: Representation of the segmentation of each algorithm for volume
137. The dashed white line represents the reference segmentation.

The individual changes on B-scans are expected on this algorithm be-
cause it performs the segmentation on each B-scan individually, unlike the
other three algorithms that perform the segmentation on the full volume. To
compensate for this expected behaviour, a median filter was implemented,
as explained in section 4.4.1.1. However, even with the filter, some of the
changes are still present, especially on the internal layers, on the RPE-CH
layer and on areas with irregularities, such as the fovea.

In the worst volumes, there are few B-scans that present an agreement
with the reference segmentation. In these volumes, the segmented layers
appear most of the times out of the range of the retina structures, as shown
in Figure 5.2.

In terms of metrics, the 2D algorithm shows generally big distances from
the other three, even for the volumes where the performance of the algorithm
was good. On the worst volumes, the distances from the metrics of the
other three algorithms are very significant for almost all the metrics. This
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Figure 5.2: Representation of the segmentation of each algorithm for volume
82. The dashed white line represents the reference segmentation.

is important because it shows that it might be possible to identify this
significant deviation, based on the crossed metrics.

It’s important to point out that, even on the best volumes, the 2D algo-
rithm doesn’t produce the best results, when compared with the other three
algorithms.

AIBILI

Although the segmentations produced by the Zeiss and AIBILI algo-
rithms are similar, on the volumes selected as the best ones for the AIBILI
algorithm, This one is the one that presents the best results in terms of the
metrics.

In one volume that presented a big slope, presented in Figure 5.2, the
algorithm fails on the segmentation. This is associated with an error on the
algorithm initialisation, due to the slope of the layers on the first B-scans,
and not on the algorithm itself. The other volumes where the algorithm
seems to fail are associated with the suspension of the segmentation of three
internal layers on certain regions of the image or with regions where the
segmentation shows spikes.

On most of the segmentations that were analysed, the AIBILI algorithm
is the one that shows the best results, although the Zeiss and Explorer algo-
rithms also present segmentations that are close to the reference one. This
fact is related to the way the reference segmentation is obtained. As ex-
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plained in section 4.3, the reference segmentation is performed by an expert
that uses the AIBILI segmentation and corrects it. This way, the regions
where the algorithm is correct are perfectly aligned with the reference seg-
mentation, while the other algorithms may appear slightly deviated. This
semi-automatic approach introduces a bias that has to be taken into con-
sideration on the analysis once it explains why the metrics of the AIBILI
algorithm are almost always better than the others, even when the visual
analysis shows that three have similar performances.

The algorithm seems to deviate more from the reference segmentation
near the fovea. On Figure 5.4 it is possible to see an example of these
deviations. On this example, it is also possible to see how the algorithm
produces some spikes on certain regions.

Zeiss

For the volumes selected as the best ones for the Zeiss algorithm, the
metrics results of the AIBILI algorithm are better. This factor can be asso-
ciated with the bias for reference segmentation presented above. It is also
important to state that these volumes show mostly regular surfaces, as it
would be expected. That way, each of the algorithms performs well, under
those circumstances.

Figure 5.3: Representation of the segmentation of each algorithm for volume
1. The dashed white line represents the reference segmentation.

For the volumes selected as the worst ones for the Zeiss algorithm, the
segmentation appears dislocated from the range of the retina structures, as
shown in Figure 5.3. This is an error on the segmentation exportation and
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not on the segmentation itself. It is possible to see that by examining metrics
like the difference of the thickness of the retina and the difference of the
thickness of each layer, that consider the difference between the thickness
of the layers, and not metrics like the MUE, that consider the distance
between the layers and the reference segmentation. On these metrics, the
values obtained for the Zeiss segmentation are on the range of the ones
obtained for the other segmentations. This implies that the layers are simply
dislocated and not wrongly segmented.

Explorer

The Explorer algorithm produces very smooth results, sometimes missing
small structures, as shown in Figure 5.3 and Figure 5.4.

The metrics for the Explorer algorithm don’t fluctuate a lot for all the
segmented volumes, which is indicative that it is a consistent algorithm.
Unlike the other algorithms, that have big changes on each metrics from the
five best results and the five worst, the Explorer algorithm only presents
significantly higher metrics for one volume, presented on Figure 5.2. This
is a problematic volume, that also presents the worst results for the AIBILI
and 2D algorithm. This way, although the algorithm misses some small
structures that are detected by the AIBILI and Zeiss, it provides very stable
results.

Figure 5.4: Representation of the segmentation of each algorithm for volume
69. The dashed white line represents the reference segmentation.
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Final remarks

The algorithms show a different aptitude for identifying different layers.
In other words, there are algorithms that are more efficient at identifying
certain layers than others. For example, the AIBILI algorithm is the one that
shows the best results in terms of the metrics, however, in several volumes,
that is not the case for the IS-OS layer.

The three algorithms that are based on the 3D graph theory are the
ones that produce the best results. However, these three present different
behaviours. The AIBILI algorithm seems to spike more easily, while the Ex-
plorer algorithm gives very smooth results. The Zeiss algorithm performance
is closer to the AIBILI algorithm but varies a bit less. These characteristics
are associated with different smoothness constraints of each algorithm and
are a property that can indicate that the algorithms are suited for different
types of volumes.

Once the 2D algorithm isn’t able to produce consistent results, it was
excluded from the analysis from this section on.

The metrics analysis allowed the conclusion that, when one of the al-
gorithms fails, the distance between the metrics of that algorithm and the
other one’s increases. This way, if the metrics from two algorithms are close
and there is one that if significantly further, then it is possible to infer that
that algorithm failed on the segmentation.

It is also important to notice that in all the analysed volumes, every
time one of the algorithms failed, at least one of the others was able to pro-
duce a proper segmentation. This suggests that the algorithm selection is a
viable solution for the lack of ability of the algorithms to adapt to all situa-
tions. Besides this, even the algorithm that shows the best results (AIBILI
algorithm) fails on the segmentation of some volumes, which suggests that
the algorithm selection has the potential to produce better results than the
implementation of the individual algorithms.

5.1.2 Evaluation of the algorithm selection configuration

Figure 5.5 presents the comparison of the mean of each metric for the dif-
ferent selection configurations and each individual algorithm. It is possible
to see that the mean of the metrics is lower for the algorithm’s selection
configuration than for the individual algorithms.

The Explorer algorithm is the one that presents the lower metrics mean
value, being closer to the results presented by the algorithm’s selection. This
can be associated with the fact that this algorithm doesn’t fail completely

55



CHAPTER 5. RESULTS AND DISCUSSION

on any volume, as said above, while the other two fail on some volumes.
However, even for this algorithm that doesn’t fail, it is preferable to have
the selection.

In Figure 5.6, the selection configurations are compared. There isn’t a
significant difference between each model, however, it is possible to see that
the models with layer selection are below the models that don’t consider the
selection of each layer.

For better interpretation of the relation between each selection config-
uration, the MUE mean and standard deviation of each layer is presented
for each selection configuration and individual algorithms on Tables 5.2 and
5.3.

Table 5.2: Results of the mean and standard deviation of the MUE of each
layer for the segmentation considering each selection configuration(part 1).

ILM NFL GCL IPL INL INL OPL
AIBILI 3.97±32.32 5.18±32.32 4.68±32.13 4.76±32.02
Zeiss 7.59±24.22 8.77±23.89 8.91±23.76 8.14±24.02

Explorer 1.66±1.55 2.72±2.08 2.62±2.65 2.56±2.23
Volume 1.13±0.51 2.24±0.83 1.82±1.44 1.85±1.19
Region 1.15±0.53 2.20±0.82 1.79±1.48 1.81±1.19
B-scan 1.15±0.48 2.22±0.83 1.77±1.48 1.78±1.16

Volume + Layer 1.10±0.51 2.17±0.77 1.75±1.41 1.76±1.11
Fovea + Layer 1.09±0.49 2.06±0.75 1.70±1.37 1.72±1.10
B-scan + Layer 1.08±0.46 1.99±0.74 1.73±1.37 1.67±1.08

Table 5.3: Results of the mean and standard deviation of the MUE of each
layer for the segmentation considering each selection configuration(part 2).

OPL ONL IS OS RPE CH
AIBILI 4.75±32.15 5.31±33.76 4.39±32.93
Zeiss 9.08±23.80 7.46±24.15 13.77±22.33

Explorer 3.11±1.86 1.70±3.91 1.94±4.36
Volume 1.87±1.09 1.76±1.50 1.58±1.84
Region 1.87±1.01 1.62±1.30 1.57±1.60
B-scan 1.88±0.99 1.50±1.11 1.52±1.47

Volume + Layer 1.68±0.87 1.31±0.99 1.51±1.78
Region + Layer 1.66±0.85 1.28±0.99 1.44±1.42
B-scan + Layer 1.66±0.82 1.22±0.90 1.38±1.38

In tables 5.2 and 5.3 it is possible to confirm the decrease of the metrics
as the algorithm selection goes from volume selection to B-scan selection
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and the clear reduction of the metrics, when comparing any selection con-
figuration with the implementation of an individual algorithm.

The AIBILI and Zeiss algorithm presents a standard deviation that is
one order of magnitude higher than the mean value. This is because the
algorithms fail completely on the segmentation of some volumes, as was
presented in the previous section. For the MUE of the ILM, for example,
most of the volumes present metrics around one but, on the few volumes
where the segmentation fails, these values are much larger. For the AIBILI
algorithm, there is only one volume where this happens (the volume 82) but
on this volume, the MUE of the ILM layer is 359.48 and this is what causes a
high standard deviation. More volumes fail for the Zeiss algorithm, but the
MUE values aren’t as large as for the AIBILI, reaching a maximum value of
162.07 at volume 10, and this is why the mean and standard deviation are
closer for the Zeiss algorithm than for the AIBILI.

On the algorithm selection, without layer selection, there is an increase in
the metrics of certain layers as the algorithm selection progresses on region
specificity. For example, the MUE of the ILM layer is higher for the region
selection than for the volume selection and the MUE of the IS-OS layer
is higher for the volume selection than for the Explorer algorithm. These
differences can be associated with situations where the selected algorithm
wasn’t the best algorithm for that specific layer, but for the layers that
showed higher differences, when compared with the reference. The ILM
layer, for example, is usually well-segmented so the algorithm selection must
have occurred to benefit the other layers that are more problematic and can
show a larger difference between the algorithms. For the internal layers, for
example, the difference in metrics is kept as expected.

The expectation about the results was that there was a significant reduc-
tion between the use of individual algorithms and the selection of the best
one and that there is a metric reduction as the regions for the selection keep
getting more specific. Even with the small deviation pointed, it is possible to
see that results meet this expectation. This way, the algorithm’s selection is
beneficial, when compared with the implementation of only one algorithm,
and the more specific region selection implementations are beneficial, when
compared with only selecting the best algorithm for the total volume.
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5.2 Development of the selection method

5.2.1 Comparison of crossed and reference metrics

The comparison of the crossed metrics and reference metrics was done for
the volumes presented on Table 5.1 and were evaluated with plots such as
the ones presented on Figures 5.7 and 5.8.

Figure 5.7 presents the results of a volume where the Zeiss algorithm fails.
This is easily detected by the resulting metrics once all the metrics, excluding
the thickness metrics, are very distant from the ones from Explorer. This
is expected once when the Zeiss algorithm fails, it’s position is far from the
other two, that doesn’t fail.

On the other hand, in Figure 5.8, it is presented a volume where any
of the algorithms fail. It is possible to see that the pattern between the
Explorer and Zeiss is kept from the reference crossed metrics to the crossed
metrics, but with smaller values on the reference ones. This is, the reference
crossed metrics appear dislocated down from the crossed metrics. This factor
can be associated with situations where the segmentation of the AIBILI
algorithm is not the one that is closer to the reference, as presented in Figure
4.6. On these situations, the subtraction that is applied results on smaller
values than the real distances between the two segmentation. However, since
the pattern of the distances between the three algorithms remains the same,
only with a different scale, this situation doesn’t affect the prediction.

For the volumes were one of the algorithms is very distant from the
others, it is easy to detect that that algorithm failed and that is possible to
do even with the values of only one metric. However,the selection of the best
algorithm from the remaining two might be a difficult challenge that might
imply an analysis of the relation between the distances of the algorithms on
a group of metrics, instead of just one.

Some direct rules could be applied to the crossed metrics to directly
select the best algorithm. For example, excluding the algorithm that is
farther from the other two and then, from the remaining two, selects the
one that is selected more often with the reference metrics. Approaches with
similar direct rules were tried, but the results weren’t very good, implying
the need for a more complex model for the selection.
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5.2.2 Algorithms selection based on crossed metrics

The results presented here are obtained from the implementation of the RF,
DT and ANN models, as presented in section 4.5.2.2. This section is divided
into three subsections, for the results of the models of each selection config-
uration. On each subsection, a small discussion of the results is presented.
In the end, there is a discussion of the results presented for all the selection
configuration.

5.2.2.1 Volume

In this subsection, the results for the model implementation on the selection
of the best algorithm for each volume are presented according to each the
data configuration.

Individual metrics

Table 5.4 presents the results of the cross-validation on each algorithm for
the selection of the best algorithm for the volume segmentation, considering
the individual metrics as input. Table 5.5 presents the results of prediction
performed by each algorithm on an independent test set.

Table 5.4: Cross-validation results of the algorithms for volume selection
considering individual metrics as input. n is the number of data points for
each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.86 ± 0.01 0.71 ± 0.04 0.78 ± 0.02 2606

Zeiss 0.26 ± 0.05 0.45 ± 0.05 0.33 ± 0.05 287
Explorer 0.32± 0.04 0.47± 0.05 0.38 ± 0.03 537

RF AIBILI 0.88 ± 0.02 0.75 ± 0.03 0.81± 0.02 2606
Zeiss 0.37 ± 0.06 0.57 ± 0.02 0.45 ± 0.05 287

Explorer 0.38 ± 0.03 0.54 ± 0.02 0.44 ± 0.03 537
ANN AIBILI 0.88 ± 0.02 0.16 ± 0.07 0.27 ± 0.11 2606

Zeiss 0.16 ± 0.02 0.82 ± 0.05 0.27 ± 0.03 287
Explorer 0.23 ± 0.01 0.65 ± 0.05 0.34 ± 0.01 537

The results presented on table 5.5 are not very good for the Zeiss and
Explorer classification. It is also possible to see that the results of the
ANN are worst than the results of the other three methods for any of the
classification.
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Table 5.5: Test results of the algorithms for volume selection considering
individual metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.86 0.71 0.78 677

Zeiss 0.17 0.44 0.25 52
Explorer 0.41 0.52 0.46 146

RF AIBILI 0.86 0.78 0.82 677
Zeiss 0.23 0.37 0.28 52

Explorer 0.41 0.50 0.45 146
ANN AIBILI 0.76 0.25 0.38 677

Zeiss 0.11 0.67 0.18 52
Explorer 0.22 0.47 0.30 146

Layer metrics

Table 5.6 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the volume segmentation, consid-
ering the layer metrics as input. Table 5.7 presents the results of prediction
performed by each algorithm on an independent test set.

Table 5.6: Cross-validation results of the algorithms for volume selection
considering layer metrics as input. n is the number of data points for each
class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.92±0.02 0.80±0.05 0.85±0.03 573

Zeiss 0.50±0.24 0.32±0.13 0.38±0.17 24
Explorer 0.27±0.02 0.50±0.13 0.35±0.05 89

RF AIBILI 0.91±0.03 0.91±0.03 0.91±0.02 573
Zeiss 0.51±0.24 0.36±0.13 0.42±0.17 24

Explorer 0.40±0.02 0.44±0.15 0.40±0.06 89
ANN AIBILI 0.95±0.03 0.70±0.06 0.80±0.04 573

Zeiss 0.49±0.23 0.74±0.17 0.52±0.09 24
Explorer 0.28±0.06 0.67±0.15 0.38±0.04 89
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Table 5.7: Test results of the algorithms for volume selection considering
layer metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.91 0.88 0.90 146

Zeiss 0.00 0.00 0.00 6
Explorer 0.33 0.43 0.38 23

RF AIBILI 0.90 0.95 0.92 146
Zeiss 0.00 0.00 0.00 6

Explorer 0.56 0.43 0.49 23
ANN AIBILI 0.95 0.85 0.90 146

Zeiss 0.17 0.17 0.17 6
Explorer 0.34 0.57 0.43 23

The metrics with zero values on the Zeiss classification, in table 5.7, are
associated with the lack of training and test data. In the test data set,
there were only six data points for the Zeiss algorithm and the DT and RF
algorithm predicted them wrongly. The ANN, however, was able to identify
correctly some of the data points.

Volume metrics

Table 5.8 presents the results of the cross-validation on each algorithm for
the selection of the best algorithm for the volume segmentation, considering
the volume metrics as input. Table 5.9 presents the results of prediction
performed by each algorithm on an independent test set.

Table 5.8: Cross-validation results of the algorithms for volume selection
considering volume metrics as input. n is the number of data points for
each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.87±0.04 0.82±0.07 0.84±0.03 80

Zeiss 0.00±0.00 0.00±0.00 0.00±0.00 1
Explorer 0.31±0.15 0.40±0.07 0.33±0.10 17

RF AIBILI 0.91±0.04 0.78±0.07 0.84±0.05 80
Zeiss 0.00±0.00 0.00±0.00 0.00±0.00 1

Explorer 0.36±0.17 0.64±0.10 0.45±0.15 17
ANN AIBILI 0.95±0.07 0.79±0.10 0.85±0.04 80

Zeiss 0.00±0.00 0.00±0.00 0.00±0.00 1
Explorer 0.43±0.10 0.83±0.24 0.53±0.03 17
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Table 5.9: Test results of the algorithms for volume selection considering
volume metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.86 0.95 0.90 20

Zeiss 0.00 0.00 0.00 1
Explorer 0.67 0.50 0.57 4

RF AIBILI 0.94 0.85 0.89 20
Zeiss 0.00 0.00 0.00 1

Explorer 0.43 0.75 0.55 4
ANN AIBILI 1.00 0.95 0.97 20

Zeiss 0.00 0.00 0.00 1
Explorer 0.67 1.00 0.80 4

There is only one data point labelled with the Zeiss classification on the
training data set. This is why the metrics for the cross-validation, presented
on table 5.8 are always zero. The one data point can only be on the training
or on the validation data set. This way, when it is on the training, there
is no data point to validate the training of the Zeiss class and when it is
on the validation, there is no data point for the algorithm to learn how to
identify the Zeiss class. This is why the metrics are always equal to zero for
this class.

Even though the metrics for the Zeiss classification are always equal to
zero, the algorithm that seems to produce the best results for the volume
selection is the ANN applied using the volume metrics. However, to validate
this statement, the lack of data on the test set needs to be taken into con-
sideration, specially for the Zeiss and Explorer classification. It is possible
that the algorithm has performed well on those four cases, but can fail when
faced with different cases.

5.2.2.2 Regions

In this subsection, the results for the model implementation on the selection
of the best algorithm for each region are presented according to each the
data configuration.

Individual metrics

Table 5.10 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the region segmentation, consid-
ering the individual metrics as input. Table 5.11 presents the results of
prediction performed by each algorithm on an independent test set.
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Table 5.10: Cross-validation results of the algorithms for region selection
considering individual metrics as input. n is the number of data points for
each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.84±0.01 0.73±0.01 0.78±0.01 7681

Zeiss 0.24±0.03 0.42±0.05 0.30±0.04 841
Explorer 0.37±0.02 0.45±0.02 0.41±0.02 1768

RF AIBILI 0.86±0.01 0.73±0.03 0.79±0.02 7681
Zeiss 0.28±0.02 0.50±0.04 0.36±0.03 841

Explorer 0.39±0.01 0.51±0.01 0.44±0.01 1768
ANN AIBILI 0.85±0.01 0.32±0.04 0.46±0.04 7681

Zeiss 0.16±0.03 0.67±0.02 0.25±0.04 841
Explorer 0.275±0.002 0.59±0.03 0.38±0.01 1768

Table 5.11: Test results of the algorithms for region selection considering
individual metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.86 0.72 0.78 2000

Zeiss 0.18 0.36 0.24 168
Explorer 0.38 0.51 0.43 457

RF AIBILI 0.86 0.74 0.80 2000
Zeiss 0.22 0.40 0.29 168

Explorer 0.40 0.54 0.46 457
ANN AIBILI 0.85 0.32 0.46 2000

Zeiss 0.16 0.67 0.25 168
Explorer 0.28 0.59 0.38 457

The results presented on table 5.11 are similar to the ones presented at
table 5.5, for the volume selection. This applies both in terms of the low
metrics for the classification of the Zeiss and Explorer and for the results of
the ANN that are worst than for the other methods.

Layer metrics

Table 5.12 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the region segmentation, consider-
ing the layer metrics as input. Table 5.13 presents the results of prediction
performed by each algorithm on an independent test set.
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Table 5.12: Cross-validation results of the algorithms for region selection
considering layer metrics as input. n is the number of data points for each
class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.91±0.01 0.80±0.04 0.86±0.02 1700

Zeiss 0.25±0.06 0.33±0.09 0.26±0.02 90
Explorer 0.32±0.03 0.51±0.08 0.39±0.01 268

RF AIBILI 0.94±0.01 0.81±0.02 0.87±0.01 1700
Zeiss 0.20±0.06 0.46±0.08 0.27±0.07 90

Explorer 0.37±0.01 0.53±0.06 0.43±0.03 268
ANN AIBILI 0.93±0.01 0.71±0.07 0.81±0.04 1700

Zeiss 0.13±0.03 0.46±0.14 0.19±0.03 90
Explorer 0.32±0.05 0.50 ± 0.08 0.39±0.05 268

Table 5.13: Test results of the algorithms for region selection considering
layer metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.92 0.82 0.87 449

Zeiss 0.19 0.32 0.24 19
Explorer 0.28 0.46 0.35 57

RF AIBILI 0.94 0.79 0.86 449
Zeiss 0.14 0.53 0.22 19

Explorer 0.39 0.53 0.45 57
ANN AIBILI 0.93 0.71 0.81 449

Zeiss 0.12 0.44 0.19 19
Explorer 0.32 0.50 0.39 57

The results presented on table 5.13 show the same tendency for the clas-
sification of the Zeiss and Explorer that was presented with the individual
metrics. The major difference between this results and the ones from the
individual metrics is that with the layer metrics input, the ANN produces
results comparables to the ones obtained by the remaining models while on
the individual metrics analysis it preformed worst.

Volume metrics

Table 5.14 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the region segmentation, consider-
ing the volume metrics as input. Table 5.15 presents the results of prediction
performed by each algorithm on an independent test set.
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Table 5.14: Cross-validation results of the algorithms for region selection
considering volume metrics as input. n is the number of data points for
each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.91±0.04 0.85±0.06 0.88±0.02 228

Zeiss 0.83±0.17 0.75±0.25 0.79±0.21 5
Explorer 0.56±0.07 0.66±0.14 0.59±0.02 61

RF AIBILI 0.95±0.03 0.78±0.05 0.85±0.02 228
Zeiss 0.33±0.47 0.33±0.47 0.33±0.5 5

Explorer 0.48±0.04 0.82±0.13 0.60±0.04 61
ANN AIBILI 0.94±0.01 0.89±0.01 0.917±0.004 228

Zeiss 0.17±0.17 0.5±0.5 0.25±0.25 5
Explorer 0.64±0.05 0.76±0.07 0.69±0.02 61

Table 5.15: Test results of the algorithms for region selection considering
volume metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n

DT AIBILI 0.92 0.92 0.92 63
Zeiss 0.00 0.00 0.00 1

Explorer 0.58 0.64 0.61 11

RF AIBILI 0.89 0.81 0.85 63
Zeiss 0.00 0.00 0.00 1

Explorer 0.28 0.45 0.34 11

ANN AIBILI 0.96 0.78 0.86 63
Zeiss 0.00 0.00 0.00 1

Explorer 0.38 0.82 0.51 11

The zero values of the metrics on the Zeiss label in Table 5.15 are asso-
ciated to the fact that there is only five data points on the training data set
and only one on the test data set. This means that the algorithms have few
data points to learn and only one opportunity to classify the Zeiss algorithm,
where they all fail.

It is important to notice that the models with the volume metrics as
input are the ones that produce the best results for the AIBILI and Explorer
classification.
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5.2.2.3 B-scan

In this subsection, the results for the model implementation on the selection
of the best algorithm for each B-scan are presented according to each the
data configuration.

Individual metrics

Table 5.16 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the B-scan segmentation, con-
sidering the individual metrics as input. Table 5.17 presents the results of
prediction performed by each algorithm on an independent test set.

Table 5.16: Cross-validation results of the algorithms for B-scan selection
considering individual metrics as input. n is the number of data points for
each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.84±0.01 0.55±0.05 0.67±0.04 858490

Zeiss 0.23±0.01 0.64±0.02 0.34±0.01 109230
Explorer 0.36±0.01 0.51±0.01 0.42±0.01 232496

RF AIBILI 0.85±0.01 0.58±0.03 0.68±0.03 858490
Zeiss 0.233±0.002 0.61±0.04 0.34±0.01 109230

Explorer 0.37±0.01 0.53±0.01 0.433±0.004 232496
ANN AIBILI 0.80±0.02 0.27±0.04 0.40±0.05 858490

Zeiss 0.17±0.02 0.66±0.03 0.27±0.02 109230
Explorer 0.276±0.001 0.58±0.05 0.37±0.01 232496

Table 5.17: Test results of the algorithms for B-scan selection considering
individual metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.85 0.58 0.69 226996

Zeiss 0.18 0.55 0.27 21937
Explorer 0.35 0.51 0.42 57235

RF AIBILI 0.85 0.59 0.70 226996
Zeiss 0.19 0.55 0.28 21937

Explorer 0.36 0.52 0.43 57235
ANN AIBILI 0.82 0.20 0.32 226996

Zeiss 0.13 0.62 0.21 21937
Explorer 0.26 0.64 0.37 57235
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Although there is more data available, the results for the Zeiss and Ex-
plorer labels, shown on Table 5.17, are still worst than the ones for the
AIBILI label. Besides this, the results from the ANN are also worst than
the ones from the other algorithms.

Layer metrics

Table 5.18 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the B-scan segmentation, consid-
ering the layer metrics as input. Table 5.19 presents the results of prediction
performed by each algorithm on an independent test set.

Table 5.18: Cross-validation results of the algorithms for B-scan selection
considering layer metrics as input. n is the number of data points for each
class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.89±0.01 0.72±0.02 0.80±0.02 178461

Zeiss 0.21±0.01 0.50±0.02 0.30±0.01 13032
Explorer 0.424±0.003 0.56±0.03 0.48±0.01 48607

RF AIBILI 0.89± 0.01 0.84±0.02 0.87±0.01 178461
Zeiss 0.33±0.02 0.38±0.04 0.35±0.01 13032

Explorer 0.53±0.02 0.61±0.02 0.56±0.01 48607
ANN AIBILI 0.91±0.01 0.73±0.04 0.81±0.03 178461

Zeiss 0.22±0.02 0.63±0.04 0.32±0.03 13032
Explorer 0.46±0.01 0.56±0.01 0.51±0.01 48607

Table 5.19: Test results of the algorithms for B-scan selection considering
layer metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.90 0.70 0.79 47663

Zeiss 0.14 0.44 0.21 2340
Explorer 0.40 0.59 0.48 11247

RF AIBILI 0.90 0.84 0.87 47663
Zeiss 0.21 0.35 0.26 2340

Explorer 0.53 0.60 0.56 11247
ANN AIBILI 0.92 0.76 0.83 47663

Zeiss 0.17 0.64 0.26 2340
Explorer 0.50 0.57 0.53 11247
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The results presented on table 5.19 show better metrics for the Explorer
classification than the ones obtained with the layer metrics for the other
selection configurations.

On this results it is also possible to see that the best models for the layer
selection are the RF and ANN.

Volume metrics

Table 5.20 presents the results of the cross-validation on each algorithm
for the selection of the best algorithm for the B-scan segmentation, consider-
ing the volume metrics as input. Table 5.21 presents the results of prediction
performed by each algorithm on an independent test set.

Table 5.20: Cross-validation results of the algorithms for B-scan selection
considering volume metrics as input. n is the number of data points for each
class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.96±0.03 0.81±0.02 0.88±0.02 25631

Zeiss 0.13±0.08 0.43±0.19 0.20±0.12 505
Explorer 0.612±0.005 0.81±0.08 0.70±0.03 8164

RF AIBILI 0.97±0.02 0.826±0.004 0.70±0.01 25631
Zeiss 0.27±0.04 0.60±0.06 0.37±0.04 505

Explorer 0.63±0.04 0.86±0.08 0.73±0.02 8164
ANN AIBILI 0.95±0.02 0.88±0.01 0.92±0.02 25631

Zeiss 0.26±0.12 0.48±0.13 0.31±0.09 505
Explorer 0.72±0.03 0.86±0.03 0.78±0.03 8164

Table 5.21: Test results of the algorithms for B-scan selection considering
volume metrics as input. n is the number of data points for each class.

Model Class Precision Recall F1 Score n
DT AIBILI 0.91 0.93 0.92 7111

Zeiss 0.42 0.26 0.32 62
Explorer 0.65 0.58 0.61 1577

RF AIBILI 0.96 0.85 0.90 7111
Zeiss 0.14 0.77 0.24 62

Explorer 0.59 0.79 0.68 1577
ANN AIBILI 0.95 0.91 0.93 7111

Zeiss 0.17 0.65 0.27 62
Explorer 0.71 0.77 0.74 1577

72



CHAPTER 5. RESULTS AND DISCUSSION

The results presented on table 5.21 show best metrics for the Explorer
classification than any of the ones previously presented. However, the Zeiss
classification still presents bad results in terms of the presented metrics.

The change on the Explorer classification is associated with the increase
of data that happened from the volume and region selection to the B-scan
selection and shows the advantage of using the volume metrics as the input
of the model, when compared with the layer metrics or individual metrics.

5.2.2.4 Discussion

In general, the best results were obtained with the ANN models. How-
ever, this is not true for the models that take the individual metrics as
input. When the inputs are the individual metrics, the RF and DT meth-
ods produce better results than the ANN. This fact can be associated with
the overfitting of the model, since the less complex models produce better
results than the most complex one.

Overall, there is an improvement of the metrics as the models go from
considering the individual metrics to the volume metrics as inputs. The
models considering the individual metrics as inputs don’t produce great
results in any of the selection configuration, suggesting that this isn’t the
best data configuration and it is preferable to use the layer or volume metrics.

Any of the models could fit well the Zeiss classification. This fact is
associated with the lack of volumes/regions/B-scans were the Zeiss segmen-
tation was considered the best. It is expected that the results would be more
balanced if a more diverse data set was available.

It is also important to mention that, in terms of the data extracted for
each of the selection configurations, the main difference between each model
is the amount of data extracted. The data set that was considered has only
123 volumes, which is a very small data set for training and testing the
model, especially volume selection. However, each volume has 350 B-scans,
which provides a much larger data set for training and testing the models
considering the B-scan selection.

Finally, from the presented analysis, it is possible to conclude that the
best results were obtained for the ANN with the volume metrics as input,
for the selection of each B-scan segmentation algorithm.
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5.3 Evaluation of the selection method

Tables 5.22 and 5.23 presents the results of the mean of the MUE of the
segmentation produced by the model selected above and the segmentation
of the individual algorithms for the volumes considered on the test set.

Table 5.22: Results of the MUE of the segmentation produced by the best
model and the individual algorithms for the test data set (part 1).

ILM NFL-GCL IPL-INL INL-OPL
AIBILI 1.066±0.57 2.17±0.78 1.60±0.74 1.67±0.57
Zeiss 5.56±12.54 6.46±12.20 6.54±11.83 5.97±12.45

Explorer 1.47±0.41 2.48±0.76 2.42±0.78 2.44±0.65
Model 1.19±0.55 2.05±0.50 1.54±0.58 1.61±0.49

Table 5.23: Results of the MUE of the segmentation produced by the best
model and the individual algorithms for the test data set (part 2).

OPL-ONL IS-OS RPE-CH
AIBILI 1.58±0.61 1.91±1.64 1.36±0.64
Zeiss 6.83±12.27 5.35±12.48 10.63±9.20

Explorer 2.94±0.77 1.19±0.42 1.47±0.50
Model 1.67±0.63 1.38±0.94 1.32±0.63

The mean MUE of the selection model is smaller than the mean MUE
of the individual algorithms for most of the layers except. However, for the
ILM and OPL-ONL, the MUE of the model is slightly higher than the MUE
of the AIBILI algorithm and for the IS-OS layer, the MUE of the model is
higher than the MUE of the segmentation of the Explorer algorithm.

The presented differences can be associated with two reasons. The first
is the justification given on the discussion of the selection configurations.
This is, the selection happens for the benefit of the group of layers and
sometimes the selected algorithm isn’t the algorithm that produces the best
results on all the layers. The second reason is related to the wrong selection
of the model that happens due to situations that the selection criteria can’t
identify correctly.

To quantify the benefit of using the selection criteria, the average de-
crease of the MUE, comparing the segmentation with the algorithm selection
and the segmentation from each algorithm, is calculated for each layer. Mak-
ing an average of the values for each layer, the selection criteria achieved an
average reduction of the MUE of 7.99% from the AIBILI algorithm, 20.60%

74



CHAPTER 5. RESULTS AND DISCUSSION

from the Explorer algorithm and 76.24% from the Zeiss algorithm. This way,
even with the limitation on the selection model, the selected model produces
better results than the direct application of only the best algorithm that, in
this case, is considered the AIBILI algorithm.
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Chapter 6

Conclusion

6.1 Conclusion

The presented results allow the conclusion that the selection of the best
algorithm has the potential to produce best results than the implementation
of individual segmentation algorithms.

It was also shown that the best method to implement the selection con-
sists on applying an ANN(when compared with a RF and a DT). This ANN
takes as input all the crossed metrics that represent a B-scan and selects the
best algorithm for the segmentation of that B-scan.

Although the results of the implementation of the developed selection
criteria on a test set are encouraging, the classification metrics related to
the selection of the Zeiss algorithm are still lower than for the selection of
the other two algorithms. This is associated with the lack of data for this
class on the data set that was considered on this research project.

Finally, the method proposed has proven to produce better results than
the implementation of the individual segmentation algorithm, leading to the
conclusion that this could be a good approach towards the implementation
of OCT layer segmentation on daily clinical practice.

6.2 Future work

Since one of the limitations of this research work was the tendency towards
the selection of the AIBILI algorithm, due to the way the reference segmen-
tation was produced, it would be interesting to try the presented approach
without this bias to see if there is an improvement of the results, especially
for the selection of the Zeiss algorithm. Besides this, it would be interesting
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to try this approach on a larger and more diverse data set, with more diffi-
cult volumes and more diverse type of lesions, to see if this leads to a more
balanced data set and more consistent results.

Furthermore, it is important to explore different approaches for the de-
velopment of the selection criteria. One of the possibilities is to use unsuper-
vised learning models, namely clustering techniques, to group the volumes
by the characteristics of the crossed metrics and attribute the selected al-
gorithm for each of the groups. Another possibility is to implement a Con-
volutional Neural Network on the volumes to directly select the algorithm
based on the volume properties.
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Appendix A

Individual algorithm’s MUE

In this appendix, the MUE of the segmentations obtained with the individual
algorithms is presented.

Table A.1: MUE data for the segmentations obtained with the 2D algorithm.

ID ILM NFL GCL IPL INL INL OPL OPL ONL ISL OSL RPE CH
1 27.188 7.134 20.304 27.378 24.535 27.998 5.837
2 84.765 6.127 11.095 14.849 14.442 86.515 3.594
3 1.386 3.199 6.953 9.314 9.016 10.178 15.759
4 2.097 5.147 14.644 20.066 17.266 1.014 2.541
5 109.090 10.655 25.123 27.974 26.480 104.470 11.259
8 1.668 4.779 7.542 9.746 9.571 1.409 2.559
9 22.411 5.459 11.834 15.972 14.162 22.718 2.857
10 71.514 3.737 13.987 19.495 16.330 72.228 3.988
11 27.195 5.536 10.715 14.539 13.706 27.790 2.355
12 16.308 5.259 16.133 22.285 17.503 16.193 2.874
13 91.596 6.737 18.618 25.700 22.252 93.033 13.776
14 18.215 4.068 13.665 18.247 14.781 18.211 4.566
16 1.492 26.544 42.962 51.643 49.544 84.641 62.951
17 27.788 13.226 17.515 21.823 19.607 30.201 3.816
18 119.920 5.454 20.178 27.886 26.130 111.801 4.313
19 4.752 8.489 10.827 13.259 11.795 4.432 4.415
20 8.647 3.727 17.174 25.688 21.156 11.224 2.667
23 5.814 5.093 14.258 18.813 14.964 7.801 3.652
24 97.744 8.317 12.531 16.112 15.619 96.059 3.610
25 65.331 9.533 12.281 14.967 13.553 66.061 2.454
28 2.325 8.909 18.358 24.245 20.312 7.956 4.707
30 1.835 4.836 10.598 15.418 13.975 1.940 5.836
31 25.357 24.295 33.770 40.017 34.075 60.115 8.208
32 3.235 6.032 14.218 18.112 13.074 10.401 2.903
34 2.128 4.903 7.868 9.638 8.598 1.852 2.266
36 54.038 5.076 8.069 10.442 10.033 54.403 2.086
37 124.230 13.016 33.080 37.151 34.408 120.412 10.473
38 22.509 5.001 11.695 15.826 13.234 23.258 3.404
39 82.449 15.171 30.413 38.275 33.266 76.661 2.863
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40 1.733 3.420 7.834 9.997 7.929 1.717 2.885
41 126.148 6.438 25.739 36.635 33.327 127.163 3.259
42 73.227 6.479 21.135 28.818 26.782 73.433 4.817
44 2.447 4.582 15.662 21.229 18.198 4.125 3.804
45 25.442 6.029 17.382 23.090 19.246 25.246 2.627
46 3.526 4.317 16.947 23.029 19.998 3.060 4.389
47 118.690 10.176 16.031 21.392 22.089 116.252 4.095
49 114.009 5.716 10.394 13.578 13.658 114.774 9.742
53 107.836 4.187 18.019 25.510 23.735 108.559 4.571
54 1.348 2.791 8.694 11.959 11.696 0.857 1.985
56 58.451 3.430 12.226 17.675 15.284 60.197 3.058
57 20.469 3.230 4.378 5.306 5.458 20.454 1.854
59 22.818 5.708 13.402 18.158 17.535 24.510 3.250
61 58.955 27.032 37.100 43.994 38.707 81.829 15.339
62 62.192 6.388 20.982 28.130 23.559 65.028 3.611
63 2.141 4.820 11.174 14.210 11.939 1.460 3.721
65 4.704 19.775 34.910 43.888 36.854 39.354 25.991
66 1.519 7.693 25.898 33.721 30.292 0.975 2.239
67 1.440 2.835 4.524 5.630 5.413 1.061 6.354
69 92.012 7.032 21.565 29.782 24.210 93.197 1.989
70 108.056 3.367 6.512 8.270 8.844 108.774 14.502
71 33.882 4.829 11.250 14.846 10.756 34.599 2.487
72 44.713 5.102 17.097 23.204 18.620 45.468 3.107
73 1.924 7.581 12.197 15.748 15.825 2.797 2.864
74 123.593 4.089 11.909 16.383 14.271 124.294 7.588
75 2.350 3.369 8.589 11.427 11.538 1.933 3.096
77 109.248 4.769 16.200 22.969 18.894 109.854 16.244
78 55.080 10.104 14.303 17.122 16.735 54.171 3.700
79 23.018 4.049 8.895 11.915 9.250 22.586 10.118
80 64.837 98.510 110.139 104.525 96.384 182.225 22.423
82 290.222 310.372 316.627 325.422 329.236 397.087 393.556
83 68.507 15.450 17.511 18.939 17.598 69.684 7.072
85 102.909 4.837 11.182 15.066 11.718 104.110 10.575
87 64.614 11.643 22.440 29.117 25.470 73.230 24.261
88 16.508 4.253 11.480 16.505 15.739 16.566 8.682
89 50.970 6.014 9.400 11.939 11.045 51.630 8.198
90 95.748 81.488 93.532 90.458 91.766 242.877 157.308
91 128.614 42.216 49.296 34.489 33.690 142.811 11.296
92 114.852 7.511 16.066 21.520 18.112 114.668 16.590
93 43.685 11.011 15.328 19.885 17.661 47.002 5.554
94 1.648 6.420 17.148 22.742 16.166 2.154 2.495
95 1.643 47.350 61.400 69.391 70.318 191.083 176.059
96 67.009 5.464 20.646 30.816 26.259 68.201 3.443
97 92.212 11.728 20.125 26.220 22.953 90.792 4.332
98 8.560 4.795 18.761 25.190 19.570 8.709 3.556
99 106.307 2.877 10.573 14.609 13.123 107.042 6.354
100 2.031 5.324 14.716 20.678 17.005 1.494 10.412
101 12.887 6.496 19.656 25.666 20.096 17.727 5.340
104 2.947 7.306 17.296 21.838 18.485 2.382 2.391
105 87.048 3.003 6.336 8.114 8.171 87.616 2.938
106 94.590 7.528 20.668 26.397 22.234 95.108 6.520
107 73.393 5.296 14.661 20.453 13.852 73.239 8.497
108 8.858 11.760 23.232 31.622 29.608 22.000 5.365
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109 73.965 8.541 23.073 29.633 25.255 74.688 2.314
110 42.317 4.679 11.411 15.351 12.273 43.515 2.487
113 8.887 35.787 45.524 48.960 46.604 66.336 19.789
115 118.356 3.759 10.786 14.224 11.670 120.183 4.969
116 50.201 21.875 34.511 40.448 42.105 142.600 120.667
119 34.321 3.711 9.304 13.060 12.967 34.490 2.921
120 2.358 5.452 11.022 13.071 9.328 1.921 2.387
121 84.053 6.663 17.529 24.805 22.160 86.709 11.209
122 4.611 3.523 10.009 13.180 9.266 3.831 7.887
123 1.832 3.794 11.396 15.672 13.219 2.563 2.961
126 2.732 17.826 33.110 41.457 35.616 20.255 15.454
127 22.310 4.463 8.536 10.859 8.920 23.091 3.979
128 15.513 5.094 13.174 17.982 16.999 15.094 2.226
130 14.555 6.265 23.020 30.956 27.721 15.226 4.296
131 22.086 15.609 18.456 21.567 19.667 34.928 5.492
132 1.431 16.296 29.194 35.696 31.083 31.888 16.855
133 1.836 6.645 13.513 17.449 16.194 1.314 3.206
134 19.108 5.071 24.070 33.154 26.966 18.909 2.433
135 19.525 5.836 21.259 27.578 20.868 19.680 2.642
137 42.366 3.131 5.216 6.167 4.906 42.567 13.947
139 76.285 6.982 25.007 32.396 31.339 73.862 11.834
140 6.936 4.892 12.311 17.191 14.284 6.864 2.316
145 26.053 4.718 9.591 12.461 12.440 27.167 10.585
146 55.960 7.759 19.045 25.102 22.629 56.991 3.138
149 2.363 11.963 27.417 34.563 29.795 3.847 5.215
151 1.979 6.475 25.447 33.979 29.694 1.725 4.195
152 32.878 4.372 12.093 15.962 14.665 33.651 2.207
153 111.793 24.185 43.216 46.484 42.800 137.440 24.361
154 70.024 8.068 25.609 35.066 29.388 71.518 4.476
155 7.173 3.527 11.729 15.925 10.544 6.588 2.616
156 3.193 4.070 9.738 12.990 9.774 2.898 5.350
157 84.524 6.251 18.876 25.678 22.059 85.585 3.138
159 13.762 38.588 63.143 77.768 99.929 403.327 439.558
160 58.778 3.968 5.647 6.511 7.346 59.415 3.641
163 60.462 6.297 24.540 31.807 27.749 61.362 3.967
165 17.663 26.659 44.297 53.470 56.773 133.280 150.651
166 6.484 11.072 30.632 38.184 36.115 75.319 87.013
169 1.853 3.931 12.658 18.052 13.937 1.042 2.908
170 1.564 29.670 32.132 33.397 32.398 61.071 24.412
179 1.481 9.672 18.693 23.473 18.437 1.520 2.396
180 2.253 14.936 41.529 18.526 20.089 13.975 4.329
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Table A.2: MUE data for the segmentations obtained with the AIBILI algorithm.

ID ILM NFL GCL IPL INL INL OPL OPL ONL ISL OSL RPE CH
1 1.004 1.799 1.399 1.520 1.472 1.155 1.294
2 1.127 1.897 1.451 1.489 1.455 1.205 1.199
3 0.686 1.466 1.099 1.125 1.092 0.825 0.823
4 0.745 1.334 1.185 1.277 1.159 0.729 0.803
5 2.034 2.929 2.461 2.532 2.354 9.000 2.577
8 0.958 1.835 1.227 1.202 1.306 0.960 1.119
9 1.025 2.058 2.363 2.094 1.718 1.890 1.652
10 1.303 2.170 1.746 1.673 1.624 1.415 1.405
11 0.895 1.950 1.276 1.346 1.252 1.083 1.707
12 0.940 2.322 1.476 1.563 1.446 1.176 1.275
13 0.892 2.037 1.236 1.326 1.195 0.938 0.967
14 0.945 2.101 1.888 1.964 1.718 1.386 1.154
16 0.883 2.267 1.753 1.839 1.934 3.161 1.817
17 1.517 10.696 15.646 19.009 22.859 2.724 1.767
18 1.959 3.215 2.498 2.365 2.431 6.920 2.664
19 0.855 2.536 1.500 1.736 2.688 0.887 0.944
20 1.159 3.629 2.378 2.207 2.976 2.581 2.409
23 1.203 2.171 1.781 1.900 2.000 4.113 1.955
24 1.133 2.080 1.492 1.535 1.472 5.689 1.652
25 0.852 1.574 1.200 1.290 1.292 0.802 0.892
28 1.172 2.853 2.318 2.240 2.013 4.124 1.694
30 0.875 2.653 1.832 1.844 1.622 1.817 1.487
31 1.034 2.411 1.777 1.695 1.561 1.622 1.492
32 1.070 2.712 1.986 2.127 1.949 6.381 2.295
34 0.886 1.726 1.105 1.188 1.146 0.928 0.971
36 0.785 1.816 1.029 1.096 1.085 1.024 0.993
37 3.447 3.146 2.628 2.614 2.472 5.311 2.665
38 0.786 2.179 1.373 1.525 1.410 1.193 1.224
39 1.264 1.912 1.504 1.514 1.451 5.976 1.502
40 0.836 1.885 1.569 1.423 1.243 1.184 1.098
41 1.616 1.905 1.949 2.104 1.940 1.580 1.773
42 1.091 2.002 1.546 1.667 1.541 1.230 1.284
44 0.993 2.302 1.816 1.959 1.950 2.678 1.994
45 1.027 1.987 1.443 1.480 1.431 1.187 1.212
46 0.790 1.511 1.670 1.650 1.381 0.949 0.907
47 1.535 2.698 1.976 2.167 2.158 4.070 2.149
49 1.249 2.248 1.687 1.855 1.935 1.897 1.688
53 0.949 1.747 1.135 1.217 1.188 0.866 0.884
54 0.787 1.767 1.227 1.309 1.609 0.945 0.985
56 0.985 2.332 1.576 2.475 1.712 3.170 1.103
57 0.839 1.688 1.028 1.036 1.037 0.718 0.801
59 0.902 2.469 1.853 1.937 1.942 3.240 1.889
61 1.405 2.073 1.700 1.808 1.838 2.755 1.782
62 1.016 1.989 1.413 1.475 1.386 2.141 1.710
63 0.776 1.740 1.153 1.084 1.016 0.815 0.857
65 0.943 2.112 1.374 1.367 1.281 1.084 1.106
66 0.846 1.461 1.083 1.416 1.268 0.991 1.026
67 0.797 1.525 1.107 1.108 1.028 0.740 0.808
69 1.218 3.599 3.365 2.736 3.731 2.393 2.845
70 0.932 1.521 1.214 1.421 1.603 0.898 0.954
71 0.875 1.807 1.198 1.221 1.079 0.874 0.884
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72 1.119 2.626 1.709 1.537 1.395 1.065 1.132
73 1.175 2.319 1.627 1.722 1.844 1.862 1.838
74 0.886 1.367 1.154 1.425 1.139 0.824 0.905
75 0.786 1.820 1.086 1.123 1.331 0.997 0.898
77 0.906 2.008 1.230 1.367 1.278 0.867 0.934
78 1.992 2.939 2.500 2.560 2.485 5.286 2.683
79 0.822 1.817 1.193 1.254 1.316 1.038 1.249
80 1.129 2.291 1.895 2.036 1.585 4.281 1.475
82 359.476 360.479 357.745 356.447 357.562 375.887 366.562
83 2.033 2.755 2.158 2.170 2.054 2.330 1.719
85 0.762 1.715 1.161 1.151 1.108 0.870 0.843
87 0.843 1.564 1.117 1.250 1.180 2.218 1.279
88 0.928 2.188 1.441 1.596 1.671 1.649 1.470
89 0.732 1.570 0.962 1.011 1.046 0.687 0.746
90 1.823 4.009 4.424 3.700 3.413 9.149 2.581
91 1.563 3.095 1.645 1.620 1.757 15.159 1.947
92 1.533 2.082 1.807 1.768 1.653 1.262 1.323
93 1.269 2.303 1.688 1.929 2.027 7.978 2.451
94 1.000 2.424 1.701 1.734 1.780 2.055 1.698
95 0.867 2.450 2.225 2.337 2.152 2.187 1.674
96 1.337 3.386 2.846 1.941 3.203 1.708 2.931
97 1.359 2.800 2.789 2.602 2.434 4.308 2.006
98 0.759 1.501 1.197 1.185 1.277 1.066 1.241
99 0.927 1.728 1.061 1.142 1.086 0.764 0.849
100 0.905 2.157 1.822 1.994 1.926 1.678 1.253
101 1.426 2.850 2.038 2.055 2.041 3.928 2.215
104 1.124 2.280 1.604 1.590 1.604 2.555 1.487
105 0.817 1.734 0.988 1.002 1.048 0.758 0.837
106 0.923 2.109 1.691 1.991 1.761 1.160 1.155
107 0.882 1.940 1.367 1.361 1.346 0.996 1.049
108 0.812 1.720 1.228 1.411 1.344 0.990 1.018
109 1.004 2.155 1.544 1.532 1.680 1.705 1.604
110 0.802 1.688 1.059 1.048 1.031 0.781 0.825
113 0.809 1.915 1.320 1.477 1.380 3.507 1.300
115 0.823 2.208 1.799 2.250 1.684 1.011 0.881
116 0.804 1.829 1.153 1.132 1.051 0.825 0.889
119 0.953 2.578 1.708 1.777 1.904 1.868 1.517
120 0.722 1.815 1.199 1.122 1.097 1.177 1.007
121 1.343 6.449 9.347 11.196 12.462 2.169 1.631
122 0.896 1.653 1.249 1.216 1.257 0.948 1.033
123 0.799 1.992 1.339 1.495 1.422 1.511 1.356
126 0.950 2.171 1.532 1.511 1.538 3.486 1.748
127 0.735 1.453 1.092 1.091 0.984 0.714 0.753
128 0.865 2.081 1.291 1.365 1.334 1.651 1.183
130 0.933 1.800 1.402 1.613 1.412 1.962 1.335
131 1.361 4.735 3.822 3.172 2.203 4.610 2.504
132 0.812 2.331 1.750 1.732 1.673 4.695 1.875
133 0.929 1.640 1.337 1.378 1.402 1.070 1.058
134 0.855 1.877 1.317 1.419 1.192 1.067 1.049
135 0.977 2.204 1.469 1.400 1.409 1.558 1.350
137 0.685 1.764 0.998 1.069 0.985 0.787 0.812
139 1.808 2.317 2.114 2.095 2.170 2.789 2.003
140 0.873 1.846 1.169 1.330 1.192 1.012 1.059
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145 0.757 1.730 1.566 1.946 1.625 1.418 1.207
146 0.903 1.780 1.185 1.384 1.133 0.799 0.887
149 1.421 2.402 1.562 1.714 1.545 2.918 1.591
151 0.800 1.790 1.326 1.533 1.298 1.034 0.987
152 0.901 1.601 1.124 1.208 1.198 0.837 0.874
153 1.446 2.973 1.893 1.960 1.719 2.218 1.524
154 1.861 2.594 2.117 1.789 1.688 1.489 1.356
155 0.912 1.880 1.170 1.240 1.169 0.873 0.939
156 0.942 2.396 1.613 1.635 1.610 1.449 1.363
157 0.910 1.815 1.461 1.511 1.237 0.999 1.064
159 1.033 2.270 1.869 1.962 1.723 4.810 2.068
160 0.914 1.736 1.317 1.476 1.423 0.959 1.008
163 1.249 2.302 1.743 1.928 1.711 1.631 1.644
165 0.876 2.090 1.587 1.870 1.728 5.046 1.837
166 1.124 3.226 2.501 2.119 1.876 3.802 1.885
169 0.816 1.817 1.292 1.375 1.085 0.820 0.868
170 0.843 2.092 1.206 1.259 1.240 1.180 1.173
179 0.868 1.840 1.492 1.468 1.538 1.327 1.309
180 0.732 2.068 1.326 1.908 1.391 7.197 1.472
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Table A.3: MUE data for the segmentations obtained with the Zeiss algorithm.

ID ILM NFL GCL IPL INL INL OPL OPL ONL ISL OSL RPE CH
1 60.210 61.394 61.556 59.531 60.707 60.822 67.487
2 1.467 3.178 2.965 1.840 2.841 1.574 8.226
3 52.518 52.121 51.566 52.799 52.806 52.352 47.633
4 1.614 2.314 2.332 1.847 2.772 1.003 8.243
5 2.253 4.230 4.190 2.566 3.810 2.100 10.712
8 1.313 2.360 2.509 1.566 2.671 1.269 8.424
9 1.487 2.681 2.561 2.046 2.787 1.097 9.428
10 162.071 161.912 160.076 161.609 161.141 161.095 154.929
11 1.565 2.471 2.809 1.821 2.838 1.500 7.750
12 1.359 2.471 2.861 2.090 3.005 1.317 7.823
13 1.668 2.727 2.568 1.771 2.647 1.043 8.106
14 1.536 2.464 3.037 1.691 2.857 1.085 8.282
16 1.529 2.606 3.311 1.976 3.548 1.906 8.494
17 2.051 3.616 3.507 3.339 3.488 1.634 8.669
18 2.102 3.320 3.607 2.748 3.620 1.818 8.345
19 1.343 2.400 2.440 1.788 3.725 0.995 8.180
20 1.767 2.210 2.341 2.655 3.390 2.712 7.519
23 1.677 3.291 2.799 2.062 3.410 1.355 9.949
24 1.623 3.813 3.140 2.446 3.374 1.277 8.505
25 38.324 36.981 36.536 38.074 39.032 37.529 30.624
28 2.146 3.823 3.442 2.688 3.522 2.823 9.719
30 1.444 2.568 2.608 1.946 3.136 1.402 9.018
31 145.004 144.425 144.931 142.876 144.811 143.557 151.663
32 1.755 2.722 2.795 2.200 3.196 1.479 8.456
34 1.333 2.322 2.374 1.508 2.436 1.294 8.375
36 1.261 2.257 2.153 1.601 2.610 0.833 8.060
37 3.098 5.134 5.032 4.399 4.762 2.650 7.377
38 1.141 2.273 2.648 1.989 2.962 0.948 8.219
39 2.042 3.894 6.188 6.078 7.651 1.524 8.689
40 1.590 2.300 2.498 1.459 2.551 1.486 8.611
41 1.834 3.452 4.368 2.680 3.074 1.487 8.338
42 1.625 3.490 4.471 2.617 2.973 1.143 8.044
44 1.837 2.724 2.452 1.792 3.143 2.400 8.028
45 1.458 3.292 3.142 1.976 3.202 1.234 8.060
46 48.679 49.422 49.718 48.364 48.918 48.773 53.779
47 2.040 2.550 3.102 2.885 3.750 1.778 8.012
49 1.801 3.503 3.524 2.651 3.528 1.128 7.981
53 1.351 2.291 2.614 1.748 2.661 1.038 8.574
54 1.271 1.925 2.443 1.758 3.472 0.917 9.025
56 1.675 2.726 3.371 2.576 3.322 1.552 9.553
57 1.815 1.838 2.222 1.407 2.377 1.192 8.281
59 1.345 4.001 3.207 2.106 3.012 1.272 9.182
61 1.880 3.588 4.027 2.127 3.446 1.363 8.692
62 1.669 3.981 3.359 2.209 2.757 1.572 8.232
63 109.582 109.452 108.734 110.998 109.183 109.599 102.574
65 1.579 2.347 2.262 1.438 2.635 1.152 8.540
66 1.404 2.628 2.373 1.725 2.960 1.163 8.420
67 26.867 26.787 26.638 27.151 27.622 27.007 25.653
69 1.795 1.859 2.091 1.720 2.286 1.443 6.362
70 1.454 2.336 2.389 1.642 3.358 0.890 7.946
71 1.913 1.943 2.319 1.626 2.486 1.403 7.719
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72 1.520 2.580 2.823 2.068 3.370 1.229 8.557
73 1.646 3.686 6.140 7.474 9.282 1.427 7.862
74 1.286 2.200 2.181 1.796 2.410 1.028 7.942
75 1.339 2.062 2.340 1.500 2.915 1.306 7.760
77 1.384 2.198 2.438 1.666 2.620 0.829 8.421
78 2.380 4.104 4.143 3.059 3.517 2.049 8.845
79 1.161 2.586 2.555 1.611 3.145 0.856 8.810
80 1.761 3.381 3.523 2.306 3.215 1.827 8.841
82 4.650 8.699 15.778 12.810 9.458 11.277 20.356
83 2.041 9.081 5.116 3.684 4.081 6.441 10.609
85 2.168 2.662 3.097 1.784 3.393 1.503 9.085
87 1.211 2.892 2.654 1.741 2.584 0.851 8.573
88 1.363 2.187 2.504 1.704 2.671 1.033 8.903
89 8.399 8.223 7.833 9.218 8.485 8.601 3.652
90 2.115 4.515 4.196 3.293 4.013 2.621 9.513
91 1.867 4.843 4.960 4.391 5.912 2.192 10.058
92 1.842 2.764 2.946 1.764 2.630 1.075 8.660
93 1.706 3.319 3.261 2.384 3.315 1.665 9.144
94 1.421 2.632 2.429 1.779 3.293 1.534 8.360
95 1.319 2.412 2.703 2.399 3.102 0.979 8.379
96 2.121 3.475 3.501 2.884 2.397 2.309 6.546
97 2.249 3.676 4.200 3.205 4.691 2.538 9.820
98 1.410 2.591 2.944 1.636 3.292 1.154 9.049
99 1.317 1.893 2.221 1.518 2.432 0.932 9.066
100 1.994 2.789 3.211 2.042 3.894 1.296 10.338
101 1.867 3.072 3.415 2.338 3.687 1.737 8.705
104 1.616 2.650 2.796 1.921 3.069 1.542 8.097
105 1.190 1.956 2.233 1.457 2.346 1.154 8.002
106 1.292 2.556 2.818 1.689 2.748 1.077 7.865
107 1.260 2.764 2.674 1.779 2.781 0.895 9.181
108 1.506 2.662 2.703 1.734 2.880 1.412 8.136
109 1.517 2.560 2.866 1.838 2.951 1.153 8.062
110 1.504 1.898 2.381 1.455 2.487 1.180 8.151
113 1.519 2.633 2.782 1.933 3.190 1.257 8.597
115 1.283 2.387 2.621 1.613 3.067 0.777 8.468
116 1.364 2.659 2.425 1.504 3.029 0.900 8.190
119 1.570 3.034 2.716 2.059 3.399 1.386 8.621
120 1.747 2.240 2.732 1.406 2.906 1.174 8.294
121 1.740 5.640 4.833 3.097 3.207 1.245 8.733
122 1.531 2.327 2.700 1.579 3.244 1.029 8.488
123 1.776 1.943 2.627 1.485 3.025 1.652 8.190
126 1.799 2.763 2.670 2.000 3.482 1.488 8.957
127 1.228 2.351 2.531 1.816 2.724 0.841 7.945
128 1.284 2.521 2.620 1.780 3.109 0.939 8.701
130 1.564 3.208 3.267 2.159 3.298 1.402 7.933
131 1.760 4.373 3.790 2.531 3.642 2.238 9.288
132 1.236 2.417 2.570 1.879 3.422 1.569 7.950
133 2.254 2.953 2.994 1.861 3.200 2.057 8.654
134 1.347 2.435 2.656 1.873 2.652 1.061 7.996
135 1.631 2.332 3.166 1.876 3.225 1.590 8.242
137 1.359 2.118 2.377 1.464 2.711 0.801 8.880
139 2.428 2.570 3.424 2.332 3.248 1.733 8.330
140 1.296 2.384 2.202 1.653 2.381 1.395 7.969
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145 1.387 2.193 2.405 1.728 2.494 1.172 8.356
146 1.638 2.564 2.550 1.760 2.255 1.190 7.989
149 1.654 5.164 5.808 4.349 5.369 1.346 8.659
151 1.446 1.915 2.846 2.254 3.501 1.158 8.053
152 1.572 2.495 2.629 1.753 2.914 1.454 8.144
153 2.008 3.079 2.727 2.094 3.220 1.837 8.476
154 89.132 88.288 87.941 88.955 88.192 89.225 81.922
155 7.844 8.236 8.660 7.884 8.402 7.794 11.590
156 1.445 2.261 2.526 1.761 3.207 1.127 9.068
157 1.514 3.458 3.415 2.027 2.652 1.122 7.871
159 1.518 2.984 3.003 2.379 3.130 1.765 8.689
160 1.671 2.345 2.650 1.756 2.970 1.381 8.215
163 1.842 3.590 3.819 2.496 3.351 1.534 7.530
165 1.470 2.390 2.317 2.047 3.011 1.254 8.539
166 1.408 3.174 2.793 2.415 3.482 1.458 8.563
169 1.347 2.644 2.749 1.815 2.523 1.167 8.441
170 1.315 2.034 2.094 1.458 2.635 1.154 8.004
179 1.437 2.763 2.894 1.803 2.949 1.062 8.138
180 1.759 3.479 2.964 2.310 3.108 1.355 9.050
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Table A.4: MUE data for the segmentations obtained with the Explorer algorithm.

ID ILM NFL GCL IPL INL INL OPL OPL ONL ISL OSL RPE CH
1 1.716 2.466 2.182 2.187 2.641 1.500 1.284
2 1.249 2.934 3.197 2.727 3.669 1.631 2.034
3 1.259 1.668 1.759 1.844 2.378 0.845 0.789
4 1.763 1.911 1.781 2.091 2.300 0.760 1.445
5 1.873 3.061 3.288 2.764 3.816 1.698 2.672
8 1.281 2.300 1.816 2.033 2.686 1.024 1.528
9 1.537 2.053 2.110 2.572 2.962 1.214 1.663
10 1.341 2.523 3.076 2.931 3.516 1.338 1.087
11 1.647 2.321 2.791 2.532 3.726 1.208 2.153
12 1.393 2.842 2.481 2.249 2.772 1.725 1.314
13 1.845 2.445 2.192 2.282 2.425 0.824 0.942
14 1.490 2.559 2.702 2.225 3.225 0.973 1.182
16 1.376 2.332 2.694 2.395 3.521 1.894 1.720
17 1.848 4.798 4.324 4.212 4.252 1.155 1.203
18 1.846 2.934 3.755 3.425 4.185 1.433 2.540
19 1.501 2.782 2.356 2.962 3.779 0.937 1.127
20 1.378 2.482 1.847 2.607 2.666 1.622 1.352
23 1.413 2.670 1.920 2.156 2.804 1.447 2.929
24 1.382 2.865 2.342 2.464 3.246 1.740 1.846
25 1.234 2.275 2.006 2.591 2.576 0.749 1.110
28 1.832 3.377 2.566 2.742 3.100 2.260 2.683
30 1.524 2.395 2.222 2.180 2.783 1.491 1.900
31 1.175 2.415 2.052 1.932 2.625 1.123 1.262
32 1.403 2.391 2.246 2.256 3.025 1.784 1.451
34 1.268 1.895 1.797 1.960 2.227 0.922 1.022
36 1.273 1.925 1.760 2.003 2.274 1.051 0.777
37 3.087 4.165 4.006 3.618 4.093 2.445 2.246
38 1.115 4.168 3.925 4.022 4.243 0.774 0.997
39 1.900 2.511 2.578 2.155 2.979 1.776 1.310
40 1.724 1.866 1.728 2.112 2.647 1.076 1.074
41 1.499 2.673 2.895 2.489 3.191 1.166 2.020
42 1.283 2.740 2.798 2.555 3.181 1.951 1.318
44 1.776 2.495 2.156 1.961 3.091 1.541 1.654
45 1.405 2.610 2.215 2.103 2.679 0.909 1.285
46 1.500 2.062 1.975 2.142 2.402 3.533 1.007
47 1.766 2.780 2.493 2.511 3.344 1.607 1.968
49 1.644 3.424 3.556 3.432 4.696 1.183 1.647
53 1.230 2.349 2.198 2.011 2.976 0.925 0.961
54 1.172 1.826 1.822 2.208 2.627 0.808 0.946
56 1.078 2.706 2.300 2.889 2.401 0.846 1.340
57 1.926 2.271 1.871 1.823 1.991 0.820 0.847
59 1.182 2.663 2.350 2.535 3.154 1.422 2.859
61 1.487 2.597 2.579 2.111 3.086 1.197 1.301
62 1.594 2.476 2.413 2.466 2.617 1.112 1.507
63 1.676 2.286 2.104 2.011 2.492 0.841 1.163
65 1.571 2.419 2.002 1.860 2.441 1.161 1.234
66 1.511 1.972 1.857 2.124 2.586 0.974 1.319
67 1.281 1.711 1.812 2.035 2.344 1.229 0.945
69 1.593 3.425 2.738 2.454 2.374 1.610 2.084
70 1.388 2.026 1.819 1.876 3.181 1.172 0.992
71 1.995 1.940 2.274 2.147 2.476 1.084 1.005
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72 1.403 2.697 1.795 2.209 2.785 0.946 1.412
73 1.594 2.226 2.142 2.409 3.096 1.096 1.422
74 1.272 1.904 1.918 2.056 2.132 0.811 1.171
75 1.397 1.833 2.013 2.023 2.820 1.165 0.848
77 1.420 2.260 2.052 1.915 2.230 0.935 0.962
78 2.197 3.218 3.148 3.264 3.806 1.871 2.077
79 1.053 2.406 2.011 2.161 2.458 0.964 1.371
80 1.362 2.709 2.468 2.059 2.886 1.244 2.003
82 18.422 24.056 30.774 26.236 22.176 44.033 48.769
83 2.033 7.206 5.395 4.386 4.431 5.504 10.351
85 1.476 1.831 1.877 1.881 2.147 0.773 0.847
87 1.039 2.364 2.051 2.322 2.441 1.081 0.970
88 1.335 1.934 2.047 2.141 3.219 1.024 1.203
89 1.591 2.255 1.900 2.065 2.263 1.164 1.279
90 1.801 4.695 4.360 4.560 4.615 3.308 3.080
91 1.469 3.924 2.972 2.634 3.566 4.504 3.553
92 1.804 2.611 3.771 3.436 4.563 1.615 1.487
93 1.492 4.241 3.789 3.354 4.301 1.599 1.802
94 1.290 2.387 1.935 1.883 3.086 1.191 1.329
95 1.093 2.013 2.567 2.617 3.156 0.968 1.611
96 1.487 2.709 2.504 2.661 2.442 1.761 1.630
97 1.773 3.402 3.050 3.260 4.356 1.447 1.609
98 1.525 2.261 2.321 2.101 3.072 0.904 1.571
99 1.229 1.613 1.837 1.869 2.306 0.711 0.996
100 1.291 1.943 1.979 2.108 2.766 1.137 1.279
101 1.374 2.916 2.269 2.214 3.180 1.401 1.690
104 1.376 2.416 2.039 1.949 2.769 1.893 1.494
105 1.035 1.663 1.740 1.946 2.180 1.193 1.485
106 1.291 1.957 2.059 2.013 2.435 1.485 1.331
107 1.093 2.686 2.308 2.142 2.604 1.288 0.886
108 1.232 2.022 1.856 1.909 2.568 1.036 1.114
109 1.456 2.149 2.238 2.028 3.251 0.946 1.245
110 1.634 2.062 1.940 1.819 2.008 2.346 0.946
113 1.206 2.387 1.619 1.704 2.506 1.076 1.439
115 1.326 2.031 1.929 1.543 2.328 1.146 1.695
116 1.423 2.458 2.040 1.803 2.528 1.361 1.410
119 1.387 2.382 2.221 2.403 3.647 1.111 1.899
120 2.149 2.222 2.130 1.772 2.494 1.100 1.100
121 1.662 3.353 4.315 3.928 4.557 1.076 2.065
122 1.644 2.201 1.973 1.882 2.455 0.811 1.318
123 1.537 1.583 1.823 1.664 2.827 1.113 1.027
126 1.587 2.630 2.057 1.922 2.933 1.266 2.084
127 1.406 2.064 1.878 1.913 2.229 0.645 1.025
128 1.394 2.475 2.292 2.363 2.836 0.871 1.250
130 1.494 2.218 1.834 1.862 2.781 1.587 1.503
131 1.429 3.456 3.473 2.986 4.061 2.011 2.606
132 1.223 2.332 2.210 2.218 3.309 1.289 2.556
133 1.862 2.215 1.911 2.022 2.945 1.166 1.072
134 1.395 2.189 1.931 1.782 2.267 0.783 0.996
135 1.423 2.265 2.144 1.955 2.437 1.010 1.223
137 1.526 1.900 1.702 1.798 1.945 1.135 1.875
139 2.260 3.204 3.625 3.281 4.827 1.706 1.826
140 1.146 2.031 1.814 2.051 2.252 0.961 1.029
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145 1.334 1.830 1.944 2.192 3.001 0.938 1.111
146 1.703 2.476 2.229 2.434 2.290 0.774 1.186
149 2.072 2.600 2.028 1.891 2.664 1.989 1.905
151 1.483 1.702 2.086 1.914 2.387 0.932 1.482
152 1.431 2.164 1.980 2.036 2.553 0.924 0.995
153 1.646 3.383 2.407 2.273 3.150 1.341 2.228
154 2.084 3.087 3.201 2.813 3.368 1.244 1.513
155 1.756 1.869 2.047 2.002 2.746 1.149 0.854
156 1.331 2.051 2.021 2.085 2.946 0.999 1.815
157 1.411 2.303 2.567 2.333 2.555 1.757 1.508
159 1.458 2.802 2.268 2.400 2.865 1.393 1.539
160 1.583 1.913 2.024 2.030 2.636 1.059 1.058
163 1.952 2.639 2.714 2.586 3.430 1.768 1.414
165 2.437 3.446 2.684 2.678 3.146 2.814 2.700
166 1.317 4.264 3.791 3.927 3.818 1.061 1.563
169 1.512 2.329 2.005 1.963 2.176 0.770 0.903
170 1.423 2.048 1.583 1.613 2.064 1.128 1.295
179 1.542 2.419 2.538 2.543 3.151 1.935 0.916
180 1.671 2.614 2.485 2.382 2.968 1.654 1.877
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Appendix B

Plots of the selected volumes

This appendix aims to present the volumes selected at Table 5.1 as the
best and worst for each algorithm. The Figures present on this appendix
represent one B-scan form each volume.

Figure B.1: Representation of the segmentation of each algorithm for volume
3. The dashed white line represents the reference segmentation.
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Figure B.2: Representation of the segmentation of each algorithm for volume
10. The dashed white line represents the reference segmentation.

Figure B.3: Representation of the segmentation of each algorithm for volume
17. The dashed white line represents the reference segmentation.

Figure B.4: Representation of the segmentation of each algorithm for volume
31. The dashed white line represents the reference segmentation.
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Figure B.5: Representation of the segmentation of each algorithm for volume
34. The dashed white line represents the reference segmentation.

Figure B.6: Representation of the segmentation of each algorithm for volume
36. The dashed white line represents the reference segmentation.

Figure B.7: Representation of the segmentation of each algorithm for volume
37. The dashed white line represents the reference segmentation.
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Figure B.8: Representation of the segmentation of each algorithm for volume
54. The dashed white line represents the reference segmentation.

Figure B.9: Representation of the segmentation of each algorithm for volume
57. The dashed white line represents the reference segmentation.

Figure B.10: Representation of the segmentation of each algorithm for vol-
ume 63. The dashed white line represents the reference segmentation.
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Figure B.11: Representation of the segmentation of each algorithm for vol-
ume 67. The dashed white line represents the reference segmentation.

Figure B.12: Representation of the segmentation of each algorithm for vol-
ume 74. The dashed white line represents the reference segmentation.

Figure B.13: Representation of the segmentation of each algorithm for vol-
ume 80. The dashed white line represents the reference segmentation.
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Figure B.14: Representation of the segmentation of each algorithm for vol-
ume 83. The dashed white line represents the reference segmentation.

Figure B.15: Representation of the segmentation of each algorithm for vol-
ume 85. The dashed white line represents the reference segmentation.

Figure B.16: Representation of the segmentation of each algorithm for vol-
ume 89. The dashed white line represents the reference segmentation.
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Figure B.17: Representation of the segmentation of each algorithm for vol-
ume 90. The dashed white line represents the reference segmentation.

Figure B.18: Representation of the segmentation of each algorithm for vol-
ume 91. The dashed white line represents the reference segmentation.

Figure B.19: Representation of the segmentation of each algorithm for vol-
ume 95. The dashed white line represents the reference segmentation.
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Figure B.20: Representation of the segmentation of each algorithm for vol-
ume 99. The dashed white line represents the reference segmentation.

Figure B.21: Representation of the segmentation of each algorithm for vol-
ume 105. The dashed white line represents the reference segmentation.

Figure B.22: Representation of the segmentation of each algorithm for vol-
ume 121. The dashed white line represents the reference segmentation.
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Figure B.23: Representation of the segmentation of each algorithm for vol-
ume 127. The dashed white line represents the reference segmentation.

Figure B.24: Representation of the segmentation of each algorithm for vol-
ume 154. The dashed white line represents the reference segmentation.

Figure B.25: Representation of the segmentation of each algorithm for vol-
ume 159. The dashed white line represents the reference segmentation.
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Figure B.26: Representation of the segmentation of each algorithm for vol-
ume 170. The dashed white line represents the reference segmentation.
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